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Abstract: In this paper, the dynamic instability of variable angle tow (VAT) plates with a single 

rectangular delamination is studied using an analytical model. The analytical model is derived from 

the principle of potential energy based on the classical laminated plate theory. Both global and 

local behavior of delaminated VAT plates in the dynamic instability analysis are accurately captured 

by the use of multiple Legendre polynomial series. The equations for the motion in dynamic 

instability problem are derived using Hamilton’s principle. The dynamic instability regions are 

determined from the resulting Mathieu differential equations, which are solved using Bolotin’s 

approach. To validate the proposed analytical model, both critical buckling loads and natural 

frequencies of delaminated VAT plates are evaluated and compared with FEM results. The 

influence of delamination on the buckling load, natural frequency and dynamic instability region 

(DIR) of delaminated VAT plates is examined by numerical examples. A parametric study is 

subsequently carried out to analyze the effect of linearly varying fibre orientation angles on the 

dynamic instability response of delaminated VAT plates. Finally, the mechanism of applying 

variable angle tows to improve the dynamic stability performance of delaminated composite plates 

is studied. 

 

Keywords: Dynamic instability; Variable angle tow composites; Laminated plates; Rayleigh-Ritz 

method; Delamination 

1  Introduction  

Thin-walled structures like plates and shells that are used as primary components in aviation, 

automotive and civil industry are often subjected not only to static loads but also to dynamic loads. 

Structures under time-dependent (i.e. periodic) in-plane loads might lead to unacceptable vibration 

at a critical combination of excitation frequency and the amplitude of the axial load, namely 

parametric resonance. Understanding the characteristics of parametric resonance of composite 

structures under a dynamic loading is also of importance in practical designs. The advantages of 

applying variable angle tow (VAT) laminates that generally possess variable stiffness properties to 



  

improve structural performance have been clearly shown in previous works, in terms of buckling 

[1-5], postbuckling [6, 7] and vibration [8, 9]. However, dynamic stability problem of VAT 

composite structures subjected to in-plane periodic loads has received little attention in variable 

stiffness composites research community. Delamination caused by the impact of foreign objects 

(tool drops, runway debris, bird strikes etc) or manufacturing process, is one of the most common 

damage forms in composite laminates. The existence of delamination between plies reduces the 

structural stiffness, strength and load-carrying capacity, and thus may give rise to early instability 

or failure to composite structures. This paper presents an analytical study of dynamic instability 

performance of VAT composite plates with a rectangular delamination. The mechanism of varying 

fiber orientation angles (VAT) resulting in the improved dynamic stability of composite plates 

with delamination is thoroughly investigated. 

A considerable amount of research has been done on the dynamic instability analysis of 

composite laminated plates without delamination. Bolotin [10] initially studied the dynamic 

instability of various elastic systems under periodic in-plane loadings. Afterwards, Birman [11] 

studied the dynamic instability of unsymmetrically laminated cross-ply plates under periodic 

biaxial loading. In his work, the principal dynamic instability region was determined analytically. 

Srinivasan and Chellapandi [12] used the finite strip method (FSM) based on classical laminated 

plate theory to perform the dynamic instability analysis for composite laminated plates under 

periodic in-plane load. Moorthy et al. [13] and Chattopadhyay and Radu [14] carried out a similar 

investigation using the finite element method based on the first-order and higher-order shear 

deformation theories to approximate the instability regions for moderately thick composite plates. 

In addition, Mond and Cederbaum [15] used the method of multiple scales to carry out the 

dynamic instability analysis of antisymmetric angle-ply and cross-ply laminated plates. Wang and 

Dawe [16] investigated the dynamic instability of composite laminated plate and prismatic plate 

structures. Sahu and Datta [17] performed the dynamic instability analysis of composite laminated 

plates subjected to non-uniform harmonically varying in-plane loading. Recently, Samukham et al. 

[18] investigated the dynamic instability of a VAT composite plate under periodic in-plane 

compressive loading using the finite element method. In their work, considerable benefits from 

steered fibers in improving the dynamic stability behavior of VAT composite plates without 

delaminations were demonstrated. 

There also has been a significant amount of research on the dynamic response of composite 

laminated beam-plates or plates with delamination. Wang et al. [19] initially proposed the free 

model to perform the free vibration analysis for isotropic beam-plates with a through-the-width 

delamination by considering the coupling between flexural and axial vibrations of delaminated 

sublaminates. However, vibrational mode shapes obtained using the free model may be physically 

inadmissible for an off-midplane delamination. To address this problem, Mujumdar and 

Suryanarayan [20] developed a constrained model, in contrast to the free model proposed by Wang 

et al. [19], to study the natural vibration characteristics of laminated beam type structures. In their 



  

work, delaminated portions were constrained to have identical transverse deformations. Later, 

Shen and Grady [21] conducted an analytical and experimental investigation for the vibration 

response of a cantilever beam-plate with a through-the-width delamination. Lee [22] studied the 

vibration characteristics of delaminated beam-plates using finite element method based on the 

layerwise plate theory. Luo and Hanahud [23] developed an analytical model that can consistently 

explain the phenomena observed by experiments [21], to predict frequencies of delaminated 

beam-plates. In addition, Shu and Della [24] applied Euler-Bernoulli beam theory to investigate 

the free vibration of composite beams with two enveloping delaminations. In their work, both free 

and constrained models were taken into account in the formulation. Alnefaie [25] developed a 

three-dimensional finite element model to analyze the dynamic response of fibre-reinforced 

composite plates with internal delamination. More recently, Li and Qing [26] proposed a nonlinear 

spring-layer model based on the modified H-R (Hellinger-Reissner) variational principle to 

perform the free vibration analysis of composite laminated plates with delamination. Liu and Shu 

[27] adopted Euler-Bernoulli hypothesis to develop an analytical solution for the free vibration of 

exponential functionally graded beams with a single delamination.  

However, there is not much literature available on the dynamic instability response of 

composite laminated plates, shells or other structures with delamination. Mohanty et al. [28] and 

Radu and Chattopadhyay [29] used the finite element method based on the first-order and 

higher-order shear deformation theories, respectively, to investigate the dynamic instability of 

composite laminated plates with delamination under uniform periodic in-plane loading. Yang and 

Fu [30] combined Rayleigh–Ritz method with classical shell theory to carry out the dynamic 

instability analysis for composite laminated cylindrical shells with delamination. Park and Lee [31] 

applied the higher-order shell theory of Sanders to study the dynamic instability of delaminated 

spherical shell structures subjected to periodic in-plane loadings. More recently, Noh and Lee [32] 

investigated the dynamic instability of delaminated composite skew plates under various periodic 

in-plane loadings. All of the above research works focused on the study of dynamic instability of 

constant stiffness laminated plates or shells with delaminations. Fazillati [33] recently reported a 

research work that applied a B-spline finite strip method to study the dynamic instability behavior 

of variable stiffness composite laminated plates with delamination. However, the non-uniform 

in-plane stress field was not considered in his model and analysis. A benign non-uniform in-plane 

stress redistribution given rise by variable stiffness properties had been recognized as the major 

driver for VAT composite structures to achieve improved performance [1-5] . The characteristics 

of dynamic instability of delaminated VAT composite plates therefore need to be further clarified.  

In the present work, an improved analytical model based on the principle of potential energy 

and the Rayleigh-Ritz approach was developed to analyze the dynamic instability of VAT 

composite plates with a single delamination under periodically varying in-plane compressive 

loadings. In this delamination modelling, both global and local displacement shape functions 

constructed using the Legendre polynomials are introduced and the kinematic continuity conditions 



  

along the delamination edge are satisfied using the superposition method. The non-uniform in-plane 

stress distribution is determined prior to the dynamic instability analysis of delaminated VAT plates. 

The content of this paper is arranged as follows. In the next section, the concept of VAT laminates 

is introduced. Section 3 presents the basic formulae for the dynamic instability analysis of VAT 

composite plates with a single delamination, including the constitutive equation, the boundary 

conditions and the kinematic continuity conditions along the delamination edge. In section 4, the 

modelling work for solving the in-plane stress and dynamic instability problems of delaminated 

VAT plates are presented. In section 5, the accuracy and reliability of the proposed analytical 

model are validated by comparing with numerical results of buckling and vibration of delaminated 

composite plates with those obtained by FEM and prior results. The influence of delamination on 

the buckling, vibration and dynamic instability response of delaminated VAT plates is investigated 

by numerical examples. The mechanism of exploiting variable stiffness properties to improve the 

dynamic stability of composite laminated plates with a single delamination is also studied in detail. 

Finally, some conclusions are drawn in Section 6. 

2 VAT laminates  

The fibre orientation angle of the VAT composite plate varies continuously with spatial location 

over the entire plane of a ply. In this paper, the fibre orientation angle within a ply is assumed to 

vary linearly along the length of the plate, given by [34] 

1 0

0

2( )
( )

T T
x x T

a
θ φ

−
= + +                          (1) 

where a is the length of the plate. T0 is fibre angle at the center of the plate, that is, x=0. And T1 is 

fibre angle at the edges of the plate, that is, x=±a/2. � is the angle of rotation of the fibre path [34]. 

The fibre orientation angle of a VAT ply is designated by �〈T0,T1〉.  

3  Formulation 

3.1 Constitutive relation and strain-displacement relation 

Consider a VAT composite plate of length a, width b and thickness h, with a single delamination, 

as shown in Fig. 1. The single delamination is located at mid-length, and the distance from the 

delamination interface to the top surface is h1. The VAT composite plate is divided into three 

portions by the existing delamination interface, namely, an undelaminated portion, denoted by 0, 

and two delaminated portions, denoted by 1 and 2. The constitutive equations for the L
th

 portion of 

the delaminated VAT composite plate are given in the following matrix form [35] 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( 0,1,2)

L L L L

L L L L
L

� � � �� �
= =� � � �� �

	 
 � �	 


N A B �
    

M B D �

              (2) 

where 
( ) ( ) ( ) ( ){ }L L L L

xx yy xyN N N= TN  and 
( ) ( ) ( ) ( ){ }L L L L

xx yy xyM M M= TM , respectively, are the 

resultant force and bending moment vectors of the L
th

 portion. 
( ) ( ) ( ) ( )

{ }
L L L L

xx yy xyε ε ε= T
�  and 



  

( ) ( ) ( ) ( )
{ }

L L L L

xx yy xyκ κ κ= T
� , respectively, are the mid-plane strain and curvature vectors of the L

th
 

portion. Note that, all these vectors are of time-dependent during the dynamic instability analysis. 

( )LA , 
( )LB  and 

( )LD , respectively, are the in-plane, coupling and bending stiffness matrices of 

the L
th

 portion and they can be expressed as [35] 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) 2 2 ( ) 3 3
1 1 1

1 1 1

1 1
, ,

2 3

L L L
K K K

L k L k L k
ij ij k k ij ij k k ij ij k k

k k k

A Q z z B Q z z D Q z z+ + +

= = =

= − = − = −
 
 
     (3) 

where , 1,2,6i j =  and 
( )LK  is the total number of plies of the L

th
 portion. kz  is the location of 

the k
th 

ply with respect to the mid-plane of each portion along the thickness direction. k
ijQ  is the 

reduced transformed stiffness terms of the k
th 

ply in each portion. For the VAT configuration, 
k
ijQ  

is functions of the coordinates x and y. Note, the bending-extension coupling within each 

delaminated portion is taken into account using the method of reduced bending stiffness (RBS) 

[36], by which the stress resultants are not coupled to the plate curvatures and only related to the 

curvatures with a reduced stiffness matrix, ( ) ( ) T ( ) 1 ( )[ ] [ ] [ ]L L L L−−D B A B .  

Based on the classical laminated plate theory, the strain-displacement relations of the L
th
 portion 

in the linear regime can be written as follows [35] 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
, ,

L L L L

L L L
xx yy xy

u v u v

x y y x
ε ε ε

∂ ∂ ∂ ∂
= = = +

∂ ∂ ∂ ∂
                   (4) 

2 ( ) 2 ( ) 2 ( )

( ) ( ) ( )

2 2
, , 2

L L L

L L L
xx yy xy

w w w

x y x y
κ κ κ

∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂
                (5) 

where 
( )L

u  and 
( )L

v  are the in-plane displacement fields of the L
th

 portion and 
( )L

w  the 

out-of-plane displacement field of the L
th

 portion.  

3.2 Boundary conditions and continuity conditions 

In this work, delaminated VAT plates loaded by periodically varying uniform axial compression 

with transverse edges free to deform are taken into account. Hence, the in-plane boundary 

conditions of the delaminated VAT beam-plate or plate, as shown in Fig. 2 (a) or (b), can be 

expressed as  

     0, 0 yy yxN N= =         at / 2y b= ±                 (6a) 

(0)
( , , ) ( )u x y t u t= �         at / 2x a= ±                 (6b) 

where yyN  and yxN  are the time-dependent boundary forces on the edges (y=±b/2). ( )u t  is 

the periodically varying uniform axial compression on the edges (x=±a/2) and expressed in terms 

of both static and dynamic components, as follows 

S D( ) cos( )u t u u t= + Ω                           (7) 

where Su  is the static component of ( )u t ; Du is the amplitude of periodically varying dynamic 

component; � is the frequency of external excitation in radian/second. Further, Eq. (7) can be 

reduced to [18] 



  

S cr D cr( co () s )u t u u tα α= + Ω                         (8) 

where ucr is the critical end-shortening value obtained in the buckling analysis. �S and �D, are the 

static and dynamic load parameters, respectively, and defined as, 

S D

cr

S D

cr

,
u u

u u
α α= =                              (9) 

As far as the out-of-plane boundary condition is concerned, there is no limitation to the 

proposed model presented in this work. The VAT beam-plate with a through-the-width 

delamination, as shown in Fig. 2(a), is assumed to be simply supported or clamped on the edges 

(x=±a/2) and free on the edges (y=±b/2), and thus the out-of-plane boundary conditions are given 

by  

 (0) 0w =   at / 2x a= ±        (simply supported)         (10a) 

( 0)

(0) 0; 0
w

w
x

∂
= =

∂
  at / 2x a= ±      (clamped)             (10b) 

The VAT plate with an embedded rectangular delamination, as shown in Fig. 2(b), is assumed to 

be simply supported or clamped on all four edges. Accordingly, the out-of-plane boundary 

conditions can be expressed as  

(0) 0w =   at / 2, / 2x a y b= ± = ±    (simply supported)         (11a) 

(0)

(0)

(0)

(0)

0; 0    at / 2

0; 0    at / 2

w
w x a

x

w
w y b

y

∂
= = = ±

∂

∂
= = = ±

∂

      (clamped)              (11b) 

Moreover, the kinematic continuity condition at the intersection of the undelaminated portion and 

each delaminated portion also needs to be satisfied. In the in-plane stress analysis, the kinematic 

continuity conditions of the delaminated VAT beam-plate or plate are expressed as 

(0) ( ) (0) ( )

(0) ( )

(0) ( ) (0) ( )

(0) ( )

,  ,  

      ( 1,2)

,  ,  

L L

L

L L

L

u u u u
u u

x x y y
L

v v v v
v v

x x y y

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂

           (12) 

It is noted that the in-plane displacements ( )L
u  and ( )L

v  of the L
th

 delaminated portion on the 

delamination edge are induced by the translational motion of the undelaminated portion [37].   

During the dynamic instability analysis, however, the kinematic continuity conditions at the joint 

of the undelaminated portion and each delaminated portion are given by  

(0) ( ) (0) ( )

(0) ( )

(0) (0)

( ) ( ) ( ) ( )

,  ,  

,  

L L

L

L L L L

w w w w
w w

x x y y

w w
u z v z

x y

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂

∂ ∂
= − = −

∂ ∂

  ( 1,2)L =            (13) 

where 
( )Lz  is the position of the mid-plane of the L

th
 delaminated portion with respect to the 

mid-plane of the undelaminated portion along the thickness direction. Different from those in Eq. 



  

(12), the in-plane displacements ( )Lu  and ( )Lv  in Eq. (13) are generated by the rotation of 

transverse normal of the undelaminated portion along the delamination edge [19, 23, 24, 37-41], as 

shown in Fig. 3. These in-plane displacements in Eq. (13) eventually lead to the in-plane 

deformation of the delaminated portions within the delamination region.  

4  Solutions 

4.1 Non-uniform in-plane stress distribution 

VAT composite plates inevitably generate the non-uniform in-plane stress distribution even 

subjected to a simple axial compression, either displacement-controlled or load-controlled [1, 2, 4]. 

Accordingly, it is necessary to perform the prebuckling analysis to determine the non-uniform 

in-plane stress distribution before dynamic instability analysis. For the purpose of simplicity, the 

following two assumptions are made in prebuckling analysis of delaminated VAT composite 

plates:  

(a) The non-uniform in-plane stress distributions obtained under either static or dynamic 

in-plane compression loadings are identical [16-18, 32], and therefore the in-plane stress analysis 

is only performed on delaminated plates loaded by static in-plane compression;  

(b) The laminate layup of each portion of the delaminated VAT plate is balanced, as such no 

extension-shear coupling exists, that is, ( ) ( )
16 260, 0L L

A A= =  [35], and therefore only the boundary 

force xxN  on the edges (x=±a/2) is necessary to be considered [2, 4, 42].  

In the present work, the delaminated VAT plate is subjected to a static uniform axial compression. 

However, the boundary force distribution xxN  with respect to a uniform axial compression is 

implicit and needs to be further determined. Wu and co-workers [2, 42] proposed that the in-plane 

stress problem of the VAT plate under uniform axial compression can be modelled as a 

superposition of VAT plates under the action of a series of axial compression loadings, expressed 

as follows  

1

( ) ( )
J

xx j j

j

N C Lη η
=

=
   at 1ξ = ±                        (14) 

where 2 / , 2 /y b x aη ξ= = . jC  is the unknown coefficient of the j
th

 boundary force 

distribution ( )ηjL  along the edges ( / 2x a= ± ). ( )ηjL  can be represented by the j
th 

Legendre 

polynomial. The total potential energy � of the delaminated VAT plate loaded by a uniform axial 

compression is then expressed as 

{ } { }
( )

2
( ) ( ) ( ) (0)

0 ��

1
[ ] d d d

2 L

L L L
xx

L

x y N u yΠ
=

= −
 �� �
T

� A �                 (15) 

where �
(L)

 represents the integral area of the L
th

 portion; � denotes the boundary edges, that is, 

1ξ = ± .  

The assumed displacement fields of delaminated VAT plates are expanded in terms of both 

global and local shape functions, which can be referred to Ref. [43]. Through the minimization of 



  

potential energy in Eq. (15), a set of linear algebraic equations is obtained and expressed in the 

following matrix form  

m

1

J

j j

j

C
=

⋅ =
K U F                                 (16) 

where 
m

K  is the membrane stiffness matrix; U  the unknown time-independent coefficient 

vector; jF  the vector associated with the j
th

 boundary force ( )ηjL  along the edges ( 1ξ = ± ). 

The end-shortening value corresponding to the j
th 

boundary force ( )ηjL  is then evaluated using 

the following expression [2, 42]  

  
( 0) (0)(1, ) ( 1, )j� ( ) u uη η η= − −                       (17) 

Eventually, the unknown coefficients jC  are computed using a least squares method to fit 

( )j� η  with the given uniform end-shortening value � [2, 42]. In doing so, the in-plane 

displacement fields can be obtained by solving the in-plane stress problem in Eq. (16), and then 

the non-uniform in-plane stress resultants of the delaminated VAT plate loaded by uniform axial 

compression can be determined from Eq. (2). 

4.2 Dynamic instability analysis  

In this section, the dynamic instability analysis is performed on the delaminated VAT composite 

plate under periodically varying uniform axial compression. The strain energy U of the 

delaminated VAT composite plate is expressed in the following form 

{ } { } { } { }
( ) ( )

2 2
( ) ( ) ( ) ( ) ( ) ( )

0 1

1 1
[ ] d d [ ] d d

2 2L L

L L L L L L

L L

U x y x y
= =Ω Ω

= +
 
�� ��
T T

� D � � A �         (18) 

where the second part on the right hand side of Eq. (18) represents the in-plane strain energy 

stored in each delaminated portions within the delamination region. As mentioned above, the 

in-plane deformation of each delaminated portion is induced by the rotation of transverse normal 

of the undelaminated portion along the delamination edge, and thus gives rise to the in-plane strain 

energy within the delamination region. From the energy point of view, the in-plane strain energy of 

each delaminated portion can be regarded as a compensation of the bending strain energy reduction 

of the delamination portions. 

The potential energy V of the delaminated VAT composite plate under the action of periodic 

non-uniform in-plane stress resultants, generated by periodic uniform axial compression, is given 

by  

( )

22
( ) ( ) ( ) ( )2

( ) ( ) ( )

0

( )
2 d d

2 L

L L L L

L L L
xx yy xy

L

u t w w w w
V N N N x y

x y x y= Ω

� �� � � �∂ ∂ ∂ ∂� � � �
= + +� �� � � �� � � �

∆ ∂ ∂ ∂ ∂� � � �� � � � ��� �

 ��     (19) 

  The kinetic energy T of the delaminated VAT composite plate during the perturbed motion is 

expressed as  

( )

2
( ) ( )

0

1
d d

2 L

L L

L

T h w x yρ
= Ω

= 
 �� �                           (20) 



  

where � is the mass density and h
(L)

 is the thickness of the L
th

 portion. The over dot of ( )Lw�  

represents differentiation with respect to time.    

In this work, the assumed displacement fields are expanded in terms of global shape functions, 

which satisfy the geometric boundary conditions in Eq. (10) or Eq. (11), as well as local shape 

functions with null values outside the delamination region. Accordingly, they are expressed as 

( 0) 0 ( ) ( )w w

mn m nw W X Yξ η=                                (21a) 

( ) ( ) 0

( ) ( ) 0

( ) 0

( , ) ( , )

( , ) ( , )

( ) ( ) ( , )

L L u L
pq pq mn mn

L L v L
pq pq mn mn

L w w L w
mn m n mn mn

u U z W g
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where 0

mnW , L

mnW , � L
pqU  and � L

pqV  (L=1,2) are the time-dependent coefficients relating to (0)
w , 

( )L
w , 

( )L
u  and 

( )L
v , respectively. The term ( ) ( )ξ ηw w

m nX Y  represents global shape functions, 

which are constructed by Legendre polynomials multiplying with functions that satisfy the 

geometric boundary conditions in Eq. (10) or Eq. (11). However, the terms ( , )
u
pqψ ξ η , ( , )

v
pqψ ξ η  

and ( , )w
mnψ ξ η  represent local shape functions, which are analogous to geometric boundary 

conditions of clamped edges. The terms 
( ) 0 ( , )L

mn mnz W g ξ η−  and 
( ) 0 ( , )L

mn mnz W h ξ η−  are 

introduced to approximately satisfy kinematic continuity conditions in Eq. (13). For the VAT 

beam-plate with a through-the-width delamination, both global and local shape functions can be 

expressed as 

            

2

2 2 2
1

2 2 2
1

1 1 1 1

1 1

1

1 1

1

( ) ( ) (1 ) ( ) ( )

( , ) ( ) ( ) ( )

( , ) ( , ) ( ) ( ) ( )

d ( ) d ( )
( , ) ( ) ( )

d 2 d 2

d ( ) d (
( , ) ( ) ( )

d 2

w w
m n m n

w
mn m n

u v
pq pq p q

w w
m mw w

mn n n

w w
n nw w

mn m m

X Y L L

L L

L L

X X
g Y Y

Y Y
h X X

ξ η ξ ξ η

ψ ξ η β ξ ξ η

ψ ξ η ψ ξ η β ξ ξ η

β β ξ β ξ β
ξ η η η

ξ β ξ β

η β ξ
ξ η β β

η β

= −

= −

= = −

− − +
= +

−
= − +

1

1

)

d 2

η ξ β

η β

+

       (22) 

where 1 /c aβ = . c is the length of through-the-width delamination, as shown in Fig. 2(a). Both 

global and local shape functions of the VAT plate with an embedded rectangular delamination are 

given by 
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where 2 /c bβ = . Note that, both length and width of embedded delamination are c, as shown in 



  

Fig. 2(b). 

According to Hamilton’s principle, 

 ( )2

1
d 0δ δ δ− + =�

t

t
T U V t                          (24) 

and substituting Eqs. (18)-(20) into Eq. (24), the equation of motion of VAT composite plates with 

a single delamination under periodically varying uniform axial compression is then solved by a 

Rayleigh-Ritz procedure and expressed in the following matrix form,  

( )S cr D cr cos( )Mq Kq Gq=0α α+ − + Ω�� u u t                    (25) 

where q  is the time-dependent vector, that is,  

        { }= 1 1 2 2 0 1 2 T

pq pq pq pq mn mn mnq U V U V W W W  

M , K  and G are the mass, elastic stiffness and geometric stiffness matrices of the 

delaminated VAT composite plate, respectively, and expressed as    

0 0

1 1

2 2

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

W W

W W

W W

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

M= 0 0 0 0 0 0 0

0 0 0 0 M 0 0

0 0 0 0 0 M 0

0 0 0 0 0 0 M

, 

0 0 0 1 0 2

1 0 1 1

2 0 2 2

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

W W W W W W

W W W W

W W W W

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

G= 0 0 0 0 0 0 0

0 0 0 0 L L L

0 0 0 0 L L 0

0 0 0 0 L 0 L

  

      

0

0

2 2 2 2 0

2 2 2 2 2 0

0 0 0 0 2 0 0 0 1 0 2

1 0 1 1

2 0 2 2

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

1 1 1 1 1

1 1 1 1 1

2

1 1 2

U U U V U W

V U V V V W

U U U V U W

V U V V V W

W U W V W U W V W W W W W W

W W W W

W W W W

K K 0 0 K 0 0

K K 0 0 K 0 0

0 0 K K K 0 0

K= 0 0 K K K 0 0

K K K K K K K

0 0 0 0 K K 0

0 0 0 0 K 0 K

 

The terms associated with the vector { }1 1 2 2 T
pq pq pq pqU V U V  in the elastic stiffness matrix are 

derived from the second part on the right hand side of Eq. (18). It is found that the vector 

{ }1 1 2 2 T
pq pq pq pqU V U V  can be linearly represented by the vector { }

T0

mnW . By means of matrix 

manipulation, Eq. (25) can be reduced to  

( )S cr D cr cos( )u u tα αΘ+ Θ− + Ω Θ�� �� �M K G =0                  (26) 

where Θ  is the time-dependent vector, that is, { }Θ = 0 1 2 T
mn mn mnW W W . Additionally, the 

modified stiffness matrices �M , �K  and �G  are expressed as 
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Note, the additional stiffness matrix 
0 0

ˆ
W WK  is critically important to accurately predict the 

buckling, vibration and dynamic instability response of delaminated VAT composite plates. Eq. 

(26) represents a system of differential equations with periodic coefficients of the Mathieu type, 

describing nonlinear instability behavior of the delaminated VAT composite plate. If harmonic and 

mass terms are neglected, Eq. (26) is then reduced to an eigenvalue equation governing the 

buckling problem, expressed as   

( )λ Θ��K+ G =0                              (27) 

where λ  is the eigenvalue. The lowest eigenvalue crλ  represents the critical buckling 

end-shortening value, that is, cr cruλ = . Critical buckling loads of delaminated VAT composite 

plates are then evaluated by the following relation [1, 2, 4], 

/2crcr

/ 2
( )d

b

x xx
b

N N y y
b

λ
−

= �    at / 2x a= ±                 (28) 

If neglecting the third term on the left hand of Eq. (26), natural frequencies of delaminated VAT 

composite plates are obtained as  

Θ+ Θ� �� �M K =0                             (29) 

In view of Eq. (29), both upper and lower delaminated portions deform freely without touching 

each other, and thus have independent transverse deformations. As such, the model described 

above is referred to as ‘free model’. However, the vibrational mode shape obtained using the free 

model may be physically inadmissible for an off-midplane delamination [20, 24, 44]. To address 

this problem, Mujumdar and Suryanarayan [20] proposed that both upper and lower delaminated 

portions are constrained to have identical transverse displacements. This model is called 

‘constrained model’ in contrast to the ‘free model’. In practice, however, delamination may 

breathe (open and close) during the period of the motion [22]. As illustrated in Fig. 4, the 

delamination opens when the delaminated beam vibrates upward, whereas the delamination 

remains closed when the delaminated beam vibrates downward. In the former case, the free model 

appears to the delaminated beam, as shown in Fig. 4 (a), while the latter case corresponds to the 

constrained one, as shown in Fig. 4 (c). Nevertheless, the above free and constrained models 

provide the lower and upper bounds of vibrational frequency for delaminated composite plates, 

respectively [23, 24]. To determine the upper bound of vibrational frequency for delaminated VAT 

composite plates, vibration analysis is therefore performed on the constrained model by 



  

introducing an additional constraint condition, that is, w
(1)

=w
(2)

. 

If only the harmonic term is neglected, Eq. (26) is then reduced to  

S cr( )uαΘ+ − Θ�� �� �M K G =0                         (30) 

Solving Eq. (30), natural frequencies of delaminated VAT composite plates under the action of the 

static compressive loading are obtained.  

This paper is mainly focused on the determination of instability boundaries for the principle 

dynamic instability region (DIR), which is of practical importance. To obtain points on the 

boundaries of the principle DIR, the solutions with period 2T (T=2�/�) of Eq. (26) can be written 

in the Fourier series [10]:  

( )
1,3,5

sin( / 2) cos( / 2)k k

k

k t k t
∞

=

Θ Ω + Ω
= a b                  (31) 

where ak and bk are the time-independent vectors and are infinite in number. Substituting Eq. (31) 

into Eq. (26) leads to infinite determinants [10]. However, approximate solutions can be obtained 

by truncating the Fourier series in Eq. (31), and a first order approximation is sufficient to 

accurately predict the upper and lower instability boundaries bounding the principle DIR [13, 14, 

16-18]. Accordingly, in this work, the solution of Eq. (26) is approximated by 

1 1sin( / 2) cos( / 2)t tΘ Ω + Ω=a b                      (32) 

By substituting the one-term series solutions into the Mathieu equation (26), the following 

simplified eigenvalue problems can be obtained and expressed as    

( ) 2
S D cr 1 1[ 0.5 ]{ } 0.25 { } 0uα α− + − Ω =�� �K G a M a              (33a) 

( ) 2

S D cr 1 1[ 0.5 ]{ } 0.25 { } 0uα α− − − Ω =�� �K G b M b             (33b) 

Eqs. (33a) and (33b) determine the upper and lower instability boundaries of the principle DIR, 

respectively. 

5  Results and discussions 

In this section, numerical validation of VAT composite plates with a single delamination is 

performed by solving the buckling and vibration eigenvalue problems. Subsequently, results from 

dynamic instability analysis of delaminated VAT composite plates are presented in details. To verify 

the accuracy of the proposed analytical model, the behavior of VAT composite plates with a single 

delamination was simulated using commercial FEM software (Abaqus). A subroutine was 

developed to generate composite elements with independent fibre orientations. The SC8R shell 

element was chosen for the prebuckling, buckling and vibration analysis of delaminated VAT 

composite plates. To achieve the required accuracy, very fine meshes (60×60×16) were selected. In 

the delamination modelling, two sets of collocated shells, each of which represents an intact 

sublaminate, were incorporated into the FE model. The nodal displacements of two adjacent 

surfaces of the two sublaminates over the undelaminated region were tied using the multi-point 

constraints (MPCs). To facilitate the comparison of the numerical results, the following three 



  

notations are defined: Normalized Delamination Position (NDP=h1/h); Normalized Delamination 

Length (NDL=c/a) and Normalized Delamination Area (NDA=c
2
/ab).  

5.1 Model validation  

Buckling analysis is first performed on a simply supported beam-plate with a through-the-width 

delamination, which was initially studied by Simitses et al. [41]. As shown in Table 1, the critical 

buckling loads predicted using the present Rayleigh-Ritz model for this delaminated beam-plate 

correlated with the results given by Simitses et al. [41] and FEM. 

Subsequently, vibration analysis using the present Rayleigh-Ritz model is verified on a clamped 

beam-plate problem with a through-the-width delamination, which was studied by Wang et al. [19]. 

In this study, only free model is considered. The non-dimensional natural frequencies of 

delaminated beam-plates are compared with the results given by Wang et al. [19], Lee [22] and 

FEM. Excellent agreement between these predicted results has arrived, as shown in Table 2. 

  A further verification of vibration analysis is performed on a T300/934 graphite/epoxy cantilever 

beam-plate with a [0/90]2s stacking sequence, which was also studied in Shen et al.’s work [21]. The 

length and width of the cantilever beam-plate are a=127mm and b=12.7mm, respectively. The 

lamina properties are E11=134.5GPa, E22=10.3GPa, G12=5.0GPa, v12=0.33 and �=1480Kg/m
3 
with 

ply thickness that is 0.127mm. Note, the bending-extension coupling within each delaminated 

portion is taken into account using the method of reduced bending stiffness (RBS) [36]. Four 

different positions for the delamination (as also denoted by interface 1, 2, 3 and 4 in [21]) with 

NDP=0.5, 0.375, 0.25 and 0.125 are considered, respectively. Five different sizes (length) for the 

delamination with NDL= 0.0 (intact), 0.2, 0.4, 0.6 and 0.8 are chosen to study, respectively. Herein, 

both free and constrained models are applied to predict the natural frequencies of delaminated 

beam-plates. Tables 3-6 list the fundamental frequencies of cantilever beam-plates with 

delamination for different NDP/NDL combinations. The results obtained using present method are 

compared with those given by Shen and Grady [21], Luo and Hanagud [23], Shu and Della [24, 44], 

and the FEM simulation, as shown in Tables 3-6. From Tables 3-5, it is clearly seen that the 

fundamental frequencies predicted by the present free and constrained models are in good 

agreement with experimental results [21], analytical results [23, 24, 44] and FEM results. However, 

it was also observed from Table 6 that there is a big discrepancy between the experimental results 

[21] and other results for the case that NDP=0.125. This is an experimental error, which is 

indicated by Luo and Hanagud [23].  

In the free model, no delamination opening within the delamination region was found when the 

delamination interface is closed to the mid-plane (NDP=0.5 and NDP=0.375). Under such 

circumstance, the free and constrained models are essentially the same and thus give identical 

results of fundamental frequencies, as shown in Tables 3 and 4. However, when the delamination 

layer is off the mid-plane (NDP=0.25 and NDP=0.125), the upper and lower delaminated portions 

in the free model were found to separate from each other. This opening mode becomes more 

apparent with the increasing of delamination length (NDL value). The vibrational mode shapes 



  

along the x-axis (y=0.0) for the cases with an off mid-plane delamination (NDP=0.125) with four 

different delamination sizes (NDL=0.2, 0.4, 0.6 and 0.8) are obtained using the present free model, 

and plotted in Fig. 5. It is clearly seen that there is a transition from closed to open in the 

vibrational mode shape with the increasing NDL value. Luo and Hanagud arrived at the similar 

conclusion in [23]. Therefore, the free model and the constrained model will lead to different 

results in the vibration analysis of delaminated beam-plates when the delamination interface is off 

the mid-plane. Such difference will be enlarged with the increasing of delamination size (NDL 

value). 

In the present work, for VAT configurations, up to 6
th

 order Legendre polynomials in the 

expression of Eqs. (14) and (16) were taken to determine the non-uniform in-plane stress 

distribution, accurately. Besides, it was found that 7
th

 order Legendre polynomials for both global 

and local displacement shape functions in the expression of Eq. (22) are needed to obtain the 

convergent results for the buckling, free vibration and dynamic instability analysis.  

5.2 Buckling and vibration response of delaminated VAT plates 

The buckling and vibration response of VAT composite plates with an embedded rectangular 

delamination is studied in this section. The length and width of VAT laminates are both 

a=b=814mm. The material properties of lamina are E11=181GPa, E22=10.3GPa, G12=7.17GPa, 

v12=0.28 and �=1540Kg/m
3 
and the thickness of each ply equals to 0.127mm. The laminate layup of 

VAT composite plates is chosen to be [±〈0,30〉]4s and the boundary conditions are simply 

supported at all four edges. In the buckling analysis, the delaminated VAT plate is loaded by a 

uniform displacement compression with transverse edges free to deform. 

The bucking coefficient of the delaminated VAT composite plate is defined as [1, 2, 4] 

cr 2

cr
3

11

=
xN a

K
E h

                                 (34) 

In Fig. 6, the buckling coefficient of delaminated VAT plate that varies with respect to the 

delamination size (NDA) are plotted for two different delamination positions, that is, NDP=0.25 

and NDP=0.5. As shown in Fig. 6, results predicted by the present analytical model show excellent 

agreement with FEM results. It is clearly seen that the buckling coefficient initially remains almost 

constant and then gradually decreases with the increase of delamination size (NDA). Further, it is 

observed that the reduction of buckling coefficient for the off mid-plane delamination case 

(NDP=0.25) is more pronounced than that of the mid-plane delamination (NDP=0.5). For the 

former case, the thinner and thicker delaminated portions were found to separate from each other 

when the delamination size (NDA) becomes large. Therefore, the delamination results in an 

opening mode shape, which significantly reduces the buckling coefficient. A detailed study on the 

buckling behavior of delaminated VAT composite plates had been presented in our previous works 

[43].  

The natural frequency of the delaminated VAT composite plate is normalized and defined as [18, 
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Table 7 lists normalized natural frequencies obtained using both the free and constrained models 

for different NDP/NDA combinations. FEM results based on the free model are obtained and 

included for the purpose of comparison. As presented in Table 7, results given by the proposed free 

model and FE analysis are found to be in good agreement. From Table 7, it is clearly seen that for 

both free and constrained models, the normalized natural frequency � initially remains unchanged, 

and subsequently decreases with the increase of delamination size (NDA). It is further observed 

that the normalized natural frequency � obtained using the constrained model is reduced more 

severely for the midplane delamination case (NDP=0.5) than that of the off-midplane 

delamination (NDP=0.25). This is because that the delamination opening mode is not considered 

in the constrained model even for an off-midplane delamination (NDP=0.25). In this case, the loss 

of bending stiffness within the delamination region is the only reason for the decrease of natural 

frequency. The closer to the midplane, the delamination interface results in more loss of bending 

stiffness. However, the reduction of natural frequency predicted by the free model is more 

prominent for the off-midplane delamination case (NDP=0.25) than that of the midplane 

delamination (NDP=0.5). In this case, natural frequencies obtained for NDP = 0.25 may be further 

reduced by the occurrence of opening mode shape when the delamination size (NDA) becomes 

relatively large. 

  Fig. 7 compares vibrational mode shapes of the delaminated VAT laminate [±〈0,30〉]4s for 

different NDP/NDA combinations predicted by the analytical method and FEM (based on the free 

model). Two different delamination positions (NDP=0.25 and 0.5) and four different delamination 

sizes (NDA=0.0, 0.25, 0.49 and 0.81) are considered herein. As shown in Fig. 7, vibrational mode 

shapes obtained using the present free model match very well with FE results. For the case of 

midplane delamination (NDP=0.5), both delaminated portions deform by the same amount and 

there is no delamination opening observed during the period of the motion. For this case (midplane 

delamination), the free and constrained models are essentially the same and thus natural frequencies 

obtained using these two models are identical, as illustrated in Table 7. However, for the case of an 

off-midplane delamination (NDP=0.25), the upper and lower delaminated portions separate from 

each other (delamination opening occurs) when the delamination size is gradually increased. Note, 

there remains a risk that the vibrational mode shapes predicted by the free model for the off 

mid-plane delamination case are physically inadmissible. In this case, the bending stiffness of the 

thinner delaminated portion is much smaller than that of the thicker portion. Therefore, the 

amplitude of the vibration in the thinner delaminated portion is much larger than that of the thicker 

one. As a result, natural frequencies predicted by the present free model are significantly affected 

by the occurrence of delamination opening, especially for a large delamination size (NDA), as 

illustrated in Table 7. 



  

Subsequently, the influence of static in-plane compressive load on the natural frequencies of 

delaminated VAT composite plates is studied. Only the mid-plane delamination (NDP=0.5) is 

considered in this study. The delaminated VAT composite plate is loaded by uniform axial 

compression with the static load parameter �S ranging from 0.0 to 1.0. Note, �S=0.0 denotes the 

state of free vibration for delaminated VAT composite plates; �S=1.0 indicates that the delaminated 

VAT composite plates have already buckled. The variation of normalized natural frequency � with 

respect to the static in-plane compressive load �SKcr for four different delamination sizes 

(NDA=0.0, 0.25, 0.49 and 0.81) are plotted in Fig. 8, and validated with FEM results. It is 

observed that the natural frequency � decreases with increasing the static in-plane compressive 

load �SKcr. 

5.3 Dynamic instability response of delaminated VAT plates 

This section presents the dynamic instability analysis of delaminated VAT composite plates 

under periodically varying uniform axial compression. The delaminated VAT plates are simply 

supported at all four edges. Since only an embedded rectangular midplane delamination is 

considered, both the opening problem and contact problem [37, 40] are not taken into account in 

the dynamic instability analysis. The influence of delamination size, static load parameter and 

varying fibre orientation angle on the dynamic instability response of delaminated VAT composite 

plates will be studied in details.  

5.3.1 Effect of delamination size 

This section studies the effect of delamination size on the dynamic instability response of 

delaminated VAT composite plates. The VAT laminate plates [±〈0,30〉]4s with four different 

delamination sizes (NDA=0.0, 0.25, 0.49 and 0.81) are examined in the analysis. The static load 

parameter �S is set to be 0.0, while the dynamic load parameter �D increases from 0.0 to 1.0. The 

boundary resonance frequencies are normalized using Eq. (35), in which the natural frequency � 

is replaced by the excitation frequency �. 

  The upper and lower boundary resonance frequencies ( Ω� ) of VAT composite plates with 

different delamination sizes (NDA) are obtained and plotted in Fig. 9 (a), with respect to the 

dynamic in-plane compressive load (�DKcr). Note, the value of �DKcr equals to the critical buckling 

coefficient at �D=1.0, beyond which the delaminated VAT composite plates are completely 

unstable. The principal DIR of each delaminated VAT composite plate shown in Fig. 9 (a) starts at 

a tip point where the parametric resonance frequency is twice its fundamental natural frequency. 

From Fig. 9 (a), it is observed that the increase of delamination size (NDA) leads to: (1) early 

onset of instability and wider DIR; (2) the principal DIR is shifted towards lower parametric 

resonance frequencies; (3) the curves bounding the principle DIR are reduced to a smaller range of 

the dynamic in-plane compressive load (�DKcr). This is mainly attributed to the reduction of 

natural frequency and critical buckling load induced by the occurrence of delamination. These 

numerical results indicate that the delaminated VAT composite plate becomes much more dynamic 



  

unstable when the delamination size is increased. 

The dynamic instability of a composite laminate is closely related to its fundamental natural 

frequency and critical buckling load [16]. Thus, a dynamic instability index (DII) is defined to 

characterize the dynamic instability performance of delaminated VAT composite plates and 

represented as [16, 18] 

cr

DIO
DII

ω
=

K
                                 (36) 

where DIO, known as the dynamic instability opening, is the distance between the two boundaries 

of the DIR. It represents the range of the parametric resonance frequency at a specific dynamic 

load parameter �D [12, 16]. A larger value of DII indicates that the plate is more dynamically 

unstable. The DII value of the delaminated VAT plate [±〈0,30〉]4s at �D=0.4 that varies with respect 

to the delamination size (NDA) is plotted in Fig. 9 (b). As shown in Fig. 9 (b), with the increase in 

delamination size (NDA), the DII value dramatically increases, and thus the delaminated VAT 

plate becomes more dynamically unstable. The primary reason is attributed to the reduction in 

natural frequency and critical buckling load and the increase of DIO value for an increasing 

delamination size.   

5.3.2 Effect of static load parameter 

  The influence of the static in-plane compressive load on the dynamic instability response of 

delaminated VAT composite plates is studied in this section. The static load parameter �S increases 

from 0.0 to 0.6 with a step of 0.2, while the dynamic load parameter �D varies from 0.0 to 1.0. The 

boundary resonance frequencies of the delaminated VAT plate [±〈0,30〉]4s with a large 

delamination size (NDA=0.49) under four different static load parameters (�S=0.0, 0.2, 0.4 and 0.6) 

are obtained and plotted in Fig. 10 (a). As shown in Fig. 10 (a), the principal DIR of the 

delaminated VAT plate [±〈0,30〉]4s becomes wider and shifted to lower frequency when the static 

load parameter �S is increased. For the case of �S=0.6, the lower resonance frequency boundary 

terminates at �DKcr=0.89, beyond which the delaminated VAT composite plate becomes 

completely unstable. This implies that the presence of the static in-plane compressive load further 

leads to significant dynamic instability of the delaminated VAT plate.  

The variation of the DII value evaluated at �D=0.3 with respect to the static load parameter �S is 

plotted in Fig. 10 (b). It is found that the DII value is dramatically increased with increasing the 

static load parameter �S. It thus indicates that a higher static compressive load leads to a larger 

instability of delaminated VAT plates. 

5.3.3 Effect of varying fibre orientation angles   

Dynamic instability analysis is then performed on the delaminated VAT layups [90±〈T0,T1〉]4s 

with linear variation of fibre angles. Firstly, the influence of fibre orientation angles on the 

principal dynamic instability region (DIR) of delaminated VAT plates [90±〈0,T1〉]4s is studied in 

details. Herein, T1 increases from 0° to 80° with an incremental step of 20°. The static load 



  

parameter �S is set to be 0.0, while the dynamic load parameter �D increases from 0.0 to 1.0.  

The DIRs of the delaminated VAT plates [90±〈0,T1〉]4s for four different delamination sizes 

(NDA=0.0, 0.25, 0.49 and 0.81) are evaluated and plotted in Fig. 11. It is clearly seen that for 

these VAT layups, the increase of delamination size (NDA value) leads to an early onset of 

dynamic instability. This is due to the reduction of natural frequency of VAT plates induced by the 

occurrence of delamination. However, the instability onset of VAT laminates starts at a higher 

resonance frequency than that of straight-fiber laminates even if there exists a delamination. For 

instance, when NDA=0.49, the VAT layup [90±〈0,60〉]4s shows an improvement of 25.7% over the 

straight-fibre layup [90±〈0,0〉]4s. With an increase of NDA value, the principle DIR of each layup 

tends to be wider and shifted towards lower parametric resonance frequencies, and the two curves 

bounding the principle DIR extend to a smaller range of the dynamic in-plane compressive load 

(�DKcr). It implies that VAT composite plates become more dynamically unstable when the 

delamination size is increased. At different NDA values, the boundaries of the principle DIR for 

the VAT plate [90±〈0,80〉]4s have the largest extension in terms of the dynamic in-plane 

compressive load (�DKcr), indicating that the VAT layup [90±〈0,80〉]4s achieves better dynamic 

stability performance than other layups. This also implies that the dynamic stability can be 

significantly improved through introducing the VAT concept. Load redistribution that is away 

from the center of the plate towards transverse boundary edges is the primary mechanism for this 

substantial improvement in critical buckling load, which therefore enables the VAT layup 

[90±〈0,80〉]4s to achieve better dynamic stability performance. This mechanism remains in effect 

even if there exists a delamination.  

The DII values of the delaminated VAT plates [90±〈T0,T1〉]4s are then predicted by the proposed 

method. In this case, both T0 and T1 increase from 0° to 90° with an incremental step of 10°. The 

static load parameter �S and dynamic load parameter �D are set to be 0.0 and 0.3, respectively. For 

comparison purposes, the DII and prebuckling stiffness Evat of delaminated VAT plates are 

normalized with respect to those of an intact quasi-isotropic laminate, respectively. The 

prebuckling stiffness Evat is defined as [1, 2, 4] 

/ 2 ( 0)
vat

2 / 2
( / 2, )d

b

xx
b

a
E N a y y

hb −
=

∆
�                      (37) 

And the evaluation of DII value of the intact quasi-isotropic laminate is based on an equivalent 

bending stiffness, given by [4, 7],   
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D E U

U
              (38) 

where 	iso and Eiso are the equivalent Poisson’s ratio and equivalent Young’ modulus, respectively. 

Fig. 12 shows the normalized DII value versus normalized prebuckling stiffness for all VAT 

configurations with four different delamination sizes (NDA), namely, 0.0, 0.25, 0.49 and 0.81. 

Each curve is generated by varying T1 from 0° at the left-end to 90° at the right-end for a given 

value of T0. As shown in Fig. 12, for all VAT configurations, the normalized DII value increases 



  

with an increase of the delamination size (NDA). It thus indicates that the delaminated VAT plates 

become more dynamically unstable when the delamination size is increased. The reduction of 

natural frequency and critical buckling load of laminated plates and the increase of DIO value, 

induced by the occurrence of delamination, eventually lead to the increase of DII values. However, 

it was found that the VAT layup [90±〈0,80〉]4s gives the minimum DII value for all the delamination 

sizes. At each NDA value of 0.0, 0.25, 0.49 and 0.81, the minimum DII value of the VAT layup 

[90±〈0,80〉]4s shows an improvement of 44.4%, 46.3%, 50.7% and 49.4% over that given by the 

straight-fiber laminate [±45]4s, respectively. As explained previously, the benign non-uniform load 

redistribution given rise by the non-uniform extensional stiffness is the major reason for the VAT 

layup [90±〈0,80〉]4s to achieve the maximum critical buckling load and the minimum DII value. This 

also implies that the benign load redistribution induced by the variable stiffness properties is more 

critical to this substantial improvement in dynamic stability. In addition, as shown in Fig. 12, 

when the normalized prebuckling stiffness is between 0.4 and 1.6, the VAT layups offer additional 

freedom in stiffness tailoring to achieve improved dynamic stability performance for composite 

laminated plates, even the delamination occurs. These results clearly demonstrate the distinct 

superiority of applying variable stiffness properties to enhance the dynamic stability response of 

composite laminated plates with a single delamination.  

6  Conclusions 

In this study, an improved analytical model was developed to perform the dynamic instability 

analysis of VAT composite plates with a single delamination subjected to periodically varying 

in-plane compressive loading. The equations of motion associated with dynamic instability were 

derived using Hamilton’s principle, and the dynamic instability regions were determined using 

Bolotin’s approach. The Rayleigh-Ritz approach was adopted to solve the in-plane stress 

distribution and dynamic instability problems. Results of buckling loads and natural frequencies 

obtained by the proposed method well matched with previous published results and FEA results. 

The following conclusions were arrived from the analysis: 

(1) Critical buckling loads decrease with the increase of delamination size. Such reduction is 

more pronounced for composite laminates with an off-midplane delamination; 

(2) Natural frequencies also decrease with the increase of delamination size. Such reduction for 

composite laminates with a mid-plane delamination is more pronounced when the delamination 

problem is modelled by the constrained model. However, for laminates with an off-midplane  

delamination, such reduction is more pronounced when the free model is used; 

(3) The increase of delamination size leads to an early onset of the dynamic instability. With the 

increasing of delamination size, the dynamic instability regions are shifted to lower parametric 

resonance frequencies and lessened to a smaller range with respect to in-plane compressive load; 

(4) The dynamic instability of delaminated VAT plates is further reduced when a static in-plane 

compressive loading is applied;  

(5) Substantial improvement of dynamic stability performance of delaminated VAT composite 



  

plates is achieved when the majority of compressive load is redistributed to the supported edges; 

(6) Compared to the straight-fibre laminates, the VAT laminates offer additional freedom in 

stiffness tailoring to achieve improved dynamic stability performance against the occurrence of 

delamination. 
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Figure captions 

Fig. 1 A delaminated VAT plate is divided into three portions by the delamination interface 

Fig. 2 The in-plane boundary conditions of a VAT composite plate with a single delamination 

under periodically varying uniform axial compression: (a) VAT plate with a through-the-width 

delamination; (b) VAT plate with an embedded rectangular delamination 

Fig. 3 Deformation process of delaminated portions along the delamination edge 

Fig. 4 Two possible vibration mode shapes of a clamped beam-plate with an off-midplane 

delamination during the period of the motion 

Fig. 5 Vibrational mode shapes of a cantilever beam-plate [0/90]2s obtained by the present free 

model while NDP=0.125 for different NDL values, that are 0.2, 0.4, 0.6 and 0.8.  

Fig. 6 Buckling coefficient versus NDA value of the VAT composite plate [±〈0,30〉]4s with an 

embedded rectangular delamination with respect to two different delamination positions 

(NDP=0.5 and 0.25) 

Fig. 7 Vibrational mode shapes of the VAT composite plate [±〈0,30〉]4s with an embedded 

rectangular delamination obtained using the free model for various NDP/NDA combinations 

Fig. 8 Normalized natural frequency � versus static in-plane compressive load �SKcr of the 

VAT composite plate [±〈0,30〉]4s with an embedded rectangular delamination obtained for four 

different NDA values, namely, 0.0, 0.25, 0.49 and 0.81 

Fig. 9 Variation in dynamic instability with different NDA values for the VAT composite plate 

[±〈0,30〉]4s with an embedded rectangular delamination under periodically varying uniform 

axial compression. (a) Principle dynamic instability region (DIR) versus NDA value; (b) 

Dynamic instability index (DII) versus NDA value 

Fig. 10 Variation in dynamic instability with the static load parameter for the VAT composite 

plate [±〈0,30〉]4s with an embedded rectangular delamination under periodically varying 

uniform axial compression. (a) Principle dynamic instability region (DIR) versus the static load 

parameter; (b) Dynamic instability index (DII) versus the static load parameter 

Fig. 11 Principle dynamic instability regions of square simply supported VAT plates 

[90±〈0,T1〉]4s with different fiber angles T1 at four different NDA values, namely, 0.0, 

0.25,0.49 and 0.81 

Fig. 12 Normalized DII value versus normalized prebuckling stiffness of square simply 

supported VAT plates [90±〈T0,T1〉]4s with different fiber angles T0 and T1 at four different NDA 



  

values (0.0, 0.25,0.49 and 0.81). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table 

Table 1 Dimensionless critical buckling loads of a simply supported beam-plate with a 

through-the-width delamination for different NDP/NDL combinations 

NDL 

NDP=0.5 NDP=0.3 

Present Simitses [41] FEM Present Simitses [41] FEM 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.1 0.9999 0.9999 1.0000 0.9999 1.0000 0.9998 

0.2 0.9997 0.9997 0.9997 0.9996 0.9997 0.9991 

0.3 0.9979 0.9980 0.9981 0.9969 0.9971 0.9958 

0.4 0.9912 0.9912 0.9909 0.9850 0.9827 0.9849 

0.5 0.9726 0.9729 0.9728 0.9401 0.9402 0.9377 

0.6 0.9345 0.9343 0.9345 0.8151 0.8149 0.8134 

0.7 0.8706 0.8703 0.8705 0.6487 0.6484 0.6467 

0.8 0.7870 0.7867 0.7867 0.5120 0.5118 0.5116 

0.9 0.6970 0.6966 0.6965 0.4108 0.4106 0.4101 

Table 2 The non-dimensional natural frequencies of a clamped beam-plate with a 

through-the-width delamination obtained using the proposed free model for different 

NDP/NDL combinations 

NDL 

NDP=0.5 NDP=0.25 

Present Wang [19] Lee [22] FEM Present Wang [19]  FEM 

0.0 22.36 22.39 22.36 22.38 22.36 22.39 22.38 

0.1 22.35 22.37 22.36 22.38 22.36 22.37 22.38 

0.2 22.32 22.35 22.35 22.34 22.33 22.35 22.35 

0.3 22.20 22.23 22.23 22.20 22.14 22.16 22.14 

0.4 21.80 21.83 21.82 21.85 21.36 21.37 21.39 

0.5 20.85 20.88 20.88 20.70 18.82 18.80 18.49 

0.6 19.26 19.29 19.28 19.37 14.65 14.62 14.88 

0.7 17.22 17.23 17.22 17.33 11.15 11.12 11.25 

0.8 15.05 15.05 15.05 14.99 8.65 8.64 8.62 

0.9 13.00 13.00 12.99 13.03 6.88 6.88 6.87 

 

 



  

Table 3 Comparison of natural frequencies of a cantilever beam-plate [0/90]2s with a 

through-the-width delamination with NDP=0.5 (unit: Hz) 

NDL 

Present Shen [21] Luo [23] Shu [24, 44] FEM 

Free Cons Averaged test Free Cons Free Cons Free 

0.0 82.19 82.19 79.83 81.86 81.86 81.88 81.88 82.10 

0.2 80.81 80.81 78.17 81.45 81.45 80.47 80.47 81.11 

0.4 76.72 76.72 75.38 76.81 76.81 75.36 75.36 76.36 

0.6 67.53 67.53 66.96 67.64 67.64 66.13 66.14 67.00 

0.8 56.18 56.18 57.54 56.95 56.95 55.67 55.67 56.10 

Table 4 Comparison of natural frequencies of a cantilever beam-plate [0/90]2s with a 

through-the-width delamination with NDP=0.375 (unit: Hz) 

NDL 

Present Shen [21] Luo [23] Shu [24, 44] FEM 

Free Cons Averaged test Free Cons Free Cons Free 

0.0 82.19 82.19 79.83 81.86 81.86 81.88 81.88 82.10 

0.2 81.02 81.02 77.79 80.86 80.86 80.58 80.58 81.27 

0.4 77.25 77.25 75.13 76.62 76.62 75.81 75.81 76.67 

0.6 68.76 68.76 67.96 68.80 68.80 67.05 67.05 67.92 

0.8 56.39 56.39 48.33 59.34 59.34 56.86 56.86 57.15 

Table 5 Comparison of natural frequencies of a cantilever beam-plate [0/90]2s with a 

through-the-width delamination while NDP=0.25 (unit: Hz) 

NDL 

Present Shen [21] Luo [23] Shu [24, 44] FEM 

Free Cons Averaged test Free Cons Free Cons Free 

0.0 82.19 82.19 79.83 81.86 81.86 81.88 81.88 82.10 

0.2 81.63 81.63 80.13 82.01 82.02 81.53 81.53 81.87 

0.4 80.04 80.05 79.75 80.74 80.79 80.09 80.13 80.45 

0.6 76.46 76.57 76.96 77.52 77.82 76.75 77.03 77.01 

0.8 71.23 71.66 72.46 71.73 72.46 70.92 72.28 71.00 

 

 

 



  

Table 6 Comparison of natural frequencies of a cantilever beam-plate [0/90]2s with a 

through-the-width delamination at NDP=0.125 (unit: Hz) 

NDL 

Present Shen [21] Luo [23] Shu [24, 44] FEM 

Free Cons Averaged test Free Cons Free Cons Free 

0.0 82.19 82.19 79.88 81.86 81.86 81.88 81.88 82.10 

0.2 81.76 81.76 79.96 82.03 82.04 81.57 81.57 81.90 

0.4 80.36 80.37 68.92 80.87 80.95 80.31 80.33 80.68 

0.6 77.08 77.22 62.50 77.61 78.29 77.41 77.56 77.69 

0.8 71.98 72.66 55.63 69.44 74.05 72.51 73.22 72.65 

Table 7 The normalized natural frequencies of the VAT composite plate [±〈0,30〉]4s with an 

embedded rectangular delamination for different NDP/NDA combinations 

NDA 

NDP=0.5 NDP=0.25 

R-R FEM R-R FEM 

Free Cons Free Free Cons Free 

0.00 15.3593 15.3593 15.3214 15.3593 15.3593 15.3214 

0.01 15.3593 15.3593 15.3214 15.3593 15.3593 15.3214 

0.04 15.3580 15.3580 15.3190 15.3538 15.3611 15.3198 

0.09 15.3470 15.3470 15.3063 15.3422 15.3468 15.2944 

0.16 15.3039 15.3039 15.2635 15.2755 15.3346 15.2287 

0.25 15.1588 15.1588 15.0639 15.0207 15.2704 14.8952 

0.36 14.8039 14.8039 14.7510 14.2168 15.1107 14.1973 

0.49 14.1289 14.1289 14.0745 12.3392 14.7893 12.3396 

0.64 13.1253 13.1253 13.0772 9.9959 14.2555 9.9956 

0.81 11.9068 11.9068 11.8770 8.0156 13.5065 7.9930 
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