Towards a Methodology for Creating Time-critical,
Cloud-based CUDA Applications

Louise Knight*, Polona Stefani&*, Matej Cigale*, Andrew C. Jones* and Ian Taylor*
*School of Computer Science and Informatics, Cardiff University,
Queen’s Buildings, 5 The Parade, Roath, Cardiff CF24 3AA, UK
Email: [KnightL2 | StefanicP | CigaleM | JonesAC | TaylorlJ1]@cardiff.ac.uk

Abstract—CUDA has been used in many different application
domains, not all of which are specifically image processing-
related. There is the opportunity to use multiple and/or dis-
tributed CUDA resources in cloud facilities such as Amazon
Web Services (AWS), in order to obtain enhanced processing
power and to satisfy time-critical requirements which cannot be
satisfied using a single CUDA resource. In particular, this would
provide enhanced ability for processing Big Data, especially in
conjunction with distributed file systems (for example). In this
paper, we present a survey of time-critical CUDA applications,
identifying requirements and concepts that they tend to have
in common. In particular, we investigate the terminology used
for Quality of Service metrics, and present a taxonomy which
summarises the underlying concepts and maps these terms to the
diverse terminology used. We also survey typical requirements
for developing, deploying and managing such applications. Given
these requirements, we consider how the SWITCH platform can
in principle support the entire life-cycle of time-critical CUDA
application development and cloud deployment, and identify
specific extensions which would be needed in order fully to
support this particular class of time-critical cloud applications.

Index Terms—Time-critical applications, CUDA, distributed
cloud computing

I. INTRODUCTION

CUDATM[]_-] is a parallel computing platform and program-
ming model that works with NVIDIA GPUs, and it presents
the opportunity to perform certain kinds of parallel compu-
tation rapidly, on relatively low-cost hardware [1l]. In this
paper we present a survey of a specific class of CUDA
applications — time-critical applications — and the factors that
should be considered when developing and deploying them in
a distributed cloud architecture.

There are many time-critical applications with different pur-
poses, and there are various approaches and tools that support
their design, development and operation. In this survey, we
have concentrated only on those time-critical applications that
use CUDA. Therefore, the purpose of this study is to:

(i) present various time-critical applications that are imple-
mented using CUDA,
(ii) divide them into groups, such as Environment-related,
People/face detection, Medical applications ...,
(iii) analyze the time-critical requirements which are impor-
tant for the specific groups so that applications can
achieve their Quality of Service (QoS) and, based on

Uhttp://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html

this analysis, distinguish between the QoS attributes
according to their importance (i.e. how critical each at-
tribute is) for each specific group of time-critical CUDA
applications,

discuss how using CUDA can have a positive influence
on QoS and consequently on QoE for each specific group
of time-critical applications,

(v) discuss the key implications for the SWITCH (Software
Workbench for Interactive, Time Critical and Highly self-
adaptive Cloud applicationsf] architecture and environ-
ment, if such applications are to be fully supported, and
consider whether the SWITCH architecture could be
further refined in order to support CUDA to satisfy
the QoS of more critical parts of applications, such as
provisioning, verification of various constraints, image
processing and so on.

(iv)

(vi)

In our survey, we have organized time-critical CUDA appli-
cations into four main themes or groups: Environment-related,
People/face detection, Medical applications and Materials-
related. We also found some studies which did not exactly
fit into these four themes, and these are presented under the
“Miscellaneous” heading.

It should be noted that many of the applications found
during this survey, across a number of the above themes, have
an image processing aspect to them, so these four themes
are also distinguished according to whether they are image
processing applications or not. Throughout this survey, we
have found recurring ideas for which differing terminology
were used, depending on the application domain in question
(for example, there are several different ways of referring to
runtime).

The rest of the paper is structured as follows. In Section
we introduce applications relating to each of the themes
we have identified, detailing the terminology used within each
theme. In Section |[IIj we present which attributes have the most
influence on an application’s general QoS. Section [[V] briefly
describes the SWITCH project and its subsystems and finally,
Section |V| concludes the paper by summarizing our findings
and proposing further research directions towards time-critical
applications using CUDA.

Zhttp://www.switchproject.eu/

TABLE I
QOS PARAMETERS, UNITS USED, AND ALTERNATIVE TERMS FOR
ENVIRONMENT-RELATED APPLICATIONS

[Parameter | Units | Other names |

Convergence time,

Runtime Time units execution time,
processing speed,
processing time

Processing rate ms/pixel

Accuracy Percentage | Classification accuracy

Correlation coefficient

(accuracy)

Average absolute

difference (accuracy)

II. TIME-CRITICAL CUDA APPLICATIONS

In this section we discuss those applications found in
our survey of time-critical applications implemented using
CUDA. We have placed these applications into four cate-
gories: Environment-related, People/face detection, Medical
applications, and Materials-related applications. We have a
fifth, Miscellaneous, category for those applications that do
not fit cleanly into any of the previously-listed four.

A. Environment-related

Applications relating to the environment mostly relate to
disaster management. As such, the time-critical nature of these
applications relates to the fact that disasters such as wildfires,
floods, and earthquakes (for example) require immediate re-
sponse. Wu et al. [2] used the Logistic Regression via variable
Splitting and Augmented Lagrangian (LORSAL) algorithm
to perform hyperspectral image classification [3]]; alongside
environmental applications they also suggested the method
could be used for military reconnaissance. They measured
the execution time (time units) and classification accuracy
(percentage) of the method. Goodman et al. [4] used a method
derived from that of Lee et al. [3]], [6l], [7] to analyze ma-
rine imaging spectroscopy data. The QoS-related parameters
are processing time (time units), ‘processing speed’ (which
appears to be the same as runtime) (time units), processing
rate (ms/pixel), and accuracy (correlation coefficient; average
absolute difference).

Kurte and Durbha [] integrated two clustering algorithms,
Partition Around Medoids (PAM) [9] and Clustering for Large
Application (CLARA) [9] in order to process high-resolution
satellite images. The convergence time (time units) was mea-
sured. Related to this, Bhangale and Durbha [10] used the
Scale Invariant Feature Transform (SIFT) algorithm [11], [12]
to extract features from high-resolution satellite images. The
runtime (time units) was measured. Here we see an obvious
instance where differing terminology is used. The convergence
time and runtime are essentially the same; they are both the
elapsed time until we find our final solution.

Apart from the previously-discussed papers which involve
image processing, there were two we found which did not.
Christgau et al. [13] implemented the tsunami simulation
algorithm EasyWave [14] in parallel, and simply recorded

TABLE II
QOS PARAMETERS, UNITS USED, AND ALTERNATIVE TERMS FOR
PEOPLE/FACE DETECTION APPLICATIONS

[Parameter | Units | Other names
. . . Computation time,
Runtime Time units P! X
detection time
Runtime Frames per second (fps)

Frames per second (fps),
pixels per second
Percentage

Percentage

Detection speed,
tracking rate
Detection accuracy
Detection rate

Processing speed

Accuracy
Sensitivity
False positives count

the runtime (time units) of the implementation. Huang et al.
[15] used the Kalman filter method [[16] to estimate hidden
states in linear dynamic systems. Apart from allowing weather
forecasting, this method can also be used to track other
systems, for example, military and financial, and to aid in
robotic navigation. They just measured the runtime (time
units).

shows the terms used in environment applications.
There is a strong focus on the runtime, which is unsurprising
considering these are time-critical applications (this is a theme
we see through the rest of the research areas), but also
accuracy. In fact, it is the image analysis applications that are
measuring the accuracy of the results; neither of the non-image
analysis applications measured accuracy or results quality-
related metrics. It could be argued that this is due to only
selecting two papers that satisfy the criteria of being about
the environment and non-image analysis, but this is actually
a trend we see throughout this survey. The root of this is that
measuring the accuracy of images is relatively straightforward
compared to measuring the accuracy of other applications.

B. People/face detection

Examples of applications using methods for people/face
detection include surveillance systems, virtual reality, video
conferencing, pedestrian detection, etc. Sharma et al. [17] used
two algorithms: a method based on Adaboost for face detection
[18], and the method of Thota et al. [19] for face tracking.
They recorded the detection speed (fps, pixels/s), tracking rate
(fps), detection accuracy (percentage), and number of false
positives (count). Herout et al. [20] used WaldBoost [21],
derived from Adaboost for face detection. They just tracked
the detection time (time units). Fauske et al. [22] compared
three background subtraction methods for use with video
streams: Codebook [23]], Self-Organizing Background Sub-
traction (SOBS) [24], [25], and Horprasert et al.’s statistical
approach [26]. They recorded the runtime in fps and time units.
Weimer et al. [27] proposed their own method for pedestrian
detection and tracking with applications in road safety. They
measured the computation time (time units), processing speed
(fps), and detection rate (percentage).

shows the terms used in people/face detection ap-
plications. This category includes image analysis applications
only, and, again, focuses on runtime and various measures
of accuracy (the normal statistical definition of ‘accuracy’,

TABLE III
QOS PARAMETERS, UNITS USED, AND ALTERNATIVE TERMS FOR
MEDICAL APPLICATIONS

[Parameter | Units | Other names
Execution time,
. . . rocessing time,
Runtime Time units p e

reconstruction time,
registration time

Projections per second

Processing speed Reconstruction speed

TABLE IV
QOS PARAMETERS, UNITS USED, AND ALTERNATIVE TERMS FOR
MATERIALS-RELATED APPLICATIONS

[Parameter | Units | Other names |

Time units
Frames per second (fps)

Runtime
Runtime

TABLE V

(pps) QOS PARAMETERS, UNITS USED, AND ALTERNATIVE TERMS FOR
Peak signal-to-noise | MISCELLANEOUS APPLICATIONS
ratio
Mean-square-crror [Parameter | Units | Other names
Throughput GiB/s Computation speed,
Throughput Gflops/s Runtime Time units computational time,
execution time
Time per unit of Time units Processing time per frame,
. .. . computation time per AO time-ste|
sensitivity, and count of false positives) predominantly, but P : Frames per P : P
also looks at processing speed in terms of how much work Processing speed second (fps) | Trocessing rate
we can get done per unit time (frames per second/pixels per E?:;g;umcation Time units
second). Latency per frame Time units
C. Medical applications Percentage of pixels
. S . Average absolute “{thh differed over a
The field of medical applications is very broad; here we have difference (accuracy) | Lereentage | siven threshold between
focused on a small number of specific applications that we igzuirs"‘;getrr;gand the
could find. These are: image registration, image reconstruction, Root mean square (RMS)
and brain-computer interface feature extraction. Mean-square-error between the ground truth
Muyan-Ozgelik et al. [28] used the Demons algorithm aB’;i(;hei (;f}f“hs generated
[29] to perform image registration, which involves align- Throughput GB/s data transmission rate
ing two images and has many applications, such as image- Throughput Gflops
guided surgery. They measured the runtime (time units), the g{empry access MB
. . oating point
instruction throughput (GFLOP/s), and the data throughput operations count

(GiB/s). Modat et al. [30] also performed image registration,
but instead using the Free-Form Deformation (FFD) method;
they just record the registration time (time units), which seems
essentially analogous to the runtime.

Keck et al. [31] used the Simultaneous Algebraic Recon-
struction Technique (SART) [32] to perform image recon-
struction for CT scanners. They recorded the reconstruction
time (time units). Pang et al. [33] also used SART for
the same problem, recording the execution time (time units)
(essentially the same as reconstruction time), reconstruction
speed (projections per second, pps), and some measures of
reconstruction quality: peak signal-to-noise ratio (dB), and
mean-square-error. Riabkov et al. [34] used a modified FDK
algorithm [35] to also perform image reconstruction; they
simply recorded the execution time (time units), and briefly
mentioned performance-per-watt and performance-per-dollar
requirements.

A non-image analysis application is that of Wilson and
Williams [36], who implemented a parallelized version of one
of the BCI2000 algorithms [37] for brain-computer interface
feature extraction; this has applications in implantable tech-
nology. They recorded the processing time (time units).

[Table III] shows the terms used in medical applications.
Alongside the runtime, processing speed and results quality
metrics (the latter two categories only being considered by
image analysis applications), the throughput in GiB/s and
Gflops/s is also considered. Although both described here as

‘throughput’, the measure with its units as GiB/s is probably
the most traditionally thought-of as throughput, while the
measure with units of Gflops/s is more a measure of how
many instructions we can do per unit time.

D. Materials-related

All of the applications that we found in this survey within
this field are not related to image processing. The applications
discovered during the survey cover ultrasonic array imaging
and a Finite Element method for the analysis of soft tissues.
Sutcliffe et al. [38] used a novel method utilizing Fermat’s
principle to perform ultrasonic array imaging for the identifica-
tion and classification of defects within solid structures. They
recorded the runtime (time units, fps), and briefly mentioned
implementation and development costs. Strbac et al. [39] used
a Finite Element method [40]], [41] to analyse soft tissues; this
also has applications in the medical domain. They measured
runtime (time units), and mentioned accuracy.

shows the terms used in materials applications.
Only runtime is actually measured in these applications; these
applications are both non-image processing.

E. Miscellaneous

This category of methods covers any applications that would
not fit into the previous sections.

Havel et al. [42] used PClines [43] to detect lines in
raster images; this has applications in circuitry design, and
detection of chessboard patterns. They measured the runtime
(time units). Wang and Ellerbroek [44] used Multi-threaded
Adaptive Optics Simulator (MAOS) [45]] for real-time control
of Adaptive Optics (AO) systems of large telescopes. They
recorded the runtime (time units), time per AO time-step
(time units), communication latency (time units), number of
floating point operations, throughput (Gflops), memory access
(MB), and bandwidth (GB/s). Pages and Wilbertz [46] used
a quantization tree algorithm [47], [48], [49], [S0] for a
computational finance application to do with the pricing of
American style and multiple exercise options. They simply
recorded the computational time (time units). Lattanzi et al.
[51] used wave field synthesis [52] to artificially produce
sound. They recorded the execution time (time units). Mehrabi
et al. [53] used Visual Light Communication (VLC) to syn-
chronise multiple video streams; the example use case given
was that of having multiple cameras from e.g. smart phones,
each filming the same event from a different angle. Only the
runtime (time units) was measured. Maillard et al. [54] used
several different components to produce an enhanced audience
experience during sports events, including: 2D and 3D video
streams; overlaying of metadata over the stream concerning,
e.g. runner information; data about event location; etc. Each of
the architectural components was already available; the project
worked to bring all the components together. CUDA was used
specifically for depth computation (relating to 3D video); the
metrics relating to this specifically were computation speed
(time units), the percentage of pixels which differed over
a given threshold between the ground truth and the results
generated, and the root mean square (RMS) between the
ground truth and the results generated. Feldmann et al. [55]]
developed a system for immersive 3D videoconferencing,
implementing in CUDA methods such as lens un-distortion
and rectification, for example. They recorded the runtime (time
units), processing time per frame (time units), latency per
frame (time units), processing rate (frames per second, fps),
and data transmission rate (MB/s).

shows the terms used in those applications which
do not fit into the earlier categories. Alongside runtime and
accuracy-related metrics, we also see measures relating to
communication latency, throughput, memory access and the
number of floating point operations performed.

III. QOS METRICS/ATTRIBUTES THAT HAVE THE MOST
INFLUENCE FOR EACH THEME

As should be apparent from the previous sections, many
studies, even within the same field, use different terms to mean
the same thing. All of the QoS-related parameters are given in
[Table VI alongside the alternative terms certain papers used,
and the units used to measure such parameters. It should be
noted that certain terms in this table, particularly those relating
to cost, are not present in the smaller tables already shown.

What we have also noticed is that each theme (environment-
related applications, etc.) has a focus on different QoS metrics.

We shall now identify the most-used metrics in each theme,
and surmise why these are prevalent.

In the field of environment-related applications, there is a
focus on runtime (as there is for all other types of application,
unsurprisingly). Image processing applications within this field
look at processing rate and especially the accuracy of the
results obtained (for example, using measures such as the
correlation coefficient). We believe that there is such a focus on
accuracy because applications within this field usually relate
to disaster management, such as working out where the most
damage is so that we can direct resources to that area. This is
such a serious field of applications that it is truly critical that
we get the correct answer.

For the field of people/face detection, alongside runtime
and processing speed, we see, again, a focus on accuracy
and its related measures, sensitivity and a count of the false
positives. Applications within this field can range from more
‘serious’ ones (relating to safety), such as surveillance systems
in secure environments and pedestrian detection, to the less
‘serious’, for example, virtual reality. Taking first the example
of surveillance systems, this can involve tracking a person
across physical space. For example, if we wanted to investigate
an incident involving a specific person, we would want to
know that that is the same person, so a measure of the accuracy
would make sense in this context. This also makes sense in
the case of virtual reality applications for video games, for
example.

We now consider medical applications, a field where we
identified some image processing-related applications, and
other applications not relating to image processing. Alongside
runtime, which was recorded by all applications in this field,
we have some accuracy-related measures, such as peak signal-
to-noise ratio, and mean-square-error. If we are considering
applications relating to intra-operative settings, for example,
where the surgeon is responding to information they are seeing
while performing an operation, then the need for accuracy
is quite obvious. There are also a few throughput-related
measures considered, which again, makes sense in that for
such a critical application as image-guided surgery, we need
to work within the constraints we have.

For materials-related applications, the only measurement
considered is runtime.

For the miscellaneous applications, unsurprisingly there
is a wide variety of different QoS measurements used; we
have runtime-related measures, accuracy measures, and other
parameters relating to throughput, memory access and the
number of floating point operations.

IV. SOFTWARE WORKBENCH FOR TIME-CRITICAL AND
HIGHLY SELF-ADAPTIVE CLOUD APPLICATIONS

A. SWITCH Subsystems

The SWITCH (Software Workbench for Time-critical and
Highly Self-Adaptive Cloud applications) project aims to
simplify the development of time-critical[56] applications by
providing the functionality to develop, deploy and adapt the
systems during their entire life-cycle. The SWITCH platform

TABLE VI

QOS PARAMETERS, UNITS U

SED, AND ALTERNATIVE TERMS

[Parameter | Units | Other names |
[Time l l l
Computation speed, computation(al) time, convergence time, detection time,
Runtime Time units execution time, processing speed, processing time, reconstruction time,
registration time
Runtime Frames per second (fps)

Time per unit of

. Time units
computation

Processing time per frame, time per AO time-step

Frames per second (fps)

Processing speed Projections per second (pps)

Detection speed, processing rate, reconstruction speed, tracking rate

Processing rate ms/pixel
Communication latency Time units
Latency per frame Time units
[Quality of results [[
Accuracy Percentage Classification accuracy, detection accuracy

Correlation coefficient (accuracy)

Average absolute difference (accuracy) | No units, percentage

Percentage of pixels which differed over a given threshold between the
ground truth and the results generated

Sensitivity Percentage

Detection rate

False positives count

Peak signal-to-noise

ratio dB

Mean-square-error

Root mean square (RMS) between the ground truth and the results generated

[Data [[

l

Throughput GB/s, GiB/s

Bandwidth, data transmission rate

Throughput Gflops/s, Gflops

Memory access MB

Compute [[

Floating point operations
count

Costs (mentioned only briefly) [[

Performance-per-watt

Performance-per-dollar

Implementation cost Dollars

Development cost

has three main parts. The SWITCH IDE (SIDE) deals with
creating an application from microservices, and creating the
UI for the rest of the system. It also enables the user to define
what kind of infrastructure (s)he wants to have. The goal of
SIDE is to provide the maximum flexibility to the user when
creating applications. The Dynamic Real-Time Infrastructure
Planner (DRIP) deals with the planning and provisioning of
the virtual machines and deploying the composed applica-
tion. DRIP functions as middleware for the system, that is
internally composed of independent components that provide
the necessary functionality. The Autonomous System Adapta-
tion Platform (ASAP) focuses on monitoring, controlling and
adapting an application so that it can maintain the required
QoS. To facilitate this it includes a Monitoring System, that
collects the metrics from the applications, an alarm trigger
system, that deals with analyzing these metrics and starting
events when certain conditions are met and a self adapter that
decides what actions are to be taken and triggers adaptation of
the system, taking the form of scaling VMs, horizontal scaling
of containers, etc.

SWITCH is motivated not only by Quality of Service

concerns, but also by Quality of Experience — the actual
performance of an application from users’ perspective. The

problem is that the user experience cannot be easily measured.
To this end QoS is a metric, or a group of them, that approxi-
mate, and are to some extent proxies for, QoE. This enables the
measurement of the experience of the application and enables
adapting the application if necessary. From the perspective of
CUDA applications this is mostly useful to determine how
powerful an infrastructure is needed to facilitate the analysis
of certain problems in a specific time, usually real-time.

B. Possible SWITCH extensions using CUDA

Two of the types of applications considered in Section
relate to applications which are already supported by
SWITCH, but in a non-CUDA implementation. For example,
the papers by Mehrabi et al. [S3] and by Maillard et al. [54]]
are similar in some ways to the SWITCH use case of MO}
Likewise, the paper by Feldmann et al. [S5] is similar to the
WT use cas However, CUDA is not currently supported
by SWITCH. That said, CUDA applications are an obvious
candidate for development using SIDE. As the capabilities
of cloud providers increase, making it possible to provision
instances that include GPU systems, CUDA applications can

3http://www.mog-technologies.com/
“http://www.wtelecom.es/?lang=en

be migrated to the cloud. This marks another shift in the
way applications are developed, as it allows the system to
be viable even if it requires substantial CUDA capabilities
for a short period of time. These kinds of applications rely on
systems that enable quick creation of applications and efficient,
automatic deployment and tear-down. SIDE and DRIP could
be, with minimal development time, adapted to function with
applications that require CUDA compatible instances. These
systems could also provide significant cost savings, as they
could be dynamically moved to a location where the instances
are cheaper. It should be noted that “time critical” does not
equate to “fast”. In many cases the consistency of the time
within which the result is provided is as valuable as the speed
of such operations.

What does need to be taken into account, if SWITCH were
to support CUDA, is that the CUDA architecture supports
a very specific type of application; it is a SIMD (Single
Instruction Multiple Data) architecture, which means that it
excels at running the same instruction on large amounts of
data at the same time, before moving on to running another
instruction on the same large amount of data. This means that
whatever the application being considered, it would need to be
evaluated for how it would suit the CUDA architecture, and
possibly adapted to perform best using CUDA.

This could open a way for a new class of application:
applications which require fast response times but limited
investments. For instance, algorithms that analyse the per-
formance of the application, similar to the modelling system
described by Stefani¢ et al. [57] could be redeveloped to use
CUDA, thus enabling larger sets of examples to be analysed
in the process of deriving the model. This would enable the
system to produce better models faster and thus adaptation
could become cheaper.

V. CONCLUSIONS

In this paper, we have analysed four research themes
identified while surveying time-critical CUDA applications for
their associated QoS metrics. These themes are: Environment-
related, People/face detection, Medical applications, and
Materials-related. (We have also identified a fifth, Miscella-
neous, category.) We found that overall, all of the categories
besides Materials-related applications consider the quality of
results as well as the runtime of the method to obtain those
results. In particular, the main attributes considered by each
group are:

o Environment-related: time (runtime, processing rate),
quality of results (percentage accuracy, correlation co-
efficient, average absolute difference)

o People/face detection: time (runtime, processing speed),
quality of results (percentage accuracy, sensitivity, false
positives count)

e Medical applications: time (runtime, processing speed),
quality of results (peak signal-to-noise ratio, mean-square
error), data (throughput)

o Materials-related: time (runtime)

We also (unsurprisingly) found a larger diversity of QoS
measures in those applications that did not fit into the above
categories (Miscellaneous applications), which also included
measures on the number of floating point operations, for
example.

The terminology used by the different papers can vary
significantly. Generally, however, all of the time-critical CUDA
applications surveyed are concerned with a limited number of
QoS parameters: time-related measures (of which runtime is
the largest, being referred to by around ten different names);
measures relating to the quality of results, such as accuracy;
data measures, such as throughput and memory access; and
compute measures like the number of floating point operations
performed.

We also found a pattern in that image processing-related
applications tended to be the only applications to even consider
the quality of results obtained, and we believe this may be
due to the associated applications of these image processing
methods. In particular, we surmised that the reasons why
quality and accuracy are considered so much by certain
applications is due to the ‘seriousness’ of those applications.
For example, one type of medical application is that of image-
guided surgery, which involves the surgeon receiving informa-
tion during an operation and acting based on that information.
This is obviously one which needs a great importance to be
placed on results accuracy, as it is an application that directly
affects a human life.

Moving towards developing CUDA applications on the
SWITCH architecture, and adapting the SWITCH architecture
so that it is suitable for CUDA, we have begun experimenting
with the CUDA-enabled instance types already present in
AWS. Briefly, AWS EC2 supports several GPU instances (e.g.
P2 instances), and one can launch instances with a single
GPU, or multiple GPUs present. One can also launch these
instances across different Regions (geographical locations),
and Availability Zones within a Region, and have the instances
communicate through different mechanisms. In order to inves-
tigate how SWITCH might support CUDA in the future, we are
in the early stages of experimenting with running CUDA appli-
cations on multiple, single-GPU instances in one geographical
Region in AWS, and having them ‘communicate’ through the
use of a shared volume (using Amazon Elastic File System
(EFS)). In the future we wish to investigate how changing
various parameters, such as the number of instances running,
their geographical location, etc. may influence the QoS of an
application. This information could give some useful insight
into how SWITCH may support CUDA applications.

ACKNOWLEDGMENT

The research reported in this paper was funded by the
European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 643963 (SWITCH project).

REFERENCES

[1] nVidia, “Gpu-based deep learning inference: A performance and power
analysis,” November 2015. [Online]. Available: http://www.nvidia.com/
content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf

http://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
http://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf

[2]

[3

=

[4

=

[5]

[6]

[7]

[8

[t}

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24

Z. Wu, Q. Wang, A. Plaza, J. Li, L. Sun, and Z. Wei, “Real-Time
Implementation of the Sparse Multinomial Logistic Regression for
Hyperspectral Image Classification on GPUs,” IEEE Geoscience and
Remote Sensing Letters, vol. 12, no. 7, pp. 1456-1460, 2015.

J. M. Bioucas-Dias and M. Figueiredo, “Logistic regression via variable
splitting and augmented Lagrangian tools,” Inst. Superior Técnico, TU
Lisbon, Lisbon, Portugal, Tech. Rep., 2009.

J. A. Goodman, D. Kaeli, and D. Schaa, “Accelerating an imaging spec-
troscopy algorithm for submerged marine environments using graphics
processing units,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 4, no. 3, pp. 669-676, 2011.
Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, and J. L. Mueller,
“Method to derive ocean absorption coefficients from remote-sensing
reflectance,” Applied Optics, vol. 35, no. 3, p. 453, 1996.

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch,
“Hyperspectral remote sensing for shallow waters. I. A semianalytical
model.” Applied optics, vol. 37, no. 27, pp. 6329-38, 1998.

——, “Hyperspectral remote sensing for shallow waters: 2 Deriving
bottom depths and water properties by optimization,” Applied Optics,
vol. 38, no. 18, p. 3831, 1999.

K. R. Kurte and S. S. Durbha, “High resolution disaster data clustering
using Graphics Processing Units,” 2013 IEEE International Geoscience
and Remote Sensing Symposium - IGARSS, pp. 1696-1699, 2013.

J. Han, M. Kamber, and A. K. H. Tung, “Spatial Clustering Methods
in Data Mining: A Survey,” Geographic Data mining and knowledge
discovery, vol. 2, pp. 188-217, 2001.

U. M. Bhangale and S. S. Durbha, “High performance SIFT feature
classification of VHR satellite imagery for disaster management,” ACM
International Conference Proceeding Series, pp. 324-329, 2015.

D. G. Lowe, “Object recognition from local scale-invariant features,”
Proceedings of the Seventh IEEE International Conference on Computer
Vision, pp. 1150-1157 vol.2, 1999.

——, “Distinctive image features from scale invariant keypoints,” Inter-
national Journal of Computer Vision, vol. 60, pp. 91-11 020042, 2004.
S. Christgau, J. Spazier, B. Schnor, M. Hammitzsch, A. Babeyko, and
J. Wichter, “A comparison of CUDA and OpenACC: Accelerating the
Tsunami Simulation EasyWave,” Workshop Proceedings of ARCS 2014,
2014.

J. Wichter, A. Babeyko, J. Fleischer, R. Hidner, M. Hammitzsch,
A. Kloth, and M. Lendholt, “Development of tsunami early warning
systems and future challenges,” Natural Hazards and Earth System
Science, vol. 12, no. 6, pp. 1923-1935, 2012.

M.-Y. Huang, S.-C. Wei, B. Huang, and Y.-L. Chang, “Accelerating the
Kalman filter on a GPU,” Proceedings of the International Conference
on Parallel and Distributed Systems - ICPADS, pp. 1016-1020, 2011.
R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Journal of Basic Engineering, vol. 82, no. 1, p. 35, 1960.
B. Sharma, R. Thota, N. Vydyanathan, and A. Kale, “Towards a robust,
real-time face processing system using CUDA-enabled GPUs,” 2009
International Conference on High Performance Computing (HiPC), pp.
368-377, 2009.

P. Viola and M. J. Jones, “Robust real-time face detection,” International
Jjournal of computer vision, vol. 57, no. 2, pp. 137-154, 2004.

R. Thota, A. Kalyansundar, and A. Kale, “Modeling and Tracking
of Faces in Real-life Illumination Conditions,” Proceedings of the
International Conference of Acoustics, Speech and Signal Processing,
pp. 761-764, 2009.

A. Herout, R. Josth, R. Juranek, J. Havel, M. Hradis, and P. Zemdik,
“Real-time object detection on CUDA,” Journal of Real-Time Image
Processing, vol. 6, no. 3, pp. 159-170, 2011.

J. Sochman and J. Matas, “WaldBoost — Learning for Time Constrained
Sequential Detection,” in Proceedings of Computer Vision and Pattern
Recognition, 2005, 2005.

E. Fauske, L. M. Eliassen, and R. H. Bakken, “A Comparison of
Learning Based Background Subtraction Techniques Implemented in
CUDA,” Proceedings of the First Norwegian Artificial Intelligence
Symposium, pp. 181-192, 2009.

K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Real-time
foreground-background segmentation using codebook model,” Real-
Time Imaging, vol. 11, no. 3, pp. 172-185, 2005.

L. Maddalena and A. Petrosino, “A Self-Organizing Approach to
Background Subtracion for Visual Surveillance Applications,” IEEE
Transactions on Image Processing, vol. 17, no. 7, pp. 1168-1177, 2008.

[25]

[26]

(27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

——, “Multivalued background/foreground separation for moving object
detection,” in Fuzzy Logic and Applications: 8th International Workshop,
2009.

T. Horprasert, D. Harwood, and L. S. Davis, “A Robust Background
Subtraction and Shadow Detection,” Proceedings of Asian Conf. Com-
puter Vision, 2000.

D. Weimer, S. Kohler, C. Hellert, K. Doll, U. Brunsmann, and
R. Krzikalla, “GPU architecture for stationary multisensor pedestrian
detection at smart intersections,” IEEE Intelligent Vehicles Symposium,
Proceedings, no. Iv, pp. 89-94, 2011.

P. Muyan-Ozgelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast de-
formable registration on the GPU: A CUDA implementation of demons,”
Proceedings - The International Conference on Computational Sciences
and its Applications, ICCSA 2008, pp. 223-233, 2008.

J.-P. Thirion, “Image matching as a diffusion process: an analogy with
Maxwell’s demons,” Medical Image Analysis, vol. 2, no. 3, pp. 243-260,
1998.

M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes,
D. J. Hawkes, N. C. Fox, and S. Ourselin, “Fast free-form deformation
using graphics processing units,” Computer Methods and Programs in
Biomedicine, vol. 98, no. 3, pp. 278-284, 2010.

B. Keck, H. Hofmann, H. Scherl, M. Kowarschik, and J. Hornegger,
“GPU-accelerated SART reconstruction using the CUDA programming
environment,” Proc. SPIE Medical Imaging, p. 72582B, 2009.

A. H. Andersen and A. C. Kak, “Simultaneous Algebraic Reconstruction
Technique (SART): a superior implementation of the ART algorithm,”
Ultrasonic Imaging, vol. 6, pp. 81-94, 1984.

W.-M. Pang, J. Qin, Y. Lu, Y. Xie, C.-K. Chui, and P.-A. Heng, “Ac-
celerating simultaneous algebraic reconstruction technique with motion
compensation using CUDA-enabled GPU,” International Journal of
Computer Assisted Radiology and Surgery, vol. 6, no. 2, pp. 187-199,
2011.

D. Riabkov, X. Xue, D. Tubbs, and A. Cheryauka, “Accelerated cone-
beam backprojection using GPU-CPU hardware,” Proceedings of the 9th
International Meeting on Fully Three-Dimensional Image Reconstruc-
tion in Radiology and Nuclear Medicine, pp. 4-7, 2007.

L. A. Feldkamp, L. C. Davis, and J. W. Kress, ‘“Practical cone-beam
algorithm,” Journal of the Optical Society of America A, vol. 1, no. 6,
p. 612, 1984.

J. A. Wilson and J. C. Williams, “Massively Parallel Signal Processing
Using the Graphics Processing Unit for Real-Time Brain-Computer
Interface Feature Extraction,” Frontiers in Neuroengineering, vol. 2, no.
July, 2009.

G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R.
Wolpaw, “BCI2000: A general-purpose brain-computer interface (BCI)
system,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6,
pp. 1034-1043, 2004.

M. Sutcliffe, M. Weston, P. Charlton, K. Donne, B. Wright, and
I. Cooper, “Full matrix capture with time-efficient auto-focusing of un-
known geometry through dual-layered media,” Insight: Non-Destructive
Testing and Condition Monitoring, vol. 55, no. 6, pp. 297-301, 2013.
V. Strbac, J. Vander Sloten, and N. Famaey, “Analyzing the potential
of GPGPUs for real-time explicit finite element analysis of soft tissue
deformation using CUDA,” Finite Elements in Analysis and Design, vol.
105, pp. 79-89, 2015.

H. Griindemann, Computational Methods for Transient Analysis, T. Be-
lytschko and T. J. R. Hughes, Eds. Amsterdam: North-Holland, 1983.
K. Miller, G. Joldes, D. Lance, and A. Wittek, “Total Lagrangian
explicit dynamics finite element algorithm for computing soft tissue
deformation,” Communications in Numerical Methods in Engineering,
vol. 23, pp. 121-134, 2007.

J. Havel, M. Dubska, A. Herout, and R. Josth, “Real-time detection of
lines using parallel coordinates and CUDA,” Journal of Real-Time Image
Processing, vol. 9, no. 1, pp. 205-216, 2014.

M. Dubskd, A. Herout, and J. Havel, “PClines - Line detection using
parallel coordinates,” Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pp. 1489-1494, 2011.

L. Wang and B. Ellerbroek, “Computer simulations and real-time control
of ELT AO systems using graphical processing units,” in Proceedings
Volume 8447, Adaptive Optics Systems III, 2012.

L. Wang, “MAOS,” 2010. [Online]. Available: https://github.com/!
liangiw/maos

https://github.com/lianqiw/maos
https://github.com/lianqiw/maos

[46]

(471

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

G. Pages and B. Wilbertz, “GPGPUs in computational finance: mas-
sive parallel computing for American style options,” Concurrency and
Computation: Practice and Experience, vol. 24, pp. 837-848, 2012.

V. Bally and G. Pages, “A quantization algorithm for solving multidi-
mensional discrete-time optimal stopping problems,” Bernoulli, vol. 9,
no. 6, pp. 1003-1049, 2003.

V. Bally, G. Pages, and J. Printems, “A quantization tree method for
pricing and hedging multi-dimensional American options,” Mathemati-
cal Finance, vol. 15, no. 1, pp. 119-168, 2005.

O. Bardou, S. Bouthemy, and G. Pages, “Optimal quantization for the
pricing of swing options,” Applied Mathematical Finance, vol. 16, no. 2,
pp. 183-217, 2009.

A. L. Bronstein, G. Pages, and B. Wilbertz, “How to speed up the
quantization tree algorithm with an application to swing options,”
Quantitative Finance, vol. 10, no. 9, pp. 995-1007, 2010.

A. Lattanzi, E. Ciavattini, S. Cecchi, L. Romoli, and F. Ferrandi, “Real-
Time implementation of Wave Field Synthesis on NU-Tech Framework
using CUDA Technology,” in 128th Convention of Audio Engineering
Society, London, UK, 2010.

A. J. Berkhout, D. de Vries, and P. Vogel, “Acoustic control by wave
field synthesis,” Journal of the Acoustic Society of America, vol. 93,
no. 5, pp. 2764-2778, 1993.

M. Mehrabi, S. Lafond, and L. Wang, “Frame Synchronization of
Live Video Streams Using Visible Light Communication,” 2015 IEEE
International Symposium on Multimedia (ISM), pp. 128-131, 2015.

J. Maillard, M. Leny, and H. Diakhaté, “Enhancing the audience experi-
ence during sport events: Real-time processing of multiple stereoscopic
cameras,” Annales des Telecommunications/Annals of Telecommunica-
tions, vol. 68, no. 11-12, pp. 657-671, 2013.

I. Feldmann, W. Waizenegger, N. Atzpadin, and O. Schreer, “Real-
time depth estimation for immersive 3D videoconferencing,” 3DTV-CON
2010: The True Vision - Capture, Transmission and Display of 3D Video,
2010.

Z. Zhao, A. Taal, A. Jones, I. Taylor, V. Stankovski, I. G. Vega,
F. J. Hidalgo, G. Suciu, A. Ulisses, P. Ferreira, and C. d. Laat, “A
software workbench for interactive, time critical and highly self-adaptive
cloud applications (switch),” in 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, May 2015, pp.
1181-1184.

P. étefanié, M. Cigale, A. Jones, and V. Stankovski, “Quality of
service models for microservices and their integration into the switch
ide,” in 2017 IEEE 2nd International Workshops on Foundations and
Applications of Self* Systems (FAS*W), Sept 2017, pp. 215-218.

	Introduction
	Time-critical CUDA applications
	Environment-related
	People/face detection
	Medical applications
	Materials-related
	Miscellaneous

	QoS metrics/attributes that have the most influence for each theme
	Software Workbench for Time-critical and Highly Self-Adaptive Cloud applications
	SWITCH Subsystems
	Possible SWITCH extensions using CUDA

	Conclusions
	References

