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Abstract

Buildings are the most prominent component in the urban environment. The geometric iden-

tification of urban buildings plays an important role in a range of urban applications, including

3D representations of buildings, energy consumption analysis, sustainable development, urban

planning, risk assessment, and change detection. In particular, 3D building models can provide

a comprehensive assessment of surfaces exposed to solar radiation. However, the identific-

ation of the available surfaces on urban structures and the actual locations which receive a

sufficient amount of sunlight to increase installed power capacity (e.g. Photovoltaic systems)

are crucial considerations for solar energy supply efficiency. Although considerable research

has been devoted to detecting the rooftops of buildings, less attention has been paid to creat-

ing and completing 3D models of urban buildings. Therefore, there is a need to increase our

understanding of the solar energy potential of the surfaces of building envelopes so we can

formulate future adaptive energy policies for improving the sustainability of cities.

The goal of this thesis was to develop a new approach to automatically model existing build-

ings for the exploitation of solar energy potential within an urban environment. By investigating

building footprints and heights based on shadow information derived from satellite images, 3D

city models were generated. Footprints were detected using a two level segmentation process:

(1) the iterative graph cuts approach for determining building regions and (2) the active contour

method and the adjusted-geometry parameters method for modifying the edges and shapes of

the extracted building footprints. Building heights were estimated based on the simulation of

artificial shadow regions using identified building footprints and solar information in the image

metadata at pre-defined height increments. The difference between the actual and simulated

shadow regions at every height increment was computed using the Jaccard similarity coeffi-

cient. The 3D models at the first level of detail were then obtained by extruding the building

footprints based on their heights by creating image voxels and using the marching cube ap-

proach.

In conclusion, 3D models of buildings can be generated solely from 2D data of the buildings’

attributes in any selected urban area. The approach outperforms the past attempts, and mean

error is reduced by at least 21%. Qualitative evaluations of the study illustrate that it is possible

to achieve 3D building models based on satellite images with a mean error of less than 5 m.

This comprehensive study allows for 3D city models to be generated in the absence of elev-

ation attributes and additional data. Experiments revealed that this novel, automated method

can be useful in a number of spatial analyses and urban sustainability applications.
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Chapter 1

Introduction

This chapter introduces the purpose of the study, the need for geometry identification and the

creation of 3D models of urban buildings for different urban applications, particularly solar en-

ergy potential assessments. Furthermore, the motivation for reviewing the formulated demand

for spatially enhanced spatial data in support of sustainable energy supply is explained. This

chapter also introduces the usability of geospatial data, such as satellite imagery, in 3D geo-

metry reconstruction. Finally, the chapter concludes with the main aim, objectives, research

rationale, research questions, and the contribution in scientific research, along with the thesis

structure and summary.

1



Introduction Chapter 1

1.1 Background of the study

Rapid urbanisation and population growth are the main cause of the depletion of natural re-

sources (e.g. minerals, vegetation, water, and soil) and the use of non-renewable energy (e.g.

coal, petroleum, and natural gas) [1, 2]. City expansion which does not take into account sus-

tainable development may contribute to unplanned or poorly planned urbanisation, leading in

turn to unsustainable urban environments. As unplanned urban growth can have a long-term

negative impact on urban sustainability on a range of scales (local, regional, and national),

urban sustainability must therefore be considered for the expansion of cities in order to minim-

ise our reliance on natural resources and conventional energy sources. Sustainable cities can

mitigate the impacts of climate change by minimising ecological footprints, reducing pollution,

increasing land-use efficiency, recycling waste, and increasing the use of sustainable materi-

als; moreover, climate change impacts can be mitigated by maximising renewable energy use

[3–8].

A promising energy source for sustainable urban development is renewable energy. Such

resources are eco-friendly and clean, and they have less environmental impact than other

energy sources (e.g. fossil fuels). Solar energy is the most rapidly growing form of clean,

renewable energy and is widely used globally for energy production (e.g. electricity and thermal

energy). However, due to the complexity of the urban environment, it is difficult to determine

how much of the available area of a building can be successfully used for the deployment of

photovoltaic (PV) solar modules. This is particularly true for other solar energy applications,

generally in modern urban landscapes.

To conduct an assessment of solar radiation potential at a building level, one of the key re-

quirements is to identify the geometry of urban structures within urban areas. Geometric in-

formation, location, and orientation of existing buildings make up the essential data required to

evaluate actual shadow regions and building surface brightness (including building roofs and

facades). This, in turn, requires the creation of 3D models of urban buildings to maximise the

exploitation of solar energy potential in a city. Generating such 3D building models can play

a significant role in increasing our understanding of the coverage of shaded zones in daylight

hours with high solar radiation. The 3D models, which are derived from genuine geospatial

data, can depict a building’s surrounding environment and the nearby urban fabric through ad-

vanced technology such as remote sensing platforms [9]. As such, this research focuses on

2



Introduction Chapter 1

the exploitation of advanced remote sensing techniques (e.g. optical satellite sensors) in cre-

ating 3D models of urban buildings, not only for solar energy systems but also for a wide range

of urban applications.

The geometry of a building, including the dimensions of the footprint and the elevation meas-

urements, provides the key elements for the creation of a 3D city model; such information

is indispensable in acquiring a comprehensive understanding of urban structures. A 3D city

model is defined as a three-dimensional depiction of the urban environment, concentrating on

the geometry of urban structures and objects where buildings are dominant [10, 11]. Because

3D building models provide significant supplemental information and navigation databases,

they offer an important contribution to our knowledge and brings us closer to a better under-

standing of the complex phenomenon of the urban environment, as well as the needs of a city.

Therefore, 3D building models can be used not only for visualising an environment, but also

for various urban applications in a wide range of research domains, as shown in Figure 1.1.

Despite the crucial role of 3D building models for urban applications, the reliability of the tech-

niques used and the availability of data for reconstructing and deriving 3D building models are

hurdles that are yet to be overcome. The reliability of the processing techniques used to gener-

ate 3D building models can be achieved by taking into account the cost, time, and effort of the

implementation process. In addition, there is the problem of obtaining genuine and up-to-date

data on the geospatial information of buildings within an urban environment.

Figure 1.1: The utility of 3D city models in a multitude of application domains for urban sus-
tainability and decision support
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Over the past few decades, diverse techniques have been employed in the identification of

building geometry. These techniques for generating 3D building models are based on ongoing

developments in data capture in urban areas. The most common acquisition techniques are:

photogrammetry and laser scanning, Light Detection and Ranging (LiDAR), radar, multispec-

tral satellite images (stereo-pair images), extrusion from 2D footprints, architectural models and

drawings, handheld devices, procedural modelling, and volunteered geoinformation. However,

in the context of the current work, the focus is on the extraction of the 3D geometry of observed

buildings within an urban area from which 3D building models can be derived with minimal

data usage. The key challenge is to detect, extract, and generate dependable 3D models of

urban structures with minimal data, low user effort (without human intervention), and sufficient

processing performance. Many developing countries (e.g. Iraq) do not have the basic require-

ments to facilitate the creation of 3D models. They do not have an effective survey system to

monitor the urban environment and they may even lack an inventory of existing buildings. There

is also often a lack of geospatial and statistical data, poor internet access (e.g. using online

3D modelling software), and/or advanced field devices (e.g. portable measuring devices and

drones). In particular, the reconstruction process of 3D models becomes more complicated if

several buildings, a district, or even an entire city is to be reconstructed as a 3D model.

In this regard, the unprecedented technological developments in satellites and their sensors

offer magnificent opportunities to cost-effectively monitor urban areas with a variety of collected

data. Continuous spatial and temporal data which cover large urban areas, such as remote

sensing satellite data, can provide the actual locations of urban buildings. Most significantly,

some remote sensing satellite sensors can capture surface heights and provide the elevation

data of urban objects, such as tree canopies and buildings. Three advanced remote sensing

technologies can be used in reconstructing 3D models of buildings: stereo imaging [12], LiDAR

[13], and imaging radar [14]. However, although the 3D models of urban buildings derived from

such remote sensing technologies are highly accurate, the reconstruction process of the 3D

models is still primarily achieved manually. In other words, a common property of the data

generated by remote sensing technologies is that they employ high-level data calibration and

processing using sophisticated parameters to obtain a reliable Digital Terrain Models (DTM)

and/or Digital Surface Models (DSM) [15]. In addition, it should be noted that the complicated

extraction process of elevation data, as used in numerous studies on 3D models (especially 3D

urban buildings), requires the use of extra complementary data and sufficient knowledge [16].

Studies using such data to generate 3D building models are often logistically constrained by
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factors such as: the availability of data from technologies; costs associated with LiDAR, aerial

images, and terrestrial laser scanning; the lengthy time for data pre- and post-processing (e.g.

point cloud processing); making desirable adjustments/editing (e.g. hypothesis for training and

testing data); and the cognitive skills of the researcher. Moreover, many images are needed to

build a satisfactory and complete view of a building’s size and shape.

In recent years, there has been renewed interest in creating 3D building models by employing

a single data source (e.g. a monocular satellite image) in order to reduce the limitations of us-

ing costly remote sensing data [17], and monocular Very High Resolution (VHR) multispectral

satellite images for 3D modelling [18]. There is a need for 3D building model creation using

minimal cost, time, and effort, to meet the needs of urban applications, such as urban planning

and identifying the availability of building surfaces for solar dissemination policies. However,

the creation of the 3D building models from a single satellite image (2D) is a very challenging

task. Although satellite images provide very useful solar information [19] and actual geospatial

information of building locations, inferring 3D information from 2D scenes is a process with em-

bedded geometric and radiometric difficulties. Due to the insufficient information about the 3D

structure of an urban object associated with using a single image, the identification of a build-

ing’s envelope1 becomes a geometric problem. The radiometric and spectral characteristics

in which satellite images are captured can increase the complexity of object recognition and

detection processes. This is especially true for dense urban areas as a result of the spectral

similarity of some surfaces.

On the other hand, due to the unprecedented technological development of the satellite sensors

and the characteristics of the captured image, there is an increasing need to address the per-

formance problems of the algorithms used for object detection, extraction, and 3D model re-

construction, using VHR satellite images within complex urban landscapes [19–21]. This is es-

pecially true when there is no extra data available to support the performance of the algorithms

in extracting meaningful information for the generation of 3D models of urban buildings from

single satellite images. The performance of the algorithms in many current and proposed semi-

automatic approaches for identifying and segmenting the boundaries of building footprints from

other urban objects in satellite scenes is still not efficient enough to produce realistic 3D build-

ing models with precise geometry. Although the identification process of building edges and

1The building envelope is the physical separator between the interior and exterior of a building. Components of
the envelope are typically: walls, floors, roofs, fenestrations and doors. Fenestrations are any opening in the struc-
ture: windows, skylights, and clerestories. https://sustainabilityworkshop.autodesk.com/buildings/

building-envelope
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shapes with user/operator aid may provide building geometry extraction results precise enough

to generate a 3D building model from the images, the general issue with semi-automatic meth-

ods is that they are time consuming, they have a low update rate, and they are tedious and

extremely difficult for modelling many buildings. The move towards process automation of

image-processing algorithms is therefore an increasingly important area in object detection

and extraction from images. Hence, this study to date has focused on the detection, extraction,

and creation processes for modelling urban buildings from single VHR images in an automatic

manner, rather than the implementation of semi-automatic methods. Nevertheless, fully auto-

mated approaches must be characterised by their propensity to overcome a number of aspects

including: (1) the influence of atmospheric and solar illumination, including shadow, shade, and

haze; (2) perspective viewing problems, such as occlusions and relief distortions; and (3) the

similarity between the building region characteristics and their background, including spectral,

textural, and geometric properties, such as shape.

1.1.1 Research rationale

Developing realistic 3D models of urban environments may be crucial for generating the energy

required to power a city. Energy is an indispensable element in every sector of life and is the

foundation of the evolution of economy. The ongoing worldwide impetus to employ renewable

energy to generate electricity for heating, cooling and lighting buildings, for heating water, and

for a variety of industrial processes, is driven by the negative environmental impacts of fossil

fuel production and use, such as global warming. One source of renewable energy is solar

power. The process of converting direct sunlight into electricity using solar photovoltaic (PV)

technology is one of the best options for the sustainable future energy demands of cities [22].

The assessment of suitable local areas for PV systems plays a critical role in the exploitation

of solar energy for successfully integrated solar installations in urban areas. Since buildings

are an integral part of the urban scene, roofs should be assessed for solar potential as well as

the areas available on the facades of buildings in modern urban landscapes. In addition to the

evaluation of the roofs and surfaces, the computation of real shadowing and its effective value

should be calculated using the envelope of the shaded zones in daylight hours with the highest

solar radiation. To this end, a complete 3D city model is required [23].
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In recent decades, the efficient and highly precise detection of complex urban details has been

achieved due to the advent of high resolution space-borne images. Existing research recog-

nises the critical role played by optical VHR satellite images, which are considered one of the

most important data input sources for a wide range of urban applications [18, 19]. Although

extensive research has been carried out using VHR images for detecting and extracting urban

features like building roofs, very few studies have investigated the significant area of other

surfaces in addition to rooftops available for PV technology based on the identification of the

building’s envelope geometry through the creation of a 3D city model. Accordingly, this study

has identified a gap in the knowledge required to create 3D models of urban buildings from 2D

scenes of urban landscapes, captured by the space platforms of remote sensing technology.

The creation of 3D models from monocular VHR satellite images to produce reliable geomet-

rical building envelopes with no extra information and in an automated manner is still a difficult

task to achieve. The specific problems for this study are based on the urgent need for: (1) a

robust, novel, automated approach to derive the heights of buildings using only 2D scenes; (2)

an accurate detection method of building footprints (or rooftops) in sophisticated environments,

such as urban areas; (3) a way to mitigate the deficiencies of cutting-edge algorithms used

for image-processing and computer vision techniques. The latter is complicated by the need

to deal with the precise extraction of the geometry of objects (e.g. building edges), the sep-

aration of objects from their background, image contrast enhancement, and fully automated

implementation.

1.1.2 Research motivation

The key motivation of this study can be broken down into three aspects. First, the Middle East

Economic Digest MEED's Iraq Power research report [24], using statistics from the Iraqi Min-

istry of Electricity, noted that improvements in the electricity sector are urgently required. The

country’s electricity supply was ranked the worst-rated service offered to its citizens following

the Gulf War in 1991 and the American invasion in 2003. The report indicates that the average

Iraqi household receives electricity for just 7.6 hours a day. As a result of this shortfall, families

receive about half of their power needs from household and neighbourhood generators.

Second, with the steadily rising consumption of electricity, as shown in Figure 1.2a2, and the

inability to meet current demands, the Ministry of Electricity put in place a master plan which

2data.worldbank.org/indicator/EG.USE.ELEC.KH.PC?locations=IQ

7

data.worldbank.org/indicator/EG.USE.ELEC.KH.PC?locations=IQ


Introduction Chapter 1

operated from 2012 to 2017, as shown in Figure 1.2b3. Although the priority of the Iraqi gov-

ernment is to use renewable energy including solar energy, the percentage of power supplied

by this sector of energy is much less than that of other energy sectors. Fossil fuel is still the

main source of energy. The continuous use of fossil fuel increases CO2 emissions, leading

eventually to negative impacts on the environment (e.g. global warming and pollution). It is

thus essential to encourage the government and the population to reduce the potential risk

of using the available fossil fuel energy supply by seeking alternative energy sources, thereby

mitigating environmental degradation.

Third, the availability of necessary data to achieve any urban project is most likely to be the

first requirement and/or task of a project, and this may form a problem for researchers, plan-

ners and decision-makers. The collected data from LiDAR, radar, laser scanning and aerial

photography is not easily available for a required project in the specific area, as it stands in a

developing country. This is due to the cost of employing such technologies, the limited area

coverage, and the amount of time and effort, in addition to safety and security issues in conflict

areas, compared to Earth observation technology using remote sensing satellites. According

to Weng [25], remote sensing is an essential geospatial tool which can be effectively used in

sustainable cities, such as Baghdad in Iraq. Therefore, one purpose of this study was to assess

the extent to which satellite imageries are capable of narrowing the gap created by the lack of

elevation data for creating 3D building models. Further, there is an urgent need to promote the

relationship between the two disciplines of remote sensing and sustainability science, in terms

of exploiting the great advantages of satellite images in one major field of sustainability, such

as energy.

Due to the electricity shortage, Iraq’s dependence on fosil fuel and the lack of current studies

in third world contexts, it is imperative that research be conducted to find a solution that is both

cost effective and environmentally friendly.

1.2 Aim and scope of the research

The primary aim of an extensive number of recently published research papers has been to

process satellite images to be adequately represented and extracted in a compact form amen-

able to subsequent recognition and representation. Typically, these representations can be one

3www.meed.com/countries/iraq/power-generation-a-top-priority-in-iraq/3129589.article
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(a) Electric power consumption (kWh per capita) (b) Master plan construction goals for en-
ergy generation in Iraq from 2012 to 2017

Figure 1.2: The steadily rising demand for electricity in Iraq shown by (a) electrical power
consumption of time and (b) construction goals for energy generation from 2012 to 21017.

of two basic types: internal, which comprises a region within the pixels, and external, which

comprises a region within the boundary. However, the manual process of labelling satellite

images is subject to a certain degree of uncontrollable error and requires continuous human

labour and attention. Accordingly, one of the great challenges of current image processing/-

computer vision research is to automate of landmark finding. Hence, this study aims to develop

a new approach to model the available surfaces for assessing and exploiting the solar energy

potential within an urban environment in an integrated analytical framework.

The main aim of the study can be broken down into the following six objectives:

1. Undertake a detailed review and critique of current methods of feature extraction from

remote sensing imageries, and recognise the key challenges of the current image pro-

cessing and computer vision algorithms and techniques for identifying the geometry of

the existing buildings.

2. Develop a method for the automated extraction of significant information in a generic

manner with good precision from satellite images, such as shadow regions. Also, im-

prove the precision of shadow region detection by applying efficient morphological pro-

cessing procedures.

3. Develop an algorithm for the automated detection of buildings and accurately extract

their edges to derive actual building geometry within a complex urban landscape using

improved shadow regions. Also, use the derived building footprints for computing building

orientation and available roof area for solar energy potential assessments.
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4. Develop an automated technique for estimating building heights based on the derived

shadow regions of buildings. Also, validate the outcomes of the estimation process.

5. Automatically create 3D models of urban buildings by developing an algorithm that re-

constructs 3D city models using the outputs of identified building geometry, including the

extracted footprints and the estimated building heights.

6. Evaluate and validate the developed approach’s results in terms of accuracy and preci-

sion in addition to the performance of the developed algorithm using a novel verification

approach.

To achieve the aim of the study and its objectives precisely, a strong set of research

questions was composed to determine the requirements of data, techniques, and exe-

cution environment and to allow the scope of the study to be satisfactory and robust in

terms of findings, performance and applicability.

1.3 Research questions

The objectives of this study were used to shape the following research questions. These re-

search questions are divided into two categories, as follows:

1. Can remote sensing data (in particular, optical satellite sensors) be effectively

used to extract significant information to support the identification of building

geometry?

This question relates to Objectives Two, Three and Four, and the answer will determine

the kind of satellite remote sensing data which will be employed. Therefore, to develop

an approach to detecting buildings automatically, the following questions are necessary:

I. What kind of optical satellite data source can be used to increase the discrimination

and/or separation of urban objects and man-made structures?

II. What types of information need to be extracted and inferred from optical satellite

data to help characterise and detect the building regions in urban areas?

III. Can shadow detection algorithms be used effectively to characterise the buildings,

and can shadow regions that belong to building regions be identified effectively

after applying the shadow post-processing technique?

10



Introduction Chapter 1

IV. Can the heights of buildings be derived from the shadow regions, and can the Jac-

card similarity coefficient technique be applied effectively to increase the accuracy

of the derived building heights to obtain accurately estimated height values?

2. How can the derived information from optical satellite images in 2D format be em-

ployed to reconstruct building envelopes for implementing 3D models of buildings

automatically?

In order to develop a new automated algorithm for implementing 3D models of buildings

from 2D scenes, an integrated framework will be generated. The framework includes the

validation and evaluation of the 3D models of buildings that will also be created. This

question relates to objectives five and six, and the following questions are necessary:

I. Can graph-based approaches, such as the GrabCut algorithm, be successfully

used for the automated extraction of building footprints based on their shadow re-

gions?

II. How can the extracted building footprints be modified in case their edges are not

straight edges and the final shape of the extracted footprints is not regular?

III. How can the 3D models of the buildings be produced using the extracted footprints

and the estimated heights?

IV. What level of detail in the created 3D models of urban buildings will be sufficient to

illustrate a building’s envelope and its available surfaces?

V. How can the surface availability, orientation and area of the derived building roof

be calculated and specified for a primary solar energy potential assessment and

analysis?

VI. How can the developed algorithm and the results from processing the data of the

whole developed approach be validated?

1.4 Contribution of the present work

With continuous advances in data collection by Earth Observation satellites, remote sens-

ing has become an essential tool for understanding our planet through monitoring natural re-

sources and environments, pre-disclosure, and then managing the risks and disasters caused

by nature and humans. Remote sensing data can also help the sustainability and productivity
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of natural and human ecosystems [25]. Accordingly, this thesis opens the door to new horizons

for emerging collaboration and cooperation between both remote sensing and sustainability

science through producing accurate and actionable knowledge using satellite images.

This study contributes to the current body of knowledge in three key ways. The first contribu-

tion is developing an approach for extracting building shadow regions from 2D satellite scenes.

The detection of shadow regions is remarkably improved through extracting only those shad-

ows (the dark regions) that relate to building regions, in terms of overcoming the complexity

and spectral heterogeneity that often exist in urban landscape scenes. This valuable inform-

ation extracted from VHR images is effectively used to derive urban building structures and

determine their geometry.

The second contribution of this study is the performance of the building detection approach,

which is based on the graph partitioning theory. The approach is refined to cope with very

challenging data in terms of illumination conditions, and image characteristics. Recently re-

leased data from modern satellite sensors were used for the first time in this study, and thus,

the results from these processed data can help to guide and widen knowledge as researchers

in different urban contexts use these data. This is a great advantage because previous studies

using Earth Observation data have not dealt with such new data collected by such an advanced

optical satellite sensor.

The third contribution of this study is the creation of 3D models of urban buildings from 2D

scenes by developing an approach based on shadow information derived from 2D scenes

without requiring extra data. The developed approach will enable users to provide 3D building

models within urban areas even in places where there is a lack of sufficient data or other meth-

ods prove too costly. The geometric representation consists of a polygonal ground plan and the

wall and roof surfaces per building, which can be used to make 3D visualisations of buildings

and can assist in a range of analytical applications across both public and commercial sectors.

In addition, the creation of 3D building models using remote sensing data provides the real

locations of buildings and a significant geospatial database with the ability to be updated; it can

deal simultaneously and automatically with large areas and many buildings with different geo-

metries and various characteristics. Most importantly, the algorithm developed for deriving the

heights of buildings from monocular satellite images reduces much of the processing required

for aerial photography or stereo-pair satellite images. The developed approach for estimating

building heights can be effectively used in a wide range of urban applications, urban change
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detection, risk assessments and urban planning. Particularly, the findings of the present study

were encouraging and outperform past approaches, with a 21% reduction in mean error and

an overall accuracy of 80%.

Moreover, the automatic process of the shadow detection is a vital pre-processing step for

many urban remote sensing applications, especially for images acquired with high spatial res-

olution. This is because the process can be applied afterwards on different types of optical

satellite images for applications that might benefit from the information derived from shadow

detection. For example, the detected shadow regions can be used as an element in the pro-

cess of the automated detection, or these regions can be removed and replaced with actual

information of existing ground features to improve the performance of the image classification

process, or the shadow regions can be exploited to extract the geometric footprints of urban

structures. In this context, the algorithm developed to detect building footprints and extract the

3D models of urban buildings will assist researchers, users, and specialists to overcome the

hurdles associated with the manual production of building footprints. Generally, Geographic In-

formation Systems GIS-based approaches for creating building footprints and other traditional

methods of producing mastermaps are employed to identify and define the ground boundary of

each building, which can take a lot of time. Moreover, the developed approach is fully independ-

ent of a user at every stage of data processing and model creation because of data-dependent

thresholding.

Regarding renewable energy for urban sustainability, the fourth contribution is the computation

of real shadowing from genuine data that can facilitate the assessment of the available building

surfaces for integrated solar installations. The information about shadow regions is advantage-

ous for conducting roof and facade brightness analyses for buildings. According to Ko et al.

[26], the assessment of solar PV energy potential of rooftops indicates that the shadow cast by

building structures substantially influences the amount of installed energy capacity. Therefore,

an algorithm is developed in this presented study which is capable of evaluating the overlap of

the derived shadow regions and other shadow regions of buildings or man-made, non-building

objects.

Lastly, the identification of building geometry by creating 3D building models in complex urban

landscapes can increase our understanding of the envelope of the shaded zones in daylight

hours that have the highest solar radiation and exploit the solar energy potential in a city. In this

respect, the developed study is designed to aid Iraqis in addressing the need to employ solar
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PV technology at the local level, which should help mitigate the severe shortage of electric

energy in the whole country. Nevertheless, the present study can be applied to any city in

the world, especially cities that do not have effective field surveys and advanced techniques to

obtain valuable information which can be used in various urban applications. It is also important

to reduce greenhouse gas emissions in our atmosphere, caused by human activities such as

burning fossil fuels for energy [27]. Therefore, this new methodology presented here can be

used to satisfy the requirements of the automated extraction of 3D models of urban buildings

for the optimal location of solar energy applications on the rooftops and facades of buildings.

The 3D building models can also be used for the preliminary analysis of solar potential at the

municipal or neighbourhood level, in addition to larger efforts toward sustainable development

and urban planning that the government intends to implement. It is anticipated that this study

will be the first of its kind in Iraq in terms of both remote sensing and urban sustainability

sciences.

1.5 Outline of the Thesis

The thesis has seven chapters, including the present one. The content of each of the chapter

is described below. A schematic of the thesis structure is shown in Figure 1.3.

Chapter 2 - Advances in remote sensing applications for urban sustainability: This

chapter provides the background of remote sensing systems as an advanced science, techno-

logy and indispensable tool for Earth observations. Remote sensing data can play a key role

in depicting complex urban landscapes. This chapter also illustrates the applications of remote

sensing in urban sustainability development, especially in the realm of renewable energy.

Chapter 3 - Current state of 3D object creation: : This chapter reviews the relevant pioneer-

ing image processing algorithms within the scope of this work. It starts with the use of optical

VHR satellite images, the available processing techniques, and the ability to infer necessary

information and extract objects. The aim of the building shadow region's extraction and the

theory behind shadow information are also investigated intensively. Thereafter, the chapter

provides a critical and comprehensive review of the existing methods for building detection,

geometry identification, and 3D model reconstruction. The chapter concludes by discussing

the relationship between building geometry and its impacts on energy efficiency.
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Chapter 4 - Methodology: This chapter explains the philosophical approach of the research

methods that have been adopted and refined to develop a new approach for generating 3D

building models. The chapter presents the research design and theoretical methodological

framework and also justifies various aspects of the entire employed methodology.

Chapter 5 - The experiments and results: This chapter presents the findings of the study. It

summarises the collected data, the parameters for conducting data processing, the statistical

and computational implementation, and the strategy for accuracy assessment. The outputs

of the novel approach taken in this thesis were analysed at every phase of the developed

algorithm, starting from image enhancement, then the extraction of shadow regions, building

detection, building height estimation, and finally the creation of 3D building models.

Chapter 6 - Discussion and interpretation of the results: This chapter discusses the re-

search findings, presenting the implications of the results, particularly the generalisability of

the results and their practical applications. This chapter also provides the limitations, justifica-

tions, and a critical evaluation of the study in terms of how well the findings address the original

research questions.

Chapter 7 - Conclusion and future work: This chapter presents the key points of the en-

tire thesis by summarising what was achieved, highlighting the key findings, and reviewing its

contributions to the growing body of knowledge on this subject. All conclusions drawn from

the study findings are provided in this chapter, with indications of how these findings might be

useful for both researchers and practitioners. Future work and recommendations for research

are also discussed.

After the body of the thesis, there are appendices for reference, which include the characterist-

ics of the remote sensing systems, the data used in this study, the Matlab code structure, a list

of publications generated by this thesis, and skills and achievements certificates.

1.6 Summary

This first chapter of the thesis consists of four main sections. Section one includes the re-

search rationale and motivation for this research. Section two presents the main aim of the

research and the study objectives. Section three presents the research questions, and section

four provides the scientific contribution of the present. In summation, there is an increasing
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Figure 1.3: The structure of the thesis

interest in 3D city models for many different applications and users worldwide. In particular,

the use of 3D models of urban buildings is a key part of ongoing research projects geared

towards applying renewable energy for sustainable development. A growing interest in renew-

able energy has resulted in the increased use of remote sensing for the planning, operation,

and maintenance of energy infrastructures, particularly ones with spatial variability, such as

solar, wind, and geothermal energy.

It is essential to improve our understanding of 3D solar buildings, which enables solar planners,

installers, property owners, decision-makers, and authorities to more efficiently measure and

assess the availability of building surfaces for PV applications. This will support sustainable

urban development in cities. Therefore, this study presents a new approach for the automated

modelling of 3D urban buildings from single VHR multispectral images.
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Advances in remote sensing

applications for urban sustainability

The current chapter presents a review of the key applications of remote sensing in urban sus-

tainability, and highlights their potential to address problems associated with the expansion of

cities. The content of this chapter is divided into four main sections. First, why remote sensing

technology is useful in urban studies. Second, existing remote sensing systems and available

satellite data resources are reviewed and categorised to provide the context for subsequent

discussions. The information will also act as an indispensable resource for urban professionals

in identifying appropriate remote sensing data for specific applications. Third, a state-of-the-art

review is presented on the applications of remote sensing in urban sustainability. Fourth, the

limitations of the reviewed applications are highlighted with a discussion on future directions

for research and development.
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2.1 Remote sensing technology in urban studies

Although cities are engines of economic prosperity and social development that arise from the

concentration of people and economic activities, they often manifest in unsustainable urban en-

vironments [28]. Economic opportunities in cities act as a catalyst for rapid urbanisation across

the globe, but urbanisation rates are uneven and much faster in developing countries [29]. By

2030, the annual average rate of urban growth is expected to be 0.04% in Europe, 1.5% in

the USA, 2.2% in East Asia and the Pacific, 2.7% in South Asia, 2.3% in the Middle East and

North Africa, and 3.6% in Sub-Saharan Africa [30]. Increasing urban migration has contributed

to the unplanned, or poorly planned and implemented, growth and expansion of cities. The

latter is a critical factor for urban stakeholders, as unplanned urban growth can have a long-

term negative impact on urban sustainability at the local, regional, national and, potentially,

inter-governmental scales [22]. Impacts include detrimental economic consequences such as:

a reduction in the productivity of key economic sectors [31]; environmental degradation, for

example poor air quality and increased urban temperatures and surface run-off [32–34]; and,

negative societal impacts, such as increased morbidity and mortality, poorer quality of life, and

the fragmentation of neighbourhoods and related communities [35].

Such undesirable changes can be mitigated using evidence-based approaches for the effective

risk management of the reformation of urban landscapes and related environmental systems.

Gathering evidence of urban change is typically a time and resource intensive process that

needs the application of appropriate technologies to identify such risks. Recent advances

in satellite remote sensing offer opportunities to cost-effectively monitor urban change and its

impact on the complex urban socio-technical systems, enabling stakeholders to make informed

decisions which can reduce negative impacts on the environment. Remotely sensed data are

an important and powerful source of information on urban morphology and changes over time

[36]. In contrast, conventional observation techniques are often logistically constrained in that

they require a great deal of effort, cost, and time to obtain information over a large spatial

expanse in a consistent manner [37]. The lower cost and availability of data have facilitated the

way researchers accomplish research objectives, and have fostered public engagement with

remote sensing science.

There is a growing body of literature on the application of urban remote sensing, from the in-

vestigation of land-cover and land-use changes, to the monitoring of micro-climatic parameters
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and the assessment of renewable energy potential. Increased vulnerability to the impact of cli-

mate change and disaster risks, and urban growth resulting from rapid urbanisation, have influ-

enced recent developments on integrated risk modelling that combine remote sensing analysis

with social and economic data for urban sustainability assessment [28]. Collaboration between

expert stakeholders is essential to realise the full potential offered by remote sensing for urban

sustainability [36]. However, there is a lack of understanding among urban professionals of the

technical characteristics of remotely sensed data and their suitability for analysis, their limita-

tions, and their application potential. Therefore, the aim is to fill these gaps and increase our

understanding of the potential of remote sensing data in sustaining cities by critically review-

ing the technical characteristics of available remote sensing sources and their applications for

urban sustainability. This chapter of the present thesis can act not only as supportive evidence

of research literature to this work but also as a comprehensive resource for the state-of-the-art

approaches and solutions, with the ability to provide directions for future research.

2.2 Urban Remote Sensing (URS)

Cities are unique because of the existence of dense artificial structures. However, the in-

creasing urbanisation rate will eventually lead to the expedited consumption of non-renewable

land resources such as water (at and under ground level) and food Longley [38], and energy

resources such as oil, coal and gas with environmental, social and economic impacts on de-

veloping and developed countries alike [39]. Thus, the growth of urban areas can result in sub-

stantial land-cover and land-use changes, and these make an ideal sustainability case for the

use of remote sensing. The next sections are devoted to a review of remote sensing systems

and applications within urban environments, focusing on urban growth, sprawl and change, the

environmental impacts of urban growth, and sustainable energy applications.

2.2.1 remote sensing technology and systems

Remote sensing is able to know what an object is without physical contact, as in [40], which

was inspired by [41]. The three distinct stages of the development of remote sensing instru-

ments are illustrated in Figure 2.1. First generation remote sensing instruments were of low

spatial resolution, 1 km–100m, increasing to 30m–10m in the second generation. The third

generation instruments are more capable of observing the Earth's surface with a very high

19



Advances in remote sensing applications for urban sustainability Chapter 2

spatial resolution, 5m–0.5m and less, enabling the acquisition of further spatial details, res-

ulting in more accurate feature recognition. To enable the reader to gain a high-level overview

of remote sensing characteristics, satellites are categorised based on their orbit, their sensor

mode and instrument, resolution, and the wavelength of the electromagnetic radiation (EMR),

as shown in Figure 2.2.

Figure 2.1: A comparison of satellite generations in terms of detail, feature recognition, and
planning requirements. The red square represents the spatial resolution of the adjacent re-
mote sensing image. An image with a pixel size of 80m (Landsat-MSS) cannot recognise an
object such as a house, but its features can be effectively recognised with a pixel size of 0.6m

(QuickBird)

Orbit. Remote sensing satellites roam in two kinds of orbit, sun-synchronous and geosta-

tionary. Most remote sensing platforms such as Landsat, SPOT, and IKONOS operate in a

near-polar (i.e. sun-synchronous) orbit at low altitudes, passing over each area before noon,

at 10.30 am local time [19]. This allows the acquisition of clearer images of the Earth's sur-

face over a particular area on a series of days in similar illumination conditions, i.e. when the

sun position is optimal, between 9.30 am and 11.30 am local time [42]. In contrast, geostation-

ary satellites are ideal for some communication and meteorological applications because of

their very high altitudes, allowing continuous coverage of a large area of the Earth's surface,

although with the trade-off of low spatial resolution.

Sensor mode and instrument. Spatial resolution is based on pixel size and is said to be low

when it is greater than 100m, medium when between 10m -100m, and high when less than
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Figure 2.2: Classification of remote sensing sensors based on their characteristics

10m [43]. Depending on the on-board sensors’ spatial resolution,remote sensing systems

can be classified into two groups: low/medium, and high/very high. Existing low/medium, and

high/very high remote sensing systems and their potential applications are given in Appendix

A, Tables 1 and 2, respectively. Most of the data are available at low cost, and are often free to

download on the Internet. A summary of selected websites for obtaining data, such as satellite

imagery, radar, LiDAR, hyperspectral, aerial orthoimagery and digital spectral library data are

presented in Appendix A, Table 3.

Resolution. The trade-off between spatial and temporal resolution needs to be reconciled

for the selection of satellite images for a particular application, as illustrated in Figure 2.3. For

instance, a high temporal resolution is essential for emergency situations, such as landfall due

to hurricanes, because emergency situations change rapidly and require frequent observations

on the day. In contrast, urban infrastructure planning applications require spatial understanding

over a longer period, for which annual observations are often sufficient. However, both cases

sometimes require high spatial resolution images to observe their processes comprehensively.

On the other hand, high temporal resolution is required for rapidly changing applications such

as weather. Operational weather forecasts, therefore, require satellite observations with high

temporal resolution, which often comes at the cost of spatial resolution. Each remote sensing

application, thus, has its own unique resolution requirements which need to be appreciated.
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Figure 2.3: An overview of the spectral, spatial, temporal, and radiometric resolution of dif-
ferent optical satellite systems. Spatial and temporal resolution requirements vary widely for
monitoring terrestrial, oceanic, and atmospheric features and processes. Each application
of remote sensing sensors has its own unique resolution requirements and, thus, there are
trade-offs between spatial resolution and coverage, spectral bands and signal-to-noise ratios.
Notes and symbols: Bs the number of spectral bands, which include the visible light spectrum
(VLS), near-infrared (NIR), mid-infrared (MIR), and thermal infrared (TIR) portion of the elec-
tromagnetic spectrum; RGBa colour digital image; and, PANa panchromatic image. Adapted

from Jensen [44] and Purkis & Klemas [43]

2.2.2 remote sensing applications in urban environments

Urban growth, sprawl and change. Urban growth refers to the transformation of the land-

scape from undeveloped to developed land [45]. More specifically, the growth away from central

urban areas into homogeneous, low-density and typically car-dependent communities is often

referred to as urban/suburban sprawl. In developing countries, urban sprawl can be unplanned
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Figure 2.4: A comparison of environmental considerations and critical requirements between
optical and non-optical sensors for urban change detection and the monitoring of city expan-

sion

and uncontrolled [46]. Consequently, urban growth leads to the loss of farmland, rising eco-

nomic and social issues, and increased water and energy consumption, with associated green-

house gas emissions [47]. From the stakeholders’ point of view, the expansion of cities is a

crucial change in terms of landscape transformation processes and urban sustainability. Con-

tinuous spatial and temporal monitoring is required to evaluate and understand such changes.

The capabilities of remote sensing satellites make them a robust and reliable source of data

for monitoring the expansion of cities at different spatiotemporal scales [48].

In a recent study, Cockx et al. [49] reported that land-cover and land-use information from

remote sensing data is a key component in the calibration of many urban growth models. Van

de Voorde et al. [50] noted that there is a strong relationship between the change of form in

land-cover and the functional change in land-use through the analysis of satellite imageries.

Classification-based approaches are routinely used to detect the expansion of cities by invest-

igating land-cover and land-use changes [51–58], and the analysis of urban sprawl [59–64].

Figure 2.4 provides a comparison of the environmental considerations and critical require-

ments between optical and non-optical sensors for urban change detection and the monitoring

of city expansion.

Medium-resolution satellite Landsat imagery has been widely used for urban change detec-

tion. Yang and Liu [65] detected the presence of urban impervious surfaces to characterise
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urban spatial growth. Ji et al. [66] characterised the long-term trends and patterns of urban

sprawl using multi-stage Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and

Extended Thematic Mapper (ETM+) images, based on landscape metrics. Similarly, Du et al.

[67] used a time-series of multi-temporal Landsat TM images to derive overall change trends

through a normalised difference vegetation index-based (NDVI) classification. Taubenbck et al.

[68] detected temporal and spatial urban sprawl, while Abd El-Kawy et al. [69] demonstrated

that human activities were responsible for land degradation processes. Pham et al. [70] and

Schneider [71] showed that remote sensing time-series data can be effectively used to determ-

ine long-term urban change trends. However, the mapping of some inner city areas for the

observation of urban growth or detection of subtle change is challenging at this level of spatial

resolution.

Satellite images at medium spatial resolution 10m - 100m cover a large area, often mak-

ing the urban landscape appear homogeneous, as different attributes of land within one pixel

are combined. Researchers have, therefore, attempted to fuse multi-source (remote sensing,

socio-economic, vector) data with medium-resolution images to improve the overall resolution,

increase model accuracy, and make change detection more perceptible. Jia et al. [72] pro-

posed a method of improving land-cover classification by fusing Landsat 8 Operational Land

Imager (OLI) NDVI at 30m with MODIS NDVI at 250m, resulting in a 4% improvement in the

overall classification accuracy compared to a single temporal Landsat data. On the other hand,

Singh et al. [57] showed that the fusion of LiDAR and Landsat data can lead to increased ac-

curacy in distinguishing heterogeneous land-cover over large urban regions. In another study

by Martinuzzi et al. [73], land-use change was inferred from Landsat ETM+ images integrated

with aerial photos and population census data to reveal urban growth and sprawl. Change

detection of urban land-use from low- and medium-resolution imagery is error-prone without

any improvement from other high-resolution remote sensing data or integration with supple-

mentary data, such as census data. This inaccuracy is attributed to mixed pixels that represent

a spectral mixture of diverse built-up materials, eventually leading to greater uncertainties in

land-cover/land-use classification.

The issue of mixed pixels can be resolved by obtaining more detailed information on urban

morphology using high spatial resolution sensors. IKONOS pan-sharpened and SPOT images

were combined with different vector maps by Noor and Rosni [74] to analyse the geospatial

indicators based on spatial factors. Nassar et al. [75] identified the spatial evolution, urban
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expansion and growth patterns based on a hybrid classification method and landscape met-

rics, using different datasets to derive suburban classes (e.g. residential, commercial and

industrial). Further, Kuffer and Barrosb [76] proposed an approach to monitor unplanned set-

tlements in residential areas by identifying the morphology (size, density, and layout pattern)

of urban areas. The mapping of urban land-cover and land-use from high spatial resolution

images often faces the issue of spectral variability within one-class and the shadows of build-

ings and trees that reduce class separability and classification accuracy. Nevertheless, NASA

[77] reports that the progression in remote sensing-based urban area mapping is contribut-

ing to the creation of more accurate and detailed maps of cities, enabling an unprecedented

understanding of the dynamics of urban growth and sprawl.

The environmental impacts of urban growth. At a time when informal settlements are

emerging as a result of population growth, the likelihood of increasing the occupation of spaces

inside and outside cities will be higher, as is the risk of inappropriate urbanisation. The occu-

pation of land as an uncoordinated form is motivated by several factors, namely: the limited

income of urban dwellers, increased housing demand, the lack of sustainable long-term urban

planning, and the lack of legal buildable land. These factors have led to the improper devel-

opment of cities/urban areas, even in areas considered to be at high risk of natural disasters,

such as landslide and flooding. The negative effects of the expansion of cities and urban

growth are more motivational as a research agenda than the positive ones. One such applica-

tion is the assessment of the quality of life and socio-economic conditions in urban slums, since

for every three city dwellers worldwide, one lives in a slum [78]. Many authors have applied

remote sensing techniques to identify slum locations and classify slums from other land-use

types [79–84]. Graesser et al. [85] distinguished the boundaries between formal and informal

settlements using an image classification approach. Weeks et al. [86] identified the location of

slums and quantified their area using a vegetation-impervious-soil (VIS) model, image textur-

ing, and census data, deduce land-use effects and to produce a slum index map. According to

Hagenlocher at al. [87], there is a clear link between the increasing number of new, temporary

population settlements and decreasing natural resources in the vicinity of these settlements.

This was revealed using a time-series of VHR optical satellite imagery. In this context, the iden-

tification of a slum core and its impact on the environment using texture-based identification of

urban slums was performed by Kit et al. [81], and slum area change patterns were identified

by Kit and Lüdeke [83]. Exploiting textural differences between urban land-uses derived from

25



Advances in remote sensing applications for urban sustainability Chapter 2

satellite imageries can be beneficial for improving urban mapping with regards to spectral het-

erogeneity within urban landscapes, as illustrated in Figure 2.5. It shows the degree of spatial

autocorrelation in the slums (informal) compared to the residential areas (formal).

Figure 2.5: The texture-based identification of urban slums from remote sensing data. (a) A
QuickBird scene of informal residential area (slums). (b) A GeoEye-1 scene of a formal res-
idential area. (c) and (d) Moran’s I measuring spatial autocorrelation based on simultaneous
feature locations and values. (e) and (f) The difference in the texture in the binary form. (g
and h) The XBAR control chart of (c) and (d) to analyse the greatest similarity between the
pixel values in each subgroup and the greatest difference between the pixel values in different

subgroups

Regarding other negative impacts, increased city size and dweller numbers causes a corres-

ponding rise in urban air and surface temperatures, known as an Urban Heat Island (UHI)

Figure 2.6. A positive correlation has been deduced between impervious surfaces and land

surface temperature (LST) in the sprawled areas [32, 88], where impervious surface areas be-

come warmer than the surrounding areas. Two main factors cause the UHI effect. First, heat

is absorbed from sunlight and subsequently released as thermal infrared radiation by dark sur-

faces, such as pavements, roads and rooftops. The temperature of these surfaces can reach

28-39 °C higher than the surrounding air [89]. Second, there is a relative lack of vegetation

cover in urban areas, especially trees, which work to cool air and balance the components of

the environment.

Li and Yin [90] developed an approach to calculate the UHI effect ratio (UHIER), and this sug-

gests that urban areas have a relatively higher temperature than the neighbourhoods surround-

ing the city. Senanayake et al. [91] identified UHIs and the distribution of LST by analysing
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Figure 2.6: Increasing temperature due to increased city size and the number of city dwellers.
Adapted from Bhatta [89]

vegetation cover using NDVI. Le-Xiang et al. [92] assessed the impact of land-use and land-

cover on LST, suggesting a higher surface temperature of around 4.56 °C in newly developed

urban areas, due to decreased vegetation caused by urban expansion.

Several studies have illustrated the use of remote sensing data in analysing air pollution and its

quality. Numerical simulations based on satellite data were performed by De Ridder et al. [93]

to evaluate the effect of urban sprawl on air quality, surface temperature and their effects on

people. In a recent study, Bechle et al. [94] evaluated the ability of the satellite data to resolve

urban-scale gradients in ground-level nitrogen dioxide (NO2) within a large urban area. Wang

et al. [34] derived high resolution aerosol optical thickness (AOT) from Terra-MODIS data, and

created four models to analyse the relationship between AOT and PM2.5. Data from the same

satellite were used by Nichol et al. [95] to assess 3D air quality over an urban landscape.

Sifakis et al. [96] developed an approach to quantify AOT over urban areas by fusing different

spectral bands of satellite imageries based on image processing techniques.

With regards to the evaluation of water quality and quantity, Chawira et al. [97] proposed a

semi-empirical band ratio model to derive and quantify water quality parameters in two polluted

lakes. They also identified the causes of pollution as domestic waste and raw industrial sewage,

poor garbage collection, agriculture, and certain mining activities, inter alia. Jay and Guillaume

[98] used hyperspectral data to map depth and water quality. Trochta et al. [99] presented

the identification of water types with different biogeochemical properties and drivers through

an optical classification scheme based on remote sensing data. Hunink et al. [100] studied
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the relationships between groundwater usage and crop type in irrigated areas. The realistic

spatial distribution of air and water quality can help to define the urban landscape quality (ULQ).

However, the use of census data alone to quantify ULQ can result in unreliable estimates as

census data do not adequately capture environmental factors such as waterborne diseases

and various types of pollution (air, water, and toxic chemicals). Satellite remote sensing data

can fill this gap and improve our understanding of the relationships between environmental

factors and the urban landscape. Table 2.1 summarises the potential and shortcomings of

remote sensing data for investigating the impact of urban expansion.

Table 2.1: Consequences of expansion of cities against observation variables, impacts, potential and
limitations of urban remote sensing applications

Consequences of the expansion of cities

Temperature Air quality Water quality

Observation
variables or
parameters

• Dark surfaces (low
albedo)

• The lack of vegeta-
tion

• Ozone
• Nitrogen dioxide
• Sulphur dioxide
• PM2.5 and PM10

• Carbon dioxide
• Dust aerosol

• Turbidity
• Total suspended sediment
• Volatile suspended solids
• Polychlorinated biphenyls
• Chlorophyll

Impacts • Increased energy
consumption & cost

• Elevated emissions
of air pollutants
(SO2, CO and
PM ) and green-
house gases (CO2)
global warming

• Compromised hu-
man health and
comfort

• Impaired water
quality

• Serious human
health problems

• Inhibited plant
growth

• Smog and acid rain
• Climate change

• Change in colour
• More total runoff volume and

flooded land, untreated or
poorly treated sewage

• Surface water pollution
• Groundwater pollution
• Reduced storage capacity,

flood control, light penetration
in water-minimising fish yield

• Human health

continued on the next page
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Table 2.1: Consequences of expansion . . . (cont. from previous page)

Consequences of the expansion of cities

Temperature Air quality Water quality

Potential • Observe and map
the surface urban
heat island (SUHI)

• Identify the spa-
tial patterns of
upwelling thermal
radiance

• Identify urban con-
struction materials

• Time synchron-
ised dense grid of
temperature over a
large area

• Monitor and map
the compositions of
air over the globe
with high spatial and
temporal coverage

• The combination of
satellite observa-
tions with ground
based in situ for
monitoring, model-
ling, simulating and
forecasting the air
quality and climate
change

• Improve the qual-
ification of the air
compositions

• Assess surface water, subsur-
face water, soil moisture and
groundwater with reasonable
accuracy

• Assess pollutants spectrally
and suspended sediments
using regression based optical
models

• Monitoring the vast spatial
coverage and long term, re-
motely recognition concentra-
tions of sediments chlorophyll
and detecting the presence
of water beneath vegetation
using the microwave spectrum

Limitations
and/or con-
siderations

• Clouds (thermal
imageries)

• Surface radiative
properties

• Spectral wavelength

• Cloud (the accur-
acy of air quality
models)

• The lower levels
of the atmosphere
where exposure to
pollution occurs

• Chemical and phys-
ical measurements
through the atmo-
sphere

• Properties of scattering and
absorption of suspended sed-
iments and dissolved organic
matter make it difficult to de-
termine the intensity of reflec-
ted light

• Demand repeated monitoring
on short time-scale

• Demand in situ measurements
for calibration the estimation of
water quality

• Poor retrieval of water con-
stituents due to shadows cast
on water bodies

• Correction for atmospheric
influence on remote sensors is
necessary to differentiate the
patterns of water quality

2.3 Sustainable urban environments

From the aforementioned challenges, sustainable urban development is a notable trend arising

from the need to maintain sustainable urban and ecological environments. Sustainable urban

development faces increased challenges on a daily basis due to deficiencies in the planning
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approaches employed to address these challenges [101]. The next sections illustrate the im-

portance of using remote sensing techniques as an effective tool in facilitating the establish-

ment of sustainable development, through providing a wealth of environmental data on a range

of spatial and temporal scales. A major role that remote sensing can play is in the provi-

sion of indicators of environmental conditions for sustainable development, and its associated

decision-making [102].

2.3.1 Sustainable development

In recent years, there is an emerging trend worldwide towards pursuing green technologies

and low-carbon economies and lifestyles [25]. However, the sustainability issue is not new

because it began with the 1992 United Nations Conference on Environment and Development

(UNCED) in Rio. UNCED Principle Three characterised sustainable development as that “the

right to development must be fulfilled so as to equitably meet the developmental and environ-

mental needs of present and future generations.” Principle Four stated that “in order to achieve

sustainable development, environmental protection shall constitute an integral part of the devel-

opment process and cannot be isolated from it”, as mentioned by Weng [25]. In practical terms,

sustainable development is a multifaceted concept, subject to many perspectives according to

personal experience, viewpoint and discipline [103]. From the perspective of the ecosystem,

and according to the three pillars of sustainable development ecological, economic, and so-

cial objectives the balance between these three values and sustainability should come from

the interaction of all three components in any sphere. The inability to promote these compon-

ents together in an efficient manner is likely to prevent the achievement of sustainable cities.

Therefore, in order to study and model the objectives of what we try to sustain, and over which

time scale and geospatial scope, the spatial and temporal scales must be considered as the

key elements in assessing environmental and ecological sustainability [104]. Accordingly, in

situ data collection with the aid of earth observation technology has greatly increased research

and development in terms of observing, monitoring, measuring, and modelling many of the

variables related to human and natural ecosystem cycles.
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Figure 2.7: Key urban sustainability applications of remote sensing

2.3.2 Urban sustainability using remote sensing technology

Urban sustainability must be taken into account for planned urban change, such as urban

growth, to minimise our reliance on natural resources and non-renewable energy. As our cities

grow, the impact on climate change can be mitigated by minimising the ecological footprint,

reducing pollution, increasing land-use efficiency, recycling waste, and increasing the use of

sustainable materials, as well as by maximising renewable energy use. In essence, the aim of

urban sustainability is therefore to manage resources and provide services through the effective

design and implementation of policies; this requires access to detailed information on urban

indicators. remote sensing can offer cost-effective solutions for collecting vast amounts of data

compared to resource-intensive conventional approaches, such as survey and field monitoring.

In this context, Figure 2.7 provides an overview of the key urban sustainability applications

of remote sensing when integrated with the available environmental, economic, and social

data. Furthermore, because of the aforementioned advantages of remote sensing data in

urban areas, satellite-based Earth observation provides promising applications to implement a

sustainable energy supply. Examples of remote sensing-aided applications are detailed in the

following sections.
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2.3.3 Renewable energy

Renewable energy resources in urban areas are highly sensitive to their location, surroundings

Mourshed et al. [105] and micro-climate [28], and are dependent on geographical constraints

on development and regional economic policies [106]. Remote sensing is particularly suited

to the geospatial assessment of the potential of Renewable Energy Technologies (RET), such

as wind, solar, wave, biomass, and geothermal energy. Gooding et al. [107] estimated the

physical and socio-economic potential for generating electricity from roof-mounted PV using

digital surface models (DSMs) from LiDAR. LiDAR data was used by Jakubiec and Reinhart

[108] to create a map of the PV potential of individual buildings.

Remote sensing can offer a cost-effective means of identifying those urban surfaces where

solar PV can be installed. Kabir et al. [109] used QuickBird scenes to determine suitable bright

rooftops in Dhaka for PV applications, by applying an object-based image analysis (OBIA) ap-

proach. Wang and Koch [110] investigated the optimal locations of PV and base electricity

prices resulting from solar energy. Bergamasco and Asinari [23] computed the actual roof

surface available for PV installations by classifying roof typologies. Baluyan et al. [111] dis-

criminated rooftops from non-rooftops based on colour/grey level during image segmentation,

support vector machine (SVM) classification, and the histogram method. Jiang et al. [112]

analysed the spatiotemporal properties of the wind field using the QuikSCAT satellite data to

produce a wind resource map. Walsh-Thomas et al. [113] extended the use of satellite re-

mote sensing data to provide insights into the impact of large scale wind farms on land surface

temperature (LST). An extensive review of the potential of remote sensing techniques in ex-

amining geothermal resources was published by Van Der Meer et al. [114]. Ahamed et al.

[115] reviewed the biophysical characteristics of biomass for managing energy crops at given

sites. Rusu and Onea [116] evaluated wind and wave energy resources along the Caspian

Sea. Based on the fused data from multiple satellites, Kaiser and Ahmed [117] derived the

spatial distribution of hot springs, lineaments, and geothermal localities for RET applications.

The use of remote sensing techniques has advantages over established approaches and data-

sets arising from the ability to use them for the detection, visualisation, and documentation

of developments and trends. For instance, this includes the transformation of landscapes in

the context of energy policy decisions, increasing energy consumption, and growing land use

conflicts, in the wake of steadily progressing land use by settlements and transport infrastruc-

ture [118]. To succeed in the energy-related planning and management sector, the provision
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of geoinformation by satellite-based remote sensing with regard to timeliness, coverage, com-

parability, spatial details, and update costs in the form of reliable services is central. This is

especially so concerning the exploitation of synergies with existing datasets, such as spatial

data produced by cadastral survey. Nevertheless, unclear responsibilities, requirements, and

user needs currently complicate targeted developments. In this vein, the next section focuses

on an urgent need for the coordination and pooling of research and development activities to

sustain cities and their environmental systems utilising remote sensing technology.

2.4 Remote sensing challenges and opportunities and key trends

in the existing literature

The studies discussed in the previous sections demonstrate the significant potential of remote

sensing in the assessment, monitoring and planning of sustainable urban areas. Figure 2.8

summarises the reviewed literature on urban growth, sprawl, and land-cover and land-use

changes, while Figure 2.9 summarises previous work on slums, air and water quality, temper-

ature assessment, and renewable energy. In addition, Table 2.2 presents the state-of-the-art

in taxonomy, detection, extraction and pattern recognition in urban applications, focusing on

machine learning algorithms such as neural networks, decision trees, and random forests. The

algorithmic aspects of data analysis for various urban applications are also summarised.

In the context of constrained resources, increasing urbanisation, rising vulnerability to climate

change impacts, and ageing populations, cities need to be sustainable, adaptable, smart and

resilient [119]. Decisions have to be based on the contextual evidence of the performance of

the urban environment, which must be collected at a higher resolution in a cost-effective man-

ner. Moreover, expanding urban areas affect the environment primarily by increased energy

consumption from buildings, transport, and industry [43], and by reducing albedo through land-

cover change from vegetation to built-up, and this results in increased LST [120]. In turn, these

issues can further reinforce climate change drivers and act as a positive feedback loop, i.e.

increased LST may result in more energy consumption, and therefore more warming, which

in turn will result in further increases in LST. The potential for the use of remote sensing in

tackling these urban challenges is summarised in Figure 2.10.
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Figure 2.8: Previous work on urban growth and sprawl, and land-cover and land-use changes
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Figure 2.9: Previous work on slums, air and water quality, temperature assessment, and
renewable energy
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Table 2.2: State-of-the-art studies in taxonomy, detection, extraction and pattern recognition in urban
applications

App.a Alg.b Merits Limitations

Seismic haz-
ard. [121]

SVM &
RF

- Classify the combination of different
remote sensing data

- Derive sets of valuable features to
characterise the urban environment

- Model an effective earthquake loss
and spatial distribution

- SVM & RF classifiers outperform
other multi-class SVM classifiers

- Hierarchical supervised classific-
ation scheme has uncertainties in
separating SBSTs

- Performance depends on the
ranked features

- Accuracy is subject to the addi-
tion of further features and subset
based categories

Change
detection.
[122]1[123]2

(1)
BOVW
(2)
ANN

- Obtain semantic scene classes
- Effectively analyse landuse

changes
- Satisfactory accuracy
- Robustly highlight changes
- Better representation of the rela-

tionships between feature- and
pixel-pair

- Time-consuming
- Very difficult to achieve the direct

selection of the ”from-to” samples
from the dataset

- Negatively affected by the redund-
ancy of information

- High computational cost
- Complexity structures

Landcover
& landuse
classification.
[124]

SVM - Improve classification accuracy
- Classify hyperspectral images ad-

equately
- Ease of interpretation of urban

classes

- Confusion between road and bare
soil classes

- Instability and complexity in the
structure and parameters of the
binary tree SVM

Monitoring
changes.
[125]

MRGU - Analysis of regression residuals
and spatial distribution by (Getis
Ord) with Moran’s I

- Quantify and identify the magnitude
of impervious surface changes

- Not universally applicable
- Difficult to use for quantifying

changes in urban centres
- Performance is subject to the struc-

ture of urban regions

Water re-
sources man-
agement.
[126]

IDFM
& ANN

- A near real-time monitoring
- Efficiency
- Forecasting reliability
- Potential for local adoption

- Uncertainties in the fused data
- A large number of variables
- Not applicable for regional meteoro-

logy parameters

Population
estimation.
[127]

RF &
LRM

- Classify building types in the het-
erogeneous urban areas

- Improved classification accuracy
- Ease of adoption

- Subject to the selected morphology
filter

- Large numbers of metrics and vari-
ables

- Uncertainty classification results

Impervious
surfaces
estimation.
[128]

SVM &
RF

- Improve classification accuracy
- Not need for the combinations of

features
- Optimise parameters efficiently
- Easy to use

- Using many texture matrices
- Inability to handle the confusion in

shaded areas and bare soil
- Over-fitting

aApp.: Applications and bAlg.: Algorithms

SVM: support vector machine, RF: random forest, SBSTs: seismic building structural types, BOVW:
scene classification with a bag-of-visual-words, ANN: artificial neural network, IDFM: Integrated data
fusion and mining, LRM: linear regression modelling
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Figure 2.10: The hypothetical deterioration of environmental systems and the potential for the
use of remote sensing in their restoration. Adapted from Purkis and Klemas [43].

Considering all of this evidence, it seems that there are still challenges and limitations in using

remote sensing technology in urban studies. Challenges are related to the remote sensing

data itself, as well as its methods of calibration, such as those for dealing with the complex

and heterogeneous urban environments. Although the accuracy of the extracted information in

remote sensing-based studies has improved, obtaining an accurate thematic map from remote

sensing-based classifications remains a challenge, due to: (a) the complexity of the urban

landscape; (b) limitations of selected computer vision and image processing techniques; and

(c) the complexities and nuances in integrating or fusing multi-source data. Spectral uncertainty

still exists between the separated classes of the urban land-cover and land-use, such as bare

soil and/or dry mud with impervious surfaces. Furthermore, the concentration of diverse built-

up materials in a small area results in pixel generalisation, eventually leading to classification

errors, which can be particularly problematic when working with low-resolution images. The

key advantage of remote sensing technology arises from the capability to integrate data from

multiple sensors with similar or dissimilar spatial, spectral, or temporal resolutions to collate

information on a common theme. However, there is a need for robust algorithms for fully
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automating the registration of data captured with many sensors, such as optical and radar,

hyperspectral imagery and LiDAR data, which operate at disparate resolutions and use diverse

acquisition approaches. Although the derived information from such sensors are potentially

very useful for urban sustainability assessment, fusing their data is a real challenge using the

conventional approaches of data processing. Additionally, techniques for object recognition,

classification, segmentation, and change detection from the outputs of data fusion are still in

their infancy. Therefore, to take full advantage of the diversity of remote sensing data within

the urban environment, there is a need to develop new strategies and further refine existing

techniques and approaches.

In addition to the challenges in the assimilation and integration of data, the review of previous

studies clearly indicates that there are some of the performance defects relating to the process

of object detection; inference of contextual and semantic information using computer vision

techniques; extraction of the geometric attributes of urban features such as 3D objects, and the

enhancement of the degree of automation in accelerating the deduction of useful information

from satellite images.

In Table 2.3, the challenges and/or opportunities are presented in three key research trends:

(a) the integration of heterogeneous remote sensing data; (b) algorithms for extracting urban

features; and (c) the accuracy of urban land-cover and land-use classifications. We highlighted

the main benefits and limitations in each research trend for further investigation in the future.
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Table 2.3: Directions for future research

Integration of heterogeneous
data

Algorithms to identify urban
features

Improve accuracy for spectral
classification algorithms

Objective • Improve the spatial and
spectral resolution
• Enhance the ability of fea-
tures detection and display
• Promote the geometric
precision
• Increase the capability of
the change detection
• Refine, replace or repair
the defect of image data
• Handle multi-source re-
mote sensing data at the
level of pixel, feature and
decision fusion

• Accelerate future pro-
cessing and improve clas-
sification accuracy
• Automated processes for
detecting, extracting, simulat-
ing, classifying and modelling
urban features
• Capability of handling and
fusing the large number of
datasets
• Improve image objects
segmentation
• Increase the reliability and
precision of the feature ex-
traction
• Mitigate the ambiguous
and uncertainty

• Capability of separating
urban land-cover and land-
use classes in an adequate
manner
• Better visualisation and
interpretation of urban land-
scape
• Performing a change de-
tection analysis and pattern
recognition
• Accurately characterise
the model parameters for dif-
ferent urban remote sensing
applications

Problems
requiring
solutions

• A rescaling of multisource
data of diverse EO instru-
ments
• Assessing the distortion
of the spatial and spectral
resolution time-consuming
and subjective
• The complexity and/or
availability of a large training
datasets for the deep learn-
ing features
• Manual or semi-automated
the post-processing process
• Computation efficiency and
effectiveness
• The quality of the distin-
guishing features
• With the fusion schemes,
the optimal combining
strategy of the current fusion
algorithms is a challenging
task and requires further
investigations in the near
future

• Further developments
for fusing LiDAR data with
thermal, multispectral and
hyperspectral imagery
• Reliable determination of
the boundaries of urban ob-
jects in an automated man-
ner
• Further improvements for
addressing different charac-
teristics of EO data
• Ability to cope with unpre-
dictable environmental and
illumination factors of diverse
datasets
• Similarity in the character-
istics of spectral, textural and
geometrical-based features
between the urban objects
and their background
• Computational time to
perform a task

• Mixed pixels
• Uncertainty in the urban
land-cover and land-use
classes
• Mixed objects
• Promote pixel-based and
object-based classification
using contextual information
• Over-fitting can cause
speckled results that are
difficult to interpret
• An automatic labelling
strategy is required for actual
label sets in several applica-
tions
• Further refinements for
the fusion of diverse data
sources
• Integrate the derived
urban features (e.g., build-
ing shadows) and/or spatial
matrices with various classi-
fier schemes
• Investigate the recent com-
puter vision techniques for
improving the accuracy
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2.5 Summary

This chapter aimed to review URS technologies and present their scope for assessing sus-

tainable development in urban areas, and to describe the techniques in which remote sensing

can be used in this field. According to this, it is essential to monitor urban evolution on spatial

and temporal scales to improve our understanding of city changes and the subsequent im-

pact on natural resources and environmental systems. Various aspects of remote sensing are

routinely used to detect and map features and changes on land and sea surfaces, and in the

atmosphere, as they affect urban sustainability. This chapter therefore provides a critical and

comprehensive review of the characteristics of remote sensing systems, and in particular the

trade-offs between various system parameters, as well as their use in two key research areas:

(a) issues resulting from the expansion of urban environments, and (b) sustainable urban de-

velopment. The analysis identifies three key trends in the existing literature: (a) the integration

of heterogeneous remote sensing data, primarily for investigating or modelling urban environ-

ments as a complex system, (b) the development of new algorithms for the effective extraction

of urban features, and (c) the improvement in the accuracy of traditional spectral-based classi-

fication algorithms for addressing spectral heterogeneity within urban areas. Growing interest

in renewable energy has also resulted in the increased use of remote sensing for the planning,

operation, and maintenance of energy infrastructures, in particular the ones with spatial variab-

ility, such as solar, wind, and geothermal energy. The proliferation of sustainability thinking in

all facets of urban development and management has also acted as a catalyst for the increased

use of, and advances in, remote sensing for urban applications.
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Chapter 3

Current state of 3D object creation

Automation approaches of detection, segmentation, extraction and 3D reconstruction are a

fundamental research task within the scope of remote sensing, image processing and com-

puter vision sciences alike. Although buildings are one of the most important parts of the urban

landscape for automatic detection and extraction, they manifest a major challenge when their

footprints need to be extracted in monocular images. Additionally, the creation process of the

3D models of urban buildings becomes further complicated when 2D scenes are only used, al-

though they are real geospatial data, and are required to depict urban landscapes. Therefore,

this chapter provides a literature review of the state-of-the-art algorithms in image processing

and computer vision for automatically detecting and extracting objects, such as buildings, from

images. The chapter also presents various studies in which remote sensing data (e.g. Very

High Resolution VHR multispectral satellite images), approaches, and techniques are used in

the creation of 3D city models.
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3.1 Optical satellite images characteristics

According to Chapter 2, there is a need to increase our understanding of the solar energy

potential of the surfaces and roofs of building envelopes, to formulate future adaptive energy

policies for the sustainability of cities. Esch et al. and Bonafoni et al. [118, 129] reported that

the use of remote sensing technology provides magnificent data for sustaining cities and prom-

ising applications to implement a sustainable energy supply. In this respect, optical satellite

sensors can offer a variety of spectral wavebands, including visible bands that offer images

similar to how the human eye sees the world, and wavebands that are beyond human vis-

ion. They can detect objects on the Earth related to the temperature in the different spectral

wavelengths. Passive optical datasets captured by sensors on board the satellites are often in

the digital image form presented in an array of numbers, as shown in Figure 3.1. As a definition,

an image (raster data) can be a matrix of rows and columns, two-dimensional (2D), in which

each data value (or picture element, abridged as pixel) is represented logically by its position

in the array. A greyscale image is an array of numbers required to hold the pixel values, each

of which can lie in a specified range, commonly (0 ’black colour’ - 255 ’white colour’), with 8

binary digits (bits), which is the grey level value stored in each pixel needed in the graphics

memory of the computer. A colour image (multispectral image) is a combination of a minimum

of three bands, with 24 bits representing the range. All datasets are considered in the raw form

as they are received from imaging satellite sensors, until preprocessing is implemented. This

means the correction of deficiencies and the removal of flaws. The operations of preprocessing

the satellite images are carried out before the image data is used for a particular application

or purpose. Despite the fact that some corrections are made at the ground receiving station,

there is often still a need for the user to perform further preprocessing [130]. Thus, research-

ers’ attention Lavender [40] has been focused on the geometrical properties of the image data,

and the effects of external factors, such as the magnitude of the variations in emitted or re-

flected energy detected by sensors. Additionally, certain aspects related to the image data, for

instance, the level of preprocessing and weather conditions (e.g. atmospheric haze), require

an appropriate technique to correct the defect and estimate the external effect. In regard to

the evaluation of the availability of the rooftops and facades of the buildings for solar energy

potential within cities, a good understanding of the image's data characteristics will improve the

results of the object extractions (e.g. buildings) when obtained for solar PV assessment.
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Figure 3.1: Raster data concept. The origin of the (row, column) coordinate system is the
upper left corner of the grid, at a cell (row 1, column 1). The grid cell (pixel) size is usually

expressed in units of ground distance, metres (m)

3.1.1 The importance of using satellite images

As an extension to what was presented in the previous Section 3.1, satellite images with dif-

ferent spatial resolution (ground covering with kilometres, metres and sub-metres) are one of

the most important data input sources for detecting, extracting, modelling, analysing, and visu-

alising urban objects and features. The satellites have the attributes of being highly manoeuv-

rable, low earth orbiting, high quality, versatile and accessible, and their captured imageries

are used worldwide for a wide range of military and civilian applications. In this vein, imagery

provides value in understanding the Earth and the impacts of man-made activities and natural

processes. In particular, Very High Resolution (VHR) satellite imagery offers sub-metre resol-

ution, which is considered one of the highest image qualities currently obtainable from remote

sensing satellites. Sub-metre VHR satellites exhibit a smaller ground sampling distance (GSD)

than other imaging satellites, making their images more suitable and reliable. These can be for

natural and/or man-made site monitoring, object and landscape observation, object detection,

and many urban purposes and tasks requiring precision data. Among its many advantages,

VHR images enable the identification of urban structures in terms of their geometry and actual

location on the ground in the real world. The high accuracy imagery has proven particularly

useful for creating detailed 3D models of cities whenever it is available in the form of stereo or
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multi-angle imagery. Hence, a great deal of previous research on urban studies has focused on

employing VHR satellite images. Some examples of the extraction and analysis of urban ob-

jects and features based on satellite imageries include: roads [131] and [132], buildings [133]

and [19], the shadows of urban structures [134] and [135], bridges [136] and [137], vegetation

within urban areas [138] and [139], water within urban areas [140] and [141], and the geometry

of urban structures [142] and [143].

Technical improvements to satellite sensor systems, and processing approaches for VHR satel-

lite images, on other hand, should be developed and improved synchronously. Difficulty obtain-

ing remote sensing data which can provide the third dimension of urban structures, such as

LiDAR or VHR stereo-pair images, can also be taken into account when overcoming such re-

strictions. This can be achieved through developing algorithms able to derive such information.

In addition, although VHR satellite images present a clear view of urban landscapes and their

features, it is necessary to perform contrast manipulation on the VHR satellite images, as an

image pre-processing technique, to eliminate any haze over the entire image before the ex-

traction process of urban objects can begin. Satellite images used in this study have been

processed from the haze effects by the provider of the satellite images.

3.1.2 Image enhancement

A good contrast between urban objects (e.g. buildings and their backgrounds and other sur-

rounding objects) should first be obtained to facilitate the extraction process from VHR satellite

images. According to Lavender S. and Lavender A. [40], images often do not use the entire

range of brightness available to them. One well-known technique of image enhancement is

to adjust and stretch the brightness histogram. The histogram stretching technique spreads

the image pixels out along the x-axis and therefore the range of brightness levels used will be

increased within the image [40], as shown in Figure 3.2. This process amplifies the intensity

difference between pixels, thereby making them more visible to the eye. Enhancing the image

contrast is a necessary process with the used images, so that particular features are enhanced

to achieve the subsequent processes, such as detection, segmentation, fusion, and extraction.

Numerous studies have attempted to enhance image contrast by applying the histogram ad-

justment technique before, for example, change detection [144], underground water detection

[145], the evaluation of residential life quality [129], the calculation of a compact built-up areas

[146], and satellite image fusion [147].

44



Current state of 3D object creation Chapter 3

Figure 3.2: Image contrast stretch as applied to the image band

3.2 The extraction of information from satellite imagery

Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and

extracting information about urban constructions. The growing availability of VHR images, for

instance, QuickBird, GeoEye, WorldView and Pliades images, has caused an increase in the

number of studies on urban structures extraction (e.g. buildings) from VHR images. This is

particularly so in rapidly expanding complex urban environments, where the high level of detail

present in VHR data facilitates object-based identification for building detection and reconstruc-

tion. Nevertheless, the most challenging task is to make a computer perform by analysing a

scene, accurately reconstructing the 3D shape of an object, and recognising all of the con-

stituent objects. Object identification is a very tough task because the real world is made of a

jumble of objects, which occlude one another and appear in different poses [148]. In addition

to the variability intrinsic within an object class, and due to complex non-rigid articulation and

extreme variations in shape and appearance, it is unlikely that exhaustive matching against a

database of exemplars can be simply performed [148]. Therefore, many researchers have tried

to simplify this problem, especially when using VHR images, by knowing what objects they are

looking for, so that the problem is one of object detection. The consequent process is a quick

scan of an image to identify where a match may occur. A labelling process is then a neces-

sary step in the recognition of objects, after determining their position within the image, based

on a specific rigid object defined beforehand. Accordingly, and by searching for characteristic

feature points and verifying that objects align in a geometrically plausible way, objects can thus
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be extracted in the process of information extraction from VHR images. The state-of-the-art

in object detection, extraction, and reconstruction continues to improve rapidly. The following

sections focus on the information extraction of urban buildings and their shadow regions from

VHR satellite images.

3.2.1 The importance of shadow detection in urban environments

Remote sensing with very high spatial resolution, such as Quickbird and WorldView-3, among

others, can provide clearly detailed features of cities, for instance, roads, buildings, shadows,

parks and trees. Shadow in the VHR satellite imageries provides vital information on urban

construction forms, illumination direction, and the spatial distribution of the objects; all of these

can help to further understand the built environment. However, the appearance of shadow

increases with the spatial resolution, and whether or not the purpose of determining shadow

regions is for removing these regions, or exploiting their information. Obviously, the main and

first process in shadow analysis studies is to detect shadows.

According to R̈ufenacht et al. [149], shadow is generated by standing an object in the path

of a light source, as shown in Figure 3.3. On this basis, buildings have their own shadow

regions cast on the ground, and when the sunlight hits those buildings they are in the opposite

direction of the sun. The casting shadow area of the building is therefore considered the actual

shadow area that can be captured by satellite images. Typically, the mean value of the digital

number values of the image pixel within the area of the actual shadow is less than the other

surrounding areas. This means the pixels representing shadows are darker in colour tone than

the non-shadow pixels. Hence, it is possible to discriminate shadow regions from other urban

features in space-born scenes.

The information derived from shadows can play an important role in urban studies. Many

studies have therefore considered shadows in VHR satellite images as unwanted features and

drawbacks that must be removed. However, studies on shadow detection and analysis have

indicated the development of new improvements in image quality and enhanced algorithms of

image segmentation and partitioning, as well as object extraction. Although the appearance

of shadows can affect the performance accuracy of applications such as image classification

and registration, shadows do provide information about the characteristics of surfaces and light

sources, shapes and the location of objects. Additionally, because shadows cover a consider-

able portion of an image, they play a supporting role in automated analysis. In this context, the
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shadow presence in single VHR multispectral images has been exploited as strong evidence

of the existence of a different building structure, such as buildings detection [19], arbitrarily

shaped buildings in complex environments [150], the extraction of above ground circular struc-

tures [151], and the automated extraction of buildings and roads [152].

Shadows are, thus, an important cue for information about man-made structures and to support

urban sustainability. The assessment of solar PV energy potential as a form of renewable

energy within urban environments is an important application to secure future energy needs

for cities. In this regard, shadow information within urban environments is a key element in

the analysis of solar radiation across daylight. Using different datasets, Redweik et al. [153]

developed a shadow algorithm to calculate shadow maps for the solar potential assessment

of all surfaces (roofs and facades) of buildings within an urban landscape. Bergamasco and

Asinari [23] proposed a method of computing the available roof surface for integrated solar PV

installations through the analysis of shadow zones, space, brightness, and suitability for PV

installation. Jo and Otanicar [154] analysed the patterns of shadow cast and their effects on

the rooftop to estimate the available rooftop area for PV installation. Shadow impact is, thus, an

important factor in the assessment of solar energy potential, and can play a role in potentiality

and financial benefit.

A number of researchers have also published approaches to exploiting the derived shadow

information from VHR images for different purposes of urban analysis. Izadi and Saeedi [17]

introduced a method for the automatic detection and height estimation of buildings with poly-

gonal roofs, using single satellite images based on shadows and acquisition geometry. In

this study, a fuzzy logic-based approach was used to estimate building heights according to

the strength of the shadows and the superposition between the identified shadows in the im-

age and expected true shadows of the buildings, to generate a 3D polygonal building model.

Raju et al. [155] proposed the extraction of the height of a building using shadow through

two stages: rooftop and shadow extraction, followed by height estimation. This was achieved

by example- and rule-based approaches based on the derived information and the relation-

ship between rooftop, shadow and sun-satellite geometry. Using a volumetric shadow analysis

(VSA) method, Lee and Kim [15] presented a scheme to extract building height automatically.

This scheme was implemented by examining the location change of projected shadow lines

with respect to the actual shadow regions with progressively increasing building heights. The

approach has been applied to IKONOS, KOMPSAT-2, Quickbird and WorldView-1 images.
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(a) 3D visualisation of solar angles: Sun Elevation, Azimuth and
Zenith angle with the formation of a cast shadow of the urban struc-

ture

(b) a shadow pattern of the actual illumination direction and its opposite direc-
tion, which is composed of the cast direction of the shadow with the geometric

angles of the relationships within the image space

Figure 3.3: The direction of illumination and the geometry of the shadow pattern
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It seems likely that the derived information from shadow regions using VHR satellite images is

not limited to the achievement of one goal or specific application within urban environments.

Using advanced techniques in image processing and computer vision, and if appropriately

exploited, shadow information can be used in different applications. Because shadows can

support automated processes for deducing the structure of man-made objects, it is not neces-

sary to build a distinct model to infer an object's structure. However, to make this information

more useful and effective in every application, shadow regions should be precisely detected

and extracted from images.

3.2.2 Shadow detection and extraction

As noted in Section 3.2.1, to exploit shadow information by detecting and extracting shadow

regions from images, the automated detection of shadows from images must be accurate [20].

Many pioneering studies for the automated detection of shadows from VHR satellite images

were devoted to improving the quality of an image after detecting and handling shadows, or

to utilising shadows to detect man-made structures within the urban environment. Although

the automated detection of shadow regions from VHR satellite imageries is a challenging task,

automatic object detection and extraction is a very active scope of research. However, the

literature presented here is focused on those studies which aimed to detect and extract the

shadows of buildings from the VHR optical images automatically. A review paper on shadow

analysis was produced by Dare [156]. The paper presents methods of detection and how to

avoid problems with shadowing in high resolution satellite imagery. Four different techniques for

separating shadow pixels from non-shadow pixels were described: thresholding, classification,

region growing segmentation, and three dimensional modelling. The segmentation approach

was proposed to detect shadow regions using four step processing: density slicing, threshold-

ing, region encoding, and region filtering; all of these were applied to IKONOS and Quickbird

panchromatic images. Thereafter, the radiometric enhancement technique was chosen to re-

move shadow areas from IKONOS and Quickbird images. It was concluded that although

the quality of the image can be improved through techniques of detection and the removal of

shadow areas, the results can be image-dependent. In one recent study, Wakchaure and Raut

[157] reviewed a range of techniques for shadow detection and de-shadowing from VHR im-

ages. The study included the proposal of a processing chain based on binary classification.

Canny edge detection algorithm was used to detect shadows and differentiate their areas from

non-shadow areas in the image, with clear boundaries. Thereafter, the calculation of mean and
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standard deviation values for both pixels in the shadow and non-shadow areas, together with

the normalisation process, were suggested as potential improvements for the final results of

removing shadow pixels and defining non-shadow pixel. This was achieved by increasing their

brightness and shadow intensity values. However, the algorithm has not been applied to any

VHR image in order to evaluate its performance and suitability in detecting shadows.

The segmentation approach is one of many different approaches used to detect shadow re-

gions from single VHR multispectral images. Ma et al. [158] presented an approach in

shadow segmentation and compensation implemented on an IKONOS image through a nor-

malising Saturation-Value difference index (NSVDI). The approach was based on analysis of

Hue-Saturation-Value (HSV) colour space to detect the shadow regions of buildings, and a his-

togram matching technique was exploited to retrieve the information under shadow. The results

of segmentation illustrate that the shadow areas were effectively extracted from the IKONOS

image. Nevertheless, the approach was not able to distinguish between dark objects, such as

water and shadow regions, due to the similarity of the spectral values of pixels and the lack

of validation of the final results. It was concluded that multiple images can compensate better

for the information under the shadow regions because the retrieval information from a single

image is insufficient. In the same context, a segmentation algorithm based on the contour

model and isolation was proposed by Elbakary and Iftekharuddin [159] to detect man-made

structures by their shadows. The approach was applied to a panchromatic image with a res-

olution of one pixel per meter in both directions. Thereafter, post-processing based on optimal

thresholding and a geometric filter were implemented to determine the real shadows from other

objects. Although the algorithm was used to detect and segment the shadow regions using the

grey-level satellite image without depending on the colour information, and to handle the dif-

ficulty of shadow detection in satellite images, the problem of separating water bodies such

as lakes from shadow regions remains unsolved. This is because they exhibit similar intensity

characteristics.

In other recent studies, a classification-based approach has been used to detect shadows re-

gions. Liu and Yamazaki [160] proposed shadow detection using an object-based classification

that employs brightness values and their relationship with the neighbouring area; this was ap-

plied to Quickbird and WorldView-2 (PAN and multispectral images). A method for the correc-

tion of these detected shadow areas has also been proposed using a linear function to remove

shadows from images. The idea is to classify images as vegetation, road, roof, or shadow, and

to modify shadow pixels through three levels of darkness (dark, medium and light). These are
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derived from twenty-six radiance measurements to demonstrate the natural variability of the

radiance ratio. A linear-correlation function and NDVI were used to attain a smoothly restored

image. The overall classification accuracy for sunlit areas was 74.94%, while for the correc-

ted shadows areas it was 71.87%. The comparison between these results illustrates that the

proposed shadow correction method is effective in correcting the radiance in shadow areas.

Nevertheless, the detection step was entirely based on the results of the supervised classi-

fier, which was the main reason for the moderate shadow regions. Moreover, a bright roof in

light-shadow, small shadows cast by trees, and material with high reflectivity in shadow areas,

were not extracted and properly observed by the object-based classification method. Later, the

morphological filtering approach for shadow detection with a shadow reconstruction approach

was suggested by Song et al. [161]. It sought to improve the classification performance applied

to Quickbird and WorldView-2. Shadow detection comprises three steps: thresholding, mor-

phological filtering, and edge compensation for the derived shadow mask as a first stage in this

approach. In the second stage, a Markov random field (MRF) was used to sample shadow and

non-shadow pixels manually, to produce a library for both types of pixels as a training stage.

The final stage was to compensate and reconstruct the underlying land cover pixels using the

Bayesian belief propagation algorithm to address the MRF. The supervised ISODATA classific-

ation method was applied before and after shadow construction to verify the performance of

the proposed shadow removal approach. The results indicate that the constructed images can

be classified more accurately than images before shadow reconstruction. However, the chain

of image processing for shadow detection might affect the quality of the actual geometric shape

and edge of shadows areas. Because of the morphological filtering in the shadow detection

stage, some small shadow areas were not removed and remained in the classification map

after shadow reconstruction.

A different recent work, a new index for detecting shadows regions, was introduced by Teke

et al. [20]. In this approach, the use of near-infrared and visible information (especially green

and red bands) of VHR satellite images was utilised to generate a false colour image. The

processes of normalisation and transformation were implemented on this false colour image to

compute the Hue-Saturation-Intensity (HSI) space and a ratio map. In their approach, Otsu's

method was applied to the histogram of the ratio map in order to detect the shadow regions,

because the thresholding scheme used is able to detect both shadow and vegetation regions

at the same time. The final step in the approach is to derive a binary shadow mask through

subtracting the regions of vegetation cover in an image. Although the results exhibited success
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in detecting shadow regions, post-processing is required to improve the shape and boundaries

of the derived shadow mask from VHR satellite image. This is so especially in cases where

the shadow regions are used as evidence of the structure and location of the elevated objects

within the urban area, such as buildings. The same approach was used by Ozgun [152] to

detect shadow regions to identify the regions recognised as buildings and roads, implemented

on a set of Quickbird and Geoeye-1 VHR images. A post-processing shadow mask, which

included a constrained region growing process on detected shadow regions and probabilistic

landscape approach Ozgun [19], was achieved using three different thresholds: pixel intensity,

the ratio of the number of pixels involved, and non-building height, to obtain a regular shape

identical to reality and eliminate the unwanted shadow areas.

Overall, image thresholding techniques are essential in the processes of object detection. In

spite of the fact that thresholding techniques are a simple pattern of partitioning an image

into isolated features, they are still effective. Nonetheless, the thresholding techniques applied

on VHR satellite images (multispectral or PAN image) for shadow detection need to be more

effective, taking into account the different characteristics of the used images. In addition, the

fully automated algorithms of shadow detection often require further constraining assumptions

about extracting shadow regions from VHR satellite images, to run them appropriately and

obtain reliable precision of the shadow masks.

3.3 The creation of 3D models of urban buildings

VHR satellite imagery is such that data can provide reliable and efficient detail in the creation

of 3D models of urban buildings within various urban landscapes. The automated creation of

3D objects from images is an open research area of image processing and computer vision,

as well as remote sensing. However, the creation process of 3D building models is not an easy

task using single satellite images without any complementary data. In addition, the automated

extraction of 3D geometric structures from solely 2D scenes has had limited success when the

urban landscape is complex. Nonetheless, the most distinct feature of utilising satellite images

is their capability of providing additional information to facilitate the generation of 3D structures.

A metadata file, which comes along with satellite images, contains solar information which can

be significant inputs into a sequence of executive actions in the 3D creation of buildings.
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A large and growing body of literature has investigated the extraction and reconstruction of the

3D building models from different types of remote sensing data. Various approaches have been

presented in the context of 3D building extraction, including non-automated, semi-automated,

and automated techniques. However, approaches in these categories have well-known limita-

tions. For instance, both the non- and semi-automated methods for the acquisition of building

geometry, run by an operator and related to users skills, require further time, cost and effort to

accomplish. Such studies have considered how to implement these approaches automatically.

Therefore, there is a considerable amount of literature on the importance of a 3D vision of

buildings created in an automatic manner. Nevertheless, most former studies for automatically

generating 3D building models based on the available geometric parameters of buildings is

directly taken from field measurements, or from existing data, and integrated with the derived

information from imagery. So far, however, there is little published research on extracting 3D

building models from a single 2D satellite scene, without extra data, in complex urban land-

scapes.

At the fundamental level of data modelling, a model of the object must have, at least, the three

dimensions of object geometry: the direction of axes (X,Y and Z), as shown in Figure 3.4.

The size of the object's footprint (e.g. a building) is subject to the values of (X,Y ), while (Z)

is the attribute of the object's height. Depending on the derived information from VHR satel-

lite images, the Level of Detail (LOD) for the complexity of a 3D model's representation will

be established. In computer graphics, the concept of LOD is the representation of a model

in terms of geometric complexity, spatio-semantic coherence, and the resolution of the tex-

ture and attributes [162]. Accordingly, LOD involves increasing the complexity of a 3D model

representation as it moves toward the viewer, or depending on other metrics, for instance, ob-

ject importance, viewpoint-relative speed, or position [163]. The subsequent sections of this

chapter will illustrate the approaches adopted by researchers to generate 3D city models based

on remote sensing data, considering the LOD concept.

3.3.1 Geometry identification: Building detection and footprint extraction

Automated detection of building footprints from a VHR satellite image is an active research area

of different scientific fields, such as remote sensing, computer vision and sustainable develop-

ment [129]. However, due to the complexity of urban landscapes, the process of the automatic

detection of buildings using monocular VHR multispectral images is not easy. In particular, the
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Figure 3.4: The fundamental concept of a building's geometry

automatic detection of urban structures from images will be more challenging when there is a

lack of, or limited, geoinformation data. This includes: (1) the geometry, and the footprint area,

shape complexity, and number of neighbouring objects; and (2) the building attributes, such

as the number of storeys above ground, which can help the detection algorithms to derive the

footprints of the buildings. Consequently, these automatic detection approaches do not rely on

the cadastral database and statistical data using satellite images alone, and so they are very

meaningful and valuable tools.

In this context, much of the current literature on using remote sensing data pays particular

attention to detecting buildings. Because of the characteristics of VHR satellite images with

multispectral information [129], such data have motivated researchers to develop new ap-

proaches for building detection. Sirmacek and Unsalan [164] proposed a scale invariant feature

transform and graph theoretical tools for the detection of buildings based on panchromatic 1-

m-resolution IKONOS imagery. Sirmacek and Unsalan [165] used local feature vectors and a

probabilistic framework for the detection and classification of urban buildings. In another study

using data fusion, Verbeeck et al. [166] studied four different segmentation and classification

approaches using LiDAR and VHR multispectral Quickbird images to detect imperviousness

and other land cover classes. In a rather recent study, Wang et al. [167] introduced an ap-

proach based on distinctive image primitives, such as lines and line intersections, using a

graph search-based perceptual grouping approach to extract buildings from VHR optical satel-

lite imagery.

A group of researchers focused on employing a monocular VHR satellite image for detect-

ing urban structures. A different approach used to detect buildings from single VHR multis-

pectral images (pan-sharpened GeoEye-1 images) was based on an original two-level graph

theory using a GrabCut approach based on the partitioning technique [19]. Another study

54



Current state of 3D object creation Chapter 3

with the same graph partitioning approach, Ozgun [152] presented an unsupervised frame-

work to detect buildings and roads. In a recent study, Ghaffarian S. and Ghaffarian S. [168]

developed a method for automatically detecting buildings from high resolution Google Earth

imagery based on three steps: using the Moore Penrose pseudo-inverse matrix model for im-

proving the FastICA algorithm; proposing simple rules and automated seeding of the PFICA

algorithm; and, using the K-means clustering algorithm for masking out the final building de-

tection results from PFICA outputs. Ozgun [151] proposed a new method to detect and extract

the above ground circular structures within an urban area from VHR GeoEye-1 imagery based

on a Hough transform approach and a set of constraints, followed by a circle fitting technique.

In a different work, Li et al. [169] proposed a new framework for building extraction in visible

band images based on the identification of rooftops through applying an initial unsupervised

classification and conditional random field (CRF) formulation techniques. Manno-Kovcs [170]

presented a flexible multilabel partitioning procedure based on a graph cuts technique for auto-

matic building detection by fusing shadow and urban area information.

In fact, most of the aforementioned building detection approaches developed using single VHR

multispectral images depended on employing evidence of shadow regions for verification of

the generated hypotheses [16, 19]. Because a cast shadow strongly indicates an off-terrain

object, the presence of shadow regions can be efficiently used to confirm the existence of a

building structure [19]. In addition to the automatic extraction of the building footprints, many

researchers have exploited the extracted shadow information from VHR images to derive the

estimated heights of the buildings. The automatic estimation of the building heights is detailed

in the following section.

3.3.2 Geometry identification: Building height estimation

Building height (HB) is one of the key geometric parameters used to transform the two-dimensi-

onal (2D) footprint area into a 3D model. Manually obtaining HB of a large number of build-

ings for urban-scale 3D modelling and analysis is resource intensive. The difficulty and cost

involved in HB estimation also creates a barrier to the use and deployment of advanced mod-

elling, analysis and the management of the built environment for most, if not all, cities and

countries. Finding an efficient and cost-effective way to estimate HB is, therefore, of para-

mount importance.
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There are two main methods for deriving HB: direct and indirect. Direct methods involve field

measurements, often using land surveying equipment; however, these require time, effort and

money, which is prohibitive for surveying large areas. Several studies have, therefore, attemp-

ted to overcome these challenges indirectly by applying mathematical inference on secondary

data. Most indirect methods rely on elevation data (e.g. digital surface model (DSM) and point

cloud) obtained through various aerial or satellite on-board sensors such as radar, LiDAR, and

stereo imaging. Other indirect methods aim to infer building heights from 2D scenes without

elevation features such as photogrammetry or satellite images. The estimation approaches for

computing HB from 2D images, however, are considered the most challenging.

In the context of obtaining HB based on indirect extraction methods, many pioneering studies

have used elevation data in various urban applications. Examples include the construction of

building models for performing the solar potential estimation on roofs [132], the extraction of

local heights to reshape the final urban candidate buildings [171], building type identification

based on machine learning [172], the volume of a building using the object-based method with

a multi-threshold framework [173], the reconstruction of 3D buildings [128], and the investiga-

tion of the height difference [174].

A common factor in HB extraction approaches based on remotely sensed elevation data is

that they require sophisticated data calibration and processing to obtain a reliable DSM. Al-

though studies have shown the utility and usefulness of elevation data for extracting HB, their

implementation typically requires the use of additional data, and often multiple images from

different angles to obtain a satisfactory view of building size and shape [175]. Another feature

of elevation data based HB extraction is the need for data pre-processing, because of point

cloud sparsity and data misalignment [176]. As an alternative to costly data acquisition and

processing, several studies have developed methods for obtaining HB from one data source,

such as satellite images utilising the shadows cast by buildings.

The first task in shadow-based estimation of HB is the extraction of shadow regions from

VHR satellite images. In this respect, a semi-automatic approach was proposed by Kim et

al. [177] to estimate HB from a single satellite image that manually adjusts the height of a

simulated building and then matches the projected shadow with the actual in the image space.

In contrast, a volumetric shadow analysis (VSA) method has been used to extract the heights

of the buildings automatically [15]. However, the reported methods were designed primarily

for buildings with full scenes of their bases and rooftops, including the side of the building. In
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another study, Izadi and Saeedi [17] also matched shadow regions but building heights were

estimated using simple triangulation. Estimation accuracy in this approach is dependent on the

quality of the segmented rooftop polygons.

Shao et al. [178] proposed a classification approach to detect shadows and applied a simple

trigonometric formula after characterising the relationship between buildings and their shadows

to estimate the values of HB. However the method overestimates the shadow lengths of build-

ings, resulting in large errors in calculated HB. In Comber et al. [179], the number of storeys

and the length and shape of a building were inferred based on the identification of shadow

areas. However, the strategy proposed may only be practical for the presented case study and

the imagery used, because of the empirical nature of the rule-based classification. In Raju et

al. [155], the height of the building was estimated from the extracted shadow regions based

on the sun-satellite geometry relationship. The method does not consider overlapping shadow

regions caused by other buildings and vegetation, limiting its applicability in dense urban areas.

More recently, Qi et al. [16] estimated HB from Google Earth1 images by first calculating

the ratio of HB to the shadow length of known buildings, and thereafter utilising the identified

shadow-length ratio to obtain the heights of other buildings with unknown heights. The ap-

proach sits somewhere between direct and indirect approaches in the sense that some field

measurements are required. However, although the authors claim that their approach does not

require any data, it is impossible to apply the proposed approach without measuring real HB in

the field, with the inevitability of the clear appearance of one vertical edge, three corners, and

the shadow of the building in the image space. Liasis and Stavrou [180] developed a custom

filter for enhancing shadows and reducing the spectral heterogeneity of the regions of interest

(ROI) to form an optimized contour model for estimating HB based on the shadow length and

solar elevation angle. However, the presented approach was not tailored to detect the ROIs of

the objects with spectral dissimilarity.

The results illustrate a large aggregate height variance due to the underestimation of building

shadow lengths. Therefore, there is a need for the automated estimation ofHB from monocular

VHR multispectral pan-sharpened satellite images based on shadow information. In particular,

there is a need for: (a) the generation of artificial shadows, SAr from a simulation of the actual

shadows, SAc of the buildings in the image space; (b) the consideration of the issue of over-

lapping shadows of the multiple buildings; and, (c) the development of an algorithm combining

1Google Earth. https://earth.google.com
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(a) and (b) for the automated estimation of HB by identifying the optimal height value for the

given building.

3.3.3 The reconstruction of 3D building models

Automated creation of 3D models of objects based on the information derived from remote

sensing data is a vibrant research area in remote sensing and computer vision alike. A con-

siderable amount of research has been published on building detection, extraction, and 3D

formation [18, 19]. In this study, the literature is briefly discussed in which the main aim was to

extract 3D building models by non- and semi-automated approaches. In contrast, those previ-

ous studies which aimed to automatically extract 3D buildings from the monocular images of

the optical satellite sensors will be discussed in greater depth.

Diverse approaches investigating the construction of the 3D version of buildings have been

carried out on remote sensing data with user interface platforms and tools. Counsell et al.

[181] developed web tools to create 3D urban models as an open source of digitisation from

imagery. Another study based on digital elevation model (DEM) and space-borne imagery

presented two applications of both a mobile- and web-user interface to generate 3D building

models [182]. In a different approach, Yousefi et al. [183] used a semi-automatic method to

create 3D building models using fuzzy-based segmentation from two single IKONOS images.

The building heights were calculated manually by selecting the sides of building facades, while

the rooftops were automatically segmented after applying the Fuzzy membership functions. In

a different study conducted by Over et al. [184], a semi-automatic approach was presented to

generate 3D visualisation of urban buildings and features by integrating free datasets from the

Open-StreetMap (OSM) and DEM, based on producing a specific CityGML model. El-Garouani

et al. [185] extracted 3D building models for 3D city planning utilities by overlapping a digital

surface model (DSM) derived from aerial image stereo pairs and 2D building footprints using

GIS. In a study conducted by Redweik et al. [153], it was shown that the direct measurements

of urban objects (e.g. buildings), using a DSM derived from airborne LiDAR data, can provide

elevation, slope, aspect, and shadow maps to generate 3D building models. In a similar man-

ner, Catita et al. [186] proposed a semi-automatic approach for creating 3D building models

using a DSM from LiDAR data integrated with other data using a GIS environment. However,

to implement such an approach, a great deal of software must be installed to do the following:

handle LiDAR data; create 3D models; enhance and codify the output of the 3D models; and
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fuse building footprints, derived from aerial stereo photogrammetry and the 3D models, with

other geo-spatial attributes, such as SketchUp, CityGML and ArcGIS.

Generally speaking, it is a fact that the aforementioned interactive or semi-automatic approaches

require the intervention of a human operator, and basically depend on the user's skills and

qualifications in constructing 3D building models. The most common shortcomings of all these

studies is that the 3D building model outcomes depend on the availability of the elevation in-

formation derived from the measurements of the surface height, such as DEM and DSM, and/or

other data availability, such as building footprints. The derived heights process from aerial pho-

tography or space-borne image pairs, in turn, requires a great deal of processing to capture the

final height information. Further, non- and semi-automated approaches are always considered

time consuming, in addition to requiring more effort and expense. Therefore, many attempts

have been made to create 3D building models automatically. In this context, Vanegas et al.

[187] presented an automatic approach based on computer vision techniques to reconstruct

3D building models based on calibrated oblique-angle aerial imagery using a Manhattan-world

assumption. Colour segmentation, Generalized Rewriting Rule (GRR), and GRR optimisation

were successfully employed to extrude the bounding box of the building footprint extracted from

GIS data. Nonetheless, the proposed approach was confined for specific geometry shapes of

buildings. Later, Woo and Park [188] presented an approach that employed the divergence-

based centroid neural network algorithm to extract 3D line segments for rooftop detection using

IKONOS images. The authors stated that the experimental results of the proposed method are

efficient for rooftop detection and building reconstruction. Unfortunately, their approach only

works on the availability of stereo images. In addition, the noise caused by other boundaries

of trivial structures and objects gave an unvalidated irregular geometry of the building shapes.

In a different approach, a graph- and fuzzy-based approach were proposed to infer polygonal

building footprints and estimate building heights to visualise 3D building models as the final

outputs derived from single QuickBird images [17]. However, the approach depends on the hy-

potheses definition and smoothness assumption to detect vertices from 2D rooftops and refine

their shapes. Therefore, such hypotheses may only be valid for the selected building shapes.

In a different context, Brédif et al. [189] presented a fully automatic framework based on an

optimisation scheme to generate 3D buildings employing a DSM only from LiDAR data. Never-

theless, it should be noted that although the proposed framework is capable of merely address-

ing the DSM data, the final shape of the polygonal building footprint requires further subroutine

schemes to refine and arrange building edges. In a similar context, Jakubiec and Reinhart
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[108], created a 3D model of urban buildings using a combination of LiDAR and GIS data, but

after uniformly sampling the LiDAR data with the geometric information to obtain the final 3D

models. In the study performed by Lee and Kim [15], an automatic method for building roof

extraction and height estimation was proposed to extract 3D building models with graph-based

building hypothesis generation. The generated hypothesis for defining 2D rooftops is typically

limited to representing the specific geometric properties of the buildings, and this means the

proposed method may not be applicable with other building shapes. In another work, Partovi

et al. [190] generated a DSM using two pairs of stereo data from the WorldView-2 satellite

with 50 cm ground sampling distance (GSD), and a fully automated method of dense image

matching based on convex optimisation, to extract the 3D building models. However, the au-

thors stated that due to the low quality of the representation of building boundaries from DSM,

K-means clustering and graph-based segmentation applied to the orthorectified panchromatic

image were used to derive building roofs for further refinements to 3D models. This makes the

proposed method limited to certain roof shapes. To the best of our knowledge, only two studies

have exploited remote sensing data alone (i.e. monocular satellite imageries) without additional

supplementary data to generate 3D building models in an automatic manner, as presented in

[15, 17].

A common feature of most studies for producing 3D building models is that they employ either

direct measurements (LiDAR or a laser scanner), or indirect measurements, such as stereo

images, multiple images and multi-source data to acquire the geometric parameters of the

buildings. The main problem of these approaches is that their implementation depends on the

availability of the data used in terms of the location of the study areas (e.g. it would be more

difficult if it is in a conflict area), cost (e.g. LiDAR and/or aerial images are more expensive

than satellite imageries), and the time and effort of obtaining such data. Moreover, most re-

search on the creation of 3D building models employing DSM and DEM derived from LiDAR

or laser scanner or stereo images requires a high-degree of professional skill to handle their

complicated parameters, and data from different sensors. Thus, the approaches are subject to

low-resolution sampling or robustness or missing surfaces [16, 187].

Despite the aforementioned significant efforts, the findings of previous works indicate that the

automated creation of 3D buildings from a single image is a very challenging task. Most of the

previous studies, therefore, have implemented their approaches with a set of images or data

sets from different sources, in order to extract building footprints and heights automatically.

According to Ozgun [19] as well as Izadi and Saeedi [17], there has been some development
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in new approaches with an advanced level of urban landscape. Further, Partovi et al. [190]

pointed out that the complete automation and accurate extraction of realistic 3D building models

remains open, especially when the only data used is satellite images.

3.4 The effect of building geometry on energy efficiency

The geometric identification of urban buildings plays an important role in a range of urban ap-

plications, including 3D representations of buildings, urban planning, and energy consumption

analysis. In the solar energy potential assessment aspect particularly, the geometric identific-

ation of buildings as 3D models can provide a comprehensive vision of the assessment and

simulation of solar exposed surfaces, which includes rooftops and facades.

Providing sufficient energy to meet the needs of urban dwellers is undoubtedly a challenging

task. Solar energy is one form of clean renewable energy that can provide sustainable electri-

city without toxic pollution or global warming emissions. Therefore, there is a growing demand

worldwide for the use of solar photovoltaic (PV) technology because it has a much lower envir-

onmental impact than other conventional energy sources. However, to exploit this renewable

energy within urban areas, a crucial process is the automated detection and evaluation of the

surfaces available for integrated solar installations. In particular, the evaluation of roof/surface

brightness from a genuine source that presents the real characteristics and functionalities of

buildings remains unsolved. Further, although considerable research has been devoted to de-

tecting the rooftops of buildings, rather less attention has been paid to creating and completing

a 3D building model. For this reason, there is a need to increase our understanding of the

solar energy potential of surfaces and roofs to formulate future adaptive energy policies for the

sustainability of cities.

Satellite imageries can provide a magnificent test domain for any application with a variety of

illumination and environmental conditions, and are available in the public-domain (e.g. Google

Earth). Such data are useful for locating individual buildings, connected buildings, and build-

ings of different sizes, providing information about their geometry, and depicting the surround-

ing environment of buildings and the urban fabric nearby. Therefore, it should be focused on

assessing the solar energy potential not only of the rooftops but also the facades, including

different geometry types of urban buildings.
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Many previous studies in this context have evaluated the amount of insolation within urban

areas on diverse data types, such as pre-existing maps of building footprints, LiDAR data,

and/or aerial images. However, such data have proven their effectiveness in solar energy as-

sessments within urban landscapes, even though the availability of such data in a particular

urban area is mostly difficult to obtain. This is due to, for instance, their high costs (e.g. LiDAR

and aerial images) or not being frequently updated (e.g. the building footprint maps). The pro-

duction of the building location maps requires continued survey campaigns, which also require

more money, time, and effort. Such data and maps cannot even be collected if there is a conflict

within a study area or access is difficult. However, such cases have quite commonly collected

real geospatial data to assess the solar energy potential for feeding the existing buildings with

sufficient electrical energy as one form of solar energy utilisation. VHR satellite imageries are

a good alternative to overcome the difficulty of collecting data from a genuine data source at

lower cost, with continuous updating, and a wide area of coverage. In addition to the availabil-

ity of visible bands (R, G, and B) in a VHR satellite image, the near-infrared band (INR) is an

important spectral band that can be used to extract the shadow regions of buildings, which are

considered significant data in the shadow analysis process, as part of the assessment process

of the solar PV of building envelopes.

The extracted 3D object which represents an urban structure (e.g. buildings) can be used to

evaluate the availability of the surfaces for integrated solar installations, and exploiting such

renewable energy is a crucial assessment process. Many pioneering studies for the assess-

ment of rooftop PV potential have been devoted to exploiting the potential of solar energy by

investigating the availability and suitability of the rooftops of buildings. Based on modified solar-

architecture rules of thumb, Peng and Lu [191] estimated the PV-suitable rooftop area from

method, and the gross roof area is computed based on using a gross roof area vs. ground

floor area ratio. Thereafter, solar suitability and architectural factors are used to calculate the

potential PV-suitable rooftop area of two kinds of buildings, hotel and commercial, which is es-

timated at 54 km2 and with 5981GWh as the predicted annual potential energy output. Another

approach to evaluating the supply of solar energy to building rooftops (residential buildings) is

based on the use of LiDAR data, introduced by Tooke et al. [192]. The approach contains

Kernel window moving and thresholding methods to extract vegetation cover and buildings

from a digital surface model (DSM). The calculation of the attributes in this approach, such as

height and volume from DSM, was undertaken to investigate the solar radiation received by

building rooftops. The total solar radiation received by residential buildings will be decreased
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by around 38% because of urban structures, due to the influence of trees. Singh and Baner-

jee [193] presented a method for estimating the rooftop solar PV potential of a region based

on various data (e.g. land use maps, Google Earth images, and climate data), and different

tools (e.g. GIS and PVSyst simulation) with multiple strategies of analysis. The extraction of

the total rooftop area available for PV installation is achieved by calculating the total Building

Footprint Area (BFA) with the Photovoltaic-Available Roof Area (PVA) ratio applied to sample

buildings through micro-level simulations using PVSyst. The estimated rooftop solar PV po-

tential represents 2190MW for the city, with median efficiency panels. The annual average

capacity factor in this study was found to be 14.8%. A comparison between sample daily load

profiles of the city and the typical expected photovoltaic generation profiles illustrates that the

rooftop solar photovoltaic plan has the potential to provide 12.8-20% of the daily demand, dur-

ing different months, with median efficiency panels. Using the highest (commercial) efficiency

panels, this range goes up to 19.7-31.1%. The estimated rooftop solar PV potential shows its

ability to bridge the energy shortage because the plan can meet 31% to 60% of the morning

peak demand (9:00-12:00 hrs), and 47.7-94.1% of the morning peak demand with the highest

(commercial) efficiency panels. Because the amount of sunlight is a crucial factor of solar PV

efficiency, Ko et al. [26] evaluated the potential of solar PV power generation on rooftops. The

approach was based on an analysis of building GIS layers (coordinates and stories) using a

Hillshade module. A raster binarisation map was combined with hourly sun shadow greyscale

values (including the solar azimuth and elevation angles of buildings), to distinguish bright and

dark patches for computing roof shadow area. The results indicate about 12 428.5MW as the

rooftop solar PV installation capacity with a power generation capacity of 15 423.75GWh. The

installed power capacity for rooftop solar photovoltaic, when compared to the statistical data

of the total electricity capacity for previous years, illustrates its capability to support the annual

gross generation of the total electricity capacity of the selected city. The process of assessing

the available solar radiation on the rooftops in the aforementioned studies was completely reli-

ant on the existence of urban structure maps that may pose a problem in other study areas in

which such maps are unavailable.

Many researchers have developed strategies that deal with the evaluation of urban structures

by different applications, such as solar energy utilisation from VHR aerial/satellite images. Ber-

gamasco and Asinari [23] proposed an approach to calculate the available roof surface for solar

energy utilisations based on the systematic analysis and processing of aerial georeferenced
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images. In a different work, Kabir et al. [109] attempted to recognise bright rooftops by clas-

sifying Quickbird images to estimate solar energy for PV application. Discrimination between

rooftops and non-rooftops was achieved by Baluyan et al. [111], using image segmentation

based on machine learning, namely: k-means clustering and support vector machines (SVM).

The automated detection of different building structures through exploiting the shadow pres-

ence in VHR multispectral satellite images was proposed by Ozgun [19]. Because shadows in

VHR satellite images can provide evidence of existing man-made structures, shadows are a

key factor in the analysis of solar radiation across daylight [20]. In this regard, the estimation of

the available rooftop area for PV installation was implemented by Jo and Otanicar [154], who

analysed the patterns of shadow cast and its effects on the rooftops.

Interestingly, the calculation of the roofs and facades as a 3D solar building model has been

taken into consideration by two recent studies. Redweik et al. [153] developed an approach to

assess the solar energy potential of buildings based on the calculation, visualisation and integ-

ration of the potential of both building roofs and facades using LiDAR data (DSM) and a solar

irradiation model based on climatic observations. The results of the solar 3D buildings analysis

confirmed that the annual irradiation on vertical facades is lower than roofs. Spatiotemporal

analysis was conducted for solar irradiation assessment on building roofs and vertical facades

by Catita et al. [186], using three different datasets: a solar radiation model for roofs, ground

and facades; a 3D building model; and, a DSM from LiDAR data fused in a GIS environment.

The developed approach presents the assessment of multiple buildings with the details of the

individual unit area at one end. However, the two approaches require the availability of DSM

derived from airborne LiDAR data, which is a serious problem if we consider that the assess-

ment of solar energy potential covers an entire city or large area of urban landscape.

The building envelope plays an important role in the protection of the interior environment from

undesirable exterior conditions [194]. The amount of building area that is subject to solar gain

is one of the most important determinants of energy efficiency, as shown in Figure 3.5. Ac-

cording to McKeen and Fung [194], the aspect ratio quantifies the building’s footprint in a ratio

of length and width (x:y) and allows for the comparison of the surface area amongst different

building designs. Figure 3.5 also shows that the geometrical relationship between surface area

and the aspect ratio can determine the amount of surface area from which surfaces will be ex-

posed from the light. Decreasing the amount of surface area minimises energy transfer [195].

Well-positioned buildings with well-designed envelopes in terms of the geometry, orientation,

materials and construction methods affect energy consumption through heating and cooling. A
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Figure 3.5: The effect of building geometry on energy efficiency. The increase of building
dimensions (x, y) in addition to the orientation and position of the buildings can change the
amount of surface area which is exposed to sunlight. Reducing the amount of surface area

decreases energy transfer. Modified after McKeen and Fung [194]

good building shape and orientation are two attributes considered the most critical elements of

an integrated design, having a profound impact on energy consumption [194, 196]. However, to

reveal the shape, position with respect to sun and other buildings, amount of the cast shadow,

and orientation of the existing buildings from genuine and updated data covering a wide area

of an urban landscape, VHR satellite images are therefore required. Furthermore, the creation

of 3D building models is also required for a comprehensive view and actual evaluation of solar

energy potential on the building envelopes.

3.5 Summary

The identification and creation of 3D building geometry from satellite images in an automatic

manner is vital in both remote sensing and computer vision. All the derived information and

details from VHR satellite images can offer important source data for understanding the com-

plexity of urban landscapes or for addressing the ambiguity or problems in VHR satellite im-

ages within urban areas, using the development of computer vision and image processing

techniques.
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The chapter presents and describes the state-of-the-art methods and techniques that have

been developed for deriving 3D building models from single VHR multispectral satellite im-

ages. The identification of the building's envelope geometry requires the extraction of the three

dimensions of the building volume, represented by the building footprint and height. To create

3D building models from a single image (2D scene), very high performance algorithms that

run automatically need to be developed to overcome issues with current approaches and tech-

niques. For instance, shadow detection and extraction algorithms should cope with the uncer-

tainty of discrimination between shadows and other dark objects spectrally (e.g. water), as well

as the overlap between one shadow region and another (e.g. buildings, trees, cars). Regard-

ing building footprint detection and extraction algorithms, the complexity of urban landscapes,

weather and illumination conditions, different properties of the used images, the occlusion of

the building's visibility, and similar characteristics between buildings and their background, must

be taken into account to increase the efficiency of the developed algorithm. According to the

aforementioned literature, although the theories and concepts of the reconstruction of 3D mod-

els has experienced a major development in their algorithms in recent times, the algorithm of

the creation of 3D building models from a single 2D scene (e.g. an image) without additional

complement data is still in its infancy.

66



Chapter 4

Methodology

The aim of this chapter is to describe and justify the methodology used by presenting the theor-

etical framework upon which this research is based. This chapter links to the literature chapters

to explain the reasons for adopting and developing certain methods to achieve the obtained

outcomes and to accomplish the thesis objectives on the academic basis of the choices of

research design and data processing. The different stages of methodology are also explained

in detail in this chapter, including the specific techniques used and algorithms developed, the

controls used to ensure validity and the dimensions of the research strategy. A brief summary

concludes this chapter. The findings of each stage of the research methodology are presented

in the following chapter.
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4.1 Research design

Buildings are the most prominent component and the core structure of urban environments. To

assist in the decision-making process, which involves understanding, managing and planning

the continuously changing environment and supporting sustainable city development, accur-

ate and timely spatial information about buildings and their attributes in urban areas is needed

[197]. To obtain geometric information related to urban buildings, remote sensing techniques,

such as satellite imageries, can be used to monitor the earth’s surface effectively due to the

high temporal and spatial resolution. These techniques have the potential to automatically

extract building information from urban areas [198]. Presenting the geometry of an urban en-

vironment using remote sensing data allows for the reconstruction of residential, commercial

and industrial buildings in a 3D city model. Therefore, a completed database of 3D modelling,

including information regarding geographic location, height, volume, compactness and other

information (e.g. ownership for future use, occupancy status), for each building is important

in the estimation of a building’s solar potential. To this end, a new approach was developed

to integrate the different components of the study in a coherent and logical manner so the

methodology could be used to accomplish the study objectives. The methodology involved

seven main stages that included validation techniques in the automatic creation of 3D building

models. The chosen data for the developed approach included a set of pan-sharpened VHR

multispectral satellite images. Optical VHR satellite images are considered one of the most im-

portant data input sources used in urban feature detection and extraction [150]. The developed

approach for the 3D creation algorithm began with implementing a data enhancement to obtain

a clear contrast between the objects in the urban landscape. Second, the shadow regions of

urban buildings were detected, and their locations were distinguished from other non-building

shadows and dark objects within the image space. Thereafter, the buildings’ shadow evidence

was effectively extracted after applying post-processing techniques to obtain a binary image

that solely included the buildings’ shadows. In the fourth stage, building footprints were de-

tected based on shadow information and then extracted by applying a graph theory framework

based on graph partitioning. During the fifth stage of the methodology, the geometric shapes of

the extracted buildings were refined by improving the edges of the buildings’ footprints. Sixth,

the estimation of the buildings’ heights is an important step in the creation of the 3D building

models implemented with the aid of the solar information in the metadata file attached to the

image data. After obtaining the footprints and heights of the buildings, in the seventh stage, 3D

models of the existing buildings in the scenes were created. The methodology also included
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a validation stage and a sensitivity analysis of the generated models, as shown in Table 4.1.

Each stage of the methodology is explained in detail in the subsequent sections of this chapter

to provide a complete overview of the developed approach.

4.1.1 Rationale for the selected present methodology

The present methodology was set for two important reasons: (1) the method benefits from the

NIR image band present in most VHR satellite images, and (2) the method is fully independent

of user- and data-dependent threshold. Because the detection of the building footprint regions

and the estimation of the building heights depend on the use of shadow information, the present

method was created based on the extraction of the building shadow regions from single VHR

multispectral satellite images in an automatic manner. Therefore, the key reason in creating this

methodology in this form and/or design is to overcome other approach deficiencies in detecting

and extracting shadow regions from satellite images, such as the similarity in the spectral

characteristics of shadow regions with non-shadow man-made regions, the recognition of the

shadow region edges with the ability to extract and separate them from other urban objects to

reflect their true shapes, and the overlapping between shadow regions.

As stated in Chapter 3, shadow regions in the general exhibit lower radiance values over the

entire spectrum, and sensor irradiance from shadow regions decreases from short to long

wavelength due to scattering [199]. Therefore, it is easier to distinguish shadow regions from

non-shadow regions with NIR image band. Moreover, the semi-automated approaches for

extracting shadow regions or building regions or heights or even for creating 3D models were

not applied in this study because they run by users and they require further time to achieve the

image processing tasks.

4.1.2 Data selection

The main data used in the methodology were the multispectral imageries at a VHR resolution,

which were captured by state-of-the-art optical sensors onboard space platforms. Using satel-

lite imageries extends the vision beyond what can normally be seen by the human eye. The

scope of human vision is limited to the visible portion of the electromagnetic spectrum, which

encompasses red, blue and green energy. Multispectral sensors can capture images beyond

69



Methodology Chapter 4

these energy wavelengths, including near infrared (NIR), shortwave (SWIR) and thermal en-

ergy (TIR). These wavelengths are important because certain features of the earth's surface

respond differently in these wavelengths. The exploitation of the advantages of multispectral

imaging facilitates the process of the discrimination and detection of objects (e.g. buildings,

vegetation, etc.) and features (e.g. the shadow regions are cast by urban structures and non-

building man-made object like trees) within complex landscapes, such as urban areas. The

radiance reflected from shadow regions and received by the satellite sensors decreases from

short to long wavelengths over the electromagnetic spectrum, and thus shadow regions exhibit

lower radiance values [199]. Therefore, the differentiation between shadow regions and non-

shadow areas using the NIR channel (an image band) with RGB image bands becomes easier

[19]. By combining the RGB bands with the NIR band, specific features are clearly contrasted

with their backgrounds and surroundings, which facilitates the extraction of the objects (e.g.

buildings). Band combinations are a quantitative approach used to visualise the information in

the bands and to determine how a feature responds in different bands to become distinguished

from the background and other features surrounding it [200].

Accordingly, the VHR multispectral satellite images have several environmental uses depend-

ing on the phenomenon or feature observed. VHR satellite imagery is considered one of the

highest quality forms currently available from remote sensing satellites due to its ability to offer

sub-metre resolution. This means that VHR satellite imageries are capable of providing a high

level of detail, making them a reliable and vital source of information. They support a range of

services, especially in urban areas, for city planning and monitoring, urban change detection,

estimation of human activities/population and urban object/feature detection. The presented

approach utilised these data merits to detect and extract the footprints of buildings and their

shadow information more easily. The approach employs pan-sharpened multispectral imagery

with combined bands (B, G, R and NIR), which are mostly provided by most VHR satellite ima-

ging sensors, as shown in Figure 4.1. Further details are provided in Chapter 3. In the next

section, the first part of the methodology is presented, which includes additional details about

the shadow information in the satellite images.
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Table 4.1: The methodology flowchart for a 3D building creation algorithm. The flowchart provides the
summary of the key processes, formulae and parameters

Stage Task The subroutine process of Alg.a The key formulae & parameters

1 Image
enhancement

- Normalise image bands values
- Adjust image intensity values

- ImgR=(imgR-min img)/(max img-
min img), (R= red image band)

- Contrast stretching threshold

2 Shadow
detection

- Normalise all images bands
- Divide between RGB and NIR
- Apply the non-liner mapping func-

tion to RGB and NIR, then Multiply
their outcomes

- Multiply the results from division
and multiplication operations

- Thresholding and Refining
- Subtract vegetation cover

- 4.1 – 4.7
- The slope of the sigmoid function
α, the inflection point β and γ to
stretch the histogram in the dark
parts before applying the sigmoid
function

3 Post-processing
of the shadow
regions

- Region growing function
- Create morphological structuring

element
- Apply morphological opening
- Apply Fuzzy landscape

- 4.8, 4.9 and 4.10
- Intensity (TI), ratio (TR), search re-

gion (Tlow –Thigh), and vegetation
ratio (Tveg) thresholds.

4 Building footprint
identification

- Apply Gaussian Mixture Models
(GMM)

- Define ROI and bounding box
- Apply GrabCut Algorithm
- Select only the buildings, inside the

ROI, adjacent to the shadow region
- Create the building mask (binary

image)

- 4.11, 4.12 and 4.13
- Shrinking distance (d), ROI size,

smoothing constant (γ1), area
threshold of the selected bound-
ing box

5 Shape
refinement, and
solar rooftop
analysis

- Apply Active Contour Algorithm
- Apply shape fitting functions
- Extract the refined building Mask
- Calculate roof area and orientation

- 4.14 – 4.18
- Number of iterations, area and

shape fitting thresholds

6 Building height
estimation

- Generate artificial shadows
- Simulate actual shadow regions
- Compute Jaccard index
- Extract the optimal estimated height

value

- 4.19 – 4.24
- Minimum height (hmax), minimum

height (hmin), height interval, Jac-
card index, area (ρ) thresholds

7 3D Models of
Buildings and
validation

- Create a 3D volumetric image
- Perform image convolution by a

Gaussian filter
- Apply Marching Cubes algorithm
- Create 3D models in level of details

and overlay their real location on a
given image

- 4.25, 4.26 and 4.27
- Gaussian low pass filter of size,
Sigma (σ) and isovalue paramet-
ers

aAlg.: Algorithm
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Figure 4.1: The employed data: pan-sharpened multispectral satellite imagery

4.1.3 Shadow information and the theoretical concept

For above ground urban constructions such as buildings and bridges, shadows are the most

common accompaniments, which can be seen in VHR images. When intercepted by an off-

terrain object, incident light rays, usually sunlight, generate shadows that are cast on other

urban surfaces/objects of image capture by optical satellites. Figure 4.2 presents the three

conditions (a light source, an object to cast the shadow line and a surface to receive the shadow

line and shadow) that must be met to produce a shadow. In this context, a shadow indicates

the shape of the object casting it, and in many ways, it can indicate the texture of the surface

receiving the shadow [201]. In contrast, shade can be defined as the side of an object opposite

to the direction of illumination, which has less of a colour tone than full blackness (the value

intensity of darkness) compared to the object’s shadows, which have low values, mostly zero

values, of brightness in VHR images (pure black colour).

The line that locates and separates the light and shade areas on the object determines the

shadow line on a receiving surface. In turn, the shadow line determines the dark area cast

onto the surface on which the object rests and that receives the shadow cast. Therefore, the

shadow line and the dark area (shadow regions) in optical satellite imageries have become

key topics that have attracted attention in the research field. The dark pixels that belong to
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Figure 4.2: Shadow conditions from the VHR pan-sharpened multispectral satellite imagery

the shadow regions in an image were analysed based on two main aspects. These aspects

depend on how the shadow regions in the VHR images have been treated by researchers;

they are either viewed as a disadvantage that must be addressed or as an advantage to be

exploited.

The shadow concept can therefore be understood as shadow progressions that begin from

determining points and then move to lines (being composed of points), then to planes (being

composed of lines) and lastly to solids (being composed of planes), as shown in Figure 4.3. In

fact, the shadow of a line, a plane, or a solid is most efficiently determined by locating the shad-

ows of the critical points of the line, plane or solid [201]. Moreover, if parallel lines (paralines)

extending from an object to its shadow cast on a flat surface with a sufficient distance between

them are drawn in the virtual world, the identical size, shape and orientation of the object will be

obtained. This is because the greater the distance, the greater the shadow displayed; however,

the situation is completely different with objects’ shadows within urban areas in VHR satellite

imageries in terms of urban fabric, as these often exhibit compact areas of buildings as one

factor. This factor can affect the actual size and shape of urban objects presented by their

shadows because the shadow line of the object will be shorter in the case of a rise in a hori-

zontal receiving surface and longer where there is a drop in this surface for the other objects

within urban areas. The second factor is the existence of trees and their shadows or even

shadows from unconstructed areas, such as vehicles, which can distort the real boundaries of

shadows (the geometric forms) and give an arbitrary shape to the constructed objects when

they combine with the objects’ shadows. Another factor to consider is that the shadow regions

of objects in images are larger in the winter than in summer due to the sun’s position in the sky

vault and its angle and altitude. Spectrally, non-shadow regions, such as water, can present

the same pixel intensity values or darkness with the shadow regions of the objects in images,
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causing an error in detecting shadows. Therefore, shadow detection and its extraction from

VHR satellite images is a complex task, and all image processing techniques used to detect

shadows still depend on the estimation of shadow areas using various developed methods.

Figure 4.3: Shadow progressions: the shadows of a point (top left), a line (top right), a plane
(bottom left) and a solid (bottom right)

4.2 Shadow detection and extraction

4.2.1 The detection of shadow regions using Near-Infrared information

Shadow regions are distinct in terms of tincture because they exhibit a dark colour compared

with their surroundings in the image space; however, the automatic process of the detection of

shadow regions from sensed data is a complex task [150]. This is because some non-shadow

dark regions share the same characteristics with the cast shadow regions within urban land-

scapes captured by satellite sensors using visible images, such as colour, texture and shape.

The utilisation of the advantages of the NIR image can help differentiate cast shadows from

other dark objects because shadows tend to have a much lower sensor radiance than other

urban objects over the entire reflective spectrum. According to Adeline et al. [199], sensor

radiance received from shadowed regions decreases from short to long wavelengths due to

scattering. Specifically, shadows mainly receive scattered light and reflected light. Scatter-

ing effects significantly decrease towards longer wavelengths from approximately 85% to 5%.

74



Methodology Chapter 4

Because the NIR channel is longer than visible channels in the wavelength, it is easier to distin-

guish shadows from non-shadows using the NIR channel. Based on the principle and concept

of the behaviour of shadows, shadow regions can be detected by the NIR band. To reliably

detect the actual shadow regions of buildings, SAc, a state-of-the-art approach proposed by

Rüfenacht et al. [149] was developed for building shadows specifically. The approach depends

on detecting dark pixels in both visible (V) and near infrared (NIR) bands of images by com-

puting a ratio between these bands on a pixel-by-pixel basis, which allows for disambiguation

between shadows and dark objects. First, the values of the pixels P kij were normalised for all

image bands 0 ≤P kij≤ 1, k ∈ (R,G,B,NIR), without any processing applied. Next, a bright-

ness image L was created by calculating the average for each pixel lij in the visible image V

(R, G, and, B) over its three colour bands (channels):

lij =
PRij + PGij + PBij

3
(4.1)

Then, the candidates of the shadow regions were obtained by applying a non-linear mapping

function that compresses the shadows and highlights, which allows us to mark fewer but better

controlled pixels as shadow candidates of the extracted dark pixels (DV and DNIR) from the

brightness image, as follows:

f(x) =
1

1 + e−α(1−x
1
γ −β)

(4.2)

dVij = f(lij); dNIRij = f(PNIRij ) (4.3)

where, α, β and γ are parameters to control the sigmoid function. The slope of the sigmoid

function is influenced by the value of the parameter α with 14, which was obtained by optimisa-

tion over the datasets used; the inflection point is set by the parameter β with its value 0.5 to

keep the inflection point centred; and the value of the parameter γ (>1.0) allows the histogram

to be stretched in the dark areas before applying the sigmoid function, and therefore the value

for γ was 2.2 to imitate the non-linearity of common colour encodings. The same values for the

three parameters were applied to all inputs.
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The role of the non-linear mapping function f is to give greater strength or firmness to the

output pixels of the detected shadow regions in addition to inverting the tonal values of the

dark and bright areas in the test images to obtain an outcome in which the shadow regions

have a high value. Because the dark pixels in both visible V and NIR images indicate the

condition of the shadow region's presence, the pixels of the shadow regions are computed as

the shadow image D using the following formula:

dij = dVijd
NIR
ij (4.4)

Thereafter, a ratio image T is calculated between V and NIR bands on a pixel-by-pixel basis

because the output values of the ratios can have a significant impact on shadow detection. The

division process of the image bands can refine the outcomes of the shadow image candidate.

Because the difference in illumination far outweighs the difference in the reflectance of the

shadow, and because sunlight actually emits approximatively as much energy in the NIR band

as in the visible bands, the ratio image T outlines the shadows so that the image’s tone is

mapped for better visibility [149]. The pixel tkij of the image ratio T can be calculated as

follows:

tkij =
P kij

PNIRij

; tij =
1

τ
min(maxk(t

k
ij), τ) (4.5)

where k = {R,G,B}, by applying an upper bound τ to the value tij to avoid this value reach-

ing infinity when PNIRij approaches zero; however, depending on the outcomes of T , it may

not be enough to detect the shadow regions due to the potential variability of the reflectance

in the visible and NIR images. On the other hand, the max operator was used because image

reflectance values can often have very low values in one or two of the colour bands, although

rarely in all three. Therefore, the value of τ was set at 10 to deduce the difference in illumination

within image space, which also provided better discrimination results.

Finally, the produced shadow image D in Eq (4.4) includes not only every possible shadow

pixel but also the pixels of the dark objects. Because both the V and NIR pixel values of a given

object are dark, the multiplication of T by D will adequately discriminate between an actual

shadow and a dark object. Therefore, the initial shadow image MS,I in a binary image format

can be obtained using the following formula because both T and D are in the range [0, 1]:
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MS,I = (1−D)(1− T ) (4.6)

Thus, the results are subject to the optimal threshold that can provide the best separation

between the shadow and the non-shadow pixels. The thresholding process involves comput-

ing the histogram of the shadow image according to Sturges’ rule, in which the threshold is

set at the value of the first valley in the histogram. The first valley of the image histogram was

defined as the smallest valued bin of the histogram where the two neighbouring bins to the left

and the two to the right have larger, increasing values. Because the shadow detection method

was applied to a wide variety of types of images, except for VHR optical satellite images, the

final findings of the shadow detection method, which is a binary image MS,I, were influenced

by noise, and they contained other detected regions that did not belong to the shadow areas.

Therefore, the shadow detection method was developed to detect shadows from satellite im-

ages by eliminating other small dark areas. To this end, a morphological filter was proposed to

remove all small objects, i.e., the non-shadow pixels. Therefore, the process of elimination of

small objects is controlled by removing the areas <100 pixels to keep only the building shadow

areas. The entire developed shadow detection algorithm is presented in Figure 4.4. The fol-

lowing section focuses on extracting the shadow mask MS only by removing vegetation within

the urban landscape.

Figure 4.4: The developed shadow detection framework
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4.2.2 Shadow region extraction

The removal of vegetation cover using Rufenacht’s approach was not taken into account.

Hence, the binary image (the initial shadow mask) MS,I contained both shadow and veget-

ation regions. In addition to extracting the initial shadow mask MS,I, the extraction of vegeta-

tion areas was achieved by applying the well-known Normalised Differential Vegetation Index

(NDVI), as follows:

NDVI =
ρnir − ρred

ρnir + ρred
(4.7)

where ρnir and ρred denote both image bands NIR and red, respectively. The use of the NDVI

allows for the inference of healthy vegetation from the images. The presence of vegetation

in the test images can be indicated by the larger values of the NDVI [150]. Next, a binary

vegetation mask MV was computed using automatic histogram thresholding [202]. The final

shadow mask MS was attained by subtracting the MV from the MS,I.

4.3 Building detection and extraction

4.3.1 Shadow post-processing

The effective performance of the building detection process depends on the accuracy of shadow

region detection and the precision of the extraction. Therefore, two post-processing techniques

were applied to the shadow mask MS. The goals of the post-processing step were to: (a) im-

prove the shape and boundaries of detected shadow regions; (b) eliminate all cast shadows

that do not correspond to the main structure of the building; and (c) remove the landscapes

that might result from the cast shadows of vegetation canopies. Therefore, a constrained

region-growth process (Figure 5.5b) (Chapter 5), morphological operations with a thresholding

scheme and pruning of the final shadow regions by modelling fuzzy landscapes were applied,

as proposed in Ozgan et al. [150]. During the constrained region-growth process shown in Fig-

ure 4.5, the neighbouring pixels of each initial seed pixel, labelled as a shadow in the shadow

mask, were examined to determine whether they were located within a region using an iterative

region-based segmentation. The growth of the region depends on an 8-connected neighbour-

hood of the similarity of the adjacent pixels’ intensities after normalising the false colour image
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bands of the Hue-Saturation-Intensity (HSI) generated from the combination of bands (NIR, R,

and G).

Figure 4.5: The concept of image pixel connectivity and region growth

With each iteration, the difference between the mean intensity of the region and the intensities

of all the neighbourhood pixels were assessed, and pixels were allocated to the region with

the smallest difference in the neighbourhood. The iteration stopped when this difference was

larger than a threshold TI. The growth process was also controlled using a ratio threshold TR

to remove the regions that were incorrectly labelled ‘shadow’ and that became large areas after

the growth process. Thus, a comparison between the number of pixels in the shadow regions

before and after the growth process was conducted. The cast shadows from other independent

non-building, man-made objects (e.g. fences and cars) can become an issue when merged

with the building shadows; however, a given elevation threshold for these objects can mask

their shadow regions in the direction of the illumination. Nevertheless, the investigation of

the length of shadow components in the illumination direction is insufficient if used alone to

remove the cast shadows of these objects. Therefore, the morphological opening operation

was applied to all shadow components by generating a flat structuring element (νL,λ+π). The

creation of the specific flat structuring element is based on the captured solar information in

the metadata file that allows for maintaining the directional information (λ = Az − π/2) with

the smallest length of connected single edge segment l. By setting a threshold value Hmax
T for

non-building objects’ elevation, the length of the single edge segment l, is as follows:

l =
Hmax

T

tanφRimg
(4.8)

where φ is the sun elevation angle, and R is the spatial resolution of the image required to

determine a given illumination direction. After creating the structuring element, each shadow

component was labelled and evaluated by applying the morphological process. This process
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was applied to all 8-connected components of shadow that may exist in a single image, and

then all improved outputs of shadow regions were gathered into the image.

To model the spatial configuration between buildings and their shadows, a morphological fuzzy

relation approach was used for two purposes: investigating the vegetation presence within the

illumination direction and eliminating the landscapes that might result from the cast shadows

of vegetation canopies. Thus, the landscape βλ around a given shadow object B is defined as

a fuzzy set of membership values in an image space along the given direction λ:

βλ(B) = (Bper ⊕ νL,λ,σ,k) ∩BC (4.9)

where Bper is the perimeter pixels of the shadow object B, νL,λ,σ,k represents a non-flat line-

based structuring element, andBC refers to the complement of the shadow objectB calculated

in the 8-neighbourhood connectivity. The operators⊕ and ∩ are the morphological dilation and

a fuzzy intersection, respectively. The non-flat line-based structuring element is calculated as

follows:

νL,λ,σ,k = νL,k,λ ∗ νσ,k (4.10)

where νL,k,λ is the flat structuring element, L is the line segment, k is the kernel size to control

the decrease rate of the membership values within the element and λ is the angle where the

line is directed, while νσ,k denotes a Gaussian non-flat structuring element with Kernel size k.

The existing vegetation within the directional neighbourhood of the shadow regions was in-

vestigated by generating a search region. The search region in the immediate vicinity of each

shadow object was defined by setting the threshold values of Tlow and Thigh to the gener-

ated membership values of the fuzzy landscape. Once the region was defined, the existence

of vegetation within the defined region was determined using a vegetation mask MV and by

applying a threshold Tveg. If there is substantial evidence of vegetation (≥ Tveg) within the

search region, then a fuzzy landscape region generated from a cast shadow was rejected. The

investigation was conducted by calculating a ratio between the total number of pixels attributed

as vegetation in the vegetation mask to the total number of pixels located in the search re-

gion. After the pruning process, the post-processing step was refined by adding another region
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growing step of the shadow mask where the shadows were segmented with more precision

(Figure 5.5e, Chapter 5).

4.3.2 Building footprint detection

A graph partitioning approach was used to accurately separate a given building region from its

background, and the building detection task was considered a two-class partitioning problem.

For full automatic detection and extraction of the building footprints from the image used, the

GrabCut partitioning approach was utilised, which was proposed by Rother et al. [203] and

implemented in a semi-automated manner, and a complete automated implementation that was

proposed by Ozgun [19] was used. Based on the graph theory concept, the GrabCut approach

treats the input image as a graph in which a given building region is accurately separated

from its background. The issue involved in partitioning two classes of foreground/background

image pixels was addressed through an iterative binary-label graph-cut optimisation, where a

globally optimal segmentation solution can be found. To achieve the partitioning process for

extracting building regions (footprints) automatically, therefore, Ozgun's first-level partitioning

technique was adopted, as in [19]. The inputs consisted of the input image and labelling:

z = (z1, z2, . . . , zN) is a given set of image pixels with an initial labelling from a tri-map T =

{TB, TF, TU} for assigning each pixel, which represents the background TB, foreground TF and

unlabelled TU, respectively. Each pixel was initially assigned to the value α= (α1, α2, . . . , αN)

corresponding to background and foreground, where αn ∈ {0,1} and the underline operator

indicates the parameters to be estimated/solved. First, the algorithm begins by applying the

K-Gaussian Mixture Models (GMMs) with K components for foreground (KF) and background

(KB) classes, constructed as the vector representing the mixture components for each pixel

by defining K = {k1, k2, . . . , kN} with kn ∈ {1, . . . , k}. Next, for the partitioning, the Gibbs

energy function was applied, as follows:

E(α,K, θ, z) = U(α,K, θ, z) + V (α, z) (4.11)

where θ represents the probability density function as the output from mixture modelling for

each pixel. The function has two steps: fitting models to data U(α,K, θ, z) denotes the fit of

the background/foreground mixture models to the data z, taking into account α values, which

can be defined as:
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U(α, k, θ, z) = −
∑
n

D(αn, kn, θ, zn) (4.12)

where D(αn, kn, θ, zn) denotes the optimal label preferences for each pixel zn based on the

observed pixel values. In the second part, V(α, z) is the smoothness term for the class bound-

aries, which is written as:

V (α, z) = γ1
∑

(m,n)∈C

[αn 6= αm]e−β‖zm−zn‖
2

(4.13)

where γ1 and β are the constants that identify the degree of smoothness. The smoothness

term γ1 is fixed to a constant value over a set of images. In contrast, the other smoothness β is

computed automatically after evaluating all the pixels in an image. A binary indicator function

is expressed by the term [αn 6= αm] that takes a value of 1 if αn 6= αm , and C refers to

the set of the neighbouring pair of pixels computed in the 8-neighbourhood connectivity. To

accomplish the partitioning by estimating the final labels of all pixels in the image, the minimum

cut/max-flow algorithm was applied [203].

For a fully automatic reliable labelling of the building regions/foreground TF and non-building

regions/background TB, the shadow regions and generated fuzzy landscapes are used to: (a)

apply two thresholds (η1, η2) to the membership values resulting from the generated fuzzy

landscapes; (b) define the TF in the vicinity of each shadow object with its delineated boundar-

ies; and (c) employ a single shrinking distance parameter (d) for acquiring a reliable TF region.

The most probable locations for building footprints are extracted by dilating the shadow region

for each shadow component, which is accomplished with a flat line structuring element, defined

in the opposite direction of illumination. Therefore, for each shadow component, a bounding

box is generated, whose extent is automatically determined after dilating the shadow region;

the box is generated to select the TB and to define the ROI region within the covering bounding

box in which the GrabCut partitioning is performed. The extent of the ROI and the bounding

box are subject to the single distance parameter and the ROI size values. Once the covering

bounding box was determined, the automatic labelling of the background information pixels TB

was conducted based on considering all the pixels within the bounding box that belong to the

shadow and vegetation regions. The regions outside the ROI region are TB and inside the ROI
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are TF. The labelling process was repeated for all sets of building regions in the entire image

domain.

4.3.3 Geometry adjustment of the extracted building footprints

According to Ozgun [19], an incorrect assignment of the labels of buildings, vegetation and

shadow pixels and others (a class for assigning pixels that do not belong to any of these

classes) may occur after the GrabCut partitioning process. This can cause additional or dimin-

ishing areas at the edges of the detected building regions. Therefore, a geometric-adjustment

approach was developed at two sequential levels to refine the extracted shapes of building foot-

prints. The first step consists of applying for shape recovery, which is also one of the computer

vision approaches proposed by Chan and Vese [204]. Active contours AAC is an image seg-

mentation algorithm, which is an energy-minimising, two-dimensional spline curve that evolves

(moves) towards image features, such as strong edge [148], as shown in Figure 4.6. The out-

put image is a binary image where the foreground is white (logical true) and the background

is black (logical false). An input mask is a binary image that specifies the initial state of the

active contour. The boundaries of the object region(s) (white) in the mask define the initial

contour position used for contour evolution to segment the image. To obtain faster and more

accurate segmentation results, an initial contour position is specified that is close to the desired

object’s boundaries. Therefore, the active contour approach is used to penalise a shape with

high curvature, starting with the inputs of greyscale images of datasets and the binary images

derived from the partitioning process (including building footprints) with the maximum number

of iterations, as shown in Figure 5.7 (see Chapter 5). The implementation of the algorithm

continues until the maximum number of iterations is reached to accurately obtain the required

building boundaries. In order, the tasks that are achieved by the AAC are: (1) creating a single

distance map from the binary image; (2) obtaining the curve's narrow band; (3) calculating the

mean inside and outside the curve; (4) computing the two forces to shrink and expand the con-

tour; (5) calculating gradient descent to minimise energy; and (6) evolving the curve to attain

the final enhanced building mask.

Although the output of the application of the active contour without edges approach improves

the shape of the detected buildings, as shown in Figure 5.7f (see Chapter 5), and a given

building region is without an increase or decrease in its area, the building edges are not in a

regular geometric form (e.g. rectangle, circle). Due to the different initial conditions where the

83



Methodology Chapter 4

Figure 4.6: Curve propagating in normal direction. C: contour; AIL: the average intensity
levels of image pixels inside and outside of the contour, Chan and Vese [204]

algorithm AAC performance depends on a particular segmentation of the image (in case Fig-

ure 5.7b, see Chapter 5), the active contour might also acquire a different segmentation. This

means the active contour approach does not precisely adapt to the object topology, particularly

its real edges. To mitigate this problem, a second step is proposed that was implemented to

adjust the building edges.

In the second step of building geometry modification, the edges of the building regions were

refined with the shape fitting based on the automatic identification of the best parameters of

the geometric shapes through the optimisation process. The optimisation process depends

on finding the minimum constrained nonlinear multivariable function based on the interior-point

algorithm AIP, as in Byrd et al. [205] and Byrd et al. [206]. The AIP achieves the optimisation

process by analysing the strict interior of the feasible region defined by the problem rather

than around its surface. The constrained nonlinear optimisation process attempts to find a

constrained minimum of a scalar function of several variables beginning at an initial estimate

of the solution (b0), where a minimiser of the function is subject to the optimisation options

specified in options. A set of lower and upper bounds was defined to identify the optimal

parameters of the building's footprint shapes within these bounds, so that the solution is always

in the range lb ≤ b ≤ ub. The process outputs are the objective function for the best parameter

values at the solution (b), which are the final coordinates of the optimal shape. To achieve this,

a new technique was developed to create the objective function that will be minimised and

evaluated at (b) to identify the optimal fitting edges of the buildings. The geometric parameters

were investigated to set the two basic and most spread shapes (rectangle and ellipse) to adjust

the alignment of the edges between the building corners and to take the convexity in some

cases into account for edges with rounded forms. The fitting optimisation subroutine begins by
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identifying the rectangle parameters that minimise the objective function. Thus, two functions

were generated as the objective function in the optimisation process to implement the fitting

geometry for the best parameters of the two selected shapes. To acquire the coordinate of

the point (x, y) on the rectangle border, as in Figure 4.7a, the input parameters were therefore

defined in the parametric equations of the rectangle, as follows:

x = p max(−1,min(4/π arcsin(sin(πt/2 + π/4)), 1)) (4.14)

y = q max(−1,min(−4/π arcsin(sin(πt/2 + π/4)), 1)) (4.15)

where t denotes a function of an angle, it is defined as−π < t < π, p and q parameters, which

are the side length of the rectangle. A rotation matrix was applied by identifying a rotation angle

φ with the translation process after defining the coordinates of the rectangle’s centre (xt, yt).

For an ellipse, the parametric equations were formulated, as follows:

x = p cos(t) (4.16)

y = q sin(t) (4.17)

where (x, y) refers to the coordinate of the point on the curve border. Next, the developed

technique contains the calculation of the pairwise distance between two sets of observations

for each point on the border. The pairwise distance includes: (1) the original shape obtained

after applying the active contour approach d, and (2) the fitted shape d2, as in Figure 4.7b.

The objective function for minimisation is the output values of the sum of distance. To enable

the algorithm to recognise and choose automatically between rectangles and ellipses, a ratio

was defined as a measure of elongation of the object (the ratio of the minimum and maximum

object side). The ratio value is 1 when both sides of the object are similar, but if the ratio value

is near zero, this illustrates that one side is much smaller than the other side of the object. If

the output value of the objective function of the rectangle shape is less than the ellipse shape

or the ratio is less than the threshold (0.6 tuned), then the rectangle shape is chosen to find

the coordinates (xopt, yopt) of the optimal rectangle shape of the object, as shown in Figure 5.8

(see Chapter 5). If not, the ellipse shape is chosen instead.
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Figure 4.7: Building edges enhancement: (a) Parameters of shape fitting, (b) d is the min-
imum distance from each point of the original shape to the points of the fitted shape, and d2
is the minimum distance from each point of the fitted shape to the points of the original shape

To conduct the compatibility test between the amended shape extracted from the fitting-optimisation

process with the original shape of the buildings extracted from the partitioning process, the Jac-

card Index (JI) used for measuring the similarity between two sets of building footprint regions,

was utilised, as illustrated in Figure 4.7. First, the binary mask is created from the perimeter

pixels of the refined shape MRS. Then, the intersection and union between MRS and the

original mask MB is computed to obtain the Jaccard Index (JI), This is computed by:

JI(MRS,MB) = |MRS ∩MB | / |MRS ∪MB | (4.18)

JI(MRS,MB) computes the size of the intersection (the two building regions) divided by the

size of the union of the two regions. Second, two thresholds were set to examine the perform-

ance of the adjustability process to ensure that inaccurate amendments to the building edges

and shapes were avoided and restored from the original binary image. The first threshold (Γ1)

was set to control the values of JI , and if the value was less than (Γ1 = 0.4) the performance

was rejected. Alternatively, the performance was also rejected if the area value of the intersec-

tion between the complement of the original binary mask (1 −MB) and the amended binary

mask MRS was greater than the second threshold (Γ2 = 5000). Both thresholds were tuned

based on the test images. Otherwise, the algorithm extracts the optimal shape of the building

and adds it to the other building shapes in the image.
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4.4 Estimation of building heights

The extraction of building shadows not only allows for the inference of the shapes of urban

buildings but can also be used to estimate building heights [180]. Accordingly, a new technique

was developed that allows for the estimation of the height values using only image metadata

information and the output of the shadow extraction and building detection without any addi-

tional data. In fact, under appropriate imaging conditions, each 3D building structure owns

its cast shadow [207]. Thus, the cast shadows of the buildings were exploited to derive their

height values based on a flat terrain assumption1. The shadow region was investigated in the

shadow mask MS to identify each shadow region that belonged to its building in the building

mask MB. The process includes the extraction and labelling of the largest areas of the con-

nected components of the shadow regions in the binary image. Thereafter, the unique labels

of a label matrix from the connected components structure of the shadows can be found in

the shadow mask MS, where the pixel values are larger than zero. For each unique label, 1

is set as the value of the pixels belonging to the shadow regions. After identifying a specific

shadow region with the corresponding building in the shadow maskMS, a flat linear structuring

element (vL,λ+π) is specifically generated along the direction of the actual shadow region SAc

and in the opposite direction of the solar illumination to simulate the shadow regions computed

in 8-neighbourhood connectivity with a given height, as in Equation 4.8; however, the formula

was re-written with a different threshold to identify the best length of edge segment L that can

satisfy a sufficient distance for commencing the process of shadow simulation, as in Equation

4.19.

L =
Hmax

T

tanφRimg
(4.19)

where,Hmax
T is the maximum height threshold for the buildings that cast shadows, which allows

for the determination of the best overlap between SAc and SAr. Az is azimuth, φ is solar

elevation angle El, and Rimg is image resolution. After creating the line structuring element,

first, the connected components of buildings in MB were investigated, and then shadows were

explored in MS to label each component with an 8-connected neighbourhood. Thereafter, the

connected components were extracted with a unique label to provide a mask of their perimeter

pixels MBp, as in Equation 4.20.

1For the flat terrain assumption, the large cast shadow on the earth’s surface can be obtained in case there are
acute solar elevation angles (φ < 30°) [19].
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MBp = (MBc ⊗O3×3) ∩MB (4.20)

where, MBc is the complement of the building object (MBc, as per Equation 4.21), O3×3 is

a matrix of ones, and the operators ⊗ and ∩ denote the morphological dilation and a pixel

value intersection, respectively. Once the MBp is identified, the algorithm, ASO then simulates

the SAc in the opposite direction of the solar illumination to generate new regions of building

shadows Smax
sim , as in Equation 4.22.

MBc = 1−MB (4.21)

Smax
sim = (MBp ⊗Nse) ∩MBc (4.22)

where, Nse is the neighbourhood associated with the structuring element (se). The SAr for

each building region was then identified using Equation 4.23.

SAr = Smax
sim ∩MS (4.23)

Next, the ASO traces the trail of each SAc in the shadow mask MS to fit each SAr with the

corresponding SAc in the MS.

To estimate the heights of the buildings, HE from a single VHR satellite image, the shadow-

fit function was developed fsf based on using the Jaccard Index (JI), which yields ASO to

compute the fitting connected components over the pixels between the SAc and SAr regions.

The estimated values of the HB were extracted depending on the investigation of the optimal

height of a specific building using a set of HB, solar angles Az and El, the number of buildings

in the MB, Rimg, MB and MS into the fsf . The fit and similarity of the two shadow regions

were measured by the Jaccard similarity coefficient, as in Equation 4.24.

JI = |SAc ∩ SAr|/|SAc ∪ SAr| (4.24)
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JI calculates the size of the intersection (SAc and SAr) divided by the size of the union of the

two regions by simulating the actual shadow regions SAc. The computation of the overlap by

JI between SAc and SAr is iterated until ASO finds the maximal index of fitting for the two

shadow regions, which approaches 1. The algorithm then extracts the highest index which

represents the value of the optimal height Hopt of a given building. The set of the building

heights is determined by the hmin and hmax, which represent a possible range of the minimum

and maximum heights of the buildings. Applying a set of the building heights in the process

of the building height estimation controls the simulation of the artificial shadow regions SAr

and identifies the fitting region. Hence, for each test height between hmin and hmax with the

interval 50 cm, SAr is gradually increased and the size of the simulated shadow region will

increase until it fits SAc, where the height value is estimated. The value of the interval used

to implement the simulation process was chosen because it is appropriate and consistent with

the spatial resolution of the test image.

The building height HB was therefore chosen as the optimal height Hopt, which gives the

highest fitting index between the two shadow regions. Once the optimal value of the building

height HB was obtained for all existing buildings in a given test image, a shadow region was

re-generated using the value of Hopt for each building in the building mask MB based on

the morphological dilation operation. A new function fsf was therefore created to represent

the shadow region as an HB map (image) with the following inputs: the derived value of the

optimal heightHopt, sun elevation (El) and azimuth (Az) angles, image spatial resolution (res)

and the building mask MB. The final shadow region was simulated within the image space to

visualise and combine all outputs of the SAr regions, which represent the estimated values of

HB in a single image. Finally, an HB map was produced by keeping only the building footprints

with their estimated height values HB, where the values of the pixels are the building height

Figure 5.9, see Chapter 5. Simulating other objects was avoided when JI was larger than a

tuned threshold (JI>0.13). The algorithm adds the simulated shadow region of the building to

the image, which includes the simulated shadows of all buildings.

In addition, during this part of the algorithm’s subroutine, the possibility that the simulated shad-

ows may cast on another building was considered and investigated. The function fsf allowed

for overcoming the problem of the overlapping shadows of two buildings by measuring the area

of the shadow cast on the other buildings. The algorithm tested whether the measured area

was larger than a chosen threshold (ρ = 1600 pixels, which was tuned to be appropriate with

all test images). Then, the JI was set to zero and the simulated shadow was not considered.
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Moreover, the overlapping problem between the cast shadow regions by buildings and/or those

by non-built man-made objects was also mitigated by the creation of the length of an edge seg-

ment of the flat linear structuring elements of a given height threshold. The height threshold

was selected based on the test images and their characteristics, such as illumination condi-

tions and spatial image resolution. The entire developed shadow-overlapping algorithm, ASO,

algorithm is presented in Figure 4.8.

4.5 Automated creation of 3D models of urban buildings

The basic requirements and common prerequisites for creating 3D city models are footprints

and elevation measurements; the latter is achieved through the use of LiDAR and Photogram-

metry [208]. Although footprints are widely available as an open data source from governments

and volunteer geoinformation [209, 210], some cities and urban areas still do not have such

data. In particular, most cities in developing countries often lack master maps or updated data-

bases for existing and new buildings. In addition, acquiring elevation datasets also poses a

problem because they are costly, and the process is time-consuming, hindering the production

and availability of 3D city models [208, 211]. Therefore, for the present study, the automatic

creation of 3D objects was performed by employing outputs that were obtained from the build-

ing footprints extraction and the height estimation processes. On the other hand, according

to [212], the elicitation of the level of detail (LOD) of 3D building models in computer graphics

depends on the complexity of the geometry. The LOD concept of the Open Geospatial Con-

sortium (OGC) standard CityGML 2.0 is intended to distinguish multi-scale representations of

semantic 3D city models [213]. For OGC, there are five main LODs that describe the increase

in the geometric and semantic complexity of 3D city models (Figure 4.9). LOD1 represents a

coarse prismatic model usually created by extruding an LOD0 model [163]. Thus, the creation

of a 3D building model depends on the former operations of the algorithm that are applied to

the image; the LOD of a 3D building model is generated at level one of the complex details of

the building geometry.

Therefore, the 3D models of the urban buildings are created in the form of the solid blocks. In

the present study, the 3D building models were derived from the construction of the volumetric

image Vimg. To create the volumetric image Vimg, a voxel in a regular grid in three-dimensional

space is implemented. The voxel defines a point in three-dimensional space in terms of the
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Figure 4.8: Framework of the shadow-overlapping algorithm ASO for building height
estimation

91



Methodology Chapter 4

Figure 4.9: The five LODs of CityGML 2.0. The geometric detail and the semantic complexity
increase, ending with the LOD4 containing indoor features [163]

values of coordinates (x, y and z) as a unit of graphic information like the pixel (picture ele-

ment), which defines a point in a two dimensional space of its (x, y) coordinates, as shown in

Figure 4.10. Based on graphic operations, the vectors −→x , −→y and −→z are created, respectively,

with the Cartesian coordinates of volumetric images. The vector −→z is created with the spatial

resolution of the test images as an interval step between the lowest and highest value of the

heights. Several elements of the vectors are calculated to transform the rectangular domain

specified by vectors −→x , −→y and −→z into rectangular grid arrays X,Y and Z to produce three-

dimensional coordinate arrays. To represent 3D models, a uniform grid of 3D voxels is therefore

required. The voxels of the Vimg are derived by setting each voxel of the Vimg to 1, which is

located inside the building, and to zero for the voxels outside the building. To precisely extract

the well-structured shape of the 3D solid blocks during their graphical computational geometry,

a Gaussian low pass filter was applied to the building in the Vimg as a spatial filter. For each

slice of the volumetric building Vb, a convolution with a Gaussian filter was therefore performed

to smooth the outputs of the 3D building models, as in Equations 4.25 and 4.26.

Figure 4.10: The conception of the voxel and pixel. On the left-hand side, an object in a 2D
scene; on the right-hand side, the same object in a 3D scene. Modified after [214]

hg(n1, n2) = e−(n
2
1+n

2
2)/2σ

2
(4.25)
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h(n1, n2) =
hg(n1, n2)∑
n1

∑
n2
hg

(4.26)

where, hg(n1, n2) is the pixel values within a filter-window. The parameter σ controls the overall

shape of the curve. The Gaussian kernel is created with the values of the parameters, the filter

size 15 and the standard deviation of the Gaussian 5, selected based on providing the best

results. To extract a 3D surface Fv, all voxels in the Vimg with a given co-localisation level were

represented as an isosurface, which is defined by the implicit equation 4.27.

F (x, y, z) = f (4.27)

where, F (x, y, z) refers to a continuous function whose domain is a 3D-space and f a con-

stant that represents the density surface from a 3D array of data. An isosurface is a three-

dimensional surface that represents points of a constant value (e.g. density) within a volume

of space. The function computes the isosurface value from the volume data (e.g. Vimg). The

isosurface connects points that have the specified value, much the way contour lines connect

points of equal elevation. Therefore, the 3D surface Fv connects all voxels that have equal

values in a 3D data distribution Vimg to form and produce the 3D surface Fv in a meshgrid form

(decomposed in triangles) for a given F by sampling over a regular grid, see Figure 4.11. The

reconstruction process of the Fv of every building Vb from Vimg is implemented using the well-

known Marching Cube algorithm AMC in Lorensen and Cline [215] and Nielson and Hamann

[216], (see Figure 4.12). The AMC is a 3D isosurface representation technique. The AMC was

used to create a triangle mesh from an implicit function (F (x, y, z) = 0) by iterating (marching)

over a uniform grid of cubes and over a region of the function. Accordingly, the 3D surface

may intersect the cube with 28=256 possible configurations, but using the symmetries could

reduce these 256 cases to 15 patterns (unique cases). By locating the surface in a cube of

eight vertices, all eight vertices of the cube are positive (entirely above) or negative (entirely

below) for the surface, and no triangles are emitted. Otherwise, the surface passes through

the cube’s eight vertices, and then some triangles and vertices are generated. The Marching

Cube algorithm is therefore able to construct the structure Fv that contains the faces and ver-

tices and estimates their intersections through the interpolation process along each edge. The

algorithm then calculates the normals for each cube vertex and interpolates these normals at
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Figure 4.11: 3D model with triangles placed along the sides of voxel cubes: (a) voxel as a 3D
solid model; (b) voxel as a 3D vector cube; (c) Decomposition approximating the 3D surface

vertices of the derived triangles. The final 3D buildings are rendered and presented visually

using graphic functions, as shown in Figure 4.12.

Figure 4.12: The conception of the marching cubes AMC : (a) an object; (b) dividing it into
squares; (c) labelling vertices, red for inside and blue for outside the object borders; (d) in-
tersecting the edges of the original surface between inside and outside corners (purple dots);
(e) connecting the purple dots to display an approximation of the original surface (the purple
lines); (f) the surface intersects the cube along the edges in between corners of opposing
labelled vertices; (g) triangulating the cube where filled triangles will represent the surface

passing through the cube; (h) 3D model of the object

4.6 Assessment of solar energy potential

The effective determination of the availability of roof surface area on urban buildings can en-

courage the use of integrated systems rather than large scale solar farms, which may have a
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negative impact on agricultural land; however, the automated extraction of the actual roof sur-

face available for photovoltaic installations within complex urban landscapes is a difficult task.

Although the roof surface areas can be accurately extracted from a given cartographical data-

set, the computation process of the available roof surface for the entire city is a complex task

in terms of time, effort and cost. Most importantly, a reliable assessment of the roof surface is

limited due to the lack of a specifically developed tool for a solar-roof analysis.

Determining which side of the roof on which to mount panels to receive more sunlight through-

out the day is essential in gaining the maximum possible energy production. To evaluate the

available potential of solar PV generation, a solar potential analysis of rooftops related to the

shadowing, brightness, orientation and the area of the roof is required. These factors affect

the suitability of the integrated solar systems. The creation of 3D building models at LOD1 can

be employed to assess the solar energy potential of the building facades. Therefore, the ex-

tracted building footprints (considered rooftops) from VHR multispectral satellite images were

used to effectively compute the roof surface areas that are available and suitable for solar PV

installations in urban areas. The areas of the buildings’ roof surfaces that receive the most

sunlight were calculated, and the orientation of these rooftops was determined with respect to

the azimuth angle of the sun.

A PV array’s outcome is proportional to the direct sunlight it receives. Although PV modules

produce some energy in a shady location or without an ideal orientation, system costs are high,

so the energy yield should be maximised [217]. PV installations are placed on the rooftops that

directly face the sun, which results in capturing the most energy, especially when they are

perpendicular to the sun’s rays. The identification of the orientation of the building roofs is

considered one of the most important factors that can impact the amount of received sunlight

energy (solar energy) by PVs.

In the present work, the area and the orientation of the rooftops of the extracted building foot-

prints were calculated in addition to obtaining a better understanding of the shadowing and

brightness of the rooftops based on the analysis of the availability of the building surfaces.

Thus, these factors were considered the properties for each connected component region (ob-

ject) within an image. These properties were measured by a Matlab built-in function, which

returns a struct array for each object (building footprints) in the binary image. Accordingly,

the developed algorithm involving the aforementioned function computes the following set of

the building region (rooftop/footprint) properties that provide shape measurements: (1) Area
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introduces a scalar that specifies the actual number of pixels in the region. The area of the

bright building roof surface was also computed in metres based on the image pixel size. (2)

Centroid presents a 1-by-Q vector that specifies the centre of mass of the region. The first

element of the Centroid is the horizontal coordinate (or x-coordinate) of the centre of mass,

and the second element is the vertical coordinate (or y-coordinate), as shown in Figure 4.13a.

(3) The length of the major axis provides a scalar that specifies the length (in pixels) of the

major axis of the ellipse that has the same normalised second central moments as the region.

(4) Orientation returns a scalar that specifies the angle between the x-axis and the major

axis of the ellipse that has the same second-moments as the region. The value is in degrees,

ranging from -90 to 90 degrees, as shown in Figure 4.13b. For each existing building within the

image space, the algorithm measures all the attributes of the available building roofs to assess

and analyse the solar energy potential. The outcomes are tabulated and visually presented on

the given image. The solar analysis was also conducted daily for the building facades in the

3D building models based on the sun’s movement.

Figure 4.13: The measurement of the given object (e.g. building): (a) the centroid and bound-
ing box for a given object region. The object region consists of the white pixels, the green box
is the bounding box, and the red dot is the centroid; (b) the axes and orientation of the ellipse.
The left side of the figure shows a given object region in the binary image and its correspond-
ing ellipse. The right side shows the same ellipse with the solid blue lines representing the
axes, the red dots are the foci, and the orientation is the angle between the horizontal dotted

line and the major axis

4.7 Validation techniques

For verification and validation of the outcomes of the entire method and its developed algorithm,

performance measures were conducted, and the accuracy was taken into account to assess

the final findings of HB and the 3D building models. The performance of the developed ap-

proach was therefore evaluated by comparing the results with reference data. The reference
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data were taken from the Ordnance Survey2 (OS) with highly accurate measurements. The ac-

tual height values of HAc in the reference data were used for the results comparison within the

selected urban areas. TheHAc were derived from a digital terrain model (DTM) and digital sur-

face model (DSM) through a fully automatic algorithm based on a sophisticated mathematical

computation process. The reference data contains the 3D models of urban buildings gener-

ated in the first level details of building envelopes (LOD1), which were used to evaluate the

3D building models produced; however, the reference data were generated as one geodata-

set (· gdb)3 file format represented by the OS MasterMap Topography layer, which includes all

buildings. Therefore, a new technique was developed to separate a specific to conduct the

comparison. To evaluate the performance, three well-known measures (metrics) of a test ac-

curacy (Precision, Recall, F1) were used to evaluate the pixel and object-based performance

of the developed approach as applied in many studies, such as Aksoy et al. [218], Ozgun et al.

[19] and Ozgun [150], as in Equations 4.28, 4.29, and 4.30.

Precision =
| TP |

| TP | + | FP |
(4.28)

Recall =
| TP |

| TP | + | FN |
(4.29)

F =
2 ∗ precision ∗ recall
precision+ recall

(4.30)

where TP are the true positives, FP are false positives, and FN are false negatives. The op-

eration | ∗ | denotes the number of pixels assigned to each distinct category. The F considers

both the Precision and the Recall of the test to compute the score, which can be interpreted

as a weighted average of the Precision andRecall, where the F score reaches its best value

at 1 and worst at zero.

For each test image, the ground true data (referenced data) in the binary map form were

generated by vectorising the outlines of the building roofs using GIS software. Then, a function

2Britain’s mapping agency: The UK government agency responsible for the official, definitive topographic survey
and mapping of Great Britain. One of its products is the OS MasterMap Topography layer.

3The geodatabase is the native data structure for ArcGIS and is the primary data format used for editing and
data management. While ArcGIS works with geographic information in numerous geographic information system
(GIS) file formats, it is designed to work with and leverage the capabilities of the geodatabase. http://desktop.
arcgis.com/en/arcmap/10.3/manage-data/geodatabases/what-is-a-geodatabase.htm
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was created to convert the reference vector map into a binary image, where 1 referred to

the buildings and zero labelled their background automatically; however, to this end, the true

shape of the 3D models of the buildings in the reference data should be extracted, taking

into account the actual coordinate systems by conveying the models from the geodatabase

format to a readable extension using MATLAB commands. Hence, a tool was also developed

to keep the original coordinates of the 3D models after extracting a given 3D model from the

reference data by correcting the position of the model in the new binary image (ground truth).

Next, the developed tool provides a new file format (·STL) of the outputs of the extracted

3D models from the reference data to enable the comparison. The STL (STereoLithography)

approximated the surfaces of a solid model with triangles, which is appropriate for the 3D

models created by the meshgrid pattern. Thereafter, the true and produced models in the

·STL format were compared to calculate the mean error between the two model geometrically.

A new function was created within the developed technique to assess the produced 3D building

models, which can extract the coordinates located on the perimeter of the 3D true models and

the corresponding coordinates on the perimeter of the 3D produced models for their created

shaped-border masks (2D). The comparison was implemented based on the calculation of the

difference in the distance between the coordinates in both masks by computing the Euclidean

distance, as in Equation 4.31.

dpt = (xp − yt)(xp − yt)′ (4.31)

where, d denotes a matrix of the various distances between the vector xp and yt, and p and t

are the produced and true perimeter coordinates of the 3D models in their masks, respectively.

Thereafter, the function computes the mean error of the 3D building models.

In addition, the mean absolute error (MAE) was computed between the prediction value of

the building heights (Estimated building heights HE) and the true value of the building heights

(Actual building heights HA). To quantify the difference between the two values, a comparison

was made between the two sets of height values, as in Equation 4.32

MAE =

∑n
i=1 | yi − xi |

n
(4.32)
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RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.33)

where, yi is the prediction, and xi is the true value. The n denotes the number of observations.

ASO performance was evaluated using the RMSE measure, as in Equation (4.33), where yi

and ŷi are actual and predicted values, respectively. The results of the 3D building models

assessment are shown in Chapter 5. Moreover, the estimated values of the building heights

were compared with other outputs of the state-of-the-art building heights estimation approach

for an additional sensitivity analysis of the performance of the developed algorithm.

4.8 Summary

In this chapter, the developed approach is presented and explained in terms of the input data,

computer vision and image processing techniques; the reasons for using the state-of-the-art

algorithms; the development of the method, functions and tools used for the methodology;

the sensitivity analysis and validation of the performance of the approach; and the output of

the processes. The methodology began with the detection of the building shadows from the

VHR satellite images, and then the shadow regions were extracted as binary image outputs.

Thereafter, based on the extracted shadow information and metadata information related to the

image acquisition and solar angles, two important processes were conducted to deduce and

identify the geometry of the buildings: the detection and extraction of the building footprints

and the estimation and extraction of the height values of the buildings. Next, the developed

algorithm created 3D building models from the outputs of the former computations at the first

level of LoD and displayed the 3D models in their geospatial locations in the real world. The

chapter provides an evaluation of the final 3D building models as well as the evaluation of the

algorithms performance covering the parts of processing. All processes were implemented in

an automatic manner. In the next chapter, the results of the developed approach are discussed,

and the experiments are described.
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Results

As an extension of Chapter 4 which presented methodology, the developed algorithm’s outputs

will now be introduced. This chapter describes experiments utilising a new approach to auto-

mated modelling of 3D urban buildings from single very high-resolution (VHR) multispectral

images. The 3D models of urban buildings were generated by investigating building footprints

and heights. An image partitioning approach was applied to the chosen datasets and extrac-

ted building regions based on detection of buildings’ shadows. The results of the automated

building detection and height estimation processes are illustrated by explaining the subroutines

and functions of the developed algorithm. After building footprints and heights are extracted,

their 3D models are created automatically as solid block forms. This chapter also contains a

description of the dataset type, study area, evaluation process, and a sensitivity analysis of the

findings.
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5.1 Results and study objectives

This study set out with six objectives related to achieving and exploring the importance of an

advanced approach for the identification of buildings’ geometry in complex urban landscapes

for sustainable development purposes. The present thesis provides a critical and comprehens-

ive review of the characteristics of cutting-edge remote sensing data and systems that can be

exploited to accomplish the main aim of the current study, as well as other research and ap-

plications. Additionally, state-of-the-art computer vision and image processing algorithms and

previous pioneering studies within the scope of the thesis were also reviewed to satisfy the

first study objective, covered in two important chapters of the thesis. The second study object-

ive was achieved by developing two recent algorithms, namely, shadow detection and building

footprint detection approaches, to address the very challenging datasets used in this study and

to overcome their limitations. Before fulfilling the 3D models of urban buildings objective, it

was important to set the third study objective because the third dimension of the model (the

model height) had to be obtained without using elevation data. One interesting study finding

was successfully estimating heights of existing buildings within urban areas based on shadow

information and the supplementary metadata file shipped with the WV3 image data, which

provides information about the date, time, and solar angles information (azimuth and elevation).

The study also illustrated the results of the fourth objective, which was automatic creation of 3D

building models. In the fifth objective, spatial analysis of rooftops’ solar energy potential was the

target. The last objective was achieved using the F1 score evaluation method which combines

Precision and Recall into a single number, in addition to verifying the developed algorithms

outcomes compared to the reference data (ground truth data). According to the research ob-

jectives, the results were obtained at the level of computational intelligence, considering the

complexity of different dataset characteristics, buildings, view perspectives, and unpredictable

environmental and illumination factors. Consequently, reliable extraction of building geometry

and attributes for automatically generating 3D city models satisfied the current study’s aims. All

the research objectives’ findings are thus numerically and visually presented in this chapter.

5.2 Utilised satellite imagery and its preparation

According to Section 4.1.2 in Chapter 4, the developed approach involves utilising single pan-

sharpened ortho-rectified multispectral images with a metadata file that is often provided with
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Figure 5.1: The pan-sharpened ortho-rectified multispectral images, its metadata file, and
sensor bands

every image product, and includes the sun’s angles at acquisition time, see Figure 4.1. The

raster type, such as images, simplifies the processing of adding complex image data to a

mosaic dataset. It is designed to understand the file format and specific information about a

product such as metadata, georeferencing, acquisition date, and sensor type, processing, and

wavelengths, along with a raster format, whereas a raster format only defines how pixels are

stored, such as number of rows and columns, number of bands, actual pixel values, and other

raster format-specific parameters. In this new research project, WorldView-3 (WV3) images

with four bands (B, G, R, and NIR) are used, as shown in Figure 5.1, and the characteristics of

the selected satellite and its sensor bands in Appendix A. The images have a radiometric resol-

ution of 16 bits per band and a spatial resolution of 40 cm (GSD). The images are rectified to a

datum and a map projection and were corrected for image distortions by conducting geometric

correction and terrain displacement correction. However, the satellite image is very challenging

due to the illumination conditions (Figure 5.2). To obtain a clear view of urban features, image

contrast adjustment was therefore performed on each band by normalising the pixel values

between 0 - 1 and stretching their histograms to improve image contrast. The process contains

the image colourmap’s conversion from the RGB system to Hue, Saturation, and Value (HSV)

to adjust the image contrast automatically and obtain better contrast and object discrimination.

Because histogram enhancement (Figure 5.2) of a colour image requires changing the intensity

values of the image pixels, the conversion between an image’s two colourmap systems is a ne-

cessary process. In computer vision, such a conversion process is often required to separate
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colour components from intensity for various reasons, such as robustness to lighting changes.

Thereafter, conversion from the HSV to RGB colourmap system was performed to display and

deal with the true colour of urban objects within the enhanced image.

Figure 5.2: WorldView-3 pan-sharpened image, before and after the contrast adjustment

5.3 Study area

The goal of this research is to employ renewable energy within a city by assessing its potential,

specifically solar energy potential, for sustaining an urban area. Cardiff is the capital and largest

city in Wales and the eleventh-largest city in the United Kingdom. Because the research fo-

cuses on the building envelopes surface availability for assessing solar energy potential, Cardiff

is a good example of an urban environment and its landscapes. One of the key imperatives for

selecting this city was the availability of accurate datasets, including maps at different scales

covering various formats (e.g. vector and raster), elevation datasets, topography data, and

other categories such as locations and urban boundaries. These can be used as a reference

source of ground truth (gt) (Figure 5.3). Such data were produced and updated by Ordnance

Survey (OS)1 in the United Kingdom. Datasets and maps can be downloaded in the UK from

the Digimap platform which is delivered to UK tertiary education organizations by a collection

of EDINA services [219]. Moreover, Cardiff is a sustainable city and an environmentally friendly

urban area. One of the reasons for this advanced position is its government has been seeking

to exploit renewable energy for sustainable development of urban environments.

Different image patches are chosen by cropping the whole image data as a specific aspect

ratio for several reasons. The first, ease of uploading, processing, manipulation and retaining

the small size of images via software, such as Matlab. Second, there is a reduction in the

1Ordnance Survey (OS) is a non-ministerial government department which acts as the national mapping agency
for Great Britain and is one of the world's largest producers of maps.
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required image processing time. The third reason is the ability to spot and correct errors in

the visual presentation of each processing stage. Fourth, all test image patches are precisely

chosen to comprise complex characteristics of buildings such as geometry, texture, roof colour,

and orientation within complicated urban environments and challenging illumination conditions

for a robust assessment of the new approach's performance.

5.4 The new approach's outputs

Elevation datasets, such aerial LiDAR and laser scanner data in the form of 3-D point clouds,

are an essential but often unavailable element needed for constructing 3D city models [208].

Thus, the present work investigates the extent to which 3D building models can be generated

solely from 2D data without elevation measurements or supplementary existing datasets such

as cadastral maps and statistics. As previously stated in Chapter 1, this study aims to develop

a new approach to modelling available surfaces for assessing and exploiting the solar energy

potential within an urban environment in an integrated analytical framework. This section, as

well as the following sections of the chapter, provide the new methodology's findings based

on employing VHR satellite images presented in Chapter 4, in which building footprints are

Figure 5.3: Reference data (ground truth): entire urban area of Cardiff city (top left), a part of
the city (top right), city buildings (bottom left), and city map (bottom right)
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extracted, building heights are estimated, and the 3D models of urban buildings are created for

a multitude of applications.

5.4.1 Shadows

According to Section 4.2 in Chapter 4, the shadow detection process results are obtained as

binary images (in the form of a shadow mask) MS. Figure 5.4 presents an overview of shadow

detection and extraction of MS,I. The process comprises an enhanced image histogram, ratio

map, NDVI, vegetation mask MV, and identification of shadow regions MS,I.

To extract the final shadow mask MS, the shadow regions in the MS,I are improved in terms

of their shape and boundaries by conducting post-processing techniques. Figure 5.5 illus-

trates outputs of the shadow detection improvement method proposed by Ozgun [19]. In the

first technique of shadow region improvement, a constrained region-growth was applied to the

MS,I to identify whether the shadow region’s neighbouring pixels belong to it or not. Region

growing approach is a region-based image segmentation based on the selection of initial seed

pixels. Therefore, the approach starts by choosing an arbitrary seed pixel and comparing it with

neighbouring pixels. The region is iteratively grown by comparing all unallocated neighbouring

pixels to the region. The difference between a pixel’s intensity value and the region’s mean

is used as a measure of similarity. The pixel with the smallest difference measured using this

method is allocated to the respective region. This process stops when the intensity difference

between region means and new pixels become larger than a certain threshold (TI).

The outputs from applying the region growing approach may contain a number of regions

mistakenly detected as shadow regions, which might also grow after this process. Therefore, a

ratio threshold (TR) is used to compare the number of pixels in the shadow regions before and

after the region-growth process. Applying TR allows us to determine and remove the regions

which are exceedingly large after the growth process.

In Figure 5.5c, a cast shadow of non-building man-made objects and multiple separate objects

(e.g. cars and fences) which are near the building object often merge with the cast shadow

of a building. These mixed shadow pixels might result in a joint deterioration of the pruning

process which is required to eliminate landscapes around the buildings. Hence, a given height

threshold TH is applied to the shadow regions to retain only the selected building’s cast shadow

and remove others. The TH is calculated by creating a flat structuring element which maintains
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Figure 5.4: Shadow detection includes: (a) the enhanced WV3 image source; (b) the ratio
map; (c) NDVI; (d) Shadow and vegetation mask; (e) MV after thresholding the vegetation

cover; and (f) MS,I

the connected single-edge segment’s directional information. The flat structuring element is

built with 8-neighbourhood connectivity for the connected components of shadow regions using

solar information in the image metadata file.

A result from applying Fuzzy landscape pruning is shown in Figure 5.5d. The reason for util-

ising the generation and pruning of Fuzzy landscapes is eliminating the landscapes that might

be generated by the cast shadows of vegetation canopies, as proposed by [19]. Therefore,

the spatial arrangement was modelled between buildings and their shadows with the morpho-

logical Fuzzy relation approach in Equation (4.9). The generated landscapes’ membership

values are bounded in a search region defined by the object’s extent and the direction defined

by the angle (λ). The values decrease when moving apart from the shadow area, and their de-

crease is controlled by the parameter (σ). The region in the immediate vicinity of each shadow

area was defined by applying two thresholds (Tlow and Thigh) for searching the existing cast

shadows for vegetation using MV. The Fuzzy landscape region generated from a cast shadow

will be rejected if there is substantial evidence of vegetation greater than a vegetation ratio

threshold (≥ Tveg) within the search region. The values of all parameters are presented in
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Figure 5.5: The extraction of the final shadow regions. (a) MS,I; (b) after applying a con-
strained region-growth; (c) the elimination of the height difference of the objects; (d) Shadow
mask after applying Fuzzy landscape pruning; and (e) the final shadow regions of the buildings

MS after applying the region growing step

Table 5.1. However, another constrained region-growth was applied after the process of prun-

ing due to erosion of some parts of the buildings’ shadow regions as shown in Figure 5.5d.

Therefore, the algorithm was developed to be appropriate for the data used by adding the step

of region growing to obtain shadow region results segmented with more precision, as shown

in Figure 5.5e. Table 5.2 shows the outcomes of the key subroutine process of the developed

algorithm using alternative values of the process thresholds and parameters. Specific values

of the process thresholds were chosen above and below the threshold value used in each

stage of image processing to evaluate their effects on the performance results and provide a

clear visualisation. The comparison between the threshold values used and the alternative

values illustrates the differences in the outcomes which can impact on their performance and

accuracy.

5.4.2 Building footprints

Building footprints identification outputs are provided in Figure 5.6. According to the Sec-

tion 4.3.2, the building footprints in the image space was detected and extracted based on their
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Table 5.1: The main parameter settings of the present study

The task Parameter Value

Post-processing of the
shadow mask

– Intensity threshold (TI)
– Ratio threshold (TR)
– Height threshold (Hmax

T )

0.005
0.8
2 m

The generation and
pruning of fuzzy land-
scapes

– Kernel size (k)
– Sigma (σ)
– Search region thresholds
(Tlow –Thigh)
– Vegetation ratio threshold
(Tveg)

80 m
40
0.9 - 0.98

0.9

Building region parti-
tioning

– GMM components for each
class: Foreground (KF) and
Background (KB)
– Smoothing constant (γ1)
– Foreground thresholds
(η1–η2)
– Shrinking distance (d)

5
5
50
0.9 - 0.4

125

Shape refinement – The maximum number of
active contour iterations
– Area lower bound
– Area upper bound
– Area threshold
– Shape threshold
– Geometric shape threshold
(Γ1)
– Shape fitting thresholds: in-
dex of overlap and intersection
region (Γ2)

300

1, 1, 0, 0, −π/2
1000, 1000, 1000, 1000, π/2
500
0.6
0.4

5000

Height estimation – Minimum height (hmin)
– Maximum height (hmax)
– Height interval
– Jaccard index threshold
– Area threshold (ρ)

3 m
60 m

50 cm
0.13
1600 pixels

3D building models
creation

– Gaussian low pass filter of
size
– Sigma (σ)
– TIso

15

5
0.5

In this study, the parameters of the shadow detection method used the same values applied in
Rüfenacht et al. [149] as well as the active contour without edges approach in Chan and Vese [204]
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shadow regions using a graph theory approach proposed by Ozgun [19]. The first level of par-

titioning is used only when building footprints are determined by iterative GraphCut performed

in two-label partitioning as the background and foreground label information (Figure 5.6b).

Figure 5.6: The extraction of the building footprints. (a) a pan-sharpened WV3 image (RGB);
(b) building mask MB; and (c) the combination of WV3 (RGB) and MB

5.4.3 Edge adjustment of the building footprints

Referring to the Section 4.3.2, adjusting the extracted building footprint edges occurs in two

main stages. In the first stage, the incorrect values of the assigned pixels, which are located on

the building footprint’s perimeter, are modified using the active contour without edges approach

AAC . Outcomes of applying AAC to the grey image during the adjustment process are shown

in Figure 5.7. Using the grey image rather than the colour image (RGB) is more appropriate

for processing than an image with three colour components, and moreover, the grey image

exhibits no noise (a clean image). With the colour image, the process will be subject to further

calculations due to each colour component’s mean value computation. This increases the

complexity of conducting the computation of all components of forces2 which eventually lead to

using a different approach. As shown in images c, d, and e of Figure 5.7, iteration will continue

until it reaches the maximum number of iterations in which the energy is not changing and the

contour is not moving.

The second stage of the building footprints adjustment is aligning building edges in case of

having orthogonal corners for a given rectangular geometry or regular curves for a given round

geometry of the buildings. Figure 5.8 presents the fitting geometry process’ outputs which were

applied to the building footprint’s refined mask using the active contour without edges approach

shown in Figure 5.7f.

2The forces of the contour are two-fold: the force to shrink the contour, and the force to extend the contour.
These two forces work as a balance when the contour searches for the boundary of a given object.

109



Results Chapter 5

Figure 5.7: The first stage of the building footprint adjustment process: the automatic adjust-
ment process of the edges of building footprints using active contour without edges approach.
(a) gray image; (b) a mask of a building footprint; (c), (d), and (e) are the number of times
of segment iterations at 40, 100, and 300 respectively; (f) the refined edge of the building

footprints

Figure 5.8: The second stage of the building footprint adjustment process: the automatic
adjustment process of building footprints’ edges using the building shape fitting as a new ap-
proach. (a) the mask of the building footprints’ refined edge; (b) WV3 pan-sharpened images
and the building shape fitting, the red dots are the modified edges of shape of the building,
while the blue dots denote the original shape of the extracted buildings; and (c) refined shapes

and edges of the buildings with the fitting-adjustment in the binary image form

5.4.4 Heights

The height values of the buildings HB are estimated and derived based on the buildings’

shadow regions. As stated in Section 4.4, the estimation process uses three main steps to

obtain the 3D building model’s third dimension value which represents the height of the build-

ing. First, the generation of artificial shadow SAr is based on the image’s solar angles. The

second step is measuring the similarity between the actual shadow regions SAc, which were

extracted using the shadow detection process, and the artificial shadow SAr was extracted

using the Jaccard index JI . During the shadow regions’ simulation process, the algorithm
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searches the higher index. The large value of JI refers to the maximum value of fitting the

two regions of shadows (SAr and SAc), in which the optimal height Hopt of a given building

is investigated and derived through applying a set of building heights. Third, the estimated

height values are used to create a map of these building heights. The outcomes are shown in

Figure 5.9

Figure 5.9: Estimation of the building heights. (a) pan-sharpened WV3 image; (b) shadow
mask; (c) building mask; (d) simulated shadow with extracted building; and (e) building height

map

5.4.5 3D models

According to Section 4.5 in Chapter 4, outputs of the automatically created 3D building models,

based on the marching cubes approach, are shown in Figure 5.10. The figure illustrates the

reconstruction of 3D building models in the meshgrid surface. The meshgrid function generates

X , Y , and Z matrices for three-dimensional plots. The 3D grid coordinates are defined by the

vectors x, y, and z. The grid represented by X , Y , and Z has size length(y)-by-length(x)-by-

length(z). The true spatial locations of the buildings in the image were overlaid by their created

3D models, as in Figure 5.11.

5.5 3D models’ assessment and the validation of results

To evaluate the created 3D models of the buildings, two main geometric attributes of the 3D

models should be considered to accomplish this purpose. According to Wu et al., and Izadi

and Saeedi, Brèdi et al., and Biljecki et al. [17, 18, 189, 208], evaluation of the 3D models

comprises the assessment for both the estimation of building heights as a z-dimension and

the detection and extraction of the building footprints as x and y-dimensions of the 3D building

model. Therefore, in this present study, all findings obtained from estimating building heights

and from extracting building footprints are assessed by calculating the F1-score and MAE as

well as by conducting a comparison with other studies as shown in the state-of-the-art ap-

proaches in this scope of research.
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Figure 5.10: The creation of the 3D building with the meshgrid surface

Figure 5.11: 3D models of the buildings at different viewing angles

However, quantitative assessment of the 3D models’ production results is not simple. Biljecki et

al. [220] noted that the reconstruction of an LOD1 model with any value of height is technically

deemed valid, as there is no commonly agreed idea regarding accuracy that would determine

a LOD1 model’s acceptability. However, CityGML [213] references an accuracy benchmark

concerning LOD1 where the position and height accuracy of points should be 5m or less. In

Chapter 6, quality of the generated 3D building models will be argued further, and recommend-

ations and indications concerning the quality of the results will be given.
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Table 5.2: Effects of different threshold values on the performance results of the present study

No. The main process The outcomes with the
selected threshold value

The outcomes with an
alternative threshold value

1 Image
enhancement

TCont=0.05 TCont=0.10 TCont=0.01

2 Shadow
detection

TRb=0.075 TRb=0.3 TRb=0.03

3 Post-
processing
of the shadow
regions

TI=0.005 TI=0.02 TI=0.001

4 Building
footprint
identification

d=125 d=62.5 d=190

5 Shape
refinement

TSf=0.4 TSf=0.9 TSf=0.1

6 Building height
estimation

TJI=0.13 TJI=0.5 TJI=0.29

7 3D Models of
Buildings and
validation

TIso=0.5 TIso=0.9 TIso=0.1

The key thresholds.

TCont: Contrast stretching, TRb: Ratio band, TI: Intensity, d: Shrinking distance, TSf : Shape fitting, TJI:
Jaccard index, TIso: Isovalue
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5.6 The findings of the selected image patches

The developed algorithm was applied to the pan-sharpened WV3 image patches covering vari-

ous spatial locations of the buildings. Automated creation of 3D building models is implemented

based on selecting different scenarios of buildings’ geometry, orientation, and position in re-

lation to other urban features. This is important not only because the entirety of a building’s

characteristics and background is not always considered in computational intelligence, but also

because testing the developed algorithm’s performance in each scenario with a different urban

landscape is important. Section 5.6.1 describes findings of the 3D building models’ automated

creation.

5.6.1 Experimental results

Results of building height estimation using the present approach are introduced in Figure 5.12.

This part of the approach is evaluated using precision, recall, and F1 score as presented in

Figure 5.13. Numerical validation outputs are presented in Table 5.3, for all test images, in

addition to visual illustration of these results. We also list the overall accuracy of the other pre-

vious published works on image based building height estimation in Table 5.4 for a quantitative

comparison.

As can be seen from Figure 5.12, results of the building height extraction process accuracy are

quite promising and convincingly indicate the developed approach is highly robust for estimat-

ing building heights. Most estimated values of the detected building heights in the images are

extracted successfully based on their detected shadows. Further, the algorithm’s performance

shows remarkably high efficiency overall when applied to test images despite buildings’ com-

plex characteristics such as geometry, texture, roof colour, and orientation within complicated

urban environments and challenging illumination conditions. Evaluation results in Table 5.3

also support these findings. Besides applying a thresholding scheme, the developed algorithm

can mitigate the issue of two buildings’ overlapping shadow by investigating whether the spe-

cified building’s simulated shadow hits other buildings. If so, the JI is set to zero and the

building shadow region is not simulated accurately, and the estimated HB value has a lower

level of precision. According to the numerical results in Table 5.3, test image #4 illustrates the

highest difference between the HA and HE values because of their adjacency.
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Figure 5.12: The estimated values of building heights. C1: Test images (#1–7). C2: Detected
building footprints for test images. C3: Extracted shadow regions for detected buildings. C4:
Artificial shadow regions for detected buildings. C5: Colour maps of estimated building heights

Despite the buildings’ well-detected footprints, ASO performance indicates the variation of HB

values in both test images #3 and #7, (Figure 5.12). This is due to the density of built-up

areas. One possible reason for this variation is the spectral reflectance of some non-shadow

dark objects, such as roads and building roofs, which are identical to each other or to their

background. Therefore, other dark objects are considered shadow regions. Additionally, some

adjacent buildings occlude shadows cast by other buildings. As a result, the shadow region

length appears longer than their actual lengths of shadow regions if the shadow regions are

combined with other objects or buildings’ shadow regions, or they look shorter because some

parts of the shadow regions are obstructed due to adjacent buildings. Nevertheless, this issue

is considered in the simulation process to generate artificial shadow and it is mitigated by
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Figure 5.13: Sensitivity analysis for building heights estimation

implementing morphological post-processing and thresholding.

Considering the geometric relationship between the building and its shadow, correcting the

shadow region lengths is required when the azimuth and elevation angles of both sun and

satellite differ in the location. However, satellite azimuth and elevation angles determine the

viewing direction of the captured image and this only affects whether a building’s shadow is

visible in the image space. Therefore, depending on the satellite viewing direction (the satellite

azimuth angle), a shadow region might be occluded by the building itself. In this study, the

shadow regions are not obscured by their buildings over the test images. Additionally, the

corrected shadow length is generally not possible to compute because the measured height of

buildings is needed beforehand to estimate the real shadow length on the Earth’s surface.

Although differences exist in HB values between the test images involved, results reveal that

the present approach is generic for estimating the heights of buildings with different shapes,

sizes, colours and orientations. Furthermore, the comparison between the overall accuracy of

the new approach and previously published works in Table 5.4 proves that the building height

estimation approach is superior for deriving the building height values based on shadow in-

formation in an automatic manner.

After extracting the buildings’ footprints and heights, the developed algorithm continues pro-

cessing the acquired outputs to create 3D building models without any further user input. As

previously stated, various building candidates were chosen in different scenarios, such as il-

lumination condition, orientation, and spatial position (adjacent buildings) to generate their 3D
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building models. The building footprints’ ground-truth was produced manually by a qualified

human operator to compare the border perimeter coordinates of the buildings in the test im-

ages and models, as shown in Table 5.5. A technique to make comparisons between the two

datasets was developed to run as a fully automatic process.

The results creating the buildings’ 3D models are shown in Figure 5.14. Referring to the results

presented in Figure 5.14, the developed algorithm is effectively able to generate reliable 3D

models of the geometric buildings at LOD1. The 3D building segments are also recognised

in most cases when the segments are not occluded. The numerical findings in Table 5.5 and

the comparison results of the 3D city models in Figure 5.15 confirm these statements. It is

also evident that the approach distinctively extracts height values from one single multispectral

image without additional complementary data.

To assess the derived 3D models’ accuracy, they are compared to the corresponding OS data

(MasterMap Topography layer), which contains 3D models of the selected buildings generated

at the LOD1. The comparison allows us to evaluate the extracted 3D building models. The

Table 5.3: Estimated building heights using the proposed algorithm

No. Size: W ×H TE
∗ Building HA HE Error

(m) (s) Type∗ Characteristics Nos. (m) (m) (m)
1 85.6 × 99.6 6.76 C Detached 1 7.5 7.5 0

2 72.4 × 113.6 3.36 R Connected 1 6.1 6.5 0.4

3 201.2 × 208.8 132.36 R Mixed size 6 7.75 7.5 −0.25
6.05 5.0 −1.05
9.5 10.5 1.0

10.3 10.0 −0.3
7.3 7.5 0.2

6.7 6.0 −0.7
4 162.4 × 132.4 18.44 I Mixed size 2 8.1 8.0 −0.1

5.45 8.0 2.55

5 283.2 × 365.6 112.53 S Mixed geometry 1 24.1 24.5 0.4

6 81.2 × 117.2 6.29 I Mixed geometry 2 17.5 17.0 −0.5
17.4 16.0 −1.4

7 192.4 × 172.4 89.99 R Mixed size 5 6.8 6.5 −0.3
6.7 6.5 −0.2
6.8 5.5 −1.3
6.8 6.0 −0.8
6.7 6.5 −0.2

MAE 0.65
∗TE : Execution time.; ∗Type. C: Commercial, I: Industrial, S: Sports, R: Residential.
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Table 5.4: Algorithm performance against previous works

Ref. Year VHR satellite imagery source RMSE Mean error (m)
[177] 2007 Panchromatic IKONOS 1.86 1.34
[178] 2011 Panchromatic IKONOS 12.99 –
[17] 2012 QuickBird 1.38 1.14
[15] 2013 Panchromatic IKONOS 1.34 –

QuickBird 1.71 –
KOMPSAT2 1.67 –
WorldView1 (WV1) 1.88 –

[16] 2016 Google Earth 0.98 0.82
[180] 2016 Google Earth 22.66 –

This study – WorldView3 (WV3) 1.22 0.65

evaluation of 3D building models is therefore conducted based on creating 2D masks from

both the true models (reference models from the OS data) and the output models. The border

perimeter of each building in both masks from the reference and output models was extracted

using morphological operations. Once the buildings’ borders are attained, Cartesian coordin-

ates (x, y) are determined for buildings in the reference models (xref ,yref ) and in the output

models (xout,yout) simultaneously. A technique for implementing automatic registration of the

two coordinate systems (the image coordinate system and the layer map coordinate system)

was developed to achieve this goal. Thereafter, for each pixel on the true model’s perimeter,

the algorithm finds the nearest point-coordinates (the smallest distance between two pixels,

including the given points) on the perimeter of the output models. The calculated distance is

the Euclidean distance between pair-coordinate points in the true and output 2D shapes of

models.
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Figure 5.14: Automated creation of 3D building models: (first column) test patches (#1-6
RGB, pan-sharpened WV3 images); (second column) shadow detection of the buildings; (third
column) the extraction of the building footprints; (fourth column) the maps of the building
heights with colour bar referring to the height values; and (fifth column) the 3D building models

at the LOD1
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Table 5.5: Numerical results of the creation of 3D building models. The values between ground truth
data and the results of the present study are compared to assess the algorithm performance

No. The evaluation of 3D models Error (m)

True model Created model Execution time (sec)

1 4.89 1.29

2 5.88 3.04

3 4.54 4.55

4 23.44 4.87

5 447.19 2.33

6 8.45 2.55

The 3D building model in test image #1 illustrates the smallest difference between two geo-

metric models due to the simple shape of the building. However, the differences were larger in

#2, #33, and #4 images because of the building’s geometric complexity. Moreover, due to the

test images having very challenging illumination conditions and orientation within a complex

urban landscape, the buildings’ edges were occluded by other urban features or because of

their shape complexity, so some of their edges obscure each other, making them very difficult

3Note: the size of the test image #3 is 280 × 361 (m).
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to detect. Test image #5 shows some distortion in the 3D output model’s shape because in

some cases the buildings’ sides can be seen as corresponding to the given perspective and

the captured image’s orientation angle. Nonetheless, the results demonstrate a novel method

for creating 3D models of different building shapes within the complex urban environment. The

creation of a 3D building model approach also proves the ability to derive 3D models from 2D

information only.

Additionally, the models’ differences, located within the error percentage of the OS data, in-

dicate that the algorithm generates 3D models of urban buildings from one single image with

acceptable accuracy. Moreover, and unsurprisingly, the approach achieves the best results

when buildings’ shadow regions are distinctly visible and not occluded or overlapped by any

other object. Thus, despite the test images being very challenging, the results are encouraging

and prove the proposed method’s viability.

5.6.2 Solar rooftops analysis

Evaluating rooftops’ solar energy potential is one reason for applying solar PV technology in

cities’ sustainable development. Using the developed method, rooftops and walls’ solar yield

can be determined, taking into consideration shadowing and shading obstructions, as well as

surfaces exposed to solar radiation. Figure 5.16 illustrates measurements of the rooftop area

and orientation for the building’s modified geometry in the binary images. These case studies

reveal the building rooftops’ regular shape can be beneficial for determining the rooftops’ total

area, and it can allow estimation of the whole roof area’s solar energy potential. However,

Figure 5.17 shows another scenario and a different case study where the building rooftop’s

geometry is irregularly shaped. Therefore, the second case study presents the roof orient-

ation’s impact regarding which parts of the rooftops are dark (a shaded part) and which are

bright (available for solar PV applications).

The calculation of building roof areas and orientation can result in significant heating and cool-

ing savings. The results in Figure 5.16 and 5.17 provide two major advantages which can allow

researchers and investors to know and determine the optimal position PV on the building roofs.

First, the optimal building geometry will form a balance between heating and cooling energy

demands. Because of the cost constraint, the reduction of the amount of heat transfer by the

use of sufficient insulation is required to decrease conductivity.
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Figure 5.15: The validation of the perimeters of the 3D city models

A related point to consider is that the total quantity of heat transferred by conduction is largely

dependent on area [194]. Second, regarding solar radiation, the results of the computation of

the rooftop position concerning the azimuth angle of the sun show the ability to identify the roof

orientation of the buildings. The latter can be very useful regarding the better estimation of

the received energy for electricity, heating and cooling purposes. In this context, according to

Hachem et al. [221] the south facade could receive more than twice the heat gain of east and

west facades in the winter. However, the east and west facades have significant impacts on
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overall heat gain in the summer months, and thus solar radiation can be harnessed to reduce

the consumption of heating by the optimal position of the building.

Figure 5.16: Solar building roof analysis
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Understanding the degree to which the building geometry affects the building performance is

useful in building design. Determining the optimal area and location of the building roof and

walls for using PV systems allows the assessment of the solar potential to be more accurate.

In particular, buildings that receive more solar gain in winter and shading in summer can help

to decrease the demand for heating and cooling and have a considerable effect on the energy

consumption of buildings.

Figure 5.17: Solar building roof analysis for two different urban areas

5.6.3 Computational time

All experiments were performed on a PC computer with an Intel 3.40 GHz i7-3770 quad core

processor, 16 GB RAM and a 64-bit operation system. The approach’s framework was de-

veloped in a MATLAB environment, and the sections related to GrabCut [19] and multi-label

graph optimisation [222–224] were implemented in C++ code. The number of pixels in each

test image is between 263,04 (137 × 192) and 1,494,829 (1193 × 1253). The process of

creating the 3D building models for one test image's patches ranges approximately 31 (sec)

and approximately 5 (min) total for all test image patches. This corresponds to the number of

buildings existing in the image space. The estimated time that each portion of the developed

algorithm takes to run includes the following: shadow extraction 1.34 (sec); the image parti-

tioning 3.61 (sec); building shape refinement by active contour approach 4.73 (sec); building

shape fitting 9.50 (sec); building height estimation 6.95 (sec); and 3D building models creation

5.71 (sec). The speed of implementing different portions of the developed algorithm is for one

test image that includes a detached building, for instance, the 3D building model in Figure 5.14,
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test image #1. In the other scenario with more than one building in the test image, the time

estimation for each portion of developed algorithm is approximately as follows: shadow extrac-

tion 18.00 (sec); image partitioning 39.98 (sec); building shape refinement by active contour

approach 16.00 (sec); building shape fitting 55.00 (sec); building height estimation 2.17 (min);

and 3D building models creation 1.33 (min). An interesting point should be highlighted, which

is that reaching a significant speed for each section of algorithm can be achieved in the present

study.

5.7 Summary

The chapter has focused on the developed method’s results from identifying the buildings’

geometry and then creating 3D models of the buildings from monocular multispectral VHR

pan-sharpened satellite WorldView-3 images (WV3). Various sections of the approach’s imple-

mentation are highlighted in this chapter, illustrating how portions of the developed algorithm

are applied to the selected images. The buildings’ 3D models at the LOD1 are very well defined

despite complex characteristics of buildings in the test images, for instance, shape, size, tex-

ture, roof type and colour, and building orientation. The 3D building segments were also recog-

nised in most cases when the segments were not occluded.

Test patches derived from the VHR WV3 image were chosen to create different scenarios cov-

ering different types of buildings: detached, connected, adjacent (dense), small, and (large)

multi-story buildings. In this chapter, outcomes from each part of the developed algorithm’s

process were introduced as figures and tables so the code implementation procedures can be

readily understood and easy to replicate. The chapter exhibits the approaches and techniques

that were developed, performed, and compared with state- of-the-art approaches, including

shadow extraction, building detection, height estimation, and 3D building models creation ap-

proaches. An assessment of the present study’s quantitative accuracy using the mean absolute

error (MAE) and a comparison of the results are presented. The findings and their evaluation

shows the strong impression that the introduced study is highly robust and that the 3D building

models are quite convincing and representative. The results of 3D city models also reveal that

it is possible to create feasible 3D models of the buildings without elevation data or other addi-

tional data, which satisfy the accuracy recommendations of CityGML for LOD1 models and the

needs of several application analyses, such as GIS.
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Discussion

In this chapter, interpretation and substantial discussion of the results is introduced. Specific-

ally, the developed method’s findings are interpreted and discussed regarding the research

questions and existing knowledge. This chapter sets out to present a coherent, well-structured

explanation that accounts for the study’s findings. A comprehensive discussion is provided in

this chapter to clarify themes presented in the introduction and literature review chapters. This

will demonstrate the current study’s value and thoroughly interpret the results, with a clear un-

derstanding of their implications. The following sections are therefore organised to deliver the

previously mentioned points.
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6.1 Interpretation and discussion of the findings

A fully automatic method for creating 3D building models has been presented in this study. The

automated extraction of objects in 3D form from remotely sensed data is an important research

topic in the fields of computer vision, photogrammetry, remote sensing, and geoinformation.

The generated 3D building model represents real-world urban environments and enables many

applications such as visualisation, planning, analysis, and simulation. To assimilate a compre-

hensive suite of the developed method’s results, this chapter focuses on the principal findings

and their significance for the field of urban sustainability and renewable energy, based on re-

mote sensing data. The current section is organised into three main subsections to deliver a

clear view of the research.

6.1.1 A reminder of the purpose of the study

The aim of this study was to develop an approach for creating 3D models of urban buildings

to assess solar energy potential from remote sensing data in an automatic manner. The new

approach was established to investigate the possibility of deriving 3D models of the building

envelopes at the LOD1 with minimum data availability. To this end, the developed method

contains four main steps of research investigation, based on using a single VHR multispec-

tral satellite image. First, there is extraction of the building footprints from very sophisticated

urban landscapes. Second, there is the estimation of the building heights without additional

information. With respect to the first research question, this study sought to determine the

type of remote sensing data which could serve the aim of the present study and be used to

extract significant information and accomplish the research purpose. Shadow information de-

rived from VHR multispectral satellite images was the base for implementing the extraction

and estimation processes’ two steps. The third main step was to automatically generate 3D

building models using derived information from two processes: building footprints extraction

and height estimation. By achieving this step, the second research question was answered by

verifying the developed method’s findings. Fourth, the reason for reconstructing 3D building

models is to provide elementary analysis and assessment concerning the solar energy poten-

tial of the building surfaces including roofs and facades. The calculation of the essential factors

in the evaluation of the availability and suitability of the building roofs was fulfilled, whereas

the assessment of solar energy potential was conducted using one of the building models by
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creating a new tool to meet this purpose, which is mentioned and proposed as a future work in

Chapter 7.

6.1.2 The study’s major findings

Findings of the present study confirm that the 3D city models at LOD1 are generated by exploit-

ing 2D data where there are no elevation data, particularly the creation of 3D building models

from VHR satellite images. Our findings also suggest there is a potent ability to facilitate rapid

updating and maintenance of data by supplementing existing datasets with 3D models of newly

constructed buildings. In the present study, the buildings’ shadow regions were found to provide

very remarkable evidence of urban structures and features when they are accurately extracted

from VHR satellite images. Utilising shadow information in the automatic detection process

of urban buildings promotes the segmentation process of the buildings within their surround-

ings in single image space [19, 20], which indicates such information could be highly useful

for automated detection of buildings with arbitrary shapes. A precise and reliable accuracy

was obtained by examining the developed algorithm regarding the building footprints extrac-

tion, height estimation, and creating 3D models of buildings. This indicates the developed

algorithm is remarkable and sufficient enough to construct 3D building models from monocular

satellite images by mitigating and coping with a number of difficult aspects at the level of com-

putational intelligence, such as complex urban landscapes, characteristics of the images used,

the similarity between building regions and their backgrounds, occlusion in viewing angle, and

environmental and illumination conditions at imaging time.

6.1.3 An indication of the importance of the findings

The study’s results are consistent with research expectations, the literature, and existing know-

ledge about the creation of 3D building models. The developed method’s results indicate sev-

eral important points which can provide a full understanding of the research potential and

implications as well as the limitations compared to previous studies. Referring to the literature,

the results further support the idea of employing satellite imagery of remote sensing techno-

logy within the scope of urban planning and cities’ sustainable development. Benefits of such

data not only provide higher accuracy and greater precision in the object's measurements but

also the types and levels of information that are either unavailable or of an inferior quality in
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other data sources. This is because orthorectified VHR satellite images (geometrically correc-

ted) are uniform in scale and allow the measurement of the detected objects true distances

for creating their respective 3D building models. In addition, data can accurately present the

Earth's surface because it has been adjusted for topographic relief, lens distortion, and camera

tilt. Therefore, the detected objects precise position can be determined within complex urban

landscapes as well as distances between it and other surrounding urban features. This feature

has helped locate created models in their actual position on the image surface. Furthermore,

very high spatial resolution facilitates identifying the shape of a building footprint, which in turn

plays a significant role in reconstructing 3D models of urban structures.

Development of this robust technique to detect and extract buildings’ shadow regions has many

beneficial applications. According to Teke et al. [20], the extracted shadow regions provide

important geometric and semantic information. For example, the building shadows findings

provide evidence of the shape and position of objects (e.g. buildings, trees, fences, and cars),

as well as the characteristics of surfaces and light sources. Shadow information is the main

cue for man-made structures’ detection in panchromatic high-resolution satellite images. The

detection results of shadow regions can play an important role in automated analysis because

shadow regions cover a significant portion of an image. In addition, the results of building

shadow regions’ detection and extraction could be used to assess the solar energy potential

of roofs and facades of building envelopes, shadow analysis for urban planning, and new con-

struction, because the shadow effect caused by building structures can substantially influence

the amount of installed power capacity.

The most remarkable advantage of the findings indicates the ability to identify a building's geo-

metry and create a 3D building model from 2D data with no additional data. With a developed

fully-automatic algorithm for creating 3D models of buildings from VHR satellite images, running

processes of the sophisticated and tedious operations for calibrating elevation data obtained

by other sensors, such as LiDAR, radar, and laser, as well as processing time, effort, and

cost are reduced or avoided. The creation process of 3D building models also comprises the

image processing for deriving substantial information concerning buildings’ shadow regions,

footprints, and heights. The results were obtained from each of the algorithm’s subroutines

and can be useful for different purposes such as urban planning, sustainable cities, change

detection, and risk assessment.
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However, findings also illustrate the use of remote sensing data in locating available and suit-

able building surfaces for exploiting renewable energy such as solar. The findings have shown

the capability of using detected rooftops (building footprints) in assessing solar energy potential

for PV installation. Peng and Lu [191] reported an assessment of rooftop PV potential usually

starts with determining the available rooftop area upon which to install a PV system. Moreover,

the created 3D building models could be used to compute the ratio of gross wall to gross floor

area which can help determine buildings’ energy efficiency. In particular, utilising the optimal

aspect ratio (a well-designed building envelope) yields how buildings receive more solar gain

in winter and shading in summer, decreasing the demand for heating and cooling. Hence, the

identification of a building’s geometry, including its footprint and wall dimensions, is important

because it has an impact on energy consumption. The following section illustrates in detail the

results of the study, with a comprehensive interpretation of their indications.

6.2 Discussion and explanation of the results

The developed method’s findings for in identifying buildings’ geometry and the creation of 3D

building models are illustrated in Chapter 5. Many selected WV3 test images are also used

during the evaluation process and presented in Figure 5.12 and Figure 5.14. All the results of

the test image processing stages, as well as the developed approach’s performance results are

displayed in Figures 5.4 to 5.11. In addition to visual illustration, the present study’s numerical

results are listed in Tables 5.3 to 5.5. For a numerical assessment of all the test images

and models, the results of previous methods are also presented, providing an opportunity to

implement a fair quantitative comparison.

According to Section 5.2, and Sections 5.4.1 to 5.4.4, the developed algorithm’s outcomes and

new techniques have addressed the first research question with the particular content-related

questions stated in Chapter 1. As previously discussed, one important reason for employing

remote sensing data and, more precisely, the use of single VHR multispectral satellite images,

is because elevation datasets remain expensive and time-consuming, impeding the production

and availability of 3D city models [17, 211]. Because the new methodology in the present study

suggests no additional data is used or needed to support the utilization of 2D data (satellite im-

ages) to facilitate object (urban structures) recognition, detection, segmentation, and extraction

processes, there had to be an alternative way to develop the previously mentioned processes

to generate 3D city models. The sub-question of the first research question asks: What types

130



Discussion Chapter 6

of information need to be extracted and inferred from optical satellite data to help character-

ise and detect the building regions in urban areas? The answer is essentially, notably strong

evidence of an off-terrain object must be found within the image space, which can be efficiently

used to verify the existence of a building structure (footprint) and can also be beneficial for

estimating the building’s elevation (height). Therefore, shadow information was investigated

and building shadow regions were extracted, as shown in Figure 5.4 and Figure 5.5. However,

because the whole study depends on using shadow information for the 3D building models’

automated creation process, the detection and extraction processes of the buildings’ shadow

regions from VHR satellite images should therefore be highly accurate and precise, as reported

by Ozgun as well as Liasis and Stavrou [19, 180]. In this regard, a VHR multispectral satellite

image was chosen to accomplish this purpose and address the first question of the main first

research question of the study. One vigorous advantage of utilising such remote sensing data

is that the multispectral satellite image, as stated previously, contains the NIR band in which

shadow regions exhibit lower radiance values over the entire spectrum, and sensor irradiance

from shadow regions decreases from short to long wavelengths due to scattering [19, 199].

This fact is considered when discriminating between shadow and non-shadow regions easier

with NIR images. Accordingly, the shadow detection approach proposed by Rüfenacht et al.

[149] was adopted and developed in Section 4.2, to detect and extract building shadow re-

gions for two reasons: (1) the approach benefits from the NIR band which is presented in most

VHR satellite images; and (2) the approach has fully independent user- and data-dependent

thresholds.

The third and fourth questions of the main first research question of the present study were ad-

dressed when the extracted shadow regions were used to detect building footprints, and then

to extract their shapes as well as estimate their height values. Figure 5.6 shows the detection

of building footprints using Ozgun's method, first-level partitioning as described in [19], was

refined to be more appropriate with the datasets used in the present study. The detection

method proposed by Ozgun [19] was chosen to detect buildings in this study for three main

reasons: (1) the approach takes advantage of using shadow information; (2) the approach

is a full automatic technique and does not require any interference from users; and (3) the

approach's results have been been considered a benchmark for verifying the results of other

approaches because they were obtained from using different datasets, were intensively tested

regarding their parameters, and cover various environmental urban conditions. Figure 5.7 and

Figure 5.8 show the developed part applied to the building detection approach proposed by
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Ozgun [19] to obtain the regular geometry of building footprints. The active contour approach

and the new technique were applied to the outputs derived from the first-level partitioning,

as shown in Figure 5.7b, to attain straightness at the edges of the buildings. This part of

the algorithm of building detection was developed because misclassification and mislabelling

occurs between the pixels of buildings, vegetation, shadow, and other objects and regions

after applying the first-level partitioning process. Hence, the building detection approach was

required to be developed to determine and revise the erroneously assigned labels between

these categories within the image space.

All parameters required to initialise the present method of the study are listed in Table 5.1.

Many tests on alternative parameters and thresholding values were performed to select the

best parameter values. In Table 5.2, the same example of the test image was used but it

has been clipped to a small patch image to present few buildings to illustrate and focus on

the differences which can be obtained when using and evaluating alternative parameter val-

ues of the chosen values. Thus, Table 5.2 presents the investigation of the effects of the key

parameters of seven main tasks on the performance outcomes of the creation of 3D building

models. Adjusting the contrast of the images is a critical process in the performance results

because the best contrast can be obtained between urban features and the best detection of

building shadow regions and building footprints can be accomplished. The effects of different

contrast thresholds TCont indicate the reduction of the contrast between objects when increas-

ing or decreasing the image intensity values of the selected value. The same deduction can

be attained if the threshold values are increased or decreased in both shadow detection TRb

and post-processing of the shadow regions TI tasks. In the building footprint detection task,

the shrinking distance d is fixed to 125m, to ensure that incorrect pixels around the border of

the shadow regions are rejected. If large numbers of pixels are collected as a building region

from the directional neighbourhood of the shadow regions, performance improvements are ob-

served with the fixed value of the shrinking distance d, whereas performance decreases are

apparent for the pixel-based precision ratios when applying different values. It is concluded

that the number of pixels assigned as foreground information affects the performance of the

method. Significant improvement can be observed in each task of shape refinement TSf and

building height estimation TJI with their chosen threshold values compared to the alternative

values. For the parameter TIso, it was found that the performances evaluated of the size di-

mensions of the created models are also significantly affected at lower and higher end of the
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selected value of the isovalue threshold. In Table 5.2, all alternative values were chosen de-

pending on visualising the clear difference and effect on the findings compared to the selected

values. However, other values of the key parameters of the main processes between high and

low threshold values also have effects on the performance outcomes, but they visually present

less noticeable differences.

Shadow information was also used to estimate the buildings’ height values, as shown in Fig-

ure 5.9 in which the 3D building models are generated and is also shown in Figure 5.10 and

Figure 5.11. The results of the new approach developed for estimating building heights were

illustrated in Figure 5.12 and its validation outputs in Table 5.3. Algorithmic accuracy was meas-

ured using precision, recall, and F1-score, which are presented in Figure 5.13. The present ap-

proach’s overall accuracy is compared against previous works on image-based building height

estimation in Table 5.4.

The results in Figure 5.12 are promising, considering the test images’ complex buildings, i.e.

the variations in geometry, roof colour, orientation, and challenging illumination conditions. As

expected, the algorithm performs very well for standalone buildings of regular shape. Zero

error was found for test image #1, which is a detached commercial building. The algorithm

underestimated the heights for mixed-geometry and mixed-size buildings in test image #6 and

#7 respectively, by a small margin. The mean absolute error for all images was 0.65m, demon-

strating the algorithm’s robustness.

One reason for the approach’s success in challenging urban conditions is in addition to applying

a thresholding scheme to filter out the building from the background, the developed algorithm

is also able to mitigate the issue of two or more buildings with overlapping shadows. When a

building’s simulated shadow overlaps the shadow of another, JI is set to zero to avoid erro-

neous estimation of the building’s height. However, the performance appears to be affected by

the presence of vegetation within the shadow region, as can be seen in image #4. Two build-

ings are separated by a narrow gap, and the smaller building’s shadow gets blocked by the

larger building to the north. According to the illustrated results in Table 5.3, the larger building’s

estimation error was 0.1m (≈1%) while the smaller building’s error was 2.55m (≈47%). The

situation was exacerbated by the presence of tall vegetation on the north-eastern side of the

smaller building, preventing accurate filtering of the shadow.
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The GraphCut segmentation method [19] used for detecting building footprint worked well ex-

cept for image #6, in which the side of the oil storage silo and the roof were the same col-

our. The building footprint’s shape, therefore, was larger than the actual measurements (Fig-

ure 5.12, C2). However, the shadows were unaffected and the overestimated footprint did not

have a noticeable effect on estimating the building’s height. However, in cases where there are

many shallow buildings, such as images #3 and #7, the presence of darker pavements and

roads can affect the algorithm’s performance. One possible reason is the spectral reflectance

of some non-shadow dark objects, such as roads and building roofs, is nearly identical to each

other or to their background, resulting in dark objects being identified as shadow regions. Ad-

ditionally, some adjacent buildings occlude the shadows cast by other buildings. As a result,

the shadow region length appears longer than its actual length if the shadow regions are com-

bined with other shadow regions cast by other objects or buildings. Conversely, they will appear

shorter if some parts of the shadow region are obstructed by adjacent buildings. Our approach

mitigated this issue with the help of morphological post-processing and thresholding in the

simulation process. In this vein, the algorithm was tested on different urban scenarios with

varying building and neighbourhood attributes. The findings were encouraging and outperform

past approaches, with a 21% reduction in mean error and an overall accuracy of ≈ 80%. The

increased accuracy is attributed to the ability of the algorithm to consider overlapped shadow

regions, and the removal of landscape features such as shadows of vegetation canopies.

Closer inspection of Figure 5.13 shows the results of the pixel-based assessment and evalu-

ation by F1-score using simulated shadow regions compared to actual shadow regions. The

computed pixel-based F1-score for all test images is approximately 63%, a result that is quite

acceptable for such a diverse and challenging set of test data. It is important to emphasise

the dataset used in the present study involved two highly challenging images #4 and #5 in

Figure 5.12, whose results also contribute to the overall pixel-based performance. The lower

performance of test image #4 is due to the adjacent buildings and test image #5 is due to

building geometry with very high elevation. Regarding the previously mentioned interpretation

and explanation of the test images results, the length of the actual shadow regions of both

case studies are affected by the phenomenon of lengthening or shortening. Accordingly, a

better overall pixel-based performance of the developed approach was expected if these two

test images’ results had different scenarios of urban landscapes or were excluded from the

evaluation.

Although satellite test images present diverse building attributes from different areas, results
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reveal the new approach is efficient for estimating building heights. Furthermore, comparis-

ons between the new approach’s overall accuracy and previously published works in Table 5.4

proves that the proposed approach is superior for estimating the building height based on

shadow information in an automatic manner. The average processing times for one building,

one scene, and all seven test images were 0.10 sec, 1.50min and 4min, respectively. Exe-

cution time depends on the size of the image and the complexity of the scene, as shown in

Table 5.3. Smaller images (e.g. #1 and #6) with one or two rectilinear buildings require less

processing time and has the lowest estimation error.

The second set of research questions aimed to investigate the capability of using the derived

information from optical satellite imageries in 2D form (footprints and heights) to automatically

reconstruct building envelopes in 3D form. The results of the 3D models generated from the

extracted building footprints and their estimated heights are shown in Figure 5.14. The sensitiv-

ity analysis, including the results’ numeric evaluation and accuracy assessment of the created

models, is introduced in Table 5.5. From Figure 5.14, the developed algorithm’s ability to create

3D models at LOD1 works well and shows a robust cue for automatic 3D building extraction

from a single image. All 3D building models are precisely located over their spatial positions in

the test images. This is one remarkable outcome of the present study in the scope of remote

sensing technology, computer vision, and image processing techniques. These findings raise

intriguing questions regarding the nature and extent of remote sensing applications in urban

studies and a powerful utilisation of the advanced and developed algorithms in extracting urban

structures and features, by dispensing with the use of other datasets, such as the building at-

tributes (e.g. polygons and heights) derived by sophisticated and overworked operations of

cartography and photogrammetry technologies. It is also evidence that the present approach

distinctively constructs 3D buildings from the test images with challenging environmental and

illumination conditions. The numerical evaluation results in Table 5.5 reinforce these findings.

The table shows the difference in the shortest distance between the created model and the

original model of the buildings by calculating the errors of the perimeter of two models. Inter-

estingly, the MAE of the total differences between two models was very encouraging in terms

of the reliability in the representation and visualisation of the created 3D models for the exist-

ing buildings. In Table 5.5, the differences between the created and referenced model for the

selected case scenarios in the present study range between 1.29m to 4.55m. This means the

overall result of an evaluation and comparison of the two models reveals that the error value

does not exceed 5m.
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The results obtained from the preliminary analysis of solar building roofs are presented in Fig-

ure 5.16 and Figure 5.17. Automated detection of the building roofs (footprints) in the binary

image (monochrome), which has only two possible values for each pixel (0 and 1), allows the

assessment of the rooftops for PV and solar thermal options to be achieved; this includes the

identification of the bright part of rooftops, area, and orientation, where, 0 refers to black colour

and 1 refers to white colour. As can be seen from the two figures, the results demonstrate

the analysis of a solar building roof can achieve centimetre-level accuracy due to high spatial

resolution in the VHR images. It can be seen also from the results in Figure 5.17, that the

captured date and time of the satellite image with a given azimuth angle of the sun plays a

significant role in facilitating the identification roof sections available and suitable for PV install-

ations. Specifically, the rooftops have a variety of shape topology and geometry, or the rooftops

have many structural details such as chimneys and roof windows. Results illustrate that the de-

veloped algorithm can recognise and distinguish building roofs’ shape and detail, identify the

orientation of the roofs with respect to the azimuth angle of the sun, and compute the rooftops’

bright available areas. This bright available part of the rooftop is determined with pixel value

1 which is a white patch of the building roof. In contrast, the unsuitable part of the rooftop is

the dark (black colour) with pixel value 0 at a specific angle of the satellite sensor’s view when

the image was taken. However, the dark part of the roof can also be illuminated in daylight. It

is important to remember the exposure of the part (patch) of the building roof to sunlight, at a

time other than the time of capturing the satellite image, can be less if it was in the opposite

direction of the sun illumination and vice versa. Nevertheless, other factors, for instance, the

degree of the inclination angle of the roof patch and the number of insolation hours also have

an impact on the amount of solar energy received by that roof part. Similarly, this concept can

be considered when the created 3D building model is used to assess solar energy potential on

the building envelope’s facades. The next section introduces implications of the present study

and generalisations that can be made from the results.

6.3 Implications and practical applications of the study

With worldwide use of optical VHR satellite images, the results of the present research provide

further support for the hypothesis that remote sensing is a magnificent data source which can

greatly facilitate extraction of urban-area-related objects such as buildings, vegetation, and
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roads. The findings also seem to be consistent with other research which found the utilisa-

tion of single VHR multispectral satellite images provides vital data for detecting and extracting

shadow regions (e.g. [20, 149]), building footprints (e.g. [19, 150, 151, 225]), building heights

(e.g. [16, 180]), 3D modelling (e.g. [17]), and renewable energy assessment (e.g. [23]).

Moreover, the outcomes of the developed algorithm further support the idea of reliable extrac-

tion of 3D building models from VHR satellite images in an automated manner comprising new

approaches and techniques in computer vision and image processing (evaluated by ground

truth measurements), as claimed by many researchers, such as Ozgun as well as Izadi and

Saeedi [17, 19]. This outcome is contrary to that of Michelin et al. [226], who found no generic

method had been developed for generating 3D building city models with satisfactory results.

It is interesting to note that, in all cases of this study, the appearance of a building in VHR

WV3 images is governed to a large extent by its roof structure. This means the various roof

geometries lead to specific shapes in the reflected ray received by the optical WV3 sensor. For

instance, L-shaped shadows are formed by flat-roofed buildings, a trapezoidal shadow shape

may be seen when a building has a sloped rooftop, and a gabled rooftop casts a shadow with

multiple lines close to a hexagonal-shaped shadow. Analysis of the character and geometry

of building shadows in the WV3 images allows the detection and reconstruction of buildings,

including extraction of 3D building models.

The selected different scenarios of building geometry allow the developed algorithm’s perform-

ance to be examined. Considering the complexities in the test images involved, it is believed

that the performance results achieved in creating 3D building models automatically by the

present method are quite exceptional. Consequently, it is anticipated that the overall accur-

acy of the present studys findings increases when using the images captured from different

seasons of the year. For example, this includes summer when the shadow regions are smaller

than the present case studies, which were captured in winter at a sun elevation angle of less

than (30°) [19]. The reason for this expectation is the large shadow region is most likely cast

on and covers different urban features and objects near the building, where its true length may

be affected. In contrast, a smaller shadow region at the sun elevation angle greater than (30°)

can minimise the probability of its occurrence and lead, eventually, to reduced errors and more

accurate results. This is based on considering the WV3 satellite operates in a sun-synchronous

orbit1 and passes over an observed area before noon, near 10: 30 am.

1A Sun-synchronous orbit (geocentric orbit) is a nearly polar orbit around Earth in which the satellite passes over
any given point of the planet’s surface at the same local solar time (the local time zone of the given area).
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The evaluation results of the mean absolute error (MAE) from achieving the building heights’

estimation values satisfy the accuracy recommendations of CityGML for LOD1 and the needs

of several GIS analyses. Outcomes of the automated creation of the 3D building models for

different types and utilities of the buildings such as small, large, connected, and detached

buildings, prove that the present approach is generic, efficient, and robust enough to gener-

ate 3D blocks of urban structures in a dense city. However, the findings show the algorithms

accuracy in creating 3D models of the detached buildings is higher than the adjacent or con-

nected buildings which have arbitrary structural details and geometry. Nevertheless, all study

cases demonstrate there is an ability to create 3D building models from VHR multispectral WV3

images, based on shadow information.

Each part of the current study and the developed algorithm can be used individually as an

independent and powerful tool in urban studies and applications or as a whole process in pro-

ducing 3D city models. Specifically, the detection and extraction of shadow regions can be

exploited in urban planning and climate change to determine the impact of the cast shadow

by other adjacent buildings (shading from nearby structures) on a newly built-up location (e.g.

[227]). Shadow information can also be employed as an assessment parameters of buildings’

roofs and facades’ solar energy potential (e.g. [228]). In the scope of risk assessment, shadow

analysis for the detection of earthquake-induced collapsed buildings was conducted by Tong

et al. [229]. Another significant feature of the present study is use of the algorithm to de-

tect objects (e.g. buildings) in any city or urban area that may or may not involve a complex

urban fabric and landscape. In general, the developed algorithm has the capability of separ-

ating objects from their background and the surrounding features in the image space, as well

as the detection and extraction other types of land cover such as vegetation (e.g. [19]). Fur-

thermore, the results of the building height estimation proves the developed algorithm’s strong

performance in deriving building height values in a timely and cost-effective manner compared

to traditional measurement methods. A clear benefit of this part of the present research can

be exploited and used in a wide range of urban applications. For instance, it may determine

and detect changes and expansion in the vertical direction of cities, specifically, urban struc-

tures (e.g. change detection for urban buildings) [174]; and the estimation of building storeys

[230]. Considering the automated creation of 3D models, the current research introduces an

effective, efficient, and alternative method to generate 3D city models where there is limited

data availability for many areas around the world. Because there is an increasing interest in

3D city models for many different applications and users worldwide, the developed algorithm
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can be a powerful automatic methods to construct 3D building models in LOD1 (the well-known

block models without any roof structure, as defined by Kolbe [231]) in comparison to interactive

or semi-automatic methods. Despite the simplicity of LOD1 models created, the models have

multiple uses, such as shadows analysis during daytime (e.g. [232]), solar energy potential as-

sessment (e.g. [233, 234]), flood simulation within urban areas (e.g. [235]), the different effects

of sky view factor (SVF) on urban air temperature (e.g. [236]), the impact of urban air flow on

building energy consumption (e.g. [237, 238]), examining the GPS satellite signal quality within

urban areas (e.g. [239]), and noise pollution (e.g. [240]). In fact, some researchers prefer

the use of LOD1 models over the more complex LOD2 models because of their simplicity and

ease of acquisition, and the fairly good results they provide [220]. Accordingly, the resulting

3D models in the present study provides a complete spatial visualisation for many practical

urban applications and better answers to the most interesting questions regarding sustainable

cities. Additionally, a further advantage of the current method of the automated creation of 3D

building models is that it has the potential to be applied in any chosen city without any spatial

or temporal constraints.

6.4 Limitations of the study

Despite advantages and distinctive improvements, the present study’s developed methodology

has four major limitations. First, the algorithm is unable to create 3D models of buildings whose

shadows are not visible. Note that the creation performance is not restricted by the extracted

shadow mask, and the developed approach is able to distinguish full shadow regions during the

first steps of the detection and extraction processes. Nevertheless, the developed approach’s

performance will break down when creating 3D building models for building regions where the

cast shadows are completely (self-)occluded.

Second, the algorithm is unable to derive and accurately estimate building height values in high

density residential areas, and creation of the 3D models will not provide a full regular block

(model) of the building due to the narrow distance between one house and another. This close

adjacency between the residential buildings (e.g. houses) causes the loss of their shadow

areas. This means the cast shadow regions are obstructed by adjacent or near buildings.

Nonetheless, the algorithm will perform robustly when all external edges of the cast shadow

regions (the borders of shadow perimeter) are detected within the narrow distance between two

houses or buildings. Particularly, this can occur when the satellite images are captured during
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the summer season in each place where the sun’s rays at the angle of incidence are shorter

and proximately vertical on the Earth’s surface. In fact, at the time of capturing the image, the

area of cast shadows in the summer season will be smaller than winter. Therefore, even if the

distance between two adjacent buildings is small and narrow but the building shadow is not

cast on or blocked by the nearby another building, there is no limitation or problem with the

algorithm’s performance. This is related to the well-selected time and date of the VHR images

used.

Third, the study’s results might have been affected by the extreme topography and slope direc-

tion of the terrain, especially the estimated value of the building heights. However, the current

research was conducted on small urban areas and the developed method focused on creating

3D building models for the specific scenarios of building types on a small scale (at a building

level). Therefore, the problems that may arise when buildings are on a hill, for example, were

not faced in these case studies. This is because the patches of the test VHR WV3 images

covered different small areas of the city. In contrast, to study and make the required correc-

tions to the 3D models considering their height values, the study area must be on a large scale

and cover the most built-up areas in the city or display the whole city itself so the degree of

slope and topography is very noticeable.

Fourth, the algorithm is not capable of determining differences in roof topology as well as

the geometry of the building envelope. It is worth mentioning the algorithm performance was

designed to generate 3D models of urban structures at LOD1, which is described as a block

model with flat roof structures and simple envelope geometry [208, 231]. Because the building

roofs are considered a major pillar of renewable energy strategies (e.g. solar PV applications)

within urban areas [241], an initial solar analysis on the detected building roofs was conducted.

The results illustrate the available parts of the rooftops in both roof types: flat and pitched

roofs. The findings derived from the detection process of the developed algorithm for extracting

building roofs display both types, and which part of the roof is bright (direct facing sunlight)

and which part is shaded (the opposite direction) at the time of capturing image, as well as

the orientation of those rooftops. Remarkably, in the case of the detached building, its flat

roof orientation represents the actual building orientation itself and its created 3D model will

acquire the same true orientation. Most importantly, the orientation of the building has an

impact on the possible energy collecting area on the roof because the potential number of the

solar panels strongly depends on the building’s orientation [241]. Regarding the pitched roofs,

the orientation, topology, and inclination of the solar collecting elements are determined by
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the roof [241]. Consequently, pitched roofs’ geometry is more complex than flat roofs when

assessing solar energy potential. Another approach is required to construct 3D city models at

LOD3, which considers the roof topology and geometry.

6.5 A summary of the results

The chapter has focused on explaining and discussing the research findings. It highlights the

study’s purpose, techniques, and datasets, and interprets the main results. The great potential

of employing the VHR WV3 images in the urban studies as a powerful data source has been

explained. The purpose of the research project is to develop an approach for creating 3D

building models on LOD1 from VHR WV3 images automatically when no elevation data or

supplementary datasets exist. The results of 3D models automatic creation demonstrate the

developed method offers a reliable and low-cost process for generating 3D building models

that can be applied to the analysis of solar energy applications and sustainable development of

cities, in addition to urban planning and city understanding, where costly data and sophisticated

processing practices are less accessible. The chapter displayed the possible implications of

the study and method limitations. The performance of the new method will have high quality

and accurate results if the buildings shadow regions are well detected and extracted within the

image space. The chapter also indicates the 3D city models play an important role in identifying

the surface availability of the building for assessing solar energy potential, not only on the roofs

but also on the facades. This is an important issue for future research, as stated in the next

Chapter 7.
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Conclusions and future work

This chapter introduces the conclusions of the main areas covered in the presented study,

the significance of these findings, and recommendations, together with a final evaluation and

suggestions for future work. This chapter also provides an explanation of where the results

can lead and what next steps may be taken. The contents and contributions of the study are

summarised to pave the way for other questions raised by the findings of the developed method

in this work.
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7.1 Significance of the study

Summarising Chapter 6, a robust algorithm was developed to create 3D city models, con-

centrating on urban structures (buildings), by detecting and extracting building footprints and

estimating building height values. The automated algorithm developed in the present study for

creating 3D building models will benefit society, since 3D modelling of urban buildings plays

an important role in science and technology today. The great demand for the improved under-

standing of urban environments, with the possibility of applying renewable energy technologies

in cities, justifies the need for more effective and sustainable development of city assessment

approaches.

The present study provides a comprehensive view of urban structures as a 3D vision of the

urban landscape. This method will help obtain a more accurate estimation of the availability of

building surfaces for solar energy applications. The new algorithm for the automated creation

of 3D building models using the LOD1 approach can be used in several application domains.

For example, the algorithm can be used in the assessment of the impact that shadows of new

buildings will have on their surroundings [220], the preliminary analysis of solar potential at a

municipal or neighbourhood level [153], and the insolation of buildings in kWh per year [242].

The method can also detect and extract shadow regions and building footprints (roofs) and

use this information to estimate building height values in an automatic, efficient and accur-

ate manner. These elements can serve decision-makers, authorities, planners, and designers

looking to employ automation in various sectors of work. In addition, the algorithm is easy to

use, accurate, and with sufficient performance speed. The present study will help investors

in the field of renewable energy to have a deeper understanding of the suitability of building

surfaces as well as the effects of the shadows they cast. The algorithm provides an easier and

more powerful tool that can enhance and improve the process of solar energy potential assess-

ment industrial, commercial and residential levels. Furthermore, the current study provides a

foundation for developments in 3D building model algorithms by developers and researchers

by promoting 3D models from LOD1 to higher LODs using remote sensing data only and by

improving the processes of building detection, extraction and height estimation.
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7.1.1 Restatement of aims

The aim of this thesis was to develop an approach for the automatic creation of 3D city models,

specifically buildings, based on remote sensing data. Single multispectral VHR satellite images

were used, specifically WV3 images of remote sensing data. The process of the automated

creation of 3D building models focused on extruding the footprints of 2D data (images) using

the estimated height values. The key purpose of the automated 3D models is to provide a

better understanding and a more accurate assessment of the solar energy potential of the

surfaces of the building envelopes. The most distinctive feature of the presented work was

the use of available data, such as satellite images, which were highly accessible in terms of

cost and handling and did not require complementary data, such as elevation data, to generate

3D models in LOD1. The developed approach employs shadow presence to detect building

footprints and estimate building heights, which are used to construct the 3D models of buildings.

The study had six objectives to achieve the main aim. The objectives were set to provide

guidance to accomplish the main aim. The research objectives were to review and critique

state-of-the-art approaches and algorithms for identifying building geometry and creating 3D

models of buildings using satellite images. The second objective was to develop an approach

for detecting and extracting building footprints based on their shadow regions while eliminating

other urban features such as trees and fences. The third objective of this study was to in-

vestigate and develop a robust technique for estimating building height, which led to the fourth

objective, the development of an approach for the creation of 3D building models based on the

regions of the extracted building footprints and the estimated building heights. The fifth object-

ive was to conduct solar analyses of rooftops. The sixth and final objective was to validate and

verify the created models for all parts of the developed algorithm.

7.1.2 Summarising research findings

Chapter 5 briefly restates the major results of the study and summarises their significance for

scientific knowledge and they complement finding in existing studies. What is striking about

the datasets used is that monocular multispectral VHR satellite imagery is an intrinsic data

source for extracting information about urban structures. The detection of urban features (e.g.

residential, industrial and commercial buildings) from VHR satellite images is of great practical

interest for different urban applications, such as change detection, urban monitoring, population
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density estimations, 3D city modelling, and sustainable urban development. One important

use of satellite imagery is to maximise the ability to detect spatial variation for using renewable

energy collection systems to sustain urban environments. Satellite imagery can be used for

the automated extraction of the reliable and suitable rooftops (footprints) of buildings as well as

the automated creation of 3D building models at LOD1 without elevation data. The automation

of information derivation processes from these images plays a vital role in the further analysis

and assessment of the availability of the building facade surfaces and helps to exploit solar

energy systems within urban areas.

The new methodology presented here can support sustainable development by allowing urban

areas to be routinely appraised, thereby maximising the opportunity of avoiding degradation

and deterioration of the natural environment and ecosystems. Inventorying existing buildings,

identifying pattern and density, monitoring access to resources, and determining facilities and

transport networks can play a role in mitigating the expansion risks of the built environment.

Also, using renewable energy is an additional solution to reducing the dangers of the continu-

ous and increasing use of fossil fuel. The results of this study contribute to sustaining urban

areas in terms of the transformation of landscapes in the context of energy policy decisions.

The algorithm developed in this study can also be used to assess the density of urban areas

and increases in energy consumption by detecting existing buildings and identifying building

geometry. According to McKeen and Fung as well as Asadi et al. [194, 243], the geometry of

a building has an impact on heating, cooling, ventilation and lighting.

The approach developed in this thesis is also a potent tool to exploit geospatial technologies,

such as satellites and computers for providing maps. These maps involve spatial data which

represent the location, size and shape of an object on Earth, such as a building, lake, moun-

tain or township. The research findings containing the maps of detected buildings, estimated

heights, and 3D building models, provide more information about the entity of urban struc-

tures. The obtained spatial information and attributes of the buildings allow complex themes

to be analysed and then communicated to wider audiences. The obtained precise location of

the building footprints and their 3D models on the surface of the Earth can help in improving

assessments and predictions of the different urban applications. Particularly, the research find-

ings highlight the algorithm’s capacity for finding the most suitable building surfaces available

for solar PV applications.

This research extends our knowledge of employing remote sensing technology for various
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urban studies and applications. The present study provides additional evidence with respect

to using VHR satellite images, in particular WV3 images, which confirmed that optical VHR

satellite images are the most useful data input source for urban feature detection (e.g. build-

ings). Furthermore, the findings of this thesis could be used to support information about urban

features in complex landscapes. The key strength of this study is the automatic creation of 3D

city models using only VHR WV3 images without requiring elevation data or additional and

complementary datasets such as cadastral or statistic data. The experiments and the discus-

sion illustrate that 3D building models could be advantageous in a number of spatial analyses.

The study findings enhance our understanding of the capability of the creation of 3D models

of buildings at LOD1 from 2D data based on shadow information. The study also improves our

ability to more accurate assess the availability of building roofs suitable for solar PV installa-

tions.

7.2 The conclusion of the study

This thesis developed a novel approach for modelling and assessing available surfaces for the

exploitation of solar energy potential within an urban environment in an integrated analytical

framework. The developed approach displays the automated creation of 3D building models

using single multispectral VHR satellite images without elevation data. Conclusions drawn from

the data can be used for contemporary research and experiments. The key conclusions can

be listed as follows:

• The algorithm developed in this thesis proves its ability to extract the attributes of the

buildings from satellite images within complex urban environments. The method used

was able to identify the geometric attributes of the buildings (footprints and heights) and

generate the 3D models in LOD1 from 2D data in an automated, unique and compre-

hensive manner. Despite advancements in remote sensing technologies, elevation data

required to create 3D city models is not available in many areas around the world. Many

developing countries still lack national coverage of elevation suitable for producing 3D city

models [208, 210], cadastral maps or masterplans for building footprints. This is true in

Iraq. Depending on the need and purpose, the building footprints (rooftops) and 3D mod-

els obtained with the estimated heights can be a reasonable and significant provisional

solution until such measurements become available. They can also be an advancement
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on outdated methods. According to the evaluation research findings, the developed ap-

proach is highly robust and quite promising for diverse and challenging datasets.

• This thesis reviewed a number of current pioneering studies in the scope of shadow

detection techniques using VHR satellite images and the performance of the advanced

algorithms. The use of VHR images from advanced satellites such as WorldView-3 illus-

trates a promising method of object detection and extraction within urban areas. Shadow

detection in an urban feature from such images provides vital information that can assist

in better understanding the built environment. Shadow are evidence of elevated objects,

confirming the existence of a building or structure. Therefore, the automated detection

of shadows in VHR satellite images are important for applications that involve building

detection, illumination direction analysis from the sun, and spatial distributions of objects

casting shadows. Although the detection of shadow regions is challenging when derived

from a VHR satellite images comprising a visible spectrum range (RGB true colour), the

results using multispectral WorldView-3 images (RGB and NIR bands) were better and

demonstrated a reasonable separation of shadow regions from other objects; this indic-

ates significant performance of the ratio-band algorithm [149]. It is easier to distinguish

shadow areas from non-shadow areas with NIR band because shadow regions gener-

ally exhibit lower radiance values over the entire spectrum, and sensor irradiance from

shadow regions decreases from short to long wavelengths due to scattering [19, 199].

Moreover, the differences in the characteristics of the two satellite images in terms of

spatial and spectral resolution can play an important role in the estimation and detection

of the shadows of urban objects, such as buildings.

• The excellent performance of the algorithm in automatically detecting and extracting the

building footprints illustrates a great opportunity to reduce the time, cost, and effort spent

on producing cartographic and geospatial maps of any urban or rural area. After develop-

ing and enhancing the building detection approach at the first level of image partitioning

proposed by Ok [19], the results demonstrate the highly precise representation of the

true spatial location of the extracted building footprints as well as accurate, minute de-

tails of the detected rooftops. The developed algorithm is able to address the distortion

of detected building edges by two levels of image processing. The active contour ap-

proach and the developed approach are shape-fitted for adjusting the parameters of the

two most familiar building geometries, rectangle and ellipse, seen in urban landscapes.

The adjusted geometry of the building footprints is quite accurate. However, there are
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difficulties in detecting the footprints of the buildings using the GrabCut approach when

the shadows cast by buildings are not completely visible and not well-detected after ap-

plying the shadow detection approach. The non-detected shadow regions can cause

edge distortion of the building footprints, which eventually affects the final results of the

automated 3D building model creation.

• A new shadow-overlapping algorithm ASO was developed for estimating building heights

from a single VHR multispectral image. The new approach is based on the automated

identification of building shadow regions using the solar information in the image metadata,

the morphological operations and the Jaccard Index (JI). The algorithm was tested on

different urban scenarios with a variety of building and neighbourhood attributes. Results

are encouraging and the algorithm outperformed other approaches, with a 21% reduction

in mean error and an overall accuracy of ≈ 80%. The increased accuracy is attributed

to the ability of the algorithm to consider overlapping shadow regions and the removal of

landscape features such as the shadows of vegetation canopies. The core benefit of the

approach is the cost-effective extraction of building height and subsequent 3D construc-

tion of urban areas for modelling, simulation, and visualisation. Applications can range

from 3D urban change monitoring to high-resolution assessments of potential locations

and the forecasting of renewable energy, such as solar PV and wind. The speed and

frequency of VHR acquisition compared to more expensive methods, such as LiDAR,

opens up significant possibilities for emergency response immediately after a disaster,

for example assessing infrastructure and building damage.

• A novel method was improved and developed to automatically create 3D city models

solely from WV3 images (2D data) without the use of additional data, complementary

information or elevation measurements. The present study discloses the considerable

possibilities for modelling urban structures (e.g. buildings) based on extracting building

footprints using estimated building heights and the Marching Cubes algorithm. Both the

footprints and the heights of buildings were automatically derived from WV3 images. The

creation of a 3D building model was achieved in LOD1, which indicates the generalised

outer shell of buildings. Remarkably, the resultant 3D building models of the developed

methodology satisfy the standard CityGML quality recommendations and those of sev-

eral spatial analyses. Additionally, the results of the visual and numerical assessments

reveal that the 3D building creation approach is promising in providing a 3D city model

with fully automatic operation, indicating that the developed algorithm works fairly well
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with challenging urban environments and illumination conditions. However, because the

created 3D building models are in LOD1, the specific model reports the same height

value for each point of the rooftop, representing a flat roof. Nonetheless, the improve-

ment in the LOD of a 3D building model is negligible and does not improve shadow

prediction accuracy without increasing cost of acquisition and requiring a larger storage

footprint. Hence, the higher cost of acquiring 3D models in finer LODs is not always

justified, as reported by Biljecki et al. [220], which can be seen in applications. How-

ever, with renewable energy applications, such as the assessment of the photovoltaic

potential, the accuracy of the assessment may be considerably influenced in case hav-

ing further structural details of the building surfaces. Nevertheless, the present study

offers a robust approach to detect and extract shadow information during daylight hours

and to provide an initial solar analysis of the extracted rooftops for PV applications.

• The analysis of the preliminary solar potential of building roofs shows the capability of

the developed algorithm to derive significant information from satellite images that can

be used for solar energy potential assessment within cities. It is concluded that the

bright building roofs can be determined by the identification of the roof’s location, area,

and orientation. Those rooftops in an advantageous position in relation to the sun can

provide a suitable area for PV application in the modern urban landscape. These findings

can be exploited for the development of solar energy implementation policies and urban

planning. Therefore, the initial solar analysis of the building roofs in this study can be an

exploratory calculation of solar potential at the municipal level.

7.3 Implications for the field of urban modelling

The findings from this study make several contributions to the field of urban modelling. Firstly,

the findings contribute toward the application of remote sensing technology. They can be used

in photogrammetric satellite applications or aerial photography and cartographic mapping tech-

niques. The results of the automated creation of 3D building models show that the developed

method can be applied to identify the geometry of urban objects and features, such as build-

ings. The geospatial information derived from remotely sensed data (e.g. multispectral VHR

satellite images) in this study can play an important role in providing a wide range of spati-

otemporal information about the structure of cities and their growth and needs. The findings
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can provide information for social, political, and economic decision-making for human develop-

ment activities.

Second, the algorithm developed for this study is a robust multi-use, multi-purpose and multi-

target tool which can be employed in various fields that use images as input data. The ad-

vanced, modern techniques used in this algorithm can also broaden knowledge regarding im-

plementing essential operations for handling data, such as object detection, segmentation,

extraction, data analysis, and morphological operations. In addition, the fully automated al-

gorithm presented in the current study should be considered for numerous applications due

to its cost-effective, timely, and safe design and its increased productivity. Its different uses

and applications offer opportunities for developers and researchers to further development and

innovations in the field of automation.

Third, the study improves the current understanding of the most suitable building surfaces for

the optimal spatial distribution of renewable energy (e.g. solar PV installations) and makes

accurate estimations for solar energy potential by exploiting the entire building envelope (roofs

and facades). Spatial variation of solar energy is crucial for the estimation of area potential and

the selection of construction locations (Sun, 2013). Overall, the study contributes towards an

increased effort to reduce global CO2 emissions and boost power supplies for the sustainable

development of natural resources, human society, and economic development in developing

countries.

7.4 Recommendations for future research

The study could be extended in the two main directions of research. First, research could be

conducted on work improvements and opportunities. Second, research could be conducted to

develop a tool for solar energy potential assessments on the building envelopes using the cre-

ated 3D building models. Future work can expand on the present methodology to enhance the

accuracy of the outputs. To this end, the following research opportunities can be investigated:

• A future study investigating the shape of the building footprints would be very useful.

More realistic in the representation of the envelope of the building can improve the find-

ings of the assessment process. Tests could be planned to determine various shapes in

addition to rectangles and ellipses. Shape parameters for defining the existing complex
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shapes of the detected building footprints in the image space can be explored using the

developed shape-fitting functions and new mathematical equations.

• Further research should focus on overcoming or at least to mitigating the limitations of

the developed algorithm. These limitations include: (1) the visibility of shadow regions

in the dense urban areas; (2) the estimation of different height levels in the topology

of the buildings roofs; (3) the similar spectral characteristics between building surfaces

and the surfaces of other urban objects (this issue also appears within a building when

the building roof and one of its facades exhibit similar spectral reflectance, which in turn

influences the overall performance of the building footprints detection); and (4) the sharp

corners created in 3D building models.

• The impacts of the topography of the terrain on the actual length of building shadow

regions would be a fruitful area for further work. Uneven terrain or slopes may cause an

increase or decrease in the true length of the shadows cast by buildings. In this case, an

investigation of the actual length of the shadow region is required. Integrating another

remote sensing data source, such as digital surface models (DSM and/or DEM), may

help with terrain difference recognition and assist in making necessary corrections.

• Future research could also be dedicated to investigating the impact of the 3D building

model in the LOD1 on the outcomes of a given case study that uses estimated shadows

as an input. For example, the evaluation of errors that can be occurred in the estimation

of the loss of the solar potential in kWh/year due to shadows or in the forecasting of the

duration a facade is shaded during the day.

The second direction future research could take is in the assessment of solar energy potential

at the building scale. The assessment of local PV potential could be achieved based on the

calculation of the annual cumulative solar radiation values for every surface (rooftops and walls)

using climate data and 3D building models. Because the created 3D building models are in

a mesh-grid form, the framework of future research should trace the rays from the sun to

the building surfaces. This new framework could be implemented in the evaluation of solar

building envelopes, leading the way to establishing and developing an assessment tool which

enables users (e.g. planners, designers, researchers and decision-makers) to estimate the

received amount of direct solar radiation on building surfaces suitable for PV installations. The

assessment tool is already in the process of being built and will be coded using MATLAB for the

calculation of solar irradiation value. The developed script will be recoded in Python to simulate
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the sun’s daily movements on its path and to visualise the whole computation process of the

solar energy potential assessment. The assessment tool will automatically be implemented

based on the created 3D building models and the inputs of latitude, longitude, day, and hour

of a specific time of the year. A graphical user interface (GUI) will also be created to control

the script inputs for assessing solar building surfaces on a given day of the year by the user.

It is anticipated that the outputs of the assessment process will be the computed values of the

Direct Normal Irradiance (DNI) on the building envelopes (mean values of irradiance in each

triangle of the 3D building model). The developed work will also comprise the numerical and

visual representation of the solar assessment tool results (Figure 7.1). Once the assessment

tool is completed, it can help in ensuring the algorithm to be widely adopted.

Figure 7.1: Proposed future work ––a solar assessment tool

It is expected that this research, once complete, will evaluate the suitability of both the building

roofs and facades for PV applications during daylight hours. In addition, this approach may

provide insight into the value of insolating building surfaces (solar building envelope) and into

the area and direction of the building shadow region, which is useful for urban spatial analysis.

Facades in optimal positions relative to the sun can provide a suitable area for PV applica-

tion in the modern urban landscape [153]. Furthermore, it is anticipated that the results of
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solar energy potential assessments using the created 3D building models can offer a better

understanding of which building types and locations receive more solar radiation in complex

urban environments. The results can be exploited for the development of solar energy policies

and urban planning. Therefore, the proposed future approach can be seen as an exploratory

calculation of solar potential at the municipal level.
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[68] Hannes Taubenböck, Martin Wegmann, Achim Roth, Harald Mehl, and Stefan Dech.
Urbanization in india–spatiotemporal analysis using remote sensing data. Computers,
Environment and Urban Systems, 33(3):179–188, 2009.

[69] OR Abd El-Kawy, JK Rød, HA Ismail, and AS Suliman. Land use and land cover change
detection in the western Nile Delta of Egypt using remote sensing data. Applied Geo-
graphy, 31(2):483–494, 2011.

[70] Hai Minh Pham, Yasushi Yamaguchi, and Thanh Quang Bui. A case study on the rela-
tion between city planning and urban growth using remote sensing and spatial metrics.
Landscape and Urban Planning, 100(3):223–230, 2011.

158



REFERENCES

[71] Annemarie Schneider. Monitoring land cover change in urban and peri-urban areas
using dense time stacks of landsat satellite data and a data mining approach. Remote
Sensing of Environment, 124:689–704, 2012.

[72] Kun Jia, Shunlin Liang, Ning Zhang, Xiangqin Wei, Xingfa Gu, Xiang Zhao, Yunjun Yao,
and Xianhong Xie. Land cover classification of finer resolution remote sensing data
integrating temporal features from time series coarser resolution data. ISPRS Journal of
Photogrammetry and Remote Sensing, 93:49–55, 2014.

[73] Sebastian Martinuzzi, William A Gould, and Olga M Ramos Gonzalez. Land develop-
ment, land use, and urban sprawl in Puerto Rico integrating remote sensing and popu-
lation census data. Landscape and Urban Planning, 79(3):288–297, 2007.

[74] Norzailawati Mohd Noor and Nur Aulia Rosni. Determination of spatial factors in meas-
uring urban sprawl in Kuantan using remote sensing and GIS. Procedia-Social and
Behavioral Sciences, 85:502–512, 2013.

[75] Ahmed K Nassar, G Alan Blackburn, and J Duncan Whyatt. Developing the desert:
The pace and process of urban growth in Dubai. Computers, Environment and Urban
Systems, 45:50–62, 2014.

[76] Monika Kuffer and Joana Barrosb. Urban morphology of unplanned settlements: the use
of spatial metrics in VHR remotely sensed images. Procedia Environmental Sciences,
7:152–157, 2011.

[77] NASA. Satellite maps provide better urban sprawl insight. Technical report, National
Aeronautics and Space Administration, USA, 2001.

[78] Karen K Owen and David W Wong. An approach to differentiate informal settlements us-
ing spectral, texture, geomorphology and road accessibility metrics. Applied Geography,
38:107–118, 2013.

[79] Hassan Rhinane, Atika Hilali, Aziza Berrada, Mustapha Hakdaoui, et al. Detecting slums
from spot data in Casablanca Morocco using an object based approach. Journal of
Geographic Information System, 3(03):217, 2011.

[80] Karolien Vermeiren, Anton Van Rompaey, Maarten Loopmans, Eria Serwajja, and Paul
Mukwaya. Urban growth of Kampala, Uganda: Pattern analysis and scenario develop-
ment. Landscape and Urban Planning, 106(2):199–206, 2012.

[81] Oleksandr Kit, Matthias Lüdeke, and Diana Reckien. Texture-based identification of
urban slums in Hyderabad, India using remote sensing data. Applied Geography, 32
(2):660–667, 2012.

[82] Divyani Kohli, Richard Sliuzas, Norman Kerle, and Alfred Stein. An ontology of slums for
image-based classification. Computers, Environment and Urban Systems, 36(2):154–
163, 2012.
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Appendix A

WorldView-3

Introducing WorldView-31, the first multi-payload, super-spectral, high-resolution commercial
satellite. Operating at an expected altitude of 617 km, WorldView-3 provides 31 cm panchro-
matic resolution, 1.24 m multispectral resolution, 3.7 m short-wave infrared resolution, and 30
m CAVIS resolution. WorldView-3 has an average revisit time of <1 day and is capable of
collecting up to 680, 000 km2 per day, further enhancing the DigitalGlobe collection capacity
for more rapid and reliable collection. Launching in 2014, the WorldView-3 system will allow
DigitalGlobe to further expand its imagery product offerings. Figure A-1 shows the scenarios
of the WV3 satellite data collection.

Features

1. Very high-resolution

• Panchromatic 31 cm

• Visible & near-infrared 1.24 m

• Short-wave infrared 3.7 m

• CAVIS 30 m

2. The most spectral diversity commercially available

• Panchromatic band

• 4 standard VNIR colors: blue, green, red, near-IR1

• 4 added VNIR colors: coastal, yellow, red edge, and near-IR2

• 8 SWIR bands: Penetrates haze, fog, smog, dust, and smoke

• 12 CAVIS bands: Maps clouds, ice and snow, corrects for aerosol and water vapor

3. Industry-leading geolocation accuracy

4. High capacity in various collection modes

5. Bi-directional scanning

6. Rapid retargeting using Control Moment Gyros (>2x faster than any competitor)

7. Direct Access tasking from and image transmission to customer sites

1http://www.digitalglobe.com/
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Figure A-1: Data collection scenarios

8. Daily revisits

Benefits

1. Simultaneous, high resolution, super-spectral imagery

2. Large area mono and stereoscopic collection eliminates temporal variations

3. Precision geo-location possible without ground control points

4. Global capacity of 680, 000 km2 per day

5. New and enhanced applications, including:

• Mapping

• Land Classifications

• Disaster Preparedness/Response

• Feature Extraction/Change Detection

• Soil/Vegetative Analysis



• Geology: Oil & Gas, Mining

• Environmental Monitoring

• Bathymetry/Coastal Applications

• Identification of Man-made Materials

6. Superior Haze Penetration

Design and specifications

1. Orbit

• Altitude: 617 km

• Type: SunSync, 10:30 am descending Node

• Period: 97 min.

2. Life

• Spec Mission Life: 7.25 years

• Estimated Service Life: 10 to 12 years

3. Spacecraft Size, Mass and Power

• Size: 5.7 m (18.7 ft) tall x 2.5 m (8 ft) across

• 7.1 m (23 ft) across deployed solar arrays

• Mass: 2800 kg (6200 lbs)

• Power: 3.1 kW solar array, 100 Ahr battery

4. Sensor Bands

• Panchromatic: 450− 800 nm

• 8 Multispectral:

– Coastal: 400− 450 nm − Red: 630− 690 nm

– Blue: 450− 510 nm − Red Edge: 705− 745 nm

– Green: 510− 580 nm − Near-IR1: 770− 895 nm

– Yellow: 585− 625 nm − Near-IR2: 860− 1040 nm

• 8 SWIR Bands:

– SWIR-1: 1195− 1225 nm − SWIR-5: 2145− 2185 nm

– SWIR-2: 1550− 1590 nm − SWIR-6: 2185− 2225 nm

– SWIR-3: 1640− 1680 nm − SWIR-7: 2235− 2285 nm

– SWIR-4: 1710− 1750 nm − SWIR-8: 2295− 2365 nm

• 12 CAVIS Bands:

– Desert Clouds: 405− 420 nm −Water-3: 930− 965 nm

– Aerosol-1: 459− 509 nm − NDVI-SWIR: 1220− 1252 nm

– Green: 525− 585 nm − Cirrus: 1365− 1405 nm

– Aerosol-2: 635− 685 nm − Snow: 1620− 1680 nm

– Water-1: 845− 885 nm − Aerosol-1: 2105− 2245 nm

– Water-2: 897− 927 nm − Aerosol-2: 2105− 2245 nm



5. Sensor Resolution (or GSD, Ground Sample Distance; off-nadir is geometric mean)

• Panchromatic Nadir: 0.31 m

• 20° Off-Nadir: 0.34 m

• Multispectral Nadir: 1.24 m

• 20° Off-Nadir: 1.38 m

• SWIR Nadir: 3.70 m

• 20° Off-Nadir: 4.10 m

• CAVIS Nadir: 30.00 m

6. Dynamic Range

• 11-bits per pixel Pan and MS; 14-bits per pixel SWIR

7. Swath Width

• At nadir: 13.1 km

8. Attitude Determination and Control

• Type: 3-axis Stabilized

• Actuators: Control Moment Gyros (CMGs)

• Sensors: Star trackers, precision IRU, GPS

9. Pointing Accuracy and Knowledge

• Accuracy: <500m at image start/stop

• Knowledge: Supports geolocation accuracy below

10. Retargeting Agility

• Time to Slew 200 km: 12 sec

11. Onboard Storage

• 2199 Gb solid state with EDAC

12. Communications

• Image & Ancillary Data: 800 and 1200 Mbps X-band

• Housekeeping: 4, 16, 32, or 64 kbps real time, 524 kbps stored, X-band

• Command: 2 or 64 kbps S-band

13. Max Contiguous Area Collected in a Single Pass (30° off-nadir angle)

• Mono: 66.5 km x 112 km (5 strips)

• Stereo: 26.6 km x 112 km (2 pairs)

14. Revisit Frequency (at 40° N Latitude)

• 1 m GSD: <1.0 day

• 4.5 days at 20° off-nadir or less

15. Geolocation Accuracy (CE90)



• Predicted <3.5 m CE90 without ground control

16. Capacity

• 680, 000 km2 per day



Table 1: Characteristics of high and very-high spatial resolution remote sensing systems and their applications

Year Satellite Sensor SRa(nm) Bandsb
PSc

(m)
Cd

(km)
RTe

(days)
DRf

(bit) Scalef Applications

1972 Landsat-1,
Landsat-2,
Landsat-3

MSS 500 - 1100 4 (MS)
5h

80 185 18 6 A - G Land-use planning; vegetation invent-
ories; crop growth and health assess-
ments; discriminating different types and
amounts of vegetation; and cartography

1984 Landsat-5 TM 450 - 2,350
10,400 - 12,350

6 (MS)
1 (T)

30 185 16 8 G - H Surface temperature; discriminating ve-
getation type; water penetration; plant
and soil moisture measurements; and
identification of hydrothermal alteration in
certain rock types

1997 SeaStar SeaWiFS 402 - 885 8 (MS) 1,100 2,800 Daily 10 G - H The concentration of microscopic marine
plants; phytoplankton based on the colour
of the ocean

1998 NOAA-15 AVHRR/3 580 - 12,500 6 (MS) 1,090 2,940 Daily 10 G - H Surface mapping (daytime); landwater
boundaries; snow and ice detection;
cloud mapping (daytime and night); sea
surface temperature

1999 Terra &
Aqua

MODIS 620 - 14,3385 2 (MS)
5 (MS)
29 (MS & T)

250
500
1000

2,330 Daily 12 G - H Land, cloud, aerosols boundaries and
properties; ocean colour, phytoplankton,
biogeochemistry; atmospheric temper-
ature; cirrus clouds and water vapour;
ozone; surface and cloud temperature;
cloud top altitude

a Spectral resolution b MS: multi-spectral bands c Spatial resolution d Swath-width e Temporal resolution f Radiometric resolution g Mapping scale
h Landsat-3 only
A A: scale 1:2500 B B: scale 1:7500 C C: scale 1:10 000 D D: scale 1:25 000 E E: scale 1:40 000 F F: scale 1:80 000 G G: scale 1:100 000
H H: scale 1:500 500

Continue on the next page



Table 1: Characteristics of low and medium spatial resolution remote sensing systems and their applications (cont.)

Year Satellite Sensor SRa(nm) Bandsb
PSc

(m)
Cd

(km)
RTe

(days)
DRf

(bit)
Mapping
scale Applications

1999 Terra MISR 425 - 886 4 (MS) 275 360 9 14 G - H Land use; ocean colour; air pollution;
volcanic eruptions; desertification; defor-
estation; and soil erosion

1999 Landsat7 ETM+ 450 - 2,350
10,400 - 12,500
500 - 900

6 (MS)
1 (T)
1 (PAN)

30
60
15

185 16 8 D - G Agriculture; forestry; land use; water re-
sources and natural resource exploration;
human population census and monitoring
the growth of global urbanisation; deletion
of coastal wetlands; and generating DEM

1999 Terra ASTER 520 - 860
1,600 - 2,430
8,125 - 11,650

3 (MS)
6 (MS)
5 (T)

15
30
90

60 16 8
8
12

A - E
E - G
G - H

Land surface climatology; vegetation and
ecosystem dynamics; volcano monitor-
ing; hydrology; geology and soils; land
surface and land cover change

2002 SPOT5 2 HRGs 500 - 890
1,580 - 1,750
480 - 710

3 (MS)
1 (MS)
1 (PAN)

10
20
5

60 26 8 C - D
C - D
B - D

Urban and rural planning; land use and
Infrastructure planning; telecommunic-
ations; oil and gas exploration and min-
ing; environmental assessment, natural
disaster management; marine studies;
agriculture; and 3D terrain modelling

a Spectral resolution b MS: multi-spectral bands c Spatial resolution d Swath-width e Temporal resolution f Radiometric resolution g Mapping scale
h Landsat-3 only
A A: scale 1:2500 B B: scale 1:7500 C C: scale 1:10 000 D D: scale 1:25 000 E E: scale 1:40 000 F F: scale 1:80 000 G G: scale 1:100 000
H H: scale 1:500 500

Continue on the next page



Table 1: Characteristics of low and medium spatial resolution remote sensing systems and their applications (cont.)

Year Satellite Sensor SRa(nm) Bandsb
PSc

(m)
Cd

(km)
RTe

(days)
DRf

(bit)
Mapping
scale Applications

2013 Landsat8 OLI &
TIRS

435 - 1,551
10,600 - 12,510
503 - 676

8 (MS)
2 (T)
1 (PAN)

30
100
15

185 16 12 F - G
F - G
A - E

Mineral exploration; vegetation ana-
lysis; large regional coverage; extensive
archive for change detection; availability
of imagery over cloud affected areas (de-
tecting cirrus clouds); and coastal zone

a Spectral resolution b MS: multi-spectral bands c Spatial resolution d Swath-width e Temporal resolution f Radiometric resolution g Mapping scale
h Landsat-3 only
A A: scale 1:2500 B B: scale 1:7500 C C: scale 1:10 000 D D: scale 1:25 000 E E: scale 1:40 000 F F: scale 1:80 000 G G: scale 1:100 000
H H: scale 1:500 500



Table 2: Characteristics of low and medium spatial resolution remote sensing systems and their applications

Year Satellite SRa(nm) Bandsb
PSc

(m)
Cd

(km)
RTe

(days)
DRf

(bit) Scalef Stereo-view Applications

1999 IKONOS 445 - 853
445 - 900

4 (MS)
1 (PAN)

4
1

11.3 2.3 - 3.4 11 C Yes Civil engineering works; land use and
infrastructure planning; telecommunic-
ation; tourism; mapping and surveying;
mining and exploration; oil and gas; en-
vironmental assessment; agriculture; and
DEM generation

2001 QuickBird 450 - 900
450 - 900

4 (MS)
1 (PAN)

0.61
2.44

16.5 1 - 3.5 11 B No Environment studies; oil and gas explor-
ation; engineering and construction; land
use and planning; agricultural and forest
climates; telecommunication; and tourism

2007 WorldView-1 400 - 900 1 (PAN) 0.5 17.6 1.7 11 A Yes Infrastructure planning; oil and gas ex-
ploration; mapping and surveying; tele-
communications; and DEM generation

2008 GeoEye-1 450 - 920
450 - 800

4 (MS)
1 (PAN)

1.65
0.41

15.2 2.1 - 8.3 11 A Yes Land use and infrastructure planning; en-
vironmental assessment; civil engineering
works; natural resources; oil and gas;
mining and exploration; tourism; agricul-
ture; 3D urban terrain model; and DEM
generation

2008 RapidEye 440 - 850 5 (MS) 5 77 5.5 12 D No Industries; agriculture; forestry; oil and
gas exploration; power and engineering
and construction; cartography and mining

a Spectral resolution b MS: multi-spectral bands c Spatial resolution d Swath-width e Temporal resolution f Radiometric resolution g Mapping scale h Landsat-3 only
A A: scale 1:1500 B B: scale 1:2000 C C: scale 1:2500 D D: scale 1:5000

Continue on the next page



Table 2: Characteristics of low and medium spatial resolution remote sensing systems and their applications (cont.)

Year Satellite SRa(nm) Bandsb
PSc

(m)
Cd

(km)
RTe

(days)
DRf

(bit)
Mapping
scale Stereo-view Applications

2009 WorldView-2 400 - 1,040 8 (MS)
1 (PAN)

2
0.5

16.4 1.1 11 D Yes Analysis of vegetation; coastal environ-
ments; agriculture; geology; tourism; civil
engineering works; land use and infra-
structure planning; and natural resources

2011 Pleiades-1A 430 - 940
470 - 830

4 (MS)
1 (PAN)

2
0.5

20 Daily 12 B Yes Land planning and management; urban
density assessment; detection and iden-
tification of small features; agriculture;
homeland security; forestry; maritime
and littoral surveillance; civil engineer-
ing monitoring; 3D geometry creation for
the applications of flight simulators; high
precision mapping; and renewable energy

2012 SPOT6 450 - 890
450 - 745

4 (MS)
1 (PAN)

6
1.5

60 Daily 12 D Yes Defence; engineering; coastal surveil-
lance; agriculture; deforestation; envir-
onmental monitoring; and oil, gas and
mining industries

2014 WorldView-3 400 - 1,040
450 - 800
1,195 - 2,365
405 - 2,245

8 (MS)
1 (PAN)
8 (SWIR)
12 (CAVIS)

1.24
0.31
3.7
30

3.1 <1 (less than one day) 11 (PAN) & (MS)
14 (SWIR)

D - C Yes Defence and military applications; fea-
ture extraction and change detection;
natural disaster and flooding, man-made
materials and structures; oil and gas ex-
ploration; geology, mining, soil and veget-
ation; land classification; bathymetry and
coastal

a Spectral resolution b MS: multi-spectral bands c Spatial resolution d Swath-width e Temporal resolution f Radiometric resolution g Mapping scale h Landsat-3 only
A A: scale 1:1500 B B: scale 1:2000 C C: scale 1:2500 D D: scale 1:5000



Table 3: Remote sensing and geospatial data resources and providers

Source and typea

Provider Non-commercial Commercial Comment

RS G RS + G

USGS Global Visualisa-
tion Viewer (GloVis) -
http://glovis.usgs.gov/

X Various satellite and
land characteristics
datasets including
the free Landsat
archive

USGS Earth Explorer -
http://earthexplorer.usgs.gov/

X Aerial photography,
DEM, and various
satellite datasets
including the free
Landsat archive

Global Land-cover
Facility (GLCF) -
http://glcf.umd.edu/data/

X Various satellite and
DEM datasets
including the free
Landsat archive

USGS LP DAAC
Global Data Explorer -
http://gdex.cr.usgs.gov

X X ASTER Global DEM
V2, SRTM,
GTOPO30 and Blue
Marble data

USGS Earth Resources
Observation and Sci-
ence (EROS) Centre -
https://eros.usgs.gov/find-data

X X A collection of data
sources

Sentinel Data Hub - ht-
tps://senthub.esa.int

X Data from the ESA
GMES/Copernicus
Sentinel satellites

NASA EOSDIS
Reverb—ECHO -
http://reverb.echo.nasa.gov/

X X A wide variety of
satellite and DEM
datasets including
ASTER Global DEM
(G-DEM)

ESA Landsat 8
Web Portal - ht-
tps://landsat8portal.eo.esa.int

X Landsat 8 datasets
hosted by the
European Space
Agency (ESA)

Canadian Geospatial Data In-
frastructure (CGDI) GeoGratis
- http://geogratis.gc.ca/

X X Various RS, DEM
and thematic data

Canadian Council on Geo-
matics (CCOG) GeoBase -
http://www.geobase.ca/

X X DEM, SPOT,
Landsat and
RADARSAT-1



Brazil National Institute
for Space Research -
http://www.dgi.inpe.br/CDSR/

X CBERS-2 and
CBERS-2B

CGIAR-CSI Geo-
Portal SRTM -
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp

X 90 m DEM data

ERSDAC -
http://www.jspacesystems.or.jp/ersdac/GDEM/E/index.html

X ASTER Global DEM
(G-DEM) with 30 m
DEM data

USGS Global Multiresol-
ution Terrain Elevation
Data 2010 (GMTED2010) -
http://topotools.cr.usgs.gov/

X Global DEM

USGS National Map Viewer-
http://viewer.nationalmap.gov/

X X Orthoimagery,
elevation,
land-cover, US
Topo, scanned
historic topographic
maps

USDA NRCS Geospa-
tial Data Gateway -
http://datagateway.nrcs.usda.gov/

X X Aerial orthoimagery
and other geospatial
data

Oregon State Uni-
versity HICO -
http://hico.coas.oregonstate.edu/

X X Hyperspectral
imager

USGS EROS Hazards Data
Distribution System (HDDS) -
http://hddsexplorer.usgs.gov/

X Hazards related
imagery

USGS Land-cover
Institute (LCI) -
http://landcover.usgs.gov/landcoverdata.php

X Wide variety of
land-cover datasets

Esri ArcGIS Online -
http://www.esri.com/software/arcgis/arcgisonline/features

X X A wide variety of
raster and vector
geospatial datasets

Esri ArcGIS Online
Image Services -
http://www.arcgis.com/home/gallery.html

X X Providing
multispectral,
temporal, and event
imagery, Basemaps

GIS Data Depot -
http://data.geocomm.com/

X X A wide variety of
raster and vector
geospatial datasets



Dundee Satellite
Receiving Station -
http://www.sat.dundee.ac.uk/

X Images from NOAA,
SeaStar, Terra and
Aqua polar orbiting
satellites

Landmap -
http://www.landmap.ac.uk/

X X Providing a
combination of
remotely sensed
imagery and a high
quality spatial data

ASTER Spectral Library -
http://speclib.jpl.nasa.gov/

Digital spectral
libraries

ASU Thermal Emission
Spectroscopy Laborat-
ory Spectral Library -
http://tes.asu.edu/spectral/library/

Digital spectral
libraries

USGS View - SPECPR -
Software for Plotting Spectra -
http://pubs.usgs.gov/of/2008/1183/

Digital spectral
libraries

Reflectance Experiment
Laboratory (RELAB)
at Brown University -
http://www.planetary.brown.edu/

Digital spectral
libraries

AVIRIS (Jet Propulsion
Laboratory, Pasadena, CA)
- http://aviris.jpl.nasa.gov/

X Hyperspectral data

Airbus Defence and Space -
http://www.astrium-geo.com/

X A wide variety of
remote sensing data
products including
SOPT-7 and
providing sample
imagery

Alaska Satellite Facility - ht-
tps://www.asf.alaska.edu/

X A wide variety of
datasets and SAR
datasets

Apollo Mapping - ht-
tps://apollomapping.com/

X A wide variety of
remote sensing data
products

DigitalGlobe -
http://www.digitalglobe.com/

X A wide variety of
remote sensing data
products and
providing samples
of imageries



LAND INFO Worldwide Map-
ping - http://www.landinfo.com/

X A variety of
imageries and
geospatial data
products and
providing samples
of imageries and
prices

MapMart -
http://www.mapmart.com

X A variety of
imageries and
geospatial data
products and
providing samples
of imageries and
prices

Satellite Imaging Corporation -
http://www.satimagingcorp.com/

X A variety of
imageries and
geospatial data
products

Spatial Energy -
http://www.spatialenergy.com/

X A variety of
imageries and
geospatial data and
products

Penobscot Corporation -
http://www.penobscotcorp.com/

X A variety of
imageries and
geospatial data
products

MDA Geospatial Services -
http://gs.mdacorporation.com/

X RS, RADARSAT-1
and RADARSAT-2

Infoterra - http://terrasar-x-
archive.infoterra.de/

X TerraSAR-X Archive

ImageSat International -
http://www.imagesatintl.com/

X EROS A data

i-cubed - http://www.i3.com/ X Various geospatial
data

German Aerospace Centre -
http://www.dlr.de/hr/en/

X E-SAR data

eMap International -
http://www.emap-int.com/

X Various geospatial
data

Aero-Graphics -
http://www.aero-graphics.com/

X Aerial orthoimagery,
hyperspectral,
LiDAR & Radar

Aerial Services -
http://www.aerialservicesinc.com/

X Aerial Othoimagery,
Hyperspectral,
LiDAR & Radar with
providing samples

aRS: remote sensing and G: geospatial.
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A Shadow-Overlapping Algorithm for Estimating
Building Heights From VHR Satellite Images

Nada Kadhim , Member, IEEE, and Monjur Mourshed , Member, IEEE

Abstract— Building height is a key geometric attribute for
generating 3-D building models. We propose a novel four-stage
approach for automated estimation of building heights from their
shadows in very high resolution (VHR) multispectral images.
First, a building’s actual shadow regions are detected by applying
ratio-band algorithm to the VHR image. Second, 2-D building
footprint geometries are identified using graph theory and mor-
phological fuzzy processing techniques. Third, artificial shadow
regions are simulated using the identified building footprint
and solar information in the image metadata at predefined
height increments. Finally, the difference between the actual and
simulated shadow regions at every height increment is computed
using Jaccard similarity coefficient. The estimated building height
corresponds to the height of the simulated shadow region that
resulted in the maximum value for Jaccard index. The algorithm
is tested on seven urban sites in Cardiff, U.K. with various levels
of morphological complexity. Our method outperforms the past
attempts, and the mean error is reduced by at least 21%.

Index Terms— Building detection, building height estimation,
Jaccard index, morphological dilation, region fitting, shadow
detection, very high resolution (VHR) satellite imagery.

I. INTRODUCTION

GEOMETRY identification of buildings and subsequent
(3-D) modeling play an important role in a range of

urban applications—from urban energy and environmental
analysis [1] and the estimation of renewable energy poten-
tial [2] to data-centric operation and management of smart
and resilient cities [3]. Building height (HB) is one of the
key geometric parameters that is used to transform the (2-D)
footprint area into a 3-D model. Manually obtaining HB from
a large number of buildings for urban-scale 3-D modeling
and analysis is resource intensive. The difficulty and cost
involved in HB estimation also create a barrier to the use and
deployment of advanced modeling, analysis, and management
of the built environment for most, if not all cities and countries.
Finding an efficient and cost-effective way to estimate HB is,
therefore, of paramount importance.

Manuscript received June 13, 2017; revised August 18, 2017 and October 3,
2017; accepted October 9, 2017. Date of publication December 4, 2017;
date of current version December 27, 2017. This work was in part by the
Higher Committee for Education Development, Office of the Prime Minister,
Baghdad, Iraq, and in part by the Cardiff University Open Access Support
Team University Library Service, Cardiff University, U.K. (Corresponding
author: Nada Kadhim.)

N. Kadhim is with the School of Engineering, Cardiff University,
Cardiff CF24 3AA, U.K., and also with the Department of Civil Engi-
neering, University of Diyala, Baqubah, Iraq (e-mail: mohammedsali-
hnm@cardiff.ac.uk).

M. Mourshed is with the School of Engineering, Cardiff University,
Cardiff CF24 3AA, U.K. (e-mail: mourshedm@cardiff.ac.uk).

Color versions of one or more of the figures in this letter are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2017.2762424

A common factor in the extraction of HB approaches
based on remotely sensed elevation data is that they require
sophisticated data calibration and processing to obtain a reli-
able digital surface model (DSM). Although studies have
shown the utility and usefulness of elevation data for extract-
ing HB, their implementation typically requires the use of
additional data and often multiple images from different angles
to obtain a satisfactory view of building size and shape [4].
Another feature of elevation data-based HB extraction is the
need for data preprocessing because of point cloud sparsity
and data misalignment [5]. As an alternative to costly data
acquisition and processing, several studies have developed
methods for obtaining HB from one data source, such as
satellite images utilizing the shadows cast by buildings.

This letter presents an original approach, termed the
shadow-overlapping algorithm, ASO, for the automated esti-
mation of HB from monocular very high resolution (VHR)
multispectral pan-sharpened satellite images. The contribu-
tions of this paper are threefold: 1) the generation of artifi-
cial shadows, SAr from a simulation of the actual shadows,
SAc of the buildings in the image space; 2) the solution
to the issue of overlapping shadows of the multiple build-
ings; and 3) the development of an algorithm by combining
1) and 2) for the automated estimation of HB by identifying
the optimal height value for the given building.

The rest of this letter is structured as follows. Previous work
on HB estimation is reviewed in Section II. Our approach and
the simulation process are described in Section III. Experi-
mental results are discussed in Section IV, while Section V
provides concluding remarks and directions of the future work.

II. PREVIOUS WORK

The first task in shadow-based HB estimation is the extrac-
tion of shadow regions from VHR satellite images. In this
respect, [6] reported two widely used techniques: ratio-band
and Graph-Cut partitioning via kernel mapping, with overall
accuracies of 85% and 79%, based on two performance
metrics, F1 score (harmonic mean of precision and recall)
and probabilistic Rand index, respectively. A semiautomatic
approach was proposed in [7] to estimate HB from a single
satellite image by manually adjusting the height of a simulated
building and then matching the projected shadow with the
actual. In contrast, [8] used volumetric shadow analysis to
automatically extract HB, which is primarily designed for
buildings with full scenes of their bases and rooftops, including
the sides of the building. Reference [9] also matched shadow
regions but estimated HB using simple triangulation. Estima-

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Abstract It is essential to monitor urban evolution at

spatial and temporal scales to improve our understanding

of the changes in cities and their impact on natural

resources and environmental systems. Various aspects of

remote sensing are routinely used to detect and map fea-

tures and changes on land and sea surfaces, and in the

atmosphere that affect urban sustainability. We provide a

critical and comprehensive review of the characteristics of

remote sensing systems, and in particular the trade-offs

between various system parameters, as well as their use in

two key research areas: (a) issues resulting from the

expansion of urban environments, and (b) sustainable

urban development. The analysis identifies three key trends

in the existing literature: (a) the integration of heteroge-

neous remote sensing data, primarily for investigating or

modelling urban environments as a complex system, (b) the

development of new algorithms for effective extraction of

urban features, and (c) the improvement in the accuracy of

traditional spectral-based classification algorithms for

addressing the spectral heterogeneity within urban areas.

Growing interests in renewable energy have also resulted

in the increased use of remote sensing—for planning,

operation, and maintenance of energy infrastructures, in

particular the ones with spatial variability, such as solar,

wind, and geothermal energy. The proliferation of sus-

tainability thinking in all facets of urban development and

management also acts as a catalyst for the increased use of,

and advances in, remote sensing for urban applications.

Keywords Remote sensing systems � Remote sensing

applications � Environmental sustainability � Urban
environments � Sustainable cities

Introduction

Cities are engines of economic prosperity and social

development that arise from the concentration of people

and economic activities but often manifests in unsustain-

able urban environments [57]. Economic opportunities in

cities act as a catalyst for rapid urbanisation across the

globe. Urbanisation rates are uneven and are much faster in

developing countries [7]. By 2030, the annual average rate

of urban growth is expected to be 0.04 % in Europe, 1.5 %

in the USA, 2.2 % in East Asia and the Pacific, 2.7 % in

South Asia, 2.3 % in the Middle East and North Africa, and

3.6 % in Sub-Saharan Africa [80]. Increased urban

migration has contributed to the unplanned or poorly

planned and implemented growth and expansion of cities.

The latter is a critical factor for urban stakeholders as

unplanned urban growth can have a long-term negative

impact on urban sustainability on a range of scales—local,

regional, national, and potentially inter-governmental [75].

Impacts include detrimental economic consequences such

as the reduction in the productivity of key economic sectors

[18]; environmental degradation such as poor air quality,

and increased urban temperatures and surface run-off
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AUTOMATIC EXTRACTION OF URBAN STRUCTURES BASED ON SHADOW 
INFORMATION FROM SATELLITE IMAGERY 

Nada M. Mohammed Kadhim1, 2, Monjur Mourshed1, Michaela Bray1
1School of Engineering, Cardiff University, Cardiff, UK 

2School of Engineering, University of Diyala, Diyala, Iraq 
MohammedSalihNM, MourshedM, BrayM1 @ cardiff.ac.uk 

ABSTRACT
The geometric visualisation of the buildings as the 3D 
solid structures can provide a comprehensive vision in 
terms of the assessment and simulation of solar 
exposed surfaces, which includes rooftops and 
facades. However, the main issue in the simulation 
a genuine data source that presents the real 
characteristics of buildings. This research aims to 
extract the 3D model as the solid boxes of urban 
structures automatically from Quickbird satellite 
image with 0.6 m GSD for assessing the solar energy 
potential. The results illustrate that the 3D model of 
building presents spatial visualisation of solar 
radiation for the entire building surface in a different 
direction. 
INTRODUCTION 
Providing sufficient energy to meet the needs of urban 
dwellers is undoubtedly a challenging task. Solar 
energy is one form of clean renewable energy that can 
provide sustainable electricity without toxic pollution 
or global warming emissions. Therefore, there is a 
growing demand worldwide for the use of solar 
photovoltaic (PV) technology because it has a much 
lower environmental impact than other conventional 
energy sources. However, in order to exploit this 
renewable energy within urban areas, a crucial process 
is the automated detection and evaluation of the 
surfaces available for integrated solar installations. In 
particular, the simulation of roof/surface brightness 
from a genuine source that presents the real 
characteristics and functionalities of buildings still 
remains an open issue. Further, although considerable 
research has been devoted to detecting the rooftops of 
buildings, rather less attention has been paid to 
creating and completing a 3D model of urban 
buildings. For this reason, there is a need to increase 
our understanding of the solar energy potential of 
surfaces and roofs to formulate future adaptive energy 
policies for the sustainability of cities.  
This paper is devoted to the automated extraction of 
3D urban structures as solid blocks using Very High 
Resolution (VHR) satellite imagery. The motivation to 
use VHR satellite imagery is that such data can 
provide reliable and efficient detail in the creation of 
urban buildings within various urban landscapes. 

Furthermore, satellite imageries can provide a 
magnificent test domain for any application with a 
variety of illumination and environmental conditions, 
and can be available in the public-domain (e.g. Google 
Earth). Satellite images are useful for locating 
individual buildings, connected buildings, and both 
small and large buildings, providing information about 
their geometry, and depicting the surrounding 
environment of buildings and the urban fabric nearby. 
Therefore, we focus on assessing the solar energy 
potential not only of the rooftops but also the 
from urban area which solely contains the detached 
buildings through the automatic creation of a 3D 
vision of these buildings. 
Many previous studies in this context have evaluated 
the amount of insolation within urban areas on diverse 
data types, such as pre-existing maps of building 
footprints, LiDAR data, and/or aerial images. 
However, such data has proven its effectiveness in 
solar energy assessments within urban landscapes, 
even though the availability of such data in a particular 
urban area is mostly difficult to obtain. This is due to, 
for instance, their high costs (e.g. LiDAR and aerial 
images) or not being frequently updated (e.g. the 
building footprint maps). The production of the 
building location maps requires continued survey 
campaigns, which also require more money, time and 
effort. Such data and maps cannot even be collected if 
there is a conflict within a study area or access is 
difficult. However, such cases have quite commonly
collected real geospatial data to assess the solar energy 
potential for feeding the existing buildings with 
sufficient electrical energy as one form of solar energy 
utilisation. VHR satellite imageries are a good 
alternative to overcome the difficulty of collecting 
data from a genuine data source at lower cost, with 
continuous updating, and a wide area of coverage. In 
addition to the availability of visible bands (R, G, and 
B) in a VHR satellite image, the near-infrared band 
(INR) is an important spectral band that can be used to 
extract the shadow regions of buildings, which are 
considered strong evidence of the existence of urban 
constructions. 
In this paper, we propose a new approach which will 
automatically create 3D models of isolated buildings 
from a VHR multispectral satellite image without any 
extra information. The proposed approach of the 
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ABSTRACT: 

 

Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban 

constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, 

and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract 

shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that 

have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are 

presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of 

shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-

art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios 

between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and 

dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on 

the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in 

detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to 

attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR 

satellite image that comprises a visible spectrum range (RGB true colour), the results demonstrate that the detection of shadow 

regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the 

derived shadow map from the Quickbird image indicates significant performance of the ratio algorithm. The differences in the 

characteristics of the two satellite imageries in terms of spatial and spectral resolution can play an important role in the estimation 

and detection of the shadow of urban objects. 
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1. INTRODUCTION 

1.1 Shadows in the VHR Satellite Imageries 

Very High Resolution (VHR) satellite imagery is considered 

one of the highest quality currently available from remote 

sensing satellites because of its ability to offer sub-meter 

resolution. That means the VHR satellite imageries are capable 

of providing a high level of detail, which make them a reliable 

and highly vital source of information. Therefore, the VHR 

satellite imageries support a range of services, especially in 

urban areas, for city planning and monitoring, urban change 

detection, estimation of human activities/population, and urban 

object/feature detection. However, due to urban constructions 

which are built above ground, such as buildings and bridges, 

inter alia, shadows are the most common component 

accompaniments for these constructions that can be seen in 

VHR images. In the fact that the incident light rays, typically 

sunlight, when intercepted by an off-terrain object, shadows 

will be generated and cast on other urban surfaces/objects at the 

moment of image capture by optical satellites. Figure 1 presents 

three conditions (a light source, an object to cast the shadow 

line, and a surface to receive the shadow line and shadow) that 

must be met to produce a shadow. In this context, a shadow 

indicates the shape of the object casting it, and in many ways it 

can indicate the texture of the surface receiving the shadow 

(Yee, 2013). In contrast, shade can be defined as the side of an 

object which is opposite the direction of illumination, which has 

less colour tone of the full blackness (the value intensity of 

darkness) compared to the objects' shadows that have very low 

values of brightness in VHR images, or mostly have zero value 

(pure black), Figure 1.  

The fact is that the line that locates and separates the light and 

shade areas on the object determines the shadow line on a 

receiving surface. The shadow line, in turn, determines the dark 

area cast onto the surface on which the object rests and which 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2, 2015 
PIA15+HRIGI15 – Joint ISPRS conference 2015, 25–27 March 2015, Munich, Germany
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Appendix C

The developed 3D city models algorithm structure overview

The developed algorithm codes and scripts will be published with the paper - The Automated
Creation of Urban Building 3D Geometry Using WorldView-3 Satellite Images. In http :
//ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber = 36.

1GMM: Gaussian Mixture Models
2SAc: Actual shadow regions
3SAr: Artificial shadow regions
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