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Abstract—We present a distributed information fusion system
able to integrate heterogeneous information processing services
based on machine learning and reasoning approaches. We focus
on higher (semantic) levels of information fusion, and highlight
the requirement for the component services, and the system as
a whole, to generate explanations of its outputs. Using a case
study approach in the domain of traffic monitoring, we introduce
component services based on (i) deep neural network approaches
and (ii) heuristic-based reasoning. We examine methods for
explanation generation in each case, including both transparency
(e.g, saliency maps, reasoning traces) and post-hoc methods
(e.g, explanation in terms of similar examples, identification of
relevant semantic objects). We consider trade-offs in terms of
the classification performance of the services and the kinds of
available explanations, and show how service integration offers
more robust performance and explainability.

Index Terms—information fusion, explainability, interpretabil-
ity, machine learning, reasoning, distributed systems

I. INTRODUCTION

Our goal is to facilitate situational understanding by human
analysts by providing an open, distributed information fusion
architecture that integrates machine learning and reasoning
services operating on multimodal data feeds. We broadly
subscribe to the view that an integrated learning and reasoning
system can be viewed as a dynamic composition of simpler
models such that the composed system is able to answer
questions that the individual models cannot [1]. In our case,
we require that the system not only provide human analysts
with classified or inferred assessments of a situation, but
also be able to provide explanations for its assessments in
terms of a typology of model interpretability [2]. Moreover,
we aim to take advantage of the compositional architecture
by exploiting semantic relationships between model outputs
to improve generated explanations, especially for informa-
tion fusion processes involving sub-symbolic models where
interpretability remains a challenging problem, including deep
neural networks, DNNs [3].

We require that the architecture be distributed to allow
for information processing (including pattern recognition and
inference) to occur anywhere on the network, and also to allow
sharing of heterogeneous services from multiple providers.
Sharing brings the additional requirement that there must be
a degree of control over service access and information flow,
e.g., for privacy or security reasons.

The work presented in this paper is framed as a case study,
in which a representative situational understanding problem
and available multimodal data feeds facilitate experiments in:

1) integrating machine learning and reasoning models via
a lightweight service-oriented architecture;

2) exploring trade-offs between (i) model performance for
situational assessment and (ii) interpretability for expla-
nation generation; and

3) enabling the imposition of constraints to control infor-
mation flow.

The paper is organised as follows: Section II summarises
prior work in information fusion and explainability; Section III
introduces the application used as the basis for our case
study; Section IV describes the main services: a machine
learning service based on a convolutional neural network
(CNN) and a composition of services that comprise a reasoner;
Section V describes the explanations generatable for each
service; Section VI concludes, pointing to future work.

II. RELATED WORK

Our work aims to support situational understanding via
information fusion, with a focus on higher fusion levels
and human-in-the-loop processes [4]. While much work in
fusion of multimodal data addresses signal processing tech-
niques applied at lower (data) levels (e.g., [5]) our interest
in integrating heterogeneous machine learning and reasoning
services leads us to consider late fusion at higher (information)
levels (e.g., [6]). Moreover, we require services to provide
explanations for their outputs and, where outputs are fused,
we require the fusion of those explanations also.

Explainability in artificial intelligence systems has been
recognised as a problem for several decades, and was ex-
tensively studied in the 1980s and 1990s in the context of
symbolic reasoning (‘expert’) systems (e.g., [7], [8]). The
focus then was on effective means to make the reasoning
of knowledge-based systems transparent to end-users. Funda-
mentally, the approaches sought to frame explanations in terms
of reasoning traces (e.g., chains of rule firings or proof trees)
and component data (i.e., input data that triggered the rules
or grounded the proof). While non-trivial, this work benefited
from these systems being symbolic rather than sub-symbolic;
their internal elements were largely explicable.

The resurgence of interest in sub-symbolic approaches in
recent years, chiefly DNNs, has led renewed interest and



concerns regarding explainability1. System transparency re-
mains a key issue, but it is also recognised that ‘traces’ in
terms of DNN weights are not explicable and, often, post-hoc
explanations are more useful [2]. The dominant approach to
addressing transparency in DNNs is in image classification
systems, to associate an output class with the parts of an
input image that had the greatest weight in determining the
classification; e.g., saliency mapping identifies regions of
similarly-weighted pixels in an input image that contribute
positive weight towards a particular output class [9], [10].

Common post-hoc explanation approaches for DNNs in-
clude explanation-by-example and text explanation. The for-
mer draws on earlier work in case-based reasoning wherein an
explanation is framed in terms of a selection of labelled cases
computed to be similar to the input case [11], [12], [13]. The
latter employs object detection techniques to identify mean-
ingful sub-elements of the input and constructs an explanation
based on these elements, in a manner similar to automatic
image captioning [14].

III. TESTBED APPLICATION

Our testbed was chosen as an exemplar application where
open data and pre-existing services were readily available,
and where machine learning and reasoning services could
plausibly operate at a range of semantic scales (low to high-
level). We selected the problem of monitoring and predicting
traffic congestion. In many cities, multiple organisations offer
open sources of information. For example, Transport for Lon-
don (TfL) offers an application programming interface (API)
to view imagery and video from their traffic cameras placed
around London2, while Open Street Maps (OSM) offers infor-
mation about roads, e.g., speed limit3.

A. Testbed System Architecture and Design

The structure of the system is shown in Figure 1. The
figure shows information flows from data sources through
processing services to decision-support classifications. Dark
grey arrows show the path information takes to produce
congestion classifications (ratings) and light grey arrows show
information flows that produce explanations of those ratings.
There are two service chains producing classifications: one via
a CNN (only) and a second via a more complex composition
of services that feed in to a reasoning service. We refer to
the CNN as the congestion classifier and the latter as the
congestion reasoner. Section IV details these services and
Section V examines the kinds of explanations that can be
generated from each.

B. Data Collection and Labelling

TfL provides still images and video sequences (of a few
seconds duration) from over 1,200 cameras, released at a 5-
minute refresh rate. This paper focuses principally on the still

1Recent machine learning literature favours the term ‘interpretability’ over
‘explainability’. We use the terms interchangeably here.

2http://www.trafficdelays.co.uk/london-traffic-cameras/
3http://www.openstreetmap.org/

Fig. 1. Testbed system architecture: dark grey arrows show information flow
leading to congestion ratings; light grey arrows show information flow to
generate explanations for ratings

images; these are 352×288 pixels. We collected images and
video sequences from 691 cameras over a period of 23 days,
including imagery at all times of the day and night, in different
location types, and over a range of traffic and environmental
conditions. See Figure 2 for example images illustrating some
of the variations in lighting, traffic and road configuration
present in the dataset.

A subset of the imagery covering five locations over a
24 hour period was selected for ground truth labelling. For
this, a web-based image annotation tool4 was developed to
allow users to label each image as one of: ‘congested’,
‘uncongested’, ‘unknown’ or ‘broken’. Users were guided to
use the first two labels for images where they were confident
that the traffic was congested or not, to use ‘unknown’ where
they were uncertain, and ‘broken’ to label images that were
blank or otherwise unreadable (an artifact of the TfL system).
Use of this tool by 12 users yielded a dataset consisting
of 4,117 images labelled by at least one annotator. Once the
broken images were rejected a total of 3,967 usable labelled
examples remained. Taking the most prevalent labelling for
each image revealed that 57% were uncongested and 43%
congested. In order to take account of the non-binary nature
of the phenomena of interest, and differing opinions expressed

4https://image-annotation.eu-gb.mybluemix.net/



Fig. 2. Example Images: uncongested (left), borderline (middle) and congested (right)

when labelling the imagery, soft class memberships were
derived for use in training and validation. These took into
account the labels supporting a class, against the class and for
the ‘unknown’ labels:

pi =
vi + u+ 1∑N

j=1(vj + u+ 1)
.

Here, vi are the number of annotations assigned to class i
and u are the number of annotations for the unknown class.
This soft class membership avoids issues caused by the hard
classification of borderline cases adversely biasing results. For
classifier development the images were randomly partitioned
into a training set of 80% of images and 10% for each
of the validation and test sets. (This approach resulted in
acceptably good performance for our purposes with relatively
fast training; for a production system we would perform cross-
validation.)

The services are integrated using the Node-RED pro-
gramming environment for Internet of Things applica-
tions (nodered.org). System code and data is available at:
https://osf.io/wm3t9

IV. MACHINE LEARNING AND REASONING SERVICES

A. CNN Congestion Classifier

The congestion classifier uses a pair of DNNs. The first
uses the GoogLeNet [15] Inception network, pre-trained on
ImageNet data, for feature extraction. A feature vector for
transfer learning is tapped-off before the network’s fully
connected layer. The feature vector is passed into a five-layer
fully-connected network to transform image features into a
classification assessment. This output (congestion rating) is
the congestion class conditional probability. Based on previous
experience, we used hyperbolic-tangent and softmax activation
functions and trained the network using the Adam optimizer
until the cross-entropy on the validation set stops improving.
Both networks are implemented in TensorFlow [16].

Training Method: The training, validation and test datasets
were generated by collecting a number of 200×200 pixel sub-
images from each starting image. Firstly, the central sub-image
was collected, from which we produced eight overlapping
images formed by offsetting the selection region by 25 pixels
to the left, right, up and down. This was repeated for left-right

flipped variants yielding an augmented dataset of over 57,000
training and 7,000 validation and test images respectively. The
sub-images generally omit the TfL annotations at the edges of
the originals (Figure 2).

Results: A selection of classified images are shown in
Figure 2: an image classified as uncongested on the left, a bor-
derline case in the centre and an image classified a congested
on the right. Performance on the test set as a whole (Table I)
indicated that the proportion of images classified according
to most prevalent label was over 95%, and examination of
the miss-classified images revealed that most were on the
classification borderline (with probability close to 50%).The
recorded precision and recall are 0.98 and 0.96 respectively.

Predicted class
Congested Not Congested Total

True Congested 1616 66 1682
class Not Congested 35 2269 2304

Total 1651 2335

TABLE I
CONFUSION MATRIX FOR CNN CONGESTION CLASSIFIER (TFL IMAGERY

FROM 5 LOCATIONS OVER A 24 HOUR PERIOD)

B. Congestion Reasoner

As shown in Figure 1, the congestion reasoner involves
an integration of multiple services and data sources and was
intentionally crafted as a lightweight heuristic-based service.

Development Method: Video clips from the TfL API are
passed to an optical flow (OF) algorithm5 which generates
information in the form of blobs in motion. Semantically,
these detected entities cannot be assigned any meaning and
we are unsure as to whether the blobs are cars, people or
something else. Therefore, to make this information more
usable, key frames of the video are sent to an object detector
(a retrained instance of the VGG-16 regional-convolutional
neural network, R-CNN, model [17]) able to identify the cars
in the frames. We fuse the information regarding the detected
cars together with the detected blobs (including their pixel
velocities across the video) which results in a fused output of
detected cars and their pixel velocities.

5Mixture of Gaussian (MOG2) & Lucas-Kanade (github.com/itseez/opencv)



Only using the R-CNN on key frames (specifically every 30
frames) reduces the computational cost of the service chain
(given that the OF algorithm is comparatively inexpensive
when compared to the R-CNN). This approach also demon-
strates how services can be used within a service composition
whilst adhering to possible usage constraints (such as limiting
the number of calls that can be made to a service).

Once the pixel velocities of the cars for a video are obtained,
they can be averaged and this can be compared to the speed
limit of the location. From the ratio between the velocity and
speed limit, a conclusion can be drawn about the value range
that the ratio commonly moves within. From this we can derive
a heuristic that determines at what point the ratio indicates low
and high levels of traffic flow, allowing us to infer the level
of congestion.6

Results: For the generation of results for this service chain,
ground truth for TfL video was required. To produce this, we
utilised the labels assigned during the CNN image data set
generation. These images were originally produced by pulling
frames from the TfL videos from across a single day. As such,
the labels assigned to these frames could be aggregated per
video to provide a ground truth label for the source video and
these labeled videos (733 in total) could form the data set
for testing. The performance of the reasoner on the test set is
shown in Table II. The recorded precision and recall are 0.79
and 0.87 respectively.

Predicted class
Congested Not Congested Total

True Congested 283 51 334
class Not Congested 91 308 399

Total 374 359

TABLE II
CONFUSION MATRIX FOR CONGESTION REASONER CLASSIFYING

CONGESTION IN TFL VIDEO (5 LOCATIONS ACROSS 24 HOUR PERIOD)

V. EXPLANATION GENERATION

In this section, we outline explanation generation techniques
applicable to our two congestion detection methods, together
with additional services used to support them; Table III
summarises these.

A. CNN Congestion Classifier Explanations

Transparent explanation via saliency map: Transparent
explanations are those which are generated using the signals
that pass through the DNN model and thus aim to directly
indicate the reasons for model output. For this work we used
the LIME [9] tool to generate a saliency map in the form of
highlighted regions of the original input. These region were
important in the model’s assessment of the likelihood of the
output label (strong evidence supporting the label or strong

6Our heuristic function for computing the traffic flow ratio f where s is
the location speed limit is: f = tanh(v̄ × tanh(s × 0.08)). If f ≤ 0.4 we
infer congestion. The constants 0.08 and 0.4 were empirically derived from
observations of traffic behaviour at a range of locations.

Explanation
Detection technique Supporting services
CNN Reasoner LIME R-CNN

Tr
an

sp
ar

en
t

Saliency
map • •
Component
data •
Reasoning
trace •

Po
st

-h
oc

Semantic
objects • • •
Training
examples •

TABLE III
EXPLANATION AVAILABILITY AND SUPPORTING SERVICES FOR

CLASSIFIER AND REASONER SERVICE CHAINS

evidence against it). Figure 3 shows an input image and its
corresponding saliency map derived using LIME.

Fig. 3. Original input image (left) and saliency map (right: red regions
show evidence towards ‘congested’, green regions show evidence towards
‘not congested’)

‘Map forms’ of explanation are a common approach to
adding explainability to black box models. LIME and similar
techniques (such as deep Taylor decomposition [18]) that
produce maps have important common characteristics that
define how they can be used to provide interpretations. One
key characteristic is that, in order for an explanation to be
human-interpretable, it will often need to be presented in the
modality of, and in relation to the original input. This can
lead to challenges with sharing the explanation if the original
input data cannot be presented for some reason (e.g., privacy).
The next section shows how post-hoc explanations that do not
reveal the input data can address this problem.

Post-hoc explanation via salient semantic object identifica-
tion: Unlike transparent explanations, post-hoc explanations
do not directly derive from the signals of a model but still can
provide justification for, or further insight into, the model’s
output. In the technique described in this section, the post-
hoc explanation is generated using a transparent explanation
(saliency map) as input rather than using the original raw input
data. This provides assurance that the post-hoc explanation is
related to the decision process of the model.

The light grey arrows in Figure 1 show the passing of
the saliency map from LIME to the R-CNN detector that
produces a list of detected salient semantic objects (SSOs)



that are present within the highlighted regions of the salient
map and which have a close semantic relationship to the target
label (‘congestion’). To detect the SSOs, the saliency map
is used to mask the original input image leaving only the
regions of the image that had the highest impact on the model’s
classification decision. The set of semantically-relevant objects
is provided by a knowledge base (KB); in our current work
this is a custom KB, but open KBs can be used instead (e.g.,
conceptnet.io) Given a set of semantically-relevant objects,
an open situational understanding system could in principle
automatically discover available services trained to detect the
relevant objects. In our case study, we already had a service
available for detecting cars in imagery (the R-CNN), created
for use in the reasoner service chain.

This explanation technique generates a list of SSOs which
is meaningful in absence of the input image. An example
is shown in Figure 4. As mentioned above, this allows the
original image to remain private (the explanation service
can return the classification and the SSO list as explanation
without returning the input image). Moreover, where network
bandwidth is very low, transmitting the object list requires a
fraction of the bandwidth required to transmit even a thumbnail
image.

Fig. 4. This example shows a LIME saliency map (left), and an SSO identified
in the salient region via the car detector service

The SSO list is also easily machine-processable, unlike the
saliency map which is intended for direct interpretation by a
human user. The SSO list can be used to verify whether the
classifier has used features that are semantically relevant to
the target class. The system can detect unusual cases (e.g.,
en empty SSO list) and automatically flag a classification as
requiring the attention of a human, which can help direct
user attention to cases where a human confirmation of a
classification is necessary.

Post-hoc explanation via similar training set examples:
A common post-hoc explanation technique involves retrieving
similar previous cases, usually from the training set [2]. For
this explanation to be available, the trained classifier must first
be used to provide a rating for the original training set images
(or a subset of them). When an explanation is required for a
live classification, the system can look for similar classification
ratings within the ratings of the training data and present
examples alongside the current input image. This indicates
what the model considers to be similar presence levels of the
output class.

In our case study, for an image with congestion class
conditional probability p, we display one example with a

class conditional probability close to max(0, p − ε) and one
with a probability close to min(p + ε, 1). We considered
that this would provide a well-rounded impression of the
model’s internal representation. Figure 5 shows an example.
Currently, ε = 0.1; however, this can be configured as
desired and further research could be conducted to explore
the preferences of users.

Fig. 5. Explanation by training set examples: (left) training set example with
congestion rating 0.1 less than input, (middle) input image, (right) training
set example with congestion rating 0.1 more than input

B. Congestion Reasoner Explanations
Transparent explanation via component data: As the con-

gestion reasoner uses a composition of services, the system
is able to offer a transparent explanation in the form of the
components of information that were used to make the final
classification. Here, the speed limit, the traffic flow and the
weighted ratio rating between the two are given to the decision
agent in order to provide interpretability of the final conclusion
generated by the service.

Transparent explanation via reasoning trace: As common
in rule-based systems, the ability to easily explain inferences
by providing a trace of the system’s reasoning is possible. In
our system, a rule is used that states if the ratio between the
average car pixel velocity and the speed limit is lower than a
threshold, the road is classified as congested. This rule can be
presented to the decision maker to provide an explanation of
how the service chain used the component data to infer the
final classification.

C. Discussion
We compared the classifications produced by the congestion

reasoner across the test set (733 videos) to the classifications
produced by the CNN congestion classifier for imagery at
matching location and times. We also compared both these
sets of classifications to the respective counts of detected SSOs
from the CNN classification. Table IV shows the correlation
between (i) the congestion rating (congestion class conditional
probability) provided by the CNN congestion classifier, (ii)
the count of SSOs detected, and (iii) the congestion rating
provided by the reasoner (i.e., 1 − traffic flow ratio). All
correlations are significant at p < 10−7. Notably, there is a
strong correlation between the number of SSOs detected and
the congestion rating of the CNN. This shows that the SSO
list method does appear to offer a useful explanation for the
CNN’s classification.

These correlations give us confidence that the system shown
in Figure 1 provides an integrated approach to traffic con-
gestion detection and explanation. The CNN-based classifier



SSO count 1 − flow ratio
Congestion rating 0.61 0.41
SSO count — 0.20

TABLE IV
SPEARMAN CORRELATION BETWEEN (I) CNN CONGESTION RATING, (II)

COUNT OF DETECTED SSOS AND (III) 1 − TRAFFIC FLOW RATIO; ALL
CORRELATIONS SIGNIFICANT AT p < 10−7

can be considered as the primary congestion detection method
due to its higher accuracy (Table I vs Table II). From this,
we can generate statements in the form of ‘This location
appears congested/not congested’ dependant on the classifier’s
output. Taking the congestion reasoner’s output as a secondary
method, we can add to this statement a clause that is either
complementary (‘This location appears congested and there
appears to be a low level of traffic flow’) or in disagreement
(‘This location appears congested but there appears to be a
high level of traffic flow’). Moreover, the presence/absence
of SSOs can help strengthen/weaken the confidence in the
system’s final classification and can indicate whether a human
user needs to inspect the range of explanations offered.

VI. CONCLUSION AND FUTURE WORK

The main contribution of this paper is a systems approach
to distributed information fusion integrating heterogeneous
services, based on machine learning and reasoning approaches,
with an ability to generate explanations of various kinds.
Traffic congestion monitoring was chosen as an exemplar
application featuring readily-available data of multiple modal-
ities, plausible integration of machine reasoning and learning-
based services, and semantic entities at lower and higher levels
of abstraction. Through this case study, we have demonstrated
how services based on (i) DNN approaches and (ii) heuristic-
based reasoning can be combined in a common decision-
support task. We examined the distinct kinds of explanation
that can be generated for each type of service, including trans-
parency (saliency maps for (i), reasoning traces for (ii)), and
post-hoc methods (explanation in terms of similar examples or
identification of relevant semantic objects for (i)). We explored
trade-offs in terms of the classification performance of the
services (in our case study, (i) was more accurate then (ii)) and
the kinds of available explanations ((ii) was more transparent
than (i)), and showed how service integration offers more
robust performance and explainability by demonstrating that
correlations between the service outputs can be exploited to
generate richer explanations when services ‘agree’, and also
when they ‘disagree’.

Moving forward, we plan to expand the services used within
the system to enable prediction of future traffic states, together
with accompanying explanations for temporal predictions. We
also aim to expand the range of data sources to include
weather, textual traffic reports and events feeds, for use both
in prediction and explanation.
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