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Summary 

Accurate radiological staging is vital in oesophageal cancer (OC). Radiological 

staging largely informs risk-stratification, treatment decisions and planning.  However, 

the prognosis of OC remains poor, suggesting that radiological staging must improve.  

Therefore, the additional value of novel prognostic variables compared to current 

staging methods was assessed in a large cohort of OC patients managed by a 

regional upper gastrointestinal cancer network.  Radiological-pathological correlation 

of resected lymph nodes assessed the accuracy of CT, EUS and PET/CT N-stage.  

The added value of PET-defined variables to predict circumferential resection margin 

(CRM) involvement was investigated.  With EUS use declining, differences in PET 

and EUS measurements were assessed to understand potential implications for 

treatment planning should staging PET/CT be performed alone.  Validation of two 

prognostic models; one in patients staged N0 on PET/CT and one incorporating novel 

PET features, was performed.  The accuracy of CT, EUS and PET/CT N-stage was 

poor (54.5%, 55.4% and 57.1%, respectively) which greatly impacts on patient 

selection and treatment decisions.  EUS continues to play an important role in OC 

staging, being significantly and independently associated with overall survival (OS; 

p=0.012) and CRM involvement (p=0.022).  PET-defined variables had no additional 

value for predicting CRM status.  The difference between PET and EUS length of 

disease was statistically significant (p<0.001), increasing the risk of geographical miss 

(38.1%) had PET/CT been used alone.  Three novel PET image features (log (TLG), 

log(Histogram Energy) and Histogram Kurtosis) were independently associated with 

OS in the prognostic model.  There was a significant OS difference between patient 



 

 

quartiles (p<0.001) in the development and validation cohorts.  Incorporation of these 

image features added prognostic value and improved model performance compared 

to current staging methods.  These significant data demonstrate radiological 

prognostic variables that add value in OC management and highlight the importance 

of improved radiological staging. 
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Chapter 1. Introduction 

Radiological staging of oesophageal cancer (OC) serves to define the extent of 

disease and influences management decisions made by the multi-disciplinary team 

(MDT).  To ensure the best chance of survival for each patient, the most appropriate 

treatment should be decided upon and initiated promptly. 

The purpose of this chapter is to provide the necessary background information for 

this thesis.  Basic science of the oesophagus, including anatomy and histology, the 

diagnosis and management of the disease, advanced image analysis and the 

statistical background of prognostic modelling is discussed below. 

1.1 Anatomy of Oesophagus 

The oesophagus is a hollow muscular tube approximately 25 cm long, originating at 

the level of the cricoid cartilage in the hypopharynx.  Its main purpose it to transport 

undigested food to the stomach.  The thoracic oesophagus is located within the 

posterior mediastinal compartment and passes through the oesophageal hiatus of the 

diaphragm at the level of T10 before terminating at the gastro-oesophageal junction 

(GOJ). (Stevens and Lowe 1997) 

Endoscopically, the oesophagus begins approximately 15-18 cm from the incisors to 

the GOJ at approximately 40 cm. (DeNardi and Riddell 1991)  The oesophagus is 

conventionally classified into upper, middle and lower thirds.  The Union for 
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International Cancer Control (UICC) define anatomical sub-sites of the oesophagus. 

(Table 1.1.1) 

Table 1.1.1. Anatomical Description of Oesophageal Sub-sites 

Oesophageal sub-site Anatomical Description 

Cervical oesophagus Commences at the lower border of the 
cricoid cartilage and ends at the thoracic 
inlet (suprasternal notch), approximately 
18 cm from the upper incisor teeth.   

Upper oesophagus  Extends from the thoracic inlet to the 
level of the tracheal bifurcation, 
approximately 24 cm from the upper 
incisor teeth. 

Mid oesophagus The proximal portion of the oesophagus 
between the tracheal bifurcation and the 
GOJ with the lower level approximately 
32 cm from the upper incisor teeth.   

Lower oesophagus The distal portion of the oesophagus 
approximately 8 cm in length (including 
abdominal oesophagus), between the 
tracheal bifurcation and the GOJ with the 
lower level approximately 40 cm from 
the upper incisor teeth. 

 

The cervical oesophagus is supplied by the inferior thyroid artery.  Oesophageal and 

bronchial branches from the anterior aspect of the thoracic aorta provide arterial blood 

supply to the thoracic oesophagus.  Arterial blood supply to the abdominal 

oesophagus is from the left gastric and left inferior phrenic arteries.  Venous drainage 
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of the thoracic oesophagus is via oesophageal veins, which enter the systemic 

azygous vein.  The abdominal oesophagus drains via the left gastric vein into the 

porto-venous system.  These two venous systems subsequently form a porto-

systemic anastomosis. (Moore and Agur 2002) 

Lymphatic drainage of the oesophagus is arranged in a bi-directional, free-flowing 

anastomosis of lymph vessels.  The upper third of the oesophagus drains to the para-

tracheal and internal jugular lymph nodes, the middle third of the oesophagus drains 

to the mediastinal nodes and the lower third of the oesophagus drains primarily to the 

left gastric and coeliac lymph nodes. (Riquet et al. 1993; Howard and Johnston 2013)  

This free-flowing lymphatic plexus is important in OC and allows for uninterrupted 

spread of lymph node metastases (LNMs), which usually originate in the peri-tumoural 

location. (Kayani et al. 2011) 

1.2 Histology of Normal Oesophagus 

The thoracic oesophagus is lined by stratified squamous epithelium, but the intra-

abdominal oesophagus is lined by columnar epithelium. The transition between 

columnar and squamous epithelium is the GOJ, also called the z-line.  This important 

region is a common site of pathology due to reflux of gastric contents into the distal 

oesophagus. (Stevens and Lowe 1997) 

The oesophageal wall comprises 4 distinct histological layers; the mucosa, 

submucosa, muscularis propria and adventitia. (Fig. 1.2.1)  The mucosa is subdivided 
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into 3 layers; the mucous membrane epithelium, lamina propria and muscularis 

mucosae.  The mucosa comprises non-keratinised stratified squamous epithelium.  

The epithelium is further subdivided to a basal zone and a superficial zone, containing 

melanocytes, endocrine cells, T-lymphocytes and Langerhans cells. (Goldblum and 

Lee 2004) 

The lamina propria is deep to the mucosa and consists of fibrovascular tissue 

containing capillaries, lymphatics, mononuclear cells and lymphoid aggregates. The 

fibrovascular tissue is folded into papillae and extends into the epithelium.  Mucus 

secreting glands resembling those in the stomach are found within the lamina propria. 

(Goldblum and Lee 2004)  The thickness of the muscularis mucosa varies and is 

maximally thick at the distal oesophagus where it approaches the GOJ.  The 

muscularis mucosa comprises sheets of longitudinal and circular smooth muscle. 

(Stevens and Lowe 1997) 

The submucosa contains mucous glands and has a rich supply of lymphoid tissue, 

blood vessels and nerves. (Crawford 2003)  Each mucous gland comprises 2-5 lobes 

which drain into a duct lined by stratified columnar epithelium.  These ducts traverse 

the mucosa and drain into the oesophageal lumen. (Stevens and Lowe 1997) 
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Figure 1.2.1. Longitudinal cross-sectional histological image of a normal oesophagus.  

The oesophagus has been stained with Haematoxylin & Eosin and the image was 

acquired at a magnification of 25x.  The 4 distinct layers of the oesophagus are seen.  

The mucosa is divided into 3 layers; the epithelium, lamina propria and muscularis 

mucosae.  The submucosa is deep to the mucosa.  The inner circular and outer 

longitudinal layers of the muscularis propria are demonstrated.  The adventitia is a 

thin covering layer. 
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The muscularis propria is generally arranged into discrete inner circular and outer 

longitudinal layers but can vary along the length of the oesophagus.  The upper third 

consists mainly of striated muscle, gradually changing to smooth muscle in the middle 

third, where a combination of smooth and striated muscle is found.  The muscularis 

propria of the lower third of the oesophagus is comprised mostly of smooth muscle. 

(Stevens and Lowe 1997)  A developed network of nerves called Auerbach’s plexus is 

located between the longitudinal and circular layers. 

Unlike the remainder of the gastrointestinal (GI) tract, the thoracic oesophagus does 

not have a covering serosal layer, but an adventitia composed of loose connective 

tissue.  Only a short segment of abdominal oesophagus has a serosa.  Oesophageal 

tumours invade the mediastinum more readily due to the lack of serosa. (Crawford 

2003)  The histopathology of OC is discussed in section 1.7.4.2. 
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1.3 Epidemiology and Prognosis 

This section discusses important gender, age-related and geographical differences in 

OC, whilst highlighting the poor prognosis. 

1.3.1 Worldwide 

OC is the eighth most common cancer, causing approximately 400,000 deaths per 

year. (Ferlay et al. 2015)  There is significant variation in epidemiology worldwide.  In 

2012, there were an estimated 450,000 new cases of OC.  Overall, squamous cell 

carcinoma (SCC) is more common (5.2 per 100,000) than adenocarcinoma (0.7 per 

100,000).  (Arnold et al. 2015) 

Men have a higher incidence of OC, especially adenocarcinoma, with a male-to-

female ratio of 4.4.  SCC is most common in South-East and Central Asian countries 

such as Turkey, Iran and Northern China (79% of total cases worldwide).  

Adenocarcinoma is more common in developed countries in Northern and Western 

Europe, North America and Australasia (46% of total cases).  There is a higher 

incidence of adenocarcinoma in high-income countries. (Edgren et al. 2013; Arnold et 

al. 2015)  Similarly, ethnicity has a strong association with histological cell type.  

Adenocarcinoma is significantly more common in white populations, with SCC more 

common in black men. (Cooper et al. 2009) 
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1.3.2 United Kingdom 

OC is the 14th most common malignancy in the United Kingdom (UK), representing 

2% of all new cases of cancer.  There were more than 8,900 new cases in 2014. The 

incidence of OC is significantly higher in the elderly.  Fifty-six percent of new cases 

were diagnosed in patients over 70 years of age. (Cancer Research UK 2016a)  OC is 

more common in men (3:1) but the incidence has increased in both men and women 

since the mid-1970s. (Adams and Jaunoo 2014)  

Scotland has a significantly higher incidence of OC compared to England, Northern 

Ireland and Wales.  There appears to be a North-South divide in the UK, with cancer 

networks across Scotland and Northern England reporting a higher incidence than 

South-East England.  Wales has the 2nd highest crude rate of OC in the UK. (National 

Cancer Intelligence Network 2008; Cancer Research UK 2016a)  Socio-economic 

status could account for some of these differences, as there are increased rates of 

SCC in deprived areas. (Cooper et al. 2009) 

1.3.3 Prognosis 

The prognosis of early OC is good.  The 5-year disease-free survival (DFS) of early 

mucosal tumours (T1) is 95%. (Takeshita et al. 1997)  

However, overall 5-year survival rates are highly dependent on disease stage. 

(Surveillance Epidemiology and End Results Program (SEER) 2006-2012).  Table 
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1.3.1 shows 5-year overall survival (OS) rates for all new cases of OC in the USA 

between 2006 and 2012.  In the UK, overall 5-year survival is 15%, with 40% of 

patients surviving for 1 year, 15% for five years and 10% for ten years. (Cancer 

Research UK 2016b) 

 

Table 1.3.1. Overall 5-year Survival Rates for Localised, Regional and Distant 

Disease in USA Between 2006 and 2012. 

 Definition 5-year OS (%) 

Localised (Stage I/II) T1-3, N0, M0 41.3 

Regional (Stage III) T4, N1-3, M0 22.8 

Distant (Stage IV) Any T, any N, M1 4.5 

Unknown  12.4 
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1.4 Aetiology and Risk Factors 

There are several risk factors associated with OC.  However, different risk factors are 

associated with the development of the two main histological types; adenocarcinoma 

and SCC. 

1.4.1 Diet and Lifestyle 

Tobacco smoking and alcohol intake are the main risk factors for SCC. (De Stefani et 

al. 1993; Lee et al. 2007)  The risk of smokers developing adenocarcinoma is less 

conclusive.  A multicentre, case-control study including over 500 patients showed an 

increased risk of adenocarcinoma, which persisted for 30 years after smoking 

cessation. (Gammon et al. 1997)  Excessive alcohol consumption is associated with 

OC and the risk increases in different ethnic groups.  Genetic mutations of alcohol 

and aldehyde dehydrogenases increase the risk in East Asian heavy drinkers. 

(Yokoyama and Omori 2003) 

Diet is associated with the development of SCC and adenocarcinoma.  The excessive 

consumption of processed meat, pickled foods, high-fat dairy products and hot drinks 

are associated with increased rates of OC. (Cheng et al. 1992; Bahmanyar and Ye 

2006; Islami et al. 2009) 

Some medications may reduce the risk of OC.  In patients with known Barrett’s 

oesophagus, the risk of progression to high-grade dysplasia (HGD) or 
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adenocarcinoma is reduced in up to 71% of patients taking proton pump inhibitors 

(PPI), although this risk reduction may only be seen following long-term use. (Singh et 

al. 2014)  Regular use of cyclo-oxygenase inhibitors, non-steroidal anti-inflammatories 

such as aspirin, and statins may also reduce the risk. (Kantor et al. 2012; Zhang et al. 

2014)  Long term use of low-dose aspirin (for more than 5 years) reduces the risk of 

colorectal cancer by 27%, but further research investigating its utility in OC is 

required. (Friis et al. 2015) 

1.4.2 Gastro-Oesophageal Reflux Disease and Obesity 

The worldwide increase in obesity coupled with gastro-oesophageal reflux disease 

(GORD) has seen a rise in the “pre-malignant” condition Barrett’s oesophagus, which 

is defined as any portion of the normal distal squamous epithelium replaced by 

metaplastic columnar epithelium, endoscopically visible 1 cm or more above the GOJ. 

(Fitzgerald et al. 2014) 

GORD is the reflux of gastric contents into the distal oesophagus caused by 

inappropriate relaxation of the lower oesophageal sphincter. GORD may be 

asymptomatic but can cause retrosternal chest pain (dyspepsia), difficulty swallowing 

(dysphagia) or cough.  GORD reduces the intraluminal pH, resulting in epithelial and 

mucosal damage.  

Obesity itself is a cause of GORD, and obese people tend to have a poor diet, which 

further increases the risk of developing OC.  There is an association between body 
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mass index (BMI) and adenocarcinoma. Patients in the highest BMI quartile have an 

adjusted odds ratio of 7.6 (95% confidence interval (CI), 3.8 to 15.2) compared to 

those in the lowest BMI quartile for developing adenocarcinoma. (Lagergren et al. 

1999) 

1.4.3 Barrett’s Oesophagus and Adenocarcinoma 

A large, population-based cohort study in Denmark surveilled over 11,000 patients 

diagnosed with Barrett’s oesophagus between 1992 and 2009.  The overall incidence 

of adenocarcinoma was 2.9 cases per 1,000 person-years, representing 7.6% of the 

total new cases of adenocarcinoma in the country.  This equates to an annual risk of 

0.12%, or 1 case of adenocarcinoma per 860 person-years.  The authors concluded 

that routine surveillance of these patients is of doubtful value. (Hvid-Jensen et al. 

2011)  However, given that surveillance correlates with earlier cancer detection and 

consequently improved survival, the British Society of Gastroenterology (BSG) 

recommends surveillance in these patients.  This is the standard of care in the UK. 

(Fitzgerald et al. 2014) 
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1.5 Diagnosis 

OC is usually diagnosed following endoscopy and biopsy.  OC can be diagnosed 

radiologically with a Barium swallow examination or computed tomography (CT). 

1.5.1 Clinical Presentation 

Dysphagia is the most common symptom of OC.  Dysphagia is most often caused by 

tumour mass effect and often explains the frequently late presentation of patients with 

advanced disease. (Cancer Research UK 2016a) 

1.5.2 Investigation 

The National Institute for Health and Clinical Excellence (NICE) guidance states that 

urgent direct access to upper GI endoscopy should be performed within 2 weeks, in 

patients with dysphagia or aged 55 and over, with weight loss and either upper 

abdominal pain, reflux or dyspepsia. (National Institute for Health and Clinical 

Excellence 2015)  Upper GI endoscopy is performed by a variety of health-care 

professionals and is the first-choice investigation for OC.  Information regarding 

location, length of tumour and the degree of circumferential abnormality can also be 

evaluated. 

Patients not wishing to undergo upper GI endoscopy, or that are felt to be unsuitable 

due to the risks of the procedure, can have a double-contrast barium swallow 
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examination performed as an alternative investigation.  The patient ingests barium 

sulphate solution and effervescent granules whilst fluoroscopic images of the 

hypopharynx, thoracic oesophagus, GOJ, stomach and proximal duodenum are 

acquired. The degree of stenosis in a stricturing tumour can be assessed. 

 

1.6 Management of Oesophageal Cancer 

The management of OC is dependent upon a combination of factors including clinical 

MDT decisions, patient wishes and co-morbidities, but is heavily influenced by 

radiological staging.  Randomised clinical trials (RCTs) have attempted to 

demonstrate the best treatment, but the optimum management is still unknown.  

Several studies have failed to show a significant difference in outcome between 

different treatment regimes. 

1.6.1 Therapeutic Endoscopy Techniques for Early Cancer 

Endoscopic treatment plays an important role in early OC.  Such techniques include 

endoscopic mucosal resection (EMR), argon plasma coagulation (APC) and radio-

frequency ablation (RFA).  The aim is to remove areas of high-grade dysplasia and 

T1a cancers which, for adenocarcinoma, are normally present in areas of Barrett’s 

oesophagus.  There is significantly less morbidity following these techniques than 
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surgery. (Allum et al. 2011)  These endoscopic techniques are restricted to T1a N0 

tumours. (Griffin et al. 2011) 

1.6.2 Treatment Options in Advanced Cancer 

Patients with incurable disease receive palliative therapy, including placement of 

metal stents to improve dysphagia.  For those with potentially curable disease, 

treatment options include surgery alone, neo-adjuvant chemotherapy (NACT), neo-

adjuvant chemo-radiotherapy (NACRT) and definitive chemo-radiotherapy (dCRT). 

1.6.2.1 Surgery  

Surgical management aims to provide a definitive cure for the patient.  Due to the 

commonly late presentation of OC, surgical management is an option for relatively 

few patients (20-30%). (Crosby and Evans 2009)  The 2- and 5-year survival rates of 

patients treated with surgery alone is 34% and 17%, respectively. (Medical Research 

Council Oesophageal Cancer Working Group 2002; Allum et al. 2009)  Quality of life 

post-oesophagectomy is an important consideration.  Surgical patients only regain 

their quality of life if they live for at least 2 years following resection, therefore careful 

patient selection is critical. (Blazeby et al. 2000)  

Two types of oesophagectomy are commonly performed in the UK. (National 

Oesophago-Gastric Cancer Audit 2016)  The Ivor-Lewis oesophagectomy (trans-

thoracic approach) involves a thoracotomy and en-bloc resection of oesophagus and 



  Chapter 1 

Cardiff University  16 

lymph nodes.  The trans-hiatal approach involves a gastric pull-through and cervical 

anastomosis.  A formal lymphadenectomy is not performed.  Comparable survival 

statistics have been reported, however morbidity rates are significantly lower following 

trans-hiatal oesophagectomy than an Ivor-Lewis procedure. (Hulscher et al. 2002; 

Davies et al. 2014b) 

NACT is given in attempt to reduce the tumour volume and disease stage prior to 

surgery and is currently the first-line treatment. (Medical Research Council 

Oesophageal Cancer Working Group 2002)  Patients with less advanced disease may 

have surgery alone.   

1.6.2.2 Neo-Adjuvant Chemotherapy 

Patients receive 3 cycles of epirubicin, cisplatin and capecitabine (ECX) prior to 

surgery. (Cunningham et al. 2008)  Survival rates from the Medical Research Council 

(MRC) OE02 and USA Intergroup 113 RCTs comparing NACT with surgery alone are 

shown in Table 1.6.1. 

The USA Intergroup 113 RCT found no significant difference in survival between 

surgery with or without NACT, but the larger MRC OE02 trial (802 patients) found that 

two cycles of NACT improved OS (p=0.03).  A subsequent Cochrane review 

demonstrated the likely benefit of NACT, but evidence was inconclusive due to 

associated toxicity. (Vogt et al. 2006) 



  Chapter 1 

Cardiff University  17 

 

Table 1.6.1. Five-year Overall Survival Rates from MRC OE02 and USA Intergroup 

Trials Comparing NACT with Surgery Alone 

 

Randomised Control Trial 

5-year Overall Survival (%) 

Surgery Alone Neo-Adjuvant 
Chemotherapy 

MRC OE02 (Medical Research 
Council Oesophageal Cancer 
Working Group 2002; Allum et al. 
2009) 

17.1 23.0 

USA Intergroup 113 (Kelsen et al. 
1998; Kelsen et al. 2007) 19.8 19.4 

 

Both the MRC Adjuvant Gastric Infusional Chemotherapy (MAGIC) trial, a primarily 

gastric cancer trial that included GOJ tumours, and the MRC OE05 trial increased the 

number of NACT cycles to 4, but found no significant difference in survival. 

(Cunningham et al. 2006; Alderson et al. 2015) 

1.6.2.3 Neo-Adjuvant Chemo-radiotherapy 

The CROSS trial showed improved survival, pathological response and resection 

margin involvement following NACRT compared to surgery alone. (van Hagen et al. 

2012)  NACRT improved OS (median OS 49.4 vs 24.0 months, p=0.003).  Long-term 



  Chapter 1 

Cardiff University  18 

survival data confirmed the improved OS (NACRT 48.6 months vs surgery alone 24.0 

months, HR 0.68, 95% CI 0.53-0.88, p=0.003). (Shapiro et al. 2015)  There was also 

an improvement in the number of involved resection margins (NACRT 8% vs surgery 

alone 31%, p<0.001). A potential disadvantage of NACRT is an increase in operative 

morbidity and mortality. (Urschel and Vasan 2003; Fiorica et al. 2004)  RCTs 

comparing NACT and NACRT are lacking.  At the time of writing, the Neo-AEGIS trial 

was randomising patients between NACT plus post-operative chemotherapy (modified 

MAGIC regime) and NACRT using the CROSS protocol. (Keegan et al. 2014) 

1.6.2.4 Definitive Chemo-radiotherapy  

dCRT is available for patients with potentially curable disease who have relatively 

poor performance status precluding them from a major operation, or those that do not 

wish to have surgery.  Overall 3- to 5-year survival following dCRT ranges between 

20-30%. (Minsky et al. 2002; Crosby et al. 2004; Stahl et al. 2005; Bedenne et al. 

2007)  The SCOPE1 phase II/III RCT compared dCRT regimes with and without 

cetuximab but found no significant difference in survival and was closed early on 

grounds of futility. (Crosby et al. 2017)  A small Swedish study including 91 patients 

with SCC and adenocarcinoma found no significant difference in survival between 

dCRT and surgery alone.  Four-year OS for surgery and dCRT was 23% and 29.6%, 

respectively. (Carstens et al. 2007)  Similarly, no OS difference was found between 

dCRT and surgery in a propensity score analysis of 521 OC patients. (Karran et al. 

2014)  
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The decision to use radiotherapy partly relies on the total length of disease (LoD), 

which can be measured from positron-emission tomography (PET) and endoscopic 

ultrasound (EUS) staging investigations.  LoD is defined as the maximum cranio-

caudal length of the primary tumour plus any regional LNMs.  The prognostic 

significance of LoD is described in section 1.9.3 with further discussion and 

investigation of the importance of LoD for treatment planning in Chapter 6.  

1.6.2.5 Summary 

Although evidence regarding the best treatment of OC is lacking, this section 

highlights the importance of OC staging. Differentiation of early tumours from 

advanced but potentially curable disease allows alternative management techniques.  

Defining non-curable disease prevents unnecessary over-treatment, which affects 

patient’s quality of life in their final stages. 
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1.7 Staging of Oesophageal Cancer 

OC is staged according to the pathological Tumour, Node and Metastasis (TNM) 

classification. (Sobin et al. 2009)  The TNM classification aims to separate patients 

into groups based on their prognosis. 

1.7.1 Tumour Node Metastasis Classification 

The UICC first introduced the TNM staging system in 1968.  The American Joint 

Committee on Cancer (AJCC) released the 1st edition of TNM classification for OC in 

1977. (Tangoku et al. 2012)  

Several editions have subsequently been published.  The TNM 5th edition for OC 

divided M-stage into M1a and M1b.  The M1a category included cervical and coeliac 

LNMs, and M1b included all other distant metastases. (Sobin and Wittekind 1997)  

The TNM 6th edition did not differ from the 5th edition. (Sobin and Wittekind 2002)  The 

TNM 7th edition (Table 1.7.1) was used to classify stage throughout this thesis period 

and has therefore been used in all chapters. (Sobin et al. 2009)  The TNM 8th edition 

was published in December 2016 and is discussed in Chapter 8. (Rice et al. 2017)  

Radiological TNM staging is discussed in Section 1.8. 

The 7th edition differed from the 6th edition with the inclusion of HGD and Tis 

(carcinoma in situ).  T1 was separated into T1a and T1b, tumour invasion into mucosa 

and submucosa, respectively.  T4 was also separated to differentiate resectable (T4a) 
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disease (tumour invading pleura, pericardium or diaphragmatic crus) and non-

resectable (T4b) disease (tumour invasion into adjacent organs such as aorta, 

vertebral body or trachea). (Sobin et al. 2009)   

The Siewert classification defines the location of GOJ tumours. (Siewert et al. 2000)  

Type I tumours are located in the distal oesophagus with the epicentre 5 cm or less 

from the GOJ.  Type II tumours are ‘true’ tumours of the GOJ with the epicentre at the 

junction.  Type III tumours are proximal gastric cancers that extend into the distal 

oesophagus.  Tumours that do not extend into the oesophagus and have an epicentre 

more than 5 cm from the GOJ are staged as gastric cancers.  

GOJ tumours have different lymphatic drainage pathways.  Generally, type I tumours 

disseminate to the chest and type III tumours to the upper abdominal lymph nodes.  

The most common locations of LNMs are the left paracardial and lesser curvature 

nodes (67.8%), right paracardial nodes (56.9%) and left gastric artery and coeliac axis 

nodes (26.8%). (Siewert et al. 2000) 

Regional lymph nodes are defined as those that drain the oesophagus, irrespective of 

the tumour location.  They include the para-oesophageal lymph nodes in the neck 

cranially and the coeliac axis lymph nodes caudally.  All other lymph nodes, including 

supraclavicular, are classified as non-regional (M1).  Distant metastases are classified 

as dissemination to any organ including liver, lung and bone. 
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Table 1.7.1. UICC TNM 7th Edition Classification of Oesophageal Cancer 

Primary Tumour (T)  

TX Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

Tis Carcinoma in situ / high-grade dysplasia 

T1a Tumour invades lamina propria or muscularis 
mucosae 

T1b Tumour invades submucosa 

T2 Tumour invades muscularis propria 

T3 Tumour invades adventitia 

T4a Tumour invades pleura, pericardium or diaphragm 

T4b Tumour invades other adjacent structures such as 
aorta, vertebral body or trachea 

Regional Lymph Nodes (N)  

NX Regional lymph nodes cannot be assessed 

N0 No regional lymph node metastases 

N1 Metastases in 1-2 regional lymph nodes 

N2 Metastases in 3-6 regional lymph nodes 

N3 Metastases in 7 or more lymph nodes 

Distant Metastases (M)  

M0 No distant metastases 

M1 Distant metastases 
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1.7.2 Staging Groups in Oesophageal Cancer 

Patients can also be classified into stage groups related to prognosis (Table 1.7.2). 

(Sobin et al. 2009)  The presence of lymph node and distant metastatic disease 

increases stage group and indicates a poorer prognosis. 

Table 1.7.2. Stage Groups in Oesophageal Cancer 

Stage Group T N M 

Stage 0 Tis N0 M0 

Stage IA T1 N0 M0 

Stage IB T2 N0 M0 

Stage IIA T3 N0 M0 

Stage IIB T1, T2 N1 M0 

Stage IIIA T4a 

T3 

T1, T2 

N0 

N1 

N2 

M0 

M0 

M0 

Stage IIIB T3 N2 M0 

Stage IIIC T4a 

T4b 

Any T 

N1, N2 

Any N 

N3 

M0 

M0 

M0 

Stage IV Any T Any N M1 
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1.7.3 Prognostic Groups in Oesophageal Cancer 

Prognostic groups are also described in the TNM 7th edition. (Sobin et al. 2009)  The 

TNM stage, tumour location and grade of differentiation are used to classify patients 

accordingly. 

The importance of non-anatomical data for staging purposes was identified by the 

AJCC and incorporated into the TNM 7th edition.  These data included 

histopathological cell type, grade of differentiation and tumour location. For example, 

stages I and II were separated into adenocarcinoma and SCC groups to reflect 

differences in survival.  In SCC, lower oesophageal tumours are grouped differently 

from upper and mid T2/3 N0 M0 tumours because prognosis is worse in the latter. 

(Table 1.7.3)  In stage I and II adenocarcinoma (Table 1.7.4), the differentiation of G1 

and G2 (well and moderately differentiated) from G3 (poorly differentiated) has 

prognostic significance. (Rice 2010) 
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Table 1.7.3. Prognostic Groups for Squamous Cell Carcinoma 

 T N M Grade (G) Location 

Group 0 Tis 0 0 1 Any 

Group IA 1 0 0 1, X Any 

Group IB 1 

2, 3 

0 

0 

0 

0 

2, 3 

1, X 

Any 

Lower, X 

Group IIA 2, 3 

2, 3 

0 

0 

0 

0 

1, X 

2, 3 

Upper, middle 

Lower, X 

Group IIB 2, 3 

1, 2 

0 

1 

0 

0 

2, 3 

Any 

Upper, middle 

Any 

Group IIIA 1, 2 

3 

4a 

2 

1 

0 

0 

0 

0 

Any 

Any 

Any 

Any 

Any 

Any 

Group IIIB 3 2 0 Any Any 

Group IIIC 4a 

4b 

Any 

1, 2 

Any 

3 

0 

0 

0 

Any 

Any 

Any 

Any 

Any 

Any 

Group IV Any Any 1 Any Any 
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Table 1.7.4. Prognostic Groups for Adenocarcinoma 

 T N M Grade (G) 

Group 0 Tis 0 0 1 

Group IA 1 0 0 1, 2, X 

Group IB 1 

2 

0 

0 

0 

0 

3 

1, 2, X 

Group IIA 2 0 0 3 

Group IIB 3 

1, 2 

0 

1 

0 

0 

Any 

Any 

Group IIIA 1, 2 

3 

4a 

2 

1 

0 

0 

0 

0 

Any 

Any 

Any 

Group IIIB 3 2 0 Any 

Group IIIC 4a 

4b 

Any 

1, 2 

Any 

3 

0 

0 

0 

Any 

Any 

Any 

Group IV Any Any 1 Any 
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1.7.4 Pathological Staging 

The following sections introduce important prognostic pathological features 

associated with the TNM stage classification.  In patients undergoing surgical 

resection, core data should be reported as per the Royal College of Pathologists 

(RCPath) guidelines (Appendix A). (Mapstone 2007) 

1.7.4.1 T-stage 

T-stage classifies the depth of tumour invasion by anatomic landmarks.  The depth of 

tumour invasion is an important predictor of survival. (Ide et al. 1994; Lieberman et al. 

1995; Paraf et al. 1995; Khan et al. 2003)  Five-year OS rates approach 82% when 

the tumour is limited to the mucosa or submucosa. (Paraf et al. 1995) 

Depth of tumour invasion is associated with the presence of regional LNMs.  The risk 

of regional LNMs is highly unlikely (0%) in T1a tumours, but rises to 12% in T1b 

tumours invading the submucosa. (Griffin et al. 2011)  Approximately 74% of pT3 

tumours and 83% of pT4 tumours have regional LNMs. (Ide et al. 1994) 

An interesting phenomenon that occurs in patients with a tumour situated in a 

segment of Barrett’s oesophagus is duplication of the muscularis mucosae.  This has 

potentially significant implications when staging early, superficial tumours. (Abraham 

et al. 2007) 
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1.7.4.2 Histopathology 

Adenocarcinoma and SCC are the two most common histological cell types.  Less 

common histological cell types include neuro-endocrine, small cell carcinoma and 

leiomyosarcoma, comprising less than 1% of total cases. (Arnold et al. 2015)  

Adenocarcinoma is the more favourable histology in early cancers because local 

recurrence rates are lower than SCC. (Holscher et al. 1995)  Histological cell type 

becomes less important in larger, more advanced tumours. (Lieberman et al. 1995) 

Grade of tumour differentiation should be assessed by a Pathologist according to the 

WHO International Histological Classification of Tumours guidance. (Table 1.7.5) 

(Watanabe et al. 1990)  The evidence regarding the significance of grade 

differentiation on OS is conflicting, with studies unable to demonstrate a significant 

difference between groups. (Robey-Cafferty et al. 1991; Ide et al. 1994; Paraf et al. 

1995) 

Table 1.7.5. Histological Grade of Differentiation in Oesophageal Cancer 

Grade Degree of Differentiation 

G1 Well differentiated 

G2 Moderately differentiated 

G3 Poorly differentiated 

G4 Undifferentiated 

GX Grade of differentiation cannot be assessed 
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1.7.4.3 Resection Margins 

Assessment of proximal, distal and circumferential resection margins (CRM) should 

always be performed by a Pathologist. (Mapstone 2007)  An R0 grading is defined as 

the absence of resection margin involvement following resection.  R1 is evidence of 

microscopic involvement and R2 is clear, macroscopic evidence of resection margin 

involvement. (Mapstone 1998) 

Involvement of the proximal and distal resection margins is associated with an 

increased likelihood of disease recurrence.  The evidence for recurrence with 

proximal resection margin involvement is more compelling than for distal resection 

margin involvement. (Paraf et al. 1995; Mariette et al. 2003)  Mariette et al found a 

significant difference in median survival between patients with positive and negative 

proximal resection margins (median survival 11.1 vs 36.3 months, respectively). 

Different definitions of CRM involvement exist.  The College of American Pathologists 

(CAP) defines CRM involvement as tumour at the cut resection margin.  The RCPath 

define CRM involvement as tumour within 1 mm of the resection margin. (Mapstone 

1998; College of American Pathologists 2005)  Likewise, different terminology 

regarding pre-operative CRM assessment are used.  A threatened CRM describes the 

radiological appearance of a CRM at risk (defined as tumour within 1 mm of the CRM 

on imaging), and is commonly used in rectal cancer staging. (Brown et al. 2003)  A 

CRM can be described as involved or not involved following pathological examination. 
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Sagar et al produced the first major paper describing the prognostic significance of 

CRM involvement, but conflicting evidence exists. (Sagar et al. 1993)  Khan et al 

found no such association in 329 patients. (Khan et al. 2003)  Both studies used the 

RCPath definition of CRM involvement.  A systematic review and meta-analysis 

including 2,433 patients found a significant difference in 5-year survival between CRM 

status using both RCPath and CAP definitions of a positive CRM. (Chan et al. 2013b) 

Reid et al found a positive CRM to be significantly and independently associated with 

OS for all pT-stages. (Reid et al. 2012)  Advanced EUS T-stage was independently 

associated with a positive CRM, with an almost 25-fold increased risk of CRM 

involvement, once the tumour was classified T3 or greater. 

1.7.4.4 Tumour Length 

Tumour length (TL) is an important prognostic factor and should be measured by the 

Pathologist following resection.  TL is included in the core dataset for reporting. 

(Eloubeidi et al. 2002; Mapstone 2007)  The resection specimen should be pinned 

immediately during preparation as the specimen can shrink by up to a third if not fixed 

adequately. (Siu et al. 1986) 

1.7.4.5  Tumour Regression Grade 

Mandard et al described a classification of pathological tumour response to NACRT. 

(Mandard et al. 1994)  This classificiation is also routinely used following NACT.  The 
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Mandard score represents a 5-point scale quantifying tumour regression grade (TRG).  

TRG 1 represents complete regression, defined by the absence of residual cancer 

with fibrosis extending through the layers of the oesophageal wall.  TRG 2 is defined 

by scattered residual cancer cells in predominant fibrosis.  In TRG 3, fibrosis 

predominates but there are increased numbers of cancer cells compared to TRG 2.  

TRG 4 represents largely residual cancer with some fibrosis and TRG 5 is absence of 

any treatment effect.  TRG 1-3 is considered to represent treatment response 

whereas TRG 4-5 is regarded as minimal or no treatment response.  Treatment 

response has significant implications for patient outcome, as pathological stage post 

neo-adjuvant therapy and pathological TRG are independent prognostic factors. 

(Mandard et al. 1994; Davies et al. 2014a) 

1.7.4.6 Lymph Node Metastases 

The presence of LNMs has been described as the single most important prognostic 

factor in patients with OC. (Kayani et al. 2011)  Patients with LNMs have an overall 5-

year survival of 18-47% following surgical resection compared to 70-92% without 

LNMs. 

The number of regional LNMs and the ratio of pathological to normal lymph nodes 

have prognostic significance. (Wilson et al. 2008; Twine et al. 2009b; Liu et al. 2010)  

This finding was reflected in the TNM 7th edition, with formation of N0-N3 groups 

described in Table 1.7.1.  The previous 6th edition only acknowledged the presence of 

regional LNMs (N0 or N1).  Various studies have suggested different category 
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thresholds for the number of involved LNMs, but all studies agree that LNMs predict a 

poorer outcome. (Rizk et al. 2006; O'Riordan et al. 2007; Mariette et al. 2008; Hu et 

al. 2010)  Five-year survival rates of patients with no LNMs range between 49.1%-

57.0%, 1-2 LNMs between 19.5%-33% and more than 3 LNMs approximately 11.0%. 

(Hu et al. 2010; Liu et al. 2010) 

The lymph node ratio is the total number of LNMs compared to the total number of 

resected nodes.  Lymph node ratio is an independent predictor of OS (median 

survival 27 months with lymph node ratio <11% vs 13 months with lymph node ratio 

>33%). (Bogoevski et al. 2008)  At least 10 lymph nodes should be examined before 

confidently staging as pN0. (Twine et al. 2009b)  The current recommendation from 

the National Oesophago-Gastric Cancer Audit (NOGCA) is to resect a minimum of 15. 

(National Oesophago-Gastric Cancer Audit 2016) 

1.7.4.7 Micro-metastases 

Micro-metastases are small metastatic lesions within lymph nodes and can comprise 

a single or tiny cluster of cancer cells.  Traditional histopathological methods involve 

bisecting a lymph node and evaluating the exposed tissue. (Jiao et al. 2003)  Up to 

50% of lymph nodes histologically diagnosed as N0, have further evidence of micro-

metastases. (Luketich et al. 1998) 

Doubt remains whether micro-metastases have malignant potential, simply represent 

non-proliferating cells or are tumour cells that have been cleared by the immune 
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system. (Izbicki et al. 1997; Grotenhuis et al. 2010)  The prognostic significance of 

micro-metastases in OC is unclear and conflicting evidence has been published.  

Some studies failed to show an association between lymph node micro-metastases 

and outcome (Glickman et al. 1999), whilst others have found an association with 

relapse-free survival and OS. (Izbicki et al. 1997) 

Importantly, micro-metastases cannot be directly imaged at present.  Studies 

attempting to predict the presence of lymph node micro-metastases have made 

associations with tumour length, lymphatic infiltration and vascular invasion. 

(Eloubeidi et al. 2002; Wayman et al. 2002; Tanabe et al. 2003)  A study in patients 

with SCC investigated metabolic parameters on PET and found an association 

between the combined maximum standardised uptake value of the primary tumour 

(SUVmax) and clinical T-stage for predicting micro-metastases. (Moon et al. 2014) 

1.7.4.8 Extra-capsular lymph node involvement  

Extra-capsular lymph node involvement is defined as extension of cancer cells 

through the capsule into adjacent fat.  Lagarde et al studied 1,562 positive lymph 

nodes and found extra-capsular lymph node involvement in 456 nodes (29%). 

(Lagarde et al. 2006)  Extra-capsular involvement was associated with advanced T-

stage, number of LNMs and LNM ratio.  Although there was no significant difference 

in disease recurrence, patients with extra-capsular involvement had poorer median 

survival (15 months vs 41 months, p <0.001). 
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1.8 Radiological TNM staging of oesophageal cancer 

In 2006, the Worldwide Esophageal Cancer Collaboration (WECC) was assembled to 

improve OC staging.  A database of more than 4,600 surgical patients was collated 

following recruitment from numerous international centres. These data were used to 

define the TNM 7th edition classification. (Rice 2010) 

In the UK, the Royal College of Radiologists (RCR) published guidance regarding the 

radiological staging pathway of upper GI cancer.  After a diagnosis of OC is made, 

patients are initially staged with CT of the chest and abdomen. This is predominantly 

used to exclude distant metastases and irresectable locally advanced disease. If 

patients are deemed potentially curable, either with surgery, chemotherapy, 

radiotherapy or a combination, they undergo 18-Fluorine (18F) fluorodeoxyglucose 

(FDG) PET/CT followed by EUS for more detailed staging. (Roberts and Kay 2014)  

Staging with MRI has been investigated in a research setting but is not routinely 

performed. 

1.8.1 Normal Oesophageal and GOJ Appearance on Imaging 

The normal oesophagus and GOJ can vary in appearance depending on the 

radiological modality and scan preparation.  On CT, normal oesophageal wall 

thickness changes depending on luminal distension.  When adequately distended, the 

wall is thin and well-defined.   
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EUS differentiates the individual layers of the oesophageal wall clearly, allowing 

superior assessment of the depth of tumour invasion. (Fig. 1.8.1)  PET provides little 

information regarding the normal oesophagus.  Benign, low-grade uptake can indicate 

oesophagitis and could mimic malignancy if reviewed independently and blinded to 

other investigations. 

On T2-weighted MRI sequences, it is possible to differentiate the layers of the normal 

oesophageal wall, provided the sequence is optimised.  Normal mucosa, submucosa 

and muscularis propria demonstrate intermediate, high signal and low signal, 

respectively. (Riddell et al. 2006) 

1.8.2 T-stage 

Radiological T-stage follows the same classification as pT-stage detailed above. 

(Table 1.7.1) 
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Figure 1.8.1. Selected radial endoscopic ultrasound image demonstrating different 

layers of the oesophageal wall.  The inner hypoechoic layer (black arrow) represents 

the muscularis mucosa and the middle hyperechoic layer (white arrow) represents the 

submucosa.  The outer hypoechoic layer (black arrowheads) represents the 

muscularis propria.  A small, hypoechoic lymph node is marked with calipers.  The 

image was acquired in the distal oesophagus at 36 cm using a UM-2000 Olympus 

Video EUS endoscope (Key Med, Southend, UK). 
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1.8.2.1 Tumour Characteristics by Imaging Modality 

Imaging characteristics of oesophageal and junctional tumours on each modality (CT, 

EUS, PET/CT and MRI) are described in further detail below. 

1.8.2.2 CT 

OC can appear as eccentric or circumferential wall thickening on CT, with abnormal 

density and enhancement compared to adjacent normal tissue.  For preparation, the 

patient drinks approximately 500 ml of water prior to CT to distend the stomach.  

However, this can be difficult for patients with dysphagia, which is a limitation of the 

technique.  CT can demonstrate invasion into adjacent organs, an important factor for 

determining resectable disease, but cannot confidently differentiate early T-stages. 

(Takashima et al. 1991)  Circumferential thickening on CT suggests T3 disease or 

greater. (Li et al. 2013) 

1.8.2.3 EUS 

EUS is considered the best modality for T-stage assessment because the individual 

layers of the oesophageal wall are well visualised.  EUS provides excellent 

assessment of superficial tumours and is useful for distinguishing early T1 tumours 

from more advanced disease.  A meta-analysis demonstrated sensitivity and 

specificity for T1a tumours as 85% and 87%, respectively and for T1b tumours, 86% 

and 86%, respectively. (Thosani et al. 2012) 
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EUS T-stage accuracy is approximately 70%. (Choi et al. 2010; O'Farrell et al. 2013)  

EUS has limited capability for Siewert type III GOJ tumours. Type III GOJ tumours are 

more technically challenging than type II due to anatomical constraints.  T-stage 

agreement (defined by the weighted kappa statistic) for Siewert type II and type III 

tumours is 0.851 and 0.173, respectively.  (Blackshaw et al. 2008) 

1.8.2.4 PET/CT 

Currently, the inherent poor spatial resolution of PET (approximately 5mm) limits T-

stage assessment. (Levin 2012)  However, PET provides useful data describing the 

metabolic activity of the tumour.  Adenocarcinoma and SCC both have a high affinity 

for FDG, making PET particularly useful in OC.  Quantification of FDG-uptake and 

metabolic tumour dimensions have prognostic significance. This is discussed further 

in section 1.9.3. 

1.8.2.5 MRI 

The staging accuracy of MRI has been investigated in research studies.  MRI may be 

a useful, non-invasive technique, particularly in stenotic tumours that do not allow 

passage of the endoscope.  MRI is technically difficult and prone to motion artefact 

given the proximity of the oesophagus to the heart, lungs and diaphragm. 
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Oesophageal tumours tend to be intermediate signal on T2 weighted images, with 

thickening and alteration of the anatomical layers.  Mucinous tumours may be high 

signal due to their proteinaceous content.  

Riddell et al investigated MRI T-staging with high-resolution 1.5 Tesla T2 sequences. 

(Riddell et al. 2007)  Eighty-one percent of patients (28/37) were correctly T-staged 

when compared to the histopathological stage.  Under-staging and over-staging were 

16.2% (n=6) and 8.1% (n=3), respectively.  A small number of studies have reported 

comparable MRI T-staging accuracy with EUS (EUS accuracy 82-94%).  The ability of 

MRI to determine resectability is comparable to CT. (Takashima et al. 1991; van 

Rossum et al. 2013)  T-staging with endoscopic MRI has been investigated but 

remains an invasive procedure with risk of complications. (Inui et al. 1995; Kulling et 

al. 1998; Wu et al. 2003; Dave et al. 2004)  Wu et al found the accuracy of 1.5 Tesla 

endoscopic MRI was 60%. (Wu et al. 2003)  The sensitivity and specificity of 

differentiating T1 & T2 from T3 & T4 tumours were 40% and 63%, respectively. 

Higher strength MRI scanners have demonstrated excellent T-staging accuracy using 

ex-vivo specimens.  Accuracy of a 4.7 Tesla MRI scanner was 94% compared to the 

resection specimens and was replicated with high resolution 1.5 Tesla MRI. (Yamada 

et al. 1997; Yamada et al. 2001)  One hundred percent accuracy has been obtained 

using a 7 Tesla MRI in oesophageal specimens. (Yamada et al. 2014)  Further in-vivo 

validation is required. 
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1.8.3 N-stage 

Normal lymph nodes are flat or triangular, with preservation of the fatty hilum on 

imaging. (Richards et al. 2000)  Size criteria are applied by measuring the short axis 

diameter of the lymph node.  In general, lymph nodes measuring more than 10 mm 

are considered pathological.  Radiological N-staging (TNM 7th edition) follows the 

same classification as pN-stage (Table 1.7.1). (Sobin et al. 2009) 

1.8.3.1 Lymph Node Metastases by Imaging Modality 

The imaging characteristics of LNMs and diagnostic ability of each modality are 

described below.  Each modality has limitations for N-staging.  CT provides 

anatomical information only, relies on size criteria and involves radiation.  PET/CT 

also involves radiation but provides additional metabolic data which improves the 

positive predictive value (PPV) of LNMs. (Okada et al. 2009)  The differentiation of 

peri-tumoural LNMs from adjacent avid tumour can be challenging due to the limited 

spatial resolution of PET. (Kapoor et al. 2004)  This may increase ‘false-negative’ 

rates therefore under-staging the extent of nodal disease. EUS has better sensitivity 

compared to CT and PET/CT due to its superior contrast resolution. 

1.8.3.1.1 CT 

The main criterion for diagnosis of LNMs on CT is size.  Peri-oesophageal lymph 

nodes are considered metastatic if the short axis diameter measures more than 10 
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mm, although it is recognised that the sensitivity of identifying LNMs on CT is 

suboptimal (as low as 18%). (Choi et al. 2000)  CT cannot differentiate between 

benign and metastatic lymph nodes that are normal size, which may explain such 

poor sensitivity. 

There is significant variation in results of CT N-staging.  Benign lymph nodes adjacent 

to the trachea and main bronchi can appear large and round.  One study found the 

sensitivity, specificity, accuracy, PPV and negative predictive value (NPV) were 

56.0%, 97.3%, 92.4%, 73.7% and 94.2% respectively, using definitions of 10 mm for 

para-tracheal lymph nodes and 7 mm for all others. (Okada et al. 2009) 

1.8.3.1.2 EUS 

Malignant lymph nodes appear round, hypoechoic, homogenous and enlarged with 

loss of the normal fatty hilum on EUS.  EUS is regarded as the best investigation for 

N-staging.  Accuracy of EUS N-staging is approximately 65-70% (Choi et al. 2010) but 

is operator dependent.  Van Vliet et al found that endoscopists performing less than 

50 EUS procedures per year had inferior results compared to those performing more 

than 50 per year. (van Vliet et al. 2006) 

A meta-analysis found the sensitivity of CT, EUS and PET/CT for the detection of 

regional LNMs was 50%, 80% and 57%, respectively. (van Vliet et al. 2008)  The 

specificity was 83%, 70% and 85%, respectively suggesting EUS is better than CT or 
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PET for correctly excluding regional LNMs.  The study also found the sensitivity and 

specificity of diagnosing coeliac LNMs with EUS was 85 and 96%, respectively. 

A main limitation of EUS are stenotic tumours that are non-traversable with the 

endoscope.  It has been reported that around 30% of tumours are non-traversable, 

however a published failure rate over a nine-year period by an experienced EUS 

operator was 2.9%. (Morgan et al. 2008) 

Some centres also perform ultrasound of the neck as part of the routine diagnostic 

work-up (Omloo et al. 2009) but Blom et al found no additional value as a routine 

investigation. (Blom et al. 2012)  In Blom et al’s study, 140 of 170 patients (82.4%) 

had no suspicion of cervical disease, although 84% had tumours at or below the 

diaphragm.  Neck ultrasound is justified in patients with clinically palpable nodes, or 

SCC in the cervical, upper or mid oesophagus. (Griffith et al. 2000)   

1.8.3.1.3 PET/CT 

Lymph nodes are considered involved on PET if identified on the CT component and 

show FDG-uptake that is appreciably higher than background values.  Early studies 

found sensitivity, specificity and accuracy of PET/CT was 93.9%, 92.1% and 92.4% 

compared to PET alone (81.71%, 87.3% and 86.15%, respectively). (Yuan et al. 

2006) 
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There is conflicting evidence regarding sensitivity of PET/CT for N-staging.  Kato et al 

(Kato et al. 2008) found less additional value of PET to CT than Yuan et al. (Yuan et 

al. 2006)  Sensitivity of PET/CT and PET was 46.0% vs 32.9%, specificity was 95.1% 

vs 93.9%, and accuracy was 99.4% vs 98.9%, respectively. 

Another meta-analysis including 6 studies and 245 patients demonstrated that the 

pooled sensitivity and specificity of PET/CT was 55% and 76%, respectively. (Shi et 

al. 2013)  These results are similar to the meta-analysis by van Vliet et al. (sensitivity 

55%, specificity 85%) (van Vliet et al. 2008) 

1.8.3.1.4 MRI 

Regional LNMs tend to be round with intermediate T2 signal.  A defined size threshold 

of a LNM has not been agreed upon as research is on-going.  Recent studies have 

shown sensitivity, specificity and accuracy of 38-62%, 68-85% and 64-77%, 

respectively. (Wu et al. 2003; Nishimura et al. 2006)  These results are comparable to 

CT, EUS and PET/CT but require further validation.  Promising results were obtained 

using ferumoxtran-10, an ultra-small intra-venous (IV) ultrasmall superparamagnetic 

iron oxide (USPIO) compound.  The sensitivity, specificity and accuracy was 100%, 

95% and 96%, respectively. (Nishimura et al. 2006)  However, ferumoxtran-10 and 

other USPIO agents were discontinued due to safety concerns. (Atri et al. 2015) 
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1.8.4 M-stage 

The purpose of the initial CT in the routine staging pathway is to identify distant 

metastases or irresectable local disease that would preclude radical treatment.  

PET/CT is superior to CT for the detection of distant metastases. The sensitivity and 

specificity of CT and PET/CT is 52% and 91%, and 71% and 93%, respectively. (van 

Vliet et al. 2008)  PET/CT can change management in up to 38% of cases. (Gillies et 

al. 2011; Blencowe et al. 2013)  PET/CT has been considered as the initial staging 

investigation in OC, but is expensive and resource heavy. (van Vliet et al. 2008) 

1.9 PET/CT 

The integration of PET with CT images provides anatomical and metabolic data.  The 

first clinical PET/CT scanner was installed at the University of Pittsburgh Medical 

Centre in 1998. 

1.9.1 Physics of PET/CT 

The most commonly used positron emitter used is 18F, which is labelled with FDG.  

18F has a half-life (T1/2) of 110 minutes.  A positron is released from 18F and travels 

approximately 2 mm within the body before colliding with an electron.  Two photons of 

equal energy (511 keV) are produced during this interaction, a process called 

annihilation.  The photons then travel at 180° to each other and enter opposite 

detectors within the PET camera. (Allisy-Roberts and Williams 2008) 
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The PET camera is a ring of thousands of scintillation detectors surrounding the 

patient.  The detectors are commonly made of bismuth germinate or lutetium 

oxyorthosilicate crystals, and are arranged into blocks, coupled to 4 photo-multiplier 

tubes (PMTs).  These amplify the signal measured from each photon count.  There 

are typically 20-30 rings of detectors around the body. (Allisy-Roberts and Williams 

2008) 

The ideal PET detector is a crystal material that is highly efficient at detecting the 

maximum number of photons, with a rapid processing time to enable further 

subsequent detections.  A lead collimator ensures that a photon is channelled into a 

detector.  There must be a balance between collimator size and photon count signal 

so diagnostic images are obtained.  This compromise reduces spatial resolution. 

1.9.2 PET/CT Image Production 

The PET scanner analyses the annihilation coincidence detection (ACD) and 

assumes the interaction must have occurred along a path between detectors, called a 

line of response (LOR).  Time of flight (TOF) software localises the annihilation along 

the LOR by measuring the time difference between photon detections, which can be 

as small as 500 picoseconds (ps). 

The photon count and location is then processed by the systems computer, which 

builds a matrix (a grid consisting of pixels) using the co-ordinates of each photon 
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count in its memory locations.  A PET image is constructed. (Allisy-Roberts and 

Williams 2008) 

The PET and CT images must be co-registered. (Fig. 1.9.1)  This is vitally important 

when assessing the anatomical location of increased FDG-uptake.  Spatial matching 

is improved using an integrated PET/CT scanner so the patient does not move 

between scans. (Allisy-Roberts and Williams 2008)  SUVs are calculated following a 

process called attenuation correction.  This process adjusts the SUV depending on 

the CT tissue density. 
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Figure 1.9.1. Example of a fused PET/CT axial image showing a distal oesophageal 

adenocarcinoma.  PET images have been co-registered with the CT images.  The 

oesophagus is circumferentially thickened at the level of the ventricles and the 

primary tumour is intensely FDG-avid.  The image also shows FDG-uptake in the 

myocardium. 
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1.9.3 PET/CT Variables in Oesophageal Cancer Staging 

PET/CT research in OC has increased considerably over the past decade. (Foley et 

al. 2016)  Additional prognostic and predictive data can be recorded, which have the 

potential to guide management decisions, predict treatment response and improve 

risk stratification. (Schmidt et al. 2015) 

A commonly used variable is SUVmax.  This represents the voxel with the highest 

uptake value within a region of interest (ROI).  SUVmax is prone to random noise 

artefact and can provide falsely high values. (Kinahan and Fletcher 2010)  SUVmax 

has been extensively investigated as a prognostic indicator, although positive findings 

are not always reproduced. (Pan et al. 2009; Hatt et al. 2011b; Omloo et al. 2011)  

The mean standardised uptake value of the primary tumour (SUVmean) is an 

alternative to SUVmax. (Higgins et al. 2012)  SUVs can vary depending on the 

histological cell type of the primary tumour.  SCC tends to have a higher SUVmax than 

adenocarcinoma. (de Geus-Oei et al. 2007) 

Metabolic tumour volume (MTV) represents the volume of metabolically active 

tumour.  MTV has prognostic significance because larger tumours tend to be more 

advanced at presentation. (Li et al. 2014)  A small study demonstrated an association 

between MTV and the number of LNMs. (I et al. 2012)  Other studies have shown that 

SUVmax and MTV correlate with T- and N-stage in patients with SCC. (Zhu et al. 2012)  

Importantly, MTV is highly dependent on the segmentation method used. (Gillies et al. 

2016)  This is discussed in more detail in sections 1.10.2.1 and 1.10.2.2. 



  Chapter 1 

Cardiff University  49 

Metabolic tumour length (MTL), defined as the maximum length of FDG-avid tumour, 

and length of disease (LoD), defined as the cranio-caudal length of primary tumour 

plus any regional LNMs, have been investigated for prognostic significance but further 

research is required to validate their use in risk-stratification and staging models. (Hatt 

et al. 2011b)  PET and EUS LoD have implications for treatment planning (section 

1.6.2.4). 

Prediction of treatment response using PET/CT is currently of great interest.  The 

MUNICON-1 trial investigated PET uptake pre- and post-NACT and found an SUVmax 

reduction of 35% after 2 weeks of chemotherapy predicted response at the end of the 

12-week cycle. (Javeri et al. 2009)  The trial showed that discontinuation of 

chemotherapy in metabolic non-responders did not affect prognosis and prevented 

further exposure to treatment with potential side-effects.  The MUNICON-2 trial 

investigated PET-guided management, adding radiotherapy to conventional NACT in 

non-responders. (zum Buschenfelde et al. 2011)  PET-responders had longer 2-year 

survival than non-responders (71% vs 42%) but this difference did not reach statistical 

significance (p=0.10). 
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1.10 Introduction to texture analysis 

Texture analysis is an advanced imaging technique that provides non-invasive, high-

output feature extraction from a ROI.  It is commonly referred to as ‘Radiomics’. 

(Lambin et al. 2012)  Texture analysis can be performed on CT, MRI and PET 

images.  It is a post-processing technique that requires complex mathematical and 

statistical computation.  Texture analysis is an evolving field of research that aims to 

improve prediction of patient outcome and treatment response. (Goh et al. 2011) 

The potential value of texture analysis is substantial given that it can be performed 

retrospectively or prospectively from routinely-collected images, at little extra cost.  

There is no need for additional radiological investigations.  Texture analysis in 

combination with traditional staging methods may improve radiological staging, 

clinical-decision tools and treatment pathways. (Aerts et al. 2014) 

1.10.1 Background 

Multiple sub-clonal populations of cells are known to co-exist within solid cancers, 

establishing the concept of tumour heterogeneity. (Gerlinger et al. 2012)  Data from 

texture analysis could be used as surrogate markers of underlying tumour 

heterogeneity and may correlate with biological, genomic or tumour marker 

expression. (Chong et al. 2014)  Variation in FDG-uptake is associated with 

underlying pathophysiological features such as cellular proliferation, vascularity, 

perfusion, hypoxia and necrosis. (Rajendran et al. 2006; Henriksson et al. 2007; Basu 
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et al. 2011; Humbert et al. 2016)  Henriksson et al studied FDG-PET images of head 

and neck cancers in mice.  There was good correlation between SUV and the number 

of tumour cells in different quadrants of the tumour. (Henriksson et al. 2007) 

An image is composed of a matrix comprising discrete units called pixels.  A pixel is a 

two-dimensional area that displays a corresponding representative value of density 

(CT), signal (MRI) or uptake (PET).  A medical image is formed from multiple pixels 

spatially arranged in a matrix. 

A voxel is a 3-dimensional (3D) pixel that represents a volume of space.  Modern 

cross-sectional imaging techniques acquire scan data with isotropic voxels (those with 

equal dimensions) allowing 3D texture analysis to be calculated. (Aerts et al. 2014)  

Feature extraction algorithms provide first-, second- and higher-order statistics that 

quantify the spatial distribution and intensity values within selected voxels considered 

to represent the tumour volume. (Lambin et al. 2012; Gillies et al. 2016)  3D texture is 

more representative of tumour heterogeneity than 2D analysis. (Ng et al. 2013) 

The concept of texture analysis originated outside of the medical field.  A seminal 

article by Haralick et al described a series of texture features obtained from geological 

satellite images.  These features could differentiate between forest, swamp, marsh, 

coast and urban areas. (Haralick et al. 1973)  Visual texture perception is an area of 

research pioneered by a psychologist called Bela Julesz.  His work investigated the 

human performance of second-order texture metric discrimination.  He demonstrated 



  Chapter 1 

Cardiff University  52 

that computational methods of digital texture analysis are superior to human visual 

perception. (Julesz 1975) 

1.10.2 Texture Analysis in Clinical Research 

Texture analysis has been investigated in several solid tumours including 

oesophageal, nasopharyngeal, lung, cervical cancer. (Kidd and Grigsby 2008; Huang 

et al. 2012; Hatt et al. 2013; Win et al. 2013; Yip et al. 2014)  Use of the image 

features as prognostic and predictive biomarkers is promising but its role in 

management decision pathways has not been validated.  The texture metrics used in 

this thesis are discussed in more detail in section 2.4.5. 

1.10.2.1 Segmentation 

One of the most importance aspects of texture analysis is segmentation, which 

defines the contour or outline of the tumour. (Gillies et al. 2016)  Manual, semi-

automatic and automatic methods are available.  Segmentation is critical in texture 

analysis, as this defines the voxels analysed in the selected ROI.  Results are 

affected if adjacent tissue is included within the contour, for example, normal FDG-

uptake in the myocardium. 

Manual segmentation is very time-consuming, especially in a busy clinical context.  It 

is operator dependent and has the potential for high inter-observer variability. (Ford et 

al. 2006; Egger et al. 2013)  Automatic segmentation is an alternative to manual 
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delineation in PET imaging.  Early automatic segmentation techniques use a fixed 

threshold, which rely on a pre-defined level set by the operator.  The software 

identifies the voxel with the highest SUV then includes adjacent voxels within that 

threshold to be included in the segmentation. 

Several limitations exist with this technique.  Tumours with discontinuous uptake may 

not fully segment and would require manual adjustment.  In addition, optimal 

threshold levels have not been agreed.  Studies using fixed SUV thresholds of 2.5 or 

thresholds of 20%, 30%, 40%, 42% and 50% have been conducted, presenting 

differing evidence.  (Biehl et al. 2006; Prieto et al. 2012) 

1.10.2.2 Automatic Segmentation Methods 

Several automatic thresholding methods have been proposed. (Hatt et al. 2017)  

These include adaptive thresholding (AT), gradient contour (GC), region growing 

(RG), watershed transform (WT) and clustering methods. 

AT is an iterative method, developed by Drever et al, based initially on a fixed 

threshold method of 50%. (Drever et al. 2007)  However, the contour is modified 

iteratively following comparison of the original and generated backgrounds.  

Segmentation terminates once there is no successive difference between 

backgrounds. 
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The GC algorithm assesses PET images slice-by-slice for the highest SUV.  The next 

successive highest SUV is determined following systematic evaluation of voxels in 

clockwise direction. (Ford et al. 2006)  The WT method identifies ‘crests’ of high 

intensity and the algorithm includes these in the defined ROI. (Geets et al. 2007)   

The RG method is an iterative process that randomly selects voxels and propagates a 

contour from that voxel, depending on the intensity of the voxel adjacent to it.  The 

contour terminates once the proportion of added voxels becomes small compared to 

the total volume, often set at 5%. (Day et al. 2009). 

Clustering methods implement iterative steps to group clusters of voxels after 

comparison of their uptake values.  The algorithm repeatedly tests first-order statistics 

to produce homogenous volumes within the cluster.  Named methods of clustering 

include K-means (Zaidi and El Naqa 2010), Fuzzy C-means (Belhassen and Zaidi 

2010), and Gaussian Fuzzy C-means (Hatt et al. 2011a). 

An advanced decision tree-learning algorithm for automatic segmentation (ATLAAS) 

has been developed using machine-learning methods in attempt to standardise PET 

segmentation. (Berthon et al. 2016)  Further details about ATLAAS are discussed in 

section 2.4.3. 
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1.10.2.3 Texture Analysis in Oesophageal Cancer 

Relatively few studies have investigated PET or CT texture analysis in OC.  These 

have been small, retrospective studies investigating associations with stage, 

treatment response and survival. (van Rossum et al. 2016b) 

PET texture analysis evaluates metabolic heterogeneity of the primary tumour.  Hatt 

et al found that entropy, homogeneity, dissimilarity and zone percentage were 

preferred variables for predicting response in 50 patients with OC.  These variables 

were robust for each segmentation method used. (Hatt et al. 2013) 

Dong et al investigated the association of SUVmax with histological grade, T-staging 

and 2 texture features (entropy and energy) in 40 pre-operative patients with SCC. 

(Dong et al. 2013)  T-stage correlated significantly with entropy (r=0.693, p<0.001) 

and energy (r= -0.469, p=0.002).  An entropy of >4.699 distinguished stage IIb from 

more advanced tumours (p<0.001). 

Tixier et al investigated baseline FDG-PET texture to predict tumour response in 41 

patients treated with dCRT. (Tixier et al. 2011)  Thirty-eight different texture metrics 

were calculated.  Patients were grouped into non-responders (NR), partial responders 

(PR) and complete responders (CR), defined by the RECIST criteria. (Eisenhauer et 

al. 2009)  SUVpeak (p=0.045), Entropy (p<0.001) and Intensity Variability (p<0.001) 

were significantly associated with treatment response.  The RECIST criteria is 

considered a poor tool to assess treatment response in OC and limits these findings. 
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Yip et al investigated the association of CT texture analysis, OS and tumour response 

in patients treated with dCRT. (Yip et al. 2014)  Histogram statistics were calculated 

for fine, medium and coarse textures using a software package called TexRad 

(TexRad Ltd, Cambridge, England).  Post-treatment medium Entropy (p<0.001), 

coarse Entropy (p<0.001) and medium Uniformity (p<0.001) were associated with OS. 

In another study from this group, histogram statistics were calculated from pre- and 

post-NACT CT examinations.  Primary tumours became more homogenous following 

NACT, demonstrating a significant decrease in Entropy (p<0.001) and an increase in 

Uniformity (p<0.001).  Histogram Standard Deviation showed a statistically significant 

association with pathological tumour response (p=0.009) and Histogram Skewness 

was associated with OS (p<0.001). (Yip et al. 2015)  Further details of these metrics 

are found in section 2.4.5. 
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1.11 Prognostic research 

The Oxford Medical Dictionary defines prognosis as “an assessment of the future 

course and outcome of a patient’s disease, based on knowledge of the course of the 

disease in other patients, together with the general health, age, and sex of the 

patient”. (Oxford University Press 2010)  Its use is not confined to patients that are 

acutely unwell or suffering from cancer, and can be used to predict future events in 

healthy individuals. (Moons et al. 2009b) 

1.11.1 Background 

Prognostic research is different to aetiological research.  The aim is to identify 

predictors, not to discover causality.  An example is the ability of tumour markers to 

predict death. (Moons et al. 2009b)  Markers of prediction are different to markers of 

prognosis.  Whereas a marker of prediction can be used identify a select group of 

patients in which a treatment is most likely to be successful, a prognostic marker 

informs the likely course of that individual.  This difference is also translated when 

comparing predictive and prognostic models. 

Prognostic modelling can inform the probability of an individual’s outcome, can 

influence public health policy and assess the role of diagnostic tests.  The 

Framingham cardiovascular risk score is widely used in primary care to inform 

prophylactic anti-hypertensive and cholesterol reducing medication use. (Kannel et al. 

1976)  Other commonly used prognostic models are the Nottingham prognostic index 
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in breast cancer and the Manchester triage system in emergency departments. 

(Haybittle et al. 1982; Mackway-Jones 1997)  Prognostic models can be used to help 

design RCTs (Hernandez et al. 2004) and to compare performance across 

departments or hospitals in order to improve standards. (Jarman et al. 1999) 

In cancer research, prognostic models can be developed to predict patient outcome 

and assess the additional benefit of new biomarkers. (Mallett et al. 2010b; Moons et 

al. 2012)  More recently, studies investigating different combinations of imaging, 

histopathological and genomic data have attempted to develop clinical prognostic and 

prediction models. (Hemingway et al. 2013; Aerts et al. 2014) 

A trend towards personalised or ‘precision’ medicine has utilised prognostic and 

predictive models, attempting to tailor treatment to individual patients.  Predictive 

models could identify groups of patients that may significantly benefit from a specific 

treatment, or have no response at all. (Steyerberg et al. 2013)  Examples of this 

include Tamoxifen therapy in women with HER-2 positive breast cancer and Imatinib 

use in AML patients with BCR-ABL mutations. (Hingorani et al. 2013) 

Despite the abundance of prognostic research in the literature, its methodology has 

not been fully established and should be improved. (Riley et al. 2013)  The 

importance of developing and validating prognostic models has been emphasised in 

several articles published by eminent statisticians. (Altman 2001; Altman et al. 2009; 

Moons et al. 2009a; Moons et al. 2009b; Royston et al. 2009; Mallett et al. 2010a; 

Moons et al. 2012; Hemingway et al. 2013; Hingorani et al. 2013; Riley et al. 2013; 
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Steyerberg et al. 2013)  Validating a prognostic model is important and can be 

performed either in the same institution (internal) or in a different centre (external).  

Further details regarding model validation are discussed in section 2.6.2.1.  Due to 

deficiencies in prognostic research methodology, it is likely that perceived important 

factors with unestablished significance continue to be investigated, populating the 

literature with potentially false-positive studies. (Altman 2001; Simon 2001; Ioannidis 

2005) 

Prognostic research should use evidence-based, standardised statistical methodology 

and researchers should collaborate internationally using electronic health records, 

standardised nomenclature and prospectively planned data collection tools, such as 

the REMARK criteria. (McShane et al. 2005)  This minimises heterogeneity between 

studies allowing comprehensive and informative meta-analyses to be performed. 

(Hemingway et al. 2013)  Providing the model is tested in developmental, validation 

and impact studies, it can be used by clinicians to guide treatment decisions. (Moons 

et al. 2009b; Steyerberg 2009) 
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1.12 Rationale, Aims and Hypotheses of Thesis 

Accurate staging of OC is vital.  However, each staging investigation has limitations 

which can affect its diagnostic accuracy.  Using quantitative imaging techniques, it is 

possible to obtain additional prognostic variables from radiological staging 

investigations of OC.   

The primary working hypothesis of this thesis was that additional variables could be 

quantified from radiological investigations that improve prediction of patient outcome 

compared to current staging methods. 

The primary aim of this thesis was therefore to assess the additional value of 

novel prognostic variables over and above the current staging system. 

These additional variables could improve patient risk-stratification and may influence 

treatment decisions, thereby improving OS in those undergoing radical treatment.  

Potentially unnecessary and likely ineffective therapy could be avoided in patients that 

may traditionally have been treated radically.  Alternatively, these patients could be 

identified as potential participants in trials of novel chemotherapeutic agents. 
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The specific aims in this thesis were: 

• Chapter 3.  LNMs are a major prognostic indicator in OC. Therefore, is it vital 

that N-staging is accurate to inform treatment decisions and avoid over- or 

under-treatment.  However, direct imaging of lymph nodes is challenging and 

largely evaluated by anatomical criteria. The concept of micro-metastases is 

now established. Therefore, the hypothesis of this chapter was that N-staging 

is suboptimal and that the incidence of LNMs is higher than expected. 

The aim of this chapter was to evaluate the accuracy of OC N-staging 

and provide radiological-pathological correlation of LNMs. 

• Chapter 4.  Results of a published study from our centre, which investigated 

the role of EUS in patients staged N0 on PET/CT, was internally validated. 

(Foley et al. 2014b)  Validation is an important step in prognostic model 

development, however, this is often not performed. The hypothesis was that 

the model demonstrates continued benefit of EUS N-stage in patients staged 

N0 on PET/CT. 

The primary aim was to internally validate the prognostic model. The 

secondary aim was to evaluate the prognostic significance of 

pathological LNMs. 
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• Chapter 5.  CRM involvement is now widely regarded as an important 

prognostic factor in patients undergoing surgical resection.  As described in 

sections 1.7.4.3, OS significantly reduces following an R1 resection.  It is 

hypothesised that larger, more FDG-avid tumours (defined by MTL, MTW and 

SUVmax) may have higher rates of CRM involvement.  Better prediction of 

pathological CRM involvement would assist clinical decision-making and 

surgical planning, and may improve recurrence rates and OS. 

The primary aim of the study was to investigate the additional value of 

PET-defined tumour variables for predicting pathological CRM 

involvement compared with CT and EUS. 

• Chapter 6.  Treatment decision-making and planning are guided by 

radiological measurement of LoD in patients with OC.  Discrepancies between 

PET and EUS LoD could have significant impact on deciding which patients 

are suitable for treatment, and which treatments are feasible. 

The primary aim of the study was to investigate differences in PET and 

EUS LoD.  The secondary aim was to investigate their prognostic 

significance. 
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• Chapter 7. This study evaluated the additional value of PET texture analysis 

over the current OC staging system, by developing and internally validating a 

prognostic model, using appropriate statistical methodology.  The model was 

tested against current staging methods.  The main hypothesis was that texture 

analysis enhances staging by providing additional prognostic value compared 

to current methods. 

The primary aim was to develop and internally validate a prognostic 

model incorporating PET texture analysis, which demonstrates 

additional prognostic performance compared to current staging 

methods. 

 

Chapter 8 provides a general discussion of the work undertaken in this thesis 

including results obtained and their implications for clinical practice, the limitations and 

strengths of the work, and suggestions for future research. 
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Chapter 2. Materials & Methods 

This chapter discusses common materials and methods used in this thesis.  Specific 

patient selection criteria and methods unique to each results chapter are listed and 

discussed separately. 

2.1 Clinical Database 

A clinical database containing patient demographics, radiological, surgical, 

histopathological and outcome data was collated for this thesis.  The clinical database 

was maintained in a Statistical Package for the Social Sciences (SPSS) file (IBM, 

Chicago, USA) and was manually populated with data obtained from the Cancer 

Network Information System Cymru (CaNISC) database (Velindre NHS Trust, Wales). 

2.1.1 Patients 

Patients diagnosed with potentially curable OC from September 2010 onwards were 

identified at the Regional South-East Wales Upper GI cancer MDT and added to the 

database.  Patients were referred from four local health boards; Aneurin Bevan, Cwm 

Taf, Hywel Dda and Cardiff and Vale University Health Boards, serving a combined 

population of 1.4 million.  All relevant staging investigations were discussed at the 

MDT, including endoscopic, radiological and pathological findings. 
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2.1.2 Clinical Management 

A management plan was agreed by consensus following discussion at the MDT.  

Treatment was selected based on radiological staging, patient choice, and relevant 

co-morbidities, following algorithms used by the Regional Upper GI cancer network. 

(Crosby et al. 2004; Stephens et al. 2006; Gwynne et al. 2011)  The agreed 

management plan was recorded in the CaNISC database.  The management of OC is 

discussed in section 1.6. 

All surgery was performed by specialist upper GI surgeons in a centralised tertiary 

referral unit.  Trans-hiatal surgery was selected for patients with tumours of the distal 

oesophagus, in whom it was considered that a thoracotomy may carry an 

unacceptable risk of respiratory complications due to poor performance status.  In 

general, fit patients with tumours pre-operatively staged as T3/T4a, N0/N1 were pre-

operatively treated with NACT or NACRT. Less fit patients, or those with T1/2 N0 

disease, had surgery alone.  Patients deemed unsuitable for surgery due to co-

morbidity and/or performance status, extensive loco-regional disease, or personal 

choice received dCRT. 

Patients that received NACT had two cycles of 80mg/m2 cisplatin and 1000 mg/m2 of 

5-fluorouracil (5-FU) for 4 days. A minority received four cycles of epirubicin (50 

mg/m2), cisplatin (60 mg/m2) and 5-FU (200 mg/m2).  Patients treated with NACRT 

typically receive 2 cycles of oxaliplatin (130 mg/m2) and capecitabine (625mg/m2) as 
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induction NACT, followed by 45 Gy of radiotherapy administered in 25 fractions over a 

5-week period with concurrent chemotherapy. 

Radiotherapy planning was performed following direct comparison of all available 

imaging modalities and after consideration of the maximum LoD recorded.  

Occasionally, non-deformable fusion of the PET and planning CT was performed, 

provided the diagnostic PET/CT had been acquired in the radiotherapy planning 

position to allow accurate fusion. 

2.1.3 Outcome Data 

Outcome data were also recorded in the clinical database.  This included dates of 

diagnosis and death, from which survival from diagnosis (recorded in months) is 

calculated.  Dates of death were searched for using the CaNISC database, which is 

populated with data from the Office for National Statistics.  Survival data used in this 

thesis was updated in July 2016, at the time of statistical analysis. 

TRG was recorded in the clinical database in patients undergoing surgery following 

neo-adjuvant therapy.  A TRG (Mandard et al. 1994) was classified by the reporting 

Consultant Pathologist.  The Mandard Score is described in section 1.7.4.5. 

Patients were followed-up every 3 months for the first year, then every 6 months 

thereafter.  All patients were followed up for 5 years, or until death.  No patients were 

lost to follow-up, unless they re-located outside of area. 
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2.1.4 Institutional Review Board and Ethics Approval 

Institutional scientific review and ethical approval were granted for all work included in 

this thesis.  Institutional approval for chapters 3-6 is included in Appendix B.  

Institutional and ethical approval for chapter 7 is included in Appendices C & D. 

2.2 Radiological Data   

Radiological staging was performed according to UICC TNM 7th edition. (Sobin et al. 

2009)  Reports of staging investigations are available on PACS (IMPAX 6.4.0.6010, 

AGFA Healthcare, Belgium, 2015) and CaNISC database. 

2.2.1 Computed Tomography 

All patients with potentially curable OC had a CT examination.  CT in Cardiff and Vale 

University Health Board (CAVUHB) was performed with a GE HD 750 Discovery 64-

slice scanner (GE Healthcare, Buckinghamshire, UK).  CT images were acquired with 

helical acquisition, collimation of 40 mm, pitch 0.984:1 and tube rotation speed of 0.4 

s.  Tube output was 120 kVp with smart mA dose modulation between 60-600 mA.  

Slice thickness was 0.625 mm with 3 mm reconstructions using soft tissue and lung 

algorithms.  Approximately 500 ml of water was given orally.  Between 100-150 mls of 

Niopam 300 was given intravenously.  CT examinations from external institutions 

were all reviewed at the Regional Upper GI cancer MDT and deemed an acceptable 

standard.  Lymph nodes were considered involved on CT if located in the expected 
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distribution of disease, were round with loss of fatty hilum, demonstrated altered 

density or enhancement and the short axis diameter measurement was 10 mm or 

greater. (Botet et al. 1991) 

2.2.2 Endoscopic Ultrasound 

During the thesis period, EUS in South Wales was performed by 4 experienced 

endosonographers.  Data from all 4 endosonographers have been used in this thesis 

to allow generalisability of results, except in Chapter 6, where only EUS 

measurements recorded by Dr Ashley Roberts were used.  Data from a single 

operator was used in this chapter to eliminate inter-observer variability in 

measurements.  The accuracy of Dr Roberts’ EUS staging has previously been 

published. (Weaver et al. 2004) 

An initial endoscopic examination was performed using a 9 mm diameter Olympus P-

10 gastroscope (Key Med, Southend, UK) to assess the degree of oesophageal 

luminal stenosis.  Patients with an estimated oesophageal luminal diameter less than 

15 mm underwent examination using the smaller-diameter MH-908 oesophagoprobe 

(Key Med).  Oesophageal dilation (Savary-Gilliard, Cook Medical, Bloomington, USA) 

was performed before endosonography for patients with oesophageal lumens < 9 

mm.  The type of echoendoscope used was at the discretion of the endoscopist.  No 

significant difference in accuracy existed between the 2 echoendoscopes. (Twine et 

al. 2009a)  The primary oesophageal tumour was assessed, together with an 

evaluation of the para-oesophageal anatomical structures.  The criteria for malignant 
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lymphadenopathy specifies a hypo-echoic pattern, a spherical contour, the presence 

of a distinct border, and a short axis diameter of 6 mm or more. (Grimm et al. 1993; 

Weaver et al. 2004; Gleeson et al. 2009)  

Patients with tumours too stenotic to be crossed at EUS were unable to be fully 

staged therefore final pre-treatment radiological stage relied on a combination of 

findings from PET/CT and CT investigations.   

2.2.3 Positron Emission Tomography/Computed Tomography 

All patients treated with radical intent underwent PET/CT. The Positron Emission 

Tomography Imaging Centre (PETIC) in Cardiff University opened in August 2010.  

To ensure that no patient was missed, a list of patients that underwent PET/CT was 

generated from PETIC, and cross-checked against the clinical database.  This patient 

list was password-protected, temporarily stored on a Cardiff University computer and 

deleted following cross-checking.  All patients in chapters 3, 5, 6 & 7 had PET/CT in 

PETIC, using the same scanner and protocol.  In chapter 4, 47 patients had PET/CT 

at the Cobalt Imaging Centre, Cheltenham prior to the opening of PETIC.  These 

patients were included in the original cohort, in which the prognostic model was 

developed. 

Patients were fasted for at least 6 hours prior to tracer administration.  Serum glucose 

levels were routinely checked and confirmed to be less than 7.0 mmol/L prior to 

imaging.  Patients received an activity of 4 MBq of 18F-FDG/kg of body weight.  
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Activity uptake time was 90 minutes.  18F-FDG PET/CT imaging was performed with a 

GE 690 PET/CT scanner (GE Healthcare, Buckinghamshire, UK).  PET images were 

acquired at 3 minutes per field of view.  The length of the axial field of view was 15.7 

cm.  Images were reconstructed with the ordered subset expectation maximisation 

algorithm, with 24 subsets and 2 iterations.  Matrix size was 256 x 256 pixels, using 

the VUE Point™ time of flight algorithm.  CT images were acquired in a helical 

acquisition with a pitch of 0.98 and a tube rotation speed of 0.5 s.  Tube output was 

120 kVp with output modulation between 20 and 200 mA.  Matrix size for the CT 

acquisition was 512 x 512 pixels with a 50 cm field of view.  No oral or intravenous 

contrast was administered. 

All PET/CT examinations were reported by experienced consultant radiologists with 

an interest in nuclear medicine, who have reported at least 600 examinations each in 

order to become certified.  In general, PET/CT T-stage was assigned TX given the 

poor spatial resolution of PET.  Nodes were classed as involved if identified on the CT 

component and showed FDG-uptake appreciably higher than background values. No 

specific threshold of FDG uptake was used to define positivity. 
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2.3 PET-Defined Tumour Variables 

PET-defined tumour variables were measured and recorded using consistent 

methodology on a GE advantage windows 4.5 reporting workstation (GE Healthcare, 

Buckinghamshire, UK). (Fig. 2.3.1)  MTL was measured using maximum intensity 

projection (MIP) images, which were rotated to visualise the greatest length.  MTL 

was recorded in centimetres (cm).  LoD was measured using the same method, also 

recorded in cm.  Metabolic tumour width (MTW) was recorded by measuring the 

greatest perceived width of the tumour, perpendicular to the MTL, also recorded in 

cm.  SUVmax is obtained by placing a ROI over the primary tumour.  The value is 

automatically returned by the software.  This is a common method used in clinical 

reporting and has therefore been employed here.  Identical settings were used to 

ensure consistent results; the field of view (FOV) was 88.1 cm and the SUV of the 

MIP display was maintained at 12 g/ml for each case. 
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Figure 2.3.1. PET maximum intensity projection (MIP) images indicating 

measurements of MTL (A) and LoD (B).  These selected images were obtained using 

a GE advantage windows 4.5 reporting workstation (GE Healthcare, 

Buckinghamshire, UK) and orientated to adequately represent the maximum 

dimension of MTL and LoD.  Image A also demonstrates an ‘avidity gradient’ that can 

be seen in GOJ tumours involving the proximal stomach.  FDG-avid LNMs seen in 

image B are included in the measurement of LoD. 
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2.4 Texture Analysis 

Materials and methods of texture analysis used in this thesis are described below.  

More specific information regarding study design is included in Chapter 7. 

2.4.1 PET-STAT Graphical User Interface 

The PET-STAT graphical user interface (GUI) was developed at Cardiff University, 

between scientists based at PETIC, Velindre Cancer Centre and Cardiff School of 

Engineering.  The development is part of a large series of investigations, funded by 

Cancer Research Wales (Grant No. 7061 and 2476).  It was written and implemented 

in the MatLab-based (The Mathworks, Natick, USA) open-source software 

Computational Environment for Radiotherapy Research (CERR). (Deasy et al. 2003)  

PET-STAT allows DICOM files to be uploaded and converted into CERR files.  PET-

STAT also allows manual and automatic segmentation of CT and PET images.  

Several variables quantifying intensity values and texture features can be calculated 

from the segmented tumours and are listed in Section 2.4.5. 

2.4.2 Data Preparation 

Data preparation was performed by KF.  PET/CT examinations were anonymised at 

source.  Data were exported in DICOM format and stored in the restricted access, 

password-protected PETIC server.  Both PET and CT series were imported into PET-

STAT and converted in CERR files, then saved in MatLab file format. 
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Tumours must first be segmented to facilitate texture analysis.  This requires creation 

of a bounding box using the PET-STAT GUI, indicating the region of the image to 

undergo segmentation.  The bounding box does not need to follow a perfect contour 

of the tumour, as some background uptake should be included to facilitate 

segmentation (section 2.4.3).  No pre-defined method of bounding box creation was 

used, and was performed on an individual case basis. Adjustment of window level and 

colour of displayed PET images was performed at the discretion of the user.  No pre-

defined window levels were used since these have no influence on the segmentation. 

After a bounding box is created, a contour can be generated and is saved in the 

CERR planC file as an RTSTRUCT.  An RTSTRUCT represents the contour of the 

tumour and is a binary mask of the image, representing the boundary of voxels to be 

included in analysis.  A MatLab batch analysis process is implemented in PET-STAT 

which allows automatic analysis of multiple RTSTRUCTs in succession. 

2.4.3 ATLAAS 

ATLAAS is an automated Decision Tree-Based Learning Algorithm for Advanced 

Segmentation and is implemented in PET-STAT. (Berthon et al. 2016)  All tumours 

have been segmented with ATLAAS in this thesis. (Fig. 2.4.1) 

ATLAAS was designed to select the most accurate PET automatic segmentation 

(PET-AS) method for optimal segmentation in individual cases.  ATLAAS accurately 

selected the best PET-AS method in 77% of phantom cases and 89% of simulated 
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data which led to a high average accuracy of 0.83 using the Dice Similarity Coefficient 

(DSC). (Dice 1945) 

ATLAAS selects the best segmentation method from a list of PET-AS methods 

incorporated in its system.  Several automatic segmentation methods are 

implemented and compared in ATLAAS, including AT, RG, K-means (KM) with 2, 3 & 

4 clusters, fuzzy C-means (FCM), Gaussian C-means (GCM) with 3 & 4 clusters and 

WT.  These PET-AS methods have been described in detail in previous publications. 

(Berthon et al. 2013; Berthon et al. 2014) 

Three parameters are identified from the target object and evaluated by ATLAAS in 

order to select the best PET-AS method.  The MTV of the target object is calculated 

and measured in millilitres (mL).  Peak target background ratio (TBRpeak) is the ratio of 

target object SUVpeak and the background SUV.  SUVpeak is defined as the mean 

uptake value in a 1 cm3 sphere centred on the maximum SUV of the target object.  

The background SUV is the mean intensity in a 0.5 cm thick extension of the object 

contour and is the reason some background uptake should be included in the 

bounding box.  The number of intensity levels (NI) in the target object is calculated by 

grey-level run length, which is obtained from methods described by Loh et al (Loh et 

al. 1988) and represents the number of intensity values following image re-sampling. 
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Figure 2.4.1. An example of axial, sagittal and coronal fused PET/CT images showing 

a FDG-avid mid-oesophageal tumour segmented with ATLAAS (green contour).  PET 

images are co-registered with the corresponding CT images and the ATLAAS contour 

of the FDG-avid primary tumour is displayed. 

 

2.4.4 Discretisation Methods 

Discretisation of PET images, or image re-sampling, allows quicker calculation of the 

texture metrics over a variety of tumour intensity ranges. Different methods have been 

published including discrete numbers of intensity values (e.g. 64 or 128) and fixed bin-

widths (e.g. 0.5 SUV). (Leijenaar et al. 2015)  Image re-sampling with 0.5 SUV bin 
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widths has been used in this thesis, as this creates equal-sized bin widths and 

provides standardised methodology. 

2.4.5 PET-STAT Texture Variables 

Hundreds of texture features are described in the literature. (Lambin et al. 2012)  

Sixteen PET variables and texture metrics were selected for texture analysis in this 

thesis following demonstration of their prognostic and predictive significance in 

research studies published prior to 2015, when PET-STAT was being developed. 

(Table 2.4.1) 

Following analysis, texture data were automatically compiled in a Microsoft Excel 

spreadsheet (Microsoft Corporation, Washington, USA).  These data were then 

manually imported to the clinical database for statistical analysis. 
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Table 2.4.1. Image Metrics Implemented in PET-STAT 

PET-STAT metric Equation/Comments 

First-order metrics  

SUVmax Maximum intensity value 

SUVmean Mean intensity value 

Metabolic Tumour 
Volume (MTV) 

Metabolic Tumour Volume (mL) 

 

Total Lesion Glycolysis 
(TLG) 

MTV * SUVmean 

Histogram metrics  

Standard Deviation 1
"
∗ $ % − ' (

)

	

 

Skewness 1
"

$ % − ' +
)

1
" ∗ $ % − ' (

)

+	

Kurtosis 1
" $ % − ' ,

)

1
" $ % − ' (

)

(	

Histogram Energy - %
(

)

	

Histogram Entropy −- % ∗ ln	(- % )
)
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Neighbourhood grey-tone difference matrix 

Coarseness 
2 + 4)5(%)

67

)89

:;

	

Grey level co-occurrence matrix 

Homogeneity <=>?(@, B)
1 + @ − B

C,D

	

Entropy −<=>? E ∗ ln	(<=>? E )
F

	

Dissimilarity <=>? @, B ∗ @ − B
C,D

	

Grey level size-zone matrix 

Intensity Variability GLIJ? @, B
(

DC

	

Large area emphasis B( ∗ GLIJ? @, B
DC

	

Zone Percentage B ∗ GLIJ? @, B
DC

	

' = mean; I = 3D image matrix; N = number of voxels in image; P(i) = Probability of 

intensity i in I where -(%) = LM
L

, with ") the number of voxels of intensity I; Gh = the 

highest grey-tone value present in the image; ϵ = a small number used to avoid zero-

division; s(i) = neighbourhood grey-tone difference matrix (NGTDM) value of intensity 

i calculated as Σ i-Ai; GLCM = Grey level co-occurrence matrix; k = number of 

iterations; GLCM(r,c) = element of GLCM matrix in row r (intensity value) and column 

c (intensity value); GLSZM = grey-level size-zone matrix; GLSZM(r,c) = element of 

GLSZM matrix in row r (intensity value) and column c (zone size).  
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2.5 Pathological Data 

The RCPath standardised reporting template is discussed in section 1.7.4.  OC 

specimens were reported by a Consultant Histopathologist with an interest in Upper 

GI cancer.  Fewer, but more specialist pathologists now report the cancer specimens 

within the centralised service.  Methods of pathological reporting were consistent 

throughout the thesis. 

Thin cross-sections of tumour were routinely prepared for examination and the 

maximum depth of invasion evaluated.  All lymph nodes removed from the specimen 

were identified and assessed for metastases.  pT- and pN-stage were assigned 

accordingly.  Reports were available on the Cardiff and Vale UHB Clinical Portal 

information system (Clinical Portal, CAVUHB, NHS Wales). 
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2.6 Statistical Methodology 

All statistical analyses in this thesis were performed using SPSS v23 (IBM, Chicago, 

USA).  A p-value of <0.05 was considered statistically significant throughout.  Specific 

statistical methods will be described in each results chapter, as they were selected to 

test each hypothesis depending on the nature and distribution of the data.  A more 

general discussion regarding prognostic model methodology is included below. 

2.6.1 Prognostic models   

The following section highlights important methodological considerations regarding 

the design of prognostic models. 

2.6.1.1 Objectives and outcomes 

A prognostic model must have a clearly defined clinical objective and the primary 

outcome must be identified at the outset of study design.  The outcome should be well 

defined to ensure consistency and reproducibility. (Mallett et al. 2010a)  OS was used 

as the primary outcome in this thesis, defined as the number of months survived from 

the date of diagnosis. 
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2.6.1.2 Study design 

A prospective cohort study is the gold standard for prognostic modelling, but can be 

difficult to achieve in short periods of time.  Pre-specified patient inclusion criteria, 

data collection methods and statistical analysis should be defined prior to data 

collection.  Data analysis should only be performed once sufficient measurable events 

have occurred. (Moons et al. 2009b) 

A combination of retrospective and prospectively collected data was used in this 

thesis to provide sufficient events to power each study.  However, this design can 

introduce bias during data collection and relies on completeness of pre-recorded, 

historic data.  A common weakness of retrospective studies is missing data. (Simon 

and Altman 1994) 

Most published prognostic models in cancer are retrospective in design.  A review of 

47 published prognostic cancer models in 2005 revealed that 68% of studies were 

either constructed from a database, or had used data collected retrospectively. 

(Mallett et al. 2010a) 

2.6.1.3 Study participants  

The number of patients included in a prognostic model should be reported. (Moons et 

al. 2012)  Patient inclusion criteria are listed in each results chapter and the numbers 
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of patients that met the criteria are provided.  Selection bias is possible in 

retrospective studies. (Mallett et al. 2010a) 

2.6.1.4 Number of Events in model 

The prognostic models developed in this thesis were powered by the event-per-

variable (EPV) ratio.  An event is defined when the outcome of interest occurs.  There 

should be at least 10 EPV, in order to start confidently estimating the coefficients of 

included variables. (Peduzzi et al. 1996)  The number of events occurring within a 

model should be reported, as this allows interpretation of the model’s strength.  

Around 30% of studies do not report the number of events and an inadequate number 

of EPV is reported in 30% of models, with insufficient information to calculate EPV in 

40% of studies. (Mallett et al. 2010a) 

2.6.1.5 Selecting candidate predictors 

Royston et al describe two main approaches to selecting predictors; the full model 

approach and the elimination approach. (Royston et al. 2009)  There is no agreed 

consensus on the best method.  Firstly, a predictor or variable should be clearly 

defined thereby allowing standardisation and reproducibility of its measurement. 

(Simon and Altman 1994)  Previously reported prognostic indicators should be 

considered for inclusion in the model.  However, selection of reported predictors may 

introduce publication bias into the model.  Kyzas et al discovered that 98.5% of 

cancer studies reported significant results or highlighted non-significant trends. (Kyzas 
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et al. 2007)  Ultimately, those that have established clinical credibility and are well 

established should be used. (Mallett et al. 2010a)  This approach was adopted in 

Chapter 7. 

In the full model approach, all measured variables are included in the model.  

Although this may reduce selection bias and over-fitting, the researchers must have 

prior knowledge about potentially important predictors and initially choose variables to 

build the model. This may be difficult to perform, as models can be hard to define and 

often suffer from the inclusion of too many variables. (Harrell 2001; Moons et al. 

2009b; Steyerberg 2009) 

Backward elimination is preferable to the forward elimination approach.  Forward 

elimination determines the best candidate predictors initially, and then builds up the 

model accordingly. (Mantel 1970)  Backward elimination was used in Chapter 7 

however forward selection was used in Chapter 4 in order to compare with the original 

study. (Foley et al. 2014b) 

Approximately 49% of studies select predictors for multi-variate analysis based on 

their significance in uni-variate analysis. (Harrell 2001; Mallett et al. 2010a)  However, 

this method can produce over-fitted models, which is more common in small size 

samples because the introduction of error is not adequately controlled for.  Similarly, 

potentially important but non-significant variables may be rejected from inclusion in 

multivariate analysis by other weakly predictive variables. (Sun et al. 1996)  These 
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less important, weakly significant predictors are then included in the final model, thus 

over-estimating their effect size. (Royston et al. 2009) 

2.6.1.6 Data handling decisions 

Variables were kept continuous as this ensures predictive information is retained. 

(Royston et al. 2006)  Likewise, ordered categorical data were only grouped for 

specific reasons, such as combining small numbers of patients with similar stages of 

disease. (Royston et al. 2009)  Continuous variables were assessed for a normal 

distribution and not assumed to have a linear association with the outcome being 

studied.  Transformation of non-normal variables into a logarithmic scale was 

performed following visual assessment of their histogram distribution. (Bland and 

Altman 1996) 

2.6.1.7 Developing final model  

Development and internal validation of a prognostic model was performed in Chapter 

7.  Hazard ratios and parameter estimates represent the risk of an event in relation to 

the outcome.  An individual’s risk of outcome occurrence can be quantified using a 

model equation to calculate a prognostic score.  The products of parameter estimates 

and variable included in the model are summated to produce an individual score. 

(Moons et al. 2012) 
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2.6.2 Prognostic Model Validation 

Validation of prognostic models is essential for translation into a clinical setting.  This 

process tests the model’s application in different groups of patients, hospitals or 

countries.  An inability to translate to another group of patients may be due to 

deficiencies in the initial design, statistical analysis errors or inadvertent exclusion of 

an important variable. (Altman et al. 2009)  Model validation is not commonly 

performed; Mallett et al found that only 34% of the models studied had been 

validated, 11% externally. (Mallett et al. 2010b)  This may explain why few of the 

prognostic models developed are routinely used in clinical practice. (Reilly and Evans 

2006) 

2.6.2.1 Model Validation 

Prognostic (or predictive) models can be internally or externally validated. (Altman et 

al. 2009)  Internal validation involves splitting a dataset into a development cohort and 

a validation cohort, the latter being tested on the former, and was performed in 

Chapters 4 & 7.  Internal validation can give optimistic results if the two datasets are 

similar. (Mallett et al. 2010b).  The same patient pathways and diagnostic work-up are 

performed, which can introduce the same errors and biases. (Altman et al. 2009) 

The gold standard method is external validation, but this can take substantial time to 

co-ordinate and perform.  External validation examines the model’s generalisation by 

testing data from another centre.  The dataset collected must match the original 
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model, but can be collected retrospectively, thereby allowing incorporation of crucial 

follow-up data to expedite the model’s validation. (Altman et al. 2009)  Following 

validation, the model should be tested in a clinical setting after being used to influence 

clinical decision-making, potentially affecting patient outcomes. (Reilly and Evans 

2006) 

2.6.2.2 Measures of Model Performance 

Measures of model performance based on log-likelihood function such as Akaike 

Information Criterion (AIC) or Bayes Information Criterion (BIC) are preferred. (Whittle 

et al. 2017)  AIC is calculated by 2k - 2*log(L), where k is the number of parameters 

and L is the likelihood of the model. (Akaike 1974)  Lower values indicate a better fit 

and estimated model quality reduces if the number of included variables increase. 

(Cook 2007)  AIC was used to estimate and compare the performance of the 

prognostic models developed in Chapter 7. 

Techniques for describing the accuracy of a model include calibration and 

discrimination.  Calibration is a measure of the agreement between the predicted 

probabilities and the actual observed risk.  Calibration can be measured using the 

Hosmer-Lemesbow statistic. (Hosmer and Lemesbow 1980)  Discrimination is defined 

as the ability of a model to predict which patients experience an event of interest 

compared to those without an event. (Moons et al. 2012)  Kaplan-Meier analysis 

(Kaplan and Meier 1958) and log-rank tests are common methods to evaluate 

discrimination. (Mallett et al. 2010a)  These methods do not provide the size of the 
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difference between groups, a similar problem to p-values. (Mallett et al. 2010b)  

Another common measure of model performance is the c-statistic, also known as the 

area under a receiver operator characteristic (ROC) curve. (Hanley and McNeil 1982)  

Limitations in use of the c-statistic have been highlighted.  Inclusion of novel variables 

in prognostic or prediction models can lead to more accurate risk classification but 

with little change in the c-statistic. (Cook 2007)   
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Chapter 3. Accuracy of Contemporary Oesophageal Cancer Lymph Node 

Staging with Radiological-Pathological Correlation 

3.1 Introduction 

Accurate staging optimises management plans and provides the best chance of 

survival for patients with potentially curable disease.  As outlined in section 1.8, 

radiological staging is complex and time-consuming.   

Management decisions are influenced by results of lymph node assessment on 

radiological staging investigations.  If the MDT decide upon surgical management and 

radiological staging is ≥T3 and/or ≥N1, 2 cycles of NACT are given prior to resection.  

Differentiation of node-negative (N0) from node-positive (N+) disease is important 

because this ensures that patients avoid unnecessary chemotherapy if over-staged, 

and are not denied potentially beneficial NACT if under-staged.  

However, the existence of small LNMs which cannot be directly visualised on any 

imaging modality, may cause inaccurate staging and subsequently progress, with a 

detrimental effect on patient outcome. (Koenig et al. 2009) 

Therefore, the aim was to define the accuracy of CT, EUS and PET/CT N-stage in the 

modern era of radiological OC staging.  The secondary aim was to investigate the 

prevalence of micro-metastases and size of LNMs in patients radiologically staged N0 

but pathologically node-positive (pN+), using radiological-pathological correlation. 
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3.2 Materials and Methods 

3.2.1 Patient Cohort 

This retrospective cohort study included consecutive patients who underwent surgical 

resection of an oesophageal or GOJ tumour, over a 5-year period (November 2010 – 

December 2015) within a centralised service. 

Inclusion criteria were a previously untreated, biopsy-proven oesophageal or GOJ 

tumour in patients who underwent surgery alone, or had a poor response (TRG 4) or 

no response (TRG 5) following either NACT or NACRT. (Mandard et al. 1994)  All 

patients had completed CT, EUS and PET/CT staging investigations and pN 

assigned. 

A total of 190 patients were considered for inclusion in the study.  Patients with 

tumours that showed complete pathological response (pCR, TRG 1) or tumours with 

some response (TRG 2 & 3) following NACT or NACRT were excluded (n=16, n=13 

and n=13, respectively), because the final pathology is not likely to be representative 

of pre-operative status.  Incomplete radiological staging investigations, such as EUS 

examinations in which the operator was unable to traverse a stenotic tumour and fully 

classify N-stage, were excluded (n=14).  Patients that underwent an ‘open-and-close’ 

procedure due to irresectable disease at the time of operation were also excluded 

(n=22).  Following exclusions, 112 patients were included in the study.   
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3.2.2 Histopathological Methods 

Histopathological reporting of OC specimens was performed according to the 

minimum requirements defined by the RCPath. (Mapstone 2007)  All lymph nodes 

identified in the resection specimen were prepared in 3 mm slices for pathological 

evaluation.  N-stage was then assigned depending on the number of LNMs identified.  

TRG of the primary tumour was assigned. (Mandard et al. 1994)  All available 

resection specimens in discordant cases radiologically staged N0 but pathologically 

N+ were further evaluated.  The maximum size of both involved lymph nodes and 

metastases within those lymph nodes, were retrospectively recorded.  Maximum size 

was defined as the largest dimension on the glass slide, measured by a Consultant 

Pathologist.  A micro-metastasis was defined as tumour deposit measuring ≤2 mm. 

(Weaver 2010)  Furthermore, a metastasis to lymph node size ratio was calculated. 

3.2.3 Statistical Analysis 

Descriptive statistics were used to describe categorical and continuous variables.  In 

this study, N-stage was separated into negative (N0) and N+ (N1, N2 or N3) groups.  

Accuracy was defined as the number of cases with correct N-stage divided by total 

number of investigations. Sensitivity and specificity of N+ disease were calculated for 

each modality.  A Chi-square test assessed significant differences in under- or over-

staging for each modality.  Significant differences in under-staging between modalities 

were assessed with McNemar’s test. 
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3.3 Results 

3.3.1 Patient Cohort 

The median age was 65 years (range 24-78) and the male: female ratio was 92 

(82.1%): 20 (17.9%).  Table 3.3.1 describes the characteristics of the patient cohort. 

For CT, 75 patients (67.0%) were staged N0 and 37 (33.0%) were N+.  For EUS, 72 

patients (64.3%) were staged N0 and 40 (35.7%) were N+.  For PET/CT, 84 (75.1%) 

were staged N0 and 28 (24.9%) were staged N+.  Table 3.3.2 compares the 

frequency of radiological and pathological N-stages for CT, EUS and PET/CT. 
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Table 3.3.1. Patient Characteristics 

Characteristic Frequency (%) 

Tumour Location 

Oesophagus 

Mid 

Distal 

Gastro-oesophageal junction (GOJ) 

Siewert Type I 

Siewert Type II 

Siewert Type III 

 

59 (52.7) 

10 (16.9) 

49 (83.1) 

53 (47.3) 

19 (35.8) 

15 (28.4) 

19 (35.8) 

Histology 

Adenocarcinoma 

SCC 

Neuro-endocrine 

 

100 (89.3) 

11 (9.8) 

1 (0.9) 

Treatment 

NACT 

Surgery alone 

NACRT 

 

67 (59.8) 

41 (36.6) 

4 (3.6) 

Tumour Regression Grade 

TRG 4 

TRG 5 

n=71 

42 (59.2) 

29 (40.8) 
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Table 3.3.2. Comparison of N-stage Frequency Classified by CT, EUS, PET/CT and 

Pathology. 

CT N-stage 

Frequency (%) N0 N1 N2 N3 Total 

pN0 34 (30.4) 8 (7.1) 2 (1.7) 0 (0.0) 44 (39.3) 

pN1 21 (18.8) 4 (3.6) 2 (1.7) 0 (0.0) 27 (24.1) 

pN2 16 (14.3) 10 (8.9) 1 (0.9) 0 (0.0) 27 (24.1) 

pN3 4 (3.6) 7 (6.3) 3 (2.7) 0 (0.0) 14 (12.5) 

Total 75 (67.0) 29 (25.9) 8 (7.1) 0 (0.0) 112 (100.0) 

EUS N-Stage 

Frequency (%) N0 N1 N2 N3 Total 

pN0 33 (29.5) 9 (8.0) 1 (0.9) 1 (0.9) 44 (39.3) 

pN1 20 (17.9) 7 (6.3) 0 (0.0) 0 (0.0) 27 (24.1) 

pN2 13 (11.6) 10 (8.9) 4 (3.6) 0 (0.0) 27 (24.1) 

pN3 6 (5.4) 6 (5.4) 1 (0.9) 1 (0.9) 14 (12.5) 

Total 72 (64.3) 32 (28.6) 6 (5.4) 2 (1.7) 112 (100.0) 
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PET/CT N-stage 

Frequency (%) N0 N1 N2 N3 Total 

pN0 40 (35.8) 4 (3.6) 0 (0.0) 0 (0.0) 44 (39.3) 

pN1 23 (20.5) 4 (3.6) 0 (0.0) 0 (0.0) 27 (24.1) 

pN2 15 (13.4) 10 (8.9) 2 (1.7) 0 (0.0) 27 (24.1) 

pN3 6 (5.4) 6 (5.4) 2 (1.7) 0 (0.0) 14 (12.5) 

Total 84 (75.1) 24 (21.5) 4 (3.4) 0 (0.0) 112 (100.0) 

 

Overall, median time between radiological staging and surgery was 3 months (range 

1-9 months), 1 month (range 0-3 months) in patients undergoing surgery alone and 4 

months (range 3-4 months) in patients receiving NACT. 

3.3.2 Accuracy, Sensitivity and Specificity 

N0 vs N+ disease was correctly differentiated with CT, EUS and PET/CT in 61 cases 

(54.5%), 62 (55.4%) and 64 (57.1%), respectively.  There was no significant 

difference between CT, EUS and PET/CT for detecting N+ disease (X2 0.169, df 2, 

p=0.919).  The sensitivity and specificity for identifying N0 vs N+ disease with CT, 
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EUS and PET/CT was 39.7% and 77.3%, 42.6% and 75.0%, and 35.3% and 90.9%, 

respectively. 

3.3.3 Under-staging vs Over-staging 

All modalities were significantly more likely to under-stage nodal disease; CT (X2 

32.890, df 1, p<0.001), EUS (X2 28.471, df 1, p<0.001) and PET/CT (X2 50.790, df 1, 

p<0.001).  Comparing modalities, there was a borderline significant difference in 

under-staging between CT and EUS (p=0.063) but no difference between CT and 

PET/CT (p=1.000). However, there was a statistically significant difference between 

EUS and PET/CT (p=0.031), suggesting PET/CT may further under-stage nodal 

disease. 

3.3.4 Pathological Lymph Node Measurement 

Fifteen archived resection specimens in patients pre-operatively staged N0 were 

available for retrospective measurement of lymph nodes that contained metastases. 

In total, 50 involved lymph nodes were assessed. (Table 3.3.3)  The median size of 

involved lymph nodes was 6 mm (range 2-15 mm) and the median metastasis size 

was 3 mm (0.5-13.5 mm).  Twenty-two LNMs (44%) measured ≤2 mm, which are 

defined as micro-metastases. (Fig. 3.3.1)   Forty-one LNMs (82%) were ≤6 mm and 

46 LNMs (92%) were ≤10 mm.  A metastasis to lymph node size ratio was calculated.  

Thirty-one (62%) of the lymph nodes examined were replaced with ≥50% metastatic 
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deposit, 19 (38%) were replaced with <50% metastatic deposit, with 12 (24%) 

replaced with <25% metastatic deposit, using maximum size criteria. 

 

Table 3.3.3. Frequency and Distribution of Lymph Node and Metastasis Size when 

Separated into 2 mm Groups for Descriptive Purposes. 

Frequency 

(%) 

Maximum Size (mm) 

0-2 2.1-4 4.1-6 6.1-8 8.1-10 10.1-12 12.1-14 14.1-16 

Lymph 
Node 3 (6.0) 11 (22.0) 13 (26.0) 12 (24.0) 4 (8.0) 3 (6.0) 3 (6.0) 1 (2.0) 

Metastasis 22 (44.0) 9 (18.0) 10 (20.0) 3 (6.0) 2 (4.0) 2 (4.0) 2 (4.0) 0 (0.0) 
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Figure 3.3.1. An example of a false-negative LNM from selected CT, MIP and fused 

PET/CT images.  The lymph node measured 6.2 mm on CT (top left) but was non-

avid compared to the GOJ tumour.  A low-power magnification of the lymph node 

(bottom right) shows the presence of a micro-metastasis (highlighted with yellow 

outline).  For reference, the lymph node measures 5 mm in maximum size and the 

micro-metastasis measures 1.2 mm.  The image was acquired at a magnification of 

25x.  The slide was prepared following lymph node dissection.  The lymph node was 

placed into a cassette block, then sections were cut with a thickness of 4 µm and 

stained with Haematoxylin & Eosin. 
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3.4 Discussion 

This study found poor N-stage accuracy with CT, EUS and PET/CT. In general, all 

modalities were more likely to under-stage nodal disease, with PET/CT more likely to 

under-stage than EUS.  Another important finding, is the prevalence of small LNMs 

(<6 mm) in the resection specimens of patients radiologically staged N0.  Micro-

metastases have been found in lymph nodes of early oesophageal tumours 

(Grotenhuis et al. 2010) but little has been published with radiological correlation.  

Studies investigating lung cancer have detected micro-metastases in patients 

radiologically staged N0 (Martin et al. 2016), although evidence in OC is lacking.  

The majority of LNMs (82%) were <6 mm, which makes direct visualisation extremely 

challenging on current medical imaging techniques.  This is likely to be a major 

reason for discrepancy between radiological and pathological staging.  In addition, 

traditional radiological measurement of lymph nodes is taken in the short-axis, which 

further reduces the likelihood that LNMs are diagnosed. (Eisenhauer et al. 2009)  

Even with the improved contrast resolution of EUS compared to cross-sectional 

imaging, it is unlikely that a lymph node of this size would confidently be classified as 

metastatic. (Weaver et al. 2004)  Similarly, there was a relatively high prevalence of 

micro-metastases (44%). 

These results have significant implications for treatment decision-making processes 

and demonstrate that contemporary radiology techniques are inadequate for N-

staging.  Numerous studies have demonstrated the importance of LNMs. (Kayani et 
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al. 2011)  Better evidence is required to understand the prognostic significance of 

micro-metastases, but they are generally felt to confer a worse prognosis. (Izbicki et 

al. 1997; Glickman et al. 1999) 

There is evidence that a significant proportion of surgical patients have systemic 

micro-metastases at the time of resection.  A study investigating resected ribs from 

these patients detected micro-metastases in up to 78%, although the incidence is 

dependent on the histological technique used. (Ryan et al. 2004)  This is a higher 

detection rate than our study, but the results are comparable despite different 

techniques and tissues used between studies.  The high rate of micro-metastases 

may be a reason that our results show significant under-staging of nodal disease, and 

perhaps clinicians could consider lowering the threshold for treating patients with 

systemic neo-adjuvant therapy. 

Previous research from our institution has shown N-stage, lymph node metastasis 

count and volume of nodal disease to have prognostic significance in patients with 

OC. (Chan et al. 2013a; Foley et al. 2014a)  Nodal disease in these studies may 

continue to be an important prognostic indicator, but the radiological staging is likely 

to have under-estimated the total nodal disease burden in those patient cohorts.  

Results of staging performance have also been published from our institution.  These 

studies compared CT and EUS N-stage with pN.  Blackshaw et al investigated the 

accuracy of N-staging in GOJ tumours and found significant differences in agreement, 

sensitivity and specificity between Siewert type II and type III tumours. (Blackshaw et 

al. 2008)  Weaver et al found agreement (calculated using weighted kappa values), 
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sensitivity and specificity of N-staging was 0.603, 79% and 84% for CT and 0.610, 

91% and 68% for EUS. (Weaver et al. 2004)  The results of the current study show 

poorer agreement and sensitivity. There are a number of possible reasons for these 

findings, including disease evolution, greater inter-observer variability between 

reporters, and fewer, but more specialised upper GI cancer pathologists reporting the 

resection specimens, with increased rates of LNM detection. (Weaver 2010)  

Accuracy of diagnosing N+ disease with CT, EUS and PET/CT was 54.5%, 55.4% 

and 57.1%, respectively.  In a clinical context, these results are unsatisfactory given 

that the presence of LNMs is such a major prognostic indicator. (Kayani et al. 2011)  

Specificity results are comparable with past meta-analyses but sensitivity results are 

reduced for all modalities.  Previously published literature states sensitivity for N-

staging of CT, EUS and PET/CT is 50%, 80% and 57%, and specificity is 83%, 70% 

and 85%, respectively. (van Vliet et al. 2008)  The rigour of the pathological 

evaluation is unknown for this meta-analysis, but micro-metastases may not have 

been routinely evaluated.  This reason could explain the reduced sensitivity in this 

current study compared to this meta-analysis. 

Limitations 

Patients with an ‘open-and-close’ procedure were excluded because of the absence 

of final pathological stage.  Ideally, these patients should be included on an intention-

to-treat basis.  An ‘open-and-close’ procedure can occur following radiological under-

staging of disease.  There are also limitations of pathological lymph node 
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examination.  Approximately 3 mm sections are taken through lymph nodes once they 

are mounted in a cassette, but this may be performed with varying skill and 

consistency.  Micro-metastases may be missed if not bisected during preparation, and 

this suggests that the true incidence of micro-metastases in this cohort of patients 

may be even greater.  Although the RCPath define the minimum requirements for 

pathological reporting, there is currently no standardised method for lymph node 

preparation and assessment in OC.  In addition, this is a single-centre study and 

results may not be representative of the national accuracy rate. 

3.5 Conclusion 

In conclusion, this evaluation of contemporary staging performance over a 5-year 

period in a centralised upper GI cancer service has shown poor N-staging accuracy 

for CT, EUS and PET/CT.  Radiological-pathological correlation in patients staged N0 

has shown many small LNMs (<6 mm) that are extremely challenging to diagnose 

directly from medical imaging.  The findings of this study have significant implications 

for patient care, because radiological staging results largely influence treatment 

decisions made by the MDT. 
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Chapter 4. Internal Validation of N-staging of Oesophageal and 

Junctional Carcinoma: is There Still a Role for EUS in Patients 

Staged N0 at PET/CT? 

4.1 Introduction 

This chapter aimed to validate the results of a study that investigated the role of EUS 

in patients staged N0 on PET/CT. (Foley et al. 2014b)  The original study developed 2 

models and demonstrated that both N-stage and N0 vs N+ were significantly and 

independently associated with OS. 

Although results from Chapter 3 showed that staging investigations have poor 

accuracy for identifying LNMs, EUS was marginally more accurate. This is primarily 

due to the improved contrast resolution of EUS compared to PET and CT.  Other 

factors for improved accuracy include the relatively poor spatial resolution of PET 

imaging, which does not allow differentiation of LNMs from the primary tumour, or 

detection of small LNMs. (Kapoor et al. 2004) 

The primary aim of this study was to internally validate the results of the 2 models in a 

new, independent cohort of patients, known as the validation cohort.  The 

methodology used in the published study was repeated to allow comparison and is 

discussed below.  The secondary aim was to assess the prognostic significance of 

LNMs in the validation cohort of patients. 
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4.2 Materials & Methods 

4.2.1 Patient Cohorts 

Patients staged N0 with PET/CT between 1st January 2013 and 31st June 2015, were 

considered for the validation cohort (n=166).  Patients with FDG-avid lymph nodes or 

distant metastases (n=4), or incomplete EUS staging (n=23) were excluded. Following 

exclusions, 139 patients were included in the study. 

All patients in the validation cohort followed the usual staging pathway and had 

PET/CT in Cardiff using the same scanner and protocol described in section 2.2.3.  All 

patients had complete EUS staging.  Details of the EUS procedure are found in 

section 2.2.2.  As in the published study, 2 variables were recorded for each patient; 

EUS T-stage (T1-4a) and EUS N-stage (N0-3).  A third variable was derived from the 

EUS N-stage; EUS N0 vs N+ (N1, N2 or N3). 

One-hundred and seventeen patients were included in the original patient cohort.  All 

patients were staged N0 at PET/CT between 1st December 2008 and 31st May 2012.  

PET/CT examinations were performed across 2 sites; 47 in the first centre 

(Cheltenham) and 70 in the second centre (Cardiff).  At the first centre, PET/CT 

examination was performed using a Philips 16 section Gemini GXL dedicated PET/CT 

system (Philips Medical Systems, Cleveland, USA). The activity uptake time was 60 

min. A standard administered activity of 350 MBq FDG was injected. Reconstructions 
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were performed using a 3D acquisition with non-TOF acquisition for 4 min per bed 

position. 

4.2.2 Statistical Analysis 

Categorical data are expressed as frequency (percent).  Differences in patient 

characteristics between original and validation cohort was assessed with the Chi-

square test.  Uni-variate analysis (Kaplan and Meier 1958) was performed for EUS T-

stage, EUS N-stage and EUS N0 vs N+, and differences between groups assessed 

using the log-rank test.  Two Cox regression models (Cox 1972) were constructed to 

assess the independent prognostic value of variables; model 1 included EUS T-stage 

and EUS N-stage and model 2 included EUS T-stage and EUS N0 vs N+.  In addition, 

a log-rank test was used to assess survival differences between pN0 and pN+ groups 

in the sub-group of patients who underwent surgical resection in the validation cohort. 

4.3 Results 

4.3.1 Patient Cohorts 

Table 4.3.1 details the baseline characteristics of original and validation patient 

cohorts.  The median age of the original and validation cohorts was 67.0 years (range 

24.0-82.0) and 66.0 years (39-84), respectively.  The median follow-up period was 

25.0 months in the original cohort (95% CI 23.1-26.9) and 26.0 months (95% CI 22.7-

29.3) in the validation cohort.  Mean survival times are presented as a 50% mortality 
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rate was not reached in either cohort.  Two-year OS in the original cohort was 39.3% 

and 49.0% in the validation cohort.  The mean OS of the original cohort was 33.1 

months (95% CI 30.1-36.1) and 29.8 months (95% CI 27.1-35.2) in the validation 

cohort. 

Table 4.3.1. Baseline Characteristics of Patients in Original and Validation Cohorts 

Frequency (%) Original Cohort 
(n=117) 

Validation Cohort 
(n=139) 

p-value 

Male: Female 88 (75.2): 29 (24.8) 108 (77.7): 31 (22.3) p=0.640 

Tumour Location 

Oesophagus 

Upper 

Mid 

Distal 

Junction 

Siewert type I 

Siewert type II 

Siewert type III 

 

73 (62.4) 

0 (0.0) 

20 (27.4) 

53 (72.6) 

44 (37.6) 

5 (11.3) 

12 (27.3) 

27 (61.4) 

 

76 (54.7) 

2 (2.7) 

22 (28.9) 

52 (68.4) 

63 (45.3) 

25 (39.7) 

18 (28.6) 

20 (31.7) 

Oesophagus 
vs Junction 
p=0.212 

Histology 

Adenocarcinoma 

SCC 

HGD 

Neuro-endocrine 

Undifferentiated 

 

98 (83.8) 

19 (16.2) 

0 (0.0) 

0 (0.0) 

0 (0.0) 

 

107 (77.0) 

26 (18.7) 

3 (2.2) 

2 (1.4) 

1 (0.7) 

p=0.228 
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EUS T-stage 

T1 

T2 

T3 

T4a 

T4b 

 

18 (15.4) 

16 (13.7) 

75 (64.1) 

8 (6.8) 

0 (0.0) 

 

20 (14.4) 

18 (12.9) 

86 (61.9) 

13 (9.4) 

2 (1.4) 

p=0.682 

EUS N-stage 

N0 

N1 

N2 

N3 

 

78 (66.7) 

23 (19.7) 

9 (7.6) 

7 (6.0) 

 

89 (64.0) 

42 (30.2) 

7 (5.1) 

1 (0.7) 

p=0.027 

Treatment 

Curative 

NACT 

dCRT 

Surgery alone 

NACRT 

EMR 

Palliative 

 

105 (89.7) 

40 (38.1) 

29 (27.6) 

32 (30.5) 

1 (0.9) 

3 (2.9) 

12 (10.3) 

 

116 (83.5) 

44 (37.9) 

39 (33.6) 

19 (16.4) 

11 (9.5) 

3 (2.6) 

23 (16.5) 

Curative vs 
Palliative 
p=0.144 
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4.3.2 Summary of Results from Original Study 

Univariate analysis showed that EUS T-stage (Χ2 8.321, df 3, p=0.040), N-stage (Χ2 

14.879, df 3, p=0.002) and N0 vs N+ (Χ2 11.325, df 1, p=0.001) were significantly 

associated with OS.  When EUS T-stage and N-stage were entered in the first Cox 

regression model, only EUS N-stage was significantly and independently associated 

with duration of survival [hazard ratio (HR) 1.616-4.707, df 3, p=0.005].  When EUS T-

stage and EUS N0 vs N+ were entered in a second Cox regression model, EUS N0 

vs N+ was significantly and independently associated with OS (HR 3.105, 95% CI 

1.543 – 6.247, p=0.001). 
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4.3.3 Univariate Analysis in Validation Cohort 

EUS T-stage (X2 21.031, df 4, p<0.001) (Fig. 4.3.1) and EUS N0 vs N+ (X2 4.300, df 

1, p=0.038) were significantly associated with OS.  EUS N-stage did not show a 

statistically significant association with OS (X2 5.699, df 3, p=0.127). 

 

Figure 4.3.1. Significant difference in cumulative survival by EUS T-stage (X2 21.031, 

df 4, p<0.001).  Patients with more advanced EUS T-stage have worse OS.  EUS T1 

(blue line), T2 (green line), T3 (gold line), T4a (purple line) and T4b (yellow line). 
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Table 4.3.2 provides mean survival data for patients classified by EUS T-stage, N-

stage and EUS N0 vs N+. 

 

Table 4.3.2. Survival Data of Patients in Validation Cohort Derived from Uni-variate 

Analysis. 

  95% Confidence Interval 

EUS Variable Mean OS (months) Lower Upper 

T-stage    

T1 41.563 38.834 44.291 

T2 25.830 20.062 31.598 

T3 27.908 24.484 31.332 

T4a 16.846 9.842 23.851 

T4b 17.500 4.334 30.666 

N-stage    

N0 31.853 28.735 34.971 

N1 25.625 21.246 30.004 

N2 16.857 11.873 21.841 

N3 17.000 17.000 17.000 

N+ 24.924 20.966 28.882 
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4.3.4 Multivariate Analysis 

Again, 2 alternative Cox Regression models were produced in the validation cohort. 

4.3.4.1 Model 1 

EUS T-stage and EUS N-stage were entered in model 1.  EUS T-stage was 

significantly and independently associated with OS (HR 11.656-30.114, 95% CI 

0.994-243.079, p=0.011). (Table 4.3.3) 

Table 4.3.3. Results of Model 1 Multi-variate Analysis including EUS T-stage and EUS 

N-stage. 

    95% Confidence Interval 

Variable p-value Hazard Ratio df Lower Upper 

EUS T-Stage 0.011  4   

T2 0.018 12.482 1 1.528 101.957 

T3 0.016 11.656 1 1.570 86.548 

T4a 0.001 30.114 1 3.731 243.079 

T4b 0.050 16.270 1 0.994 266.273 

EUS N-Stage 0.553  3   

N1 0.560 1.192 1 0.660 2.154 

N2 0.353 1.653 1 0.572 4.772 

N3 0.260 3.176 1 0.425 23.716 
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4.3.4.2 Model 2 

EUS T-stage and EUS N0 vs N+ were entered in model 2.  Again, EUS T-stage was 

significantly and independently associated with OS (HR 11.714-29.631, 95% CI 

1.067-238.959, p=0.012). (Table 4.3.4) 

Table 4.3.4. Results of Model 2 Multi-variate Analysis including EUS T-stage and EUS 

N0 vs N+. 

    95% Confidence Interval 

Variable p-value Hazard Ratio df Lower Upper 

EUS T-Stage 0.012  4   

T2 0.020 11.977 1 1.469 97.620 

T3 0.016 11.714 1 1.579 86.902 

T4a 0.001 29.631 1 3.674 238.959 

T4b 0.045 17.243 1 1.067 278.714 

EUS N0 vs N+ 0.359 1.292 1 0.747 2.235 
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4.3.5 Effect of Including Cheltenham Patients on Original Cohort Models 

A post-hoc analysis was performed to determine the effect of including patients 

scanned in Cheltenham on the original cohort models.  To perform this analysis, 

Cheltenham patients were excluded in attempt to control the comparison of the 

original Cardiff cohort with the validation cohort.  Seventy patients were originally 

scanned at Cardiff.  Of these, 53 patients (75.7%) were staged EUS N0, 11 (15.7%) 

were EUS N1, 3 (4.3%) were N2 and 3 (4.3%) were N3.  Both EUS N-stage (HR 

2.365-32.757, 95% CI 0.476-223.922, p=0.005) and EUS N0 vs N+ (HR 3.783, 1.141-

12.539, p=0.03) were again independent predictors of OS, in keeping with findings 

from the original study.  Therefore, inclusion of Cheltenham patients had little effect 

on the prognostic models.  Confidence intervals are wide, likely due to the small 

numbers in N2 and N3 groups. 

An assessment of differences between patient cohorts that may explain the lack of 

validation was performed.  A comparison of the proportion of patients who were 

staged N0 and considered for inclusion during both study periods was made.  Post-

hoc review of the Upper GI database revealed that 117 of 207 patients (56.5%) were 

staged N0 on PET/CT in the study period of the original cohort and 139 of 317 

(43.8%) were staged N0 in the study period of the validation cohort.  This difference 

was statistically significant (X2 8.049, df 1, p=0.005).  A significantly higher proportion 

of Cardiff patients were staged N0 in the original cohort, suggesting different 

proportions of patients were eligible for inclusion, which could affect the results of the 

prognostic models. 
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4.3.6 Prognostic Significance of Pathological Lymph Nodes 

In total, 74 patients from the validation cohort underwent surgical resection.  Thirty-

nine patients (52.7%) were classified pN0 and 35 patients (47.3%) were classified 

pN+.  There was a significant difference in OS between pN0 and pN+ groups (X2 

13.315, df 1, p<0.001). (Fig. 4.3.2)  Mean OS for the pN0 group was 40.091 months 

(95 % CI 36.931-43.251) and 26.538 (22.123-30.953) for the pN+ group. 

 

Figure 4.3.2. Significant difference in cumulative survival between pN0 and pN+ 

groups (X2 13.315, df 1, p<0.001). Patients with positive pathological lymph nodes 

have worse OS.  Negative pathological lymph nodes (pN0, blue line) and positive 

pathological lymph nodes (pN+, green line). 
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4.4 Discussion 

This study could not replicate the results of the previous models and therefore does 

not validate the published work.  In the validation cohort, EUS N-stage and EUS N0 

vs N+ did not have prognostic significance in multi-variate analysis, although EUS N0 

vs N+ was statistically significantly in univariate analysis (p=0.038).  EUS N-stage was 

not associated with OS in the validation cohort.  However, this study shows that EUS 

T-stage is significantly and independently associated with OS, which supports 

relatively few data from other studies. (Paraf et al. 1995; Hiele et al. 1997; Reid et al. 

2012) 

When patients scanned in Cheltenham were removed in post-hoc analysis, EUS N-

stage and EUS N0 vs N+ remained independent predictors of OS in the original 

Cardiff cohort.  This suggests that the Cheltenham PET/CT scanner had little effect on 

the original study results.  One reason for the inability to validate the original model 

could be a statistically significant difference in proportions of patients staged N0 

during both study periods. 

An important issue in validation studies is the extent to which the cohorts differ.  This 

can result in validation failure unless appropriately adjusted for. (Debray et al. 2015)  

A higher proportion of patients were staged as EUS N0 in the original Cardiff cohort 

and relatively more staged N+ in the validation cohort.  Reporting trends over time 

have not been assessed in this thesis, but context bias has been shown to influence 

radiologists image interpretation. (Egglin and Feinstein 1996)  EUS operators were 
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not blinded to the results of the PET/CT, which may influence the interpretation of N-

stage. 

Prior to the opening of the PETIC in 2010, patients were scanned at the Cobalt 

Imaging Centre, Cheltenham using a Philips 16 section Gemini GXL dedicated 

PET/CT system (Philips Medical Systems, Cleveland, USA).  The 2 sites used 

different scanners and protocols, and patients were scanned at different activity 

uptake times.  Patients were scanned at 60 minutes of uptake time in Cheltenham 

and after 90 minutes in Cardiff.  Longer uptake times lead to higher tumour to 

background avidity and can therefore increase the conspicuity of LNMs.  Secondly, 

the Cardiff scanner had a TOF algorithm but the Cheltenham scanner did not.  TOF 

reconstructions improve signal-to-noise ratio, detection and anatomical localisation of 

LNMs by allowing more precise measurement of the time difference between 

detections. (Surti 2015)  Finally, images were acquired for 4 minutes per bed position 

in Cheltenham, whereas the acquisition was 3 minutes per bed position in Cardiff.  

Some improvement in image quality may be expected in Cheltenham with longer 

acquisition times, provided the patient remained still.  However, the results of this 

validation study assume that longer acquisition did not affect the models. 

The additional sub-group analysis conducted in this study confirms the presence of 

LNMs as a major prognostic indicator. (Kayani et al. 2011)  There was a highly 

significant difference in OS between pN0 and pN+ groups.  This finding highlights the 

importance of accurate pre-treatment lymph node staging in OC.  However, as 
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demonstrated in Chapter 3, the challenge of inaccurate radiological staging with CT, 

EUS and PET remains. 

Limitations 

This validation study replicated methods used in the original study and as such, 

reproduced its limitations. This remains a relatively heterogeneous cohort of patients.  

Dissemination of LNMs is dependent on T-stage and to a lesser extent, histological 

cell type of the primary tumour. (Rice et al. 1998; Siewert et al. 2001)  Stratification of 

T-stage or histological cell type was not performed in the original study but is 

important because the incidence of LNMs increase in SCC and with advanced T-

stage.  The EUS operators may have been influenced by results of the PET/CT or CT 

reports, resulting in inadvertent changes in lymph node assessment over time.  In 

addition, the author has become more aware of appropriate prognostic research 

methods since the original publication. (Moons et al. 2009b)  The statistical 

methodology used in the original study could have been improved. 
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4.5 Conclusion 

Validation studies are important in prognostic research. (Altman and Royston 2000)  

This validation study did not replicate the results of the original work.  However, this 

validation study has shown the continued benefit of EUS T-stage in patients staged 

N0 on PET/CT.  EUS remains a valuable component of a multi-modality approach to 

OC staging.  The presence of pathological LNMs have a significant detrimental effect 

on OS. 
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Chapter 5. Radiological Prediction of Positive Circumferential Resection 

Margin in Oesophageal Cancer 

5.1 Introduction 

The impact of CRM involvement on patient outcome in OC has been widely reported. 

(Sagar et al. 1993; Chan et al. 2013b; Salih et al. 2013)  Although studies have failed 

to demonstrate the prognostic significance of pathological CRM involvement (Pultrum 

et al. 2010; Harvin et al. 2012), it is now widely accepted that a positive resection 

margin is important. (Okada et al. 2016) 

Survival statistics from the USA Intergroup 113 RCT were presented in section 

1.6.2.2.  The trial also investigated the effect of CRM status on survival.  Thirty-two 

percent of patients with a R0 resection were alive and disease-free at 5 years, 

compared to only 5% survival in those with a R1 resection. 

Prediction of pathological CRM involvement could influence treatment selection, 

potentially improving OS and recurrence rates.  Clinicians may have a lower threshold 

for offering neo-adjuvant therapy to patients at risk.  MRI accurately identifies a 

threatened CRM in rectal cancer (Brown et al. 2003), however early MRI studies in 

OC encountered initial difficulties because the examination is technically challenging. 

(Riddell et al. 2006)  Alternative methods are required to improve CRM prediction in 

OC. 
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PET/CT is predominately used to exclude distant metastases not demonstrated on 

CT.  PET/CT is also used for treatment planning and PET-defined tumour variables 

including MTL, MTW and SUVmax are prognostic indicators of survival and treatment 

response. (Roedl et al. 2009; Hatt et al. 2011b)  There is currently limited evidence 

investigating the association between PET-defined tumour variables and CRM 

involvement.  PET-defined tumour variables may provide additional predictive value 

when assessing the CRM. 

Therefore, this study investigated the additional value of MTL, MTW and SUVmax to 

predict pathological CRM involvement, compared with EUS and CT T-stage.  The 

prognostic significance of a positive CRM was also assessed. 

5.2 Materials and Methods 

5.2.1 Patient Cohort 

A retrospective cohort study was conducted in consecutive patients with biopsy-

proven OC treated between 1st March 2012 and 31st July 2015.  Patients were 

identified for inclusion at the Regional Upper GI Cancer MDT and deemed to have 

potentially curable disease.  All patients underwent PET/CT examination in PETIC 

and had surgical resection (with or without neo-adjuvant therapy) in the centralised 

service.  Patients were excluded from the study if the patient had incomplete staging 

(n=11), salvage oesophagectomy after dCRT (n=3) or an ‘open-and-close’ procedure 
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(n=12).  Following exclusions, 117 patients were included in the study.  Details of the 

clinical management are found in section 2.1.2. 

5.2.2 Radiological Staging 

Radiological staging was classified by the TNM 7th edition.  Protocols for CT, EUS and 

PET/CT examinations can be found in section 2.2. 

5.2.3 PET-Defined Tumour Variables 

Methods for quantifying PET-defined tumour variables are described in section 2.3.  

Non-avid tumours were recorded with a value of 0. 

5.2.4 Histopathological Analysis 

CRM status was assessed using the RCPath definition in section 1.7.4.3. (Mapstone 

2007) (Fig. 5.2.1)  Only the RCPath definition is used in the UK, and a comparison 

with the American CAP definition is not performed in this study.  TRG was assigned 

according to the Mandard Classification in patients who received neo-adjuvant 

therapy. (Mandard et al. 1994) 
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Figure 5.2.1. A selected radial EUS image (left) showing a mid-oesophageal tumour 

(T) in close proximity to the anterior surface of the descending thoracic aorta (AO).  

The EUS image was acquired using an Olympus MH-908 blind oesophagoprobe (Key 

Med, Southend, UK).  The tumour thickness is marked with calipers.  A corresponding 

histopathological slide of resected tumour (right) shows malignant cells at the CRM, 

stained with Haematoxylin & Eosin, indicating an R1 resection.  The image was 

acquired at medium-power magnification (50x). 

 

CRM
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5.2.5 Statistical analysis 

Categorical variables were summarised as frequency (percentage) and continuous 

variables as median (range).  Chi-square tests assessed differences between EUS T-

stage, CT T-stage, TRG and treatment type with CRM status.  EUS and CT T-stage 

was separated into ≤T2 vs ≥T3 prior to analysis given that relatively few patients 

present with T1 and T2 tumours.  Mann-Whitney U tests assessed differences 

between MTL, MTW and SUVmax with CRM status.  Multi-variate analysis was 

performed by entering the 5 variables into a binary logistic regression model.  The 

model was powered by EPV ratio, with an event defined as a positive CRM. (Peduzzi 

et al. 1996)  A log-rank test assessed differences in OS between CRM status. 

 

5.3 Results 

Patient characteristics are detailed in Table 5.3.1.  The median age of the cohort was 

64.0 years (range 24-78).  Median survival was 36.0 months (95% CI 24.1-47.9) and 

2-year OS was 55.4%.  The radiological and pathological TN classification of disease 

is detailed in Table 5.3.2.  No patients in the cohort were classified as having M1 

disease following radiological staging investigations. 
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Table 5.3.1. Characteristics of Patient Cohort 

Demographic Frequency (%) 

Gender 

Male 

Female 

 

102 (87.2) 

15 (12.8) 

Histology 

Adenocarcinoma 

Squamous Cell Carcinoma 

Neuro-endocrine 

 

110 (94.0) 

6 (5.1) 

1 (0.9) 

Degree of Differentiation 

Well 

Moderate 

Poor 

GX 

 

13 (11.1) 

40 (34.2) 

57 (48.7) 

7 (6.0) 

Radiological T-stage 

T1 

T2 

T3 

T4a 

 

12 (10.3) 

13 (11.1) 

83 (70.9) 

9 (7.7) 

Radiological N-stage 

N0 

N1 

N2 

N3 

 

58 (49.6) 

41 (35.0) 

14 (12.0) 

4 (3.4) 
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Treatment Type 

NACT 

Surgery Alone 

NACRT 

 

67 (57.3) 

31 (26.5) 

19 (16.2) 

Tumour Regression Grade 

TRG 1 

TRG 2 

TRG 3 

TRG 4 

TRG 5 

 

9 (10.5) 

10 (11.6) 

11 (12.8) 

32 (37.2) 

24 (27.9) 

Operation Type 

Trans-hiatal oesophagectomy 

Ivor-Lewis oesophagectomy 

Total gastrectomy 

3-stage oesophagectomy 

Oesophago-gastrectomy 

 

56 (47.9) 

35 (29.9) 

22 (18.8) 

3 (2.5) 

1 (0.9) 

Circumferential Resection Margin 

Negative  

Positive 

 

66 (56.4) 

51 (43.6) 
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Table 5.3.2. Radiological and Pathological TN Staging Classification 

Frequency (%) CT EUS PET/CT Pathology 

T0 0 (0.0) 0 (0.0) 0 (0.0) 9 (7.7) 

T1 12 (10.3) 12 (10.3) 0 (0.0) 18 (15.4) 

T2 22 (18.8) 13 (11.1) 0 (0.0) 9 (7.7) 

T3 73 (62.4) 83 (70.9) 0 (0.0) 71 (60.7) 

T4a 10 (8.5) 9 (7.7) 0 (0.0) 10 (8.5) 

TX 0 (0.0) 0 (0.0) 117 (100.0) 0 (0.0) 

Total 117 (100.0) 117 (100.0) 117 (100.0) 117 (100.0) 

N0 70 (59.8) 67 (57.2) 81 (69.2) 48 (41.0) 

N1 31 (26.5) 36 (30.8) 27 (23.1) 26 (22.2) 

N2 12 (10.3) 12 (10.3) 8 (6.8) 30 (25.6) 

N3 2 (1.7) 2 (1.7) 1 (0.9) 13 (11.1) 

NX 2 (1.7) 0 (0.0) 0 (0.0) 0 (0.0) 

Total 117 (100.0) 117 (100.0) 117 (100.0) 117 (100.0) 
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The positive CRM rate in patients treated with NACT, surgery alone and NACRT was 

50.7%, 38.7% and 26.3%, respectively. There was no significant difference in positive 

CRM rates between these treatments (X2 4.001, df 2, p=0.135). 

Most tumours were staged ³T3 by EUS and CT (78.6% and 70.9%, respectively) with 

relatively few early cancers (T1 & T2). (Table 5.3.2)  The median MTL was 4.8 cm 

(range 0.0-8.8), the median MTW was 2.4 cm (0.0-4.8) and the median SUVmax was 

11.1 (0.0-70.9). 

A chi-square test demonstrated EUS ≥T3 tumours were more likely to have a positive 

CRM than EUS ≤T2 tumours (X2 4.962, df 1, p=0.026). (Table 5.3.3)  CT ≤T2 vs ≥T3, 

MTL, MTW and SUVmax were not significantly associated with CRM status (p=0.161, 

0.852, 0.605 and 0.413, respectively).  In addition, the TRG was significantly 

associated with CRM status (X2 14.042, df 4, p=0.007). 

Table 5.3.3. Association of EUS T-stage Groups and CRM involvement 

Frequency (%) CRM negative CRM positive Total 

EUS ≤T2 19 (16.2) 6 (5.1) 25 (21.3) 

EUS ≥T3 47 (40.3) 45 (38.4) 92 (78.7) 

Total 66 (56.5) 51 (43.5) 117 (100.0) 

 



  Chapter 5 

Cardiff University  128 

EUS ≤T2 vs ≥T3, CT ≤T2 vs ≥T3, MTL and MTW and SUVmax were entered in a 

binary logistic regression model. (Table 5.3.4)  The EPV ratio was 10.2.  EUS ≤T2 vs 

≥T3 was significantly and independently associated with CRM involvement (HR 5.188, 

95% CI 1.265-21.273, p=0.022). 

Table 5.3.4. Results of Multi-Variate Binary Logistic Regression Model 

Variable Hazard Ratio (95% CI) p-value 

EUS ≤T2 vs ≥T3 5.188 (1.265-21.273) 0.022 

CT ≤T2 vs ≥T3 1.163 (0.398-3.397) 0.783 

PET MTL 0.633 (0.684-1.273) 0.652 

PET MTW 0.836 (0.445-1.570) 0.578 

SUVmax 0.989 (0.940-1.040) 0.655 

 

There was a significant difference in OS for CRM status (X2 4.920, df 1, p=0.027). 

(Fig. 5.3.1)  The mean OS for patients with negative CRM resections was 39.6 

months (95% CI 34.5-44.7) compared to 30.9 months (25.6-36.2) for those with a 

positive CRM. 
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Figure 5.3.1. Significant difference in cumulative survival according to CRM status (X2 

4.920, df 1, p=0.027). Patients with a positive CRM have worse OS. The blue line 

represents patients with a negative CRM and the green line patients with a positive 

CRM. 
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5.4 Discussion 

EUS ≥T3 is a significant, independent predictor of CRM involvement.  These results 

highlight the continued benefit of EUS in the OC staging pathway and support 

previously published results from our centre, which demonstrated that EUS ≥T3 has 

an increased risk of CRM involvement compared to tumours ≤T2. (Reid et al. 2012)  

The recruitment period for Reid et al ended in February 2012, therefore these results 

provide some internal validation in a new, independent cohort of patients.  Studies 

investigating the association of radiological staging investigations and CRM are 

limited in frequency.  This study has shown that PET-defined tumour variables may 

not have any additional value for predicting pathological CRM involvement. 

EUS provides the most accurate T-stage assessment. (Tangoku et al. 2012)  Pooled 

sensitivities of 82-92% and an accuracy of 83% are described. (van Vliet et al. 2007; 

Puli et al. 2008)  EUS benefits from superior contrast resolution compared to PET and 

CT.  PET is unlikely to provide sufficient detail to predict CRM involvement, due to its 

inherently limited spatial resolution. (Kinahan and Fletcher 2010)  Similarly, CT is poor 

at differentiating individual layers of the oesophageal wall.  CT T-stage was not 

significantly associated with CRM status in this study. 

Identification of a threatened CRM from radiological staging investigations is likely to 

benefit patient outcome.  In the UK, PET/CT and EUS are generally only performed 

prior to treatment initiation and are not repeated post-neo-adjuvant therapy as in other 

countries such as the USA.  Two strategies for individualising treatment exist; the first 
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is the decision to use neo-adjuvant therapy if the CRM is threatened and the second 

is the decision to operate post-neo-adjuvant therapy.  One study did not show any 

benefit when surgical resection was performed following a complete response on 

PET/CT. (Monjazeb et al. 2010)  The former strategy of predicting CRM involvement 

prior to treatment initiation is more suited to the UK staging pathway, given that 

PET/CT and EUS are often not repeated.  Furthermore, results of this study have 

shown that patients with a good response are significantly less likely to have a 

positive CRM following resection. 

Treatment selection can influence the positive CRM rate.  NACRT may increase the 

number of R0 resections compared to NACT, with R0 rates of 87.5% and 92.0% 

described in the literature. (Reid et al. 2012; van Hagen et al. 2012)  This current 

study did not demonstrate a significantly different positive CRM rate between 

treatments, but there were small numbers of patients in the NACRT group. 

The positive CRM rate in this patient cohort is high but comparable to those quoted in 

the National Oesophago-Gastric Cancer Audit. (National Oesophago-Gastric Cancer 

Audit 2016)  A trans-hiatal approach was employed in 47.9% of patients in this cohort.  

This is significantly higher than the national rate of 4%, which could in turn explain the 

relatively high positive CRM rate.  The surgeons in Cardiff employ this technique 

because the population of patients on which they operate tend to have significant co-

morbidities attributable to the effects of poor lifestyle and deprivation. (Blake et al. 

2017)  As described in section 1.6.2.1, morbidity rates are reduced following trans-

hiatal resection compared to a trans-thoracic approach. 
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Limitations 

A confounding factor in this analysis is the technique of the surgeon and the approach 

employed.  The surgical approach used was considered the best for the patient and 

most likely to result in a positive outcome.  In line with national data, the two most 

common types of oesophagectomy were used; trans-thoracic (Ivor-Lewis) and trans-

hiatal.  The surgeons work together within a centralised system so their techniques 

are likely to be similar.  Individual surgical data has not been included in this thesis. 

There is significant heterogeneity in this patient cohort.  Patients with differing stage of 

disease, treatment type, histology and response to treatment were included.  In 

general, OC patients are a heterogeneous cohort and introduction of some sample 

heterogeneity into research studies can be unavoidable.  This reflects the intention-to-

treat basis of clinical research, but can introduce potential bias into the results.  Three 

treatment types are included in this study, which have differing effects on CRM status, 

as evidenced by the CROSS trial. (van Hagen et al. 2012)  However, only 19 patients 

had a complete (TRG 1, n=9) or excellent (TRG 2, n=10) response to neo-adjuvant 

therapy, which suggests that the disease did not change significantly in the majority of 

cases.  EUS examinations were performed by different endosonographers, which may 

cause variability in T-stage accuracy, but again adds weight to the generalisability of 

the results.  
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5.5 Conclusion 

A positive CRM is an important prognostic indicator of survival.  Prior knowledge of a 

threatened CRM would assist clinicians with management decisions.  This study has 

shown that EUS ≥T3 is a significant independent predictor of a positive CRM and 

validates previous research from our institution, but PET-defined tumour variables are 

unlikely to add additional predictive value regarding CRM status. 
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Chapter 6. Comparison of PET and EUS Length of Disease and Potential 

Impact of Difference on Treatment Planning in Patients with 

Oesophageal Cancer 

6.1 Introduction 

Primary tumour length (TL) is commonly reported following upper GI endoscopy, CT, 

EUS and PET/CT staging investigations. (Allum et al. 2011)  Of more critical 

importance is the estimated LoD, defined as the cranio-caudal length of primary 

tumour plus any LNMs.  Assessment of treatment options, including suitability for 

dCRT, relies on assessment of LoD at staging.  A discrepancy in LoD between 

imaging modalities could affect clinical decision-making and subsequent treatment 

planning.  Inappropriate radical treatment may be initiated in unsuitable patients, or 

potentially beneficial therapy could be withheld from those that may respond. 

There is now significant interest in the use of PET imaging to assist radiotherapy 

planning, particularly in OC. (Ward et al. 2016)  Localisation of the gross tumour 

volume (GTV) in radiotherapy planning relies on accurate localisation of the TL and 

LoD.  Moreover, there has been a decline in EUS use nationally, making delineation 

of the GTV more reliant on PET and CT. (National Oesophago-Gastric Cancer Audit 

2016) 

Therefore, this study tested the hypothesis that significant differences exist between 

PET and EUS LoD.  These differences could impact on clinical decision-making and 
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treatment planning, especially in cases where EUS is not performed.  The primary 

aim of this study was to investigate differences in PET and EUS LoD in patients with 

OC.  The secondary aim was to assess their prognostic significance. 

6.2 Materials and Methods 

6.2.1 Patient Cohort 

Consecutive patients staged between January 1st 2011 and December 31st 2014 with 

biopsy proven oesophageal or GOJ tumours were considered for this study.  All EUS 

examinations were performed by the same operator.  In total, 222 patients were 

considered for inclusion.  Exclusion criteria were a non FDG-avid primary tumour 

(n=30), a tumour too stenotic to be passed with the endoscope (n=13), LoD not 

recorded in the EUS report (n=18) and patients lost to follow-up (n=1).  Following 

exclusions, 160 patients were included in the study. 

6.2.2 PET and EUS LoD 

Protocols for PET/CT and EUS can be found in section 2.2.  The method of PET LoD 

measurement is found in section 2.3.  All EUS examinations were performed by the 

same highly experienced operator (AR) with a published track-record, to ensure 

consistency in LoD measurement.  EUS LoD was recorded by AR during the 

procedure, and documented in the final report.  EUS LoD was calculated as the 
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length of endoscope insertion relative to the incisors between proximal and distal 

tumour and/or LNMs, recorded in cm. (Rice and Roberts 2003) 

6.2.3 Outcome Data 

The secondary outcome of the study is OS.  Methods of survival data collection are 

described in section 2.1.3. 

6.2.4 Statistical Analysis 

Continuous data are expressed as median (range) and categorical data as frequency 

(percent).  A Bland-Altman analysis was used to assess the level of agreement 

between PET and EUS LoD. (Bland and Altman 1986)  The mean difference (PET 

minus EUS) and 95% limits of agreement (LA) were calculated.  A difference of more 

than 2 cm between PET and EUS LoD is considered clinically significant for 

radiotherapy planning, therefore the proportion of cases with a clinically significant 

difference was also calculated. (Crosby et al. 2013)  A non-parametric Wilcoxon 

signed rank test was used to assess differences between PET and EUS LoD.  

Univariate survival analysis was performed with the log-rank test according to the life-

table method of Kaplan-Meier. (Kaplan and Meier 1958)  Multi-variate analysis was 

performed by entering age (years), stage group (I, II, III or IV), treatment (curative vs 

palliative), PET LoD (cm) and EUS LoD (cm) into a Cox Regression model. (Cox 

1972)  Model power was based on the EPV ratio. 
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6.3 Results 

Patient Characteristics are detailed in Table 6.3.1.  The median age of the cohort was 

66.0 years (range 24-83).  The median OS of the cohort was 20.0 months (95% CI 

16.2-23.8) and median follow-up was 40.0 months (35.1-44.9). 

 

Table 6.3.1. Baseline Characteristics of Patient Cohort 

Patient Characteristic Frequency (%) 

Gender 

Male 

Female 

 

124 (77.5) 

36 (22.5) 

Histology 

Adenocarcinoma 

Squamous Cell Carcinoma 

High-grade Dysplasia 

Neuro-endocrine 

Undifferentiated 

 

115 (71.9) 

41 (25.6) 

2 (1.3) 

1 (0.6) 

1 (0.6) 

Tumour Location 

Oesophagus 

GOJ 

 

96 (60.0) 

64 (40.0) 



  Chapter 6 

Cardiff University  138 

EUS T-stage 

T1 

T2 

T3 

T4a 

T4b 

 

5 (3.1) 

14 (8.8) 

97 (60.6) 

33 (20.6) 

11 (6.9) 

EUS N-stage 

N0 

N1 

N2 

N3 

 

54 (33.8) 

49 (30.6) 

35 (21.8) 

22 (13.8) 

PET/CT N-stage 

N0 

N1 

N2 

N3 

 

81 (50.6) 

51 (31.8) 

22 (13.8) 

6 (3.8) 

PET/CT M-stage 

M0 

M1 

MX 

 

144 (90.0) 

14 (8.8) 

2 (1.2) 

Treatment Type 

NACT 

dCRT 

Surgery alone 

NACRT 

EMR 

Palliative 

 

37 (23.1) 

35 (21.9) 

17 (10.6) 

14 (8.8) 

1 (0.6) 

56 (35.0) 
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Boxplot representation of the measurements showed that PET tended to yield smaller 

LoD measurements compared to EUS. (Fig 6.3.1) 

Additionally, a Wilcoxon signed rank test demonstrated a significant difference 

between PET and EUS LoD (Z= -7.021, p<0.001).  EUS LoD was more than 2 cm 

longer than PET LoD in 61 cases (38.1%).  In 8 cases (5.0%), PET LoD was more 

than 2 cm longer than EUS LoD. 

 

 

Figure 6.3.1. Boxplot representation of PET and EUS LoD measurements.  The 

median PET LoD was 6.4 cm (standard deviation (SD) 4.5, interquartile range (IQR) 

4.5-9.4, range 1.0-25.8), respectively.  The median EUS LoD was 8.0 cm (SD 5.7, 

IQR 6.0-12.0, range 1.0-27.0), respectively. 
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Bland-Altman analysis demonstrated substantial variation in PET and EUS LoD 

measurements. (Fig. 6.3.2)  The Bland Altman analysis indicates that the 95% LA 

between PET and EUS represented a level of disagreement that is potentially 

clinically significant, suggesting that PET and EUS measurements should not be used 

inter-changeably. (Fig. 6.3.3) 

 

Figure 6.3.2. Bland-Altman plots demonstrating limited agreement in PET and EUS 

measurements of LoD.  Mean difference (solid line) and 95% LA (dashed lines) are 

displayed.  The mean difference between PET and EUS was -2.2 cm (SD 3.8, 95% 

LA -9.6 to 5.2), suggesting PET yielded smaller LoD measurements than EUS. 



  Chapter 6 

Cardiff University  141 

 

 

Figure 6.3.3. Selected sagittal fused PET/CT radiotherapy planning image 

demonstrating a FDG-avid mid-oesophageal SCC staged T3 N1 with EUS.  A peri-

tumoural LNM did not increase the total LoD measurement.  The horizontal red lines 

delineate the EUS LoD measurement, with each line representing a 5 mm interval.  

The PET LoD measured 6.5 cm, whereas the EUS LoD was recorded as 10 cm, 

indicating non-FDG avid tumour at proximal and distal margins. 
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In univariate analysis, PET LoD (HR 1.076, 95% CI 1.037-1.115, p<0.001) and EUS 

LoD (HR 1.059, 95% CI 1.028-1.091, p<0.001) were significantly associated with OS. 

There were significant differences in OS between upper and lower quartiles of PET 

LoD (13.0 months if >9.4 cm and 29.0 months if <4.5 cm, p<0.001) and EUS LoD 

(13.0 months if >12.0 cm and 29.0 months if <6.0 cm, p=0.002). 

However, in multivariate analysis, PET and EUS LoD were not independently 

associated with OS. (Table 6.3.2) The EPV ratio was 22.2. 

 

Table 6.3.2. Results of the Multivariate Cox Regression Model 

   95% Confidence Interval 

Variable p-value Hazard Ratio Lower Upper 

Age 0.026 1.024 1.003 1.045 

Stage Group 0.002 1.728 1.227 2.433 

Treatment <0.001 0.414 0.265 0.648 

PET LoD 0.787 0.992 0.933 1.054 

EUS LoD 0.996 1.000 0.950 1.053 
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6.4 Discussion 

This study has demonstrated significant differences between PET and EUS LoD in 

patients with OC.  These results are important for treatment option assessment, which 

can be complex in OC.  Both PET and EUS LoD were significantly associated with 

OS on univariate analysis, but were not independent predictors, findings which concur 

with the few published data available. (Twine et al. 2010; Hatt et al. 2011b; Davies et 

al. 2012; Foley et al. 2014a).  

Selection of patients for surgical management, neo-adjuvant treatments or dCRT 

partly relies on accurate assessment of disease extent, often gained from PET/CT 

and EUS.  The LoD is an important measurement that can influence these decisions.  

These results suggest that PET tends to under-measure LoD compared to EUS.   

An accepted maximum LoD for consideration of radiotherapy is 10 cm as described in 

the SCOPE trial series protocols. (Mukherjee et al. 2015)  There is often more 

concern about length of irradiated volume in the neoadjuvant setting however, leading 

to a more conservative approach in this scenario.  Inaccuracies in LoD estimation 

could affect patient selection for NACRT. (Hurt et al. 2011) 

In terms of radiotherapy planning, a difference of more than 2 cm between PET and 

EUS LoD is considered clinically significant. (Crosby et al. 2013)  Most modern 

oesophageal radiotherapy planning protocols allow a margin of 2 cm from GTV to 

clinical target volume (CTV) to allow for microscopic spread along the oesophagus.  
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Differences in LoD of more than 2 cm could lead to a significant risk of a geographical 

miss if the PET measurement alone had been used.  In this study, up to 38.1% of 

cases were at risk of a geographical miss. 

Delineation of target volumes for radiotherapy planning in OC is increasingly guided 

by metabolic activity of the primary tumour and regional nodes on PET/CT. 

(Mukherjee et al. 2015)  In addition to clinical information, PET images are most 

commonly viewed alongside the planning CT.  The oesophageal GTV can be difficult 

to define on CT alone because of submucosal spread, the propensity for skip lesions 

and poor differentiation of tumour from normal oesophagus.  Accurate definition of 

GTV has become even more important given the growing trend for reduced margins 

combined with increased conformity of treatment volumes and use of advanced 

techniques such as Volumetric Modulated Arc Therapy (VMAT).  Some centres use 

fusion techniques, but inaccuracies can be introduced if patient positioning differs 

between diagnostic and planning examinations. 

Centres that utilise EUS for radiotherapy planning have reported satisfactory 

recurrence rates with few edge-of-field relapses. (Button et al. 2009)  However, EUS 

is occasionally unavailable at the time of radiotherapy planning, often due to non-

traversable tumour, patient choice or increasing service pressures.  Limited 

information can still be acquired from a non-traversable tumour, such as the proximal 

extent of tumour and assessment of visible lymph nodes, but the maximum LoD may 

not be fully appreciated in these cases, thus increasing the risk of edge-of-field 

recurrence.   
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If PET alone is relied upon to guide delineation of GTV, all available diagnostic 

information, including the upper GI endoscopy report, diagnostic CT and PET/CT 

images, should be used together to plan radiotherapy.  The temptation to outline 

FDG-avid regions of disease alone should be resisted because it is vital to include 

disease identified on all available imaging modalities.  Usually, the most recent 

imaging is the radiotherapy planning CT and areas of adjacent, non-avid oesophageal 

wall thickening should be included in the GTV. This approach is also recommended in 

the recent SCOPE2 trial radiotherapy planning protocol. (SCOPE2 2016) 

EUS assesses local disease extent more accurately than PET due to its superior 

contrast and spatial resolution and is preceded by video endoscopy, which provides 

the opportunity to visualise subtle areas of proximal or distal extension of disease that 

would not normally be detected on CT or PET.  Submucosal infiltration is also better 

assessed with EUS. (Thosani et al. 2012)  Physiological FDG-uptake in the 

oesophagus or stomach is often located adjacent to the tumour, creating an ‘avidity 

gradient’ which can cause error in measurement. (Fig. 2.3.1) Another limitation of 

PET is the suboptimal differentiation of adjacent peri-tumoural lymph node 

metastases from the primary tumour. (Konski et al. 2005)   However, PET/CT can add 

useful information in patients with non-traversable tumours, or in cases where there is 

involvement of the GOJ.  Identification of nodal disease distant to the primary tumour 

can also be assessed.  Overall, these results support the combined use of PET and 

EUS in radiation treatment planning of OC. 
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It has been suggested that EUS use should be more focused in OC.  EUS is an 

invasive procedure with risk of serious complications and is operator dependent.  In 

many centres access to EUS is limited, which can impact on patient pathways and 

time to treatment.  This is supported by evidence that EUS use is declining.  

According to the National Oesophago-Gastric Cancer Audit (NOGCA) data, 47.5% of 

patients with OC had a staging EUS completed in 2016, compared to 62% reported in 

2013. (National Oesophago-Gastric Cancer Audit 2016)  A large single-centre study 

showed minimal benefit of EUS versus the potential risk of complications in the 

majority of patients staged T2-T4a on CT. (Findlay et al. 2015)  The authors suggest 

that EUS use should be limited to early stage OC and the assessment of resectability 

in more advanced cases.  The additional utility of EUS for accurate radiotherapy 

planning was not discussed in this paper and should be an additional consideration 

given the increasing use of NACRT in recent years. 

Interestingly, LoD is also used to define patient eligibility criteria into clinical 

radiotherapy trials.  Examples of these criteria include the NEOSCOPE (Mukherjee et 

al. 2015) and SCOPE1 (Hurt et al. 2011) trials, both of which stipulated a maximum 

LoD (8 cm and 10 cm, respectively).  Currently, the Neo-AEGIS trial (Keegan et al. 

2014) differs by stipulating a maximum TL of 8 cm on any imaging modality. 

Limitations 

As for other studies investigating tumour length measurements on imaging, the true 

pathological length is unknown, making accurate comparison of imaging modalities 
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difficult.  Cancer resections specimens can shrink up to 50% in size which is an 

important consideration when comparing radiological and pathological 

measurements. (Siu et al. 1986)  Only measurements from single observers for both 

PET and EUS were analysed in this study, which maintains consistent methodology, 

but does not allow assessment of inter-observer variability.  Future research should 

focus on the impact of inter-observer variability on treatment decision-making in 

patients with OC.  Identical settings were used when measuring LoD on the PET MIP 

images.  Some tumours with high intensity variation may not have displayed 

optimally, which potentially introduced error in measurement.  However, this 

methodology was adopted to ensure consistency between patients.  In addition, the 

patient population was relatively heterogeneous, which reflects the observational 

nature of the study.  As a result, the patients included in this study received different 

treatments.  Treatment was included in the multi-variate analysis as curative and 

palliative groups only.  Curative therapies were combined as the numbers in some 

treatment groups were relatively small. 
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6.5 Conclusion 

This retrospective study has demonstrated significant differences in PET and EUS 

LoD measurements recorded from OC staging investigations.  These measurements 

showed prognostic significance on univariate analysis but were not independent 

predictors of survival.  Differences in these measurements could potentially impact on 

clinical-decision making and radiotherapy treatment planning.  These results highlight 

the continued benefit of EUS in the OC staging and treatment pathway, particularly 

adding information in patients requiring radiotherapy. 
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Chapter 7. Development and Validation of a Prognostic Model 

Incorporating Texture Analysis Derived from Standardised 

Segmentation of PET in Patients with Oesophageal Cancer 

7.1 Introduction 

Multiple sub-clonal populations of cells are known to co-exist within tumours. 

(Gerlinger et al. 2012)  As described in section 1.10.1, texture analysis data could act 

as a surrogate markers of underlying tumour heterogeneity.  This, in combination with 

traditional staging methods, may improve clinical decision tools and optimise 

treatment pathways. (Aerts et al. 2014) 

Retrospective studies have investigated the ability of PET texture analysis to predict 

treatment response and survival in different solid cancers including lung, 

oesophageal, cervical and head & neck. (Orlhac et al. 2014; Hatt et al. 2015; van 

Rossum et al. 2016a)  A large multi-centre study including 1,019 patients with lung 

and head & neck cancer conducted retrospective radiomic analysis on external 

datasets and demonstrated the additional benefit of CT texture analysis in the staging 

pathway.  Radiomic data were combined with genomic data to produce a prognostic 

signature resulting in improved prognostic performance compared to traditional TNM 

staging alone. (Aerts et al. 2014) 

This study aimed to investigate the additional prognostic value of PET texture analysis 

compared with the current staging methods, by developing a prognostic model in 
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patients with OC.  This study also aimed to calculate a prognostic score which can 

stratify patients accordingly and perform internal validation of the model in an 

independent cohort of patients. 

7.2 Materials and Methods 

7.2.1 Patient Cohort 

This is a retrospective cohort study of consecutive patients with biopsy-proven OC, 

including GOJ tumours, radiologically staged between 16th September 2010 and 31st 

July 2015. 

Overall, 550 patients were considered for inclusion.  Exclusion criteria were non- or 

poorly FDG-avid tumours [SUVmax < 3 (n=60)], an MTV < 5mL (n=52), histology other 

than adenocarcinoma or SCC (n=21), a synchronous primary malignancy (n=7) or an 

oesophageal stent in situ (n=7). 

Following exclusions, 403 patients were included and chronologically separated into 2 

independent cohorts.  The first (development) cohort included 302 patients 

radiologically staged between 16th September 2010 and 15th September 2014.  The 

second (validation) cohort included 101 patients radiologically staged between 16th 

September 2014 and 31st July 2015. 
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7.2.2 Treatment Protocols 

Patients either had surgery alone, NACT or NACRT prior to surgery, dCRT or 

palliative therapy.  Further details are found in section 2.1.2. 

7.2.3 Data Preparation and PET Segmentation  

Data preparation and PET segmentation with ATLAAS was performed as detailed in 

sections 2.4.2 and 2.4.3. 

7.2.4 Prognostic Variables 

Nineteen variables were included in the Cox regression model. Age (number of years) 

and stage group (I A or B = 1, II A or B = 2, III A, B or C = 3, IV = 4), were included. 

Treatment was divided into curative (=1) and palliative (=2) groups prior to data 

analysis.  PET-STAT metrics were analysed as described in section 2.4.5. 

7.2.5 Transformation of Variables 

Visual inspection of continuous variable histograms was performed before model 

development to assess for normal distribution and skewness.  Specific normality tests 

were not used but logarithmic transformation of variables with significant long-tails 

was performed prior to analysis to reduce the leverage created from outlying data.  

Four texture variables were transformed; TLG [log(TLG)] Histogram Energy 
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[log(Energy)], Coarseness [log(Coarseness)] and Homogeneity [log(Homogeneity)].  

Repeat inspection of the transformed histograms revealed the 4 variables had a more 

normalised distribution. (Fig. 7.2.1) 

7.2.6 Metabolic Tumour Volume and Texture Metrics  

An important consideration in texture analysis is the range of tumour volumes that are 

assessed.  Tumours with small volumes may provide redundant texture information 

due to highly correlated variables. (Wu et al. 2016)  Some authors have suggested 

excluding tumours with MTV less than 5 mL. (Orlhac et al. 2014)  Therefore, patients 

with MTVs < 5 mL were excluded from analysis. 

7.2.7 Outcome Data 

The primary outcome of the study is OS.  Details of outcome data are found in section 

2.1.3. 
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Figure 7.2.1. An example of logarithmic transformation of a variable.  In this case, the 

histogram of TLG (A) in the development cohort showed a non-normal distribution 

with positive skew.  Logarithmic transformation of TLG into log(TLG) was performed 

(B).  log(TLG) showed a more normal distribution so was included in the Cox 

Regression model. 
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7.2.8 Statistical Analysis 

Categorical variables are described as frequency (percent) and continuous variables 

as median (range) and differences assessed with appropriate non-parametric tests.  

Differences between cohorts were assessed using either a Chi-square or Mann-

Whitney U test.  Cumulative survival was calculated by the Kaplan-Meier life-table 

method.  A Cox Regression Model with backward conditional method was constructed 

by an experienced medical statistician. Model power was based on an event-to-

variable ratio (EPV), recommended to be a minimum level of 10. (Peduzzi et al. 1996)  

EPV is defined as the ratio of number of patient deaths compared to number of 

variables in the model.  The prognostic score was calculated by summation of the 

products of variables and their corresponding parameter estimate.  Using this, 

patients were separated into quartiles and a log-rank test evaluated significant 

differences in OS.  The effect of curative or palliative treatment on the performance of 

the prognostic score was assessed with a test of interaction.  Furthermore, the Akaike 

information criterion (AIC) statistic evaluated the estimated quality of 3 incremental 

models; 1) a model including age, radiological stage group and treatment; 2) a model 

including these variables plus newer prognostic indicators SUVmax, SUVmean and MTV; 

and 3) a model including the additional texture metrics. (Akaike 1974)  The model with 

a lowest AIC value is considered the better model.  Internal validation of the 

prognostic model was performed retrospectively in a separate cohort of patients. 
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7.3 Results 

7.3.1 Patient Cohorts 

Baseline characteristics of patients included in the development and validation 

cohorts are detailed in Table 7.3.1. The median OS of the development and validation 

cohorts was 16.0 months (95% CI 13.8-18.2) and 14.0 months (95% CI 10.4-17.6), 

respectively.  Median follow-up was 43.0 months (95% CI 35.3-50.7) in the 

development cohort and 17.0 months (95% CI 15.7-18.3) in the validation cohort.  

Overall 1- and 2-year survival in the development cohort was 66.9% and 33.3%, 

respectively and 1-year OS in the validation cohort was 57.4%.  Classification of 

radiological EUS and PET/CT TNM stage are detailed in Table 7.3.2. 

All EUS examinations were performed in 3 centres by 4 experienced 

endosonographers.  Patients with tumours too stenotic to be crossed at EUS were 

unable to be fully staged, therefore final pre-treatment radiological stage relied on a 

combination of findings from PET/CT and CT investigations.  EUS was not attempted 

if the decision to treat the patient palliatively was made after PET/CT.  In the 

development cohort, EUS T-stage was assigned in 227 patients (75.2%). EUS N-

stage was assigned in 221 patients (73.2%).  EUS was not attempted due to M1 

disease on PET/CT, or was incomplete due to a non-traversable tumour in 81 cases.  

In the validation cohort, EUS staging was completed in 78 patients (77.2%).  EUS was 

not attempted due to M1 disease on PET/CT, or was incomplete due to a non-

traversable tumour in 23 cases. 
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Table 7.3.1. Baseline Characteristics of Patients in Development and Validation 

Cohorts 

Frequency (%) Development Cohort 
(n=302) 

Validation Cohort 
(n=101) 

p-value 

Median Age 67.0 years  

(Range 39-83) 

69.0 years 

(Range 39-84) 

 

0.179 

Gender (M: F)  

 

227 (75.2): 75 (24.8) 78 (77.2): 23 (22.8) 0.676 

Histology  

Adenocarcinoma 

SCC 

 

237 (78.5) 

65 (21.5) 

 

79 (78.2) 

22 (21.8) 

 

0.956 

Tumour Location  

Oesophagus 

Upper Third 

Middle Third 

Lower Third 

GOJ 

Siewert I 

Siewert II 

Siewert III 

 

192 (63.6) 

6 (3.1) 

53 (27.6) 

133 (69.3) 

110 (36.4) 

41 (37.3)  

30 (27.3) 

39 (35.4) 

 

47 (46.5) 

3 (6.4) 

10 (21.3) 

34 (72.3) 

54 (53.5) 

24 (44.5) 

18 (33.3) 

12 (22.2) 

 

0.003 

Stage Groups 

Stage I 

Stage II 

Stage III 

Stage IV 

 

17 (5.6) 

56 (18.5) 

160 (53.1) 

69 (22.8) 

 

2 (2.0) 

24 (23.8) 

57 (56.4) 

18 (17.8) 

0.238 
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Treatment 

Curative 

Surgery Alone 

NACT 

NACRT 

dCRT 

Palliative 

 

158 (52.3) 

24 (15.2) 

67 (42.4) 

13 (8.2) 

54 (34.2) 

144 (47.7) 

 

50 (49.5) 

4 (8.0) 

23 (46.0) 

7 (14.0) 

16 (32.0) 

51 (50.5) 

 

0.624 

Overall Survival  

Alive 

Dead 

 

70 (23.2) 

232 (76.8) 

 

43 (42.6) 

58 (57.4) 

<0.001 
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Table 7.3.2. TNM Classification of PET/CT and EUS Staging Investigations in 

Development and Validation Cohorts 

Frequency (%) Development Cohort 
(n=302) 

Validation Cohort 
(n=101) 

p-value 

EUS T-stage 

T1 

T2 

T3 

T4a 

T4b 

TX 

 

3 (1.3) 

15 (6.6) 

161 (71.0) 

35 (15.4) 

12 (5.3) 

1 (0.4) 

 

1 (1.3) 

4 (5.1) 

57 (73.1) 

15 (19.2) 

1 (1.3) 

0 (0.0) 

0.656 

Total 227 (100.0) 78 (100.0)  

EUS N-stage 

N0 

N1 

N2 

N3 

 

87 (39.4) 

59 (26.7) 

47 (21.3) 

28 (12.7) 

 

28 (35.9) 

36 (46.2) 

12 (15.4) 

2 (2.5) 

0.003 

Total 221 (100.0) 78 (100.0)  

PET/CT N-stage 

N0 

N1 

N2 

N3 

 

126 (41.7) 

96 (31.8) 

62 (20.5) 

18 (6.0) 

 

46 (45.5) 

25 (24.8) 

25 (24.8) 

5 (4.9) 

0.519 

Total 302 (100.0) 101 (100.0)  

PET M-stage 

M0 

M1 

MX 

 

228 (75.5) 

72 (23.8) 

2 (0.7) 

 

81 (80.2) 

19 (18.8) 

1 (1.0) 

0.556 

Total 302 (100.0) 101 (100.0)  
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7.3.2 Prognostic Model Development 

The final step of the prognostic model is presented in Table 7.3.3.  Descriptive 

statistics for all calculated PET metrics in the development cohort are detailed in 

Table 7.3.4. There were 232 events and 19 variables in the model, providing 12.2 

EPV. In addition to known important prognostic factors in OC (age, radiological stage 

and treatment), the model identified 3 texture metrics that were independently and 

significantly associated with survival. The significant variables were log(TLG), 

log(Histogram Energy) and Histogram Kurtosis.  Their inclusion in the model 

illustrates their additional prognostic value compared with current prognostic factors.  

TLG is calculated as the product of SUVmean and MTV. (Wahl et al. 2009)  Histogram 

Energy (Orlhac et al. 2014) was calculated using Equation 1: 

N%5OPQ@RS	TUV@QW = - %
(

)

	

Eq.1 

where -(%) = LM
L

, with ") the number of voxels of intensity I, and N, the total number of 

voxels.   
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Histogram Kurtosis (Orlhac et al. 2014) was calculated using Equation 2: 

N%5OPQ@RS	XY@OP5%5 =
1
" $ % − ' ,

)

1
" $ % − ' (

)

(	

Eq.2 

where N is the number of voxels in the image, I(i) is the positive intensity value in the 

3D matrix and µ is the mean intensity value. 

 

Table 7.3.3. Results of the Cox Regression Model 

Prognostic Variable p-value Parameter 
Estimate 

Hazard 
Ratio 

95 % 
Confidence 

Interval 

Lower Upper 

TNM Stage <0.001 0.397 1.49 1.20 1.84 

Treatment <0.001 -1.094 0.34 0.24 0.47 

Age 0.001 0.024 1.02 1.01 1.04 

log(Histogram Energy) 0.011 -1.320 0.27 0.10 0.74 

log(TLG) 0.013 1.748 5.74 1.44 22.83 

Histogram Kurtosis 0.017 0.198 1.22 1.04 1.44 
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Table 7.3.4. Results of PET Variables and Texture Metrics in Development Cohort 

Metric Mean 
95% Confidence Interval Minimum 

Value 
Maximum 
Value Lower Upper 

SUVmax 16.55 15.57 17.54 3.56 59.97 

SUVmean 9.14 8.58 9.71 2.07 35.06 

MTV 25.80 23.33 28.27 5.04 132.47 

log(TLG) 2.20 2.15 2.24 1.30 3.30 

Standard Deviation 2.51 2.35 2.66 0.46 9.73 

Histogram Entropy 3.82 3.81 3.84 2.94 4.09 

log(Histogram Energy) 4.74 4.68 4.81 3.52 6.37 

Histogram Skewness 0.58 0.53 0.62 -0.31 2.82 

Histogram Kurtosis 2.81 2.70 2.92 1.72 12.69 

log(Coarseness) -1.96 -1.99 -1.93 -2.78 -1.29 

log(Homogeneity) -0.53 -0.55 -0.52 -1.03 -0.21 

Entropy 5.34 5.25 5.43 3.10 7.25 

Dissimilarity 5.05 4.73 5.38 0.97 23.18 

Intensity Variability 18.04 16.59 19.48 2.76 90.81 

Large Area Emphasis 258.77 78.03 439.51 1.46 20512.36 

Zone Percentage 42.46 40.43 44.50 1.73 87.86 
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7.3.3 Prognostic Score Calculation 

Equation 3 was used to calculate the prognostic score in the development cohort. 

(Stage Group*0.397) - (Treatment*1.094) + (Age*0.024) - (log(Histogram 

Energy)*1.320) + (log(TLG)*1.748) + (Histogram Kurtosis*0.198) 

Eq.3 

The median score of quartile 1 was -0.73 (n=76, range -1.66 to -0.45), quartile 2 was -

0.14 (n=76, -0.45 to 0.29), quartile 3 was 0.76 (n=75, 0.31 to 1.06) and quartile 4 was 

1.38 (n=75, 1.08 to 2.15).  There was a significant difference in OS between quartiles 

(X2 143.14, df 3, p<0.001). (Fig 7.3.1)  Median OS of quartiles 1 to 4 was 36.0 months 

(95% CI 31.1-40.9), 21.0 months (16.1-25.9), 14.0 months (11.7-16.3) and 8.0 months 

(5.9-10.1), respectively.  The interaction test revealed no statistical difference in 

performance of the prognostic score between curative and palliative treatments (X2 

1.344, df 1, p=0.246). 
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Patients at Risk, n 

Total 302 250 194 135 92 61 38 

Quartile 1 76 72 69 57 46 30 20 

Quartile 2 76 74 62 48 32 22 17 

Quartile 3 75 62 42 23 13 9 1 

Quartile 4 75 42 21 7 1 0 0 

Figure 7.3.1. Kaplan-Meier plot demonstrating cumulative survival curves of 

prognostic score quartiles in the development cohort (X2 143.142, df 3, p<0.001).  

Patients in Q1 had better OS and patients in Q4 had the worst OS.  Q1 quartile; Q2 

quartile 2; Q3 quartile 3; Q4 quartile 4. 
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7.3.4 Comparison of Estimated Model Performance 

The AIC of the traditional model including radiological stage group, treatment and age 

was 2247.693.  The AIC of the model which also included SUVmax, SUVmean and MTV 

was also 2247.693.  The AIC of the development prognostic model including 

additional texture metrics is 2238.007, which is the lowest value.  This suggests that 

incorporation of PET variables and texture metrics improves current prognostic 

models in OC. 

7.3.5 Internal Validation of Prognostic Model 

The prognostic model was applied to the validation cohort.  Again, there was a 

significant difference in OS between patient quartiles (X2 20.621, df 3, p<0.001). (Fig. 

7.3.2)  Results of PET metrics obtained from the validation cohort are detailed in 

Table 7.3.5. Mean OS of patients in quartiles 1 and 2 was 16.6 months (95% CI 13.9-

19.3) and 17.4 months (95% CI 15.4-19.4), respectively.  Patients in quartile 1 had 

lower mean OS than those in quartile 2, but the difference between quartiles was not 

significant (X2 0.219, df 1, p=0.640).  The median OS for quartile 3 and 4 was 11.0 

months (6.1-15.9) and 9.0 months (4.1-13.9).  Three of 26 (11.5%) patients were 

treated with palliative intent in quartile 2, and 2 of 25 (8.0%) patients were treated with 

curative intent in quartile 3.  The AIC of the validation model including PET variables 

and texture metrics was lower (464.671) than models including radiological stage 

group, treatment and age (470.420), and SUVmax, SUVmean and MTV (470.420), 

respectively. 
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Patients at Risk, n 

Total 101 94 79 67 52 31 13 

Quartile 1 26 24 23 19 15 10 4 

Quartile 2 25 24 23 22 20 13 5 

Quartile 3 25 22 18 14 11 5 2 

Quartile 4 25 24 15 12 6 3 2 

Figure 7.3.2. Kaplan-Meier plot demonstrating cumulative survival curves of 

prognostic score quartiles in the validation cohort (X2 20.621, df 3, p<0.001).  Q1 

quartile; Q2 quartile 2; Q3 quartile 3; Q4 quartile 4. 
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Table 7.3.5. Results of PET Variables and Texture Metrics in Validation Cohort 

Metric Mean 
95% Confidence Interval Minimum 

Value 
Maximum 
Value Lower Upper 

SUVmax 17.13 15.02 19.23 4.57 70.97 

SUVmean 9.69 8.45 10.93 2.97 39.59 

MTV 25.35 21.20 29.50 5.13 100.27 

log(TLG) 2.20 2.12 2.29 1.31 3.44 

Standard Deviation 2.54 2.21 2.87 0.27 11.11 

Histogram Entropy 3.83 3.80 3.85 3.27 4.05 

log(Histogram Energy) 4.76 4.64 4.88 3.45 6.49 

Histogram Skewness 0.63 0.56 0.70 -0.03 1.90 

Histogram Kurtosis 2.79 2.65 2.93 1.85 6.14 

log(Coarseness) -1.98 -2.04 -1.93 -2.66 -1.52 

log(Homogeneity) -0.54 -0.57 -0.52 -1.04 -0.27 

Entropy 5.37 5.21 5.52 3.45 7.37 

Dissimilarity 5.44 4.69 6.18 1.62 26.47 

Intensity Variability 18.00 15.40 20.61 4.43 75.37 

Large Area Emphasis 107.65 38.78 176.51 1.47 2467.89 

Zone Percentage 43.21 39.51 46.91 6.55 88.13 
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7.4 Discussion 

This study has developed a prognostic model which provides new and important 

results for OC staging.  Internal validation of the model demonstrated a continued 

difference in OS (p<0.001) between quartiles, in an independent cohort of patients. 

The results of this study show that PET texture analysis may enhance the prognostic 

TNM staging model in OC. 

The prognostic model has identified 3 PET metrics; log(TLG), log(Histogram Energy) 

and Histogram Kurtosis, that are significantly and independently associated with OS.  

These metrics have added value over and above currently known prognostic factors; 

age, radiological stage and treatment.  These findings indicate the additional value of 

novel texture analysis methods in modern staging pathways, which was confirmed 

with the AIC statistic.  Improved risk-stratification could identify sub-groups of patients 

in which a certain treatment may improve OS (Moons et al. 2009b), or where a 

therapeutic intervention may be ineffective or harmful. (Blazeby et al. 2000)  

According to the model, patients with increased log(TLG) and Histogram Kurtosis, and 

reduced log(Histogram Energy), have an increased likelihood of mortality.  Raised 

TLG represents larger, more FDG-avid tumours. The correlation of Histogram 

Kurtosis and log(Histogram Energy) suggest that tumours with less intensity variation 

have a worse prognosis. This is an unexpected finding, since it is thought that 

tumours with more intensity variation result in poorer outcome.  Further studies 
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correlating texture features with underlying tumour biology are required to fully 

understand the interpretation of these metrics. (Orlhac et al. 2016) 

The AIC was identical for traditional TNM and models including SUV and MTV in both 

the development and validation cohorts.  This suggests that SUV and MTV have no 

additional prognostic value over current staging methods.  However, this study has 

not been designed to test this hypothesis and cannot draw this conclusion. 

Our findings concur with other studies in which texture metrics derived from 

histograms demonstrated significant associations with OS, stage of disease and 

likelihood of treatment response in OC. (Tixier et al. 2011; Ganeshan et al. 2012; Yip 

et al. 2015)  However, such studies included smaller sample sizes and used different 

texture analysis software packages. 

In this study, the texture metrics were derived using the ATLAAS algorithm and a 

standardised workflow was implemented to ensure reproducible and consistent 

methods.  The benefit of ATLAAS is that the best fitting PET-AS method is selected in 

each individual case from a range of segmentation methods that are built into the 

ATLAAS algorithm.  Commonly used PET-AS methods built into ATLAAS algorithm 

Adaptive Thresholding, Fuzzy C-means (FCM) and Region-Growing (RG) methods. 

(Berthon et al. 2016) 
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Limitations 

As this study is retrospective, treatment was included in the model and simplified into 

2 groups; curative and palliative. However, the test for interaction showed that the 

prognostic score could be used in both curative and palliative cohorts with no 

significant difference in performance. This prognostic model excludes patients with a 

MTV of less than 5 mL because the quality of the additional data obtained from these 

models is uncertain. (Wu et al. 2016)  This criterion excludes 11.6% of potential 

patients from this study.  Another prognostic model including small tumour volumes 

should be developed for these patients but this model is applicable to many patients 

with FDG-avid oesophageal tumours. 

ATLAAS was originally designed and tested on patients with FDG-avid head & neck 

tumours.  It is also applicable to other FDG-avid tumour sites and validation studies 

are on-going at our institution. Although a new version of ATLAAS had not specifically 

been designed for this prognostic OC model, visual inspection of the segmented 

tumour was performed in each case to ensure an appropriate contour had been 

produced. 

Texture metrics are dependent on several parameters. (Galavis et al. 2010)  

Standardisation of texture analysis is essential for multi-centre comparison studies 

and development of externally validated prognostic models, but have not been 

established yet. (Lambin et al. 2015; Leijenaar et al. 2015)  The technical 

implementation of each metric, segmentation method used, scan acquisition, image 
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smoothing, influence of quantisation and reconstruction parameters all influence 

texture analysis results. (Doumou et al. 2015; Leijenaar et al. 2015; Gillies et al. 2016)  

There are also limitations specific to PET images, given the relatively large voxel 

volume and presence of noise artefact. (Cook et al. 2014)   

Limitations of the PET-STAT software may exist.  PET-STAT was developed with 

CERR and MatLab based functions, which are validated and commonly used image-

processing tools.  Comparison with other open-source and commercially available 

texture analysis software packages has not been performed in this thesis.  Different 

software packages calculate a variety of image features.  In addition, the 

nomenclature and implementation of each metric can vary. 

7.5 Conclusion 

This large study has developed and validated a prognostic model that demonstrates 

the additional value of PET texture analysis in OC staging.  Three PET metrics; 

log(TLG), log(Histogram Energy) and Histogram Kurtosis were identified as potentially 

important variables.  These metrics were derived using ATLAAS, a novel machine-

learning method designed to optimise and standardise image segmentation.  This 

prognostic model requires further internal and external validation but may be used as 

a ‘bench-mark’ for further studies investigating the value of PET texture analysis in 

OC. This study highlights the additional benefit of quantitative imaging techniques in 

cancer staging, which have the potential to improve patient risk stratification. 
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Chapter 8. General Discussion 

As highlighted in section 1.3, the prognosis of OC is poor.  There has been a limited 

increase in survival rates in recent decades.  Significant improvements in staging and 

treatment are required to reduce the burden of this disease in the population.  This 

cancer, identified by Cancer Research UK as one of 4 cancers of substantial unmet 

need (Cancer Research UK 2017), requires vital research to be conducted in an 

attempt to improve survival rates. 

Radiological staging investigations are extremely important in OC, largely influencing 

clinical decision-making, patient selection and treatment planning.  The focus of this 

thesis was to investigate these staging investigations, assessing the additional value 

of novel prognostic variables over and above the current staging system.  This 

research is important because improved assessment of disease status at diagnosis 

will enhance treatment decisions, and ultimately improve OS. 

The rationales, aims and hypotheses of this thesis were presented in section 1.12 and 

are re-visited in this chapter.  To highlight the significance and original contributions of 

this thesis, a summary of each results chapter is provided below.  The importance of 

the research, implications to clinical practice, the limitations and strengths of the 

research and suggestions for future work are discussed. 
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8.1 Significance of Results 

Chapter 3 

This chapter aimed to evaluate the accuracy of N-staging and provide radiological-

pathological correlation of LNMs.  This research is necessary because treatment is 

largely affected by the diagnosis of LNMs and the sensitivity and specificity of staging 

investigations are known to be suboptimal. (van Vliet et al. 2008)  The important 

finding in this chapter was that the accuracy of CT, EUS and PET/CT N-staging was 

poor.  Current staging investigations are unreliable for differentiating N0 from N+ 

disease.  Further analysis in patients with discordant N-staging (patients staged N0 

radiologically but N+ pathologically) demonstrated that the poor accuracy was most 

likely attributable to a significant number of small LNMs in this group, which cannot be 

detected by conventional imaging.  Eighty-two percent of LNMs measured < 6 mm 

and 44% were < 2 mm (defined as micro-metastases).  These findings have 

substantial clinical implications given the apparent under-staging of disease and 

highlight a major requirement for improved LNM prediction.  Future research should 

focus on new methods of predicting the likelihood of LNMs.  Diagnostic decisions 

could be optimised by incorporating imaging biomarkers, such as texture analysis of 

the primary tumour, into LNM prediction models.  MRI may provide an alternative N-

staging modality.  Research studies have demonstrated variable diagnostic ability, 

with sensitivity, specificity and accuracy ranging between 38-62%, 68-85% and 64-

77%, respectively.  These results are comparable to CT, EUS and PET/CT but 

continued developments in functional MRI scanner technology may yield further 
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diagnostic improvements. (Wu et al. 2003; Nishimura et al. 2006)  Given the 

significance of the chapter results, clinicians may be more inclined to offer neo-

adjuvant therapy prior to surgery to treat potentially undetected nodal disease. 

Chapter 4 

The results of a published prognostic model in OC patients staged N0 by PET/CT 

underwent internal validation in Chapter 4. (Foley et al. 2014b)  Validation of 

prognostic models is important but not commonly performed (section 2.6.2).  The 

model was originally developed because EUS use in the UK is declining (section 6.4) 

with utilisation and reliance on PET/CT increasing.  However, the limited spatial 

resolution of PET provides difficulty differentiating peri-tumoural nodes from the 

primary tumour.  Therefore, the role of EUS in patients staged N0 on PET/CT was 

assessed.  In addition, LNMs are known to be a major prognostic indicator in the 

general OC population but less evidence exists in this N0 sub-group.  Therefore, the 

prognostic significance of pLNMs was also investigated. 

The findings of the original study could not be validated because EUS N-stage and 

EUS N0 vs N+ were no longer significantly associated with OS on multi-variate 

analysis.  However, EUS T-stage was independently and significantly associated with 

OS.  This finding is important because the data demonstrates that EUS use in the OC 

staging pathway should continue.  The benefit of EUS in the OC staging pathway is 

further supported by evidence from chapters 5 and 6, which are discussed below.  
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There was a significant difference in OS between pN0 and pN+ groups in patients 

staged N0 on PET/CT, which confirms the importance of accurate N-staging. 

Chapter 5 

CRM involvement is regarded as an important prognostic factor in patients 

undergoing surgical resection.  Better prediction of CRM involvement would greatly 

assist oncologists with treatment decisions, and surgeons with resection planning.  

The prediction of CRM involvement using MRI in rectal cancer staging has been 

widely adopted by the international community. (Brown and Daniels 2005)  Staging 

MRI has been investigated in OC but is technically challenging and results to date 

have not matched the performance of MRI in rectal cancer.  Despite this, prediction of 

a threatened CRM would greatly benefit clinicians, as the CROSS trial showed that 

NACRT significantly reduces the R1 resection rate. (van Hagen et al. 2012)  Given 

the results of the CROSS trial, patients with a threatened CRM are more likely to be 

offered NACRT in the future. 

Therefore, chapter 5 investigated the additional value of PET-defined tumour 

variables to predict pathological CRM involvement, compared with EUS and CT.  As 

PET/CT is already part of the staging pathway, simple metrics measured from the 

examination that predict CRM involvement would benefit patients at minimal extra 

cost.  There was no additional predictive value of PET-defined tumour variables, but 

the study confirmed that EUS ≥T3 was an independent predictor of CRM involvement.  

These findings validate results of a previously published study from our institution 
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(Reid et al. 2012) and add further evidence that EUS should continue to be utilised as 

part of the multi-modality staging pathway. 

Chapter 6 

As described in section 6.4, EUS use in the UK is declining.  As a result, treatment 

planning (surgery and radiotherapy) is becoming more reliant on CT and PET/CT.  

Given the poor N-stage accuracy and low sensitivity of staging investigations 

(particularly PET/CT) demonstrated in chapter 3, the risk of missing undetected LNMs 

during treatment planning is significant.  An important consideration during 

radiotherapy planning is the LoD.  Traditionally, a 2 cm expansion of GTV is 

performed during radiotherapy planning to include microscopic spread of disease 

along the oesophagus. (Crosby et al. 2013)  The risk of edge of field relapse 

increases if a geographical miss exists.  Therefore, the difference between PET and 

EUS LoD measurements was assessed, which is an important consideration if 

PET/CT is used for radiotherapy planning alone. 

A significant difference was found between PET and EUS LoD measurements.  In 

addition, there was substantial variation between measurements.  Both variables had 

prognostic significance on univariate analysis, but were not independent predictors of 

OS.  Inter-observer variability of LoD measurements was not investigated in this 

thesis, but could potentially affect treatment planning.  Future work should evaluate 

the influence and impact of inter-observer variability on clinical decision-making and 

treatment planning.  A multi-modality approach to staging provides complementary, 
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but occasionally conflicting data, which can introduce uncertainty for clinicians.  

Automatically acquired measurements may reduce inter-observer variability, but 

require accurate tumour and disease delineation. 

The differences between PET and EUS LoD had potentially significant implications for 

decisions regarding patient selection and treatment planning, particularly in patients 

considered for radiotherapy.  These data again support the utilisation of EUS in the 

staging pathway and treatment planning. 

Chapter 7 

The additional value of imaging biomarkers has been widely investigated in cancer 

research. (O'Connor et al. 2017)  Validation of imaging biomarkers must be performed 

using structured methodology to implement their use in clinical practice.  As 

mentioned in section 1.10.2, texture analysis has been applied in several primary 

tumour sites.  The hypothesis is that additional data can be extracted from the tumour 

and used to improve patient risk-stratification, assisting patients and clinicians with 

decision-making.  The great advantage of texture analysis is that the tumour is 

imaged in 3D, rather than relying on a small volume of biopsy tissue to characterise a 

potentially heterogeneous tumour.  This technique could have significant clinical 

benefit. 

A prognostic model incorporating PET texture analysis was developed in Chapter 7.  

The model was then internally validated. The aim of the study was to compare the 
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additional prognostic performance of a model incorporating texture analysis against 

current staging methods.  The developed model demonstrated 3 image features; 

log(TLG), log(Histogram Energy) and Histogram Kurtosis, that were independently 

associated with OS.  Internal validation in a new, independent cohort of patients again 

demonstrated additional prognostic value over and above current staging methods.  

Statistical methods appropriate for prognostic research were utilised following review 

of the literature.  Sufficient EPV was ensured to reduce the risk of over-fitted models, 

providing greater confidence in the results of the prognostic models.  Results of uni-

variate analyses did not affect variable selection for multi-variate regression models. 

(Moons et al. 2009b)  The prognostic model, developed and validated in 403 patients, 

is currently one of the largest studies of its kind in the literature.  These novel results 

highlight the additional value of advanced quantitative imaging techniques in cancer 

staging and could have a significant impact on future OC staging techniques. 

The 3 image features above require reliability and reproducibility testing. (Yip and 

Aerts 2016)  This is true of all texture analysis studies, a subject which is relatively 

new and has generated significant interest, prompting an exponential rise in the 

number of publications and software platforms for generating quantitative data.  Multi-

centre, international collaborations such as the Image Biomarker Standardisation 

Initiative (Zwanenburg et al. 2016) are required to standardise texture metrics before 

incorporating the features into routine clinical practice. 

More research is required to understand the underlying biological explanation of 

imaging phenotype.  As discussed throughout this thesis, direct comparison of 
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imaging with pathology is challenging.  It is possible that some imaging features, 

including histogram metrics, have no biological equivalent. (O'Connor et al. 2017)  As 

molecular characterisation of OC improves, well-designed studies correlating imaging 

features with underlying tumour biology are required. (Cancer Genome Atlas 

Research Network 2017) 

The limitations of biological validation could be circumvented by associating image 

features with clinical outcome. (O'Connor et al. 2017)  Provided these surrogate 

imaging biomarkers correlate precisely with outcome, models with clinically important 

endpoints such as overall survival could be developed using large patient datasets 

assembled by international multi-centre collaborations.  The developed prognostic 

model will not immediately change clinical practice since further validation is required, 

but the added value of quantitative imaging variables that enhance current staging 

methods has been demonstrated.  Prediction models incorporating imaging 

biomarkers may arguably be more clinically useful than prognostic models, as they 

can inform and guide diagnostic or treatment decisions, rather than simply confirming 

that prognosis is poor.  Platforms to extract imaging biomarkers from staging 

investigations should be integrated into PACS reporting workstations to facilitate a 

change in clinical practice.  These platforms need to be standardised to ensure 

reproducible metrics are generated.  Clinicians are busy and under pressure from 

increasing clinical demands, so the technology must be simple and quick to use if 

hoped to be adopted widely. 
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8.2 General Limitations 

Specific limitations relevant to each results chapter are described above, but there are 

general limitations of the work included in this thesis. 

OC patients are a relatively heterogeneous cohort, presenting with different stages of 

disease, different histological cell types, and who receive varying treatment protocols 

which are occasionally tailored to individual patient requirements.  This heterogeneity 

affects selection criteria for clinical studies and has influenced inclusion criteria in 

each results chapter in this thesis.  Some sample cohort heterogeneity is often 

unavoidable when testing hypotheses related to the general population of OC 

patients.  In addition, the retrospective nature of the work can introduce selection and 

observational bias into the data. 

In ideal settings, the patient cohorts used in this thesis would have been more tightly 

controlled.  The most controlled sources of data are RCTs, although trial inclusion 

criteria occasionally do not reflect ‘real-life’ scenarios.  One method of controlling the 

heterogeneity of patient cohorts would be to conduct research in the setting of a RCT.  

For instance, imaging may not be the primary subject of the trial, but a sub-study 

within an RCT could investigate the predictive performance of texture analysis. 

Multiple reporters classified the TNM stage of disease in this thesis, which may have 

affected the accuracy of staging results.  Diagnostic accuracy is difficult to ascertain in 

OC because surgery is only performed in a minority of patients.  Therefore, many 
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radiological staging results used in this thesis lack a gold-standard comparator.  There 

are several difficulties associated with radiological-pathological comparison studies in 

OC, including the time-period between pre-treatment imaging and final pathology.  

Tumour progression and LNM development can occur in patients with no response to 

neo-adjuvant therapy.  Conversely, tumours that have a good or complete response 

to neo-adjuvant therapy can morphologically regress from the pre-treatment imaging.  

Given these reasons, radiological-pathological correlation is challenging. 

8.3 Strengths of Thesis 

Despite its limitations, this thesis has many strengths.  The staging pathway has not 

altered during the thesis period which ensures consistent radiological staging 

techniques.  All patients were discussed at the Regional MDT and the management 

plan was decided by consensus.  The Regional MDT covers a large population of 

over 1.4 million people and is highly experienced in the management of OC. (Karran 

et al. 2014)  With the exception of 47 patients scanned in Cheltenham, all PET/CT 

examinations were performed in Cardiff using the same scanner and protocol.  

Histopathological examination was performed by consultant GI pathologists according 

to guidelines defined by the RCPath. (Mapstone 2007)  Resections were all 

performed as part of a centralised Upper GI cancer service, comprising a group of 

surgeons that worked together throughout the thesis period. 

Tumour segmentation was performed using ATLAAS, a novel machine learning tool 

that provides accurate standardised PET segmentation and eliminates inter-observer 
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variability. (Berthon et al. 2016)  ATLAAS ensures that the tumour is outlined optimally 

in each case.  A limitation of many PET-AS methods is that they do not work 

effectively each time, producing contours that are not representative of the primary 

tumour. 

8.4 TNM 8th Edition 

A new consideration in OC is the introduction of the TNM 8th edition, which was 

published in 2017 and generally took effect in clinical practice on 1st January 2018. 

(Rice et al. 2017)  The introduction of the 8th edition was not incorporated into this 

thesis but its influence on staging and patient outcome requires evaluation.  Table 

8.4.1 details differences between the 7th and 8th editions. (Rice et al. 2017)  Clinical 

TNM (cTNM) (Table 8.4.2) and pathological TNM (pTNM) stage groups have been 

separated to reflect the fact the pre-treatment staging is largely performed without 

pathological data and that survival differences exist between the two.  As described 

throughout this thesis, there are limitations when directly comparing cTNM and pTNM, 

given that a minority of patients undergo surgery and most of these receive some 

form of neo-adjuvant therapy. (National Oesophago-Gastric Cancer Audit 2016)  This 

may improve accuracy of cTNM but direct comparison studies will remain challenging. 
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Table 8.4.1. Summary of Differences Between TNM 7th and 8th Editions. 

Stage 
Categories 

Changes from 7th edition 

pTNM  

T T1 subcategorised as T1a and T1b producing stage subgroups 
IA and IC for adenocarcinoma and IA and IB for SCC 

T2 SCC. Location removed as staging category 

T4a includes direct invasion of peritoneum 

G G4 “undifferentiated” category eliminated. 

Location Siewert type III tumours re-classified as gastric cancer 

 

Stage Groups 

III 

IV 

 

Subgroup IIIC removed 

Sub-grouped as IVA and IVB 

 

ypTNM Introduced in 8th edition. Not shared with pTNM. Identical 
groupings for adenocarcinoma and SCC 

 

cTNM Introduced in 8th edition. Not shared with pTNM. Separate 
groupings for adenocarcinoma and SCC 
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Table 8.4.2. Clinical TNM 8th Edition Stage Groups 

Adenocarcinoma SCC 

Stage 
Group 

T N M Stage 
Group 

T N M 

0 Tis N0 M0 0 Tis N0 M0 

I T1 N0 M0 I T1 N0, N1 M0 

IIA 

IIB 

T1 

T2 

N1 

N0 

M0 

M0 

II T2 

T3 

N0, N1 

N0 

M0 

M0 

III T1 

T2 

T3, 
T4a 

N2 

N1, N2 

N0, N1 

M0 

M0 

M0 

III T1, T2 

T3 

N2 

N1, N2 

M0 

M0 

IVA T4b 

Any T 

N0, N1 

N2, N3 

M0 

M0 

IVA T4a, 
T4b 

Any T 

Any N 

N3 

M0 

M0 

IVB Any T Any N M1 IVB Any T Any N M1 

 

One important change from the 7th edition is the re-classification of Siewert type III 

tumours into gastric cancers.  Type III tumours are defined as cancers more than 5 

cm distal to the GOJ, even if the GOJ is involved.  Type I and II GOJ tumours will 

continue to be staged using the oesophageal classification.  Siewert type III tumours 

are re-classified as gastric cancers until comprehensive genetic analysis can identify 

the cells of origin, rather than relying on tumour location. (Hayakawa et al. 2016) 
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A new regional lymph node map has been produced. (Rice et al. 2017)  It was felt the 

previous lymph node station classification map was problematic because it included 

lung lymph node stations, some of which were not regional oesophageal lymph nodes 

(stations 5 (aorto-pulmonary window), 6 (anterior mediastinum) and 10 (hilar)).  This 

re-classification may assist clinical radiologists with N-staging.  A higher proportion of 

patients with lymph nodes in the mediastinum may be up-staged to M1 disease.  This 

could have consequences for clinical management, with fewer patients being offered 

radical therapy.  The clinical effect of the new lymph node map will need to be 

evaluated. 

Patients with N3 disease have been re-classified. These patients arguably have as 

poor an outcome as those with M1 disease due to the substantial lymph node burden.  

This revision may also anticipate changes to the new lymph node map.  Re-

classification of N3 disease from stage IIIC in the 7th edition to IVA in the 8th edition 

may serve to artificially increase survival statistics in both stage groups. This is coined 

the ‘Will Rogers Phenomenon’, after an American comedian described the movement 

of people from Oklahoma to California, resulting in an increase in average intelligence 

in both states. (Feinstein et al. 1985) 

Another important change in the 8th edition is the introduction of post-neoadjuvant 

therapy pathologic stage groups (ypTNM).  Survival varies depending on the 

response of the primary tumour to the neo-adjuvant therapy. (Mandard et al. 1994)  

Assessment of treatment response is the focus of increasing numbers of research 

studies and clinical trials, with adaptive treatment protocols being introduced.  For 
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example, PET/CT is being used to quantify early chemotherapy response in attempt 

to guide further treatment in patients with advanced Hodgkin’s lymphoma. (Johnson et 

al. 2016) 

 

8.5 Summary 

This thesis investigated OC staging and the additional value of novel imaging 

variables compared to current staging methods.  Accuracy of lymph node staging is 

poor and must be improved.  Incorporation of quantitative PET image features added 

prognostic value during staging.  This thesis demonstrates significant radiological 

prognostic variables that add value in OC management.  Future work must focus on 

improving radiological OC staging techniques.  The work in this thesis has contributed 

towards this aim. 
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AIM: To evaluate the accuracy of contemporary N-staging and provide radiological
epathological correlation in patients with lymph node metastases (LNMs) that were radio-
logically staged N0.
MATERIALS AND METHODS: One hundred and twelve patients were included who under-

went surgery alone (n¼41) or neoadjuvant therapy (n¼71) between October 2010 and
December 2015. Contrast-enhanced computed tomography (CECT), endoscopic ultrasound
(EUS), and combined positron-emission tomography (PET) and CT N-stage were compared to
pathological N-stage [node-negative (N0) versus node-positive (Nþ) groups]. Fifty LNMs from
15 patients preoperatively staged as N0 were measured and the maximum size recorded.
RESULTS: Accuracy, sensitivity, and specificity of N0 versus Nþ disease with CECT, EUS, and

PET/CT was 54.5%, 39.7% and 77.3%, 55.4%, 42.6% and 75%, and 57.1% 35.3%, and 90.9%,
respectively. All techniques were more likely to under-stage nodal disease; CECT (X2 32.890,
df¼1, p<0.001), EUS (X2 28.471, df¼1, p<0.001), and PET/CT (X2 50.790, df¼1, p<0.001). PET/CT
was more likely to under-stage nodal disease than EUS (p¼0.031). Median LNM size was 3 mm,
with 41 (82%) of LNMs measuring <6 mm and 22 (44%) classified as micro-metastases
(#2 mm).
CONCLUSION: This study has demonstrated poor N-staging accuracy in the modern era of

radiological staging. Eighty-two percent of LNMs measured <6 mm, making direct identifi-
cation extremely challenging on medical imaging. Future research should focus on investi-
gating and developing alternative surrogate markers to predict the likelihood of LNMs.

Crown Copyright ! 2017 Published by Elsevier Ltd on behalf of The Royal College of
Radiologists. All rights reserved.

Introduction

Contemporary radiological staging of oesophageal can-
cer (OC) involves a multi-technique approach. In the UK,
patients have initial contrast-enhanced (CE) computed
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tomography (CT) of the thorax and abdomen following
histological confirmation to assess the potential resect-
ability of the tumour, or any distant metastatic disease,
which may preclude radical therapy.

If the patient is deemed suitable for radical treatment,
either in the form of definitive chemoradiotherapy (dCRT)
or surgery (þ/" neoadjuvant therapy), positron-emission
tomography (PET) combined with CT and endoscopic ul-
trasound (EUS) are performed for a more detailed assess-
ment of disease stage.1 PET/CT has greater sensitivity for
distant metastatic disease than CECT,2 whereas EUS is
regarded as the reference standard investigation for
defining T- and N-stage, whilst also assisting surgical and
radiotherapy planning.3

This staging process is complex and time-consuming,
but necessary, because each technique has limitations for
lymph node staging. CECT provides anatomical informa-
tion only, relies on size criteria, and involves radiation. PET/
CT also involves radiation but provides additional func-
tional metabolic data and improves the positive predictive
value (PPV) of lymph node metastases (LNMs).4 The dif-
ferentiation of peri-tumoural LNMs from adjacent avid
tumour can be challenging on PET images.5 This may in-
crease false-negative rates therefore under-staging the
extent of nodal disease. EUS has better sensitivity
compared to CECT and PET/CT due to its superior contrast
resolution.

The prognosis of OC is poor, with 5-year survival
approximately 13%.6 Many patients present with advanced
disease and the incidence is increasing.7 The presence of
LNMs is a major prognostic indicator, therefore it is vital to
stage nodal disease accurately.8 Accurate staging optimises
management plans and provides the best chance of survival
for patients with potentially curable disease. If the multi-
disciplinary team (MDT) decide upon surgical management
and radiological staging is #T3 or #N1, two cycles of neo-
adjuvant chemotherapy (NACT) are given prior to resection.
This is currently considered best practice in the UK, because
overall survival was shown to improve compared to surgery
alone.9

Management decisions are influenced by the results of
lymph node assessment based on findings of radiological
staging investigations. Differentiation of node-negative
(N0) from node-positive (Nþ) disease is important,
because this should ensure that patients avoid unnecessary
chemotherapy if over-staged, and are not denied potentially
beneficial NACT if under-staged; however, the existence of
small LNMs (<6 mm), which cannot be directly visualised
on any imaging technique, are likely to cause inaccurate
staging and have a subsequent detrimental effect on patient
outcome.10

Therefore, this study was undertaken to review the ac-
curacy of CECT, EUS, and PET/CT N-staging in the modern
era of radiological OC staging. In addition, the prevalence of
micro-metastases and size of LNMs was investigated in
patients staged N0 on imaging, but node positive (pNþ) at
histopathology, by providing radiologicalepathological
correlation.

Materials and methods

This retrospective cohort study includes consecutive
patients who underwent surgical resection of an oeso-
phageal or gastro-oesophageal (GOJ) tumour, over a 5-year
period (November 2010 to December 2015) within a cen-
tralised service. Radiological and pathological staging data
were obtained from the Cancer Network Information Sys-
tem Cymru database (CaNISC) following regional upper
gastrointestinal (GI) cancer MDT discussion. Institutional
review board (IRB) approval was granted (ref 14/WA/1208).
The requirement for informed consent was waived.

Inclusion criteria were a previously untreated, biopsy-
proven oesophageal or GOJ tumour in patients who under-
went surgery alone, or had a poor Mandard tumour
regression grade (TRG 4) or no response (TRG 5) following
either NACT or neoadjuvant chemoradiotherapy (NACRT).11

All patients had completed CECT, EUS, and PET/CT staging
investigations and were classified according to the Interna-
tional Union Against Cancer (UICC) Tumour Node Metastasis
(TNM), 7th edition.12 All patients also had a full pathological
N-stage (pN), also defined by the TNM 7th edition.

Patients with tumours that showed complete patholog-
ical response (pCR, TRG 1) or tumours with some response
(TRG 2 and 3) following NACT or NACRT were excluded
because the final pathology is not likely to be representative
of preoperative status. Incomplete radiological staging in-
vestigations in particular, EUS examinations, in which the
operator was unable to traverse a stenotic tumour in order
to fully classify N-stage, were excluded. Patients that un-
derwent an “open-and-close” procedure due to irresectable
disease at surgery, were also excluded.

CECT acquisition protocol

CECT was performed either in the host institution of the
centralised service (University Hospital of Wales) or in local
referring hospitals prior to surgery, according to Royal College
of Radiologists guidelines.1 All CECT examinations were
reviewed at the regional upper GIMDT, and deemed to be of a
satisfactory technical standard. The techniqueused at thehost
institutionwas as follows:GEHD750Discovery64-sectionCT
system (GE Healthcare, Pollards Wood, Buckinghamshire,
UK); helical acquisition with collimation of 40 mm, pitch
0.984:1, and tube rotation speedof 0.4 seconds; tubeoutputof
120kVp with smart current dose modulation between
60e600 mA; section thickness of 0.625mm; up to 500 ml
water orally and 100e150 ml iopamidol (300 mg iodine/ml;
Niopam 300, Bracco, HighWycombe, UK) intravenously with
bolus tracking. Lymph nodes were considered involved on
CECT if the short axismeasurementwas#1 cm, located in the
expected distribution of disease, round with loss of fatty hi-
lum, and demonstrated altered density or enhancement.

EUS protocol

All EUS examinations were performed in three centres by
four endosonographers. At the host institution, an initial
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endoscopic examination was performed using a 9 mm
diameter Olympus Paediatric gastroscope (Olympus,
Southend, UK) to assess the degree of oesophageal luminal
stenosis. Patients with an estimated oesophageal luminal
diameter <15 mm underwent examination using the
smaller-diameter MH-908 oesophagoprobe, and where
there was no luminal stenosis, the standard UM-2000
echoendoscope was used (Olympus, Southend, UK). The
type of echoendoscope used was at the discretion of the
endoscopist. The primary oesophageal tumour was
assessed, together with an evaluation of peri-oesophageal
and peri-gastric structures as described previously.13 The
criteria for malignant lymphadenopathy specified a hypo-
echoic pattern, spherical contour, distinct border, and
short axis diameter of !6 mm.

PET/CT acquisition protocol

Patients were fasted for at least 6 hours prior to tracer
administration. Serum glucose levels were routinely
checked and confirmed to be <7 mmol/l prior to pro-
ceeding with imaging. Patients received a dose of 4 MBq of
2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) per kilogram of
body weight. Uptake time was 90 minutes, which the
standard used. 18F-FDG PET/CT imaging was performed
using a GE 690 PET/CT system (GE Healthcare). CT images
were acquired in a helical acquisition with a pitch of 0.98
and a tube rotation speed of 0.5 seconds. Tube output was
120 kVp with output modulation between 20 and 200 mA.
Matrix size for the CT acquisition was 512"512 pixels with
a 50 cm field of view. No oral or intravenous contrast me-
dium was administered. PET images were acquired at 3
minutes per field of view. The length of the axial field of
view was 15.7 cm. Images were reconstructed with the
ordered subset expectation maximisation algorithm, with
24 subsets and two iterations. Matrix size was 256"256
pixels, using the VUE Point time of flight algorithm. Nodes
were classed as involved on PET/CT if identified on the CT
component and showed FDG uptake appreciably higher
than background values. No specific standardised uptake
value was used for the inclusion of regional nodes. Lymph
nodes considered physiological or related to an alternative
aetiology were excluded from the N-stage.

Histopathological methods

Histopathological reporting of OC specimens was per-
formed according to the minimum requirements defined
by the Royal College of Pathologists (RCPath).14 All lymph
nodes identified in the resection specimen were prepared
in 3 mm sections for histopathological evaluation. N-stage
was then assigned depending on the number of LNMs
identified. TRG of the primary tumour was assigned ac-
cording to the degree of fibrosis compared to residual
tumour cells.11 In discordant cases, all available resection
specimens that were radiologically staged N0 but patho-
logically Nþ were further evaluated. All available speci-
mens were retrieved and reviewed from the archive. Due
to the retrospective nature of analysis, some of the older

cases were archived off-site, and were unavailable at the
time of evaluation. The maximum size (long axis) of both
involved lymph nodes and metastases within those
lymph nodes, were retrospectively recorded. Maximum
size was defined as the largest dimension on the glass
slide measured by a consultant pathologist. A micro-
metastasis was defined as a tumour deposit measuring
$2 mm.15 Furthermore, a metastasis: lymph node ratio
was calculated.

Statistical analysis

Descriptive statistics were used to describe categorical
and continuous variables. In this study, N-stage was sepa-
rated into negative (N0) and Nþ (N1, N2 or N3) groups.
Accuracy was defined as the number of correct in-
vestigations divided by the total number of investigations.
Sensitivity and specificity of Nþ disease were calculated for
each technique. A chi-square test assessed significant dif-
ferences in under- or over-staging for each technique.
Significant differences in under-staging between tech-
niques were assessed with McNemar’s test. A p-value
<0.05 was considered statistically significant. Statistical
analysis was performed with SPSS v23 (IBM, Chicago, IL,
USA).

Results

A total of 190 patients were considered for inclusion in
the study. Seventy-eight patients (41.1%) were excluded
from the study; 22 were “open-and-close” procedures,
16 were TRG 1, 13 were TRG 2, 13 were TRG 3 following
neoadjuvant treatment, and 14 had incomplete EUS
staging.

Following exclusions, 112 patients were included in the
study. The median age was 65 years (range 24e78 years)
and the male: female ratio was 92 (82.1%): 20 (17.9%). Fifty-
nine tumours (52.7%) were located in the oesophagus; 10 in
the mid-oesophagus, and 49 in the distal oesophagus. Fifty-
three tumours (47.3%) were located at the GOJ; 19 Siewert
(Sw) type I, 15 Sw type II and 19 Sw type III.

One hundred tumours (89.3%) were adenocarcinoma,
with 11 squamous cell carcinoma (SCC) (9.8%) and one
neuroendocrine (0.9%). Forty-one patients (36.6%) were
treated with surgery alone, 67 (59.8%) treated with NACT,
and four (3.6%) treated with NACRT. Of the 71 treated with
neoadjuvant therapy, 42 were TRG 4 and 29 were TRG 5.

For CECT, 75 patients (67%) were staged N0 and 37 (33%)
were Nþ. For EUS, 72 patients (64.3%) were staged N0 and
40 (35.7%) were Nþ. For PET/CT, 84 (75.1%) were staged N0
and 28 (24.9%) were staged Nþ. Table 1 compares the fre-
quency of radiological and pathological N-stages for CECT,
EUS, and PET/CT.

Overall, the median time between radiological staging
and surgery was 3 months (range 1e9 months), 1 month
(range 0e3 months) in patients undergoing surgery alone
and 4 months (range 3e4 months) in patients receiving
NACT.
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Accuracy, sensitivity, and specificity of CECT, EUS, and
PET/CT N-stage

N0 versus Nþ disease was correctly identified with CECT,
EUS, and PET/CT in 61 (54.5%), 62 (55.4%), and 64 (57.1%)
cases, respectively. There was no significant difference be-
tween CECT, EUS, and PET/CT for detecting Nþ disease (X2

0.169, df¼2, p¼0.919). The sensitivity and specificity for
identifying N0 versus Nþ disease with CECT, EUS, and PET/
CT was 39.7% and 77.3%, 42.6% and 75%, and 35.3% and
90.9%, respectively.

Under-staging versus over-staging

All techniques were significantly more likely to under-
stage nodal disease; CECT (X2 32.890, df¼1, p<0.001), EUS
(X2 28.471, df¼1, p<0.001), and PET/CT (X2 50.790, df¼1,
p<0.001). Comparing technique, there was a borderline
significant difference in under-staging between CECT and
EUS (p¼0.063), but no difference between CECT and PET/CT
(p¼1.000); however, there was a statistically significant
difference between EUS with PET/CT (p¼0.031), suggesting
PET/CT may further under-stage nodal disease.

Pathological lymph node measurement

Fifteen archived resection specimens in patients staged
N0 preoperatively were available for retrospective mea-
surement of the lymph nodes and their respective metas-
tases. In total, 50 involved lymph nodes were assessed.
(Table 2) The median size of involved lymph nodes was
6mm (range 2e15mm) and themedianmetastasis size was
3 mm (0.5e13.5 mm). Twenty-two (44%) LNMs measured
#2 mm, which are defined as micro-metastases (Fig 1).
Forty-one (82%) LNMs were #6 mm and 46 (92%) LNMs
were #10 mm. A metastasis: lymph node size ratio was
calculated. Thirty-one (62%) of the lymph nodes examined
were replaced with $50% metastatic deposit, 19 (38%) were
replaced with <50% metastatic deposit, with 12 (24%)
replaced with <25% metastatic deposit, using maximum
size criteria.

Discussion

This study has found poor N-stage accuracy with CECT,
EUS, and PET/CT. In general, all modalities were more likely
to under-stage nodal disease, with PET/CT more likely to
under-stage than EUS. Another important finding, is the
prevalence of small LNMs (<6 mm) in the resection speci-
mens of patients radiologically staged N0. Micro-
metastases have been found in lymph nodes of early
oesophageal tumours,16 but little has been published with
radiological correlation. Studies investigating lung cancer
have detected micro-metastases in patients radiologically
staged N0,17 although evidence in OC is lacking.

The majority of LNMs (82%) were <6 mm, which makes
direct visualisation extremely challenging on current
medical imaging techniques and is likely to be the main
reason for discrepancy between radiological and patho-
logical staging. In addition, traditional radiological mea-
surement of lymph nodes is taken in the short-axis,18 which
further reduces the likelihood that LNMs are diagnosed.
Even with the improved contrast resolution of EUS
compared to cross-sectional imaging, it is unlikely that a
lymph node of this size would confidently be classified as
involved.13 Similarly, there was a relatively high prevalence
of micro-metastases (44%).

These results have significant implications for treatment
decision-making processes and demonstrate that contem-
porary radiology techniques are inadequate for N-staging.
Numerous studies have demonstrated the importance of
LNMs, which have a significant effect on overall survival.8

Better evidence is required to understand the prognostic

Table 1
Comparison of N-stage frequency classified by contrast-enhanced computed
tomography (CECT), endoscopic ultrasound (EUS), combined positron-
emission tomography and computed tomography (PET/CT), and pathology.

CECT N-stage

Frequency (%) N0 N1 N2 N3 Total

pN0 34 (30.4) 8 (7.1) 2 (1.7) 0 (0.0) 44 (39.3)
pN1 21 (18.8) 4 (3.6) 2 (1.7) 0 (0.0) 27 (24.1)
pN2 16 (14.3) 10 (8.9) 1 (0.9) 0 (0.0) 27 (24.1)
pN3 4 (3.6) 7 (6.3) 3 (2.7) 0 (0.0) 14 (12.5)
Total 75 (67.0) 29 (25.9) 8 (7.1) 0 (0.0) 112 (100.0)

EUS N-Stage

Frequency (%) N0 N1 N2 N3 Total

pN0 33 (29.5) 9 (8.0) 1 (0.9) 1 (0.9) 44 (39.3)
pN1 20 (17.9) 7 (6.3) 0 (0.0) 0 (0.0) 27 (24.1)
pN2 13 (11.6) 10 (8.9) 4 (3.6) 0 (0.0) 27 (24.1)
pN3 6 (5.4) 6 (5.4) 1 (0.9) 1 (0.9) 14 (12.5)
Total 72 (64.3) 32 (28.6) 6 (5.4) 2 (1.7) 112 (100.0)

PET/CT N-stage

Frequency (%) N0 N1 N2 N3 Total

pN0 40 (35.8) 4 (3.6) 0 (0.0) 0 (0.0) 44 (39.4)
pN1 23 (20.5) 4 (3.6) 0 (0.0) 0 (0.0) 27 (24.1)
pN2 15 (13.4) 10 (8.9) 2 (1.7) 0 (0.0) 27 (24.1)
pN3 6 (5.4) 6 (5.4) 2 (1.7) 0 (0.0) 14 (12.5)
Total 84 (75.1) 24 (21.4) 4 (3.6) 0 (0.0) 112 (100.0)

Table 2
Frequency of and distribution of lymph node and metastasis size when separated in groups of 2 mm for descriptive purposes.

Frequency (%) Maximum size (mm)

0e2 2.1e4 4.1e6 6.1e8 8.1e10 10.1e12 12.1e14 14.1e16

Lymph node 3 (6) 11 (22) 13 (26) 12 (24) 4 (8) 3 (6) 3 (6) 1 (2)
Metastasis 22 (44) 9 (18) 10 (20) 3 (6) 2 (4) 2 (4) 2 (4) 0 (0)
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significance of micro-metastases, but they are generally felt
to confer a worse prognosis.19,20

There is evidence that a significant proportion of surgical
patients have systemic micro-metastases at the time of
resection. In one study, micro-metastases were detected in
the resected rib in up to 78% of cases, and was dependent on
the histological technique used.21 This is a higher detection
rate than the current study, but the results are comparable
due to different techniques and tissues used between the
studies. The high rate of micro-metastases may be a reason
that the present results show significant under-staging of
nodal disease, and perhaps clinicians could consider
lowering the threshold for treating patients with systemic
neoadjuvant therapy.

Previously published research from our centre has
shown N-stage, LNM count, and volume of nodal disease to
have prognostic significance in patients with OC.22,23 Nodal
disease in these studies probably continues to be an
important prognostic indicator, but the radiological staging
is likely to have under-estimated the total nodal disease
burden in those patient cohorts. Results of staging perfor-
mance have also been published from our centre. These
studies compared CECT and EUS with pN-staging. Black-
shaw et al.24 focused on the accuracy of N-staging in GOJ

tumours and found significant differences in agreement,
sensitivity, and specificity between Sw type II and type III
tumours. Weaver et al.13 found agreement, sensitivity, and
specificity of N-staging was 0.603, 79%, and 84% for CECT
and 0.610, 91%, and 68% for EUS. The results of the current
study show poorer agreement and sensitivity. There are a
number of reasons for these findings, including disease
evolution, greater interobserver variability between re-
porters, and fewer, but more specialised upper GI cancer
pathologists reporting the resection specimens, with
possibly higher rates of LNM detection.15 The accuracy of
diagnosing Nþ disease with CECT, EUS, and PET/CT was
54.5%, 55.4%, and 57.1%, respectively. In a clinical context,
these results are unsatisfactory given that the presence of
LNMs is such a major prognostic indicator.8 The sensitivity
and specificity for identifying N0 versus Nþ disease with
CECT, EUS, and PET/CT was 39.7% and 77.3%, 42.6% and 75%,
and 35.3% and 90.9%. Specificity results are comparable
with past meta-analyses, but sensitivity results are lower
for all techniques. Previously published literature states
sensitivity for N-staging of CECT, EUS and PET/CT is 50%, 80%
and 57%, and specificity is 83%, 70% and 85%, respectively.2

However, this meta-analysis was conducted prior to this
centralisation of many upper GI cancer services. The

Figure 1 CT (with callipers), PET, and fused PET/CT images of a “false-negative” left gastric lymph node in a patient with junctional adeno-
carcinoma. A low-power magnification of the lymph node shows a micro-metastasis. For reference, the lymph node measured 5 mm in
maximum size and the micro-metastasis (highlighted with yellow outline) measured 1.2 mm.
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reduced sensitivity of staging investigations is supported by
the current results, which demonstrate that under-staging
is more common for all techniques.

As current investigations are unreliable for differenti-
ating N0 from Nþ disease, future research should focus on
investigating and developing new methods of predicting
the likelihood of lymph node involvement. Surrogate
markers of LNMs, such as texture analysis of the primary
tumour and other non-invasive quantitative imaging tech-
niques, may allow better risk stratification of patients,
provide more powerful prognostic data, and further inform
optimum treatment decisions.25,26 Magnetic resonance
imaging (MRI) may provide an alternative staging tech-
nique. Research studies have demonstrated variable diag-
nostic ability, with the sensitivity, specificity, and accuracy
ranging between 38e62%, 68e85% and 64e77%, respec-
tively. These current results are comparable to CT, EUS, and
PET/CT, but continuing improvements in functional MRI
technology may yield further developments.27,28

Strengths of study

This study provides radiologicalepathological correla-
tion in a group of OC patients with discordant nodal staging.
Radiologicalepathological correlation is essential for un-
derstanding the limitations of staging techniques and
identifies areas requiring further research. All patients were
discussed at the regional MDTand themanagement plan for
each individual was decided upon in consensus. The
regional MDT covers a large population of over 1.4 million
people and is highly experienced in the management of OC.
Histopathological examination was performed by consul-
tant GI pathologists according the guidelines defined by the
RCPath.14 Strict criteria were implemented to control the
selection of patients for the current study, which compares
imaging findings to reference standard pathological staging.
The majority of patients received neoadjuvant therapy,
which can alter the stage of disease between pre-treatment
imaging and surgical resection. To control for this, only
patients with Mandard TRG 4 or 5 were included, which
should allow a more direct comparison with the final
pathological resection specimen. The majority of patients
tend to have a TRG 4 or 5 response.29

Limitations

As a result of neoadjuvant therapy, there is a time lag
between radiological staging and surgical resection, which
could allow for tumour progression and LNM development;
however, the median time period in the present studywas 3
months. In addition, patients with an “open-and-close”
procedure were excluded, which further demonstrates
radiological disease under-staging. There are also known
limitations of pathological lymph node examination.
Approximately 3 mm sections are taken through lymph
nodes once they are mounted in a cassette, but this may be
performed with varying skill and consistency. Micro-
metastases may be missed if not bisected during prepara-
tion, and this suggests that the true incidence of

micro-metastases in this cohort of patients may be even
greater. Although the RCPath define the minimum re-
quirements for pathological reporting, there is no recom-
mended, standardised method for lymph node preparation
and assessment in OC, at present. The centralised upper GI
cancer service receives patients referred from several local
NHS trusts. As a result, multiple readers from different
hospitals report the staging CECT examinations. During this
period, four endosonographers performed the EUS exami-
nations in three different hospitals. All PET/CT examinations
were performed using the same system and protocol and
were reported by four different consultant radiologists;
however, all staging was performed according to the TNM
7th edition.

In conclusion, this evaluation of contemporary staging
performance over a 5-year period in a centralised upper GI
cancer service has shown poor N-staging accuracy for CECT,
EUS, and PET/CT. Radiologicalepathological correlation in
patients staged N0 has shown a large number of small LNMs
(<6 mm) that are extremely challenging to diagnose
directly from medical imaging. The findings of the current
study have significant implications for patient care, because
radiological staging results influence treatment decisions
made by the MDT. Future research should focus on predic-
tion of the likelihood of lymph node involvement as current
lymph node imaging is inadequate.
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AIM: To assess whether separate endoscopic ultrasound (EUS) lymph node (N)-staging is still
of prognostic value in those staged node negative (N0) at combined positron-emission to-
mography/computed tomography (PET/CT) in patients with oesophageal cancer (OC).
MATERIALS AND METHODS: One hundred and seventeen consecutive patients [median age

67 years; 88 male; 98 cases of adenocarcinoma, 19 cases of squamous cell carcinoma (SCC)]
staged as N0 at PET/CT underwent EUS to record tumour (T)- and N-stage. The patients were
subsequently separated into two groups: EUS N0 (n ¼ 78) and EUS Nþ (n ¼ 39). Survival
analysis using KaplaneMeier and Cox’s proportional hazard methods was performed. Primary
outcome was overall survival from diagnosis.
RESULTS: EUS N-stage and EUS N0 versus EUS Nþ (p ¼ 0.005 and p ¼ 0.001, respectively)

were found to be significantly and independently associated with survival in two models of
multivariate analysis, in patients staged N0 at PET/CT. EUS T-stage was significantly associated
with survival on univariate analysis.
CONCLUSION: EUS N-staging still has prognostic value in patients staged N0 at PET/CT. There

is a significant difference in survival between EUS N0 and positive nodal EUS status in those
staged N0 at PET/CT, suggesting PET/CT is unreliable for local staging. PET/CT and EUS continue
to have complimentary roles in OC staging.
Crown Copyright ! 2014 Published by Elsevier Ltd on behalf of The Royal College of

Radiologists. All rights reserved.

Introduction

Accurate assessment of lymph node status is vital in
patients with oesophageal cancer (OC) as prognosis remains

poor, with overall 5-year survival rates approximately 13%.1

More than 8000 patients each year are diagnosed with OC,
accounting for 3% of all cancers in the UK.2

Currently, routine staging of OC is performed with a
combination of computed tomography (CT), endoscopic
ultrasonography (EUS) and 2-[18F]-fluoro-2-deoxy-D-
glucose (FDG) positron-emission tomography (PET) com-
bined with computed tomography (PET/CT). Treatment
strategies are chosen for OC patients after consideration of
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the radiological staging examinations and thorough dis-
cussion with the patient.

Patients with potentially curative disease can be
managed in different ways, and this decision is significantly
influenced by the lymph node (N)-stage of disease. These
management choices include surgery alone, neoadjuvant
chemotherapy prior to surgery, or definitive chemo-
radiotherapy (dCRT); however, the evidence regarding
which modality provides the greatest survival benefit is still
lacking. It is largely agreed that there are twomain options:
dCRT or neo-adjuvant chemotherapy followed by surgery.3

Studies including the RTOG 85-01 trial have demon-
strated a greater survival benefit with dCRT compared to
definitive chemotherapy (dCT), although the incidence of
toxicity was greater.4,5 The Medical Research Council
Oesophageal Cancer Working Group published data from a
randomized, controlled trial showing that preoperative
chemotherapy improves survival without adverse effects in
patients with resectable OC.6

Other studies have been unable to demonstrate the
benefit of surgical resection following neo-CRT.7,8 Likewise,
no significant difference in survival between patients
receiving dCRT or surgery alone has been shown in studies,
such as the CURE trial.9e11

Until a multicentre, randomized, controlled trial demon-
strates the optimum treatment strategy, patients will
continue to receive neoadjuvant chemotherapy prior to
surgery in disease staged !T3 or !N1. Therefore, it is
important that the patient is staged accurately, and N0 is
differentiated fromN1disease. Thiswill ensure that patients
avoid unnecessary chemotherapy with potential complica-
tions of toxicity if over-staged, or are withheld potentially
beneficial neoadjuvant chemotherapy if under-staged.6

EUS has been shown to be the most accurate method of
assessing nodal status. Onmeta-analysis, the sensitivity and
specificity of detecting regional lymph node metastases is
80% and 70%, respectively,12 and the accuracy of overall N-
staging in 66%, compared with 68% at PET/CT.13 With the
increased utilization of PET/CT in the modern investigation
of OC, PET/CTmay be used for complete assessment of nodal
and distant metastases, as comparable accuracy in assessing
overall nodal status with EUS has been shown.

The aim of the present study was to investigate whether
there is any added prognostic information obtained at EUS
in those patients staged N0 at PET/CT.

Materials and methods

Patients with OC and oesophago-gastric junction (OGJ)
tumours referred to the Regional Upper GI cancer network
staged N0 at PET/CT examination between December 2008
andMay 2012, were studied. The PET/CT examinations were
performed in two sites and were double reported by
experienced consultant radiologists. A consensus was
reached if there were discrepancies between reports.
Staging of OC was performed according to TNM 7th
edition.14

EUS was performed at two sites by three experienced
endosonographers. Again, staging was performed according
to the TNM 7th edition.14 Patients were separated into two
groups for analysis: EUS N0 or EUS Nþ, if more than one
regional lymph node was involved.

PET/CT was performed in patients treated with poten-
tially curative intent. Patients were included in the study if
staged N0 at PET/CT, and EUS was subsequently performed.
The primary outcome was measured as overall survival
from diagnosis.

PET/CT acquisition protocol

PET/CT examinations were performed at two centres. At
the first centre, 51 patients underwent PET/CTexaminations
performed using a Philips 16 section Gemini GXL dedicated
PET/CT system (Philips Medical Systems, Cleveland, OH,
USA). The uptake time was 60 min. A standard dose of
350 MBq FDG was injected. Reconstructions were per-
formed using a three-dimensional (3D) acquisition with
non-time-of-flight acquisition for 4 min per bed position. At
the second centre, 72 patients underwent FDG PET/CT ex-
amination using a GE 690 PET/CT machine (GE Healthcare,
PollardsWood, Buckinghamshire, UK). Serum glucose levels
were routinely checked and confirmed to be <7 mmol/l
prior to proceeding with imaging. Patients received a dose
of 4MBq FDG per kilogram of bodyweight. Uptake timewas
90 min. CT images were acquired in a helical acquisition
with a pitch of 0.98 and a tube rotation speed of 0.5 s. Tube
output was 120 kVp with output modulation between 20
and 200 mA. The matrix size for the CT acquisition was
512# 512 pixels with a 50 cm field of view. PET images were
acquired at 3 min per field of view. The length of the axial
field of view was 15.7 cm. Images were reconstructed with
the ordered subset expectation maximization algorithm,
with 24 subsets and two iterations. The matrix size was
256 # 256 pixels, using the VUE Point! time-of-flight al-
gorithm. At both centres, patients were starved for 6 h prior
to tracer administration and no oral or intravenous contrast
medium was administered. In all cases, regional lymph
nodes were assigned as “positive” if they showed discern-
able increased tracer uptake compared to the background.
No particular threshold of FDG uptake was used to define
positivity on the PET/CT examinations. For inclusion in the
study, all patients were reported as negative for nodal and
distant metastatic disease at PET/CT. No further PET/CT
variables were used in the subsequent survival analysis.

Details of EUS

An initial endoscopic examination was performed using
a 9 mm diameter Olympus P-10 gastroscope (Olympus
Medical, Southend, UK) to assess the degree of oesophageal
luminal stenosis. Patients with an estimated oesophageal
luminal diameter <15 mm underwent EUS using the
smaller-diameter MH-908 oesophagoprobe (Olympus
Medical). Oesophageal dilation (Savary-Gilliard, Cook
Medical, Bloomington, IN, USA) was performed before
endosonography for patients with oesophageal lumens
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<9 mm. If the luminal diameter was >15 mm, the standard
radial echoendoscope was used (UM-20, Olympus Medical).
The primary oesophageal tumour was assessed, together
with an evaluation of the para-oesophageal anatomical
structures as described previously.15 The criteria for malig-
nant lymphadenopathy specified a hypoechoic pattern, a
spherical contour, the presence of a distinct border, and a
short axis diameter of 6 mm or more. For each patient, two
variables were recorded; EUS T-stage (T1e4) and EUS N-
stage (N0e3) according to TNM 7th edition.14 A third vari-
able was derived from the EUS N-stage, N0 versus Nþ, a
variable describing positive nodal status.

Treatment

An appropriate management plan was selected based on
radiological staging, patient choice, and relevant co-
morbidity according to algorithms used by the Regional
Upper GI cancer network.16e18

Follow-up and survival

Patients were followed-up every 3 months for the first
year, then every 6 months thereafter. No patients were lost
to follow-up and death certification was obtained from the
Office for National Statistics.

Ethical approval

Scientific review by the Research Review Board was
performed, and institutional research and development
approval was obtained. The Review Board confirmed that
formal ethical approval was not required for this study.

Statistical methods

Grouped data were expressed as median (range) and
statistical analysis for non-parametric data was used. Cu-
mulative survival was calculated according to the life-table
method of Kaplan and Meier,19 and differences between
groups were analysed with the log-rank test. Cox’s pro-
portional hazards model was used to assess the prognostic
value of individual categorical variables.20 Two models of
data analysis were performed. The first model included EUS
T-stage and N-stage; the second model included EUS T-
stage and the N-stage was simplified to N0 versus Nþ, to

assess the influence of positive EUS nodal status in those
staged N0 at PET/CT. Statistical tests were two-sided and the
level of significance taken as p < 0.05. Data analysis was
performed using SPSS version 18 (SPSS, Chicago, IL, USA).

Results

One hundred and seventeen patients staged N0 at PET/CT
and examined with EUS between December 2008 and May
2012 were studied. PET/CT examinations were performed in
two sites, 47 in the first site and 70 in the second. Table 1
details the demographics of the patient population.

The EUS T-stage of patients was T1 (n ¼ 18, 15.4%), T2
(n¼ 16, 13.7%), T3 (n ¼ 75, 64.1%), and T4a (n ¼ 8, 6.8%). The
N-stage of patients at EUS was N0 (n ¼ 78, 66.7%), N1
(n ¼ 23, 19.7%), N2 (n ¼ 9, 7.7%), and N3 (n ¼ 7, 6%). Patients
were then separated into two groups to derive the third
variable N0 versus Nþ; EUS N0 (n ¼ 78, 66.7%) and EUS Nþ
(n¼ 39, 33.3%). All patients with metastases at PET/CT were
excluded.

One hundred and five patients were treated with cura-
tive intent, with 12 receiving palliation, as they were not fit
for curative treatment following discussion by the multi-
disciplinary team (MDT). Seventy-three underwent surgical
resection with 40 receiving neoadjuvant chemotherapy and
one neoadjuvant chemoradiotherapy. Twenty-nine patients

Table 1
Details of patient demographics, histology, and tumour location in this
population.

Sex; male:female (%) 88:29 (75.2:24.8)
Median age, years (range) 67 (24e82)
Histology (%)
Adenocarcinoma 98 (83.8)
Squamous cell carcinoma 19 (16.2)
Tumour location (%)
Middle third oesophagus 20 (17.1)
Lower third oesophagus 53 (45.3)
Oesophago-gastric junction 44 (37.6)
Siewert type I 5 (4.3)
Siewert type II 12 (10.3)
Siewert type III 27 (23.1)

Table 2
Results of first multivariate analysis [including endoscopic ultrasound (EUS)
T-stage and N-stage].

EUS staging p-Value Hazard ratio Degrees
of freedom

95% Confidence
intervals

N-stage 0.005 3
N1 0.005 3.055 1 1.392e6.707
N2 0.002 4.707 1 1.778e12.459
N3 0.529 1.616 1 0.363e7.190
T-stage 0.194 3

Figure 1 Cumulative survival related to N0 versus Nþ.
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had definitive chemoradiotherapy (dCRT) and three pa-
tients were treated with endoscopic mural resection (EMR).

At the time of analysis, 84 patients were alive (71.8%) and
33 had died (28.2%). Overall 1 year survival was 74.4% (87/
117) with 39.3% (46/117) 2 year survival. Ninety-nine pa-
tients were followed up for at least 1 year (84.6%), and 72
patients (61.5%) for at least 2 years, or until death.

Univariate analysis

Univariate analysis of EUS T-stage, N-stage, and N0
versus Nþ was performed using log-rank analysis of the
KaplaneMeier method.19 All variables were significantly
associated with overall survival from diagnosis; EUS T-stage
(T1e4) (X2 8.321, df 3, p ¼ 0.040), EUS N-stage (N0e3) (X2

14.879, df 3, p¼ 0.002), and EUS N0 versus Nþ (X2 11.325, df
1, p ¼ 0.001).

Multivariate analysis

A multivariate analysis of the factors significant on uni-
variate analysis were entered into two alternative Cox’s
proportional hazards model.20

Model 1
When EUS T-stage and N-stage were entered into Cox’s

proportional hazards model, only EUS N-stage was signifi-
cantly and independently associated with duration of sur-
vival (Table 2).

Model 2
When EUS T-stage and N0 versus Nþ stage were entered

into Cox’s proportional hazard model, N0 versus Nþ was
significantly and independently associated with duration of
survival (HR 3.105, 95% CI: 1.543e6.247, p ¼ 0.001; Fig 1).

Discussion

The present study has confirmed the importance, and
shown the continued benefit, of fully assessing nodal status
with EUS when staging patients with OC. EUS N-stage is an
independent predictor of survival (p ¼ 0.005), as shown in
previous studies.21 Separation of patients into EUS N0 and
EUS Nþ groups, in patients staged N0 at PET/CT, was also
significantly and independently associated with survival
(p ¼ 0.001), and highlights the prognostic value of EUS
nodal assessment in those with negative nodal status at
PET/CT.

Figure 2 Axial CT, PET, integrated PET/CT, and EUS images in a patient with a gastro-oesophageal junction tumour staged N0 at PET/CT and N3 at
EUS. This example shows a non-FDG-avid regional lymph node metastasis (arrow). Following resection, the histopathological N-stage was pN3.
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This adds to further evidence supporting N-staging with
EUS using TNM 7th edition.14,21 Staging of involved regional
lymph nodes with EUS has been shown to have good
agreement when compared to histopathological stage.22

The examination is operator dependent, but reliable when
performed by experienced endosonographers.

PET/CT has previously been shown to have good diag-
nostic accuracy in the detection of involved lymph node
metastases. Okada et al.23 found the sensitivity, specificity,
accuracy, positive, and negative predictive values to be 60%,
99.5%, 94.8%, 93.8%, and 94.8% respectively, in 18 patients
with a total of 210 lymph nodes excised following radical
oesophagectomy.23 Similarly, a meta-analysis demon-
strated the sensitivity and specificity of regional lymph
node metastases on PET/CT to be 57% and 85%, respectively;
however, the study concluded that EUS is more sensitive for
local staging.12 The results of the present study concur with
these studies, as they have demonstrated that PET/CT is
unreliable in excluding regional lymph node metastases,
with a significant difference in survival between N0 and Nþ
in the present cohort.

The significant difference between PET/CT and EUS is
likely to be explained by the inability of PET/CT to differ-
entiate peri-tumoural nodes from the primary tumour. The
poor spatial resolution of PET/CT, approximately 4 mm,
remains a limiting factor in accurate assessment of local
lymph nodes (Fig 2).

Accurate assessment of nodal status in patients with OC
is vital to inform optimum treatment strategies. The dif-
ferentiation of N0 from Nþ has significant implications for
the patient and will guide the MDT when considering the
appropriateness of neoadjuvant therapy. This study has
confirmed the need for concurrent N-staging with EUS, as
positive nodal status is a significant prognostic indicator of
survival.

The first model shows EUS N-stage to be independently
associated with survival for EUS N1 and N2, therefore
demonstrating that PET/CT is unreliable in detection of
regional lymph node metastases and that those with posi-
tive nodal status on EUS have a poorer outcome. The
absence of statistical significance of the N3 group in this
model is likely to be a reflection of the small numbers.
Whereas the second model demonstrated N0 versus Nþ
disease as an independent predictor of survival, this result is
biased; the groups N0 versus Nþ are derived from the EUS
N-stage and this exaggerates the statistical significance by
grouping N1, N2, and N3 together. This results in an
apparent poorer prognosis. However, in essence, both
models support the hypothesis.

Limitations of method

The present study has potential limitations. The PET/CT
examinations were performed across two sites using
different scanners, protocols, and uptake times. Comparison
between examinations from different sites may need to be
analysed with caution, as the above factors may affect im-
age quality and diagnostic accuracy.

The accuracy of EUS examination may also be a limita-
tion. All examinations were performed by experienced cli-
nicians and data regarding their accuracy has been
published showing good agreement with histopathological
status.24 The experience of the endosonographers may be a
limitation of the study, as the findings may not be gener-
alizable to other institutions. Advances in pathological
analysis in recent years have meant a greater detection of
micrometastases in lymph nodes that may appear
morphologically normal and therefore, will affect agree-
ment.25 This implies the true prevalence of Nþ disease in
this cohort may be higher than the imaging suggests.

As this is a retrospective study of routine data obtained
as part of the OC pathway, the relationship between these
novel parameters and overall survival are described
following treatment influenced by management decisions.
This may not necessarily reflect the natural history of the
disease, but is unavoidable in this context.

Strengths of study

Despite its limitations, the present study has several
strengths. All patient data were prospectively maintained
on a dedicated database, collected from a well-defined
geographical area with an established Upper GI cancer
network working in a dedicated MDT. This represents a
large patient cohort of more than 100 patients. The survival
data are especially robust as no patients were lost to follow-
up and causes and exact dates of death were obtained from
death certificates provided by the Office for National
Statistics.

In conclusion, EUS and PET/CT remain complementary in
staging OC and should continue to be used in a multi-
technique approach to the staging of OC. EUS N-stage and
positive nodal status are significantly and independently
associated with survival on multivariate analysis in patients
staged N0 on PET/CT. The present study has shown that T-
and N-staging using EUS remains an important prognostic
indicator, informs clinicians, and influences management
decisions.
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Abstract
Objectives Accurate staging of oesophageal cancer (OC) is
vital. Bibliometric analysis highlights key topics and publica-
tions that have shaped understanding of a subject. The 100
most cited articles investigating radiological staging of OC are
identified.
Methods The Thomas Reuters Web of Science database with
search terms including BCT, PET, EUS, oesophageal and
gastro-oesophageal junction cancer^ was used to identify all
English language, full-script articles. The 100 most cited arti-
cles were further analysed by topic, journal, author, year and
institution.
Results A total of 5,500 eligible papers were returned. The
most cited paper was Flamen et al. (n= 306), investigating
the utility of positron emission tomography (PET) for the
staging of patients with potentially operable OC. The most
common research topic was accuracy of staging investigations
(n=63). The article with the highest citation rate (38.00), de-
fined as the number of citations divided by the number of
complete years published, was Tixier et al. investigating
PET texture analysis to predict treatment response to neo-
adjuvant chemo-radiotherapy, cited 114 times since publica-
tion in 2011.
Conclusion This bibliometric analysis has identified key pub-
lications regarded as important in radiological OC staging.
Articles with the highest citation rates all investigated PET

imaging, suggesting this modality could be the focus of future
research.
Main Messages
• This study identifies key articles that investigate radiological
staging of oesophageal cancer.

• The most common topic was accuracy of staging
investigations.

• The article with the highest citation rate investigated the use
of texture analysis in PET images.

Keywords Bibliometric analysis . Oesophageal cancer .

Gastro-oesophageal junction cancer . TNM staging . Citation

Introduction

Bibliometric analysis assesses the number of times that an
article is cited in the literature, and in which particular journal.
A citation is received when an article references another peer-
reviewed publication. An article that is felt to have greater
importance and higher impact by the scientific community is
more likely to be cited and therefore may be more influential
on current healthcare practice. Articles and journals can be
ranked based on the number of citations they receive.
Bibliometric analysis also reveals topics of current interest,
identifies potential novel techniques and shows historical de-
velopments in that subject [1]. Medical researchers have used
bibliometric analysis to identify the most influential papers in
their clinical specialties, including orthopaedic surgery [2] and
oncology [3].

Worldwide, the prognosis of oesophageal cancer, including
gastro-oesophageal junction cancer (OC), is poor. Overall 5-
year survival in the UK is approximately 13% [4]. As a part of
the diagnostic pathway, patients undergo a variety of staging
investigations to assess the extent of disease. Radiological
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staging is performed to further inform management decisions
by the multi-disciplinary team (MDT). Accurate radiological
staging is vital to ensure the most appropriate treatment is
selected. Currently, OC is staged according to the
International Union Against Cancer (UICC) Tumour Node
Metastasis (TNM) 7th edition [5].

In the UK, patients with OC are initially staged with CT of
the thorax and abdomen to exclude irresectable disease or
distant metastases. If the patient is deemed suitable for radical
treatment, either in the form of definitive chemo-radiotherapy
(dCRT) or surgery (± neo-adjuvant therapy), positron emis-
sion tomography combined with computed tomography
(PET/CT) and endoscopic ultrasound (EUS) are performed
for a more detailed assessment of disease stage [6].

This bibliometric analysis of OC staging investigations
aims to identify key research that has influenced staging
methods, the institutions leading this research, studies that
may change staging methods in the future and imaging mo-
dalities being focused upon.

Materials and methods

The Thomas Reuters Web of Science citation indexing data-
base was used to perform the search. The following search
terms were used in order to capture the variety of imaging
modalities and the different nomenclature of tumours:
(oesophag* AND (neoplas* OR cancer* OR carcin* OR
tumo* OR malig*)) OR (esophag* AND (neoplas* OR can-
cer* OR carcin* OR tumo* OR malig*)) OR (gastro-oesoph-
ageal junction AND (neoplas* OR cancer* OR carcin* OR
tumo* OR malig*)) OR (oesophago-gastric junction AND
(neoplas* OR cancer* OR carcin* OR tumo* OR malig*)
AND (computed tomography OR CT OR CAT) OR (positron
emission tomography OR PET OR F18 OR FDG OR
fluorodeoxyglucose) OR (endoscopic ultrasonography OR
endoscopic ultrasound OR endosonographic OR EUS) OR
(magnetic resonance imaging OR MRI or diffusion weight*
OR DWI) AND (stag* OR TNM OR lymph node OR
metasta*). The search was performed on 18 September 2015.

All databases within the Thomas Reuters Web of Science
were searched. The results were filtered to include only full
script articles written in the English language, throughout all
available years. The results were sorted by number of cita-
tions, with the article with most citations analysed first. The
method was developed by Paladugu et al. [7].

The title and abstract of the returned articles were manually
assessed to ensure that their relevance and content were in
keeping with this field. The inclusion criterion was that the
article investigated the use of a single or combination of ra-
diological modalities in patients with OC. This criterion was
pre-specified and defined prior to data collection.

Articles were excluded from the list if the content was not
relevant to radiological OC staging. The 100 most cited arti-
cles were identified and further analysed.

The articles were further evaluated for the publishing jour-
nal, names of the first and senior author, the institution and
department to which the first author was affiliated, the country
of origin, year of publication, the radiological investigation(s)
being studied, the topic of the article and the number of cita-
tions according to Web of Science. Rank within the top 100
articles was also recorded.

Articles have the opportunity to accrue more citations if
they have been published for longer. To adjust for this, a cita-
tion rate was calculated, defined as the number of citations
divided by the number of complete years published. A list of
the ten articles with the highest citation rates is provided.

In addition, the individual and 5-year impact factors in
2014 were recorded for the publishing journal. The overall
median 2014 and 5-year impact factor for all journals was
calculated.

Results

TheWeb of Science search returned 5,500 full articles, written
in English language. The 100 most cited articles are listed in
Table 1 [8–107].

The article with the highest number of citations (n=306)
was Flamen et al. [8], entitled ‘Utility of positron emission
tomography for the staging of patients with potentially opera-
ble oesophageal carcinoma’. The article ranked 100 in the list
was Wu et al. [107], entitled ‘Preoperative TN staging of oe-
sophageal cancer: comparison of miniprobe ultrasound, spiral
CT and MRI’, with 46 citations.

The oldest article was published in 1979 by Daffner et al.
[71] ‘CT of the Oesophagus. 2. Carcinoma’. Tixier et al. [47]
published the most recent paper in the list in 2011, entitled
‘Intratumor Heterogeneity Characterized by Textural Features
on Baseline F-18-FDG PET Images Predicts Response to
Concomitant Radiochemotherapy in Esophageal Cancer’,
which has been cited 114 times.

The journal with the highest number of published articles
was Gastrointestinal Endoscopy (Table 2). Fourteen articles
were published with a total of 1675 citations [11, 16, 34, 38,
48, 59, 62, 63, 66, 76, 80, 82, 83, 85]. The 2014 impact factor
of the Gastrointestinal Endoscopy was 5.369, with 5-year im-
pact factor 5.225. The journal with the highest impact factor
was the Journal of Clinical Oncology (JCO), which had a total
of 1,258 citations [8, 12, 15, 18, 23, 70]. Five of these six
articles were investigating PET imaging. The 2014 impact
factor of JCO was 18.428, with 5-year impact factor 16.996.
Overall, the median 2014 impact factor of the journals was
5.238 and median 5-year impact factor was 5.225.
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Table 1 The 100 most cited articles in radiological staging of
oesophageal and junctional cancer

Rank Number of Citations First author

1 306 Flamen P [8]

2 294 Tio TL [9]

3 290 Kinkel K [10]

4 273 Catalano MF [11]

5 271 Wieder HA [12]

6 261 Botet JF [13]

7 242 Skinner DB [14]

8 229 Ott K [15]

9 221 Bhutani MS [16]

10 201 Flamen P [17]

11 193 Downey RJ [18]

12 192 Flanagan FL [19]

13 189 Picus D [20]

14 184 Rosch T [21]

15 183 Kelly S [22]

16 168 van Westreenen HL [23]

17 165 May A [24]

18 164 Lerut T [25]

19 160 Kato H [26]

20 159 Block MI [27]

20 159 Swisher SG [28]

22 157 Swisher SG [29]

23 150 Luketich JD [30]

24 146 Rice TW [31]

24 146 Vilgrain V [32]

26 145 van Vliet EPM [33]

27 143 Rosch T [34]

28 137 Ziegler K [35]

29 136 Kole AC [36]

30 135 Luketich JD [37]

31 133 Buskens CJ [38]

32 132 Watt I [39]

33 130 Moss AA [40]

34 123 Zuccaro G [41]

35 122 Grimm H [42]

36 121 Vazquez-Sequeiros E [43]

37 116 Yoon YC [44]

38 115 Tio TL [45]

39 114 Cerfolio RJ [46]

39 114 Tixier F [47]

41 113 Vazquez-Sequeiros E [48]

42 112 Dittler HJ [49]

43 111 Rasanen JV [50]

44 108 Quint LE [51]

45 107 Reed CE [52]

46 105 Choi JY [53]

46 105 Rankin SC [54]

46 105 Thompson WM [55]

Table 1 (continued)

Rank Number of Citations First author

46 105 Wallace MB [56]

50 104 Quint LE [57]

51 103 Kato H [58]

51 103 Larghi A [59]

53 102 Takashima S [60]

54 100 van Westreenen HL [61]

55 98 Eloubeidi MA [62]

55 98 Hasegawa N [63]

57 96 Levine EA [64]

57 96 Rice TW [65]

59 92 Isenberg G [66]

59 92 Leong T [67]

59 92 Puli SR [68]

62 91 Flamen P [69]

62 91 Lightdale CJ [70]

64 89 Daffner RH [71]

64 89 Kim K [72]

64 89 Meltzer CC [73]

64 89 Vrieze O [74]

68 88 Jones DR [75]

69 86 Chak A [76]

70 84 Hyun SH [77]

70 84 Quint LE [78]

72 83 Murata Y [79]

73 82 Hiele M [80]

74 80 Wakelin SJ [81]

75 79 Scotiniotis IA [82]

76 78 Fockens P [83]

77 76 Beseth BD [84]

77 76 Catalano MF [85]

77 76 Giovannini M [86]

80 75 Rice TW [87]

81 74 Heeren PAM [88]

81 74 Rizk N [89]

83 72 Kostakoglu L [90]

83 72 Moureau-Zabotto L [91]

85 70 Pech O [92]

86 69 Choi JY [93]

86 69 Lehr L [94]

86 69 Lightdale CJ [95]

89 68 Kobori D [96]

89 68 Luketich JD [97]

91 67 Lowe VJ [98]

92 62 Song SY [99]

92 62 Yuan S [100]

94 61 Bar-Shalom R [101]

94 61 McAteer D [102]

94 61 van Westreenen HL [103]

97 60 Eloubeidi MA [104]
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Twenty-nine of the 100 articles were published in a radiol-
ogy-related journal, including nuclear medicine and radiation
oncology journals. Thirty-five of the first authors were affili-
ated to a radiology, nuclear medicine or radiation oncology
department, according to the Thomas Reuters Web of Science
citation indexing database. Three radiology-related journals,
with 5-year impact factor >5.00, published 16 articles in the
top 100. These were Radiology (5-year impact factor 7.259;
n = 6), Journal of Nuclear Medicine (5-year impact factor
6.280; n=8) and European Journal of Nuclear Medicine and
Molecular Imaging (5-year impact factor 5.090; n=1).

Researchers from the USA published the greatest number
of articles in the 100most cited (n=47) [11, 13, 14, 16, 18–20,
27–31, 37, 40, 41, 43, 46, 48, 51, 52, 55–57, 59, 62, 64–66,
68, 70, 71, 73, 75, 76, 78, 82, 84, 85, 87, 89, 90, 95, 97, 98,
104–106], jointly followed by Germany [12, 15, 21, 24, 34,
35, 42, 49, 92, 94] and The Netherlands [9, 23, 33, 36, 38, 45,
61, 83, 88, 103] (n = 10, each) (Table 3). The Technical
University of Munich, Germany, was the institution with the
joint highest number of publications in the 100 Most Cited
(n=6) and the highest number of citations (1,008) [12, 15, 21,
34, 49, 94]. The University Hospital Gasthuisberg, Leuven,
Belgium, also had 6 published articles, with a total of 933
citations [8, 17, 25, 69, 74, 80]. The most cited article was
from this institution [8] and written byDr Patrick Flamen (first

author) with Prof. Luc Mortelmans as senior author. Dr
Flamen has 3 first author articles in the 100 most cited [8,
17, 69] and a total of 598 citations. Prof. Mortelmans has 4
articles published as senior author [8, 17, 25, 69] and a total of
762 citations.

The most common researched topic was the accuracy of
radiological staging investigations (n=63) (Table 4). Several
of the study themes overlapped but accuracy of staging was
commonly compared between different modalities (n=29).
The investigation of lymph node metastases (n=15) and ra-
diological response to treatment (n=14) were also commonly
cited topics.

EUS was the most common modality investigated (n=51),
with PET/CT (n=48) and CT (n=46) following. The combi-
nation of CT, EUS and PET/CT was commonly investigated

Table 1 (continued)

Rank Number of Citations First author

97 60 Konski A [105]

99 59 Meyers BF [106]

100 46 Wu LF [107]

Table 2 Journals with ≥2 articles in 100 most cited

Journal Number of articles 2014 Impact factor 5-Year impact factor Total number of citations

Gastrointestinal Endoscopy 14 5.369 5.225 1,675
Annals of Thoracic Surgery 9 3.849 4.104 1,038
Journal of Nuclear Medicine 8 6.16 6.280 657
Cancer 7 5.238 5.517 830
American Journal of Roentgenology 6 2.731 3.302 764
Journal of Clinical Oncology 6 18.428 16.966 1,258
Radiology 6 6.867 7.259 1,044
Endoscopy 5 5.053 4.855 494
Journal of Thoracic and Cardiovascular Surgery 5 4.168 4.068 428
Annals of Surgery 3 8.327 8.844 502
Gut 3 14.66 12.553 485
International Journal of Radiation Oncology Biology Physics 3 4.258 4.359 194
American Journal of Gastroenterology 2 10.755 9.145 193
Annals of Surgical Oncology 2 3.93 4.532 195
British Journal of Cancer 2 4.836 5.305 281
Gastroenterology 2 16.716 13.811 415
Radiotherapy and Oncology 2 4.363 4.502 181
World Journal of Gastroenterology 2 2.369 2.671 138

Table 3 Number of articles per country of origin in 100 most cited

Country Total number of articles

USA 47

Germany 10

The Netherlands 10

Belgium 6

Japan 6

South Korea 6

UK 5

France 4

China 2

Australia 1

Finland 1

Israel 1

Switzerland 1
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together, which is the recommended staging pathway for po-
tentially curable disease in the UK (n=11) [8, 25, 28, 31, 50,
53, 88, 98, 105]. MRI (n=5), bone scintigraphy (n=2), PET
alone (n=1), EUS-FNA (n=1), US (n=1) and laparoscopic
US (n=1) were also cited.

The article with the highest citation rate (38.00) was Tixier
et al. [47], published in 2011 and investigated texture analysis
in OC. The ten articles with the highest citation rates were
published between 2002 and 2011 and all involved investiga-
tion of PET images (Table 5). Four of the articles investigated
treatment response [12, 15, 18, 47]. An international collabo-
ration collecting data that informed the International Union
Against Cancer (UICC) Tumour Node and Metastasis
(TNM) 7th edition [31] had the second highest citation rate
(36.50). Five of the ten articles with the highest citation rates
were published in the Journal of Clinical Oncology, which had
the highest impact factor (5-year 16.971).

Discussion

OC is the eighth most common malignancy worldwide,
resulting in around 400,000 deaths per annum [108]. This
study demonstrates that accuracy of staging was the most
frequently studied topic (n=63) (Table 4). Accurate staging
investigations are vital to inform appropriate treatment deci-
sions, providing the best chance of survival for the patient
whilst minimising harm from over- or under-treatment. The
most cited article was Flamen et al. [8], which investigated the
use of PET in potentially operable OC.

The OC staging pathway is complex, utilising various mo-
dalities with different strengths and weaknesses. PET/CT is
superior to CT for detection of distant metastases and influ-
ences the change of MDT management decisions in up to
38 % of patients [109], whereas EUS is superior to CT for
T-staging [110]. Comparison of techniques allows a modality
to be tested against the perceived Bgold-standard^ staging in-
vestigation. This may reflect the desire for a simplified staging
pathway with fewer investigations or the desire to increase
evidence and awareness of a particular modality, thus intro-
ducing potential publication bias.

Influential articles are more likely to be cited by the scien-
tific and clinical community. These citations form the basis of
a journal’s impact factor. The impact factor quantifies the av-
erage number of citations per manuscript publishedwithin that
journal during a specific time period. Therefore, journals with
a higher impact factor are recognised as being of higher qual-
ity and more likely to contain influential articles.

Radiological OC staging appeals to specialist radiologists
and other members of the upper gastro-intestinal (GI) cancer
MDT, and its clinical impact is great. The overall median 2014
and 5-year impact factors were 5.238 and 5.225, respectively,
demonstrating that this field of research, often producing nov-
el results, in a specific cancer population is not likely to be
published in high-impact journals. The Journal of Clinical
Oncology (JCO) had the highest 5-year impact factor
(16.971) of articles in the 100 most cited.

In total, only 29 of the 100 most cited articles were pub-
lished in radiology-related journals. This could represent the
desire to achieve publication in a high-impact journal. The
majority of radiology-related journals have impact factors
<5.00. Only 16 % of the top 100 articles were published in
radiology-related journals with a 5-year impact factor >5.00
(Radiology, Journal of Nuclear Medicine and European
Journal of Nuclear Medicine and Molecular Imaging). It
may also reflect a lack of research conducted by radiologists,
which is supported by evidence from a National Cancer
Research Institute (NCRI) survey in 2012, which commented
upon the lack of academic radiologists [111].

Many of the first authors (n=65) are not affiliated to radi-
ology departments, according to Thomas Reuters Web of
Science citation indexing database. It is possible the authors
work closely with a radiologist as part of the specialist Upper
GI cancer MDT or have a clinical radiologist as a
named co-author.

EUS was the most commonly investigated modality over-
all. This may be a reflection of the current reliance and impor-
tance of EUS for Tand N staging, considered the current Bgold
standard^ [110].

Despite EUS being the most frequently investigated mo-
dality, the ten articles with the highest citation rates all inves-
tigated functional PET imaging. The CT component of the
PET/CT examinations provided attenuation correction for

Table 4 Most frequently cited topics of investigation (numbers do not
add up to 100 as there are different combinations of topics in the articles)

Topic Number of articles

Accuracy of staging 63

Comparison of imaging modalities 29

Lymph node metastases 15

Treatment response 14

Review of staging 9

Imaging features of malignancy 9

Prognosis 7

Distant metastases 5

Treatment planning 4

Early cancer 3

Cost-effectiveness 1

Restaging 1

Staging recurrent cancer 1

Correlation with tumour markers 1

Synchronous tumours 1

Texture analysis 1
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PET data. Many PET/CT topics of research are relatively
novel and have been described in other types of cancer.
One of these topics, texture analysis, is the subject of the
article with the highest citation rate [47]. Novel subjects
are less likely to be published in high-impact journals, but
may well be considered influential and provide the catalyst
for future research.

Four of the PET/CT articles with the highest citation rates
[12, 15, 18, 47] investigated its use in assessing treatment
response. There is significant interest in the capability of met-
abolic imaging to assess for early treatment response, but
these techniques have not been standardised for use outside
of clinical research studies [112]. PET/CT scanning is expen-
sive, and costly research could potentially only produce mar-
ginal long-term benefits for patients. The paradox of
healthcare is that innovation increases expense, rather than
producing more cost-effective and efficient processes, as is
the case in industry [113]. These articles however are likely
to be highly influential in forthcoming years, as the use of
PET/CT increases in cancer imaging.

This bibliometric analysis has a number of limitations.
Citation rates can be misleading because of various biases,
e.g. institutional, language or self-citation bias. Older articles

tend to accrue more citations compared to newer research. We
attempted to adjust for this by calculating a citation rate, which
may provide information regarding the importance and poten-
tial influence that the research has. This in itself has limitations
as the likelihood of citation rises with increasing numbers of
published articles in peer-reviewed journals. Only articles
written in English were included, which may have excluded
some frequently cited research in other languages. Also, this
study concentrated on radiological staging rather than other
techniques such as endoscopy and laparoscopy.

The expanding volume of published literature has in-
creased significantly over the past few decades. Between
1978 to 1985 and 1994 to 2001, the annual number of
Medline articles increased by 46 %, particularly in the area
of clinical research [114]. The annual rate of publication
growth in PubMed Medline was 5.6 % between 1997 and
2006, equating to a Bdoubling time^ of 13 years [115]. This
may explain the higher citation rate of PET/CT compared to
that of EUS, as PET/CT is a more recent innovation. Overall,
there are now more articles published per annum compared to
previous years. This would therefore potentially increase the
citation rate as a matter of course, not necessarily reflecting
higher importance.

Table 5 Ten articles with the highest citation rates

Rank Year Number of
citations

Citation rate First author Senior author Title Journal

1 2011 114 38.00 Tixier F [47] Visvikis D Intratumour heterogeneity characterized
by textural features on baseline 18
F-FDG PET images predicts response
to concomitant radiochemotherapy in
oesophageal cancer

Journal of Nuclear Medicine

2 2010 146 36.50 Rice TW [31] Blackstone EH Cancer of the Oesophagus and Esophagogastric
Junction Data-Driven Staging for the Seventh
Edition of the American Joint Committee on
Cancer/International Union Against Cancer
Cancer Staging Manual

Cancer

3 2006 229 28.63 Ott K [15] Siewert JR Metabolic imaging predicts response, survival,
and recurrence in adenocarcinomas of the
esophagogastric junction

Journal of Clinical Oncology

4 2004 271 27.10 Wieder HA [12] Weber WA Time course of tumour metabolic activity during
chemoradiotherapy of oesophageal squamous
cell carcinoma and response to treatment

Journal of Clinical Oncology

5 2002 290 24.17 Kinkel K [10] Thoeni RF Detection of hepatic metastases from cancers of
the gastrointestinal tract by using noninvasive
imaging methods (US, CT, MR imaging, PET):
A meta-analysis

Radiology

5 2008 145 24.17 van Vliet EPM [33] Siersema PD Staging investigations for oesophageal cancer:
a meta-analysis

British Journal of Cancer

7 2000 306 21.86 Flamen P [8] Mortelmans L Utility of positron emission tomography for the
staging of patients with potentially operable
oesophageal carcinoma

Journal of Clinical Oncology

8 2010 84 21.00 Hyun SH [77] Kim BT Prognostic value of metabolic tumour volume
measured by 18 F-fluorodeoxyglucose positron
emission tomography in patients with oesophageal
carcinoma

Annals of Surgical Oncology

9 2003 193 17.55 Downey RJ [18] Rusch V Whole body (18)FDG-PET and the response
of oesophageal cancer to induction therapy:
Results of a prospective trial

Journal of Clinical Oncology

10 2004 168 16.80 van Westreenen HL [23] Plukker JTM Systematic review of the staging performance
of 18 F-fluorodeoxyglucose positron emission
tomography in oesophageal cancer

Journal of Clinical Oncology
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As expected, the older articles only described CT and per-
haps a review of the last 10 years of literature only may be
more reflective of contemporary staging practice. Another
limitation is that only the first and senior authors of the articles
were included in the current analysis. It is possible that these
authors contributed to other articles in this list, but would not
have been counted during analysis. These authors may there-
fore be under-represented in terms of published article num-
bers and have had a greater influence on current OC staging.

Of the 29 articles comparing imaging techniques or modal-
ities, 17 studies correlated imaging findings and histopatho-
logical diagnosis, widely regarded as the Bgold standard^.
Limitations exist in radiological studies that compare new
findings against a potentially inaccurate alternative imaging
test. In this current study, articles that did not compare against
pathological results included those investigating radiotherapy
planning techniques and the diagnosis of distant metastases. In
these studies, tissue was not necessarily sampled. There are
several reasons why pathological confirmation is not possible.
These include patients undergoing non-surgical management,
which is true of the majority of cases of OC, and in situations
where it would be unethical to obtain tissue purely for research
purposes, such as in patients with unequivocal distant
metastases.

There are further limitations of studies comparing imaging
findings to histopathological specimens. Comparison of pre-
treatment imaging characteristics in patients receiving neo-
adjuvant therapy prior to surgery can be inaccurate, as the
chemotherapy or radiotherapy may alter the morphology of
the tumour. In this situation, a direct comparison is often not
possible.

Conclusion

This bibliometric analysis describes the 100 most cited
articles in the field of radiological OC staging investi-
gations. Common topics of investigation include the ac-
curacy of staging, comparison of modalities, treatment
response and assessment of lymph nodes for metastases.
The majority of articles are published outside of
radiology-related journals, which may reflect the desire
for high-impact publications or perhaps a lack of radi-
ologists conducting imaging research. This study pro-
vides an understanding of research that has influenced
current OC staging and citation rates may suggest im-
portant topics for future research, particularly validation
studies of innovative techniques in larger patient
populations.
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