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ABSTRACT
In this paper, we propose RNN-Capsule, a capsule model based
on Recurrent Neural Network (RNN) for sentiment analysis. For
a given problem, one capsule is built for each sentiment category
e.g., ‘positive’ and ‘negative’. Each capsule has an attribute, a state,
and three modules: representation module, probability module, and
reconstruction module. The attribute of a capsule is the assigned
sentiment category. Given an instance encoded in hidden vectors by
a typical RNN, the representation module builds capsule representa-
tion by the attention mechanism. Based on capsule representation,
the probability module computes the capsule’s state probability. A
capsule’s state is active if its state probability is the largest among
all capsules for the given instance, and inactive otherwise. On two
benchmark datasets (i.e., Movie Review and Stanford Sentiment
Treebank) and one proprietary dataset (i.e., Hospital Feedback),
we show that RNN-Capsule achieves state-of-the-art performance
on sentiment classification. More importantly, without using any
linguistic knowledge, RNN-Capsule is capable of outputting words
with sentiment tendencies reflecting capsules’ attributes. The words
well reflect the domain specificity of the dataset.
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1 INTRODUCTION
Sentiment analysis, also known as opinion mining, is the field of
study that analyzes people’s sentiments, opinions, evaluations, atti-
tudes, and emotions from written languages [20, 26]. Many neural
network models have achieved good performance, e.g., Recursive
Auto Encoder [33, 34], Recurrent Neural Network (RNN) [21, 35],
and Convolutional Neural Network (CNN) [13, 14, 18].
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Despite the great success of recent neural network models, there
are some defects. First, existing models focus on, and heavily rely
on, the quality of instance representations. An instance here can be
a sentence, paragraph or document. Using a vector to represent sen-
timent is much limited because opinions are delicate and complex.
The capsule structure in our work gives the model more capacity
to model sentiments. Second, linguistic knowledge such as senti-
ment lexicon, negation words (e.g., no, not, never), and intensity
words (e.g., very, extremely), need to be carefully incorporated into
these models to realize their best potential in terms of prediction
accuracy. However, linguistic knowledge requires significant efforts
to develop. Further, the developed sentiment lexicon may not be
applicable to some domain specific datasets. For example, when
patients give feedback to hospital services, words like ‘quick’ and
‘caring’ are all considered strong positive words. These words, are
unlikely to be considered strong positive in movie reviews. Our cap-
sule model does not need any linguistic knowledge, and is able to
output words with sentiment tendencies to explain the sentiments.

In this paper, we make the very first attempt to perform senti-
ment analysis by capsules. A capsule is a group of neurons which
has rich significance [30]. We design each single capsule1 to contain
an attribute, a state, and three modules (i.e., representation module,
probability module, and reconstruction module).
• The attribute of a capsule reflects its dedicated sentiment cate-
gory, which is pre-assigned when we build the capsule. Depend-
ing on the number of sentiment categories in a given problem,
the same number of capsules are built. For example, Positive
Capsule and Negative Capsule are built for a problem with two
sentiment categories.

• The state of a capsule, i.e., ‘active’ or ‘inactive’, is determined by
the probability modules of all capsules in the model. A capsule’s
state is ‘active’ if the output of its probability module is the
largest among all capsules.

• Regarding the three modules, representation module uses the
attention mechanism to build capsule representation; Proba-
bility module uses the capsule representation to predict the
capsule’s state probability; Reconstruction module is used to
rebuild the representation of the input instance. The input in-
stance of a capsule model is a sequence (e.g., a sentence, or a
paragraph). In this work, the input instance representation of
a capsule is computed through RNN.

1This work was done before the publication of [30]. Capsule in this work is designed differently
from that in [30].
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In the proposed RNN-Capsule model, each capsule is capable of, not
only predicting the probability of its assigned sentiment, but also
reconstructing the input instance representation. Both qualities are
considered in our training objectives.

Specifically, for each sentiment category, we build a capsule
whose attribute is the same as the sentiment category. Given an in-
put instance, we get its instance representation by using the hidden
vectors of RNN. Taking the hidden vectors as input, each capsule
outputs: (i) the state probability through its probability module, and
(ii) the reconstruction representation through its reconstruction
module. During training, one objective is to maximize the state
probability of the capsule corresponding to the groundtruth sen-
timent, and to minimize the state probabilities of other capsule(s).
The other objective is to minimize the distance between the input
instance representation and the reconstruction representation of
the capsule corresponding to the ground truth, and to maximize
such distances for other capsule(s). In testing, a capsule’s state
becomes ‘active’ if its state probability is the largest among all cap-
sules for a given test instance. The states of all other capsule(s) will
be ‘inactive’. Attribute of the active capsule is selected to be the
predicted sentiment category of the test instance.

Compared with most existing neural network models for senti-
ment analysis, RNN-Capsule model does not heavily rely on the
quality of input instance representation. In particular, the RNN
layer in our model can be realized through the widely used Long
Short-Term Memory (LSTM) model, Gated Recurrent Unit (GRU)
model or their variants. RNN-Capsule does not require any lin-
guistic knowledge. Instead, each capsule is capable of outputting
words with sentiment tendencies reflecting its assigned sentiment
category. Recall that the representation module of a capsule uses at-
tention mechanism to build the capsule representation. We observe
through experiments that the attended words by each capsule well
reflect the capsule’s sentiment category. These words reflect the do-
main specificity of the dataset, although not included in sentiment
lexicon. For instance, our model is able to identify ‘professional’,
‘quick’, and ‘caring’ as strong positive words in patient feedback
to hospitals. We also observe that the attended words include not
only high frequency words, but also medium and low frequency
words, and even typos which are common in social media. These
domain dependent sentiment words could be extremely useful for
decision makers to identify the positive and negative aspects of
their services or products. The main contributions are as follows:

• To the best of our knowledge, RNN-Capsule is the first attempt
to use capsule model for sentiment analysis. A capsule is easy
to build with input instance representations taken from RNN.
Each capsule contains an attribute, a state, and three simple
modules (representation, probability, and reconstruction).

• We demonstrate that RNN-Capsule does not require any lin-
guistic knowledge to achieve state-of-the-art performance. Fur-
ther, capsule model is able to attend opinion words that reflect
domain knowledge of the dataset.

• We conduct experiments on two benchmark datasets and one
proprietary dataset, to compare our capsule model with strong
baselines. Our experimental results show that capsule model is
competitive and robust.

2 RELATEDWORK
Early methods for sentiment analysis are mostly based on manually
defined rules. With the recent development of deep learning tech-
niques, neural network based approaches become the mainstream.
On this basis, many researchers apply linguistic knowledge for
better performance in sentiment analysis.
Traditional Sentiment Analysis. Many methods for sentiment
analysis focus on feature engineering. The carefully designed fea-
tures are then fed to machine learning methods in a supervised
learning setting. Performance of sentiment classification therefore
heavily depends on the choice of feature representation of text. The
system in [24] implements a number of hand-crafted features, and
is the top performer in SemEval 2013 Twitter Sentiment Classifica-
tion Track. Other than supervised learning, Turney [38] introduces
an unsupervised approach by using sentiment words/phrases ex-
tracted from syntactic patterns to determine document polarity.
Goldberg and Zhu [6] propose a semi-supervised approach where
the unlabeled reviews are utilized in a graph-based method.

In terms of features, different kinds of representations have been
used in sentiment analysis, including bag-of-words representation,
word co-occurrences, and syntactic contexts [26]. Despite its effec-
tiveness, feature engineering is labor intensive, and is unable to
extract and organize the discriminative information from data [7].
Sentiment Analysis by Neural Networks. Since the proposal of
a simple and effective approach to learn distributed representations
of words and phrases [23], neural network based models have
shown their great success in many natural language processing
(NLP) tasks. Many models have been applied to sentiment analysis,
including Recursive Auto Encoder [4, 29, 33], Recursive Neural
Tensor Network [34], Recurrent Neural Network [22, 36], LSTM [9],
Tree-LSTMs [35], and GRU[3].

Recursive autoencoder neural network builds the representa-
tion of a sentence from subphrases recursively [4, 29, 33]. Such
recursive models usually depend on a tree structure of input text.
In order to obtain competitive results, all subphrases need to be
annotated. By utilizing syntax structures of sentences, tree-based
LSTMs have proved effective for many NLP tasks, including senti-
ment analysis [35]. However, such models may suffer from syntax
parsing errors which are common in resource-lacking languages. Se-
quence models like CNN, do not require tree-structured data, which
are widely adopted for sentiment classification [13, 14]. LSTM is
also common for learning sentence-level representation due to its
capability of modeling the prefix or suffix context as well as tree-
structured data [9, 35]. Despite the effectiveness of those methods,
it is still challenging to discriminate different sentiment polarities
at a fine-grained level.

In [8], the proposed neural model improves coherence by ex-
ploiting the distribution of word co-occurrences through the use of
neural word embeddings. The list of top representative words for
each inferred aspect reflects the aspect, leading to more meaningful
results. The approach in [19] combines two modular components,
generator and encoder, to extract pieces of input text as justifi-
cations. The extracted short and coherent pieces of text alone is
sufficient for the prediction, and can be used to explain the predic-
tion.
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Linguistic Knowledge. Linguistic knowledge has been carefully
incorporated into models to realize the best potential in terms of
prediction accuracy. Classical linguistic knowledge or sentiment
resources include sentiment lexicons, negators, and intensifiers.

Sentiment lexicons are valuable for rule-based or lexicon-based
models [10]. There are also studies for automatic construction
of sentiment lexicons from social data [39] or from multiple lan-
guages [2]. Recently, a context-sensitive lexicon-based method was
proposed based on a simple weighted-sum model [37]. It uses an
RNN to learn the sentiments strength, intensification, and negation
of lexicon sentiments in composing the sentiment value of sen-
tences. Aspect information, negation words, sentiment intensities
of phrases, parsing tree and combination of them were applied into
models to improve their performance. Attention-based LSTMs for
aspect-level sentiment classification were proposed in [40]. The key
idea is to add aspect information to the attention mechanism. A
linear regression model was proposed to predict the valence value
for content words in [41]. The valence degree of the text can be
changed because of the effect of intensity words. In [28], sentiment
lexicons, negation words, and intensity words are all considered
into one model for sentence-level sentiment analysis.

However, linguistic knowledge requires significant human effort
to develop. The developed sentiment lexicon may not be applicable
to some domain specific dataset. All of those limit the application
of models based on linguistic knowledge.

3 RNN-CAPSULE MODEL
The architecture of the proposed RNN-based capsule model is
shown in Figure 1. The number of capsules N is the same as the
number of sentiment categories to be modeled, each correspond-
ing to one sentiment category. For example, five capsules are used
to model five fine-grained sentiment categories: ‘very positive’,
‘positive’, ‘neutral’, ‘negative’, and ‘very negative’. Each sentiment
category is also known as the capsule’s attribute.

All capsules take the same instance representation as their in-
put, which is computed by an RNN network, as shown in the
figure. The RNN can be materialized by Long Short-Term Mem-
ory (LSTM) model, Gated Recurrent Unit (GRU) or their variants,
e.g., bi-directional and two-layer LSTM. Given an instance (e.g., a
sentence, or a paragraph), represented in dense vector, RNN en-
codes the instance and outputs the hidden vectors. The instance
is then represented by the hidden vectors. That is, the input to all
capsules are the hidden vectors of RNN encoding.

In the top row of Figure 1, each capsule outputs a state proba-
bility and a reconstruction representation, through its probability
module and its reconstruction module, respectively. Among all cap-
sules, the one with the highest state probability will become ‘active’
and the rest will be ‘inactive’. During training, one objective is to
maximize the state probability of the capsule corresponding to the
ground truth sentiment, and to minimize the state probability of the
rest capsule(s). The other objective is to minimize the distance be-
tween the reconstruction representation of the capsule selected by
ground truth and the instance representation, and to maximize such
distances for other capsule(s). In the testing process, a capsule’s
state will be ‘active’ if its state probability is the largest among all
capsules. All other capsule(s) will then be ‘inactive’ because only
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Figure 1: Architecture of RNN-Capsule. The number of
capsules equals the number of sentiment categories. H =
[h1,h2, . . . ,hNs ] is the hidden vectors of an input instance
encoded by RNN, where Ns is the number of words. The in-
stance representation vs =

1
Ns

∑Ns
i=1 hi is the average of the

hidden vectors. All capsules take the hidden vectors as in-
put, and each capsule outputs a state probability pi and a
reconstruction representation rs,i .

one capsule can be in active state. The active capsule’s attribute is
selected as the test instance’s sentiment category.

Because the capsule model is based on RNN, next we give pre-
liminaries of RNN before detailing the capsule structure and the
training objective.

3.1 Recurrent Neural Network
A Recurrent Neural Network (RNN) is a class of artificial neural net-
work where connections between units form a directed cycle. This
allows the network to exhibit dynamic temporal behavior. Unlike
feedforward neural networks, RNNs can use their internal mem-
ory to process arbitrary sequences of inputs. However, it is known
that standard RNNs have the problem of gradient vanishing or
exploding. To overcome these issues, Long Short-term Memory net-
work (LSTM) was developed and has shown superior performance
in many tasks [9].

Briefly speaking, in LSTM, the hidden states ht and memory cell
ct are function of the previous ht−1 and ct−1, and input vector xt ,
or formally:

ct ,ht = LSTM(ct−1,ht−1,xt ) (1)
The hidden state ht denotes the representation of position t while
encoding the preceding contexts of the position. For more details
about LSTM, we refer readers to [9].

A variation of LSTM is the Gated Recurrent Unit (GRU), intro-
duced in [3]. It combines the forget gate and input gate into a single
update gate. It also merges the cell state and hidden state, among
other changes. The resulting model is simpler than standard LSTM
models, and has become a popular model in many tasks. Similarly,
the hidden state ht in GRU denotes the representation of position t
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while encoding the preceding contexts of the position (see [3] for
more details) .

ht = GRU(ht−1,xt ) (2)
RNN can be bi-directional, by using a finite sequence to predict

or label each element of the sequence based on the element’s past
and future contexts. This is achieved by concatenating the outputs
of two RNNs, one processes the sequence from left to right, and
the other from right to left.
Instance Representation. As shown in Figure 1, the instance
representation to all capsules is encoded by RNN. Formally, the
instance representation vs , is the average of the hidden vectors
obtained from RNN.

vs =
1
Ns

Ns∑
i=1

hi , (3)

where Ns is the length of instance, e.g., number of words in a given
sentence. Here, each word is represented by a dense vector obtained
through word2vec or similar techniques.

3.2 Capsule Structure
The structure of a single capsule is shown in Figure 2. A capsule
contains three modules: representation module, probability module
and reconstruction module. Representation module uses attention
mechanism to build the capsule representation vc,i . Probability
module uses sigmoid function to predict the capsule’s active state
probability pi . Reconstruction module computes the reconstruction
representation of an instance by multiplying pi and vc,i .
Representation Module. Given the hidden vectors encoded by
RNN, we use the attention mechanism to construct capsule repre-
sentation inside a capsule. The attention mechanism enables the
representation module to decide the importance of words based
on the prediction task. For example, word ‘clean’ is likely to be in-
formative and important in patient feedback to hospital. However,
this word is less important if it appears in movie review.

We use an attention mechanism inspired by [1, 5, 40, 44] with a
single parameter in capsule:

et,i = htwa,i (4)

αt,i =
exp(et,i )∑Ns
j=1 exp(ej,i )

(5)

vc,i =

Ns∑
j=1

at,iht (6)

In the above formulation, ht is the representation of word at posi-
tion t (i.e., the hidden vector from RNN) andwa,i is the parameter
of capsule i for the attention layer. The attention importance score
for each position, αt,i , is obtained by multiplying the representa-
tions with the weight matrix, and then normalizing to a probability
distribution over the words. αi = [α1,i ,α2,i , . . . ,αNs ,i ]. Lastly, the
capsule representation vector, vc,i , is a weighted summation over
all the positions using the attention importance scores as weights.

Note that, this capsule representation vector obtained from the
attention layer is a high-level encoding of the entire input text. This
capsule representation vector will be used to reconstruct the presen-
tation of the input instance. We observe that adding the attention
mechanism improves the model’s capability and robustness.

ߪ

Attention

௦,௜ݎ
௜݌

H Input

Capsule

Output

௖,௜ݒ

Figure 2: The architecture of a single capsule. The input to a
capsule is the hidden vectorsH = [h1,h2, . . . ,hNs ] fromRNN.

Probability Module. After getting the capsule representation vec-
tor vc,i , we calculate the active state probability pi through

pi = σ (Wp,ivc,i + bp,i ), (7)

whereWp,i and bp,i are the parameters for the active probability
of the current capsule i .

The parameters are learned based on the aforementioned objec-
tives, i.e., maximizing the state probability of capsule selected by
ground truth sentiment, and minimizing the state probability of
other capsule(s). In testing, a capsule’s state will be active if pi is
the largest among all capsules.
Reconstruction Module. The reconstruction representation of
an input instance is obtained by multiplying vc,i and probability pi

rs,i = pivc,i , (8)

where pi is the active state probability of the current capsule and
vc,i is the capsule vector representation.

The three modules complement each other. The capsule rep-
resentation matches its attribute, and the state of one capsule is
corresponding to the input instance. Therefore, the probability
module, which is based on the capsule representation, will be the
largest if the capsule’s sentiment fit the input instance. Reconstruc-
tion module is developed from the capsule representation and its
state probability, so the reconstruction representation is able to
stand for the input instance representation if its state is ‘active’.

3.3 Training Objective
The training objective of the proposed capsule model considers two
aspects. One is to minimize the reconstruction error and maximize
the active state probability of the capsule matching ground truth
sentiment. The other is to maximize the reconstruction error and
minimize the active state probability of other capsule(s). To achieve
the objective, we adopt the contrastive max-margin objective func-
tion that has been used in many studies [8, 11, 32, 42].
Probability Objective. Because only one capsule is active for each
given training instance, we have both positive sample (i.e., the active
capsule) and negative samples (i.e., the remaining inactive capsules).
Recall that our objective is to maximize the active state probability
of the active capsule and to minimize the probabilities of inactive
capsules. The unregularized objective J can be formulated as a
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hinge loss:

J (θ ) =
∑

max(0, 1 +
N∑
i=1

yipi ) (9)

For a given training instance,yi = −1 for the active capsule (i.e., the
one that matches the training instance’s ground truth sentiment).
All remaining y’s are set to 1. We use a mask vector to indicate
which capsule is active for each training instance.
Reconstruction Objective. The other objective is to ensure that
the reconstruction representation rs,i of the active capsule is similar
to the instance representation vs , meanwhile vs is different from
the reconstruction representations of inactive capsules. Similarly,
the unregularized objectiveU can be formulated as another hinge
loss that maximizes the inner product between rs,i and vs and
simultaneously minimizes the inner product between rs,i from the
inactive capsules and vs :

U (θ ) =
∑

max(0, 1 +
N∑
i=1

yivsrs,i ) (10)

Again, yi = −1 if the capsule is active and yi = 1 if the capsule is
inactive.

Considering both objectives, our final objective function L is
obtained by adding J andU :

L(θ ) = J (θ ) +U (θ ) (11)

4 EXPERIMENT
4.1 Dataset
We conduct experiments on two benchmark datasets, namelyMovie
Review (MR) [25] and Stanford Sentiment Treebank (SST) [31], and
one proprietary dataset. Both MR and SST have been widely used in
sentiment classification evaluation which enables us to benchmark
our result against the published results.
Movie Review. Movie Review (MR)2 is a collection of movie re-
views in English [25], collected from www.rottentomatoes.com.
Each instance, typically a sentence, is annotated with its source
review’s sentiment categories, either ‘positive’ or ‘negative’. There
are 5331 positive and 5331 negative processed sentences.
Stanford Sentiment Treebank. SST3 is the first corpus with fully
labeled parse trees, which allows for a comprehensive analysis of
the compositional effects of sentiment in language [31]. This corpus
is based on the dataset introduced by Pang and Lee [25]. It includes
fine-grained sentiment labels for 215,154 phrases parsed by the
Stanford parser [16] in the parse trees of 11,855 sentences. The
sentiment label set is {0,1,2,3,4}, where the numbers correspond to
‘very negative’, ‘negative’, ‘neutral’, ‘positive’, and ‘very positive’,
respectively. Note that, because SST provides phrase-level annota-
tions on the parse trees, some of the reported results are obtained
based on the phrase-level annotations. In our experiments, we only
utilize the sentence-level annotations because our capsule model
does not need the expensive phrase-level annotation.

2Sentence polarity dataset v1.0. http://www.cs.cornell.edu/people/pabo/movie-review-data/
3https://nlp.stanford.edu/sentiment/index.html

Table 1: Number of instances in hospital feedback dataset

Question Sentiment Number of answers
What I liked? Positive 25,042
What could be improved? Negative 21,240

Hospital Feedback. We use a proprietary patient opinion dataset
that was generated by a non-profit feedback platform for health
services in the UK.

We use the text content from the feedback forms filled by patients.
Specifically, we make sentiment analysis on the answers of two
questions: “What I liked?”, and “What could be improved?”. There
is another question in the feedback form: Anything else? whose
answers are not used in our experiments because the sentiment
is uncertain. The number of answers (or instances) to the two
questions are reported in Table 1.

Given the large number of instances, manually annotating all
sentences in hospital feedback is time consuming. In this study, we
simply consider an answer to the question “What I liked?” processes
‘positive’ sentiment, and an answer to the question “What could be
improved?” processes ‘negative’ sentiment. The average length of
the answers is about 120 words, and we consider each answer as
one instance without further splitting an answer into sentences.

We note that the simple labeling scheme (i.e., assigning answers
to “What I liked?” positive and answers to “What could be improved?”
negative) introduces some noise in the dataset. A patient may write
“perfect, nothing to improve” to answer “What could be improved”,
and will be labeled as ‘negative’. Such noise cannot be avoided
without manual annotation. However, their number is negligible
by observation.

4.2 Implementation Details
In our experiments, all word vectors are initialized by Glove4. The
word embedding vectors are pre-trained on an unlabeled corpus
whose size is about 840 billion and the dimension of word vectors
we used is 300 [27]. The dimension of hidden vectors encoded by
RNN is 256 if the RNN is single-directional, and 512 if the RNN is
bi-directional. More specifically, on MR and SST datasets, we use bi-
directional and two-layer LSTM, and on Hospital Feedback dataset,
we use two-layer GRU. The models are trained with a batch size
of 32 examples on SST, 64 examples on MR and Hospital Feedback
datasets. There is a checkpoint every 32 mini-batch on SST, and
64 on MR and Hospital Feedback dataset. The embedding dropout
is 0.3 on MR and Hospital Feedback dataset, and 0.5 on SST. The
same RNN cell dropout of 0.5 is applied on all the three datasets.
The dropout on capsule representation in probability modules of
capsules is also set to 0.5 on all datasets. The length of attention
weights is the same as the length of sentence.

We use Adam [15] as our optimization method. The learning
rate for model parameters except word vectors are 1e −3, and 1e −4
for word vectors. The two parameters β1 and β2 in Adam are 0.9
and 0.999, respectively. The capsule models are implemented on
Pytorch5 (version 0.2.0_3) and the model parameters are randomly
initialized.
4http://nlp.stanford.edu/projects/glove/
5https://github.com/pytorch
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Table 2: The accuracy of methods on Movie Review (MR)
and Stanford Sentiment Treebank (SST) datasets. Note that
the models only use sentence-level annotation and not the
phrase-level annotation in SST. The accuracy marked with
* are reported in [12, 14, 18, 33]; and the accuracy marked
with # are reported in [28].

Model Movie Review (MR) SST (Sentence-level)
RAE 77.7* 43.2*
RNTN 75.9# 43.4#
LSTM 77.4# 45.6#
Bi-LSTM 79.3# 46.5#
LR-LSTM 81.5# 48.2#
LR-Bi-LSTM 82.1# 48.6#
Tree-LSTM 80.7# 48.1#
CNN 81.5* 46.9#
CNN-Tensor - 50.6*
DAN - 47.7*
NCSL 82.9# 47.1#
RNN-Capsule 83.8 49.3

4.3 Evaluation on Benchmark Datasets
Both MR and SST datasets have been widely used in evaluating
sentiment classification. This gives us the convenience of directly
comparing the result of our proposed capsule model against the
reported results using the same experimental setting. Table 2 lists
the accuracy of sentiment classification of baseline methods on the
two datasets reported in a recent ACL 2017 paper [28]. Our capsule
model, named RNN-Capsule, is listed in the last row.
Baseline Methods.We now briefly introduce the baseline meth-
ods, all based on neural networks. Recursive Auto Encoder (RAE,
also known as RecursiveNN) [33] and Recursive Tensor Neural Net-
work (RNTN) [31] are based on parsing trees. RNTN uses tensors
to model correlations between different dimensions of child nodes’
vectors. Bidirectional LSTM (Bi-LSTM) is a variant of LSTM which
is introduced in Section 3.1. Both LSTM and Bi-LSTM are based on
sequence structure of the sentences. LR-LSTM and LR-Bi-LSTM are
linguistically regularized variants of LSTM and Bi-LSTM, respec-
tively. Tree-Structured LSTM (Tree-LSTM) [35] is a generalization
of LSTMs to tree-structured network topologies. Convolutional
Neural Network (CNN) [14] uses convolution and pooling opera-
tions, which is popular in image captioning. CNN-Tensor [18] is
different from CNN where the convolution operation is replaced by
tensor product. Dynamic programming is applied in CNN-Tensor
to enumerate all skippable trigrams in a sentence. Deep Average
Network (DAN) [12] has three layers: one layer to average all word
vectors in a sentence, an MLP layer, and the last layer is the output
layer. Neural Context-Sensitive Lexicon (NCSL) [37] uses a Recur-
rent Neural Network to learn the sentiments values, based on a
simple weighted-sum model, but requires linguistic knowledge.
Observations. On the Movie Review dataset, our proposed RNN-
Capsule model achieves the best accuracy of 83.8. Among the base-
line methods, LR-Bi-LSTM and NCSL outperform the other base-
lines. However, both LR-Bi-LSTM and NCSL requires linguistic

Table 3: Accuracy on Hospital Feedback Dataset

Method Accuracy
Navie Bayes 84.7
Navie Bayes (+Bigram) 81.9
Linear SVM 87.6
Linear SVM (+Bigram) 88.9
Word2vec-SVM (CBOW) 85.5
Doc2vec-SVM (PV-DM) 77.7
Doc2vec-SVM (PV-DBOW) 81.8
Doc2vec-SVM (PV-DM+PV-DBOW) 83.2
LSTM 89.8
Attention-LSTM 90.2
RNN-Capsule 91.6

knowledge like sentiment lexicon and intensity regularizer. It is
worth noting that lots of human efforts are required to build such
linguistic knowledge. Our capsule model does not use any linguis-
tic knowledge. On the SST dataset, our model is the second best
performer after CNN-Tensor. However, CNN-Tensor is much more
computationally intensive due to the tensor product operation. Our
model only requires simple linear operations on top of the hid-
den vectors obtained through RNN. Our model also outperforms
other strong baselines like LR-Bi-LSTM which requires dedicated
linguistic knowledge.

4.4 Evaluation on Hospital Feedback
Baseline Methods. We now evaluate RNN-Capsule on the hospi-
tal feedback dataset. Although neural network models have shown
their effectiveness on many other datasets, it is better to provide
a complete performance overview for a new dataset. To this end,
we evaluate three kinds of baseline methods listed in Table 3: (i)
The traditional machine learning models based on Naive Bayes and
Support Vector Machines (SVMs) using unigram and bigram repre-
sentations; (ii) SVMs with dense vector representations obtained
through Word2vec and Doc2vec; and (iii) LSTM based baselines,
due to the promising accuracy obtained by LSTM based models
among neural network models reported earlier.

Specifically, for the model named Word2vec-SVM, word vectors
learned through CBOW are used to learn the SVM classifiers on pa-
tient feedback. Each feedback is represented by the averaged vector
of its words. For Doc2vec-SVM, Doc2vec is used to learn vectors
for all feedbacks where PV-DBOW, PV-DM, or their concatenation
(i.e., PV-DBOW + PV-DM) are used [17]. Because attention mech-
anism is utilized in our RNN-Capsule model, we also evaluated
Attention-LSTM. This model is the same as LSTM, except that an
additional attention weight vector is trained. The weight vector is
applied to the LSTM outputs at every position to produce weights
for different time stamps. The weighted average of LSTM outputs
is used for sentiment classification6. Naive Bayes, Linear SVM,
word2vec/doc2vec, and LSTM/Attention-LSTM are implemented
by using NLTK, Scikit-learn, Gensim, and Keras, respectively.

6From each instance, up to the first 300 words are used in LSTMmodels for computational efficiency.
More than 90% of the instances are shorter than 300 words.
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Observations. Among traditional machine learning models based
on Naive Bayes and Support Vector Machines, Linear SVM learned
by using both unigram and bigram (i.e., Linear SVM (+Bigram)) is a
clear winner with accuracy of 88.9. This accuracy is much higher
than all SVM models learn on dense representation from either
Word2vec or Doc2vec.

LSTM-basedmethods outperform Linear SVMwith bigram.When
enhanced with the attention mechanism, attention-LSTM slightly
outperforms the vanilla LSTM by achieving accuracy of 90.2. Our
proposed model, RNN-Capsule, being the top-performer, further
improves the accuracy to 91.6.

5 EXPLAINABILITY ANALYSIS
In Section 4, we show that RNN-Capsule achieves comparable or
better accuracy than state-of-the-art models, without using any
linguistic knowledge. Now, we show that RNN-Capsule is capable
of outputting words with sentiment tendencies reflecting domain
knowledge. In other words, we try to explain for a given dataset,
based on which words, our RNN-Capsule model predicts the senti-
ment categories. These domain dependent sentiment words could
be extremely useful for decision makers to identify the positive and
negative aspects of their services or products.
Attended Words by Capsule. Because of the attention mecha-
nism in our capsule model, each word is assigned an attention
weight. The attention weight of a word is computed as follows:

wc,i = piαi , (12)

where pi is the active state probability of capsule i , and αi is the
attention weight in the representation module of capsule i .

Because each capsule corresponds to one sentiment category, we
collect the attended words by individual capsules. More specifically,
for each capsule, we build a dictionary, where the key is a word
and the value is the sum of attention weights for this word in the
capsule, as the word may appear in multiple test instances. The sum
of attention weights is updated for the word only if the capsule is
‘active’ for the input instance. After evaluating all test instances, we
get the list of attended words for each capsule with their attention
weights.

A straightforward way of ranking the attended words is to com-
pute the averaged attention weight for each word (recall a word may
appear multiple times). We observe that many top-ranked words
are of low frequency. That is, the words have very high attention
weight (or strong sentiment tendencies) but do not appear often.
To get a ranking of medium and high frequency words that are
attended by each capsule, we multiple averaged attention weight
of a word and the logarithm of word frequency. In the following, we
discuss both rankings: the attended words with medium/high word
frequency, and the attended words with low frequency.

5.1 Attended Words with Medium/High Word
Frequency

Tables 4a, 4b and 4c list the top 20 ranking words attended by
the different capsules on the three datasets. The words are ranked
by the product of averaged attention weight and the logarithm of
word frequency. Most of the words have medium to high word

frequency in the corresponding dataset. All the words are self-
explanatory for the assigned sentiment category. To further verify
the sentiment tendencies of the words, we match the words with a
sentiment lexicon [43]. In this sentiment lexicon, there are six senti-
ment tendencies, {‘strong-positive’, ‘weak-positive’, ‘weak-neutral’,
‘strong-neutral’, ‘weak-negative’, ‘strong-negative’}. We indicate
the matching words in the tables using {++, +, 0−, 0+, –, – –} for the
six sentiment tendencies. The words that are not included in the
sentiment lexicon are marked with ‘N’. There are also words, which
do not match any words in sentiment lexicon but are possible to
match with morphological changes. We indicate these underlined
words like ‘fails’ and ‘lacks’. Note that the punctuation marks are
processed as tokens and it is not surprising that many of them are
attended by the neutral capsule.

Observe from the three tables, the attended words not only well
reflect the sentiment tendencies, but also reflect the domain differ-
ence. We use the hospital feedback as an example (see Table 4c).
Word ‘leave’ or ‘leaving’ in most contexts are considered not having
any sentiment tendencies. Theword is not included in the sentiment
lexicon as expected. However, it is ranked at the second position
in the positive capsule on hospital feedback. A closer look at the
dataset shows that many patients express their happiness for being
able to ‘leave’ hospital or being able to ‘leave’ earlier than expected.
The words like ‘quickly’, ‘attentative’, ‘professional’, ‘cared’, and
‘caring’ clearly make sense for carrying strong positive sentiments
in the context of the dataset. For the negative capsules, because the
sentences are for answering the question ‘What could be improved’,
many of them contain various forms of ‘improve’. From answers
like ‘perfect, nothing to improve’, the words ‘perfect’ and ‘noth-
ing’ are attended. There are also patients requesting to improve
‘everything’, particularly, ‘parking’.

5.2 Attended Words with LowWord Frequency
Tables 5a, 5b and 5c list the top 20 words by average attention
weights. Most of them are low frequency words with no more
than three appearances. Again, the words are self-explainable for
the corresponding sentiment category. On movie review dataset,
our negative capsule identifies ‘dopey’, ‘execrable’, ‘self-satisfied’,
and ‘cloying’ as strong negative words which are very meaningful
for comments on movies. Interestingly, the capsule model is not
sensitive to typos, which are common in social media. The word
‘noneconsideratedoctors’ is attended to be negative with the correct
spelling of ‘none considerate doctors’.

From these tables, we demonstrate that our capsule model is
capable of outputting words with sentiment tendencies reflecting
domain knowledge, even if the words only appear one or two times.

6 CONCLUSION
The key idea of RNN-Capsule model is to design a simple capsule
structure and use each capsule to focus on one sentiment category.
Each capsule outputs its active probability and the reconstruction
representation. The objective of learning is to maximize the active
probability of the capsule matching the ground truth and to mini-
mize its reconstruction representation with the given instance rep-
resentation. At the same time, the other capsules’ active probability
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Table 4: Medium/high frequency words attended by different capsules on the three datasets. {++, +, 0−, 0+, –, – –} indicate
{‘strong-positive’, ‘weak-positive’, ‘weak-neutral’, ‘strong-neutral’, ‘weak-negative’, ‘strong-negative’} respectively, based on the
sentiment lexicon [43]. ‘N’ denotes that the word is not included in the sentiment lexicon. A word is underlined if the word
does not match any word in sentiment lexicon but matches a morphological variant of a word in sentiment lexicon.

(a) Stanford Sentiment Treebank

No. Very-Pos-Cap Attr Pos-Cap Attr Neutral-Cap Attr Neg-Cap Attr Very-Neg-Cap Attr
1 best ++ enjoy + ? N n’t N bad – –
2 hilarious ++ good + . N no N worst – –
3 excellent ++ worthwhile ++ ! N too – ugly – –
4 astonishing ++ worth ++ but N fails N mess – –
5 wonderful ++ funny ++ , N nothing N incoherent – –
6 brilliant ++ refreshing ++ not N not N unfunny N
7 stunning ++ delivers N hopkins N lacks N waste –
8 rare 0− fun ++ there N problem – unpleasant – –
9 spectacular ++ intelligent ++ point 0− never N junk –
10 perfect ++ and N like ++ boring – – disjointed N
11 performances N enjoyable ++ again N bad – – substandard –
12 finest N compelling ++ than N neither N overproduced N
13 most 0− effective + though 0+ lack – – stupid – –
14 exquisitely ++ well + times N feels 0+ dumb – –
15 ingenious ++ provides N down – loses N poorly – –
16 beautifully ++ works N ’ N instead N excuse –
17 great ++ appealing ++ it N gets N completely 0−
18 greatest ++ clever ++ little – – ridiculous – – movie N
19 performance N haunting – – to N gone N . N
20 impeccable ++ surprisingly 0+ line N less – no N

(b) Movie Review

No. Pos-Cap Attr Neg-Cap Attr
1 funny ++ bad – –
2 absorbing N plodding N
3 terrific ++ falls N
4 enjoyable ++ worst – –
5 mesmerizing ++ terrible – –
6 effective + awful – –
7 fun ++ bland – –
8 effectively 0− dull –
9 compelling ++ predictable 0−
10 romantic ++ isn’t N
11 exhilarating ++ suffers N
12 enjoy + lousy – –
13 delivers N problem –
14 entertaining ++ off N
15 good + mess – –
16 intelligent ++ fails N
17 rare 0− never N
18 genuine + pretentious – –
19 manages N boring – –
20 wonderful ++ unfortunately – –

(c) Hospital Feedback

No. Pos-Cap Attr Neg-Cap Attr
1 friendly ++ nothing N
2 leaving N improved +
3 polite + ? N
4 helpful + n N
5 nice ++ none N
6 liked N improve +
7 quick 0− 500 N
8 courteous ++ nil N
9 quickly N parking N
10 good + improving +
11 attentative N improvement +
12 professional N keep N
13 clean + perfect ++
14 helpfull + above +
15 easy + nothink N
16 thank ++ everthing N
17 pleasant + applicable N
18 efficient + improvements +
19 cared N absolutely 0+
20 caring N signposts N

needs to be minimized, and the distance between their reconstruc-
tion representations with the instance representation needs to be
maximized. We show that this simple capsule model achieves state-
of-the-art sentiment classification accuracy without any carefully

designed instance representations or linguistic knowledge. We also
show that the capsule is able to output the words best reflecting the
sentiment category. The words well reflect the domain specificity
of the dataset, and many words carry sentiment tendencies within
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Table 5: Low frequency words attended by different capsules on the three datasets, following the same notations as in Table 4
(a) Stanford Sentiment Treebank

No. Very-Pos-Cap Attr Pos-Cap Attr Neutral-Cap Attr Neg-Cap Attr Very-Neg-Cap Attr
1 sweetest N brilliant ++ marred N insomnia N travesty – –
2 masterpiece ++ solidly N snoozer N settles N dreadful – –
3 flawless ++ illuminating ++ foul – – confusing – – unwatchable N
4 smartest ++ saves N immediately 0+ sorry – – hate – –
5 finest N worthwhile ++ gags N pill N insulting – –
6 remarkably ++ succeeds N ecks N dicey N clunker N
7 tremendous ++ sudsy N melodrama N suffer – misfire N
8 breathtakingly ++ soothing N brimful N bounces N mire – –
9 incredible ++ bet N hmm 0+ valid + unpleasant – –
10 priceless ++ deliciously N no. N steal – laziest N
11 gloriously ++ refined + downer – – painful – disgusting – –
12 fabulous ++ enduring ++ wan N drowns N pathetic – –
13 astonishing ++ oodles N ? N misses N worst – –
14 amazingly ++ laughing N disappointingly – – heck – – dull –
15 loved N warmed N dulled N awkward – – sink N
16 stellar ++ haunting – – slap – – ridiculous – – hated N
17 wonderful ++ wildly – branagh N pandering N ugly – –
18 brilliant ++ engages N sad – – failed N incoherent – –
19 superlative ++ simmering N entries N regret – – dud –
20 soulful N breathtaking ++ forgivable N fails N junk –

(b) Movie Review

No. Pos-Cap Attr Neg-Cap Attr
1 rewarding ++ by-the-numbers N
2 bracing N swill N
3 skillful ++ heavy-handed N
4 amaze ++ dopey N
5 oozes N execrable N
6 thrilling ++ resembles N
7 wonderful ++ meandering N
8 gloriously ++ snoozer N
9 therapeutic N sucks N
10 brilliant ++ generic N
11 guaranteed N useless –
12 refreshing ++ self-satisfied N
13 savvy ++ mediocre – –
14 breathtaking ++ boring – –
15 beaut N loses N
16 fantastic ++ undistinguished N
17 indeed 0+ cloying N
18 balanced + unpleasant – –
19 danang N cable N
20 chops N pretension N

(c) Hospital Feedback

No. Pos-Cap Attr Neg-Cap Attr
1 cleaniness N communicationcommunication N
2 helpfullness N cleanlinessnursesreceptionist N
3 clever ++ errrr N
4 dischaged N noneconsideratedoctors N
5 staffanything N noshing N
6 decorated N nothingcleanlinessprofessionalism N
7 surviving N hampshire N
8 treatedanything N fare N
9 promising ++ significance +
10 comunity N anythging N
11 sufficiantly N improoved N
12 informal N nothingradiologyx N
13 congratulation N workable ++
14 opointments N postin N
15 brillaint N gutted N
16 attentative N 5/5 N
17 cmfortable N signposts N
18 attentiveas N qs N
19 fullanything N nothingexcept N
20 natured N noithing N

the context defined by the data. Such words are not included in any
sentiment lexicon, but these words become extremely useful in real
applications for decision makers to further understand the quality
of their products and services.
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