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Thesis Summary 

The tools and techniques for the study of porcine T-cells lag behind what is currently attainable 

in human T-cells, so this thesis was initially focused on improvements in this field. This study 

established long-term culture of porcine T-cells, T-cell clone procurement and relevant T-cell 

assays. These techniques were then used to investigate cytotoxic T-cell responses to Influenza 

A virus (IAV) in pigs. IAV is highly mutative and novel strains can be generated following 

reassortment between different viral strains. IAV is endemic in the global pig population and in 

some circumstances the virus can pass between humans and pigs and other animals. Pigs can 

therefore, potentially be a source for the generation of new and possibly pandemic influenza 

strains. The risk this poses to global human health, together with the negative effects of IAV 

infection within pig herds, highlights the need to improve our knowledge of IAV in pigs.    

 

This study identified four new MHC class I restricted IAV epitopes, derived from the viral 

nucleoprotein. Cytotoxic T-cells recognising these IAV epitopes were detected at high numbers 

ex vivo in samples from vaccinated pigs. The structures of these IAV epitopes in complex with 

their respective MHC class I molecules were resolved and revealed the primary anchor positions 

within the peptides. This enabled peptide binding motifs to be defined for two porcine MHC-I 

alleles. These peptide binding motifs can be utilised for efficient epitope prediction. This study 

also identified super-agonist ligands for two of the MHC-I restricted IAV epitopes.  

 

Overall, this work has opened up the study of porcine T-cells to a level previously unattainable 

and has contributed to our knowledge of IAV in pigs. It has paved the way for further 

experiments investigating IAV in pigs, other porcine diseases and for using pigs as an animal 

model for human disease.     
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1 
 

1 Introduction 

 

1.1 Overview of the immune system 

The immune system is a complex network of organs, cells and molecular processes that are 

responsible for protecting us against pathogens. The immune response is broadly divided into 

two arms, the innate and the adaptive immune responses. The former is the ‘front-line’ defence 

rapidly able to broadly combat pathogens and also contributes to the induction of the latter. 

The adaptive response involves a specific response directed to a particular pathogen usually 

resulting in the formation of immunological memory which can protect against re-infection. 

Innate immunity comprises many components including anatomical barriers to pathogens, i.e. 

skin and mucosal epithelia and innate immune cells which can recognise common features of 

pathogens, via pattern recognition receptors, initiating their destruction and the recruitment of 

further innate cells and responses. The complement system is a network of proteins that also 

plays an important role in innate immunity as it can opsonise pathogens, lyse cells and increase 

local immune responses. There are three complement pathways (alternative, lectin and 

classical) which are activated differently but all involve a sequential cascade of enzymatic 

reactions converging in the formation of the membrane attack complex enabling cell lysis (Sarma 

and Ward 2011). It is, however, important to note that innate and adaptive immunity are not 

mutually exclusive, as the divide between what constitutes each has become less defined as 

further cell subsets and responses have been discovered  (Lanier 2013). This study is focused on 

the adaptive immune response so innate immunity will not be discussed further here.   

 

1.2 Adaptive immune system  

The adaptive immune response is the ‘second-line’ of defence which can initially take days 

rather than hours to develop in the absence of existing immunological memory. It is 

orchestrated by two lymphocyte subsets, B-cells and T-cells, which recognise antigens, 

substances capable of inducing an immune response, by highly variable receptors on their cell 

surface. Upon successful antigen recognition, lymphocytes become activated from naïve to 

effector lymphocytes (Murphy & Weaver 2016).  B cells and T-cells represent two distinct 

lineages, first defined in 1965 following initial studies in the chicken; the former develop in the 

bone marrow and produce antibodies providing the humoral response and the latter develop in 

the thymus providing the cell mediated response (Cooper et al. 1965). B cells express a large 

repertoire of clonally diverse B cell receptors (BCR), a membrane bound antibody, generated by 
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Immunoglobulin (Ig) gene segment rearrangement. Upon recognition of their antigen in the 

secondary lymphoid tissue, B cells mature into long-lived antibody-producing plasma cells and 

memory B cells (Lebien and Tedder 2008). This study focused on T-cell responses and discussion 

will be limited to this lymphocyte subset herein.   

 

1.3 T-cells 

T-cells are broadly classified into two groups, αβ and γδ T-cells, based on the chain composition 

of the heterodimeric T-cell receptors (TCR) they express on their cell surface. Each individual T-

cell will only express one clonal TCR, termed their clonotype, which can recognise antigens to 

initiate an immune response. Unlike BCRs, TCRs are only found in a membrane-bound form 

however both have similar features and modes of gene segment rearrangement. αβ T-cells are 

referred to as conventional T-cells and usually recognise antigen in the form of peptides 

presented by classical major histocompatibility (MHC) molecules. αβ T-cells comprise two major 

subsets, CD8+ (cytotoxic) and CD4+ (helper) T-cells, based on their co-receptor expression and 

their immune roles. CD8+ T-cells have cytotoxic capabilities and are able to kill infected cells via 

recognition of endogenous peptides in the context of MHC class I (MHC-I). In contrast CD4+ T-

cells generally recognise peptides from exogenous antigens presented in the context of MHC 

class II (MHC-II). Conventional, CD4+ T-cells act to ‘help’ and regulate immune responses and 

are often viewed as the master orchestrators of immune responses. Less is known about γδ T-

cells. γδ T-cells are classified as unconventional T-cells as they are not restricted by classical MHC 

molecules and are known to recognise antigens in different forms, including lipids and small-

molecule metabolites. There are also unconventional αβ T-cell subsets including MR1-restricted 

mucosal associated invariant T-cells (MAIT) and natural killer T-cells (NKT cells). Unconventional 

T-cells typically provide a more rapid response, upon initial pathogen exposure, which is not 

donor restricted. They have traditionally been less well studied than their conventional 

counterparts, but knowledge of unconventional T-cells is rapidly expanding (Godfrey et al. 

2015). This study focuses on conventional αβ T-cells (from herein referred to simply as T-cells) 

so other T-cell subsets shall not be discussed further.  

 

1.3.1 T-cell development and generation of diversity 

Common lymphocyte progenitors in the bone marrow differentiate to give rise to various 

immune cells, T-cell precursors will migrate to the thymus where they undergo a series of events 

to become mature T-cells. Mature T-cells then migrate from the thymus to populate the 



3 
 

peripheral lymphoid tissues. Unlike B cells, new T-cells are not continually produced throughout 

the life span of an individual and their development slows with age (Murphy & Weaver 2016). A 

highly diverse TCR repertoire is required to enable antigen recognition across the vast scope of 

pathogens and is generated through gene segment recombination events and the addition of 

nucleotides to give junctional diversity. The TCR α chain gene locus contains multiple variable 

(V) and joining (J) gene segments and the TCR β chain comprises V, diversity (D) and J gene 

segments. These undergo gene rearrangement, called V(D)J recombination, in conjunction with 

a constant (C) domain to give a functional TCR following splicing (Davis and Bjorkman 1988; 

Attaf, Legut, et al. 2015). The potential diversity in humans is 1018 different TCRs (Sewell 2012a) 

however the expressed diversity is estimated to be around 25 x 106 αβ TCRs in any given 

individual (Arstila et al. 1999). Thymocytes then undergo a selection process whereby those cells 

which are able to recognise self peptide-MHC complexes (pMHC) are positively selected for 

survival and non-reactive cells are left to undergo cell death (von Boehmer et al. 1989). And 

thymocytes which strongly recognise self pMHC are removed by negative selection to prevent 

any auto-reactivity. This study focused in on cytotoxic, MHC-I-restricted T-cell responses to 

influenza A virus as such cells have been shown to offer broad protection against viral strains as 

discussed below. I will thus limit further discussions to CD8+ cytotoxic T-cells. 

 

1.3.2 CD8+ (cytotoxic) T-cells 

Cytotoxic T-cells express the co-receptor CD8 on their surface and are responsible for the 

effector immune function. CD8+ T-cells recognise MHC-I molecules, which are expressed by 

nearly all nucleated cells in the body. This enables cytotoxic T-cells to inspect the internal 

proteome of all the cells in the body for anomalies. Upon successful engagement between TCR 

and pMHC, a tyrosine phosphorylation cascade and a series of signalling events are initiated in 

association with the CD3 complex (expressed on all mature T-cells) leading to the activation of 

the T-cell (Andersen et al. 2006). This productive interaction leads to the formation of a 

specialised junction between the T-cell and the target cell, providing positional stability and 

precise killing, termed the immunological synapse (Dustin et al. 1998). Advanced microscopy 

techniques have elucidated immune synapse formation involving rapid actin depletion across 

the synapse followed by TCR clustering and cytotoxic granule clustering; the complete cycle 

takes approximately 30 min after which the T-cell can engage further target cells (Ritter et al., 

2015; reviewed in Dieckmann et al., 2016). T-cells can initiate target cell apoptosis by three 

distinct routes; the precise release of perforin and granzymes into the target cell, the binding of 
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Fas ligand to Fas receptors on target cells and the release of cytokines such as IFNγ and TNFα 

(Andersen et al. 2006).   

 

1.3.3 MHC-I structure 

MHC-I molecules are highly polymorphic membrane glycoproteins with each individual 

possessing a set of different alleles. In humans, they are referred to as human leukocyte antigen 

(HLA) molecules and classical HLA-I are grouped into HLA-A, -B and -C. In swine, they are known 

as swine leukocyte antigen (SLA) molecules and classical SLA-I are grouped into SLA-1, -2 and -

3.  As shown in Figure 1.1, MHC-I molecules consist of a heavy polypeptide chain, which spans 

the cell membrane, non-covalently associated with a light polypeptide chain, namely β-2-

microglobulin (β2m). The heavy chain consists of three domains α1, α2 and α3 the latter of which 

is proximal to the membrane along with β2m. The α1 and α2 domains are distal to the cell 

membrane, are polymorphic and comprise the peptide binding groove (PBG) where peptides 

can be loaded and presented to T-cells (Bjorkman et al. 1987). The PBG in MHC-I molecules is 

not open ended as in MHC-II molecules so this restricts to some extent the length of peptides 

that can be bound. Although human and mouse MHC-I molecules can present peptides of 8-15 

amino acids in length, MHC-I molecules show a preference for peptides that are 9 amino acids 

long (Falk et al. 1991; Schumacher et al. 1991; Trolle et al. 2016). Most (>70%) of CD8+ T-cell 

epitopes are 9 amino acids long with ~20% being 10 amino acids long (Ekeruche-Makinde et al. 

2013).  

 

1.3.4 Peptide-MHC Class I antigen processing and presentation 

Classically, MHC-I molecules present peptides derived from proteins of intracellular origin 

following a series of processing steps (reviewed in Neefjes et al., 2011). Initially the proteins are 

degraded to peptides either in the cytosol or nucleus by proteasomes (large multi-catalytic 

protease complexes) which defines the carboxyl termini of the peptides. Next, peptides 8-16 

amino acids in length in the cytosol are translocated to the endoplasmic reticulum (ER) lumen 

by transporter associated with antigen presentation (TAP) where they can undergo further 

processing before loading onto MHC-I. The highly polymorphic ER-associated aminopeptidase 

(ERAP) trims the N-termini of peptides generating favourable peptides for MHC-I binding 

(Serwold et al. 2002). The peptides are then loaded onto partially folded MHC-I molecules which 

are stabilised by chaperone proteins until successful assembly of pMHC-I complexes. Stable 

pMHC-I complexes are transported via the Golgi apparatus for presentation at the cell surface. 
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Presentation of exogenous protein is typically associated with MHC-II molecules, however 

exogenous antigens are able to enter the MHC-I presentation pathway in some cell subsets; 

known as cross-presentation (reviewed in (Reimann and Kaufmann 1997; Heath and Carbone 

2001)). Endocytosed proteins from other cells are diverted into the classical MHC-I presentation 

pathway enabling cytotoxic immune responses to viruses that may not infect APCs or impair 

them.  

 

As shown in Figure 1.1 certain peptide residues will sit within the MHC-I PBG, defined as the 

anchor residues, and others will be prominent above the groove likely involved in TCR 

engagement. Anchor residues were defined by Falk and colleagues as positions which were 

‘’occupied by a fixed residue or by one of a few residues with closely related side-chains” (Falk 

et al. 1991). Saper and colleagues analysed the structural environment of the PBG and noted six 

distinct sub-sites within the PBG to which they assigned the following nomenclature: pockets A, 

B, C, D, E and F (Saper et al. 1991). The conformation of the PBG pockets varies between different 

MHC alleles and determines which peptide residues can bind. The conformation of peptides 

within the PBG can vary, although primary anchor positions have commonly been identified at 

position 2 (P2) and the carboxy terminus (PC) in pMHC-I sitting within pockets B and F 

respectively (Matsumura et al. 1992). Also, typically where longer peptides have been identified 

this usually results in a larger ‘bulging’ of the peptide backbone (Figure 1.1C) (Rist et al. 2013). 

However there are many pMHC-I structures which display different conformations including 

observations where the N- (P1) or C- (PC) terminus of a peptide will extend out of the PBG rather 

than sitting within pockets A or F (Collins et al. 1994; Pymm et al. 2017). The variability observed 

in pMHC-I complexes makes structural studies essential for determining the primary anchor 

residues, which can be defined to predict which peptides will bind to a given MHC allele, as shall 

be discussed further in chapters 5 and 7.   
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Figure 1.1. Peptide-MHC class I structure.  
A) Schematic of Peptide-MHC-I (pMHC-I) at the cell surface. B) Structure of pMHC-I (PDB 
code: 5NQ0). C) Schematic of MHC-I binding groove with bound peptide. D) Structural 
depiction of (C) (PDB code: 5NQ0; Tungatt et al. unpublished).   

 

 

1.3.5 The T-cell receptor 

The αβ TCR is a heterodimer comprised of two disulphide-linked polypeptide chains, α- and β-

chain, both consisting of a constant domain (cell membrane proximal) (Cα and Cβ) and a variable 

domain (distal to cell membrane) (Vα and Vβ) with a hypervariable region comprising the 

antigen binding site (Chothia et al. 1988) (Figure 1.2). This region consists of three hairpin loops 

in each TCR chain called complementarity-determining regions (CDR), CDR1-3 α and β, through 

which the TCR binds pMHC (Garboczi et al. 1996) (Figure 1.2B). The CDR3 loops display the 

greatest diversity generated by both gene segment recombination and junctional diversity 

(Attaf, Huseby, et al. 2015). The TCR needs to associate with the multimeric protein complex 

CD3 to enable its correct assembly and translocation to the T-cell surface (Kuhns et al. 2006). 

CD3 forms part of the TCR complex and signalling pathway and is commonly used as a marker 

for T-cell identification, however it is omitted from Figure 1.2 for simplicity. The co-receptor 

CD8, in addition to its role in TCR signal transduction, also plays a key role in stabilising the TCR-
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pMHC interaction particularly when the affinity of the interaction is weak (Wooldridge et al. 

2005) (Figure 1.2). CD8 binds the pMHC at a non-polymorphic site distinct from the TCR docking 

platform and decreases the dissociation rate of the pMHC and TCR increasing the chance for 

successful T-cell signalling (Wooldridge et al. 2005).  

 

 

Figure 1.2. T-cell receptor structure and its interaction with peptide-MHC-I class 
molecules. 
A) Schematic of T-cell receptor complexed with peptide-MHC-I at the cell surface including 
CD8 interaction. B) Structural depiction of T-cell receptor with CDR loops colour coded as 
displayed (Attaf, Legut, et al. 2015). 

 

1.3.6 T-cell epitope identification 

Immunoproteomics is a term that encompasses numerous methods that are concerned with the 

identification of antigenic peptides or proteins, the knowledge of which is important for our 

understanding and combating of diseases (Fulton and Twine 2013). MHC-I restricted T-cell 

epitopes can be identified by different approaches including peptide elution, in silico predictions 

and scanning peptide sequences for functional T-cell responses. Peptide-MHC-I complexes can 

be isolated from cells of interest and peptides eluted which can then be identified by mass 

spectrometry. Mass spectrometry allows the rapid identification of many peptides with no 

assumptions made about the peptide length (Fulton and Twine 2013). However, this approach 

can be cost and labour intensive, requires an antibody to the MHC molecule of interest for 
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isolation and large sample sizes. Bioinformatic approaches can also be utilised for T-cell epitope 

identification, with algorithms incorporating the peptide binding motifs of a given MHC allele to 

predict the peptide sequences that will bind and their affinities. Peptide prediction algorithms, 

such as ‘NetPanMHC’, are well established for humans, primate and mouse MHC alleles and 

provide an informed list of peptide epitopes for further validation which can reduce 

experimental costs and time (Nielsen et al. 2007). However this approach does make 

assumptions about the peptide length and can fail to identify all immunogenic peptides (Grant 

et al. 2013). A well-established non-assumptive approach is to synthesise overlapping peptides 

that span the protein of interest and that can be assessed for T-cell recognition by functional 

assays (Draenert et al. 2003). Peptides can initially be pooled together to decrease experimental 

load and any T-cell responses can then be subsequently narrowed down to individual peptides 

and truncated peptide sequences (Fiore-Gartland et al. 2016). This approach does not make 

assumptions about peptide length, MHC binding or immunodominance, however it should be 

noted that it can still fail to detect all possible responses (Draenert et al. 2003). T-cell epitopes 

produced by these methods can undergo further validation including functional assays and 

pMHC multimer staining and flow cytometry.  

 

1.3.7 In vitro culture of T-cells 

Cells can be isolated from the body, i.e. T-cells from blood, and cultured within the laboratory 

for further study. The ability to culture T-cells in vitro and generate T-cell clones has been 

implemental in our knowledge to date of T-cells across multiple subject matters. For instance, 

T-cell clones can be used to assess the function of antigen-specific T-cells, such as cytotoxicity, 

to define T-cell epitopes, to isolate monoclonal TCRs and to optimise cell based protocols. The 

division of somatic cells is subject to ‘Hayflick’s limit’, which means that any given cell will 

undergo a finite number of cell divisions before reaching senescence (Hayflick and Moorhead 

1961; Effrod and Pawelec 1997). The progression to cell senescence is relative to the continual 

degradation of telomeres, which are crucial to chromosomal integrity, that occurs with each cell 

division (Harley et al. 1990). This characteristic of cells can therefore limit the number of 

passages a given cell may be cultured for in vitro which in turn can limit experimental pursuits. 

Immortal cells can overcome the Hayflick’s limit by the expression of telomerase which 

compensates for telomere degradation by mediating telomere elongation (Morin 1989; Harley 

et al. 1990).  
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Telomerase is expressed in T-cells in vivo following cellular activation, enabling T-cells and 

immune memory to be maintained long-term in an individual. T-cells can also express 

telomerase following in vitro stimulations, although this is not infinite, which may account for 

the ability to culture T-cells in vitro longer term than that which is achievable in other somatic 

cell types (Hodes et al. 2002). In vitro culture protocols for human T-cells are well established 

and will typically involve the use of T-cell mitogens, accessory cells or anti-costimulatory 

molecules antibodies (Raulf-Heimsoth 2008). In our laboratory, the approach that is most 

frequently used, combines the known T-cell mitogen phytohaemagglutinin (PHA), irradiated 

allogeneic peripheral blood mononuclear cells (PBMC) and stimulatory cytokines to stimulate T-

cells to undergo cell expansion and maintain them in culture. The culture of mouse T-cell clones 

has been performed but with the generation of TCR transgenic models and the ability to fuse 

mouse T-cells with a cancer cell to form a T-cell hybridoma (Kruisbeek et al. 2001) it has 

circumvented the need for long-term in vitro culture of mouse T-cell clones. In addition to 

routine re-stimulations in vitro, there are many other conditions that need to be considered for 

successful T-cell culture. Cell culture medium conditions are designed to provide the essential 

nutrients required for cell culture, maintain the pH at physiological condition, to prevent any 

bacterial contamination and where required provide non-essential amino acids (Raulf-Heimsoth 

2008). Cytokines are also needed to support T-cell division and survival in culture, in particular 

interleukin (IL)-2 (Smith 1988) and IL-15 (Lodolce et al. 2002; Li et al. 2005). Considering the 

breadth of components implemented for in vitro T-cell culture, there are many aspects that may 

affect optimal culture conditions as shall be discussed further in Chapter 3.  

 

1.4 Influenza 

Influenza A, B and C are negative-sense, single stranded RNA viruses belonging to the family 

Orthomyxoviridae. The three influenza types are genetically diverged encompassing varying 

pathogenicity and different host species range although all three are capable of infecting 

humans. Influenza A and B viruses can cause severe disease in humans. However, the former is 

the most diverse, the most significant threat and associated with pandemic infection (Kidd 

2014). My work focussed on infection with Influenza A virus (IAV); a major cause of global human 

morbidity and mortality. IAV is a highly infectious and highly mutative intracellular pathogen and 

is known to infect a range of host species including humans, pigs and birds. IAV infection can 

cause a range of clinical features ranging from asymptomatic, to respiratory discomfort, to fever, 

to viral pneumonia caused by the virus itself or in conjunction with secondary infections and to 

sepsis. Severe cases of IAV infection can be mediated by both direct viral damage and an 
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uncontrolled and overwhelming host immune response (Dela Cruz and Wunderlink 2017). The 

World Health Organisation currently estimates that annual Influenza epidemics cause around 3 

to 5 million cases of severe illness and around 250,000 to 500,000 deaths globally. Thus, human 

Influenza infection places a large burden on health care resources as well as generating 

significant indirect costs associated with loss of workplace productivity. Cost estimates range 

between >$29 to >$85 billion annually in the United States (Molinari et al. 2007; Mao et al. 

2012). Vaccination strategies in humans to combat seasonal epidemics currently require annual 

inoculations to account for the mutative nature of the virus.  

 

1.4.1 Influenza A virus characteristics  

IAV is an enveloped virion with a genome consisting of eight distinct RNA segments that were 

initially identified to encode 10 viral proteins (Figure 1.3A); polymerase acidic protein (PA), 

polymerase basic proteins 1 and 2 (PB1 and PB2), hemagglutinin (HA), neuraminidase (NA), 

nucleoprotein (NP), matrix proteins 1 and 2 (M1 and M2), non-structural protein 1 (NS1) and 

NS2 since renamed nuclear export protein (NEP) (Palese and Schulman 1976; Ritchey et al. 1976; 

Allen et al. 1980; O’Neill et al. 1998). M1 is the most abundant protein per virion followed by 

NP, HA and then NA (Hutchinson et al. 2014). In recent years further viral proteins have been 

identified and begun to be characterised, with the viral genomic segments now thought to 

encode at least 18 proteins (reviewed in (Vasin et al. 2014)). Each gene segment is contained in 

a ribonucleoprotein complex (RNP) consisting of the RNA bound by multiple copies of NP and 

the addition of a viral polymerase (a trimer comprising PA, PB1 and PB2) (Zheng and Tao 2013). 

HA and NA are surface glycoproteins (Figure 1.3) involved in host cell attachment and entry and 

host cell exit. The subtypes of HA and NA are numbered and used to discriminate between 

different IAV strains and used in the standard international nomenclature for IAV. In this system 

each strain is named as follows: A/host of origin (if not human)/geographical origin/strain 

number/year of isolation (HA and NA subtype numbers) (WHO 1980). For example: 

A/Swine/England/1353/2009 (H1N1).  

 

1.4.2 Influenza A virus infection cycle 

IAV particles are highly infectious and new strains are able to spread rapidly within a population 

and even worldwide. The virus must first successfully enter the host and there are three main 

routes of IAV transmission. (i) Droplet transmission – infectious droplets expelled by an infected 

host can deposit in the upper respiratory tract. (ii) Aerosol transmission – inhalation of smaller 

particles, called ‘droplet nuclei’, capable of reaching the lower respiratory tract. (iii) Contact 



11 
 

transmission – by direct contact with virus-contaminated objects or infected individuals. The 

relative contribution of each transmission route on the spread of IAV is not yet clear (Killingley 

and Nguyen-Van-Tam 2013). IAV particles infect the epithelial cells of the respiratory tract 

wherein they can initiate production and assembly of more virions which can exit the cell and 

spread. HA binds to sialic acids on the host cell surface initiating endocytosis of the virion. Once 

internalised, the acidity of the endosome increases inducing conformational changes in certain 

viral proteins enabling viral RNPs to enter the cytoplasm of the infected cell before being 

trafficked to the nucleus. Once in the nucleus the RNPs dissociate allowing viral genome 

replication and viral protein expression. Newly assembled RNPs are then transported to the 

plasma membrane where new virions are assembled and then released from the cell by budding. 

The new virions are then able to infect further cells (Bouvier and Palese 2008; Hutchinson and 

Fodor 2013).   

 

1.4.3 Antigenic shift and drift  

Influenza A viruses can generate vast genetic diversity and evade the immune system by two 

main processes as shown in Figure 1.3B; (i) by altering the amino acid sequences of its surface 

glycoproteins, HA and NA, termed antigenic drift and/or (ii) by genetic reassortment whereby a 

strain may acquire a novel HA and/or NA gene segment, termed antigenic shift. In the former, 

the accumulation of point mutations in these proteins drives strain evolution and the resulting 

variants lead to annual epidemics. The latter is a consequence of the segmented viral genome 

which can undergo gene reassortment when a cell is infected by two or more IAV subtypes. The 

emergence of these antigenically distinct subtypes may have pandemic potential if entering an 

immunologically naïve population (Nicholson et al. 2003). Current vaccines induce antibody 

responses to these surface glycoproteins therefore they require annual updates as circulating 

strains mutate. These vaccines will likely be ineffective against the emergence of a novel 

pandemic strain. As IAV can infect multiple species, gene reassortment could occur in a host 

between diverse virus strains from different animal origins. Global human health is at risk from 

this zoonotic reservoir of novel influenza strains.  
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Figure 1.3. Influenza A virion structure and antigenic variants. 
A) Schematic of Influenza A virus particle. Eight gene segments encode for ten main proteins: 
PB2, PB1, PA, HA, NP, NA, M1, M2, NS1 and NS2. B) Influenza A viruses can undergo 
antigenic drift (accumulating changes in their surface proteins) and antigenic shift (gene 
reassortment to give new HA or NA genes). This generates strain diversity and new subtypes. 
Figure adapted from (Lederberg 2001). 
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1.4.4 Influenza A virus vaccines  

There are two types of human influenza vaccines currently licensed worldwide, inactivated 

vaccines typically administered intramuscularly and a live attenuated vaccine administered 

intranasally. Inactivated influenza virus vaccines induce neutralising antibodies against viral 

surface glycoproteins which can prevent influenza infection with matching or closely conserved 

strains (Cox et al. 2004; Baz et al. 2015). In addition to the induction of neutralising antibodies, 

live attenuated vaccines have also been shown to induce influenza-specific T-cell responses 

(Hoft et al. 2011). As shall be discussed in section 1.5, T-cell responses are important for cross-

strain protection. Vaccines administered intranasally are also desirable as they elicit immune 

responses that better resemble natural influenza infection (Cox et al. 2004).           

 

1.4.5 Zoonotic potential and Swine Influenza  

There has been substantial research already undertaken to understand Influenza infection in 

humans including efforts to develop a universal vaccine that could encompass antigenic drift 

and shift to provide protection across viral strain variants. However, despite IAV being endemic 

in the global pig population and the risk of zoonosis, the virus has not been well-studied or 

monitored in pigs.  

 

Pig farming represents a significant sector of the global livestock industry, with animal numbers 

rising annually from 856 million in 2000 to 985 million in 2014 worldwide (FAO 2014). There are 

three common subtypes of swine influenza virus (SwIV) circulating in the global pig population, 

H1N1, H3N2 (both of these lineages also circulate in humans) and H1N2, and inactivated virus 

vaccines are commercially available however they do not always prevent infection but can lead 

to milder symptom presentation (reviewed in (Rahn et al. 2015)). SwIV is not currently a 

notifiable disease in the UK and unlike in the US, vaccines are currently not widely used. Infection 

typically causes mild respiratory symptoms and fever similar to those observed in humans, but 

in other instances SwIV can be more severe contributing to reduced growth and reproductive 

rates. These symptoms are further exacerbated, and mortality risk increased, where secondary 

viral or bacterial co-infections occur (Chen et al. 2012). Subsequently, there can still be 

significant economic losses incurred in some SwIV cases, due to mortality, morbidity and the 

implementation of control measures.  Effective vaccination strategies and biosecurity practices 

would help eliminate the financial burden of SwIV and concurrently improve animal welfare.   
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In addition to the circulating strains of SwIV, pigs can also be infected with both avian and human 

influenza. Host tropism is mainly determined by the binding preferences of HA proteins for 

particular sialic acid (SA) receptors and their distribution within the host. Human viruses 

preferentially bind to SA α2, 6-galactose linked receptors and avian viruses to SA α2, 3-glactose 

linked receptors (Rogers and D’Souza 1989). In humans, the former predominates, particularly 

in the upper respiratory tract whereas the latter can be found in the lower respiratory tract 

(Shinya et al. 2006). This underpins the ability of avian viruses to infect humans and replicate in 

the lower respiratory tract. Both SA receptors have also been found in the respiratory tract of 

swine (Ito et al. 1998) displaying similar distribution patterns to that found in humans (Nelli et 

al. 2010). This provides molecular evidence that pigs can be infected by swine, human and avian 

influenza viruses enabling them to play an important role in shaping influenza epidemiology. 

Simultaneous infection of pigs with different strains and subsequent antigenic shift could give 

rise to novel and potentially dangerous IAV strains to which the human population are 

immunologically naïve (Scholtissek et al. 1985). This phenomenon has resulted in pigs being 

referred to as ‘’mixing vessels’’ (Scholtissek 1990)(reviewed in Ma et al. 2009).  Thus, the 

generation of antigenic shift in IAV in pigs represents a substantial zoonotic threat to the human 

population and is a major and significant factor driving research in this area in addition to pig 

health and welfare.   

 

There have been several recorded influenza pandemics in the last century with differing 

mortality rates. The recombination of influenza strains in pigs is believed to have produced the 

viruses responsible for the Asian H2N2 and Hong Kong H3N2 pandemics in 1957 and 1968 

respectively (Ito et al. 1998). These outbreaks were estimated to have caused over 1 million and 

1-3 million deaths worldwide respectively. The largest and most virulent pandemic on record is 

that of “Spanish” flu between 1918-1920 which was retrospectively identified to be a novel 

H1N1 subtype (Taubenberger et al. 1997). Historically pandemic surveillance would not have 

been that extensive so global mortality estimates vary but it is thought that “Spanish” flu was 

responsible for up to 50 million deaths worldwide (Johnson and Mueller 2002). A reoccurrence 

of a pandemic of this magnitude would be devastating, however, the health care available in 

1918 along with limited containment approaches would likely have contributed to this 

substantial mortality rate. A more recent, less severe pandemic occurred in 2009 with a novel 

H1N1 strain referred to as pdmH1N1 that was estimated to have caused 284,000 deaths globally 

(Dawood et al. 2012). This novel strain was first detected in early 2009 in Mexico and the US and 

had rapidly spread to 74 countries by June, when a pandemic was declared, and continued to 

spread worldwide before the World Health Organisation declared the pandemic over in August 



15 
 

2010. PdmH1N1 was unrelated to the circulating human influenza viruses at the time and was 

derived from several circulating SwIV following a complex series of transmission and antigenic 

shift events, in part facilitated by the movement of pigs between Eurasia and North America 

(Smith et al. 2009).  

 

In the majority of cases, pigs are infected with a single influenza subtype however multiple 

studies have demonstrated that pigs can be co-infected with two, or in rare cases more than 

two, different SwIV strains simultaneously (Kyriakis et al. 2013; Rose et al. 2013). Indeed, 

reassortment has been demonstrated following experimental co-infection of pigs with swine 

H3N2 and H1N1 viruses, however, the reassorted viruses were unable to transmit in this study 

(Ma et al. 2010). Natural reassortment events over the years have shaped the current genetics 

of circulating SwIV subtypes and novel strains continue to arise which given the correct genetics 

and conditions could establish themselves in the pig population. For example, in Germany novel 

reassortment H1N2 strains were isolated which were determined by sequencing to be the result 

of reassortment between circulating European H1N2 and H3N2 SwIV (Zell et al. 2008). Also in 

recent years, novel reassortment H1N2 SwIV were identified and became prevalent in Denmark. 

Sequence data confirmed that these novel strains was generated by reassortment of Danish 

avian-like H1N1 and swine H3N2 (Trebbien et al. 2013).   

 

The transmission of Influenza viruses between the human and pig populations has been well 

documented globally. A recent study reviewed data from all published incidences of avian or 

swine influenza transmission to humans (Freidl et al. 2014). They found 1023 reports of avian 

influenza transmission to humans of which the majority of cases, 648, were associated with 

subtype H5. There were 396 reports of natural human infection with SwIV the majority of which 

were with SwIV H3N2. Where data was available, the majority of patients had been exposed to 

animals indicating a direct transmission route. The authors advised that the number of SwIV 

transmission to humans may be underestimated since the clinical presentation would be similar 

to that of human seasonal flu. Reverse zoonoses are also prevalent; between 2009-2011 one 

study identified almost 50 human to pig transmission events globally of pdmH1N1, along with 

over 20 transmissions of H1 and H3 viruses since 1990 globally (Nelson et al. 2012). Indeed 

reassortment viruses have been identified in swine containing gene components of human 

pdmH1N1 (Howard 2011). A study that analysed 290 SwIV genomes circulating between 2009-

2013, isolated from 14 countries across Europe including the UK, found that 27% contained 

internal genes derived from pdmH1N1 lineage (Watson et al. 2015)   
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1.5 T-cells and Influenza  

It is widely documented that T-cell responses, particularly CD8+ T-cells, are key to limiting the 

severity of disease following IAV infection (McMichael et al. 1983; Sridhar et al. 2013; La Gruta 

and Turner 2014; Wang et al. 2015), particularly when the antibody response is insufficient. 

Upon infection, CD8+ T-cells will be activated and migrate to the respiratory system where they 

can initiate apoptosis of virus-infected epithelial cells and thus limit viral spread. Cytotoxic T-

cells can kill IAV-infected cells by releasing perforin and granzymes into the infected cells, by the 

Fas/Fas ligand apoptotic pathway (Topham et al. 1997) and by the secretion of other cytokines 

(Bot et al. 1998; Brincks et al. 2008).  

 

1.5.1 Heterotypic immunity 

The term ‘heterotypic immunity’ (also known as heterosubtypic) refers to the phenomenon 

where an individual previously infected by one influenza subtype, displays reduced or absent 

pathology following subsequent influenza infection with a different subtype in the absence of 

neutralising antibodies. This term was first used in 1965 by Shulman and Kilbourne, who 

demonstrated experimentally in mice the ability of previous infection with H1N1 to improve 

immunity to subsequent challenge with a H2N2 virus (Schulman and Kilbourne 1965). Although 

this form of protection does not prevent infection, it was found to reduce viral titres, viral 

pathology and mortality all in the absence of neutralising antibodies. Heterotypic immunity has 

been investigated by numerous studies since and a landmark natural experiment was made 

possible by the 2009 H1N1 pandemic. Sridhar and colleagues were able to monitor a group of 

individuals, that lacked pre-existing antibodies to pdmH1N1, throughout the pandemic waves 

of infection during 2009-2011 (Sridhar et al. 2013). Higher levels of pre-existing effector memory 

IAV-specific CD8+ T-cells in individuals was correlated with milder symptoms or asymptomatic 

presentation following natural pdmH1N1 infection and reduced viral shedding. Furthermore, 

pre-existing cytotoxic T-cells were shown to respond to epitopes from three conserved influenza 

proteins. Cytotoxic T-cells recognising epitopes derived from conserved internal Influenza 

proteins have been documented in humans both ex vivo and in vitro and are of substantial 

interest because of their ability to confer broad protection against influenza strains (Lee et al. 

2008; Grant et al. 2013; Liu et al. 2013; Sridhar et al. 2013). Inducing T-cells that recognise 

conserved epitopes is therefore of high interest when it comes to developing universal Influenza 

vaccines.  I will discuss the sequence conservation of IAV proteins further in Chapter 4 on page 

58. 
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1.6 T-cell immunology of swine Influenza 

The study of immune responses in pig, both generally speaking and in the context of Influenza, 

lags behind that of humans and laboratory mice. This is likely due in part to the fact that 

historically immunological tools for pig research have been limited and only in the past decade 

has interest increased in understanding SwIV and monitoring SwIV epidemiology. This study has 

been facilitated by the increased availability of reagents in recent years (reviewed for αβ T-cells 

in (Gerner et al. 2015)) although further commercially available antibodies and reagents are still 

desirable to make T-cell research in pigs even more accessible.  

 

1.6.1 Porcine T-cells overview 

For the most part, comparisons have shown human and porcine T-cells to be similar with few 

noteworthy differences. In pigs, a range of different T-cells are known to express the CD8αα 

homodimer (Gerner et al. 2009) in particular CD4+ T-cells will express CD8αα upon activation 

and memory, whereas (CD4-) cytotoxic T-cells permanently express the CD8αβ heterodimer 

(Zuckermann and Husmann 1996; Yang and Parkhouse 1997). Also pigs are one of a number of 

species that have high circulating levels of γδ T-cells and in pigs a small subset of these also 

express CD8α. Traditionally cytotoxic T-cells have been distinguished in flow cytometry studies 

as CD3+, TCRγδ-, CD4- and CD8αhigh cells. However, an antibody to the CD8β chain is now 

commercially available and was particularly useful for this study as it enabled clear distinction 

of cytotoxic porcine T-cells, which express the CD8αβ heterodimer. To my knowledge there is 

no antibody available for the αβ TCR in pigs, this would be highly desirable for future research.  

 

1.6.2 T-cells in Swine Influenza  

Influenza infection in pigs induces neutralising IgA and IgG antibodies and an increase in 

lymphocytes in the lungs, including a large increase in cytotoxic T-cells and heterotypic immunity 

has also been demonstrated in pigs (Heinen et al. 2001). There are a limited number of studies 

investigating T-cell responses in SwIV in depth and few cytotoxic T-cell epitopes have been 

published that have also been confirmed experimentally. There has been some recent progress 

with a study in outbred pigs that used an in silico prediction algorithm to identify four putative 

SwIV epitopes presented by one of the most commonly occurring SLA-I in livestock; SLA-1*0401 

(Pedersen et al. 2014). Pedersen and colleagues were able to confirm these epitopes (from HA, 

NP and PB2) by peptide-MHC multimer staining of blood samples from pigs each inoculated with 

a chemically inactivated SwIV strain given with adjuvant over four repeated immunisations. 

Recent studies by Talker and colleagues presented the most in-depth analysis of porcine T-cell 
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responses so far in pigs, experimentally infected with high doses of SwIV H1N2 intratracheally, 

looking at phenotypes and function both locally and systemically (Talker et al. 2015; Talker et al. 

2016). In the peripheral blood mononuclear cells (PBMC), multifunctional T-cells were detected 

in response to virus; CD4+ T-cells produced IFN-γ, TNF-α and IL-2 and CD8β+ T-cells produced 

IFNγ and TNFα and stained positive for the degranulation marker CD107a (Talker et al. 2015). 

The latter were only detected in low frequencies ex vivo so samples were stimulated with virus 

in vitro to enable cytokine analysis of these multifunctional CD8β+ T-cells in 4 out of 6 animals. 

Proliferative and perforin+ cytotoxic (CD8β+) T-cells were detected directly ex vivo by flow 

cytometric analysis in the blood of 3 out of 6 animals after primary infection. The second study 

inoculated 31 pigs and analysed local responses in the lungs and tracheobronchial lymph nodes 

(TBLN) in addition to PBMC, and detected virus specific IFNγ+ CD8β+ T-cells in the lung at 

frequencies up to 30 times higher than that seen in PBMC and TBLN following infection (Talker 

et al. 2016). The authors also incubated lung and PBMC samples in vitro with heterologous SwIV 

strains which induced production of IFNγ and TNFα in CD8β+ T-cells.   

 

1.7 Aims 

Despite their role as important antigenic ‘mixing vessels’ with potential to generate highly 

dangerous viral strains, the immune response to IAV in pigs has not been as well studied or 

monitored. This deficiency has arisen, at least in part, due to a lack of research tools to study T-

cell responses in pigs and the inability to culture porcine T-cells long term in vitro. At the outset 

of my thesis work nobody had been able to culture porcine T-cells beyond very short term lines 

(3 weeks). The initial focus of this project was therefore to establish porcine T-cell culture 

(chapter 3) so that I could study T-cell responses to SwIV. I then aimed to identify Influenza 

epitopes using Influenza-specific T-cell lines and clones (chapters 3 & 4). These epitopes were 

then used to produce soluble pMHC-I complexes for structural analyses (chapter 5) and pMHC 

tetramer staining of relevant samples ex vivo (chapter 6). Finally, I aimed to use the structural 

data and the T-cell clones to define MHC-I binding motifs to enable informed epitope predictions 

(chapter 7).    

 

This study, aimed to increase our understanding of T-cell responses to Influenza in pigs in the 

context of vaccination and expand the immunological toolbox for swine studies bringing 

approaches up to the speed that is already routinely available for human and mouse studies. My 

study aimed to contribute directly to our influenza knowledge in pigs by application of our 

developed techniques on clinically relevant samples. It further aimed to inform future studies 
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including assessing vaccination routes, predicting T-cell influenza epitopes and monitoring 

correlates of protection. The techniques I developed could also be applied to studies of other 

economically important swine diseases. Furthermore, the pig makes a good model of human 

IAV infection (reviewed in (Rajao and Vincent 2015)) and both swine and human flu strains are 

known to replicate to similar levels on the upper and lower respiratory tract of pigs and exhibit 

similar patterns of viral shedding (Brown 2000). Pigs are also known to exhibit a comparable 

arrangement of viral attachment to that observed in humans (Van Poucke et al. 2010). 

Additionally pigs and humans share a high degree of anatomical and physiological similarities 

with studies of immune parameters showing 80% orthology between humans and pigs in those 

analysed compared to only 6% between humans and mice (Dawson 2011; Dawson et al. 2013). 

Some of the advantages to using pigs as models of human diseases are reviewed in (Meurens et 

al. 2012). A long-term aim of this work was to aid the establishment of pigs as the closest non-

primate model to human for studies of infection, autoimmune disease, transplant tolerance and 

organ regeneration. 
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2 Materials & Methods 

 

2.1 Animals, virus and Influenza vaccination 

2.1.1 Babraham and outbred pigs 

Experiments in this study were performed on the Babraham (‘large white’) inbred pig line, 

which all carry identical swine leukocyte antigen (SLA) genes. Pig experiments were conducted 

at the Pirbright Institute in accordance with the Pirbright Institute ethics committee and the 

U.K. Animal (Scientific Procedures) Act of 1986. All pig experiments described in this thesis 

were performed by my collaborators at the Pirbright Institute (Dr. Sophie Morgan, Dr. Hanneke 

Hemmink, Dr. Maria Montoya, Dr. Bryan Charleston and Dr. Elma Tchilian). Frozen samples or 

EDTA-treated blood from experimental pigs were sent to Cardiff University for this study. All 

Babraham pigs used in these experiments were confirmed Influenza A virus (IAV) free by 

screening for the absence of IAV infection by matrix (M) gene real time RT-PCR (Slomka et al. 

2010), and antibody-free status was confirmed by haemagglutination inhibition (HAI) using 4 

swine influenza virus (SwIV) antigens. Outbred pigs (pedigree and cross-breed) were also used 

to procure ‘feeder’ peripheral blood mononuclear cells (PBMC) with blood collected as a by-

product (with assistance from either Prof. Mick Bailey or Dr. Emily Porter) from the University 

of Bristol, Veterinary School abattoir, adhering to EU regulated methods. PBMC were then 

isolated from blood samples at Cardiff University.   

 

2.1.2 Swine Influenza viruses 

The candidate vaccine, S-FLU, was provided by Prof. Alain Townsend, University of Oxford. The 

H5-S-FLU expressed the HA of the avian influenza virus A/Vietnam/1203/2004(H5) and N1 and 

internal genes from PR8 [IAV (A/PuertoRico/8/1934(H1N1))] (Morgan et al. 2016). H1 S-FLU, [S-

eGFP/N1(Eng)].H1(Eng), expresses the HA and NA of the A/England/195/2009 [pandemic H1N1] 

(N1 GenBank accession no. GQ166659.1 and surface H1 HA GenBank accession no. ACR15621.1) 

and internal protein genes of PR8. Inactivated virus of the following H1N1 strain was also 

utilised; [A/Swine/Spain/SF11131/2007] (Sp/Sw); provided by the Pirbright Institute.   

 

2.1.3 Influenza vaccination and tissue harvest  

Two sows, pigs #625 and #650, were immunised simultaneously with 8 x 107 TCID50  H5-S-FLU 

intranasally using a mucosal atomization device (MAD300, Wolfe Tory Medical) and with 2 x 

107 TCID50  inactivated H1N1 (Sw/Sp) with montanide adjuvant intramuscularly. The animals 
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received identical booster immunisation 25 days later. Pigs were euthanised (stunning with 

exsanguination) at day 38 (day 13 post boost) and peripheral blood, Bronchoalveolar Lavage 

(BAL) and Tracheobronchial lymph nodes (TBLN) were harvested.  In short, BAL samples were 

obtained by washing the lung with 250 mL of phosphate buffered saline (PBS) from which 100 

mL was harvested. The BAL fluid was centrifuged at 800 x g for 15 min to isolate any cells 

present. The cell pellet was washed in PBS, filtered through a 70 μm cell strainer and frozen. 

TBLN were dissected at post mortem and dissociated into single cell suspensions, which were 

filtered twice using a 70 μm cell strainer and washed in PBS before being frozen. PBMC were 

isolated from peripheral blood (see section 2.2.2) and frozen.   

 

In a second experiment, five pigs were divided into two groups, pigs #1 and #2 were left 

unvaccinated and pigs #6, #7 and #8 received H1-S-FLU [S-eGFP/N1(Eng)].H1(Eng)] via aerosol 

administration (~ 2 x 107 TCID50 per dose) using a InnoSpire Deluxe Philips Respironics nebulizer 

fixed to a small-sized anaesthetic mask held over the animal’s nose and mouth. Vaccinated 

pigs received an H1-S-FLU boost at day 28. All pigs were euthanised at day 57 (day 28 post 

boost) and PBMC and BAL were harvested as described above. Details of all pigs are shown in 

Table 2.1.   

 

Table 2.1. Weight and age of pigs used in experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pig# Sex  Age at day 0 Weight (kg) at day 0  

625 F 2 years 173.5 

650 F 3 years 192 

1 F 91 days 21.0  

2 M 94 days 30.5 

6 M 91 days 27.0 

7 F 91 days 29.5 

8 M 91 days 29.0 
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2.2  Porcine Tissue Culture, peptides and T-cells.  

All cells were cultured in 37 °C, 5% CO2 incubators unless otherwise stated.  

2.2.1 Porcine Media and Buffers 

Media/Buffer Composition  

R0 medium 
RPMI-1640 Medium, pH 7-7.4 (Life Technologies) 
2 mM L-glutamine (Life Technologies) 
100 U/mL Penicillin, 100 µg/mL Streptomycin (‘Pen Strep’, Life Technologies) 

R5 medium 
R0 medium supplemented with 5% Heat-inactivated foetal bovine serum (FBS) (Life 
Technologies)  

R10 medium R0 medium supplemented with 10% FBS 

Pig R5 
medium 

R0 medium supplemented with 5% in-house pig serum 

Pig T-cell 
expansion 
medium 

R0 medium supplemented with: 
10% in-house pig serum 
10 mM HEPES buffer (Life Technologies) 
0.5X MEM Amino Acids (Life Technologies) 
1 mM Sodium Pyruvate (Life Technologies) 
50 μM 2-Mercaptoethanol 
12.5 - 25 ng/mL swine IL-15 (Kingfisher Biotech) 
300 IU/mL human IL-2 (aldesleukin, brand name Proleukin, Promethus) 

Pig T-cell 
priming 
medium 

As above but with swine IL-15 removed and 20 IU/mL IL-2 

APC-1 
medium 

DMEM medium (Life Technologies) 
2 mM L-glutamine  
100 U/mL Penicillin Streptomycin 
10% FBS 
10 mM HEPES buffer  
0.5X MEM Amino Acids  
1 mM Sodium pyruvate  

APC-2 
medium 

DMEM/F12 medium (1:1) (Life Technologies) 
2 mM L-glutamine  
100 U/mL Penicillin Streptomycin 
10% FBS 
15 mM HEPES buffer  

PBS 
PBS Dulbecco A tablets, pH 7.3 (-Ca) (-Mg) (Oxoid, U.K.) 
Dissolved in double distilled H20 and sterilised by autoclaving as per the 
manufacturer’s instructions  

Freezing 
Buffer 

90% FBS 
10% Dimethyl sulfoxide (DMSO) (Sigma)  

FACS Buffer   
PBS 
2% FBS 

Red Blood Cell 
(RBC) lysis 
buffer 

0.1 mM EDTA, pH8 (Sigma) 
10 mM Potassium bicarbonate (KHCO3) (Fisher Scientific) 
155 mM Ammonium chloride (NH4Cl) (Sigma)  
Adjust pH to 7.2-7.4 where required 

PBS-EDTA 
‘D-PBS’ (1x) (-Ca) (-Mg) (Life Technologies)  
2 mM EDTA 

MACS buffer 
‘D-PBS’ (1x) (-Ca) (-Mg) (Life Technologies)  
0.5% Bovine serum albumin (BSA) purified by heat shock fractionation, pH 7 (Sigma)  
2mM EDTA, pH 8 

*All cell culture media were 0.22 μm filtered before use.  
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2.2.2 PBMC Isolation  

Ethylenediaminetetraacetic acid (EDTA)-treated Babraham pig blood was obtained by 

venepuncture or for ‘feeder’ pigs by exsanguination. PBMCs were isolated by density 

centrifugation over an equal volume of Lymphoprep (Axis Shields, Oslo, Norway). Blood was 

slowly layered onto the Lymphoprep before being centrifuged at 900 x g for 20 min without a 

brake (to prevent disruption of the lymphocyte layer upon deceleration). The mononuclear cell 

layer was then harvested using a pasteur pipette and transferred to a fresh tube and washed 

with R0 medium (centrifuged at 600 x g for 10 min). The cell pellet was then resuspended in 

25 mL RBC lysis buffer and incubated at 37°C in a water bath for 10 min. Samples were then 

washed with R0 medium (centrifuged at 300 x g for 6 min; to remove platelets) before being 

resuspended in R10 medium for cell counting. PBMCs were either used immediately or 

cryopreserved for future use.  

 

2.2.3 In-house pig serum isolation 

In-house pig serum was obtained from blood collected as a by-product from an abattoir that 

was allowed to clot in 50 mL tubes. The blood was centrifuged at 900 x g for 20 min upon which 

the serum was carefully aspirated off and transferred to fresh tubes. This step was repeated 

as necessary to ensure maximum serum harvest. Serum was then heat-inactivated at 56°C for 

1 h before being frozen for storage. Serum was 0.22 μm filtered before being added to any 

medium.  

 

2.2.4 Cryopreservation and thawing of cells 

Cells were thawed rapidly in a 37 °C water bath before being resuspended in pre-warmed R10 

medium and centrifuged at 400 x g for 5 min. The supernatant was then removed before 

resuspending the cells in the required medium. Whenever PBMC were defrosted they were 

treated at this point with 10-50 mg/mL DNase-I (Roche, Burgess Hill, U.K.) at 37˚C for at least 

20 min. This ensured digestion and prevention of any negative effects of dead cell debris. Cells 

to be frozen were centrifuged at 400 x g for 5 min to remove any medium and were 

resuspended in freezing buffer then placed in 1 mL cyrovials and frozen using a controlled rate 

freezing device (either CoolCell, Biocision or “Mr Frosty”, Nalgene) at -80 °C. Cells were moved 

within 48 h to liquid nitrogen for long term storage.  
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2.2.5 Cell counting 

Cells were resuspended and typically 10 μL of sample was mixed in a 1:1 ratio with trypan blue 

solution (Sigma). This mixture was then loaded onto a counting slide and viable cell numbers 

were enumerated by trypan blue exclusion and put into the following equation: (number of 

cells counted in slide section) x (dilution factor) x 104 x (mL of sample) = total cell number.  

 

2.2.6 CD8β T-cell isolation 

Cytotoxic T lymphocytes (CTLs) were isolated using MACS anti-PE Microbeads (Miltenyi Biotech) 

based on the manufacturer’s protocol. Throughout this method the centrifuge was kept at 4 °C 

and antibody staining took place on ice. PBMC were defrosted as described in section 2.2.4 then 

distributed between sterile capped FACS tubes (Falcon, Corning) at 2-3 x 106 cells per tube. Cells 

were then washed with 3 mL MACS buffer per tube (centrifuged at 300 x g for 10 min) and the 

supernatant removed. Next, 0.5 μL of mouse anti-pig CD8β (clone PG1G4A, Kingfisher Biotech) 

were added per tube and incubated for 20 min. The wash step was then repeated before adding 

0.5 μL of goat anti-mouse PE-conjugated antibody (Ab) (Ig polyclonal; BD Biosciences) for 20 

min. The cells were then combined into a 15 mL falcon tube and washed with 10-15 mL MACS 

buffer. The supernatant was aspirated and the cells were resuspended in 80 μL of MACS buffer 

and 20 μL of anti-PE Microbeads per 1 x 107 PBMC. This mixture was then incubated in the 

refrigerator for 15 min. The cells were then washed, the supernatant aspirated and the cell pellet 

resuspended in 500 μL of MACS buffer. This suspension was then passed through a MACS MS 

column (where the maximum number of total cells was 2 x 108) and washed appropriately to 

obtain the CD8β- flow through and the isolated CD8β+ cells. Pre and post-sort samples were 

taken where required to ascertain sorting efficiency using flow cytometric analysis.  

 

2.2.7 Peptides   

S-FLU expresses PR8 internal genes from which overlapping peptides were designed, by Dr. 

Garry Dolton, to span the entire protein sequences of the Matrix protein (M1) (GenBank 

accession no. NP_040979.2] and nucleoprotein (NP) (sequenced in-house by Prof. Alain 

Townsend’s laboratory). Peptides of 18 amino acid (aa) in length each overlapping by 10 aa 

were obtained using a Peptide Library Design and Calculator Webtool (Sigma Aldrich). Peptide 

sequences were adjusted by deletion, or addition, of amino acids from neighbouring peptides 

to increase the likelihood of them solubilising in aqueous solution. In total 40 overlapping 

peptides were designed for M1 and 81 peptides for NP and split into pools for screening 

(Tables 10.1 & 10.2). Peptides were synthesised to >70% purity (GL Biochem Shanghai Ltd.) 
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and reconstituted in DMSO to 30 mM. Truncated peptides used to map minimal epitopes, 

alanine scan and anchor SLA substituted peptides were designed and synthesised to >40% 

purity (GLS Biochem Shanghai Ltd.) and reconstituted in DMSO to 20 mM. All peptides were 

soluble in DMSO and stored at -20°C or -80 °C as DMSO stocks (20 - 30 mM) and working 

concentrations of peptides were made in R0 medium. Peptides used for in vitro protein 

refolding were synthesised to >90% purity (Peptide Protein Research Ltd, U.K.).  

 

2.2.8 Generation of Influenza peptide-specific T-cell lines and clones 

Porcine PBMC samples were defrosted and separated into CD8β+ and CD8β- cell populations as 

described above. The CD8β+ cells were plated 50,000 cells per well in 50 μL of priming medium 

in 96 multiwell round bottom plates. The autologous CD8β- cells were resuspended in priming 

medium (50 μL per 200,000 cells) and incubated with either DMSO (control) or an influenza 

peptide pool (3 μM with respect to each individual peptide within a pool) at 37 °C for 1 h before 

irradiation at 3000-3100 rad. These cells were then plated at 50 μL per well on top of the CD8β+ 

cells. The CD8β+ cell lines were cultured for two weeks and fed with 100 μL priming medium 

twice a week. They were then tested for peptide responses using intracellular cytokine staining. 

Where the percentage of peptide responsive T-cells was relatively high the line could be used 

directly for T-cell cloning. T-cell clones were procured by limiting dilution whereby typically 0.5 

cells were plated per well in a 96 multiwell round bottom plate for expansion. In some instances, 

1 cell was distributed per well to account for the low viability of porcine T-cells in culture. 

Following expansion set up, cloning plates were fed on day 7 and day 14 with 50 μL expansion 

medium before being tested for peptide reactivity.  

 

2.2.9 Porcine T-cell clone expansion 

Porcine T-cell clones were routinely expanded typically every 2-3 weeks in 96 multiwell round 

bottom plates. For established T-cell clones, 1000 cells were plated per well with 200,000 

irradiated feeder cells in a total of 100 μL of expansion medium with phytohaemagluttinin 

(PHA) (Remel, ThermoFisher Scientific) added at 1-4 μg/mL. Feeder cells were defrosted 

allogeneic PBMC from 3 ‘feeder’ pigs mixed together in an equal ratio and irradiated at 3000-

3100 rad. Feeder cells were washed in R0 medium after irradiation and re-counted. Expansions 

were fed at day 5 and day 10 with 100 μL of expansion medium. At least two weeks of culture 

were required before the T-cell clones were used for assays, further expansion or frozen for 

storage. T-cell clones were usually harvested and counted at day 14 and plated at 1x106 cells 

per well in 48 multiwell plates. The clones were maintained in culture where required by 

feeding them every 4-5 days.  
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2.2.10 CFSE labelling of cells 

CD8β+ T-cells or PBMC were washed twice with PBS before being resuspended in PBS; this 

volume was varied depending on the cell numbers that were used. CFSE dye (eBioscience) was 

added at a final concentration of 2 µM. Cells were protected from light and labelled at 37°C for 

10 min. R10 medium was then added to stop the reaction and the cells were washed. Cells were 

then used as required and protected from light during cell culture.  

 

2.2.11 Kidney cell line culture 

The embryonic kidney cell line, ESK-4, expresses both SLA-1*14:02 and SLA-2*11:04 (formerly 

known as SLA-1*es11 and SLA-2*es22) molecules (Ho et al. 2009) as found in the Babraham pig 

line. ESK-4 cells were obtained from the ‘European Collection of Authenticated Cell Cultures’ 

and cultured in APC-1 medium. Babraham pig kidney cells were isolated by Dr. Liz Reid at the 

Pirbright Institute and cultured in APC-2 medium at Cardiff University. The culture medium was 

changed every 7 days or as required and cells were passaged upon reaching confluency. 

Adherent cells were detached from tissue culture flasks by firstly aspirating off any medium 

before gently rinsing the cells with calcium and magnesium chloride–free Dulbecco’s PBS (Life 

Technologies). This was followed by incubation with either pre-warmed Dulbecco’s PBS mixed 

with 0.05% Trypsin-EDTA (1X) (manufacturer formulated; 25300054; Life Technologies) or 

TrypLE™ Express (Life Technologies) at 37˚C, until the cells detached. The former was only used 

during routine culture and the latter used routinely or when cells were being harvested for use 

in assays. Gentle tapping was used to encourage cell detachment.  

 

2.3 Porcine Flow Cytometry and Functional Assays 

2.3.1 Compensations, acquisition and analysis 

Anti-mouse Ig antibody compensation beads (BD Biosciences) were used to prepare individual 

compensations for each fluorochrome used in any experiment. However, when using CFSE 

labelling it was necessary to use the relevant cells instead for fluorochrome compensations. 

Unless otherwise stated all staining steps were performed in the dark. All data were acquired 

on a BD FACSCanto II flow cytometer using FACSDiva software (both BD Biosciences). 

Fluorescence-activated cell sorting (FACS) was performed on a BD FACSAria (BD Biosciences) 

operated by central biotechnology services (Cardiff University). All data analyses were 

performed using FlowJo version 10.0 (TreeStar Inc., U.S.). Typically, T-cell clones were gated 

on for single, viable CD8β+ lymphocytes then displayed as histograms of tetramer fluorescence 
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and PBMC samples were gated on single, viable CD14-CD3+CD4+CD8β+ lymphocytes and 

displayed in bivariate tetramer versus CD8β plots.  

 

2.3.2 Antibodies 

The following antibodies were used subject to each experiment: 

  

Host 
Species  

Antibody Clone  Supplier 

Mouse Purified anti-phycoerythrin (PE) PE001 Biolegend 

Goat Anti-mouse Ig (multiple absorption) PE Polyclonal BD Biosciences 

Mouse Anti-pig CD8β PG164A 
Kingfisher 
Biotech 

Mouse Anti-pig CD3ε PE-Cy7 
BB23-8E6-
8C8 

BD Biosciences 

Mouse Anti-pig CD4 Alexa Fluor 647 (AF647) 74-12-4 BD Biosciences 

Mouse Anti-human* CD14 PB TUK4 Bio-Rad 

Mouse Anti-pig CD8β FITC PPT23 Bio-Rad 

Mouse Anti-human* TNFα PerCP MAb11 Biolegend 

Mouse Anti-pig MHCI 74-11-10 
Kingfisher 
Biotech 

Mouse Anti-pig MHCII MSA3 
Kingfisher 
Biotech 

Mouse Anti-pig CD4  MIL17 # 

Mouse Anti-pig CD8α MIL12 # 

Mouse Anti-pig TCR-γδ PPT16 # 

Mouse Anti-pig CD3ε PPT3 # 

* These antibodies have been shown to be cross reactive to pigs.  
# These mouse monoclonal antibodies (Yang et al. 1996; Yang et al. 2005; Gerner et al. 2015) 
were kindly provided as supernatants by Prof. Mick Bailey; University of Bristol.  
  

  

2.3.3 Surface marker staining of porcine T-cell clones 

T-cell clones were placed in 5 mL FACS tubes (Elkay Laboratory Products Ltd., U.K.) and washed 

in PBS (700 x g for 3 min) and stained in approximately 50 μL of residual PBS with 1 μL 

LIVE/DEAD Violet stain (Life Technologies) (diluted 1:40 in PBS) at room temperature for 5 min, 

before incubation on ice for 20 min with either of the following antibodies; 0.8 μL anti-pig CD4, 

3 μL anti-pig CD8α, 5 μL anti-pig TCR-γδ, 1 μL anti-pig CD3ε (all supernatants), 0.5 μL anti-pig 

CD8β, 0.5 μL anti-pig MHCI or 0.5 μL anti-pig MHCII. Cells were then washed with FACS buffer 

and all labelled with 2 mg/mL (0.1 mg/sample) anti-mouse Ig-PE on ice for 20 min. The wash 

step was then repeated and the cells resuspended in FACS buffer for analysis.  
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2.3.4 Intracellular cytokine staining (ICS) and TAPI-0 assays 

T-cell lines were washed in R0 medium prior to activation. Cells were incubated in a 96 round 

bottom plate together with 1 μL/mL brefeldin A (GolgiPlug; BD Biosciences), 0.7 μL/mL 

monensin (GolgiStop; BD Biosciences) and 2 μM peptide(s). The cells were incubated at 37°C 

for 5 h before being washed with PBS three times (700 x g for 3 min). Porcine T-cells were then 

stained with 1 μL LIVE/DEAD Violet stain (Life Technologies) (diluted 1:40 in PBS) at room 

temperature for 5 min, and then with 10 μg/mL (0.5 μg/sample) anti-pig CD8β on ice for 20 

min. The wash step was repeated with FACS buffer followed by the addition of 1 μg/mL (0.05 

μg/sample) anti-mouse Ig-PE on ice for 20 min. The PBS wash step was repeated and cells were 

fixed and permeabilised with 100 μL BD Cytofix/Cytoperm solution (BD Biosciences) on ice for 

20 min. All wash steps were performed from this point on with 10% BD PermWash buffer (BD 

Biosciences). Following another wash step, the cells were incubated with 2.4 μg/mL (0.12 

μg/sample) anti-human TNFα PerCP per well on ice for 20 min before a further wash and 

resuspended in PBS for acquisition. For TAPI-0 assays cells were co-incubated with peptide, 10 

μM TAPI-0 (Calbiochem) and 1 μL anti-TNFα at the start of the experiment in 100 μL of medium 

per well. Cells then received the relevant surface antibodies and could either be used for 

analysis or for FACS, as this method does not kill the cells unlike ICS.  

 

2.3.5 Peptide-SLA multimer assembly  

Soluble biotinylated pSLA were assembled into tetramers by the successive addition of 

streptavidin-R-PE conjugate (Life Technologies) over five separate 20 min steps. A molar 

streptavidin:pMHC ratio of 1:5 was used requiring 0.015 mM of pMHC to 0.003 mM of 

streptavidin-R-PE conjugate. This required 6.25 μL PE conjugate (1 mg/mL) per 5 μg pMHC 

monomer (1.25 μL added per step). Following assembly, tetramers were made to a final 

concentration of 0.1 μg/μL (with respect to the pMHC component) with PBS. Tetramers were 

stored in the dark at 4 °C and used within 3 days of assembly and protease inhibitors (set 1; 

Merck, London, U.K.) were added to the final solutions. Multimers were always spun for 1 min 

before each use to remove any aggregates. 

 

2.3.6 ‘Boost’ antibodies 

Following multimer staining cells were washed in FACS buffer and labelled with 10 μg/mL (0.5 

μg/sample) unconjugated anti-PE Ab (termed 1° Ab) on ice for 20 min. Cells were then washed 

twice in FACS buffer and labelled with 2 μg/mL (0.1 μg/sample) anti-mouse Ig-PE (termed 2° 
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Ab) on ice for 20 min. The conjugated fluorochrome here corresponds to that used in the pMHC 

multimer. Each Ab was spun for 1 min before use to remove any aggregates.  

 

2.3.7  Tetramer staining of porcine T-cell clones 

T-cell clones were stained in 5 mL FACS tubes either with or without incubation with 50 nM 

protein kinase inhibitor (PKI) (Dasatinib, Axon Medchem) at 37°C for 30 min. PKI treatment 

was followed directly by 0.3 μg (with respect to the pMHC component) of tetramer on ice for 

30 min before a PBS wash. Next they received, in approximately 50 μL of residual PBS, 1 μL 

LIVE/DEAD Violet stain (Life Technologies) (diluted 1:40 in PBS) at room temperature for 5 min, 

before incubation on ice for 20 min with 1.5 μL anti-pig CD8β-FITC. Cells were then washed 

and resuspended in FACS buffer for analysis.  

 

2.3.8 Ex vivo tetramer staining of porcine PBMC, BAL and TBLN samples.  

PBMC, BAL or TBLN samples were stained in 5 mL FACS tubes; for PBMC no more than 2 x 106 

cells were allocated per tube. Cells were incubated with 50 nM PKI at 37°C for 30 min followed 

directly by 0.3 μg tetramer on ice, both for 30 min. PKI was stored in 1 mM one-use aliquots at 

-20°C and dilutions were made up fresh for each experiment. Next, cells were washed and 

received 10 mg/mL anti-PE on ice for 20 min. Cells were then washed with PBS and stained in 

approximately 50 μL of residual PBS with 2 μL LIVE/DEAD Violet stain (1:40 dilution) at room 

temperature for 5 min followed by surface antibodies (fluorochrome conjugated) on ice for 20 

min; 1.5 μL anti-pig CD3ε PE-Cy7, 3 μL anti-pig CD4 AF647, 2 μL anti-human CD14 PB and 1.5 

μL anti-pig CD8β FITC. Cells were washed and resuspended in PBS for data acquisition. Where 

required cells were fixed at this stage with 2% paraformaldehyde (PFA) on ice for 20 min. 

Tetramer positive cells could also be isolated at this point using FACS.  

 

2.3.9 Enzyme Linked Immunosorbent Assay (ELISA)  

Porcine T-cell clones were harvested and washed in R0 medium before incubation for 6 h in pig 

R5 medium. During this incubation in pig R5 medium, the cells are exposed to reduced serum 

and no cytokines in the culture medium which limits the spontaneous release of cytokines and 

chemokines during the activation assay. Cells were then washed in R0 medium prior to 

activation. Cells were incubated at 37˚C overnight in pig R5 medium with either peptide(s) (10-

4 to 10-12 M), medium alone or 10 μg/mL PHA (positive control). All conditions were typically 

performed in duplicate. The following day cells were pelleted by centrifugation and 50 μL of 

culture supernatant was harvested per well and diluted with 70 μL R0 medium (dilution factor 
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= 2.4) either for immediate use or frozen storage. ELISA half-well flat bottom microplates 

(Corning Costar) were coated with 50 μL (1.5 μg/mL) anti-swine MIP-1β polyclonal Ab 

(Kingfisher Biotech) and incubated at room temperature overnight. ELISA plates were washed 

between each step using an automated microplate washer with wash buffer (0.05% Tween 20-

PBS). ELISA plates were blocked with reagent diluent (1% BSA-PBS) for at least 1 h before 

incubation for at least 75 min with 50 μL supernatant or protein standards; swine MIP-1β 

recombinant protein (Kingfisher Biotech) titrated from 2000 to 31.25 pg/mL in reagent diluent. 

Next, plates were incubated with 50 μL (0.4 μg/mL) biotinylated anti-swine MIP-1β polyclonal 

Ab (Kingfisher Biotech) for at least 75 min, followed by HRP-conjugated streptavidin, substrate 

solution (reagents A and B mixed 1:1) and stop solution as per the manufacturer’s instructions 

(DuoSet, R&D systems). The OD450nm of the wells was read using a Bio-Rad iMark microplate 

reader with correction set to 570 nm. The protein standards were used to generate a linear 

regression line equation enabling the calculation of MIP-1β released in each sample.   

 

2.3.10 IFNγ Enzyme Linked ImmunoSpot (ELISpot) assay 

ELISpot plates (MultiScreenHTS IP filter sterile (MSIPS4510) PVDF plates, Merck Millipore) were 

coated with 50 μL mouse anti-pig IFNγ Ab (clone P2G10, BD Biosciences), diluted to 5 μg/mL 

in PBS, per well and incubated at 37 °C for 4 h wrapped in cling film. Plates were washed 5 

times with 250 μL PBS per well and blocked for at least 1 h at RT with 100 μL R10 medium per 

well. PBMC and BAL samples were defrosted as previously described and plated in R5 medium 

at ~300,000 and 150,000 cells per well respectively. Peptide was added to give a final 

concentration of 10-5 M per well. H1-S-FLU was used at 3.5 x 106 TCID50, UV inactivated Sw/Sp 

was used at ~1.8 x 106 TCID50/mL alongside the MDCK supernatant control and live MDCK cell-

grown A/Sw/Eng/1353/09 used at titre 6 x 107 pfu/mL. Where possible all conditions were 

performed in duplicate and every well was made up to a final volume of 100 μL pig R5 medium. 

The plates were incubated at 37 °C for 16-18 h, washed 3 times with 150 μL PBS and incubated 

with 100 μL sterile H2O per well at RT for 10 min before two further washes. Plates were 

incubated with 50 μL biotinylated mouse anti-pig IFNγ Ab (clone P2C11, BD Biosciences), 

diluted to 1 μg/mL in PBS, per well at RT for 2 h. The plates were protected from light during 

this and proceeding incubation steps.  Plates were then washed 5 times with PBS before 

incubation with 50 μL (1:1000) Streptavidin-Alkaline phosphatase (BioRad) per well at RT for 2 

h before being washed a further 5 times with PBS. Plates were then developed according to 

the manufacturer’s instructions (AP conjugate substrate kit, BioRad). Briefly, 25X AP colour 

development buffer was combined with AP-conjugate substrate reagents A and B in sterile H2O 

and 50 μL added per well. Plates were protected from light and left to develop until spots were 
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clearly visible (10-15 min) upon which the reaction was stopped by washing plates with tap 

water. Plates were left to air dry in the dark before an Immunospot analyser (Cellular 

Technology Limited, US.) was used to count the number of spots per well and the frequency 

of responding cells displayed graphically as spot forming cells (SFCs), per initial cell number.  

 

2.3.11 Chromium (51Cr) release cytotoxicity assay  

Some parts of this assay were performed by Dr. Garry Dolton at Cardiff University, to meet 

radiation training requirements. ESK-4 cells were used here as target cells, washed twice in 

PBS then aspirated to give a dry pellet which was labelled with 30 μCi 51Cr (PerkinElmer, U.S.) 

per 1 x 106 cells at 37°C for 1 h. The target cells were then washed and resuspended in R10 

medium and were pulsed either with peptide, ranging from 1 x 10-5 to 10-11 M, or without 

peptide at 37°C for 1 h. This h also allowed time for leaching of any excess 51Cr to occur. Target 

cells were then washed and plated at 2000 cells per well with 10,000 T-cells (effector cells) 

(incubated overnight in pig R5 medium) in a final volume of 150 μL of R10 medium. This gave 

an effector to target (E:T) ratio of 5:1. Conditions were all performed in triplicate and controls 

were also plated to account for spontaneous release (target cells alone) and maximum release 

(target cells in medium containing 2% Triton X). The cells were then incubated at 37°C for 4 h 

and overnight, at both points the plates were centrifuged at 300 x g for 5 min before 15 μL of 

supernatant was harvested from each well. The supernatants were transferred to 96-well 

polyethylene terephthalate plates (Perkin Elmer) containing 150 μL of Optiphase supermix 

scintillation cocktail (Perkin Elmer) per well. The plates were sealed and placed into a 1450-

Microbeta counter (Perkin Elmer) for data collection. The % of target specific cell lysis = 

[(experimental – spontaneous 51Cr release)/(maximum release – spontaneous release) x 100]. 

Any 51Cr waste was disposed of per local standard operating procedures.  

 

2.3.12 Combinatorial peptide library (CPL) screens 

T-cell clones were harvested and washed in R0 medium before incubation in pig R5 medium 

for 6 h. Cells were then washed in R0 medium prior to assay use. Babraham pig kidney cells 

were used to act as an APC, following detachment 60,000 cells were plated for each condition. 

These cells were then incubated at 37°C for 2 h with a nonamer positional-scanning 

combinatorial peptide library (PS-CPL) screen in positional scanning format (Pepscan). This 

format sequentially fixes each peptide residue in turn for each L-amino acid, whilst the other 

positions are degenerate covering every amino acid combination. Cysteine is not included in 

the degenerate distribution to avoid disulphide bond formation and thus, peptide aggregation. 

The nonamer PS-CPL is divided into 180 different peptide mixes. Following APC incubation, 
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30,000 T-cells were added to each well and plates were then left at 37°C overnight. Responses 

to peptide mixes were identified by MIP-1β release detected by ELISA. Data were then input 

into a novel webtool (developed by Dr. Barbara Szomolay), PI-CPL, accessible at 

http://wsbc.warwick.ac.uk/wsbcToolsWebpage. The output ranked the different peptide 

sequences in order of the likelihood that they would be recognised by the cognate T-cell clone 

(Szomolay et al. 2016) and enabled optimal peptide sequences to be identified.  

 

 

2.4 Generation of pMHCI complexes 

2.4.1 Protein sequences for Babraham pig MHCI molecules and porcine β2m 

The following proteins (sequences provided by the Pirbright Institute) were synthesised with 

5’ EcoR1 and 3’ BamH1 restriction sites and cloned into vector pUC57-Amp (Genewiz LLC, U.S.).    

 
SLA-1*14:02 (formerly known as SLA-1*es11) (without/with biotinylation site): 

MGPHSLSYFSTAVSRPDRGDSRFIAVGYVDDTQFVRFDSDAPNPRMEPRAPWIQQEGQEYWDR

NTRNVMGSAQINRVNLKTLRGYYNQSEAGSHTLQWMYGCYLGPDGLLLRGYDQFAYDGADYLA

LNEDLRSWTAADMAAQISKRKWEAADAAEHWRSYLQGTCVESLRRYLQMGKDTLQRAEPPKTH

VTRHPSSDLGVTLRCWALGFHPKEISLTWQREGQDQSQDMELVETRPSGDGTFQKWAALVVPP

GEEQSYTCHVQHEGLQEPLTLRWDPGLNDIFEAQKIEWHE 

 

SLA-2*11:04 (formerly known as SLA-2*es22) (without/with biotinylation site): 

MGPHSLSYFYTAVSRPDRGEPRFIAVGYVDDTQFVRFDSDAPNPRMEPRAPWIQQEGQDYWDR

ETQIQRDNAQTFRVNLRTALGYYNQSEAGSHTFQSMYGCYLGPDGLLLRGYSQYGYDSADYIA

LNEDLRSWTAADTAAQITKRKWEAADEAEQWRSYLQGLCVEGLRRYLEMGKDTLQRAEPPKTH

VTRHPSSDLGVTLRCWALGFYPKEISLTWQREGQDQSQDMELVETRPSGDGTFQKWAALVVPP

GEEQSYTCHVQHEGLQEPLTLRWDPGLNDIFEAQKIEWHE 

 

Porcine β2m: 

MVARPPKVQVYSRHPAENGKPNYLNCYVSGFHPPQIEIDLLKNGEKMNAEQSDLSFSKDWSFY

LLVHTEFTPNAVDQYSCRVKHVTLDKPKIVKWDRDH 
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2.4.2 Reagents and Buffers used in these techniques  

# 0.45 µm filtered before use.  

Buffer Composition  

Agarose Gel 
1% agarose (Life Technologies) dissolved in double distilled H20 
2.5 μL/50 mL of Midori Green Advanced DNA stain (Nippon 
Genetics Europe) added upon cooling  

Biomix A 0.5 M Bicine Buffer pH 8.3, 100 μL Biomix B (Avidity LLC, U.S.) 

Biomix B 100 mM ATP, 100 mM MgOAc, 500 μM Biotin (Avidity LLC) 
BirA enzyme biotin ligase (provided at 1mg/mL by Avidity LLC) 
Carbenicillin Always used at 50 μg/mL 

Crystal buffer # 
10 mM TRIS pH 8.1 
10 mM NaCl 

Guanidine buffer 

6M guanidine 
50 mM TRIS pH 8.1 
100 mM NaCl 
2 mM EDTA  

Ion exchange buffer A # 10 mM TRIS pH 8.1 (0.45 µm filtered) 

Ion exchange buffer B # As above but with 1 M NaCl 

LB medium 
10 g/L tryptone (Fisher Scientific) 
5 g/L yeast extract (Fisher Scientific) 
5 g/L NaCl 

LB agar medium As above but with 15 g/L bacteriological agar (Oxoid) 

Lysis buffer 

10 mM TRIS pH 8.1 
10 mM MgCl2 
150 mM NaCl 
10% glycerol (Sigma) 

Refold Buffer # 

50 mM TRIS pH 8.1 
2 mM EDTA pH 8 
400 mM L-arginine 
0.74 g/L cysteamine and 0.83 g/L cystamine added last  

Non-reducing loading buffer 

125 mM TRIS pH 6.8 
4% SDS 
20% glycerol 
20 μg/mL bromophenol blue 

Reducing loading buffer As above but with 10% DTT 

Resuspension buffer 
50 mM TRIS pH 8.1 
100 mM NaCl 
10 mM EDTA  

S.O.C medium 
(provided by Invitrogen 
ready-made) 

2% tryptone 
0.5% yeast extract 
10 mM NaCl 
2.5 mM KCl 
10 mM MgCl2 
10 mM MgSO4 

20 mM glucose 

Triton wash buffer 

0.5% Triton X-100 (Fisher Scientific) 
50 mM TRIS pH 8.1 
100 mM NaCl 
10 mM EDTA 

TYP medium 

16 g/L tryptone 
16 g/L yeast extract 
3.3 g/L potassium phosphate dibasic (Acros organics) 
5 g/L NaCl  
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2.4.3 Digestion of Babraham pig SLAI molecules and porcine β2m inserts and pGMT7 

Any water used throughout this protocol was nuclease-free. The Genewiz inserts were diluted 

with water to the concentration recommended by the manufacturer for each insert. Firstly, to 

digest the insert the following mix was incubated at 37°C for 2 h; 2000 ng insert, 0.5 μL BamH1, 

0.5 μL EcoR1, 1 μL EcoR1 10x buffer and water to make a total volume of 10 μL. The whole 

digested samples were then separated by gel electrophoresis (70 V for 30 min) on a 1% agarose 

gel sat in Tris-acetate-EDTA buffer. A molecular weight marker was also ran in one well for size 

identification (HyperLadder I, Bioline). The DNA bands were then visualised with a 

transilluminator, the smaller of the two bands was excised as this was the insert. The DNA was 

purified using the Wizard SV Gel kit as per the manufacturer’s instructions (Promega). Briefly, 

the gel slice was dissolved, washed and passed through an SV minicolumn into 30 μL water. 

The DNA concentration was then measured on a Nanodrop. pGMT7 was digested in a similar 

manner but starting with 1000 ng insert and before electrophoresis the digest was treated 

with Shrimp Alkaline Phosphatase (SAP) to prevent re-annealing. The pGMT7 digest was 

incubated at 37°C for 15 min with SAP and 10x SAP buffer followed by 2 min at 65°C. 

Appropriate controls were used for all digestions.  

 

2.4.4 Ligation of digested SLAI and porcine β2m inserts with pGMT7 

The ratio of digested insert to pGMT7 vector was calculated using the following equation: 

[(amount of pGMT7 in ng X size of the insert in base pairs)/size of pGMT7 in base pairs] X 3 = 

amount of insert required ng. The resulting amounts of insert and vector were then combined 

with 2 μL T4 ligase buffer, 2 μL T4 ligase (New England BioLabs) and made up to 20 μL with 

water. This ligation mixture was left at room temperature for 2 h (or overnight). The ligation 

product was then isolated by gel electrophoresis as described above.  

 

2.4.5 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

The protein sample was combined with loading buffer in a 5:1 ratio and incubated at 90°C for 

<5 min then centrifuged briefly to collect condensation. The samples were loaded into pre-cast 

10% Bis/Tris gel (NuPAGE, Invitrogen) immersed in 1x running buffer (NuPAGE, Invitrogen) 

along with a pre-stained protein ladder for reference (BLUeye, 10‐245 kDa, Geneflow Ltd.). The 

gel was electrophoresed at 200 V for 20 min. Protein bands were visualised by staining the gel 

with 25 mL ‘Quick Coomassie Stain’ (Generon) followed by de-staining in water.     
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2.4.6 Transformation into E. coli and purification of plasmid DNA 

2 μL of ligation mix was transformed into 20 μL of One Shot® (TOP10): E. coli (Invitrogen) 

competent cells being placed on ice for 5 min, 42°C for 2 min and a further 5 min on ice. Next, 

200 μL of LB medium was added for 1 h incubation at 37°C 220 rpm in an orbital shaker (Sanyo, 

U.K.; MIR-222U) before the transformation mixture was plated on LB agar plates containing 50 

μg/mL carbenicillin and left to grow overnight at 37°C. An empty pGMT7 vector was used as a 

control. The following day a selection of colonies were harvested and each placed into 12 mL 

LB medium containing carbenicillin and left overnight at 37°C 220 rpm (Sanyo; MIR-222U). 

Plasmid DNA was then isolated using the ‘Zyppy plasmid miniprep kit’ (Zymo Research) as per 

the manufacturer’s instructions. The purified plasmid DNA was measured and then sent for 

sequencing, using T7 primers, by either CBS or Eurofins Genomics. Sequences were checked 

against the original insert to ensure the process had been successful, those that worked were 

then used to produce soluble protein in E. coli.  

 

2.4.7 Production of soluble SLAI and β2m in E.coli 

SLAI and porcine β2m plasmids were transformed into RosettaTM 2(DE3) pLysS: E. coli (Novagen) 

competent cells as described above and cultured on LB agar plates containing carbenicillin 

overnight. Colonies were then placed into starter cultures, 1-3 colonies into 30 mL TYP medium 

with carbenicillin, and incubated at 37°C 220 rpm (Sanyo; MIR-222U) until the optical density 

(OD600nm) reached 0.5. The starter cultures were transferred to 1 L of TYP medium 

supplemented with carbenicillin and incubated as before until OD600nm reached 0.5. Next, 0.5 

mM isopropyl β-D-thio-galactoside (IPTG) (Fisher Scientific) was added to induce vector 

expression (in the form of inclusion bodies) and the cultures were left at 37°C 220 rpm (Sanyo; 

MIR-222U) for a further 3 h. Samples were taken before and after IPTG addition and between 

the proceeding steps to ascertain quality of protein expression by SDS-PAGE. Cells were 

harvested following centrifugation at 3450 x g for 20 min and resuspended in 40 mL of lysis 

buffer and sonicated (MS73 probe; Bandelin) at 60% power at 2 sec intervals for 20 min. The 

lysed cells were then incubated with 0.2 mg/mL DNase (Sigma) for at least 1 h at 37 °C 220 rpm 

(Sanyo; MIR-222U). The lysate was washed in 100 mL triton wash buffer with centrifugation at 

15,180 x g for 20 min. The supernatant was discarded and the wash step repeated (the cell 

pellet was homogenised into the wash buffer). The final pellet was resuspended with 

homogenisation in 12 mL guanidine buffer and stored at -20 °C. The concentration was 

measured using a spectrophotometer (typically 5-25 mg/mL).  

 



36 
 

2.4.8 Refolding of peptide-SLAI complexes 

The following were combined at 37°C for 15 min for a 1 L refold; 30 mg MHCI inclusion bodies 

and 30 mg β2m inclusion bodies in guanidine buffer (see section 2.4.7), 4 mg peptide (>90% 

purity) and 10 mM DTT. This mixture was then added into the 1 L refold buffer, which was 

prepared in advance with the cysteamine/cystamine pair added at the final moment, and left 

stirring at 4°C overnight. The refold mixture was then transferred to dialysis tubing and placed 

in 10 mM TRIS pH 8.1 at 4°C (20 L per 1 L refold) and transferred to fresh 10 mM TRIS pH 8.1 

the next day. The refold mixture was left to dialyse until the conductivity reached <2 mS/cm 

upon which it was removed from the tubing and filtered through a 0.45 μm (Fisher Scientific) 

filter before purification.    

    

2.4.9 Purification of peptide-SLAI using Fast Protein Liquid Chromatography (FPLC) 

Purifcation steps were carried out on an AKTA FPLC machine using the Unicorn software (GE 

Healthcare, UK). All buffers were 0.45 μm filitered before use. The refold mixture was initially 

loaded onto an anion exchange column (POROS 50HQ, Life Technologies) which had been 

washed in buffer B and equilibrated into buffer A at 20 mL/min flow rate (pressure limited to 

5 MPa). The sample was eluted from the column into FPLC tubes (Greiner Bio-One) and then 

centrifuged in 4 mL Vivaspin concentrator tube (Sartorius) to < 1 mL. Samples were taken 

before concentration and analysed on SDS-PAGE to ascertain the presence of pMHC complexes 

before proceeding. Protein that was to be used for multimer staining was biotinylated at this 

point. The 1 mL sample was then loaded onto a Superdex HR 200-size-exclusion column 

(Amersham Pharmacia) equilibrated into the required buffer (PBS or crystal buffer) at 0.5 

mL/min (pressure limited to 1.5 MPa). Again, the samples were eluted into FPLC tubes, tested 

with SDS-PAGE and concentrated then measured by spectrophotometry. The final protein 

concentration was calculated accounting for the extinction co-efficient of each protein 

combination (these were obtained using the ProtParam webtool accessible at 

http://web.expasy.org/protparam/). Biotinylated pMHC was aliquoted into one-use aliquots 

and stored at -80°C and pMHC for crystallography was used straight away.  

 

2.4.10 Biotinylation of peptide-SLAI complexes  

Peptide-MHC complexes that were made for use in multimer staining required biotinylation to 

enable streptavidin mediated multimerisation. Following anion exchange, the protein was 

concentrated down to 700 μL. The following reagents were added and left overnight at room 

temperature; 100 μL Biomix A, 100 μL Biomix B, 100 μL biotin and 2 μL BirA enzyme (3 mg/mL) 
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(all from Avidity LLC). The mix was then washed thoroughly in PBS, to remove excess biotin, 

and concentrated to 1 mL for further purification.    

 

 

2.5 Crystallisation, diffraction data collection, structure solution and 

model refinement of Babraham pig SLA-I molecules 

Peptide-MHCI (with either human or porcine β2m) were concentrated down to around 10 

mg/mL in crystal buffer. Crystallisation screens were set up using a Gryphon crystallography 

robot (Art Robbins Instruments, U.S.) via the sitting drop technique in 96-well Intelli-plates (Art 

Robbins Instruments). In summary, 60 μL of each screen condition was dispensed into the 

reservoirs, then a 1:1 ratio screen: protein volume was dispensed into the small well (0.2 μL of 

each). Protein crystals were grown by vapour diffusion at 18°C and visualised using RockImager 

and RockMaker software (Formalatrix, U.S.). The following crystallisation screens, consisting 

of 96 different buffer compositions, were set up for each protein; JBScreen Basic HTS (Jena 

Bioscience), PACT premier HT-96 (Molecular Dimensions) and TOPS (developed in-house at 

Cardiff; (Bulek, Madura, et al. 2012)).   

 

Crystals were harvested by either Dr. Pierre Rizkallah or Dr. Dave Cole and placed into liquid 

nitrogen and transported to the Diamond Light Source, Oxfordshire, U.K., for X-ray diffraction 

data collection. Beamlines I02, I03, I04 and I04-1 were used for data collection. Data collection 

was performed by either Dr. Pierre Rizkallah or Dr. Dave Cole. All data analyses and structure 

resolution was performed by Dr. Pierre Rizkallah. Reflection intensities were estimated with 

XDS (Kabsch 2010) as implemented in the XIA2 package (Winter 2010) and the data were 

scaled, reduced and analysed with AIMLESS and TRUNCATE in the CCP4 package (CCP4 1994; 

Winn et al. 2011). All structures were solved by molecular replacement with PHASER (McCoy 

et al. 2007) using 3QQ3 as a starting model (Zhang et al. 2011). Sequences were adjusted with 

COOT (Emsley and Cowtan 2004) and the models refined with REFMAC5 (Murshudov et al. 

1997). Graphical representations were prepared in PYMOL (The PyMOL Molecular Graphics 

System, Version 1.8 Schrödinger, LLC.). The five X-ray structures solved in this thesis were 

deposited into the Protein Data Bank (http://www.rcsb.org/pdb/). The models SLA-1-

EFEDLTFLA-pβ2m, SLA-1-DFEREGYSL-pβ2m, SLA-2-IAYERMCNI-pβ2m, SLA-1-EFEDLTFLA-hβ2m 

and SLA-1-DFEREGYSL-hβ2m were assigned accession codes 5NPZ, 5NQ0, 5NQ2, 5NQ3 and 

5NQ1 respectively. 

 

 



38 
 

2.6 TCR sequencing of porcine T-cell clones 

All sequencing methods were performed by Dr. Meriem Attaf, Cardiff University.  

 

2.6.1 Total RNA extraction 

T-cell clones were washed in PBS, aspirated and resuspended in 200 μL of Trizol and frozen at 

-80°C. RNA was then extracted using phase separation with all centrifugation steps performed 

at 4°C. Briefly, 40 μL chloroform was added per sample and centrifuged at 12,000 x g for 5 min 

upon which the aqueous (upper) phase was harvested for incubation with 100% propan-2-ol, 

followed by centrifugation for 10 min. The resulting pellet was then washed in 70% ethanol 

and once dried resuspended in RNAse-free water at 55°C for 15 min.   

 

2.6.2 SMARTer™ RACE cDNA amplification 

cDNA was generated using the SMARTer™ (Switching Mechanism at 5' end of RNA Transcript) 

RACE (Rapid Amplification of cDNA Ends) kit (Clontech) as per the manufacturer’s instructions. 

Extracted RNA was incubated with 1 μL 5’ RACE CDS Primer (in a total volume of 10 μL) at 72°C 

and 42°C for 3 and 2 min respectively. Each sample then received a mastermix, containing 4 µl 

5X First Strand buffer, 0.5 µl DTT (100 mM), 1 µl dNTP (20 mM), 0.5 µL RNAse Inhibitor (20 U) 

and 2 µL SMARTScribe RT (100), and 1 μL SMARTer II oligo A primer. Samples were then 

incubated at 42°C and 70°C for 90 and 10 min respectively. cDNA samples were stored at -

20°C.  

 

2.6.3 PCR amplification 

In the first PCR, cDNA was amplified for the entire variable and part of the constant regions for 

TCRα or TCRβ. The following PCR ‘master mix’ was used:  2 µL of cDNA sample, 10 µL Phusion® 

5x Green buffer, 0.5 µL 100 mM DMSO, 1 µL 20mM dNTPs, 5 µL 10X Universal Primer A 

(forward primer), 1 µL TRAC or TRBC primer (reverse primer), 0.25 µL Phusion® HF DNA 

polymerase and 30.25 μL H20 to give a final volume of 50 μL. The following reverse primers 

were used for TRAC and TRBC respectively; 5’-GCAGGTTAAACCCAACCATTTTCAGG-3’ and 5’-

GAGACCCTCAGGCGGCTGCTC-3’. Samples were incubated at 94°C for 5 min for initial 

denaturation followed by 30 cycles of 94°C for 30 sec, 60°C (TCRα) or 65°C (TCRβ) for 30 sec 

and 72°C for 90 sec, and finally incubated at 72°C 10 min for final extension. A second PCR was 

then performed using 2 μL sample from the first PCR with the same incubations and ‘master 

mix’ as above but with the following nested primers for TRAC and TRBC respectively; 5’-

CTGCCGGAAGGTGCTTTGACATTC-3’ and 5’-TGTGGCCAGGCACACCAGTGTG-3’. Samples were 
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then electrophoresed on a 1% agarose gel in Tris-acetate EDTA (TAE) buffer and correctly sized 

DNA bands extracted and purified using the Wizard SV Gel kit (Promega) as per the 

manufacturer’s protocol.  

 

2.6.4 Molecular cloning, bacterial transformation and colony PCR 

PCR products were cloned into a PCR-Blunt II-TOPO® vector using the Zero Blunt® TOPO® PCR 

cloning kit (Life Technologies) according to the manufacturer’s instructions. The following 

reaction was incubated at RT for 5 min then placed on ice; 4 μL PCR product, 1μL salt solution 

and 1μL vector. Next, 2 μL of the TOPO® cloning reaction was transformed into 20 μL of One 

Shot® (TOP10): E. coli (Invitrogen) competent cells; placed on ice for 30 min, 42°C for 30 sec 

and a further 2 min on ice. Then 250 μL of S.O.C medium (Invitrogen) was added for 1 h 

incubation at 37°C 220 rpm (Sanyo; MIR-222U) before the transformation mixture was plated 

on LB agar plates containing 50 μg/mL carbenicillin and left to grow overnight at 37°C. 

Individual colonies only contain one tr sequence. Individual colonies were screened by colony 

PCR using the following mix (primers at 10 μM stock); 1 µL M13 forward primer (5'-

TTTTCCCAGTCACGAC-3'), 1 µL M13 reverse primer (5'-CAGGAAACAGCTATGAC-3’) and 23 µL 

DreamTaq® Green master mix. This reaction underwent thermocycling as follows: 94°C for 10 

min for initial denaturation followed by 27 cycles of 94°C for 30 sec, 57°C for 30 sec and 72°C 

for 90 sec, and finally incubated at 72°C for 10 min. Samples were electrophoresed on a 1% 

agarose gel and positive bands were extracted, purified and sent to Eurofins Genomics for 

sequencing.  

 

2.6.5 Analysis of sequenced TCR cDNA 

Sequences were visualised using ApE software (M. Wayne Davis) and compared between 

clones to determine sisterhood for future experiments. Sequence data is displayed in chapter 

3, Table 3.1. At the time of writing this thesis the pig TCR loci had not been fully sequenced 

and annotated, therefore no database currently existed for defining the TCRα and β gene 

segment usage in these clones.  
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2.7 Human Studies 

2.7.1 Human cell culture media and buffers 

In addition to those already described in section 2.2.1 the following media was used in human 

T-cell culture: 

Media Composition 

Human T-cell 
expansion 
medium 

R10 medium supplemented with: 
10 mM HEPES buffer  
0.5X  MEM Amino Acids  
1 mM Sodium pyruvate  
25 ng/mL Human IL-15 (PeproTech) 
20 IU or 200 IU/mL IL-2  

 

2.7.2 Human PBMC, T-cell clones and cell lines 

Human fresh blood samples were obtained by venepuncture from volunteers (heparinized) or 

buffy coats (EDTA treated) from the Welsh Blood Service in accordance with the appropriate 

ethical approval and informed consent. The latter were also utilised as ‘feeder’ cells for human 

T-cell expansion. PBMC were isolated as described in section 2.2.2.  T-cell clones and Tumour 

Infiltrating Lymphocytes (TILs) were cultured in human T-cell expansion medium. T-cell clones 

were expanded in T25 culture flasks (Greiner) in 15 mL medium as follows; 0.5-1 x 106 T-cell 

clone, 15 x 106 irradiated ‘feeder’ PBMC (combined from 3 donors) and 1 μg/mL PHA. The CD8+ 

T-cell clones listed below were used along with tumour infiltrating lymphocytes (TILs) that 

were derived from a successful immune response to melanoma (Ellebaek et al. 2012). Spiked 

samples were created by mixing clonal T-cells (1 x 104) with defrosted PBMC (1 x 106). The 

spiked PBMCs were minimally HLA matched for the restricting HLA of the spiking clone (HLA 

HLA-A*0201). 

 

Clone 
Name 

MHC 
restriction  

Epitope Target Epitope Sequence Residues Reference 

ILA-1 
HLA-
A*0201 

Human 
telomerase-
derived peptide 
(hTERT) 

ILAKFLHWL 540-548 (Purbhoo et al. 
2007) ILAKFLHEL (8E) 

ILALFLHWL (4L) 

ILAKYLHWL (5Y) 

ILGKFLHWL (3G) 

1E6 & 3F2 
HLA-
A*0201 

Preproinsulin 
(PPI) 

ALWGPDPAAA 15-24 (Skowera et al. 
2008; Bulek, Cole, 
et al. 2012) 

VB6G4.24 
HLA-
A*0201 

Melan A ELAGIGLTV 

(heteroclitic residue 
underlined) 

26-35 (Tungatt et al. 2015) 
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2.7.3 pHLA multimer assembly 

Tetramers were assembled as described in section 2.3.5. Dextramers (Immudex Limited, 

Copenhagen, Denmark) consist of a dextran polymer backbone with covalently linked 

streptavidin molecules and fluorochromes. Dextramer-PE conjugates on average each contain 

3 fluorochromes and 6 streptavidin molecules (Dolton et al. 2014). For each batch of dextramer 

backbone the manufacturer calculates the number of streptavidin molecules per dextran 

molecule. This information was required to assemble the final dextramers; monomeric pMHC 

was added at a molar ratio of 3:1 with respect to the streptavidin component. Dextramers 

were then left at room temperature for 30 min protected from light.  Following assembly, 

dextramers were diluted, stored and used as described for tetramers, except instead of PBS 

they received dextramer buffer (0.05 M Tris-HCL, 15 mM NaN3, 1% BSA, pH 7.2).  

 

2.7.4 Peptide-HLA Tetramer staining  

In addition to those already described in section 2.3.2, the following antibodies were used: 

Host 
Species  

Antibody Clone  Supplier 

Mouse Anti-human CD3ε PerCP BW264/56 Miltenyi Biotech 

Mouse Anti-human CD8α PE BW135/80 Miltenyi Biotech 

Mouse Anti-human CD8α APCy BW135/80 Miltenyi Biotech 

Mouse Anti-human CD8α PE-Vio770 BW135/80 Miltenyi Biotech 

Mouse Anti-human CD8α APC-Vio770 BW135/80 Miltenyi Biotech 

Mouse Anti-human IFNγ APCy 45-15 Miltenyi Biotech 

Mouse Anti-human CD19 PB HIB19 Biolegend 

Mouse Anti-human CD14 PB M5E2 Biolegend 

Mouse Anti-HLA-A2 APCy BB7.2 eBioscience 

 

Tetramer (0.3 or 0.5 μg per stain) or dextramer (0.3 μg) staining was performed as described 

in sections 2.3.7 and 2.3.8 with or without PKI treatment, anti-PE Ab and anti-mouse Ig-PE. 

Typically, 0.5-1 x 105 of a T-cell clone and 1-3 x 106 TILs, PBMCs, T-cell line, or spiked samples, 

were stained in 5 mL FACS tubes. The following surface marker antibodies were used; anti-

human CD3, CD8, CD19 and CD14. Typically, PBMC samples were gated on for size, single cells, 

viable CD19-CD14-CD3+ lymphocytes and displayed in bivariate CD8 versus 

tetramer/dextramer plots. T-cell clones were typically gated on for size, single cells, viable 

CD8+ lymphocytes then displayed as histograms of tetramer fluorescence.  
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2.7.5 Intracellular Cytokine Staining  

Tumour infiltrating lymphocytes (TILs) were incubated in R5 medium for 24 h prior to 

activation. Subsequently, cells were incubated at 37˚C for 4 h, with and without autologous 

tumour cells, at a 1:1 ratio, in 2 mL R5 medium (24 well culture plate with a total cell density 

of 3-6 x 106/mL) (cells were moved to FACS tubes prior to staining) containing GolgiStop and 

GolgiPlug reagents as described previously, section 2.3.4. However, these cells underwent 

tetramer staining prior to cell surface marker staining (anti-human CD3 and CD8) and received 

0.75 μL anti-human IFNγ per sample.  

 

2.7.6 Tetramer decay assays 

The CD8+ T-cell clone, 3F2, (5 x 105) was pre-treated with PKI then stained with cognate 

tetramer with and without both anti-PE (1° Ab) and anti-mouse Ig-PE (2° Ab). Cells were 

washed with FACS buffer, supernatant aspirated, and incubated with 10 μg anti-HLA-A2 Ab or 

diluted in 3 mL buffer and incubated at room temperature in the dark. PKI was present 

throughout some of the decay assays. Cells were sampled at various time points, washed with 

excess FACS buffer, and fixed with 4% PFA.  

 

2.7.7 Production of biotinylated pHLA monomers 

HLA-A2 and human β2m plasmids had already been previously generated in the lab and were 

ready for inclusion bodies production and protein refolding performed as described in sections 

2.4.7, 2.4.8, 2.4.9 and 2.4.10.  

 

2.8 Figures and Data Analysis 

Data analysis and figures were produced using GraphPad Prism 5 (GraphPad Software Inc., La 

Jolla, U.S.) or Microsoft Office™ Excel.  
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3 Optimisation of Porcine T-cell culture and cloning 

 

3.1 Background  

There are no published studies using porcine T-cell clones and, as far as I am aware, porcine T-

cells had never been cultured in vitro for longer than 3 weeks when I initiated my studies. I aimed 

to study porcine T-cell responses to Influenza A virus (IAV).  Ideally, this required development 

of long-term culture techniques for porcine T-cells as is available for the more established 

human and murine models of infection. This study was run in collaboration with the Pirbright 

Institute (Dr. Sophie Morgan, Dr. Hanneke Hemmink, Dr. Maria Montoya, Dr. Bryan Charleston 

and Dr. Elma Tchilian) and the School of Veterinary Sciences, Bristol University (Dr. Emily Porter 

and Prof. Mick Bailey). The former provided access to the Babraham large white, inbred pig line 

that is 85% identical by genome wide SNP analysis. This pig was selected as the model to be used 

throughout this study. Babraham pigs all express identical MHC-I and MHC-II alleles which is an 

invaluable trait for immunological studies as it allows adoptive transfer of immune cells between 

individuals and enables the use of smaller numbers of animals per group than required for most 

studies using outbred pigs. Furthermore, use of the Babraham pig line meant I could quickly 

determine MHC-I restriction of any influenza epitopes identified and that I could expect similar 

T-cell responses in all animals. A previous study immunised Babraham pigs with human 

pdmH1N1 vaccines which induced high levels of antibody and, following in vitro stimulation of 

PBMC samples, induced proliferation of CD8β and CD4 T-cells and IFNγ production (Lefevre et 

al. 2012).   

 

For initial optimisation experiments performed in this chapter, I was provided with PBMC and 

spleen cells from Babraham pigs that had been inoculated with inactivated SwIV 

[A/Swine/Spain/SF11131/2007 (H1N1)] (Sw/Sp) with montanide adjuvant (Seppic, Air Liquide 

Healthcare, France). Two doses were administered intramuscularly 28 days apart. Previous 

unpublished data had shown PBMC from these inoculated pigs responded to overlapping 

peptides (by IFNγ ELISpot) derived from the influenza NP of a human IAV strain 

[A/Panama/2007/1999 (H3N2)]. These peptides are referred to as “pool 2 peptides” and consist 

of 26 peptides (numbered 27–52) ranging from 15 to 20 amino acids in length and each 

overlapping by 10 amino acids. This peptide pool was provided by the Pirbright Institute. The 

use of overlapping peptides in conserved epitope identification shall be discussed further in 

chapter 4. 
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3.2 Hypotheses  

• The expertise on human T-cell culture within my laboratory group can be applied to 

develop successful long-term culture of porcine T-cells for the first time. 

• Medium conditions and T-cell expansion protocols can be enhanced for optimal porcine T-

cell culture.  

• Culturing porcine T-cells at the body temperature of pigs and not that of humans will be 

optimal for porcine T-cell culture.  

• Porcine T-cell culture techniques can be applied to procure influenza-specific T-cell lines 

and clones.  

   

3.3 Results  

3.3.1 Human T-cell culture translation to porcine T-cell culture 

My first attempt at culturing porcine T-cells was with PBMC samples cultured with PHA in 12 

different media conditions. The cell culture medium used in human T-cell culture in our lab 

contains several components including 10% serum (FBS), IL-2, IL-15. I decided to test three 

different serums (FBS, commercial porcine serum and in-house porcine serum), and two 

concentrations of each IL-2 (20 IU or 200 IU) and swine IL-15 (25 or 50 ng/mL). This gave 12 

different culture media compositions which were tested along with two different concentrations 

of PHA (0.5 or 1 µg/mL). Most human T-cell clone expansions in our lab are performed with 1 

µg/mL PHA. 500 PBMC with 100,000 feeders and PHA were seeded in 30x 96-round-bottom 

plates per condition and monitored for proliferation. This experiment was duplicated for PBMC 

from two different Babraham pigs. Initial optimisation experiments were assessed by eye in 

terms of the number of wells containing live cells and rating the extent to which any cell 

population filled the microscope field of vision. After two weeks of culture it was clear by eye 

that FBS and commercial porcine serum were not conducive to cell survival or proliferation. 

Consequently, I only used in-house product, produced from blood collected at the Bristol 

Veterinary School abattoir, for further experiments. There may now be other good commercial 

sources of porcine serum available that could be tested for porcine T-cell culture as this would 

certainly make things easier in the future. In these initial experiments, there were no substantial 

differences noted between 0.5 or 1 µg/mL PHA and the higher concentrations of IL-2 and IL-15 

looked preferable but required further clarification. Overall expansion of PBMC was mediocre.  
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My next step was to isolate CD8β T-cells and test expansion conditions on this cell subset 

independently, as cytotoxic T-cells were the focus of this study and I also wished to see if they 

would survive in culture better than whole PBMC samples. CD8β cells were isolated from PBMC 

using magnetic cell sorting with CD8β Ab, PE-conjugated secondary Ab and anti-PE beads. CD8β 

T-cells were cultured as above with 3 different concentrations of PHA (1, 2 or 4µg/mL), either 

20IU or 200IU of IL-2, and either 25 or 100 ng/mL IL-15. Following two weeks of culture, those 

cells in the lower (20IU) IL-2 were dying but any difference between IL-15 concentrations was 

unclear. In this expansion 1 µg/mL PHA was optimal so this concentration was used going 

forward.  

 

3.3.2 T-cell culture temperature optimisation  

Pigs have higher body temperatures than that of humans (37°C) with healthy Babraham pig 

temperatures averaging at 38.6 ± 0.2°C (Lefevre et al. 2012). Therefore, I wished to examine 

whether varying the standard incubator temperature used in human T-cell culture (37°C) would 

improve proliferation rates in porcine T-cells. PBMC from an unvaccinated Babraham pig were 

labelled with the cell proliferation dye carboxyfluorescein succinimidyl ester (CFSE) and cultured 

in the presence of 1μg/mL PHA at 37°C and 38.5°C in expansion medium containing 300IU IL-2 

and 50 ng/mL IL-15. CFSE passively diffuses into cells where its acetate groups are cleaved by 

intracellular esterases enabling it to covalently couple by its succinimidyl group with intracellular 

amines. This process forms fluorescent conjugates that are retained within the cell which are 

divided equally between progeny following cell division allowing detection of successive cell 

divisions (Lyons and Parish 1994). Samples were taken for comparison at three different time 

points and stained with CD3 Ab and analysed by flow cytometry (Figure 3.1). The percentage of 

CD3+ proliferating lymphocytes showed no substantial difference between the two 

temperatures at each time point; at day 13 84.4% and 83.7% of cells were proliferating at 37 °C 

and 38.5 °C respectively. The proliferation profiles at each temperature were also similar across 

the three time points (Figure 3.1B). Further comparisons quantifying clone procurement and 

growth between the two temperatures did not suggest substantial differences (data not shown) 

and I concluded that there was no advantage in using 38.5 °C; all subsequent experiments were 

conducted at 37 °C.  
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Figure 3.1. PHA induced proliferation of porcine CD3+ cells was similar at 37°C and 
38.5°C. 
A) CFSE-labelled PBMC from an unvaccinated Babraham pig was cultured with PHA, IL-2 and 
IL-15 in 48-well plates. PBMC were stained for CD3 (unconjugated CD3 Ab with PE-conjugated 
secondary Ab) at three different time points (day 3, 8 and 13). Cells were gated on for size and 
viability and are displayed as a pseudocolour dot plot. The percentage of cells found in each 
quadrat is displayed inset. Red boxes highlight CD3+ dividing cells. B) Histograms displaying 
the CFSE staining from the CD3+ dividing cell population. 

 

 

3.3.3 Influenza-specific line and clone generation – preliminary studies  

Following the extensive optimisation discussed above, I then wished to test these culture 

conditions on relevant samples from pigs inoculated with inactivated SwIV 

[A/Swine/Spain/SF11131/2007 (H1N1)] (Sw/Sp) with montanide adjuvant to see whether I could 

culture influenza-specific T-cells. CD8β T-cells were separated from other PBMC with the latter 

then used as autologous ‘feeder’ cells that were pulsed with peptides or DMSO (control) prior 

to irradiation. The use of this protocol is well established in my laboratory for use with human 

PBMC samples.   

 

Initial experiments isolated CD8β T-cells from PBMC from pig#563. A peptide pool 2 specific line 

was established and visualised by CFSE proliferation (Figure 3.2A). 86.5% of viable cells were 

CFSE-low compared to the control of 21.5%. The line was analysed for IFNγ responses, by 

ELISpot, using the individual peptides from pool 2 and peptide 40 was identified as a promising 

candidate (Figure 3.2B). I next tried to grow monoclonal T-cells from the T-cell line that reacted 

to peptide pool 2 using medium containing 10% in-house porcine serum, 300 IU IL-2 and 50 

ng/mL IL-15. Peptide pool 2-specific clones were procured successfully and shown to respond to 

peptide 40 from this pool (limited cell numbers prevented testing all the individual peptides). 
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Following unsuccessful attempts to detect IFNγ response by ELISA, I then decided to measure 

macrophage inflammatory protein (MIP)-1β as previous studies have found that it provides an 

extremely sensitive readout for human CD8+ T-cells (Price et al. 1998). Clones KT32.563 and 

KT47.563 both released copious MIP-1β in response to Pool 2 (1802.4 ± 25.9 and 1129 ± 123.4 

pg/ml respectively) and to peptide 40 (1308.8 ± 105.1 and 836.5 ± 7.6 pg/ml respectively) (Figure 

3.2C). Consequently, I concluded that MIP-1β was also a good readout for porcine cytotoxic T-

cells and made use of this sensitive assay going forward. KT32.563 and KT47.563 both stained 

positively for CD8β and negatively for CD4 and TCRγδ confirming their cytotoxic T-cell like 

phenotype (Figure 3.2D). To the best of my knowledge these are the first porcine Influenza-

specific T-cell clones ever successfully grown in culture. These results provided confidence that 

my project aims might be possible.   

 

Interestingly, I also procured a further clone, KT10.557, from these experiments that released 

large amounts of MIP-1β (2448.5 pg/ml) in response to peptide pool 2 (Figure 3.3A). The 

response to the peptide pool was narrowed down to peptide 43 which induced very high MIP-

1β release (4858.2 pg/ml) (Figure 3.3B and C). Unexpectedly, T-cell clone KT10.557 was negative 

for CD8β and found to be a CD4+ antigen experienced (CD8α+) helper T-cell (Figure 3.3D). The 

cloning of this first ever porcine helper T-cell confirmed that my initial selection of only CD8β+ 

cells was not watertight. I next investigated the response of KT10.557 to truncated versions of 

peptide 43 by MIP-1β ELISA (Figure 3.3E). Peptides were titrated to reveal the optimal peptide 

length. The best responses were observed to the index peptide, peptide 43 which is 20 amino 

acids in length, and the carboxyl terminus (C)-2 peptide truncation which induced 3129.5 and 

3004.7 pg/ml MIP-1β release respectively at 10-7 M peptide. When shorter peptides were tested 

than those displayed in Figure 3.3E, no MIP-1β response was detected at any peptide 

concentration. The strongest response measured for clone KT10.557 was to the 20aa peptide.  
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Figure 3.2. Influenza-specific cytotoxic T-cell clones procured from pig#563 inoculated 
with inactivated H1N1 (Sw/Sp) virus. 
A) CD8β cells were cultured with Pool 2 peptides (26 overlapping peptides derived from the 
nucleoprotein from a human IAV H3N2 strain) and 20IU IL-2 and analysed after two weeks. 
As displayed cells were gated on for size and viability. The % of cells in each gate is shown 
inset. B) The T-cell line generated in (A) was incubated with the individual constituent 
peptides of peptide pool 2 and IFNγ release detected by ELISpot. ~ 15,000 T-cells were 
plated per well along with 50,000 irrelevant PBMC from an unvaccinated Babraham pig, 
except for the positive control where T-cells were incubated alone with 30 µg/mL PHA and 20 
µg/mL Pokeweed mitogen (PWM). C) T-cell clones were procured and analysed by ELISA for 
MIP-1β release following exposure to peptide pool 2 (5 μg/mL of each peptide), an individual 
peptide (50 μg/mL) from this pool (peptide 40: DNMGSSTLELRSGYWAIRTR) and PHA (10 

μg/mL) as a positive control. Conditions were performed in duplicate and data are displayed 
as mean + SD, with all final values minus the background response (cells alone). Clones 12 
and 15 are displayed to demonstrate healthy but unreactive clones. D) Clones KT32.563 and 
KT47.563 were stained for cell surface markers (unconjugated in combination with PE-
conjugated secondary Ab) and analysed by flow cytometry to confirm their cytotoxic 
phenotype. Mean fluorescence intensities are displayed inset.  
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Figure 3.3. Influenza-specific helper T-cell clone procured from pig#557 inoculated with 
inactivated H1N1 virus. 
A) T-cells were cultured with Pool 2 peptides (26 peptides each overlapping by 10 amino acids 
derived from the nucleoprotein from a human IAV H3N2 strain) and low 20IU IL-2. T-cell clones 
were then procured from this line and analysed, along with the line itself, by ELISA for MIP-1β 
release following exposure to peptide pool 2. All ELISA data are displayed as means minus the 
background response (cells alone) with PHA used as a positive control. B & C) Clone KT10.557 
was analysed to ascertain which peptide it was responding to; MIP-1β ELISA data are shown 
for sub-pools and then individual constituent peptides. D) KT10.557 was stained for cell surface 
markers and analysed by flow cytometry. Mean fluorescence intensities are displayed inset. E) 
MIP-1β release by KT10.557 incubated with indicated concentrations of peptide 43 
(NQQRASAGQISVQPTFSVQR) and truncated peptide derivatives. The truncated peptides 

design is displayed with C (carboxy terminus) and N (N terminus) indicating which peptide 
terminus the amino acids have been removed from. MIP-1β was not released in response to 
shorter peptides (data not shown).   
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3.3.4 Optimisation of T-cell cloning  

The expansion rate of the T-cell clones was not as high or consistent as required or that can be 

achieved with human T-cell clones. I therefore undertook further optimisation experiments. 

Initial expansions were performed using 1000 cells of a T-cell clone with 100,000 ‘feeder’ cells 

per well. This seems to work well and attempts to seed more clone per well or to expand in cell 

culture flasks produced lower expansion rates. Basic optimisations calculating overall fold 

expansion rates demonstrated that using less than 100,000 feeders per culture well decreased 

expansions rates, from 31 to 18.3x, and less than 1000 T-cells could be seeded per well if 

required (Figure 3.4A). The concentration of IL-15 was also further optimised and following two 

consecutive clonal expansions it was clear that lower concentrations were preferable, with 12.5 

and 25 ng/mL inducing 38.8x and 30.6x fold expansion respectively in the 2nd expansion 

compared to 3.6x with 50 ng/mL IL-15 (Figure 3.4B). From this point on, lower concentrations 

of IL-15 were adopted for all T-cell clone expansions. 

 

I also wished to reaffirm PHA as the choice of mitogen and to ensure that it was being used at 

an optimal concentration. A T-cell clone was expanded in different concentrations of either PHA 

or Pokeweed mitogen. Expansion rates after two weeks of culture showed that PHA was the 

superior mitogen inducing at best 57.5x fold expansion, whereas Pokeweed mitogen induced at 

best 15x fold expansion (Figure 3.5A). The best PHA concentrations, 1, 2 and 4 µg/mL were taken 

forward through to a second expansion and cultured in the usual 96 round-bottom well plates 

as well as 24-well plates and T25 culture flasks (Figure 3.5B). The former again facilitated the 

best T-cell clone expansion rates (37x versus 30x and 12x) and during this passage PHA used at 

4 µg/mL induced greater fold T-cell clone expansion (37x) than when used at 2 or 1 µg/mL (23x 

and 1x respectively). This T-cell clone was then passaged again with different starting cell 

numbers, 500-16,000, in 96U well plates (Figure 3.5C). The best expansion rates were observed 

with 500, 1000 or 2000 T-cell clone seeded per well (69x, 41.5x and 23.7x respectively at 2μg/mL 

PHA). In this case 1000 or 2000 seeded cells would induce the highest total cell yield per well. A 

recent expansion I performed also showed a similar pattern where the starting clone number 

displayed the following hierarchy in expansion rates 1000>500>2000 (18.5x, 17.1x and 13x 

respectively). The fold expansion is similar for 500 or 1000 cells/well in this comparison and 

accounting for total cell yield this data would suggest 2000 cells/well would be optimal.  
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Figure 3.4. Optimisation of cell numbers and IL-15 concentration in T-cell clone 
expansions. 
T-cell clones were expanded with 1 µg/mL PHA in expansion medium containing 300IU IL-2, 
50 ng/mL IL-15 (in panel A) and 10% pig serum. Following two weeks of culture T-cell clones 
were counted and total fold expansion calculated. A) The same T-cell clone was expanded in 
three different clone and feeder cell ratios in 180-360 wells each. B) The same T-cell clone 
was expanded at 1000 cells per well plus 100,000 feeder cells over two consecutive 
expansions. Each condition was performed across 16 wells for the 1st expansion and 32 wells 
for the 2nd. 100 ng/mL IL-15 was not carried forward for the second expansion.  
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Figure 3.5. Optimisation of mitogens, tissue culture plastic ware and seeding density on 
T-cell clone expansions. 
Different culture conditions were tested on a cytotoxic T-cell clone over three consecutive 
passages. The best conditions in each are highlighted in red. A) Each condition comprised 
eight 96U wells, with 1000 cells of T-cell clone, 100,000 irradiated ‘feeder’ PBMCs from three 
pigs and either PHA or pokeweed mitogen at the indicated concentrations. Cells were observed 
every 2-3 days under a light microscope to observe healthy T-cells. Expanding T-cells were 
evident with 1 and 2 μg/mL PHA from day 5-6 onwards, whereas those that grew with 4 μg/mL 
of PHA and pokeweed mitogen did not appear until day 8-10 onwards. At day 13 each condition 
was counted and the fold expansion is shown. B) T-cells that were expanded using conditions 
determined in (A) with either 1, 2 or 4 μg/mL of PHA were re-expanded with the PHA 
concentration used in (A), but expansions were performed across 96U well plates, 24 well 
plates and T25 flasks. C) T-cells that were expanded as in (B) with either 2 or 4 μg/mL of PHA 
were re-expanded but seeded from 500-16000 cells per 96U well as displayed (8 wells per 
condition).   
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3.3.5 T-cell clones and epitopes used in study 

Numerous cytotoxic T-cell clones were procured during this study and shall be discussed further 

in proceeding chapters. Each clone was assigned a clone name, the second part of which 

corresponds to the number ID of the pig the clone was derived from. E.g. KT47.563 was procured 

from pig#563 samples. Preliminary TCR sequencing was performed by Dr. Meriem Attaf on T-

cell clones to determine clonality and ‘sisterhood’ which helped direct which clones to use in 

further experiments. The TCR CDR3 sequences are displayed in Table 3.1 for each clone. As 

discussed already in chapter 2, in-depth analysis of TCR clonotypes was not pursued as at the 

time of this study no database was established to easily assign TCR chains in swine, like that 

already available for human and mouse.    

 

Table 3.1. Cytotoxic T-cell clones procured during this study grouped by their SLA-I 
restricted epitope and preliminary TCR sequencing data.  

Epitope 
Sequence 

SLA-I 
restriction 

Clone 
Name 

CDR3α CDR3β 

not defined unknown 
KT32.563   

KT47.563   

EFEDLTFLA SLA-1*14:02 

KTS.650 CAVRGGYQKLVF - 

KLT.650 CALSRKMNTGYQKLVF - 

KTe.650 CALSRKMNTGYQKLVF - 

KTe2.650 CALSRKMNTGYQKLVF - 

DFEREGYSL SLA-1*14:02 

KT3.650 CVLGGVWQFTF - 

KT4.650 CVLGGVWQFTF - 

KT7.650 CVLGGVWQFTF - 

KT12.650 CVLGGVWQFTF - 

KT31.650 CVLGGVWQFTF - 

KT37.650 CVLGGVWQFTF - 

IAYERMCNI SLA-2*11:04 

Sue.625 CAMSVGSYAQSLT CASSPGTGLIWNDLHF 

Bab.625 CALGGGNNRFTF - 

Ham.625 - CASSHTPTDNYGYTF 

NGKWMRELI SLA-2*11:04 

KT22.625 CTLSEGDSGSRQLVF - 

KT13.650 CALQGSGDKLTF - 

KT14.650 CALQGSGDKLTF - 

KT16.650 CALQGSGDKLTF - 

KTP.650 CALQGSGDKLTF - 

KT36.650 CAVNIGSFKYIF - 

“Sister” TCR clones are colour grouped. -: no sequencing data available 
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3.4 Discussion 

The initial focus of this study was to establish long-term culture of porcine T-cells lines and clones 

and methods for procuring and measuring cytotoxic T-cell clone responses. I demonstrated that 

proliferation was not enhanced by increasing incubator temperature from 37°C (human cell 

culture) to the average swine body temperature of 38.5°C. As such, all T-cell culture in this study 

was performed at 37°C because logistically this was preferable in accordance with the 

temperature we use for growing human and murine cells. I also adapted human T-cell expansion 

protocols to establish successful porcine T-cell line culture and clone procurement by testing 

different media conditions and mitogen concentrations to formulate an optimal culture 

medium.  These conditions were successfully used to expand monoclonal populations of IAV-

specific porcine T-cell clones for the first time. Preliminary experiments isolated cytotoxic T-cells, 

from pigs inoculated with inactivated Sw/Sp H1N1, capable of recognising a peptide pool 

(derived from NP). Flow cytometry was used to define the key surface phenotype of these 

cytotoxic T-cell clones (CD8β+, CD4- and TCRγδ-). The individual peptide from NP recognised by 

the clones KT32.563 and KT47.563 was identified as peptide 40; DNMGSSTLELRSGYWAIRTR 

NP372-391. Unexpectedly I also cultured a CD4 T-cell clone, KT10.557, that recognises peptide 43; 

NQQRASAGQISVQPTFSVQR NP397-416. Peptide truncations were designed and tested indicating 

that this CD4 T-cell clone preferentially recognises the longer peptides. This result is consistent 

with this clone being an MHC-II restricted CD4+ helper T-cell.  As my primary aim was to examine 

cytotoxic T-cells, I did not undertake further studies with this clone. It remains backed up in 

liquid nitrogen storage in Cardiff in the hopes that it might be useful for future studies.  

 

T-cell clones were regularly expanded throughout this study and maintained in culture using the 

methodology described above for months at a time. Small optimisation comparisons were run 

where possible, I demonstrated that using less than 100,000 feeder cells per expansion well 

decreased the fold expansion by around 40%. Although less T-cell could be seeded per well and 

a high expansion rate still achieved, the relative yield was still higher seeding ~1000 cells per 

well. The expansion rate when seeding half the number of cells would need to be double or 

more for this set up to give the highest overall cell yield. The majority of expansions were 

therefore carried out with 1000 clone and 100,000 feeders/well. For human T-cell culture our 

laboratory routinely uses IL-15 as it is known to enhance T-cell survival in our hands. I established 

that decreased IL-15 concentration in expansion medium dramatically increased fold expansion 

of porcine T-cells, this could be due to higher concentrations being detrimental or perhaps the 

high IL-2 concentration compensates for less IL-15. I continued to use IL-15 at low concentrations 
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to aid cell survival however future work could test whether any IL-15 is required for long-term, 

repeated expansions of porcine T-cell clones. Initial observations suggested that 1 μg/mL of PHA 

per expansion was optimal however a later experiment suggested 2 and particularly 4 μg/mL is 

superior. These concentrations are all rather similar and batch variations in the product activity 

probably explain the inconsistency. Overall, I opted to use 2 μg/mL PHA going forward. However, 

the concentration of PHA is not a ‘’one size fits all’’ across porcine T-cell clones and it is best to 

regularly reassess this particularly if working with clones that grow poorly. T-cell expansion rates 

were highest when culturing the T-cell clones in 96U well plates, although further optimisation 

of 24 well plates could be explored. Porcine T-cell clones seeded at lower densities (500-2000 

cells/well) gave the highest fold expansion rates and further increase in cell numbers was 

detrimental to total cell yield. Further optimisation could assess the use of more feeder cells per 

well. I witnessed varying growth rates across different porcine T-cell clones, this is also seen in 

human T-cell clones where some will have very high fold expansions and others will always yield 

low cell numbers.  

 

The preliminary work discussed in this chapter was important for establishing successful 

experimental protocols for clone procurement and characterisation. However, these samples 

and data were superseded by more abundant and clinically relevant vaccinated pigs as shall be 

discussed in chapter 4. Although the protocols developed in this thesis were successful in 

generating the large T-cell clone expansions required for complex experiments, further 

optimisation would be desirable in future. As I still observed variation in growth within and 

across individual T-cell clone expansions, it is likely that further improvements to the protocol 

are possible, although as discussed below some variables are hard to control. 

 

Our laboratory has extensive experience of growing clonal T-cells (Bulek, Cole, et al. 2012; 

Ekeruche-Makinde et al. 2012; Wooldridge et al. 2012; Ekeruche-Makinde et al. 2013; Dolton et 

al. 2014; Tungatt et al. 2015; Theaker et al. 2016; Tan et al. 2017) and its senior members have 

noted that successful culture of T-cells can depend on many factors. Testing serum (either 

human or bovine) is imperative, as batch-to-batch variations can prove problematic for 

successful cell culture. We witness greater variations between human serum donors and as such 

purchase large volumes of batch-tested bovine serum to aid uninterrupted human T-cell culture. 

Furthermore, the correct reconstitution, storage and handling of mitogens, cytokines and media 

additives are also of importance. Unknown variables, in particular, differences in the individual 

feeder cells can lead to success or failure during T-cell clone expansion phases. For human T-cell 
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expansion we use fresh PBMCs (less than 48 h post venipuncture) and adhere to good laboratory 

protocols by efficiently processing blood and keeping them on ice until used, as we find this 

leads to superior T-cell culture (personal communication, Dr. Garry Dolton). These T-cell clone 

techniques have been applied within our laboratory across different human T-cell subsets (αβ 

T-cells: CD8, CD4, CD4+/CD8+ and CD4-/CD8-. Also, γδ T-cells and MAITs), from different 

activations states (naïve and antigen experienced) from various sources, such as peripheral 

blood, ascites, synovia, TILs, adults, pediatric samples and patients with active disease such as 

HIV or type I diabetes (personal communication, Dr. Garry Dolton). Although T-cells are 

biologically capable of maintaining memory populations that can exist for years within the body 

it is harder to recapitulate this in vitro culture and is therefore a careful balance between finding 

a middle ground between neglect and overstimulation, both of which can lead to cell death. In 

light of this, the ability to grow human T-cell clones and maintain them correctly in order to 

conduct research requires training and skill, with the microscope being an important component 

in assessing when T-cells need to be re-stimulated. 

 

Overall, I applied knowledge I gained through culturing T-cell clones from type I diabetes 

patients and advice from Professor Andrew Sewell and Dr. Garry Dolton to translate knowledge 

gained from culturing human T-cell clones to growing porcine clones. Overall, given some basic 

ingredients and approaches I think it would be possible to culture T-cells from other vertebrate 

species such as chickens, by applying what has been learnt from the culture of human and 

porcine T-cell clones. The study of T-cells from chickens and other poultry could be invaluable 

considering the virulence of bird influenza strains and the risks they pose for humans. In 

summary, the successful optimisations described in this chapter formed the cornerstone of my 

PhD work and enabled me to go on and perform a thorough initial characterisation of porcine 

T-cell responses to IAV.  
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4 Identification of Influenza T-cell epitopes in pigs  

 

4.1 Background  

Following on from the cell culture protocols established in chapter 3 for porcine T-cell culture, 

this chapter focuses on the identification of MHC-I IAV epitopes through procurement of IAV-

specific cytotoxic T-cell lines and clones. This work used cryogenically stored PBMC, BAL and 

TBLN samples from a different cohort of vaccinated Babraham pigs than that used in the 

previous chapter. The PBMC samples used in chapter 3 were from pigs inoculated with 

inactivated H1N1 Sw/Sp virus whereas the samples in this chapter are from pigs vaccinated with 

both the inactivated Sw/Sp and S-FLU. S-FLU is a universal IAV vaccine candidate (Powell et al. 

2012) which is currently being validated across different animal models and viral challenges, 

therefore making the study of these samples clinically relevant for vaccination studies. TBLN are 

the main draining lymph nodes of the lung and along with BAL samples allow investigation of 

local cellular immune responses.  

 

S-FLU is a non-pathogenic pseudotyped Influenza virus, which has its HA-signal sequence 

suppressed therefore preventing the virus from replicating within the host (Powell et al. 2012). 

This suppression was achieved by replacing the start codon to prevent translation of the signal 

sequence. Two further mutations were made to safe guard in the event of the start codon 

returning. A single base was deleted within the signal sequence to create a frameshift (meaning 

the sequence would be translated out of frame) and the HA cleavage site was inactivated. The 

lack of a viable HA viral RNA means reassortment cannot occur with seasonal IAV strains (a 

source of antigenic shift), which is a risk associated with the use of live attenuated IAV vaccines. 

S-FLU virus expresses the internal proteins from the PR8 strain [IAV 

(A/PuertoRico/8/1934(H1N1))] and can be coated with a chosen HA, using a transfected 

complementing cell line, to enable initial host cell entry. The conserved internal proteins are 

expressed and can be processed and presented by the infected cells to T-cells without any risk 

of productive infection. 

  

S-FLU has shown protective efficacy (in the absence of or low levels of neutralising antibodies) 

following homologous and heterologous viral challenge in both mice and ferrets and prevented 

airborne transmission in the latter (Powell et al. 2012; Baz et al. 2015). A notable induction of T-

cell responses was observed in the lungs of S-FLU vaccinated mice detected ex vivo by responses 
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to a conserved NP epitope by IFNγ ELISpot or pMHC multimer staining. The vaccine candidate S-

FLU has also been evaluated in outbred pigs, where immunisation reduced viral load upon 

homologous challenge in the absence of neutralising antibodies (consistent with the previous 

studies in mice and ferrets) (Morgan et al. 2016). This protection was correlated with strong 

local immune responses detected in the BAL following challenge. S-FLU administered by aerosol, 

targeting the lower respiratory tract, afforded the most effective protection and induced high 

numbers of IFNγ producing cytotoxic and helper T-cells in the lung. Further experiments are 

required to determine if these cells mediate the protection observed and to investigate if S-FLU 

can protect against heterologous challenge in pigs.    

 

For this study two sows, pigs #625 and #650, were immunised with two doses of S-FLU 

intranasally and with inactivated SwIV Sw/Sp H1N1 with montanide adjuvant intramuscularly. 

The second dose (boost) of each was administered at day 25 and PBMC, BAL and TBLN were 

harvested at day 38 (day 13 post boost). I wished to identify conserved epitopes because, as 

previously discussed, they are important for conferring heterotypic immunity against influenza 

strains and have already been well documented in human IAV studies. Heiny and colleagues 

performed a comprehensive analysis of human and avian IAV protein sequences in the public 

database and found that viral proteins PB1, PB2, PA, NP and M1 were the most conserved 

historically, with many conserved regions evident across subtypes and host-origin (Heiny et al. 

2007).  Similar findings have been reported by other studies (ElHefnawi et al. 2011; DiPiazza et 

al. 2016). NP and M1 are major targets of cytotoxic T-cell responses in humans (Gotch et al. 

1987) and have been widely investigated across numerous studies. The H1N1 M158-66 

[GILGFVFTL] cytotoxic T-cell epitope has been well characterised in humans and is the 

immunodominant epitope found in HLA-A2 individuals (Gotch et al. 1987; Morrison et al. 1992). 

NP has long been identified as a key immunogenic protein in inducing cross-reactive cytotoxic 

T-cell responses (Townsend and Skehel 1984; Yewdell et al. 1985). Wu and colleagues screened 

PBMC from 8 healthy HLA-A2+ donors for CD8+ T-cell responses to 11 influenza proteins, and 

found NP (5 out of 8) and M1 (3 out of 8) to be immunodominant (Wu et al. 2011). This approach 

was extended in a further study using HLA-A2-negative donors that again demonstrated NP as 

the immunodominant protein (Grant et al. 2013). NP induced the highest CD8+ T-cell responses 

in 6 out of 7 donors. M1 and NP are highly abundant in Influenza virions; consistent with previous 

studies Hutchinson and colleagues detected by mass spectrometry NP at a mean abundance of 

0.31 (relative to M1 protein – the most abundant) in Influenza A/WSN/33 virions (Hutchinson et 

al. 2014). These features and prior studies in humans and mice made NP and M1 prominent 

targets for epitope identification in my studies.  
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4.2 Hypotheses 

This section of the study applied the ability to culture porcine T-cells long term (as developed in 

chapter 3) to identify cytotoxic T-cell responses to IAV vaccination in Babraham pigs, specifically 

identifying the epitopes (viral derived peptides) recognised by these T-cells in the context of 

pMHC-I complexes. I was interested in identifying responses to overlapping peptides from 

conserved Influenza proteins NP and M1. The hypotheses were as follows: 

• Peptide specific cytotoxic T-cell lines can be obtained from PBMC isolated from pigs 

(#625 and #650) simultaneously immunised with inactivated virus and the vaccine 

candidate S-FLU.  

• T-cell clones can be procured from these influenza-specific T-cell lines. 

• Minimal epitopes (the shortest peptide inducing the highest response sensitivity) can be 

defined by identifying the individual peptide response followed by testing truncated 

versions.  

• Influenza-specific CD8β T-cell clones will display cytotoxic activity when exposed to 

peptide.   

 

4.3 Results 

4.3.1 IAV-specific T-cell line procurement from pigs #625 and #650.   

I initially set out to define T-cell epitopes from IAV NP and M1 in two pigs, #625 and #650, which 

had been vaccinated with H5-S-Flu and inactivated H1N1 Sw/Sp virus. To identify T-cell epitopes 

in this study, overlapping peptides were designed, by Dr. Garry Dolton, spanning the whole 

protein sequences of NP and M1 from S-FLU (Table 10.1 & 10.2). The peptides in this study were 

designed to be 18 amino acids in length, to facilitate identification of MHC-I as well as MHC-II 

epitopes in other studies, and overlapping by 12 residues to ensure no potential epitopes were 

missed. Responses were screened for using the NP and M1 overlapping peptides divided across 

4 (A-D) and 2 (E-F) pools respectively. Peptide-specific cytotoxic T-cell lines were procured as 

discussed in chapter 3. During those preliminary experiments CFSE dye was used to detect 

proliferation in response to peptides, however the DMSO gave a high background of 

proliferating cells, e.g. in Figure 3.2 21.5% and 86.5% of cells proliferated in response to DMSO 

and the peptide pool respectively. To enable clearer distinction and quantification of genuine 

peptide responses I instead measured TNFα by ICS for testing the T-cell lines. Samples from T-

cell lines were taken and incubated with the relevant peptide(s) or control for 5 h before cells 

then received the relevant surface antibodies and were analysed. This approach gave minimal 
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background when the T-cell lines were incubated with DMSO alone. Additionally, this 

experiment could also be run in the presence of TAPI-0 and TNFα Ab from the incubation step. 

The use of TAPI-0 (TNFα converting enzyme protease inhibitor) prevents the release of TNFα 

from the cell membrane allowing direct detection of TNFα producing cells by flow cytometry 

(Haney et al. 2011). This method does not kill cells, unlike ICS, so it allows isolation of viable, 

peptide-responsive T-cell populations by flow cytometry.  

 

Cytotoxic T-cells were isolated from both pigs #625 and #650 PBMC and lines set up with all the 

NP and M1 peptide pools. Peptide-specific cytotoxic T-cell lines, as determined by ICS of TNFα 

production, were grown to NP peptide pools A, B and C for pig#625 (Figure 4.1) and peptide 

pools A and C for pig#650 (Figure 4.2). The other peptide pools (NP: D, M1: E and F) did not elicit 

responses during these experiments (data not shown). Once a response to a peptide pool had 

been identified the T-cell line was re-tested with the peptide pool and the individual peptides of 

that pool. This allowed identification of the individual peptides eliciting the cytotoxic T-cell 

response. This analysis was performed on the first batch of T-cell lines and the data are displayed 

in the appendix (Figure 10.1). A second batch of T-cell lines were established in larger numbers 

and the flow cytometry data is displayed in Figures 4.1 and 4.2 and summarised in Figure 4.3 for 

ease of interpretation. Substantial TNFα production was detected in response to peptide pools 

A (51.8% and 12.9% respectively in pig#625 and #650) and C (27.8% and 23.7% respectively in 

pig#625 and #650).  The response to peptide pool B in pig#625 was of lower magnitude (3.9%). 

Responses to peptide pools A and C, were mapped to overlapping peptides NP16 and NP17 and 

peptides NP42, NP43, NP48 and NP49 respectively, in both pigs (Figure 4.3). The high level of 

response in these T-cell lines to peptide pools A and C enabled direct T-cell clone procurement 

by limiting dilution.  

 

For the peptide pool B specific T-cell line procured from pig#625, the response was identified as 

overlapping peptides NP36 and NP37. These peptides were then used to generate a new line 

(Figure 4.1C) from which T-cell clones were procured following isolation of TNFα+ cells by flow 

cytometry to account for their low abundance here (3.96 and 3.18% respectively for peptides 

NP36 and NP37). The following cytotoxic T-cell clones were procured from these samples (see 

Table 3.1): KT4.650 and KT7.650 recognising peptides NP48/49, KTS.650 and KLT.650 

recognising peptides NP42/43, KT22.625 and KT13.650 recognising peptides NP16/17 and 

clones Sue.625 and Bab.625 recognising peptides NP36/37. The numbers 625 or 650 denote 
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which pig the T-cell clone was isolated from. These T-cell clones along with T-cell lines were then 

used to determine the minimal epitope that was recognised (Figures 4.4 – 4.7).  

 

 

 

Figure 4.1. Influenza-specific CD8β T-cell line procurement from Pig#625. 

Flow cytometry data of Influenza-specific T-cell lines from Pig#625 raised against NP peptide 
pools A, B and C. All CD8β sorted T-cell lines displayed were raised for two weeks against their 
respective peptide pool except the second line in (B) which was raised against peptides NP36 
and NP37 alone. T-cell lines were incubated with DMSO or 2 μM peptide pool/peptide for 5 h 
then stained for CD8β and intracellular TNFα. Cells were gated on for size and viability and 
the percentage of TNFα+ cells is displayed in red. 
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Figure 4.2. Influenza-specific CD8β T-cell line procurement from Pig#650. 
Flow cytometry data of Influenza-specific T-cell lines from Pig#650 raised against NP peptide 
pools A and C. All CD8β sorted T-cell lines displayed were raised for two weeks against their 
respective peptide pool. T-cell lines were incubated with DMSO or 2 μM peptide pool/peptide 
for 5 h then stained for CD8β and intracellular TNFα. Cells were gated on for size and viability 
and the percentage of TNFα+ cells is displayed in red.  

 

 

 
Figure 4.3. Influenza-specific CD8β T-
cell line procurement. 
Summarised flow cytometry data of 
Influenza-specific cytotoxic T-cell lines 
from pigs #625 and #650 raised against NP 
peptide pools A, B and C. All CD8β sorted 
T-cell lines displayed were raised for two 
weeks against their respective peptide pool 
except the second line in B (ͳ) which was 
raised against peptides NP36 and NP37 
alone. T-cell lines were incubated with 
DMSO or 2 μM peptide pool/peptide for 5 h 
then stained for CD8β and intracellular 
TNFα. Cells were gated on for size and 
viability and the percentage of TNFα+ cells 
is plotted on the y axes.  
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4.3.2 Epitope optimisation on T-cell lines 

Human and mouse MHC-I molecules can present peptides between 8-14 amino acids in length; 

the closed-ended peptide binding groove prevents longer peptide conformations. The majority 

(>70%) of cytotoxic T-cell epitopes are 9 amino acids long and ~20% are 10 amino acids long 

(Ekeruche-Makinde et al. 2013). Similarly, the limited studies of SLA-I in pigs to date have 

identified responses to peptides of 9 or 10 amino acids in length (Zhang et al. 2011; Pedersen et 

al. 2013; Pedersen et al. 2014; Fan et al. 2016; Gutiérrez et al. 2016; Baratelli et al. 2017). 

Therefore, we truncated the overlapping peptides identified in Figure 4.3 down to a minimal 

length of 8 amino acids to establish the minimal epitopes that were being recognised by the 

cytotoxic T-cells. The overlapping regions of the peptides were truncated one amino acid at a 

time from both the N and carboxyl (C) termini (Tables 10.3-10.6). I generated a new batch of T-

cell lines, as above, to peptide pools A and C in pigs#625 and #650. The relevant T-cell lines were 

then incubated with their respective peptide truncations, the full-length peptides and their 

overlapping region and TNFα release quantified.  

 

The overlapping region between peptides 48 and 49 [YDFEREGYSLVG] elicited stronger TNFα 

responses than the full-length peptides and truncations of -2 or -3 amino acids from the N- or C-

terminus respectively were not tolerated well (Figure 4.4). These data were consistent across 

both pigs#625 and #650 and three peptides [N-1: DFEREGYSLVG, N-1 C-2: DFEREGYSL and 

C-2: YDFEREGYSL] elicited the strongest responses. In pig#625 these three peptides induced 

28.5%, 28.6% and 30.3 % CD8β+ TNFα+ cells (accounting for background). Similar responses of 

34.8%, 34% and 32.6% were induced in pig#650 (Figure 4.4A). Neither of these three peptide 

truncations [DFEREGYSLVG, DFEREGYSL and YDFEREGYSL] were substantially better than 

each other so further experiments were required to identify which was the minimal epitope. 

The overlapping region between peptides NP42 and NP43 [EFEDLTFLARSAL] induced 6.8% 

and 12.3% CD8β+ TNFα+ cells in pigs#625 and #650 respectively however a single truncation 

from the N-terminus reduced these responses to 0.78% and 2.79% respectively, close to the 

background level of activation (Figure 4.5). Truncations from the C-terminus were well tolerated 

and the C-4 truncation [EFEDLTFLA] induced the highest TNFα responses, 8.75% and 19.9% in 

pig#625 and #650 cytotoxic T-cell lines respectively. The minimal epitope was less clear when 

testing truncations of the 12 amino acid overlapping region between peptides NP16 and NP17 

[YRRVNGKWMREL] (Figure 4.6). Truncations from the N-terminus were well tolerated and did 

not improve responses much above that seen with the overlap. In pig#625 the percentage of 

CD8β+ TNFα+ cells induced by the overlap and these N-terminus truncations ranged only from 
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26 - 27.6%. Truncations from the C-terminus negated the TNFα response (Figure 4.6A). Peptide 

truncations of peptides NP36 and NP37 were not tested on T-cell lines. The use of T-cell lines to 

define minimal epitopes was not conclusive in this study, although it did begin to establish which 

amino acid residues were essential for SLA-I presentation to cytotoxic T-cells.  

 

 

Figure 4.4. Minimal epitope identification from peptides 48 and 49 using Influenza-
specific T-cell lines. 
Flow cytometry data of Influenza-specific CD8β sorted T-cell lines from pigs#625 and #650 
raised for two weeks against NP peptide pool C. The overlapping region [YDFEREGYSLVG] 

between peptides 48 and 49 identified in figure 4.3 was truncated one amino acid at a time 
from both the amino- (N) and carboxyl- (C) termini down to 8 amino acids long. T-cell lines 
were incubated with DMSO or 5 μM peptide pool/peptide for 5 h then stained for CD8β and 
intracellular TNFα. A) Percentage of CD8β+ TNFα+ cells detected for each peptide. Data are 
displayed minus DMSO background. B) Representative flow cytometry data from each pig. 
Cells were gated on size and viability and the percentage of each cell population is displayed 
inset. 
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Figure 4.5. Minimal epitope identification from peptides 42 and 43 using Influenza-
specific T-cell lines. 
Flow cytometry data of Influenza-specific CD8β sorted T-cell lines from pigs#625 and #650 
raised for two weeks against NP peptide pool C. The overlapping region [EFEDLTFLARSAL] 

between peptides 42 and 43 identified in figure 4.3 was truncated one amino acid at a time 
from both the amino- (N) and carboxyl- (C) termini down to 8 amino acids long. T-cell lines 
were incubated with DMSO or 5 μM peptide pool/peptide for 5 h then stained for CD8β and 
intracellular TNFα. A) Percentage of CD8β+ TNFα+ cells detected for each peptide. Data are 
displayed minus DMSO background. B) Representative flow cytometry data from each pig. 
Cells were gated on for size and viability and the percentage of each cell population is displayed 
inset. 
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Figure 4.6. Minimal epitope identification from peptides 16 and 17 using Influenza-
specific T-cell lines. 
Flow cytometry data of Influenza-specific CD8β sorted T-cell lines from pigs#625 and #650 
raised for two weeks against NP peptide pool A. The overlapping region [YRRVNGKWMREL] 

between peptides 16 and 17 identified in figure 4.3 was truncated one amino acid at a time 
from both the amino- (N) and carboxyl- (C) termini down to 8 amino acids long. T-cell lines 
were incubated with DMSO or 5 μM peptide pool/peptide for 5 h then stained for CD8β and 
intracellular TNFα. A) Percentage of CD8β+ TNFα+ cells detected for each peptide. Data are 
displayed minus DMSO background. B) Representative flow cytometry data from each pig. 
Cells were gated on size and viability and the percentage of each cell population is displayed 
inset. 
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4.3.3 Epitope optimisation on T-cell clones  

Experiments using T-cell lines were superseded by minimal epitope definition using T-cell clones 

which I was able to expand to sufficient cell numbers required for these types of assays. Titration 

of truncated peptides in T-cell assays with 4 different clones identified the most sensitive 

responses (Figure 4.7). Cytotoxic T-cell clones KT7.650, KTS.650, Sue.625 and KT22.625 

responded with highest sensitivity to the 9 amino acid long sequences DFEREGYSL, 

EFEDLTFLA, IAYERMCNI and NGKWMRELI. Other clones specific for these peptides gave 

similar results (data not shown). The identification of the minimal epitope EFEDLTFLA is 

consistent with the T-cell line data discussed above. As before, this peptide truncation induced 

higher responses than the other peptides (7.4 ng/mL of MIP-1β at 10-6 M peptide). The use of 

clone KT7.650 for testing the truncations of peptides NP48 and NP49 enabled clearer distinction 

between the preferred three sequences from the T-cell line data [N-1 C-2: DFEREGYSL, N-1: 

DFEREGYSLVG and C-2: YDFEREGYSL]. The minimal epitope DFEREGYSL induced 9.94 

ng/mL MIP-1β at 10-7 M peptide, nearly double that seen with the latter two truncations (4.59 

and 5.12 ng/mL) (Figure 4.7).  

 

The minimal epitope IAYERMCNI induced by far the strongest MIP-1β responses with clone 

Sue.625 at both 10-5 and 10-6 M peptide. The identification of the minimal epitope in peptides 

NP16 and NP17 was not as straightforward, from the T-cell line data it was already clear that the 

C-terminus of the overlapping region was essential. Initial experiments on clone KT22.625 found 

that peptide NP17 afforded higher sensitivity over both NP16 and all of the truncations (data 

not shown). Therefore a second batch of peptide truncations was designed, extending the C-

terminus into peptide NP17 (Table 10.5) and these truncations were tested on T-cell clone 

KT22.625 (Figure 4.7). This enabled clear detection of the minimal epitope as the highest 

sensitivity was observed to peptide NGKWMRELI which was the only peptide that induced MIP-

1β release at 10-8 M peptide.  
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Figure 4.7. Minimal epitope identification using Influenza-specific T-cell clones. 
T-cell clones were procured from Influenza-specific T-cells lines. The overlapping regions 
identified in figure 1 were truncated one amino acid at a time from both the N and C terminus 
down to 8 amino acids long. T-cell clones KT7.650, KTS.650, Sue.625 and KT22.625 
responded to the following overlapping peptide regions respectively; YDFEREGYSLVG, 

EFEDLTFLARSAL, IAYERMCNILKG and YRRVNGKWMREL. T-cell clones were incubated 

overnight with titrations of each peptide truncation and MIP-1β release was measured by 
ELISA. All conditions were performed in triplicate and data are displayed as mean ± SEM. 
Peptide truncations that did not elicit a response at the concentrations displayed are shaded 
black. Peptide sequences are displayed colour coded for each graph. For clone KT22.625, 
initial experiments demonstrated that any substitution from the C terminus of the overlapping 
sequence [YRRVNGKWMREL] was not tolerated. Also, the full-length peptide NP17 was 

preferred to any N terminus substitution. Therefore, the C terminus was also extended to 
ascertain the minimal epitope here (refinement). 

 

4.3.4 Additional IAV-specific T-cell responses 

During the procurement of IAV specific T-cell lines using overlapping peptide pools spanning the 

NP and M1 proteins, two further peptide responses were identified in addition to those 

discussed above. These were not taken forward for in depth studies and will be discussed briefly 

here. Responses to M1 peptide pools were not clearly detected in pig#625 and #650 PBMC 

samples and no novel epitopes were defined for this protein, whereas I have defined 4 novel 

epitopes for NP. However, a cytotoxic T-cell line to M1 peptide pool E was procured on one 

occasion. During initial testing, this line produced 4.3% CD8β+ TNFα+ cells in response to the 

peptide pool E (Figure 4.8A). This line was re-stimulated with the peptide pool in order to 

increase the peptide responsive population and remove the need for cell sorting for clone 

procurement. This was unsuccessful and the peptide responsive population decreased with 
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these further re-stimulations. The remaining T-cell line was used to test individual peptides and 

the response was mapped to peptides M88 and M89 which share the overlapping sequence 

MEWLKTRPILSP (Figure 4.8B). However, it should be noted that the percentage of CD8β+ 

TNFα+ cells in response to peptide was very low by this point, with 1.15%, 0.9% and 1.08% for 

the peptide pool and peptides M88 and M89 respectively. This data ideally needed repeating to 

confirm the immunogenic region however a second attempt at procuring a cytotoxic T-cell line 

from pig#625 using peptides M88 and M89 produced no detectable response.  

 

 

 

BAL samples from pig#625 were also used in attempts to procure influenza-specific T-cell lines 

but these were not initially sorted into CD8β+ cells as performed with PBMC samples. These 

experiments produced a T-cell line specific for peptide pool D with the strongest response seen 

in the CD8β- cell population at 10.8% CD8β- TNFα+ cells compared to 2.55% background in the 

DMSO control (Figure 4.9A). Following a round of expansion and a further re-stimulation of this 

T-cell line, the CD8β- TNFα+ response was mapped to CD4+ T-cells with 9% CD4+ TNFα+ T-cells 

detected in response to peptide pool D compared to 0.32% in the DMSO control (Figure 4.9B). 

 

Figure 4.8. Influenza M1-specific cytotoxic T-cell line procurement from Pig#625. 
Flow cytometry data of an Influenza-specific T-cell line from Pig#625 raised against M1 peptide 
pool E. T-cell lines were incubated with DMSO or 2 μM peptide pool/peptide for 5 h then stained 
for CD8β and intracellular TNFα. Cells were gated on for size and viability and the percentage 
of CD8β+ TNFα+ is displayed in bold. A) Detection of responses to peptide pool E. B) 
Identification of individual peptide responses. This line recognises overlapping peptides 88 and 

89; TDLEVLMEWLKTRPILSP and MEWLKTRPILSPLTKGIL.  
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This CD4+ response was mapped to individual overlapping peptides NP68 and NP69; sequences 

AGQISIQPTFSVQRNLPFDR and PTFSVQRNLPFDRTTVM; and peptides NP76 and NP77; 

sequences ARPEDVSFQGRGVFELSD and SFQGRGVFELSDEKAASP.  

 

 

Figure 4.9. Influenza NP-specific helper (CD4) T-cell line procurement from Pig#625 BAL 
samples. 
Flow cytometry data of an Influenza-specific T-cell line from Pig#625 BAL raised against NP 
peptide pool D. T-cell lines were incubated with DMSO or 2 μM peptide pool/peptide for 5 h 
then stained for CD8β (A) or CD4 (B) and intracellular TNFα. Cells were gated on size and 
viability and the percentage of CD8β- TNFα+ (A) or CD4+ TNFα+ (B) is displayed in bold. A) 
Detection of responses to peptide pool D in BAL line. B) Identification of individual peptide 
responses. The CD4+ fraction of this line recognises overlapping peptides 68 and 69; 
AGQISIQPTFSVQRNLPFDR and PTFSVQRNLPFDRTTVM, and overlapping peptides 76 and 

77; ARPEDVSFQGRGVFELSD and SFQGRGVFELSDEKAASP.  
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4.3.5 Porcine CD8β+ T-cells are cytotoxic 

The main aims of this study were focused on conserved IAV epitope identification and detection 

in clinically relevant samples and defining the interaction between these peptides and the 

Babraham pig SLA-I molecules. Therefore, I did not pursue extensive phenotypic or functional 

assays with the cytotoxic T-cell clones isolated during this study. I felt that it was important to 

establish the cytotoxic nature of these T-cell clones so a killing assay was performed with T-cell 

clones KT13.650 and KT22.625. The commercially available ESK-4 cell line was labelled with 51Cr, 

incubated with the newly identified epitope NP101-109 NGKWMRELI and acted as target cells in 

this assay at an E:T ratio of 5:1. The porcine kidney derived ESK-4 cell line has previously been 

shown to express the two Babraham pig SLA-I molecules (Ho et al. 2009). CD8β T-cell clone 

KT13.650 killed 26% and 62.5% of the target cells after 4 h and overnight, respectively, at 10-5 M 

peptide (Figure 4.10). Target cell killing was reduced but still prevalent at the lower peptide 

concentration of 10-9 M, where 12% and 49.5% of target cells were killed following 4 h or 

overnight incubation respectively. T-cell clone KT22.625 also killed target cells; 23.5% at 10-6 M 

peptide.  

 

 

Figure 4.10. Cytotoxic response of T-cell clones KT13.650 and KT22.625. 

ESK-4 cells were used as 
51

Cr labelled target cells incubated with or without peptide; NP101-109 

NGKWMRELI. T-cell clones KT13.650 and KT22.625 (effector cells) were plated with target 

cells at an E:T ratio of 5:1. Supernatant was harvested after 4 h and overnight (KT13.650 only) 

and 
51

Cr release recorded. The % killing of target cells = [(experimental – spontaneous 
51

Cr 
release)/(maximum release – spontaneous release) x 100]. All conditions were performed in 
triplicate and data are displayed as mean ± SEM.  
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4.4 Discussion 

This chapter focused on the screening of two Babraham pigs, #625 and #650, vaccinated with 

H5-S-FLU and inactivated H1N1 Sp/Sw virus for cytotoxic T-cell responses to the conserved viral 

proteins NP and M1, using a non-assumptive approach of overlapping peptides spanning the 

whole protein sequences. The cytotoxic T-cell responses detected in this chapter were 

dominated by the NP. PBMC samples from pigs #625 and #650 were used to generate IAV-

specific cytotoxic T-cell lines against three pooled sets (A, B and C) of NP peptides. Individual 

overlapping peptides and truncated versions of these sequences were used to define four new 

optimal IAV epitopes in the Babraham pig; NP290-298 DFEREGYSL, NP252-260 EFEDLTFLA, NP217-

225 IAYERMCNI and NP101-109 NGKWMRELI. The testing of truncated peptides on T-cell lines did 

not conclusively define the minimal epitope in every case although it indicated which residues 

were required for successful T-cell engagement and identified the minimal epitope 

EFEDLTFLA. The procurement of porcine T-cell clones was instrumental to defining the 

minimal epitopes recognised for the other immunogenic regions. During the identification of the 

minimal epitope in peptides NP16 and NP17 it became apparent that the overlapping region 

between the two was not the optimal sequence but rather that additional residues in NP17 were 

required. This result highlights that it should not always be presumed that the minimal epitope 

is located within the overlapping sequence.  

 

I searched the immune epitope database (www.iedb.org) and the immune epitope search tool 

provided by the Influenza research database (available at www.fludb.org) for these four 

epitopes and found only IAYERMCNI produced a direct match which has been identified as an 

MHC-I epitope in mice (Thomas et al. 2007). If the search criteria are reduced to 90% or 80% 

sequence match then all of the four regions of NP identified in this study appear in the immune 

epitope database (varying across MHC-I and MHC-II responses in humans and mice). This 

suggests the possibility of cross-species epitopes and identifies these regions of NP as 

immunogenic across different IAV strains and T-cell responses.  

 

I failed to find robust cytotoxic T-cell responses to M1 during these studies. Although a cytotoxic 

T-cell line grown from pig#625 did show low reactivity to M1 peptide pool E. This response was 

mapped to overlapping peptides M88 and M89 [TDLEVLMEWLKTRPILSP and 

MEWLKTRPILSPLTKGIL] but as a second attempt failed to procure this T-cell line again, no T-

cell clones were procured meaning I was unable to define a minimal epitope. This M1 peptide 

response was not pursued further due to time constraints of this project. Additionally, a CD4 T-

cell response was identified in the vaccinated pig samples whilst I was searching for cytotoxic 
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responses in the BAL of pig#625 to NP peptide pool D. The BAL sample sizes were limited so 

these cells were not subjected to CD8β sorting enabling detection of responses across T-cell 

subsets. The CD4 response was mapped to two NP regions; peptides NP68 and NP69 

[AGQISIQPTFSVQRNLPFDR and PTFSVQRNLPFDRTTVM] and peptides NP76 and NP77 

[ARPEDVSFQGRGVFELSD and SFQGRGVFELSDEKAASP]. The former peptides are in the 

same region of NP identified in preliminary studies in chapter 3 where a CD4 T-cell clone, 

procured from a pig inoculated with inactivated H1N1 Sw/Sp, was shown to recognise the 

peptide NQQRASAGQISVQPTFSVQR. Further investigation of these responses was not 

pursued in this study as my focus was on CD8β cytotoxic T-cell responses, due to their 

documented importance in heterotypic immunity.  

   

The overlapping peptides, spanning NP and M1, used in this study were synthesised to >70% 

purity and the truncated peptides used for minimal epitope determination were synthesised to 

>40% purity. Despite the lower purity, it was still possible to clearly distinguish between T-cell 

responses to the different peptide truncations. The peptides were all reconstituted based on 

their peptide composition to improve accuracy. This approach is more economically viable that 

using higher purity peptides, however it is important to consider that it may lead to the 

identification of false positives as has been documented by other laboratories previously (Reid 

et al. 2014). This concern was addressed by self-validation in this study, as following minimal 

epitope identification pure peptides were used to confirm the response in subsequent T-cell 

activation assays and pMHC in vitro refolding and pMHC multimer detection of the 

corresponding T-cell clones. 

 

A previous approach in outbred pigs identified four putative SLA-I SwIV epitopes using an in silico 

prediction algorithm (Pedersen et al. 2014). The use of overlapping peptides in my study made 

no assumptions about SLA binding or immunodominance. Indeed IAV studies in humans have 

identified immunodominant epitopes in NP utilising overlapping peptides that were not flagged 

by the existing prediction algorithms (Wu et al. 2011; Grant et al. 2013). A similar approach using 

a proteome-wide pentadecamer peptide library has previously been used in outbred pigs to 

successfully identify CD8β and CD4 T-cell epitopes in porcine reproductive and respiratory 

syndrome virus (PRRSV) following experimental infection (Mokhtar et al. 2016). To my 

knowledge, no published study has yet utilised this approach to identify IAV cytotoxic T-cell 

epitopes in pigs. Although the use of overlapping peptides was successful for T-cell epitope 

identification during my studies, there are alternative approaches that could have been pursued 

as previously discussed in section 1.3.6. For example, cell lines expressing the Babraham pig SLA 
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alleles could have been transduced with a protein of interest, i.e. NP, or infected with virus. 

Peptide-SLA complexes could then have been isolated and the peptides eluted for identification 

by mass spectrometry.  

 

Finally, in this chapter I preliminary assessed the cytotoxicity of the porcine T-cell clones isolated 

in this study. For this, I used T-cell clones KT13.650 and KT22.625 which both recognise the NP 

epitope NGKWMRELI. Cytotoxic T-cell clones KT13.650 and KT22.625 displayed effective 

cytotoxicity and were able to kill peptide-pulsed target cells that express the Babraham pig SLA-

I molecules. This suggests that these cytotoxic T-cells would be capable of directly killing IAV 

infected cells in vivo; the clinical relevance of which could be a subject for future investigations. 

Extensive phenotypic and functional studies of the cytotoxic T-cell responses I identified were 

not part of the overall aims of this current study so were not pursued further. However, the 

tools developed in this thesis will facilitate future studies of this kind.  

 

The main aim of this chapter was to define minimal epitopes from conserved IAV proteins, NP 

and M1, from which 4 novel epitopes in swine were defined from the immunodominant NP. The 

identification of these epitopes facilitated progression of the study, as discussed in proceeding 

chapters, to quantify these cytotoxic T-cell responses in clinically relevant samples ex vivo and 

to perform structural analyses on the Babraham pig SLA-I molecules using IAV derived peptides. 
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5 Using Babraham pig peptide-SLA-I structures to 

define the primary MHC anchor residues 

 

5.1 Background  

Peptide, MHC-I heavy chain (extracellular domain) and β2m (light chain) can be refolded in vitro 

to produce soluble pMHC-I complexes for use in a range of experiments. pMHC-I complexes can 

be used in crystallisation screens to produce crystallised protein for analysis by X-ray diffraction. 

Diffraction data can be used to produce 3D structures of the proteins and their interactions. The 

Research Collaboratory for Structural Bioinformatics (RCSB) consortium operate a freely 

available online protein data bank (PDB) (available at http://www.rcsb.org/pdb) in which 

protein structures can be deposited. To date, just two pSLA-I structures have been deposited in 

the PDB (Zhang et al. 2011; Fan et al. 2016), PDB entries 3QQ3 and 5H94, compared to several 

hundred pHLA structures.  

 

As previously discussed, MHC-I molecules have a closed peptide binding groove (PBG) limiting 

the length of peptides that they can bind. The PBG consists of six distinct sub-sites which are 

referred to as pockets A, B, C, D, E and F (Saper et al. 1991). Pockets A and F are “closed off” 

resulting in a restriction in MHC-I-restricted peptide length, unlike that seen within the open-

ended MHC-II PBG. The MHC-I pockets are suited to binding different side-chains from the 

peptide residues and can determine which residues, and therefore which peptides, are tolerated 

by the protein product of any one MHC-I allele. Within a MHC-I bound peptide there will be 

residues called anchor positions that will be, as defined by Falk and colleagues, ‘’occupied by a 

fixed residue or by one of a few residues with closely related side-chains” (Falk et al. 1991). 

These residues sit within the PBG pockets and anchor the peptide to the MHC-I molecule. The 

binding motif of each anchor position is therefore determined by the pocket and what residues 

it can accommodate. These anchor motifs vary across different MHC-I alleles enabling each 

MHC-I protein to bind and present a different subset of peptides. A typical MHC-I binding motif 

may be written like so: [xLxxxxxxL/V]; where x signifies any amino acid and the capital letters 

define the residues that can be tolerated at primary MHC anchor positions using amino acid 

single letter code. Though not always the case, the primary anchor residues in MHC-I molecules 

are commonly found at position (P) 2 and P9 (or PC; carboxyl terminus) accommodated in 

pockets B and F respectively (Matsumura et al. 1992). Knowledge of the pocket composition of 

any given MHC-I and its peptide binding motif allows predictions to be made of which peptide 
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sequences it can bind. In turn, this knowledge can be used to predict CD8+ T-cell epitopes. I 

therefore set out to visualise the interaction between the four IAV epitopes identified in chapter 

4 and their respective SLA-I molecules to enable determination of which residues act as anchors 

between the peptide and the SLA-I molecule.  

 

5.2 Hypotheses 

I aimed to determine the structures of the newly identified IAV epitopes in this study in complex 

with the Babraham pig SLA-I molecules to enable definition of the key peptide residues that 

interact with the SLA-I so that I could subsequently define the SLA-I binding motifs (chapter 7).  

I also wished to produce soluble pSLA-I for pMHC multimer studies (chapter 6). Specifically, my 

hypotheses were: 

• The SLA-I restriction of each of the 4 NP epitopes, identified in chapter 4, can be 

determined by in vitro refolding with the Babraham pig SLA-I molecules.  

• Peptide-SLA complexes can be refolded in vitro, both unbiotinylated for crystal 

generation and biotinylated for construction of pSLA tetramers. 

• Structures can be resolved for the 4 NP epitopes in complex with their SLA-I.  

• Human β2m will be interchangeable with porcine β2m for in vitro refolding and 

structural analyses of pSLA-I.  

 

5.3 Results 

The inbred nature of the Babraham pig line means that all animals express identical MHC-I and 

MHC-II alleles. SLA-I typing, performed by the Pirbright Institute identified two SLA-I alleles in 

these animals; SLA-1*14:02 or SLA-2*11:04. The structures of these SLA-I molecules had not 

been resolved. To determine which of the two Babraham pig SLA-I molecules presented the four 

IAV epitopes I refolded them with β2m and the extracellular domain of either SLA-1*14:02 or 

SLA-2*11:04. Each SLA-I heavy chain produced a good refolded pSLA-I protein product with two 

of the four peptides, so I could be confident that DFEREGYSL and EFEDLTFLA are restricted 

by SLA-1*14:02 while IAYERMCNI and NGKWMRELI are restricted by SLA-2*11:04.  
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5.3.1 Manufacture of peptide-SLA-I (example) 

An example of the process used to produce pSLA-I complexes in this study is displayed in Figures 

5.1-5.3. Peptide-MHC complexes can be refolded in vitro using extracellular heavy chain and β2m 

expressed separately in E. coli as insoluble inclusion bodies (Parker et al. 1992). Only peptides 

capable of stably binding to the MHC-I molecule will lead to successful assembly of pMHC 

complexes in vitro by slow dilution of denaturing conditions using dialysis. Peptide-MHC 

complexes produced in this way are very stable and can be placed at 4 °C for short term storage 

or frozen in the long term. Initially the soluble protein must be produced in high enough 

quantities to facilitate in vitro refolding. Insoluble inclusion bodies produced in E. coli were 

isolated and washed by centrifugation and then dissolved in guanidine to denature them 

(Garboczi et al. 1992). Samples can be taken at difference stages throughout refolding and 

purification and monitored for composition by SDS-PAGE. Samples taken before and after IPTG-

induced expression of the protein chains and after washing are displayed in Figure 5.1. Clear 

protein bands can be seen for both SLA-1 and SLA-2 heavy chains (~35 kDa) increasing in 

intensity following purification.  

 

After protein expression and inclusion body clean up, SLA-I heavy chain was refolded with β2m 

and peptide by removal of the guanidine denaturant by dialysis. Refolded protein was purified 

by anion exchange (Figure 5.2A). Fractions containing individual peaks consisting of SLA and β2m 

by SDS-PAGE were combined (Figure 5.2B). At this stage pSLA-I molecules produced for pMHC 

multimer staining were labelled with biotin overnight. A gel filtration step was then used to 

further purify the pSLA complex by size and to remove any excess biotin from the biotinylated 

proteins (Figure 5.3). The fractions of refolded protein were combined and concentrated for 

storage. As seen in the anion exchange example in Figure 5.2A, some refolded proteins will be 

separated into two separate peaks. When two peaks are observed in anion exchange, the peaks 

are kept separate for subsequent purification steps but typically both will produce similar gel 

filtration results, as in Figure 5.3, (they could be combined at this stage) and usually both will be 

functional for use in pMHC multimer staining or crystallography studies. Anion exchange 

separates the refolded protein based on charge and perhaps the multiple peaks could be due to 

the accessibility of surface charge possibly affected by protein aggregation.  
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Figure 5.1. Representative 
data from inclusion body 
preparations of SLA-I heavy 
chains. 
Coomasie stained SDS-
PAGE on a pre-cast 10% 
Bis/Tris gel under reducing 
conditions of samples taken 
at different points during 
production of SLA-I protein 
chains. Samples from both 
Babraham pig SLA-I 
molecules and different 
inclusion body batches are 
displayed. Bands of SLA-I 
heavy chain (~35 kDa) are 
seen. 
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Figure 5.2. Representative data from anion exchange purification of in vitro refolded 
peptide-SLA-I. 
A) Anion exchange chromatograph of a 250 mL refold of SLA-2*11:04 and peptide 
NGKWMRELI run through a 8 mL POROS 50HQ column eluted with a salt gradient (0-500 
mM NaCl in 10 mM Tris pH 8.1). 54 fractions were collected as shown (labelled in red). 
Fractions used for sampling in (B) are indicated by dotted lines. B) Evaluation of protein 
quality of sample fractions using Coomassie stained SDS-PAGE on a pre-cast 10% Bis/Tris 
gel under reducing conditions. Lane 1: molecular weight ladder; Lane 2: blank; Lane 3-10: 
fractions as labelled. Bands of SLA-2 heavy (α) chain (~35 kDa) and β2m (~10 kDa) are seen.  
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Figure 5.3. Representative data from gel filtration purification of in vitro refolded 
peptide-SLA-I. 
A) Gel filtration chromatographs of pooled peaks 1 and 2 (from the anion exchange of a 250 
mL refold of SLA-2*11:04 and peptide NGKWMRELI) run through a Superdex S200 column 

eluted with PBS into 33 fractions (labelled in red). These proteins were biotin-tagged before 
this purification step. Fractions used for sampling in (B) are indicated by dotted lines. B) 
Evaluation of protein quality of sample fractions using Coomassie stained SDS-PAGE on a 
pre-cast 10% Bis/Tris gel under reducing conditions. Lane 1: molecular weight ladder; Lane 
2-10: fractions as labelled. Bands of SLA-2 heavy (α) chain (~35 kDa) and β2m (~10 kDa) are 
seen.  
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Soluble, unbiotiylated pSLA-I proteins were set up in crystal trials as described in the materials 

and methods (see section 2.5). The length of time for crystal formation varied greatly and took 

between 2 hours to >4 weeks to form. Crystals were harvested and taken to the Diamond Light 

Source (Oxfordshire, U.K.) for X-ray diffraction and data collection by either Dr. Pierre Rizkallah 

or Dr. David Cole. Crystals and good diffraction data were obtained for SLA-1*14:02-

DFEREGYSL, SLA-1*14:02-EFEDLTFLA and SLA-2*11:04-IAYERMCNI. I was unable to 

generate good data for SLA-2*11:04-NGKWMRELI. Data reduction and refinement statistics for 

the three pSLA-I structures were collated by Dr. Pierre Rizkallah and are shown in Table 5.1.  

Each structure is now discussed in turn. The images I have assembled into Figures 5.4-5.7 were 

designed in PyMOL by Dr. Pierre Rizkallah and Dr. David Cole.      
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Table 5.1. Data reduction and refinement statistics. 

Date 
collection/ 
reduction 
statistics  

DFEREGYSL 

Porcine β2m 

EFEDLTFLA 

Porcine β2m 

IAYERMCNI 

Porcine β2m 

DFEREGYSL 

Human β2m 

EFEDLTFLA 

Human β2m 

Wavelength 
(Å) 

0.9795 0.92819 0.92819 0.9795  0.9795 

Beamline DLS I04 DLS I04-1 DLS I04-1 DLS I02 DLS I04 

Space Group P 1 P 1 21 1 C 1 2 1  P 1 P1 

a (Å)   41.616 42.034 93.478  59.39 59.30 

b (Å) 46.340 128.29 80.843  60.29 59.70 

c (Å) 66.735 46.794 61.964  65.64 66.44 

a (°) 104.36 90.0 90.0 81.24 81.48 

b (°) 101.21 101.89 119.66  67.59 67.62 

g (°) 102.20  90.0 90.0 67.94 68.60 

Resolution 
Range (Å)
  

1.1 – 39.28 1.429 - 42.77
  

1.541 - 57.31 2.14 – 55.88 1.57 - 61.44 

Highest 
Resolution 
Shell 

1.1 – 1.13 1.429-1.47 1.541 – 1.62 2.14 – 2.20 1.57 – 1.61 

Total 
measurements 

323,722 
(19,334) 

325,172 
(20,495) 

219,987 
(32,873) 

79,873  
(5,623) 

202,004 
(14,602) 

Unique 
Reflections 

170,825 
(11,419) 

89,178 
(6,585)  

57,504 
(8,350)  

41,686  
(3,024) 

105,240 
(7,578) 

I/s 6.0 (1.1) 10.7 (1.4) 12.7 (2.2) 3.4 (1.7) 5.7 (1.3) 

Completeness 92.3 (83.1) 99.9 (99.7) 97.6 (97.2) 96.9 (96.0) 96.0 (93.3) 

Redundancy 1.9 (1.7)     

CC1/2 0.998 (0.596) 0.998 (0.568) 0.998 (0.778) 0.979 (0.522) 0.991 (0.514) 

Rmeas (%) 8.6 (178.9)
  

6.9 (107.0) 6.7 (76.4) 12.8(66.9) 6.0 (66.5) 

B(iso) from 
Wilson (Å2) 

10.6 12.0 19.3  18.9 23.1 

Refinement Statistics 

Non-H atoms 4,033 3,862  3,701 6,747 7,239 

R-factor (%) 19.1 18.6 19.1 22.0 21.6 

R-free (%) 21.2 21.4 25.1 28.3 26.1 

B-factor from 
refinement 

17.3 19.0 22.8 28.0 27.4 

rmsd bond 
lengths (Å) 

0.0196  0.0189  0.0187 0.0181 0.0188 

rmsd bond 
angles (°) 

2.111 
 

1.801 1.951 1.931 1.937 

ESU Max. 
Likelihood (Å) 

0.036 0.058 0.093 0.265 0.119 
 

Figures in brackets refer to the highest resolution shell 
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5.3.2 SLA-1*14:02 NP290-298 DFEREGYSL structure  

The structure of SLA-1*14:02 in complex with IAV epitope DFEREGYSL and porcine β2m was 

resolved by Dr. Pierre Rizkallah to 1.1 Å and is displayed in Figure 5.4. The structure fits the 

expected pSLA-I format and within the peptide sequence, different residues sit within or above 

the PBG (Figure 5.4A). Closer inspection shows that the amino acids at P2 (Phe) and P9 (Leu) in 

DFEREGYSL sit deep within the SLA-1*14:02 PBG in pockets B and F respectively and were thus 

determined to be the primary anchor residues for this SLA-I (Figure 5.4C&D). Residue Arg4 sits 

prominently above the PBG ready for TCR engagement.  

 

  

 

Figure 5.4. Structural overview of SLA-1*14:02 binding peptide (NP290-298) 
DFEREGYSL. 
A) A schematic representation of NP290-298 (peptide represented by blue sticks) bound by SLA-

1*14:02 (green) (α1, α2 and α3 domains) refolded with porcine β2m (grey). B) Final observed 
density map at 1.5 σ following refinement (displayed in grey surrounding the peptide). Positive 
and negative difference density is shown in green and red, respectively. C&D) Position of the 
NP290-298 peptide within the SLA-1*14:02 binding groove. Phe2 and Leu9 sit deep within the 

B and F pockets of the binding groove anchoring the peptide.  
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5.3.3 SLA-1*14:02 NP252-260 EFEDLTFLA structure 

The structure of SLA-1*14:02 in complex with IAV epitope EFEDLTFLA and porcine β2m was 

resolved by Dr. Pierre Rizkallah to 1.4 Å and is displayed in Figure 5.5. The amino acids at P2 

(Phe) and P9 (Ala) in EFEDLTFLA sit within the SLA-1*14:02 PBG in pockets B and F respectively 

(Figure 5.5C&D), as seen in the SLA-1*14:02 DFEREGYSL structure, and thus reiterates these 

residues as the primary anchors for this SLA-I. Residues Asp4 and Leu5 in EFEDLTFLA sit 

prominently above the PBG.  

 

 

Figure 5.5. Structural overview of SLA-1*14:02 binding peptide (NP252-260) EFEDLTFLA. 
A) A schematic representation of NP252-260 (peptide represented by orange sticks) bound by 

SLA-1*14:02 (green) (α1, α2 and α3 domains) refolded with porcine β2m (grey). B) Final 
observed density map at 1 σ following refinement (displayed in grey surrounding the peptide). 
Positive and negative difference density is shown in green and red, respectively. C&D) 
Position of the NP252-260 peptide within the SLA-1*14:02 binding groove. Phe2 and Ala9 sit 

within the B and F pockets of the binding groove anchoring the peptide. Double conformers 
have been omitted from each image except in panel B.  
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5.3.4 SLA-2*11:04 NP217-225 IAYERMCNI structure  

The structure of SLA-2*11:04 in complex with IAV epitope IAYERMCNI and porcine β2m was 

resolved by Dr. Pierre Rizkallah to 1.5 Å and is displayed in Figure 5.6. The amino acids at P2 

(Ala) and P9 (Ile) in IAYERMCNI sit within the SLA-2*11:04 PBG in pockets B and F respectively 

(Figure 5.6) and were thus determined as the primary anchor residues for this SLA-I. The amino 

acids at P3 (Tyr) and P5 (Met) also sit within the PBG but to a lesser extent, Figure 5.6C&D, and 

are likely acting as secondary anchor residues. Residues Arg5 and Asn8 in IAYERMCNI sit 

prominently above the PBG.  

 

 

Figure 5.6. Structural overview of SLA-2*11:04 binding peptide (NP217-225) IAYERMCNI. 
A) A schematic representation of NP217-225 (peptide represented by cyan sticks) bound by 

SLA-2*11:04 (gold) (α1, α2 and α3 domains), refolded with porcine β2m (grey). B) Final 
observed density map at 1 σ following refinement (displayed in grey surrounding the peptide). 
Positive and negative difference density is shown in green and red, respectively. C&D) 
Position of the NP217-225 peptide within the SLA-2*11:04 binding groove. Ala2 and Ile9 sit within 

the B and F pockets of the binding groove anchoring the peptide 
 

5.3.5 Use of porcine versus human β2m 

The structures of SLA-1*14:02 with peptides DFEREGYSL and EFEDLTFLA were also solved 

using human β2m to determine compatibility. These complexes successfully refolded in vitro 

with human β2m and produced crystals and diffraction data. The resolved structures are 
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compared to those produced with porcine β2m in Figure 5.7. Comparisons between the overall 

pSLA-I structures show no substantial difference between the structures using either β2m, with 

low Root-means-square deviations (RMSD) of 0.675 Å and 0.934 Å (Figure 5.7A&C). RMSD can 

be used to quantify the similarity between equivalent atoms in two structures. It is reliably used 

to compare different conformations of the same protein. In the case of identical protein 

structures the RMSD would be 0, increasing as identity decreases between the two structures 

(Carugo and Pongor 2001). The different species of β2m in each structure were also compared 

in isolation from the rest of the complex and again low RMSD of 0.604 Å and 0.609 Å were 

determined (Figures 5.7B&D).   

 

 

Figure 5.7. Comparison of SLA-1*14:02, with peptide DFEREGYSL and EFEDLTFLA, 
using either porcine or human β2m. 
The overall structure of SLA-1*14:02 binding peptide NP290-298 DFEREGYSL refolded with 

either porcine β2m (green and grey) or human β2m (purple). B) Porcine and human β2m from 
(A) compared only. C) The overall structure of SLA-1*14:02 binding peptide NP252-260 

EFEDLTFLA refolded with either porcine β2m (green and grey) or human β2m (orange). D) 

Porcine and human β2m from (C) compared only. Root-means-square (RMS) deviations are 
displayed for each comparison.  
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5.4 Discussion 

In this chapter, the four IAV epitopes that were identified in chapter 4 were refolded with the 

Babraham pig SLA-I molecules; SLA-1*14:02 and SLA-2*11:04 (which are 89% identical by 

protein sequence). This determined the SLA-I restrictions for these peptides; DFEREGYSL and 

EFEDLTFLA bound to SLA-1*14:02 while IAYERMCNI and NGKWMRELI bound to SLA-

2*11:04. Soluble pMHC-I complexes were then produced for all epitopes for use in pMHC 

multimer staining (chapter 6) and for the structural analyses presented in this chapter.  

 

High-resolution structures were generated for three of the four IAV epitopes, SLA-1*14:02-

DFEREGYSL, SLA-1*14:02-EFEDLTFLA and SLA-2*11:04-IAYERMCNI. This is the first deposition of 

an SLA-2 protein in the PDB. These structures allowed identification of the primary anchors for 

both Babraham pig SLA-I molecules.  The primary anchor positions in both SLA-1*14:02 and SLA-

2*11:04 are at P2 and P9 (C-terminus) in the peptide sequences. This matches a common 

primary anchor pattern across human MHC-I molecules with the residues sitting within pockets 

B and F respectively (Sidney et al. 2008). It is also consistent with previously published pSLA-I 

structures where P2 and the C-terminus can be seen sitting within the PBG in pockets B and F 

and acting as primary anchors for SLA-1*0401 (Zhang et al. 2011) and SLA-3*hs0202 (Fan et al. 

2016). Identification of the primary anchor residues for the Babraham pig SLA-I molecules was 

necessary for determining their allelic peptide binding motifs in chapter 7.     

 

Human and porcine β2m are 75% identical by protein sequence and a previous study 

demonstrated that both could support complex formation with either HLA-I and SLA-I (Pedersen 

et al. 2011). This was observed again in a further study that noted no difference between the 

use of human or porcine β2m in supporting complex formation with an SLA-2 allele (Pedersen et 

al. 2013). Studies that have utilised pMHC-I thus far for pMHC multimer staining have all used 

human β2m in these formulations, using “one-pot, mix-and-read peptide-MHC tetramers” 

(Leisner et al. 2008; Patch et al. 2011; Pedersen et al. 2014; Pedersen et al. 2016). Both porcine 

and human β2m were utilised throughout this study for pMHC multimer production. The existing 

SLA-I structures deposited in the PDB both comprise only porcine β2m (Zhang et al. 2011; Fan et 

al. 2016). This study describes the first structures deposited of SLA-I molecules complexed with 

human β2m. The substitution of porcine β2m for human β2m made no substantial difference to 

the overall peptide-SLA-1*14:02 structures presented in this chapter. The efficiency of refold 

yields were not compared across the two different β2m species within this project. Human β2m 

is usually used when refolding murine pMHC-I for use in pMHC multimer staining. Substitution 
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of murine β2m for the human molecule in murine pMHC-I improves binding to murine CD8 

(Purbhoo et al. 2001) and can result in better performing pMHC tetramers. Further 

investigations could be performed in the future to determine if similar effects can be observed 

in porcine pMHC multimer staining and if human β2m affords any other advantages in terms of 

protein yields.  
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6 Optimisation of pMHC tetramer staining for 

characterisation of IAV responses in pigs  

 

6.1 Background 

Antigen-specific T-cells can be detected using a combination of fluorochrome-conjugated 

multimeric pMHC and flow cytometry. The multiple binding sites of peptide-MHC multimers 

allow them to bind to T-cells with a far greater half-life than the equivalent individual monomers 

due to the avidity effect , thereby enabling cell staining (Wooldridge et al. 2009).  Since their first 

description in 1996, pMHC multimers have been utilised in many thousands of studies for 

detection of antigen-specific T-cells (Altman et al. 1996; Burrows et al. 2000).  The most popular 

approach for multimeric pMHC labelling has been the use of biotinylated pMHC bound to 

fluorochrome-conjugated streptavidin molecules to generate pMHC tetramers. This physical 

detection technology does not require cellular activation so it can be used directly ex vivo 

without being influenced by the activation status, or effector capability, of target antigen-

specific T-cell populations. pMHC multimers are compatible with T-cell phenotyping and can be 

incorporated into large polychromatic, or heavy metal labelled, antibody panels to generate 

phenotypic information in addition to defining antigen specificity.  

 

Observations by my laboratory have noted that standard pMHC tetramer staining protocols can 

fail to detect fully functional T-cells, indicating a disparity between the binding affinity threshold 

required for T-cell activation and pMHC tetramer engagement (Laugel, van den Berg, et al. 

2007). This means that in some cases antigen-specific T-cells have been severely under detected 

resulting in an underestimation of the T-cell response or, at worse, a failure to identify a specific 

clinically-relevant response altogether. This prompted my laboratory to pursue improvements 

in this technology and led to a number of highly cited studies that describe improvements to the 

sensitivity of pMHC multimer staining (Wooldridge et al. 2009; Dolton et al. 2015).  

 

The failure of pMHC tetramers to detect antigen-specific T-cells is most prominent when the 

TCRs display low affinity for their cognate pMHC. This is typically the case in T-cell responses to 

‘self’ antigens, such as anti-tumour and autoimmune responses, which can bear TCRs with 

substantially lower binding affinities than viral responses (Cole et al. 2007; Aleksic et al. 2012; 

Bridgeman et al. 2012). Furthermore, TCR-pMHC-II binding is also substantially weaker than that 

seen with pMHC-I (Cole et al. 2007; Bridgeman et al. 2012). In addition, the CD4 co-receptor 

does not aid stabilisation of TCR-MHC-II interactions (Crawford et al. 1998). The weaker binding 
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of MHC-II-restricted TCRs combines with the lack of co-receptor help to mean that CD4+ T-cells 

are generally more difficult to stain with pMHC tetramers than CD8+ T-cells. In contrast to CD4, 

the CD8 co-receptor, which binds to MHC-I, improves the on rate and dwell time of TCR-pMHC-

I interactions thereby impacting the binding of pMHC-I tetramers (Daniels and Jameson 2000; 

Wooldridge et al. 2005; Laugel, van den Berg, et al. 2007). Anti-CD8 antibodies have also been 

described as having either positive or negative effects on the capture rate of pMHC-I tetramers 

depending on the individual antibody clone (Clement et al. 2011). The inclusion of a particular 

clone of anti-CD8 antibody during staining enhanced the staining intensity of pMHC tetramers 

across interaction affinities and improved detection of low affinity T-cells (Clement et al. 2011). 

Our research group have also shown improvements in pMHC tetramer staining when carried out 

in the presence of a reversible protein kinase inhibitor (PKI) (Lissina et al. 2009). The main PKI 

we use is Dasatinib as its effects are reversible allowing cells to be cultured after staining and 

sorting (Lissina et al. 2009). The use of PKI prevents TCR internalisation facilitating increased 

capture of pMHC multimers by cell surface TCRs and increases fluorescence intensity and the 

number of T-cells detected with many pMHC multimers. The addition of PKI during pMHC 

multimer staining provides an important, simple and inexpensive improvement to the technique 

and is now routinely used in our laboratory for detection of CD4 T-cells and anti-tumour and 

autoimmune CD8 T-cells. The use of higher-order pMHC dextramers, which include more 

fluorescent molecules (ultra-bright) and pMHC monomers per multimer, also improves 

fluorescence staining intensity and the detection of T-cells bearing low affinity TCRs compared 

to pMHC tetramers (Dolton et al. 2014). All of the above techniques can be used in combination 

providing synergistic improvement in T-cell staining (Wooldridge et al. 2009; Dolton et al. 2015).         

 

Despite the protocol improvements to pMHC multimer staining of T-cells discussed above, at 

the start of this study there were still antigen-specific T-cell clones within our laboratory that 

could not be stained effectively with their cognate antigen in multimeric form - even as a 

dextramer. To address this problem, I investigated whether the use of anti-fluorochrome and 

secondary-conjugated Abs could improve pMHC multimer staining. This work was completed 

during my PhD and published (Tungatt et al. 2015) (see Appendix). I shall present some of these 

studies within this chapter to demonstrate that this method represents a further advancement 

for pMHC multimer staining of T-cells. I then applied these optimised staining protocols to detect 

IAV-specific porcine cytotoxic T-cells.     
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6.2 Hypotheses 

This chapter is broadly divided into two sections; the optimisation of pMHC multimer staining 

protocols (tested with human T-cells where the technology is well established) and their 

application for detecting clinically relevant porcine T-cells. The hypotheses were as follows:  

• The addition of anti-fluorochrome in combination with secondary-conjugated Abs will 

enhance the detection of antigen-specific human T-cells with pMHC multimers, by 

increasing the total number of fluorochrome molecules per labelled T-cell. 

• The optimal detection of T-cells by pMHC multimer staining requires appropriate techniques 

throughout the protocol. 

• Soluble peptide-SLA-I molecules (produced in chapter 5) assembled into pSLA tetramers will 

stain IAV-specific porcine T-cell clones.  

• Optimised pMHC multimer staining protocols developed in human T-cells will also be 

optimal on porcine T-cells.  

• Peptide-SLA tetramers can be used to assess the magnitude of IAV-specific cytotoxic T-cell 

responses in pigs ex vivo. 

• Peptide-SLA tetramers can be used to assess the magnitude of IAV-specific cytotoxic T-cell 

responses in BAL ex vivo from Babraham pigs vaccinated with S-FLU alone.   

 

6.3 Results 

6.3.1 Optimisation of pMHC multimer staining with anti-fluorochrome antibodies  

A new approach was applied to pMHC multimer staining to see if further improvements in 

human T-cell detection would allow the detection of antigen-specific clones we had in the 

laboratory that we were unable stain with cognate pMHC multimer. Two additional steps were 

added to our optimal protocol; a mouse anti-fluorochrome antibody to the corresponding 

fluorochrome on the pMHC multimer (1˚), followed by a goat anti-mouse Ig secondary antibody 

conjugated to this fluorochrome (2˚). A number of tests and controls were used in each 

experiment to ensure the specificity of any improvements afforded. T-cells were stained with 

pMHC multimer alone, with or without (+/-) the 1˚ Ab and +/- the 2˚ Ab (Figure 6.1). I aimed to 

directly compare the ‘test’ conditions (1 and 2 of Figure 6.1), alongside the controls to ensure 

any background staining was accounted for in analysis. The optimisation concept was that for 

each T-cell binding pMHC multimer, more fluorochromes would be added per T-cell hopefully 

improving its detection in flow cytometry.  
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Figure 6.1. Schematic representation of the test and control conditions used in this 
study. 
Alongside a standard pMHC multimer (tetramer or dextramer) staining protocol (test 1), the 
binding of a mouse anti-fluorochrome unconjugated 1˚ Ab to the pMHC multimer associated 
fluorochrome followed by a goat anti-mouse conjugated 2˚ Ab (test 2) was tested to see 
whether the fluorescence intensity of pMHC multimer staining could be improved. A number of 
controls were performed: control 1: pMHC multimer with 1˚ Ab; control 2: pMHC multimer with 
2˚ Ab; control 3: 1˚ Ab alone; control 4: 2˚ Ab alone; control 5: 1˚ and 2˚ Abs in combination; 
and control 6: unstained. The colour coding for tests 1 + 2 and controls 1 + 2 + 6 is used 
throughout the figures of this optimisation.  

 

 

To examine the use of 1˚ and 2˚ Abs, initial tests were performed with the ILA1 human CD8+ T-

cell clone, which recognises the HLA-A2 restricted ILAKFLHWL epitope from hTERT540-548 

(Purbhoo et al. 2007). This T-cell clone is a good model system for optimisation experiments for 

two key reasons. Firstly, this hTERT peptide is not naturally presented on tumour cells removing 

any complications from a natural ligand when staining. Secondly, this T-cell clone recognises 

several altered peptide ligands (APLs), including 8E, 4L, 5Y and 3G that bind to the ILA1 TCR with 

differing affinities from KD ~3 μM to KD ~2 mM by surface plasmon resonance but bind to the 

HLA-A2 equally (Laugel, van den Berg, et al. 2007; Laugel, Price, et al. 2007). The unprecedented 

range of agonist ligands in the ILA1 system, that differ in affinity by almost 1000-fold, allows 

variation in TCR-pMHC affinity while other variables such as surface densities of TCR, CD8 and 

pMHC antigen remain constant. The 4L ligand (KD ~117 µM) is representative of a weakly binding 

TCR ligand such as those typically associated with autoimmunity. This ligand was therefore 

utilised in initial experiments. When used on its own, the 4L pMHC tetramer barely stained the 

ILA1 T-cell clone (mean fluorescence intensity (MFI): 203), addition of 1˚ and 2˚ Abs alone 

enhanced MFI by ~20-fold and by >6-fold in the presence of PKI (Figure 6.1A). The use of 1˚ and 

2˚ Abs could therefore improve pMHC tetramer staining in the absence of PKI but also be used 

in combination with PKI synergistically. Crucially, and unexpectedly, these data revealed that the 

pMHC multimer

Unconjugated 1 Ab

2 1 21 3 4 5

Tests Controls 
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Key:

T cell
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use of 1˚ Ab alone could enhance tetramer staining in the absence of any additional 

fluorochromes when compared to tetramer alone (control 1 versus test 1 in Figure 6.1). The use 

of 1˚ Ab alone increased MFI >10-fold and almost 4-fold in the absence and presence of PKI 

respectively (Figure 6.2A). The realisation that the 1˚ Ab alone could have substantial effects on 

pMHC multimer staining ensured that the use of 1˚ Ab alone was also assessed in all proceeding 

experiments.  

 

ILA1 cells were spiked into HLA-A2+ PBMC and stained with pMHC tetramers made with the 

index peptide and four APLs: 8E, 5Y, 4L and 3G ± PKI and ± 1˚Ab (Figure 6.2B). The 3G ligand (KD 

= 2.9 µM) recovered T-cells in all conditions and was used to define 100% recovery. The use of 

1˚Ab or PKI alone were sufficient to obtain 100% recovery using 4L or wildtype tetramers, 

compared to 6% and 71% respectively with tetramer alone. However, for the 4L ligand it is 

important to note that the use of PKI and 1˚ Ab together substantially increased the MFI of 

recovered ILA1 cells. Complete recovery of the ILA1 clone at lower TCR affinities with 8E and 5Y 

ligands required the use of both 1˚ Ab and PKI in combination. This level of detection was not 

observed using 8E and 5Y tetramers alone where 0% and 0.1% recovery was seen respectively. 

The full recovery of ILA1 T-cells using the low affinity 8E tetramers was remarkable, as previous 

optimisations in the laboratory using PKI in combination with pMHC dextramers only afforded 

minimal detection of ILA1 cells when directly staining the clone and when the clone was spiked 

into PBMC samples (Dolton et al. 2014). I concluded that simple addition of 1˚ Ab to existing 

protocols extended the limit of TCR affinities detectable by pMHC multimer staining.  

 

Improvements to pMHC tetramer staining were also seen with 1˚ Ab ± 2˚ Ab on an autoimmune 

CD8 T-cell clone (grown from a type 1 diabetes patient and known to poorly bind tetramer) and 

an MHC-II restricted CD4 influenza-specific T-cell clone, whether using PE or APCy fluorochromes 

(Tungatt et al. 2015). The use of higher amounts of pMHC tetramer (up to 2.4 µg/test) did not 

enhance staining of an anti-tumour CD8 T-cell clone and 1˚ Ab ± 2˚ Ab was still required for 

detection. Furthermore, as little as 0.003 µg of pMHC tetramer per test (with respect to pMHC 

content) could be used in combination with 1˚ Ab ± 2˚ Ab to successfully detect viral T-cells in 

PBMC. The use of 1˚ and 2˚ Abs also dramatically improved detection of anti-tumour CD8 T-cell 

responses directly ex vivo in tumour infiltrating lymphocytes (TILs). My optimised protocol could 

also be used in combination with pMHC dextramers and PKI to further enhance staining of T-

cells bearing low affinity TCRs (Tungatt et al. 2015).  
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Figure 6.2. Enhanced pMHC tetramer staining of T-cells using an anti-fluorochrome 
unconjugated Ab (1˚). 
A) ILA1 hTERT-specific CD8+ T-cells ± 50 nM PKI were stained with HLA-A2 PE-conjugated 
tetramers, assembled with the 4L peptide (KD = 117 µM) or irrelevant (HLA-A2–ALWGPDPAAA, 

PPI) tetramers. Cells were stained with tetramers alone or with an anti-PE unconjugated 1˚ Ab, 
a 2˚ PE-conjugated Ab, or 1˚ + 2˚ Abs together. The mean fluorescent intensity is shown for 
each histogram. B) In a separate experiment, the ILA1 CD8+ clone was spiked in to PBMCs 
from an HLA-A2+ donor (used from frozen), treated ± PKI, and stained with PE-conjugated 
tetramers folded with cognate and APL agonists of the ILA1 clone (KD shown in parentheses) 

or irrelevant epitope (as in A). Tetramers were used alone or in combination with anti-PE 1˚ Ab. 
2˚ Ab was not used in this experiment to highlight the unexpected effect of 1˚ anti-fluorochrome 
Ab. The percentage recovery of gated cells is displayed in the inset and was determined relative 
to the proportion of cells that stained with the 3G variant (considered 100%) after subtracting 
any background seen with the PPI tetramer. Cells were gated on viable CD3+ CD14- CD19- 
cells. 
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TCR/CD3 complexes downregulate from the T-cell surface upon antigen engagement (Valitutti 

et al.), the resulting low TCR density makes successful pMHC multimer staining more difficult 

(Dolton et al. 2014). I therefore wished to assess whether the use of anti-flurochrome 1˚ Ab and 

fluorochrome-conjugated 2˚ Ab could enhance pMHC multimer staining of recently activated T-

cells. TILs from a metastatic melanoma patient were exposed to autologous tumour for 4 h and 

IFNγ response was detected by ICS alongside pMHC tetramer staining with a Melan-A peptide 

(Figure 6.3). The number of tetramer+ cells detected in TILs not exposed to tumour with 1˚ Ab 

and 2˚ Ab was defined as 100% recovery. In TILs exposed to tumour only 29%, 62% and 80% 

tetramer+ cells could be recovered using tetramer alone, + 1˚ Ab alone or with 2˚ Ab 

respectively. Similar effects were also observed on an autoimmune T-cell clone following antigen 

exposure. The use of the 1˚ and 2˚ Abs substantially improved detection and MFI of recently 

activated T-cells.  

 

 

 

Figure 6.3. Activated T-cells could be detected when tetramers were used with anti-
fluorochrome and secondary Abs. 
TILs from a HLA-A2+ metastatic melanoma patient were incubated with brefeldin A and 
monensin ± autologous tumour. Cells were stained with cognate HLA-A2–ELAGIGILTV 

(Melan A) or HLA-A2–ALWGPDPAAA (PPI) PE-conjugated tetramers (Tet) alone or further 

labelled with an anti-PE unconjugated 1˚ Ab ± PE conjugated 2˚ Ab. Cells were also stained 
intracellularly for IFNγ. Tetramer+ cells (red box) from the TILs with autologous tumour are 
expressed as a percentage (inset, top panel) of tetramer+ cells (Tet + 1˚ + 2˚ Abs) from the 
TILs alone after subtracting the number of gated cells seen with the PPI tetramer (bottom 
panel). 
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Finally, I wished to investigate the mechanism behind the dramatic enhancements observed in 

MFI and detection of pMHC multimer positive cells by inclusion of an unconjugated anti-

fluorochrome Ab. It was theorised that the 1˚ Ab was somehow stabilising the pMHC interaction 

or enhancing the emission of detectable fluorescence directly. It was shown that the 

enhancement occurred with all fluorochromes tested (PE, APCy and FITC) and also with different 

Ab clones making it unlikely that the increase in MFI was due to an effect on flurochrome 

detection. Instead, it seemed more likely that the 1˚ Ab was functioning by stabilising the pMHC 

multimer at the T-cell surface. To formally test this hypothesis, I stained an autoimmune CD8+ 

T-cell clone with tetramer ± PKI  ± 1˚ Ab ± 2˚ Ab and fixed samples with PFA after staining or after 

taking the samples through incubation and wash steps to stimulate a normal tetramer staining 

protocol (Figure 6.4A). The MFI of cells stained with tetramer alone was almost halved at the 

end of the protocol indicating the loss of bound pMHC tetramers but staining was entirely 

maintained by addition of 1˚ Ab. A similar pattern was seen when cells were diluted following 

staining and MFI measured at subsequent time points. In the absence of 1˚ Ab nearly half of the 

staining was lost in just 30 min (Figure 6.4B). A similar experiment measuring the off-rate of 

pMHC tetramer was performed in the presence of anti-HLA-A2 Ab to prevent re-binding of 

pMHC to TCR and exaggerate the effect of tetramer dissociation (Figures 6.4C&D). This 

experiment again showed substantial loss (almost 90%) of tetramer staining in the absence of 

1˚ Ab after 5 min. The use of 2˚ Ab in combination with 1˚ Ab afforded no additional 

improvements to stability in this set of experiments. It is likely that the anti-fluorochrome 

antibody exerts a cross-linking effect on the pMHC multimers decreasing the off-rate.  

 

The protocol improvements discussed here were further consolidated in a review article I co-

authored on pMHC multimer staining (Dolton et al. 2015) (see Appendix). The protocol we now 

use routinely for pMHC multimer studies is displayed in Figure 6.5. In addition to protocol 

optimisations, i.e. PKI and anti-fluorochrome Ab, it is also important to establish effective 

exclusion of dead cells and correct storage and use of reagents amongst other considerations. 

We find that PE is the best fluorochrome for use in pMHC multimer staining when compared to 

Brilliant-violet-421, APCy and FITC. My extensive pMHC staining optimisation work was all 

performed on human T-cells as the systems were in place in the laboratory for these types of 

experiments. Our previous experiments have shown that this optimisation works for CD8+ and 

CD4+ T-cells and for both human and murine T-cells.   I therefore made use of these optimised 

pMHC multimer protocols for the efficient detection of IAV-specific T-cells in samples from 

vaccinated Babraham pigs.   
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Figure 6.4. Stabilisation with an anti-fluorochrome Ab preserves tetramer staining at the 
surface of T-cells. 
A) The CD8+ T-cell clone 3F2 was treated PKI, or left untreated, and stained with cognate 
HLA-A2–ALWGPDPAAA (from preproinsulin) PE-conjugated tetramers or irrelevant HLA-A2–
NLVPMVTAV (from CMV) tetramers. Cells were stained with tetramer alone (grey) or tetramer 
with anti-PE unconjugated 1˚ Ab (red) ± a PE-conjugated secondary 2˚ Ab (blue). Once stained 
with tetramer ± 1˚ Ab ± 2˚ Ab (Start), the cells were taken through three incubations (20 min on 
ice) and associated wash steps (two times) before being analysed (Finish). The histogram 
shows the staining at the start of the assay. B) Clone 3F2 was treated with PKI and stained as 
in (A), then diluted in an excess volume of buffer (3 ml), and incubated at RT for the times 
shown. The histogram shows the staining at the start of the assay. C and D) From the same 
experiment in (B), cells were incubated at RT with an anti–HLA-A2 Ab (BB7.2) in 0.1 ml of 
buffer and samples taken at the times shown. Graphs display the percentage of tetramer 
staining relative to the start of the experiment for each condition (A– C) or the MFI (D). PKI was 
present throughout the assay for (B)–(D). 
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Figure 6.5. Protocol for staining PBMC with pMHC multimers. 
Staining is performed in 5 ml ‘FACS’ tubes. Our default protocol flow is shown by red 
arrows/text and involves using tetramer, PKI and 1˚ Ab. PKI is sometimes used without other 
tricks. Dextramers and/or 2˚ Ab are used when T-cells are particularly challenging to stain. The 
same protocol can be used for T-cell clones and lines. 

 

 

6.3.2 Porcine T-cell clone pMHC tetramer staining.  

The refolded pMHC-I monomers produced in chapter 5 were assembled into tetramers to 

confirm their ability to stain their respective T-cell clones. It was important to establish 

successful tetramer staining before proceeding to use these monomers to test optimised 

protocols for staining ex vivo porcine samples. Irrelevant tetramers (SLA-1*14:02 AFAAAAAAL, 

SLA-2*11:04 AGAAAAAAI and SLA-2*11:04 GAGGGGGGI) were also assembled and used as 

appropriate controls throughout these porcine studies. Influenza-specific CD8β T-cell clones 

were clearly detectable by pMHC tetramer staining (Figure 6.6). Importantly, this staining served 

to confirm both the peptide recognised and the restricting SLA-I molecule.  

* We assemble our pMHC multimers 
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Figure 6.6. Minimal epitope identification and pMHC tetramer staining of Influenza-
specific porcine T-cell clones. 
Minimal epitopes defined in chapter 4 were used to produce pMHC tetramers and stain their 
cognate T-cell clones. Cells were gated for size and viability; mean fluorescent intensities (of 
Tetramer-PE) are displayed inset. T-cell clones KT7.650, KTS.650, Sue.625 and KT22.625 
recognise the following epitopes; DFEREGYSL, EFEDLTFLA (both restricted by SLA-1*14:02) 

and IAYERMCNI and NGKWMRELI (both restricted by SLA-2*11:04). The following irrelevant 

tetramers were used: SLA-1*14:02 AFAAAAAAL and SLA-2*11:04 AGAAAAAAI.  
 

 

 

Figure 6.7. Gating strategy for pMHC tetramer staining of PBMC, BAL and TBLN 
samples. 
A representative sample is displayed. Cells were gated on size, singlets, viability, CD14-, 
CD3+, CD4+ and CD8β+. Data were then displayed as CD8β expression versus pMHC 
tetramer staining.   

 

 

EFEDLTFLA  

KT7.650 KLT.650 Bab.625 KT22.625

1195  

102  

31.3 

56.4  

389  

96.8  

84.9 

86.1 

454

35.3  

35.7 

38.8

1774

32.8  

31.9 

35

DFEREGYSL  
Irrelevant
FMO 

NGKWMRELI
IAYERMCNI

1030 104
0   

20  

60  

80  

40  

100  

1030 104 1030 104 1030 104

%
 o

f 
m

a
x
im

u
m

Tetramer (PE)

103

0

104

105

103

0

104

1030 104 105 1030 104 105

C
D

3
 (

P
e

C
y
7

)

C
D

8
β

(F
IT

C
)

F
S

C
-A

S
S

C
-A

FSC-A FSC-H

CD14 & Dead stain (PB) CD4 (AF647)

50K

0

100K

150K

200K

250K

50K

0

100K

150K

200K

250K

50K0 100K150K 200K 250K50K0 100K150K 200K 250K

1 2

3 4



99 
 

6.3.3 Gating strategy for PBMC, BAL and TBLN samples 

Before proceeding to staining ex vivo porcine samples, a gating strategy was established to 

provide optimal staining (Figure 6.7) and display data in a similar format to that used in human 

T-cell studies. One key difference was that γδ T-cells, which are found in substantially higher 

numbers in pigs than in humans, were excluded from the final display to improve staining clarity. 

Gamma Delta T-cells were not excluded directly as there was no conjugated γδ-TCR Ab readily 

available for use in pigs, therefore samples were gated on for both CD8β+ and CD4+. As 

extrathymic γδ T-cells are negative for CD8β and CD4 with some subsets expressing just the 

CD8α chain (Gerner et al. 2009).  

 

6.3.4 Comparison of optimised and traditional pMHC tetramer protocols in pig PBMC  

Initial testing on porcine PBMC samples was performed to establish whether the optimised 

pMHC multimer staining protocols discussed earlier in this chapter were effective for detecting 

porcine T-cells. Although the biggest improvements to pMHC multimer staining were detected 

for T-cells bearing lower affinity TCRs, not usually associated with viral responses, it was still 

important to establish whether use of optimised methods was beneficial in pigs. Optimisation 

was deemed particularly relevant as the pig samples in this study were isolated relatively 

recently after vaccination/boosting (day 13 post boost) and recently activated T-cells, as already 

discussed, are likely to have less TCR on their cell surface for capturing pMHC multimers. The 

addition of PKI and anti-fluorochrome Ab (optimised) improved the detection of porcine T-cells 

with pSLA-I tetramers compared to tetramer alone (Figure 6.8) for all four IAV epitopes in this 

study in PBMC samples from pigs #625 and #650. The largest increase in staining was in pig#625 

PBMC with SLA-2 IAYERMCNI tetramers detecting 0.046% and 0.18% of tetramer+ CD8β+ cells 

in the non-optimised and optimised protocol respectively. Overall enhancements varied across 

pigs and epitopes with the increase in tetramer+ cells ranging from ~1.2- to ~3.9-fold. These 

optimised conditions were therefore utilised for all subsequent tetramer staining. Further 

comparisons between staining protocols in different tissues was not pursued due to sample 

availability and the fact that use of PKI and anti-fluorochrome Ab was inexpensive and simple to 

apply in all subsequent experiments.   
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Figure 6.8. Comparison between pMHC Tetramer staining protocols with and without 
optimisation on pigs #625 and #650 PBMC. 
pMHC tetramer staining was performed on pigs #625 and #650 PBMC samples either with or 
without optimisation – the addition of protein kinase inhibitor (dasatinib) and anti-fluorochrome 
(anti-PE) antibody. The following tetramers were used: DFEREGYSL, EFEDLTFLA, 

IAYERMCNI and NGKWMRELI. A self eluted peptide derived from ferritin (EYLFDKHTL) was 

also tested. The percentage of tetramer+ cells of CD8β+ cells is displayed in red.  
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appropriate irrelevant tetramer for each SLA-I molecule. Antigen-specific CD8β T-cells were 

detectable in both pigs across all samples (Figures 6.9 and 6.10). In pig#625, SLA-1*14:02 

restricted DFEREGYSL and EFEDLTFLA responses accounted for 0.023% and 0.014% in PBMC, 

0.091% and 0.37% in BAL and 0.052% and 0.047% in TBLN of cytotoxic T-cells, respectively 

(Figure 6.9). Similar responses were seen in pig#650 but with a higher detection of DFEREGYSL 

in BAL comprising 0.92% of cytotoxic T-cells (Figure 6.10). Responses to SLA-2*11:04 restricted 

epitopes IAYERMCNI and NGKWMRELI were notably higher in magnitude in both pigs, and 

particularly large local responses were detected in BAL. In pig#625 T-cells specific for the 

NGKWMRELI epitope accounted for 0.047%, 3.02% and 0.086% of cytotoxic T-cells in PBMC, BAL 

and TBLN respectively (Figure 6.9). Similar NGKWMRELI responses were detected in pig#650 

with a higher percentage, 5.5%, present in BAL (Figure 6.10). The peptide IAYERMCNI was the 

immunodominant epitope across the three tissue samples and both pigs, except for in BAL from 

pig#650 but where IAYERMCNI still accounted for 4.63% of cytotoxic T-cells. IAYERMCNI 

responses comprised 0.1% and 0.13% in PBMC and 0.36% and 0.22% in TBLN, in pigs #625 and 

#650 respectively, of cytotoxic T-cells. The strongest response was detected in the BAL of 

pig#625 where 13% of the total cytotoxic T-cell population stained with SLA-2*11:04-

IAYERMCNI tetramer (Figure 6.9).    

 

6.3.6 Peptide-MHC tetramer staining of BAL samples from S-FLU vaccinated pigs 

It was important that responses in comparable unvaccinated pigs were also examined. This 

required analyses of samples from a different vaccination experiment where unvaccinated 

control animals were available. In this experiment two pigs (#1 and #2) were left unvaccinated 

and three pigs received H1-S-FLU alone (#6, #7 and #8). This also meant I could determine which 

IAV T-cell responses were induced solely by S-FLU vaccination (not in combination with 

inactivated virus). BAL samples taken upon culling at day 57 were stained with pSLA-I tetramers 

to detect IAV-specific responses (Figure 6.11). Both unvaccinated pigs showed no substantial 

responses above background to the four IAV epitopes (data from pig #1 is shown). A small 

response was observed to EFEDLTFLA through SLA1*14:02 across the vaccinated pigs (0.078 

– 0.17% of cytotoxic T-cells). In contrast, huge CD8β+ tetramer+ populations were seen in the 

BAL of the S-FLU vaccinated animals for the other three epitopes. The responses to 

DFEREGYSL, NGKWMRELI and IAYERMCNI ranged from 4.07-6.48%, 8.27-11.9% and 9.28-

24.8% of total cytotoxic T-cells in BAL, respectively. In vaccinated pig #7 almost 40% of all CD8β 

T-cells in the BAL responded to just these three NP epitopes. 
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Figure 6.9. Peptide-MHC Tetramer staining of PBMC, BAL and TBLN samples from 
inoculated Babraham Pig#625. 
Pig#625 received S-FLU intranasally and inactivated H1N1 virus 
[A/Swine/Spain/SF11131/2007] with montanide adjuvant intramuscularly, followed by a boost 
at day 25. Pigs were culled at day 38 (day 13 post boost) and PBMC, BAL and TBLN samples 
were harvested and frozen. Tetramer staining was performed on defrosted samples and the 
percentage of tetramer+ cells of CD8β+ (cytotoxic) cells is displayed in red. Tetramer staining 
of each pig and sample type were performed on different days. Irrelevant tetramers here refer 
to SLA-1 AFAAAAAAL, SLA-2 AGAAAAAAI (Pig #625) and SLA-2 GAGGGGGGI (Pig #650). 

Cells were gated on for size, viability, CD14-, CD3+, CD8β+ and CD4+.  
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Figure 6.10. Peptide-MHC Tetramer staining of PBMC, BAL and TBLN samples from 
inoculated Babraham Pig#650. 
Pig#650 received S-FLU intranasally and inactivated H1N1 virus 
[A/Swine/Spain/SF11131/2007] with montanide adjuvant intramuscularly, followed by a boost 
at day 25. Pigs were culled at day 38 (day 13 post boost) and PBMC, BAL and TBLN samples 
were harvested and frozen. Tetramer staining was performed on defrosted samples and the 
percentage of tetramer+ cells of CD8β+ (cytotoxic) cells is displayed in red. Tetramer staining 
of each pig and sample type were performed on different days. Irrelevant tetramers here refer 
to SLA-1 AFAAAAAAL, SLA-2 AGAAAAAAI (Pig #625) and SLA-2 GAGGGGGGI (Pig #650). 

Cells were gated on for size, viability, CD14-, CD3+, CD8β+ and CD4+.  
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Figure 6.11. Peptide-MHC Tetramer staining of BAL samples from Babraham pigs 
vaccinated with S-FLU. 
Babraham pigs were either left unvaccinated (Pigs #1 and 2) or received S-FLU [S-
eGFP/N1(Eng)].H1(Eng)] via aerosol administration (Pigs #6, 7 and 8). Vaccinated animals 
received S-FLU twice with a boost at day 28. Animals were culled and BAL harvested at day 
57. Tetramer staining was performed on defrosted BAL samples and the percentage of 
tetramer+ cells of CD8β+ (cytotoxic) cells is displayed in red. Both Pigs#1 and 2 exhibited 
similar tetramer staining so only Pig#1 is displayed here.  Tetramer staining of Pig#8 was 
performed on a different day to the others. Irrelevant tetramers here refer to SLA-1 
AFAAAAAAL and SLA-2 GAGGGGGGI. Cells were gated on for size, viability, CD14-, CD3+, 

CD8β+ and CD4+.  
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6.4 Discussion 

6.4.1 Peptide-MHC multimer staining optimisation 

The first focus of this chapter was on continuing work in our laboratory to improve pMHC 

multimer detection of antigen-specific T-cells. The threshold for pMHC multimer binding can be 

higher than that required for T-cell activation (Laugel et al., 2007). Improvements are particularly 

desirable where monomeric TCR-pMHC affinity is low preventing successful pMHC multimer 

binding. Weak T-cell interactions typically include those observed with anti-tumour and 

autoimmune responses and CD4/pMHC-II complexes (Cole et al., 2007; Aleksic et al., 2012). 

Enhancing detection of these T-cells will be beneficial across numerous, clinically relevant 

studies. Therefore, I conducted a comprehensive comparative study between the use of pMHC 

multimers alone and with existing improvements of PKI (Lissina et al., 2009) and dextramers 

(Dolton et al., 2014) and their use in combination with mouse anti-fluorochrome antibody (1˚ 

Ab) and goat anti-mouse Ig secondary antibody conjugated to the relevant fluorochrome (2˚ Ab). 

The concept being that the addition of more fluorochrome to each pMHC multimer labelled T-

cell would enhance overall detection levels by flow cytometry. This study was published (Tungatt 

et al., 2015) (see Appendix) and has been summarised in this chapter.  This part of my work also 

allowed me to learn the techniques of refolding pMHC and staining T-cells with pMHC multimers 

in the established human system before attempting to apply these techniques to pigs. 

 

Along with the expected improvement in pMHC multimer staining when 1˚ Ab and 2˚ Ab were 

used in combination, I also observed an unanticipated improvement in staining when using just 

the 1˚ Ab alone. The low affinity ligand 4L barely stains the ILA1 T-cell clone as a tetramer but 

staining in the presence of 1˚ Ab ± PKI the MFI was substantially improved. The ILA1 T-cell clone 

was also spiked into HLA-A2+ PBMC to demonstrate this optimisation across different TCR-

pMHC affinities in polyclonal T-cell populations. The recovery of ILA1 T-cells from HLA-A2+ PBMC 

with lower affinity ligands was substantially higher in the presence of 1˚ Ab alone and further 

enhanced with the addition of PKI. Our previous studies had been unable to detect the ILA1 

clone with multimers of the 8E ligand so this result demonstrates the ability of 1˚ Ab and PKI in 

combination to extend the range of TCR affinities amenable to detection. For the higher affinity 

ligands, the 1˚ Ab is somewhat redundant for increasing the percentage of tetramer+ cells 

detected but it substantially improved MFI. The increases in MFI observed across comparisons 

in this study allowed clearer distinction of antigen-specific T-cells which can facilitate clearer 

analysis and clearer cell sorting by flow cytometry.  
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The use of 1˚ Ab and 2˚ Ab was tested across multiple systems and shown to be universally 

effective, including when tested on autoimmune and anti-tumour T-cell clones, pMHC-II 

restricted T-cell clones and clinically relevant TIL samples. This method can facilitate the 

detection of previously undetectable anti-tumour T-cells in TILs and could identify cell 

populations bearing different TCRs. Indeed an ongoing project within our laboratory has 

demonstrated that standard pMHC multimer staining fails to detect many fully functional T-cell 

clonotypes from clinically relevant samples. Surprisingly, this failure in detection can be 

considerable even with viral antigens suggesting that most previous studies using pMHC may 

have considerably underestimated the size of antigen-specific T-cell populations (Rius et al. 

unpublished). The use of 1˚ Ab and 2˚ Ab was compatible with use of PKI and pMHC dextramers; 

allowing researchers to adjust their combination of techniques to obtain optimal staining in their 

samples. I also showed that enhancements were independent of the amount of pMHC tetramer 

used, as even high amounts of tetramer failed to detect an anti-tumour T-cell clone that could 

be effectively stained in the presence of anti-fluorochrome antibody. Furthermore the use of 1˚ 

Ab ± 2˚ Ab enabled considerably less pMHC reagent to be used representing a considerable cost 

benefit (Tungatt et al., 2015). The detection of recently activated T-cells was also markedly 

improved by the addition of 1˚ Ab ± 2˚ Ab. The improved detection of recently activated T-cells 

is likely to be of benefit during ex vivo examination of autoimmune or cancer-specific T-cells 

where there is a high likelihood that such T-cells may have recently encountered cognate 

antigen.  

 

The improvements afforded by the use of the 1˚ and 2˚ Abs were observed across all 

fluorochromes (PE, APCy and FITC) and different Ab clones tested. Experiments investigating the 

off-rate of pMHC tetramers indicated that the 1˚ Ab facilitates cross-linking of pMHC multimer 

on the T-cell surface substantially reducing the dissociation rate. This stabilisation effect may 

prove even more crucial when using more complex and lengthy staining protocols, such as ICS, 

during which there is ample opportunity for pMHC multimer dissociation from the T-cell surface. 

Overall, these data show that the use of anti-fluorochrome 1˚ Ab as well as 2˚ Ab offer 

considerable improvements over the current pMHC multimer tetramer technology particularly 

when investigating T-cells raised against low affinity TCR interactions. Although the inclusion of 

both Abs gave the best results, our laboratory now routinely uses just the 1˚ Ab in combination 

with PKI in pMHC tetramer staining. This removes the risk of increased background staining that 

can occur when using fluorochrome-conjugated 2˚ Abs. In addition, the use of only the 1˚ Ab 

provides the vast majority of the enhancement at very little cost (~GBP £0.16 per stain). It 

remains to be seen whether the optimised techniques discussed here used in combination are 
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capable of staining all antigen-specific T-cells within a sample, but the major improvements they 

afford, their low cost and ease of application suggest that these improvements should be applied 

routinely. 

 

6.4.2 Peptide-MHC tetramer staining of porcine IAV-specific T-cells  

The use of pMHC multimers, most frequently in the form of tetramers, for detecting antigen-

specific T-cells has become commonplace in human and mouse studies since their initial 

description over 20 years ago (Altman et al. 1996). However, pMHC multimer staining in pigs 

has lagged far behind that in human and mouse due to a lack of relevant epitopes and soluble 

pSLA reagents. Since the first description of pSLA tetramers in 2011 (Patch et al. 2011) there 

have only been three further studies utilising these tools for detecting FMDV or Influenza-

specific cytotoxic T-cells in PBMC samples only (Pedersen et al. 2014; Pedersen et al. 2016; 

Baratelli et al. 2017). Previous studies have not had the luxury of having T-cell lines and clones 

with which to optimise T-cell staining protocols.  

 

The porcine T-cell clones procured in chapter 4 were stained with pMHC tetramer. This 

confirmed the ability of the pSLA-I tetramers to successfully stain their respective T-cell clones 

before advancing to ex vivo samples. New batches of pMHC complexes refolded within our 

laboratory are regularly tested in this way before widespread use in experiments. Irrelevant 

tetramers, using preferred residues at P2 and P9 with the remaining residues lacking side chains, 

were also designed for this study and confirmed not to stain in an unspecific manner. Previous 

studies using pSLA tetramers in pigs have utilised less stringent gating strategies than those 

described in this thesis. I aimed to apply the best strategies, reviewed in (Dolton et al. 2015), 

including effective exclusion of dead cells and CD14+ monocytes and neutrophils. Future panels 

could also look to include a marker to exclude B-cells, such as CD19 which is used when staining 

human T-cells. The antibody panel can also easily be extended to include further antibodies for 

phenotyping or effector functions. I used the CD8β Ab to distinguish porcine cytotoxic T-cells 

more clearly than the assessment of CD8αhigh CD4- populations which has traditionally been used 

in porcine studies. Our pSLA-I tetramers and stringent gating strategy provided clear and clean 

staining across samples with limited background and without unspecific binding to CD4+ T-cell 

populations.    

 

Initial experiments on PBMC samples from pigs#625 and #650 confirmed that the optimised 

staining techniques developed in humans T-cells were applicable in porcine samples too. The 
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addition of PKI and anti-fluorochrome Ab increased the percentage of antigen specific T-cells 

detected in pigs without altering background staining. Consequently, the application of these 

simple protocol additions are recommended for porcine pSLA multimer studies to enable clearer 

staining and better T-cell detection. Enhancing T-cell detection with pSLA multimers was 

particularly relevant in my studies as samples were taken at day 13 post antigen boosting when 

T-cells were likely to be relatively activated and express low levels of surface T-cell receptor 

making then more difficult to detect by conventional staining techniques. Both PKI and 1˚ Ab 

were used in all subsequent pSLA-I tetramer staining in this study.  

 

A comprehensive ex vivo pSLA-I tetramer stain was performed on PBMC, BAL and TBLN samples 

from pigs #625 and #650. This cohort of pigs, utilised for IAV epitope identification in chapter 4, 

were inoculated with both S-FLU and inactivated H1N1 Sw/Sp virus. All four of the NP epitopes 

(DFEREGYSL, EFEDLTFLA, IAYERMCNI and NGKWMRELI) could be detected in the PBMC, 

BAL and TBLN of pigs #625 and #650 providing clear validation of their presence following 

vaccination by H5-S-FLU and inactivated H1N1. T-cells specific for SLA-2*11:04 restricted 

epitopes IAYERMCNI and NGKWMRELI were more prevalent than those seen for the SLA-

1*14:02-restricted epitopes DFEREGYSL and EFEDLTFLA. This suggests that IAV responses 

through SLA-2*11:04 are immunodominant in the Babraham pig line. As expected, the highest 

pSLA tetramer staining was seen in the BAL samples. This is in line with a previous study that 

infected outbred pigs intratracheally with H1N2 SwIV and detected virus specific IFN-γ+ CD8β+ 

T-cells in the lung (by ICS following in vitro restimulation of freshly isolated cells with H1N1 SwIV) 

in frequencies up to 30 times higher than that seen in PBMC and TBLN following infection (Talker 

et al. 2016). In pig#625, T-cells specific for IAYERMCNI accounted for 13% of cytotoxic T-cells 

in the BAL. In total around 16.5% and 11.2% of all cytotoxic T-cells in the BAL of pigs #625 and 

#650, respectively, respond to these four IAV epitopes. This high magnitude of local response 

was also replicated in the BAL from pigs vaccinated with S-FLU alone by aerosol. In this second 

cohort, a staggering percentage, ranging from 21.8 to almost 40%, of all CD8β T-cells in the BAL 

were specific for just these four IAV epitopes. This second cohort of pigs was particularly useful 

as it demonstrated that large T-cell responses to three of the four NP epitopes identified, 

DFEREGYSL, IAYERMCNI and NGKWMRELI, were induced by vaccination with S-FLU alone 

and were not already present in two unvaccinated pigs. Responses of this level in the BAL are 

highly likely to play a role in any protection mediated by this vaccine.  
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The use of pSLA-I multimers will allow the enumeration, phenotyping and isolation of T-cell 

responses to influenza and other diseases. Further viral challenge studies will be required to 

further investigate the T-cells capable of responding to the IAV epitopes identified in this study. 

Both phenotypical and functional analyses will need to be performed and it remains to be 

determined if these responses offer any correlates of protection following S-FLU vaccination. 

These technologies could be implemented to measure T-cell responses to different vaccination 

strategies and track their presence over the long-term in the Babraham pig model. The pSLA 

tetramer staining protocol described in this chapter could be utilised to provide robust detection 

of porcine antigen-specific T-cells in future studies.     
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7 Defining SLA-I Anchor motifs for epitope prediction 

and the generation of super-agonist peptides for 

defined epitopes 

 

7.1 Background 

As discussed in chapter 5, in any given peptide-MHC complex there are certain peptide residues 

that will sit within the peptide binding groove (PBG) and act as primary anchors for adhering the 

peptide to the MHC molecule. Different MHC alleles will have different PBG pocket compositions 

and this determines which peptides can be accommodated. Indeed, the huge polymorphism in 

the HLA is focussed around the PBG primary anchor positions and allows different HLA to 

present different peptides. (Hughes et al. 1990; Parham and Ohta 1996; Sette and Sidney 1998). 

The different amino acids that can be tolerated at each anchor residue are used to formulate 

the peptide binding motif for a particular MHC molecule. Peptide binding motifs can then be 

used to scan known proteins or sequences for peptides matching an MHC binding motif. 

Determination of the Babraham pig SLA-I binding motifs will facilitate further IAV CD8β T-cell 

epitope prediction across different viral proteins and strains.  

 

7.2 Hypotheses 

The primary anchor positions in both SLA-1*14:02 and SLA-2*11:04 were determined as P2 and 

P9 (C-terminus) (Chapter 5) in the peptide. I wished to determine which amino acid residues 

could be tolerated at these anchor positions and formulate the peptide binding motif for each 

Babraham pig SLA-I molecule. The binding motifs could then be tested for T-cell epitope 

identification across different influenza viral proteins. In the second half of this chapter, work 

was commenced to generate super-agonists of the IAV epitopes defined in this study (chapter 

4). The concept behind these experiments shall be discussed in the relevant results section. The 

chapter hypotheses are listed below: 

Part 1: 

• Only certain amino acid residues will be tolerated at the anchor positions by a certain 

Babraham pig SLA-I molecule allowing the definition of peptide binding motifs. 

• Peptide binding motifs can predict clinically relevant epitopes across different 

influenza viral proteins. 
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Part 2: 

• Nonamer combinatorial peptide library (CPL) screens on IAV porcine CD8β T-cell clones 

will identify super-agonist peptides. 

• Super-agonist peptides will induce greater responses in SwIV porcine CD8β T-cell 

clones than the corresponding index peptide sequences.    

 

7.3 Results 

7.3.1 Determination of peptide binding motifs for Babraham pig SLA-I molecules  

The primary anchor residues for both Babraham pig SLA-I molecules are at P2 and P9 (C-

terminus) within the peptide. To determine the peptide binding motif for each SLA-I, I examined 

which of the 20 proteogenic amino acids could be tolerated in these anchor positions by amino 

acid substitution in all four new SwIV epitopes described in chapter 4. Relevant porcine CD8β T-

cell clones were incubated with these peptide mutations and the wildtype ‘index’ peptides 

overnight and MIP-1β release was measured (Figure 7.1). For SLA-1*14:02, clone KT4.650 saw 

the index amino acid at P2 in DFEREGYSL, Phe2, strongest with 3.61 ng/mL MIP-1β released 

however it also tolerated Ala, Met and Tyr at P2 with the latter being the second preference 

(Figure 7.1A). This clone also preferred the index amino acid at P9, Leu2, but also tolerated Phe 

and Met well and Ile and Val to a lesser extent at P9 (Figure 7.1B). CD8β T-cell clone KLT.650 

gave a stronger response to Trp than to its index anchor 2, Phe (Figure 7.1A) inducing 1.07 and 

0.611 ng/mL MIP-1β release respectively. Phe, Ile, Leu and Met were tolerated at P9 by this 

clone and preferred to the index amino acid, Ala (Figure 7.1B). These data for SLA-1*14:02 were 

collated to give a proposed binding motif as displayed in Figure 7.1C; 

[xF/Y/W/M/AxxxxxxL/F/M/I/A/V].  

 

 

 

 



112 
 

 

Figure 7.1. Peptide-MHC anchor residue preference and proposed binding motifs for 
SLA-1*14:02 and SLA-2*11:04. 
Influenza-specific cytotoxic T-cells clones were incubated overnight with their index peptide 
and altered peptides covering all possible amino acids at anchor 2 (A) and anchor 9 (B) for 
both SLA-1 and SLA-2 restricted epitopes. T-cell clones were incubated with different titrations 

of the peptides and data at 10
-7

 M and 10
-8

 M are displayed for SLA-1 and SLA-2 respectively. 
All conditions were performed in duplicate and MIP-1β release was detected by ELISA and is 
displayed as mean + SEM. Results below 0.5 ng/mL have been omitted for clarity. T-cell clones 
KT4.650, KLT.650, KT22.625 and Bab.625 respond to the following index peptides 
respectively; DFEREGYSL, EFEDLTFLA, NGKWMRELI and IAYERMCNI. * denotes the index 

amino acid for each clone. (C) Binding pocket composition and proposed binding motif for SLA-
1*14:02 and SLA-2*11:04 determined from the data in panels A&B. SLA-1*14:02 (green) with 
EFEDLTFLA (orange sticks) and SLA-2*11:04 (yellow) with IAYERMCNI (cyan sticks). Double 

conformers have been removed for visual clarity. B pocket is shown in red and the F pocket in 
pink.    
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For SLA-2*11:04, T-cell clones KT22.625 and Bab.625 displayed a preference for their index 

amino acid at P2 but other residues were also tolerated well (Figure 7.1A). The index residue at 

P2, Gly, for clone KT22.625 induced 7.29 ng/mL MIP-1β. Two other residues, Ala and Ser, also 

induced strong responses releasing 6.52 and 6.13 ng/mL MIP-1β respectively. Thr and Val at P2 

were tolerated but to a much lesser degree. In contrast, Bab.625 tolerated strongly residues Thr 

and Val and was also able to tolerate Asn at P2 unlike clone KT22.625. The residue tolerance at 

the P9 anchor was more limited for the SLA-2*11:04-restricted clones.  Both clones saw peptides 

with their P9 index residue, Ile, strongly but additionally responded to peptides with Val and Leu 

in this position (Figure 7.1B). The SLA-2*11:04 data were collated to give a proposed binding 

motif of [xG/S/A/T/N/V/KxxxxxxI/V/L] as displayed in Figure 7.1C. Application of pocket 

assignment as used in human MHC molecules (Matsumura et al. 1992) showed that for both SLA 

molecules P2 and P9 of the peptide sit within B and F pockets respectively (Figure 7.1C). Pockets 

B and F in SLA-1*14:02 are large and deep whereas the pockets are shallower in SLA-2*11:04.  

 

7.3.2 Using SLA-I binding motifs for IAV epitope prediction 

The binding motifs for the Babraham pig SLA-I molecules can be used to scan any protein 

sequence for 9 amino acid length peptides that contain the anchor residue preferences. I 

therefore wished to preliminary test whether these SLA-I binding motifs determined above 

could predict other IAV epitopes. The conserved Influenza protein PB2 was scanned with the 

SLA-2*11:04 motif using ‘Motif Scan’ available at www.hiv.lanl.gov. This generated 81 predicted 

epitopes for PB2 (Table 10.7). These peptides were initially incubated with vaccinated pig#650 

PBMC samples ex vivo and IFNγ release was measured by ELISpot alongside the validated SLA-

2*11:04 restricted epitope, IAYERMCNI, as a positive control (Figure 7.2). As expected, the 

percentage of IAV-specific T-cells in PBMC was low (as seen in pMHC tetramer staining in chapter 

6) and background noise in the assays was high. Even the immunodominant IAYERMCNI 

peptide only gave ~20 spots per 300,000 PBMC in IFNγ ELISPOT with background being >5 spots. 

 

The higher level of detection of IAV-specific T-cells by pMHC tetramer staining in BAL (chapter 

6) meant that screening with such samples would have been preferable. Unfortunately, BAL 

samples were limited and this prevented all the PB2 predicted peptides from being screened 

using BAL.  Therefore, I selected six peptides that gave 10 or more spots in PBMC screening 

(Figure 7.2); sequences RNGPMTNTV, GGEVKNDDV, QNPTEEQAV, VVVSIDRFL, NKATKRLTV 

and GTAGVESAV; to screen in the remaining pig#650 BAL samples. This identified peptide 

NKATKRLTV as a genuine epitope (Figure 7.3) with around 10 IFNγ SFCs per 150,000 BAL cells. 
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The peptide IAYERMCNI was again used a positive control and produced nearly 60 IFNγ SFCs 

per 150,000 BAL cells. Both PBMC and BAL samples responded, as expected, to the H1-S-FLU 

and the inactivated H1N1 Sw/Sp virus but also released IFNγ when incubated with another H1N1 

strain; A/Sw/Eng/1353/09 virus. Ideally the new PB2 epitope, NKATKRLTV, needs further 

verification including pMHC tetramer staining. The NKATKRLTV peptide was refolded to 

produce pSLA-I tetramers but in an initial experiment I was unable to detect tetramer+ cells 

within BAL or PBMC samples from pigs#650. Project time restraints prevented producing new 

batches of pSLA-I monomer and pursuing this further. A recent experiment by a collaborator, 

Emily Porter, in Bristol has infected a new cohort of Babraham pigs intranasally with H1N1 

[A/sw/Eng/1353/09]. The plan is to collect a large amount of BAL from these pigs. These samples 

will be used for testing the epitope predictions made herein. In addition, these pigs will allow 

screening of what T-cell responses Babraham pigs make to infection with IAV.  

 

 

 

Figure 7.2. Responses to epitope predictions in Pig#650 PBMC. 

Approximately 300,000 PBMC from Pig#650 were incubated per well for 16-18 h with 10
-5

M 
peptide or with relevant controls. All conditions were performed in duplicate and spot forming 
cells (SFC) by IFNγ release were detected by ELISpot and are displayed as mean ± SEM. The 
following epitopes (displayed in red) were selected for further testing: RNGPMTNTV, 

GGEVKNDDV, QNPTEEQAV, VVVSIDRFL, NKATKRLTV and GTAGVESAV. The previously 

validated epitope, IAYERMCNI (displayed in green) was used a positive control. Viral positive 

controls are shown in grey and on the right y axis.  
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Figure 7.3. Responses to PB2 epitope predictions in BAL from Pig#650. 

150,000 BAL cells from Pig#650 were incubated per well for 16-18 h with 10
-5

M peptide or 
with relevant controls. All conditions were performed in duplicate and spot forming cells (SFC) 
by IFNγ release were detected by ELISpot and are displayed as mean ± SEM. Previously 
validated epitope IAYERMCNI was used as a positive control.  

 

 

7.3.3 Determining essential residues in IAV epitopes by alanine substitutions 

To begin to investigate what peptide residues in the defined IAV epitopes may be essential for 

TCR interactions as well as MHC binding, each residue was substituted for Alanine one at a time. 

These experiments were performed with the following IAV epitopes, DFEREGYSL, 

EFEDLTFLA and NGKWMRELI, and their respective T-cell clones were used to detect sensitivity 

to each peptide substitution (Figure 7.4). T-cell clones KT13.650 and KT22.625 recognise the 

SLA-2*11:04 restricted peptide NGKWMRELI and despite expressing different TCRs both 

displayed similar responses to the alanine substituted peptides (Figure 7.4A). Alanine 

substitutions at P3, P4, P6, P8 and P9 were not tolerated by either clone. Alanine being tolerated 

at P2 but not P9 fits with the SLA-2*11:04 binding motif determined in Figure 7.1.  

 

CD8β T-cell clone KT7.650 recognises the SLA-1*14:02 restricted peptide DFEREGYSL and did 

not tolerate alanine substitutions at P4, P5, P7 and P9 and displayed highest sensitivity to the 

index peptide (Figure 7.4B). The pSLA-I structure of this epitope resolved in chapter 5 showed 

Arg at P4 sitting prominently above the PBG suggesting it may be involved in TCR engagement 
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therefore mutation of this residue to alanine could prevent interaction with cognate TCRs. The 

SLA-1*14:02 binding motif tolerates alanine at both P2 and P9, however at P9 alanine may not 

be the preferred residue across all epitopes, as clone KT7.650 did not tolerate the P9 alanine 

substitution (Figure 7.4B) as also shown by its sister clone (same TCR clonotype) KT4.650 in 

Figure 7.1B.  

 

CD8β T-cell clone KLT.650 recognises the SLA-1*14:02 restricted peptide EFEDLTFLA and did 

not tolerate alanine substitutions at any peptide residue except at P2 (Figure 7.4C). The pSLA-I 

structure of this epitope resolved in chapter 5 showed Asp at P4 and Leu at P5 sit prominently 

above the PBG suggesting they may be involved in TCR engagement therefore their mutation to 

alanine could prevent interaction with cognate TCRs.  

 

7.3.4 Generation of super-agonist peptides – background  

The adaptive immune response must be capable of recognising all possible foreign pathogens 

and therefore T-cells must be able to recognise a plethora of peptide-MHC complexes. For this 

breadth of immune coverage to be possible within an individual’s T-cell pool, TCRs must be 

cross-reactive and capable of recognising numerous different peptides (Mason 1998; Sewell 

2012b). Indeed, our research group has previously shown that individual T-cell clones can 

recognise vast numbers of different peptides in the context of a single MHC molecule 

(Wooldridge et al. 2012). A single TCR, isolated from a type 1 diabetes patient that recognises a 

preproinsulin-derived peptide in the context of HLA-A2, is capable of recognising > 1 million 

different decamer peptides (Wooldridge et al. 2012). The inherent cross-reactivity of TCRs make 

it unlikely that the cognate natural ligand will be optimal, and opens the possibility that more 

potent ligands could be identified (Sewell 2012b). Improvements to immunogenicity using 

optimised peptide ligands, also referred to as super-agonist peptides, are of particular interest 

for peptide-based vaccines.  
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Figure 7.4. Responses of porcine cytotoxic T-cell clones to alanine substituted IAV 
epitopes. 
CD8β+

 
T-cell clones (as labelled) were incubated with their respective index peptide, (A) 

NGKWMRELI, (B) DFEREGYSL, (C) EFEDLTFLA and single residue alanine substitutions 

for 16-18 h. MIP-1β release was detected by ELISA. Data were performed in duplicate and 
are displayed as mean ± SEM minus background (T-cells alone). T-cell clones KT13.650, 
KT22.625, KT7.650 and KLT.650 were plated at ~9000, ~24,000, ~7000 and ~5600 per 96U 
well respectively. Peptide sequences are colour coded and displayed inset. Sequences in 
black induced low or no response.  
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A super-agonist can be formed from the cognate natural peptide, also referred to as the index 

peptide, by substituting certain amino acid residues within the peptide sequence to improve T-

cell sensitivity.  These substituted peptides are also known as altered peptide ligands (APLs) 

(Sloan-Lancaster and Allen 1995; Kersh and Allen 1996). Positional-scanning combinatorial 

peptide libraries (PS-CPL) provide one technique for identifying APLs for individual T-cell clones 

and quantifying residue preference. PS-CPLs contain a number of peptide mixes each with a 

fixed amino acid at one peptide residue with the remaining residues comprising any of the 

proteogenic amino acids (excluding cysteine). PS-CPLs have been used in several studies that 

have identified more potent immunogenic peptides using this technique (Pentier et al. 2013). 

Previous studies by our group that have demonstrated improvements in TCR/pMHC binding 

affinity and functional improvements in anti-tumour and autoimmune T-cell responses using 

APLs identified by PS-CPL (Ekeruche-Makinde et al. 2012; Wooldridge et al. 2012; Ekeruche-

Makinde et al. 2013). It is important to ensure the correct peptide length is used for a particular 

TCR to ensure optimal agonists are identified by PS-CPL as MHC-I TCRs are known to show a 

peptide length preference (Ekeruche-Makinde et al. 2013). The optimisation of T-cell epitopes 

is not just limited to self-derived peptides, where typically one would presume there is the 

greatest room for improvement, but has also been demonstrated for viral epitopes (Pentier et 

al. 2013). La Rosa and colleagues demonstrated that APLs, identified using a nonamer PS-CPL, 

derived from an immunodominant human cytomegalovirus epitope, were 1,000 to 10,000-fold 

more active than the index peptide (Rosa et al. 2001). At the end of this study I wished to 

preliminary investigate whether optimised ligands could be identified in this manner for porcine 

IAV T-cell responses and if they could induce greater T-cell sensitivity.  

 

7.3.5 Increasing peptide sensitivity by inclusion of antigen presenting cells 

In my laboratory, it has been found that when using PS-CPLs to scan T-cell clones it is preferable 

to use them in conjunction with an APC to increase T-cell responses and enable MIP-1β detection 

by ELISA. There was no porcine APC line available that expressed the Babraham pig SLA-I 

molecules therefore I needed to identify a “surrogate APC”. The commercially available porcine 

kidney cell line,  ESK-4, expresses both Babraham pig SLA-I molecules (Ho et al. 2009). The 

inclusion of ESK-4 cells with two different CD8β T-cell clones increased sensitivity to their 

respective index peptides, inducing high MIP-1β release at 10-9 M peptide that was not seen in 

the absence of ESK-4 cells (Figure 7.5A and B). This indicated ESK-4 cells could be used in 

Babraham pig T-cell assays to increase SLA-I responses. Unfortunately, I was unable to culture 

ESK-4 cells to the quantities required for PS-CPL scans. I therefore tested a Babraham pig kidney 
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cell ‘line’ which had been isolated by collaborators at the Pirbright Institute. Babraham pig 

kidney cells markedly improved T-cell sensitivity when incubated with T-cell clone KT7.650 and 

its index peptide (Figure 7.5C). In the presence of Babraham pig kidney cells, clone KT7.650 

released 7.29 to 9.66 ng/mL MIP-1β at 10-9 M peptide, whereas in the absence of Babraham pig 

kidney cells only 0.48 ng/mL MIP-1β was detected at 10-9 M peptide (Figure 7.5C). The Babraham 

pig kidney cells were not immortalised but continued to grow in sufficient numbers to enable 

their use as an ‘APC’ in the PS-CPL scans performed in this study.  

 

 

Figure 7.5. Porcine T-cell clones tested for readout sensitivity with or without “APC”. 
CD8β+

 
T-cell clones (as labelled) were incubated with their index peptide for 16-18 h with or 

without ESK-4 cells (A & B) or Babraham pig kidney cells (C). MIP-1β release was detected 
by ELISA. Data were performed in duplicate and are displayed as mean ± SEM (minus the 
corresponding background level). In all experiments the number of “APC” used per well is 
displayed together with either 30,000 (A & B) or 22,200 (C) T-cells per well.  
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7.3.6 Identification of super-agonists for IAV SLA-2*11:04 restricted epitope 

NGKWMRELI 

The CD8β porcine T-cell clone KT22.625, that recognises the IAV derived peptide NGKWMRELI, 

was scanned using a nonamer PS-CPL (Figure 7.6). The residues at P3, P4, P6, and P9 in the index 

peptide sequence were optimal and induced the highest MIP-1β release in the peptide mixtures 

fixed at these positions. Different residues at the other positions along the peptide, P1, P2, P5, 

P7 and P8, afforded improved responses compared to the index peptide sequence. For example, 

when Trp was the fixed residue at P5, clone KT22.625 released 9.42 ng/mL MIP-1β compared to 

only 2.33 ng/mL MIP-1β with the index residue (Met). At P8, when either Ile or Val were fixed 

the peptide mixture induced substantially more MIP-1β, by ~20 to 28-fold, than the index 

residue at P8 (Leu) (Figure 7.6).  

 

 

Figure 7.6. Combinatorial Peptide Library screen of Influenza cytotoxic porcine T-cell 
clone KT22.625. 
Nonamer CPL screen of CD8β+ T-cell clone KT22.625 using Babraham pig kidney cells as 
antigen presenting cells and MIP-1β ELISA to detect activation. The index peptide amino acid 
sequence [NGKWMRELI] is represented as a red bar for each position. Data were performed 

in duplicate and are displayed as mean ± SD.  
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The PS-CPL data were input into a novel webtool, PI-CPL (Szomolay et al. 2016), that ranks 

different peptide sequences in order of the likelihood that they would be recognised by the 

cognate T-cell clone based on raw PS-CPL data. The top ten sequences from this list were tested 

for recognition by KT22.625 (Figure 7.7). The majority of these APLs induced were not 

recognised by the T-cell clone and induced little MIP-1β and the rest of the APLs (PSIWWRHVI, 

PAIWWRHVI and PSKWWRDVI) did not increase sensitivity over that observed with the index 

peptide (NGKWMRELI). Therefore, I took the index peptide sequence and substituted a single 

residue at a time with the amino acid(s) preferred at each residue position in the PS-CPL (Figure 

7.6) and also combined these for double and triple substitution APLs. These APLs, listed in Figure 

7.8, were tested for recognition by the cognate T-cell clone KT22.625. Single residue 

substitutions were tolerated well at P1, P7 and P8. But the substitution of Met, for Trp at P5 

decreased MIP-1β release nearly 4-fold at 10-6 M peptide compared to the index sequence, and 

induced negligible MIP-1β at lower peptide concentrations. The double and triple substitution 

APLs incorporating Trp at P5 also displayed substantially less MIP-1β release than the index 

peptide. The three APLs that induced the highest sensitivity were sequences NGKWMREVI, 

NGKWMREII and NGKWMRDVI which improved MIP-1β release by >4, ~3.5 and ~2.8-fold 

respectively at 10-9 M peptide compared to the index peptide (Figure 7.8).   

 

 

Figure 7.7. Response of porcine T-cell clone KT22.625 to altered peptide ligands (APL). 
CD8β+

 
T-cell clone KT22.625 was incubated with titrations of its index peptide and APLs for 

16-18 h. MIP-1β release was detected by ELISA. Data were performed in duplicate and are 
displayed as mean ± SEM minus background (T-cells alone). Peptide sequences are colour 
coded and displayed inset. Sequences in black induced low sensitivity.  
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Figure 7.8. Response of porcine T-cell clone KT22.625 to altered peptide ligands (APL) 
CD8β+

 
T-cell clone KT22.625 was incubated with titrations of its index peptide and APLs for 

16-18 h. MIP-1β release was detected by ELISA. Data were performed in duplicate and are 
displayed as mean ± SEM minus background (T-cells alone). Peptide sequences are colour 
coded and displayed inset. Sequences in black induced low sensitivity.  
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above the SLA-1*14:02 binding groove indicating its likely involvement in TCR engagement 

which may explain why changes at this residue are not tolerated. The PS-CPL data from T-cell 

clone KTe.650 supports the earlier experiments, anchor and alanine scans, performed on its 

sister clone KLT.650 where alanine is not tolerated well at any residues other than P9.  

 

 

Figure 7.9. Combinatorial Peptide Library screen of Influenza cytotoxic porcine T-cell 
clone KTe.650. 
Nonamer CPL screen of CD8β+ T-cell clone KTe.650 using Babraham pig kidney cells as 
antigen presenting cells and MIP-1β ELISA to detect activation. The index peptide amino acid 
sequence [EFEDLTFLA] is represented as a red bar for each position. Data were performed 

in duplicate and are displayed as mean ± SD.  
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induced higher MIP-1β responses than that observed with the index peptide the best two of 

which were single substitution EFEDLTFLL and double substitution EWEDLTFLA. Both of 

these APLs induced ~7.3-fold more MIP-1β release at 10-8 M peptide than the index sequence 

and still induced T-cell responses at 10-9 M peptide (Figure 7.10).  

 

 

Figure 7.10. Response of porcine T-cell clone Kte.650 to altered peptide ligands (APL). 
CD8β+

 
T-cell clone KTe.650 was incubated with titrations of its index peptide and APLs for 16-

18 h. MIP-1β release was detected by ELISA. Data were performed in duplicate and are 
displayed as mean ± SEM minus background (T-cells alone). Peptide sequences are colour 
coded and displayed inset. Sequences in black induced low sensitivity and are omitted from 
the graph. Specifically, any APL displaying no response or less than half that of the index 

peptide at 10
-7

 M peptide are omitted from the graph.  
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7.4 Discussion 

The identification of the primary anchor residues, P2 and P9 (PC), of the Babraham pig SLA-I 

molecules in chapter 5, enabled the establishment of MHC binding motifs here that were used 

in conjunction with a webtool to successfully predict a subdominant IAV T-cell epitope. Amino 

acid substitution at the anchor positions in all four defined IAV epitopes was used to establish 

which amino acids could be tolerated in these positions and build a peptide binding motif for 

each SLA-I allele. Other studies defining porcine SLA-I binding motifs have not had porcine T-cell 

clones for this purpose. The motif for SLA-1*14:02, [xF/Y/W/M/AxxxxxxL/F/M/I/A/V], conforms 

to that determined in preliminary studies using elution of self-peptides (Immune function in 

healthy and African Swine Fever virus (ASFV) infected pigs. DEFRA final project report: SE 1509. 

2003) which produced a more stringent motif of [x-Y/F/A-xxxxxx-L/I]. A different motif, 

[xG/S/A/T/N/V/KxxxxxxI/V/L] was identified for SLA-2*11:04. The preferences for these residues 

became apparent when looking at the pockets of the SLA binding groove. P2 is accommodated 

by the B pocket which is large and deep in SLA-1*1402 allowing it to tolerate large aromatic 

residues whereas in SLA-2*11:04 the pocket is shallower. The F pocket accommodates the C-

terminus (P9), again in SLA-1*1402 it is larger and can tolerate larger residues (F and M) whereas 

in SLA-2*11:04 it is shallower but with limited tolerance.  

 

The peptide binding motifs were defined here in the context of T-cell recognition, and they 

enabled successful epitope prediction and determined a motif for SLA-1*1402 that fitted with 

previous mass spectrometry data. However, using such a T-cell informed technique could have 

disadvantages as a particular anchor mutation may alter the peptide landscape and prevent 

recognition by that specific TCR, but the peptide sequence itself could in fact be capable of 

binding to the MHC molecule. There are other MHC focused assays that could be pursued. A 

simple and well-established method in humans (T2 cells) and mice (RMA-S cells) utilises TAP-

deficient cell lines which express structurally unstable MHC-I complexes only transiently at their 

cell surface (Cerundolo et al. 1990; Schumacher et al. 1990; Hoppes et al. 2010). The addition of 

exogenous peptides which are capable of binding the MHC-I allele of interest will stabilise pMHC 

complexes at the cell surface enabling their detection by flow cytometry (Hoppes et al. 2010). 

This technology could be adapted for SLA alleles and used to determine which anchor residues 

are can bind a specific SLA allele. Circular dichroism could also be used to measure pMHC 

complex stability across a range of anchor mutated peptides (Morgan et al. 1997). The anchor 

mutated peptides could also be refolded in vitro with their respective SLA allele and 

compatibility determined by successful complex formation. A broader approach could also be 



126 
 

undertaken using in vitro PS-CPL scanning to determine residue tolerance as previously 

undertaken by Pedersen and colleagues for SLA-1*0401 and SLA-2*0401 (Pedersen et al. 2011; 

Pedersen et al. 2013). Briefly, the level of in vitro refolding between SLA-I molecules and the 

different PS-CPL peptides was quantified by ELISA (measuring the concentration of p-SLA-I 

complexes) and predicted peptides were then validated by in vitro refolding (Pedersen et al. 

2011; Pedersen et al. 2013). This technique does however require SLA allele-specific antibodies 

for pSLA complex detection which are not readily available in swine. Pedersen and colleagues 

circumvented this requirement by refolding the SLA-I heavy chain with human β2m which 

enabled an anti-human β2m antibody to be used for detection (Pedersen et al. 2011; Pedersen 

et al. 2013). Future work could pursue performing similar assays on the Babraham pig SLA alleles 

to obtain more comprehensive peptide binding motifs.  

 

I next used the SLA-I binding motifs to identify further SwIV epitopes via in silico prediction as a 

proof of concept. Predicted peptides from the PB2 protein were tested ex vivo on PBMC and 

BAL samples from pig#650 (vaccinated with S-FLU and inactivated H1N1 Sw/Sp) and a new IAV 

epitope (NKATKRLTV) restricted to SLA-2*11:04 was identified. The lysine residue at P2 in 

NKATKRLTV was identified as a lower preference in the proposed SLA-2*11:04 binding motif 

so the discovery of this epitope adds confidence to the motifs produced in this study. An initial 

attempt to refold this PB2 epitope with SLA-2*11:04 and detect antigen-specific T-cells in the 

BAL was unsuccessful and time restraints for this study prevented further work. To further 

validate this epitope in future, this experiment could be repeated. Ideally a T-cell clone known 

to recognise NKATKRLTV would be derived to validate any new batches of pSLA-I monomer for 

effective tetramer staining. Limited samples meant that I was restricted to testing only a small 

number of putative epitopes. Though this preliminary work forms a good basis from which to 

extend this approach to other influenza proteins and both Babraham pig SLA-I molecules. It will 

also be important to use a refined motif that allows for selection of decamer peptides as 

extrapolation from human systems suggests that up to 20% of MHC-I epitopes might be of longer 

length. Overall, the successful prediction of the four NP epitopes and a further epitope from the 

PB2 protein indicates that the binding motifs generated here will be useful for identifying other 

disease epitopes.   

 

The use of alanine substitutions in the IAV epitope sequences enabled preliminary conclusions 

to be formed about those residues that are essential for the successful engagement between 

these pSLA-I and their cognate TCR. To extrapolate these results fully on a biochemical level 
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structures resolved of the pSLA-I in complex with the TCR would be required. The T-cell clones 

KT13.650 and KT22.625 did not tolerate alanine substitutions at P3, P4, P6, P8 and P9 in the 

epitope NGKWMRELI. This tied up nicely with the PS-CPL derived super-agonists for this epitope 

which maintained the index residues at these positions, except for P8 where Val or Ile were 

optimal. Alanine substitutions in the EFEDLTFLA epitope were overall not well tolerated by a 

cognate TCR which matched up with the PS-CPL derived super-agonists which contained no 

alanine residues except for the index alanine at P9.  

 

It is well established that TCRs can be cross-reactive to numerous peptides and therefore there 

is the potential to improve upon any cognate peptide and improve immunogenicity (Sewell 

2012b). Super-agonists can be identified by PS-CPL which provides an unbiased and quantitative 

readout of residue preferences within a peptide sequence (Pentier et al. 2013). A major 

advantage with PS-CPL is that once in-house, one library can be used on any T-cell clone 

recognising any peptide, providing the library conforms to the peptide length preference of the 

particular TCR (Ekeruche-Makinde et al. 2013). In this thesis, I have used PS-CPL for the first time 

on porcine T-cell clones and was able to identify IAV super-agonists for two NP epitopes; SLA-

2*11:04 restricted NGKWMRELI and SLA-1*14:02 restricted EFEDLTFLA. Both sets of PS-CPL 

data for T-cells clones KT22.625 and KTe.650 demonstrated the need to test several APLs to 

identify those with improved sensitivity over that exhibited by the index peptide. Indeed, the 

highest ranking APLs generated from the PS-CPL data sets were not found to be super-agonists 

and even had substantially reduced sensitivity compared to the index peptide. This highlights 

that although certain residues may be clear preferences within the PS-CPL data this does not 

mean that it will be the ‘best’ residue when amalgamated into the index peptide sequence.  

 

In this chapter, I successfully generated peptide super agonist ligands for TCRs specific for two 

NP epitopes. This is the first time such an approach has been undertaken with porcine T-cells. 

These super-agonists will require further testing to verify if they in-fact induce stronger immune 

responses in clinically relevant samples. Initially, cytotoxic T-cell lines primed against the index 

peptide and the super-agonists could be procured and measured for the highest T-cell response. 

Other experiments could include comparing the TCR repertoires primed by the index peptides 

and the super-agonists, as if the repertoire was altered it may impact on clinical relevance. 

Nevertheless, the promising preliminary data in this study represents an exciting avenue for 

future research in this field and the pig would be a good animal model in which to test any super-

agonists.       
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8 General Discussion 

 

8.1 Summary of Work 

The overall focus of my thesis was to bring the tools and techniques for the study of porcine T-

cells up to the same level of that currently attainable with human T-cells and to apply this 

technology to investigate cytotoxic T-cell responses to IAV in pigs. The porcine studies in this 

thesis were undertaken in collaboration with the Pirbright Institute and the School of Veterinary 

Sciences, Bristol University. All porcine samples were obtained from the Babraham inbred pig 

line which is 85% identical by genome-wide SNP analysis and in which all pigs express identical 

MHC-I and MHC-II alleles. My laboratory have extensive knowledge in human T-cell culture 

which was applied, in chapter 3, to establish successful and long-term porcine T-cell culture 

including T-cell clone procurement. In chapter 3, different cell culture media compositions, T-

cell mitogens and expansion protocols were assessed to establish an optimal protocol for long-

term culture of porcine T-cells. This included the procurement and expansion of monoclonal 

populations of porcine T-cell clones. The PBMC samples utilised in chapter 3 were from 

Babraham pigs inoculated with inactivated IAV enabling IAV-specific T-cell clones to be 

procured. The region of the NP these IAV-specific T-cells recognise was also identified. To my 

knowledge, this is the first description of long-term porcine T-cell culture and T-cell clone 

procurement. The establishment of porcine T-cell culture in chapter 3 was essential to the 

progression of this project towards identifying and exploring IAV MHC-I restricted epitopes in 

clinically relevant porcine samples.  

 

In chapter 4, IAV-specific T-cell clones were procured from two pigs vaccinated with a non-

pathogenic virus, universal vaccine candidate S-FLU (Powell et al. 2012), and inactivated H1N1 

SwIV. Epitope identification focused on the conserved influenza viral proteins NP and M1, and 

four MHC-I epitopes were identified within the NP in regions also previously identified as 

immunogenic in humans and mice. The use of overlapping peptides for IAV epitope 

identification made no assumptions about MHC-I binding or immunodominance and allowed 

complete scanning of the NP and M1 protein sequences. The four new NP epitopes identified in 

chapter 4 were refolded in vitro with SLA-I and β2m. Each peptide produced refolded product 

with one of the two Babraham pig SLA-I molecules, strongly suggesting the SLA-I restriction of 

each epitope. Subsequent experiments with pSLA-I tetramer staining and the solving of 3 of the 

4 pSLA-I complex structures confirmed these predictions. 
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The structures of both Babraham pig SLA-I molecules, SLA-1*14:02 and SLA-2*11:04, in complex 

with IAV derived peptides were resolved in chapter 5 and revealed the primary anchor positions 

to be at P2 and P9 (PC) within the peptides. This facilitated work in chapter 7 that defined the 

peptide binding motifs of both Babraham pig SLA-I molecules which were used to predict SLA-I 

restricted IAV epitopes. The epitope predictions preliminary identified a peptide derived from 

viral protein PB2 which when incubated with PBMC and BAL from a vaccinated pig induced 

production of IFNγ.  

 

In chapter 6, I contributed to the long history of work within my laboratory to improve the 

detection of antigen-specific human T-cells by pMHC multimer staining (Whelan et al. 1999; Choi 

et al. 2003; Scriba et al. 2005; Wooldridge et al. 2006; Laugel, van den Berg, et al. 2007; Lissina 

et al. 2009; Wooldridge et al. 2009; Clement et al. 2011; Dolton et al. 2014). I demonstrated that 

the inclusion of anti-fluorochrome antibodies in pMHC multimer staining protocols greatly 

enhanced staining of antigen-specific human T-cells by stabilising the pMHC multimers bound 

to the T-cell (Tungatt et al. 2015). I applied the optimised pMHC multimer staining techniques 

for the detection of IAV-specific porcine T-cells. I was able to detect and compare the magnitude 

of IAV-specific T-cells, which recognise the four NP epitopes identified in chapter 4, across PBMC, 

TBLN and BAL isolated from vaccinated pigs. Few studies have utilised pMHC tetramer staining 

in pigs to date (Pedersen et al. 2014; Pedersen et al. 2016; Baratelli et al. 2017) and the data in 

chapter 6 represent the first description of pMHC tetramer staining across different porcine 

tissue samples and utilising optimised staining techniques. Tissue resident porcine IAV-specific 

cytotoxic T-cells were detected in high numbers in BAL. Large cytotoxic T-cell responses to the 

four NP epitopes were also detected in BAL from pigs vaccinated with S-FLU alone but were not 

detected in the equivalent unvaccinated pigs.         

 

Additionally, the ability to culture large numbers of porcine T-cell clones enabled me to identify 

super-agonist peptides in chapter 7 for two IAV-specific T-cell clones using PS-CPL screens. IAV 

super-agonists were determined for two NP epitopes, SLA-2*11:04 restricted NGKWMRELI and 

SLA-1*14:02 restricted EFEDLTFLA, and shown to induce higher MIP-1β production when 

incubated with their cognate T-cell clones than compared to the index peptides. This is the first 

description of using PS-CPL on porcine T-cell clones. The testing of altered peptide ligands in 

chapter 7 reiterated the need to test numerous sequences to identify super-agonist peptide 

ligands that were more potent than the index peptides.  
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8.2 Implications of findings  

8.2.1 The long-term culture of porcine T-cells 

The establishment of protocols for long-term culturing of porcine T-cells as described above 

unlocks numerous possibilities in the field of porcine T-cell immunology. Antigen-specific 

porcine T-cells could be isolated and characterised from a variety of different swine diseases 

across different pig models and outbred breeds. For example, similar studies could be 

commenced on other economically important swine diseases, including Foot and Mouth Disease 

and African Swine Fever. My work was highly dependent on the culture of porcine T-cell lines 

and the establishment of T-cell clones for IAV epitope identification and clarifying the ability of 

pSLA-I tetramers to stain their cognate TCR. T-cell clones also enable super-agonist peptides to 

be identified by PS-CPL.  

 

8.2.2 Enhanced detection of antigen-specific T-cells by pMHC multimers 

The inclusion of anti-fluorochrome antibody to enhance pMHC multimer staining of antigen-

specific T-cells (Tungatt et al. 2015) has been successfully implemented across multiple human 

T-cell studies by my colleagues and afforded improvements in the detection of porcine T-cells 

within this study. At the time of writing, my publication on this work (Tungatt et al. 2015) has 

already been cited over 15 times and it is very satisfying to see that other groups have already 

utilised this enhancement technology during pMHC multimer staining. The inclusion of anti-

fluorochrome antibody is a simple, inexpensive addition to improve pMHC multimer staining 

protocols and is highly recommended particularly when detecting T-cells bearing low-affinity 

TCRs or where TCR density is expected to be low e.g. in recently or chronically activated T-cells. 

The review I co-authored on pMHC multimer staining highlighted the best techniques for 

optimal staining and noted several considerations when commencing pMHC multimer studies 

(Dolton et al. 2015). This practical guide together with the improvements afforded by anti-

fluorochrome antibodies and other improvements previously published by my laboratory can all 

act synergistically to improve pMHC multimer staining of antigen-specific T-cells and enable the 

staining of previously undetectable, fully functional T-cells. Subsequent work in this area by my 

colleague, Cristina Rius, has revealed that standard pMHC tetramer staining fails to detect many 

fully functional T-cell clones and substantially underestimates the size of antigen-specific T-cells 

populations. Surprisingly, this is often even true with human pMHC tetramers for commonly 

used epitopes from the CMV and EBV herpes viruses (Rius et al. unpublished). Consequently, it 

begins to look as if the many thousands of studies that have previously used pMHC tetramer 
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staining may have underestimated the size of antigen-specific T-cell populations. My work in this 

thesis demonstrates that optimised pMHC multimer staining protocols can, and should, be 

applied across the breadth of T-cell studies and across different species.  

 

8.2.3 Peptide-MHC multimer staining of antigen-specific porcine T-cells 

The ability to detect porcine antigen-specific T-cells with pMHC tetramers enables enumeration, 

isolation, phenotyping and characterisation of disease relevant T-cells. The detection of the four 

IAV epitopes detected in this study following S-FLU vaccination could be used as a marker when 

assessing the use of this universal vaccine candidate in pigs. The magnitude of T-cell responses 

across different vaccination strategies could be assessed by pMHC tetramer staining. For 

example, pMHC tetramer staining could be used as a measure for assessing different vaccination 

routes and doses, as was the focus of a recent study that infected a commercial pig breed with 

SwIV (Hemmink et al. 2016). There is the potential to use pMHC tetramers to establish correlates 

of protection in vaccine studies.       

 

8.2.4 SLA-I peptide binding motifs and epitope prediction 

Different MHC alleles display different peptide binding motifs which can be used to predict 

which peptides can be accommodated within the PBG (Sette and Sidney 1998). The primary 

anchor residues are the key predictors of pMHC stability and typically only a handful of closely-

related residues are tolerated in these positions (Falk et al. 1991). Knowledge of the peptide 

binding motif can be used to predict epitopes for a known MHC-I allele from any protein of 

interest. The binding motifs defined in this thesis for the two Babraham pig SLA-I alleles can be 

used for epitope prediction in this pig model for all IAV proteins as well as prove useful for other 

disease studies. Informed epitope predictions can be tested directly ex vivo and could provide a 

quicker and simpler route to epitope identification than the use of overlapping peptides and T-

cell line procurement, although the latter approach is still useful when a non-assumptive 

approach is desirable. The use of peptide matrices allows large numbers of epitope predictions 

to be tested simultaneously.  The SLA-I binding motifs I have identified will be very useful for the 

simple establishment of minimal epitopes after a response to an overlapping peptide has been 

identified and should largely negate the need for extensive peptide optimisation via peptide 

truncation as I had to undertake here in the absence of any such motifs. 
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8.2.5 Understanding Influenza A virus 

It is well established that cytotoxic T-cells are an integral part of the immune response to IAV 

infection and can limit disease severity (McMichael et al. 1983; Sridhar et al. 2013; La Gruta and 

Turner 2014; Wang et al. 2015). The highly mutative nature of IAV means a universal vaccine is 

highly desirable that can induce heterotypic immunity (Schulman and Kilbourne 1965) and 

protect across different IAV strains in the absence of neutralising antibodies. Cytotoxic T-cells 

are a key cell subset in conferring heterotypic immunity (Lee et al. 2008; Grant et al. 2013; Liu 

et al. 2013; Sridhar et al. 2013). Therefore, it is important we understand what viral components 

are inducing cross-protective cytotoxic T-cells following IAV infection or vaccination so that this 

knowledge can be incorporated into universal vaccine design. Effective vaccination within the 

pig population would decrease the likelihood of the generation of reassortment viruses with 

pandemic potential. The pandemic risk is particularly high in areas where pigs live in close 

proximity to humans and poultry, increasing the likelihood for pigs to serve as mixing vessels for 

antigenic shift in IAV. 

 

The knowledge of cytotoxic T-cell epitopes in pigs lags far behind that currently achieved in 

humans and mouse models. Few studies have identified and validated ex vivo IAV-specific 

porcine T-cell epitopes (Pedersen et al. 2014; Baratelli et al. 2017). Therefore, the identification 

in this thesis of four new IAV epitopes in pigs, and the development of tools to study them in 

greater detail than previously attainable, has enhanced our knowledge in this field of research. 

Further work will be required to ascertain whether the IAV-specific cytotoxic T-cell populations 

identified in this thesis are protective and whether they confer heterotypic immunity. However 

these IAV-specific porcine CD8β T-cells were detected at such high magnitude in the lungs of 

vaccinated pigs within this study, that it is highly probably they are a key immune response.  

 

Clearly, there are many challenges facing universal influenza vaccine design (reviewed in Sridhar 

2016). Although cytotoxic T-cells are considered the primary effectors of heterotypic immunity, 

it will be important to consider cytotoxic T-cells within the breath of an effective cross-protective 

immune response. For instance CD4 T-cells are capable of recognising conserved IAV epitopes 

and may help CD8 T-cell and B-cell immune responses to reduce disease severity, or can 

themselves directly confer cytotoxic activity (Wilkinson et al. 2012; Sridhar 2016). The 

development of T-cell based vaccine candidates is a promising way to limit disease severity and 

a handful of clinical trials aimed at inducing T-cell responses to conserved internal IAV proteins 

are currently ongoing (Sridhar 2016).   
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8.2.6  Super-agonist peptides 

In this thesis, super-agonist peptides were identified for two MHC-I restricted IAV epitopes 

identified in pigs. The potential to design ligands that can induce stronger T-cell responses than 

the cognate peptide sequence holds promise for optimal vaccine formulations. Furthermore, 

there is also the possibility to investigate non-peptide ligands which may confer advantages in 

stability, removing the need for cold-chain storage of vaccines and enabling oral administration, 

as is the case for D-amino acids (Pentier et al. 2013). L-amino acids comprise the majority of 

naturally occurring proteins, whereas D-amino acids are much less prevalent and only found 

rarely. D-amino acids are mirror image stereoisomers of L-amino acids, but both still exhibit the 

same physical and chemical properties (Zhao and Lu 2014). The development of “non-natural” 

D-amino acid ligands capable of inducing strong immune responses is therefore highly desirable. 

Unpublished data produced by my colleagues has demonstrated the ability for a D-amino acid 

peptide, derived from CPL data from influenza-specific human T-cells, to prime influenza-specific 

human cytotoxic T-cells in vitro. Additionally, and remarkably, this D-amino acid ligand was 

shown to confer protection from lethal influenza challenge in a humanised mouse model when 

administered orally (Miles & Tan et al., unpublished). The possibility of “edible vaccines” of this 

kind is relatively unexplored and in its infancy but could revolutionise vaccine design in the 

future. Vaccines delivered by this route would be highly desirable in livestock as well as humans. 

Additionally, the pig represents a good animal model in which to test any such advancements.  

 

8.3 Future directions  

The work completed in this thesis has opened the possibility to pursue numerous avenues of 

research into porcine T-cells both in the context of IAV and to other important swine diseases, 

as well as utilising pigs as an animal model for human diseases. The techniques developed for 

the long-term culture of cytotoxic porcine T-cells could also be applied to the study of other cell 

subsets including CD4 T-cells and γδ T-cells. Indeed, in the preliminary stages of this study an 

IAV-specific CD4 T-cell clone was isolated and cultured successfully in vitro.  

 

The epitope identification pursued in this study was performed on samples from vaccinated pigs 

and focused on responses to viral proteins NP and M1. This work could be expanded to explore 

other conserved IAV proteins and could be investigated following live IAV infection and across 

different vaccine candidates. It would be interesting to use the peptide binding motifs defined 

for the Babraham pig SLA-I molecules to predict epitopes across different IAV viral proteins in 
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Babraham pigs. These could then be validated by pMHC multimer staining or T-cell activation 

assays. Epitope predictions can be tested using a peptide matrix allowing many peptides to be 

tested at once even when sample availability is limited.  

 

The pMHC tetramers produced in this thesis could be used to isolate IAV-specific T-cells from 

vaccinated pig samples. The pMHC tetramer positive cell populations could be TCR clonotyped 

to reveal the diversity of the T-cell response and determine whether any ‘public’ TCRs exist.  

Further porcine cytotoxic T-cell clones could also be isolated and used to explore the possibility 

of super-agonists for all four of the IAV epitopes identified in this study. IAV-specific porcine T-

cells could also be phenotyped and their cytotoxic effects investigated. It will be interesting to 

investigate whether these IAV-specific cytotoxic T-cells can confer protection in the Babraham 

pig model to IAV infection. This could be investigated in vaccination and challenge studies. 

Heterotypic immunity can be investigated by heterologous challenge experiments. As the 

Babraham pig line is inbred and MHC identical, there is the possibility to perform adoptive cell 

transfer to see if the IAV-specific T-cell clones can confer protection in an IAV-naive animal.  

 

The super-agonist peptides identified in this study for two MHC-I restricted IAV epitopes require 

further investigation. Initially, it will need to be established whether these super-agonist 

peptides are in fact able to induce stronger cytotoxic T-cell responses in vitro than the cognate 

peptides. The possibility of non-natural ligands could also be explored using D-amino acid 

formulated CPLs. Any D-amino acid sequence identified in this way would require extensive in 

vitro characterisation and would need to induce good cytotoxic T-cell immune responses. The 

“non-natural” ligand could then be tested within the Babraham pig model to determine if it can 

confer protective efficacy to IAV infection.  

 

8.4 Concluding remarks 

I hope that the techniques developed during this PhD for porcine T-cell culture can be utilised 

to enhance numerous porcine immunology studies across different research groups. In addition, 

my studies should position the Babraham pig model as an attractive option for porcine studies 

particularly applying the Babraham pig SLA-I peptide binding motifs for epitope identification. It 

has been rewarding to achieve these primary aims and I hope that porcine T-cell studies will 

continue to improve to the level of that currently attainable in human T-cells and mouse models. 

This study has also broadened our knowledge of cytotoxic T-cell epitopes to IAV in pigs and 
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contributed to efforts to investigate the universal vaccine candidate S-FLU. The techniques could 

be implemented to validate different IAV vaccines and to further explore virus-host dynamics. 

The generation of novel IAV viruses within the global pig population that could have pandemic 

potential is an ever-present possibility, and highlights the need for increasing our understanding 

of porcine IAV immune responses and epidemiology in the global pig population. Human and 

veterinary immunologists and disease surveillance networks need to work together in order to 

understand IAV on a global and all-encompassing scale.  A universal IAV vaccine design that 

could confer heterotypic protection across different species is an interesting concept for the 

future in combating the pandemic risk.  
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10 Appendix  

 

Table 10.1. List of overlapping peptides of nucleoprotein 

Pool  Designation Aa length  Peptide Sequence  

A NP1 18 MASQGTKRSYEQMETDGE 

A NP2 18 KRSYEQMETDGERQNATE 

A NP3 18 METDGERQNATEIRASVG 

A NP4 18 RQNATEIRASVGKMIGGI 

A NP5 18 IRASVGKMIGGIGRFYIQ 

A NP6 18 KMIGGIGRFYIQMCTELK 

A NP7 18 GRFYIQMCTELKLSDYEG 

A NP8 18 MCTELKLSDYEGRLIQNS 

A NP9 18 LSDYEGRLIQNSLTIERM 

A NP10 19 RLIQNSLTIERMVLSAFDE 

A NP11 18 LTIERMVLSAFDERRNKY 

A NP12 18 VLSAFDERRNKYLEEHPS 

A NP13 18 ERRNKYLEEHPSAGKDPK 

A NP14 18 LEEHPSAGKDPKKTGGPI 

A NP15 18 AGKDPKKTGGPIYRRVNG 

A NP16 18 KTGGPIYRRVNGKWMREL 

A NP17 18 YRRVNGKWMRELILYDKE 

A NP18 18 KWMRELILYDKEEIRRIW 

A NP19 18 ILYDKEEIRRIWRQANNG 

A NP20 18 EIRRIWRQANNGDDATAG 

B NP21 15 RQANNGDDATAGLTH 

B NP22 19 DDATAGLTHMMIWHSNLND 

B NP23 18 LTHMMIWHSNLNDATYQR 

B NP24 18 WHSNLNDATYQRTRALVR 

B NP25 18 DATYQRTRALVRTGMDPR 

B NP26 18 TRALVRTGMDPRMCSLMQ 

B NP27 19 RTGMDPRMCSLMQGSTLPR 

B NP28 19 RMCSLMQGSTLPRRSGAAG 

B NP29 18 GSTLPRRSGAAGAAVKGV 

B NP30 19 RRSGAAGAAVKGVGTMVME 

B NP31 18 VKGVGTMVMELVRMIKRG 

B NP32 18 GTMVMELVRMIKRGINDR 

B NP33 18 LVRMIKRGINDRNFWRGE 

B NP34 19 GINDRNFWRGENGRKTRIA 

B NP35 17 FWRGENGRKTRIAYERM 

B NP36 17 GRKTRIAYERMCNILKG 

B NP37 18 IAYERMCNILKGKFQTAA 

B NP38 18 CNILKGKFQTAAQKAMMD 
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B NP39 18 KFQTAAQKAMMDQVRESR 

B NP40 17 KAMMDQVRESRNPGNAE 

C NP41 17 VRESRNPGNAEFEDLTF 

C NP42 17 PGNAEFEDLTFLARSAL 

C NP43 18 EFEDLTFLARSALILRGS 

C NP44 18 LARSALILRGSVAHKSCL 

C NP45 18 ILRGSVAHKSCLPACVYG 

C NP46 19 HKSCLPACVYGPAVASGYD 

C NP47 18 PACVYGPAVASGYDFERE 

C NP48 18 PAVASGYDFEREGYSLVG 

C NP49 18 YDFEREGYSLVGIDPFRL 

C NP50 20 EREGYSLVGIDPFRLLQNSQ 

C NP51 16 DPFRLLQNSQVYSLIR 

C NP52 19 LQNSQVYSLIRPNENPAHK 

C NP53 18 YSLIRPNENPAHKSQLVW 

C NP54 17 ENPAHKSQLVWMACHSA 

C NP55 18 KSQLVWMACHSAAFEDLR 

C NP56 18 CHSAAFEDLRVLSFIKGT 

C NP57 18 AFEDLRVLSFIKGTKVVP 

C NP58 18 VLSFIKGTKVVPRGKLST 

C NP59 18 GTKVVPRGKLSTRGVQIA 

C NP60 18 RGKLSTRGVQIASNENME 

D NP61 18 RGVQIASNENMETMESST 

D NP62 19 ASNENMETMESSTLELRSR 

D NP63 18 TMESSTLELRSRYWAIRT 

D NP64 18 LELRSRYWAIRTRSGGNT 

D NP65 18 YWAIRTRSGGNTNQQRAS 

D NP66 18 RSGGNTNQQRASAGQISI 

D NP67 18 TNQQRASAGQISIQPTFS 

D NP68 20 AGQISIQPTFSVQRNLPFDR 

D NP69 17 PTFSVQRNLPFDRTTVM 

D NP70 17 RNLPFDRTTVMAAFTGN 

D NP71 19 DRTTVMAAFTGNTEGRTSD 

D NP72 18 AAFTGNTEGRTSDMRTEI 

D NP73 18 TEGRTSDMRTEIIRMMES 

D NP74 18 DMRTEIIRMMESARPEDV 

D NP75 18 IRMMESARPEDVSFQGRG 

D NP76 18 ARPEDVSFQGRGVFELSD 

D NP77 18 SFQGRGVFELSDEKAASP 

D NP78 18 VFELSDEKAASPIVPSFD 

D NP79 18 EKAASPIVPSFDMSNEGS 

D NP80 18 IVPSFDMSNEGSYFFGDN 

D NP81 18 MSNEGSYFFGDNAEEYDN 
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Table 10.2: List of overlapping peptides of Matrix 1 protein 

Pool Designation Aa length  Peptide Sequence  

E M82 18 MSLLTEVETYVLSIIPSG 

E M83 19 EVETYVLSIIPSGPLKAEI 

E M84 18 SIIPSGPLKAEIAQRLED 

E M85 18 PLKAEIAQRLEDVFAGKN 

E M86 18 AQRLEDVFAGKNTDLEVL 

E M87 18 VFAGKNTDLEVLMEWLKT 

E M88 18 TDLEVLMEWLKTRPILSP 

E M89 18 MEWLKTRPILSPLTKGIL 

E M90 17 RPILSPLTKGILGFVFT 

E M91 17 TKGILGFVFTLTVPSER 

E M92 18 GFVFTLTVPSERGLQRRR 

E M93 18 TVPSERGLQRRRFVQNAL 

E M94 18 GLQRRRFVQNALNGNGDP 

E M95 18 FVQNALNGNGDPNNMDKA 

E M96 17 GNGDPNNMDKAVKLYRK 

E M97 19 PNNMDKAVKLYRKLKREIT 

E M98 18 VKLYRKLKREITFHGAKE 

E M99 18 LKREITFHGAKEISLSYS 

E M100 17 HGAKEISLSYSAGALAS 

E M101 19 SLSYSAGALASCMGLIYNR 

F M102 15 GALASCMGLIYNRMG 

F M103 15 MGLIYNRMGAVTTEV 

F M104 19 RMGAVTTEVAFGLVCATCE 

F M105 18 TTEVAFGLVCATCEQIAD 

F M106 18 GLVCATCEQIADSQHRSH 

F M107 18 CEQIADSQHRSHRQMVTT 

F M108 18 SQHRSHRQMVTTTNPLIR 

F M109 18 RQMVTTTNPLIRHENRMV 

F M110 18 TNPLIRHENRMVLASTTA 

F M111 18 HENRMVLASTTAKAMEQM 

F M112 18 LASTTAKAMEQMAGSSEQ 

F M113 18 KAMEQMAGSSEQAAEAME 

F M114 18 AGSSEQAAEAMEVASQAR 

F M115 15 EAMEVASQARQMVQA 

F M116 18 VASQARQMVQAMRTIGTH 

F M117 19 RQMVQAMRTIGTHPSSSAG 

F M118 18 RTIGTHPSSSAGLKNDLL 

F M119 18 PSSSAGLKNDLLENLQAY 

F M120 18 LKNDLLENLQAYQKRMGV 

F M121 18 ENLQAYQKRMGVQMQRFK 

 



152 
 

 

 

Figure 10.1. Influenza-specific CD8β T-cell line procurement 
Summarised flow cytometry data of Influenza-specific CD8β T-cell lines from pigs #625 and 
#650 raised against NP peptide pools A, B and C. All CD8β sorted T-cell lines displayed were 
raised for two weeks against their respective peptide pool. T-cell lines were incubated with 
DMSO or 2 μM peptide pool/peptide for 5 h then stained for CD8β and intracellular TNFα. 
Cells were gated for size and viability and the percentage of TNFα+ cells is plotted on the y 
axes. 
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Table 10.3. Peptide truncations of the overlapping sequence between peptides NP48 and 
NP49.  
Truncation  Aa length  Peptide Sequence  

12aa overlap 12 YDFEREGYSLVG 

N-1 11 
 DFEREGYSLVG 

N-1 C-1 10  DFEREGYSLV 

N-1 C-2 9  DFEREGYSL 

N-1 C-3 8  DFEREGYS 

N-2 10 
  FEREGYSLVG 

N-2 C-1 9   FEREGYSLV 

N-2 C-2 8   FEREGYSL 

N-3 9    EREGYSLVG 

N-3 C-1 8 
   EREGYSLV 

N-4 8     REGYSLVG 

C-1 11 YDFEREGYSLV 

C-2 10 YDFEREGYSL 

C-3 9 
YDFEREGYS 

C-4 8 YDFEREGY 

N: N-terminus. C: Carboxyl-terminus.  

 
Table 10.4. Peptide truncations of the overlapping sequence between peptides NP42 and 
NP43.  
Truncation  Aa length  Peptide Sequence  

13aa overlap 13 EFEDLTFLARSAL 

N-1 12 
 FEDLTFLARSAL 

N-1 C-1 11  FEDLTFLARSA 

N-1 C-2 10  FEDLTFLARS 

N-1 C-3 9  FEDLTFLAR 

N-1 C-4 8 
 FEDLTFLA 

N-2 11   EDLTFLARSAL 

N-2 C-1 10   EDLTFLARSA 

N-2 C-2 9   EDLTFLARS 

N-2 C-3 8 
  EDLTFLAR 

N-3 10    DLTFLARSAL 

N-3 C-1 9    DLTFLARSA 

N-3 C-2 8    DLTFLARS 

N-4 9 
    LTFLARSAL 

N-4 C-1 8     LTFLARSA 

N-5 8      TFLARSAL 

C-1 12 EFEDLTFLARSA 

C-2 11 
EFEDLTFLARS 

C-3 10 EFEDLTFLAR 

C-4 9 EFEDLTFLA 

C-5 8 EFEDLTFL 

N: N-terminus. C: Carboxyl-terminus.  
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Table 10.5. Peptide truncations of the overlapping sequence between peptides NP16 and 
NP17. 
Truncation  Aa length  Peptide Sequence  

12aa overlap 12 YRRVNGKWMREL 

N-1 11 
 RRVNGKWMREL 

N-1 C-1 10  RRVNGKWMRE 

N-1 C-2 9  RRVNGKWMR 

N-1 C-3 8  RRVNGKWM 

N-2 10 
  RVNGKWMREL 

N-2 C-1 9   RVNGKWMRE 

N-2 C-2 8   RVNGKWMR 

N-3 9    VNGKWMREL 

N-3 C-1 8 
   VNGKWMRE 

N-4 8     NGKWMREL 

C-1 11 YRRVNGKWMRE 

C-2 10 YRRVNGKWMR 

C-3 9 
YRRVNGKWM 

C-4 8 YRRVNGKW 

Additional peptide truncations: 

N-3 C+1 10    VNGKWMRELI 

N-3 C+2 11    VNGKWMRELIL 

N-4 C+1 9     NGKWMRELI 

N-4 C+2 10     NGKWMRELIL 

N-4 C+3 11     NGKWMRELILY 

N-5 7      GKWMREL 

N-5 C+1 8      GKWMRELI 

N-5 C+2 9      GKWMRELIL 

N-5 C+3 10      GKWMRELILY 

N-5 C+4 11      GKWMRELILYD 

N: N-terminus. C: Carboxyl-terminus.  
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Table 10.6. Peptide truncations of the overlapping sequence between peptides NP36 and 
NP37. 
Truncation  Aa length  Peptide Sequence  

12aa overlap 12 IAYERMCNILKG 

C-1 11  AYERMCNILKG 

C-1 N-1 10  AYERMCNILK 

C-1 N-2 9  AYERMCNIL 

C-1 N-3 8  AYERMCNI 

C-2 10   YERMCNILKG 

C-2 N-1 9   YERMCNILK 

C-2 N-2 8   YERMCNIL 

C-3 9    ERMCNILKG 

C-3 N-1 8    ERMCNILK 

C-4 8     RMCNILKG 

N-1 11 IAYERMCNILK 

N-2 10 IAYERMCNIL 

N-3 9 IAYERMCNI 

N-4 8 IAYERMCN 

N: N-terminus. C: Carboxyl-terminus.  

 

Table 10.7. SLA-2*11:04 predicted epitopes for Influenza viral protein PB2. 
Peptide 
Sequence 
MSQSRTREI 

KTTVDHMAI 

TTVDHMAII 

MNDAGSDRV 

DAGSDRVMV 

RVMVSPLAV 

RNGPMTNTV 

TNTVHYPKI 

LKHGTFGPV 

VKIRRRVDI 

LSAKEAQDV 

SAKEAQDVI 

EAQDVIMEV 

PNEVGARIL 

LTSESQLTI 

ITKEKKEEL 

VAYMLEREL 

PVAGGTSSV 

AGGTSSVYI 

GTSSVYIEV 

TSSVYIEVL 

SVYIEVLHL 

GGEVKNDDV 

KNDDVDQSL 

RNIVRRAAV 

RAAVSADPL 

VSADPLASL 

SADPLASLL 

IGGIRMVDI 
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GGIRMVDIL 

QNPTEEQAV 

PTEEQAVDI 

CKAAMGLRI 

FKRTSGSSV 

SSVKREEEV 

SVKREEEVL 

TGNLQTLKI 

EGSEEFTMV 

MVGRRATAI 

VGRRATAIL 

KATRRLIQL 

ATRRLIQLI 

VSGRDEQSI 

QSIAEAIIV 

AVRGDLNFV 

FVNRANQRL 

KVLFQNWGV 

WGVEPIDNV 

DNVMGMIGI 

NVMGMIGIL 

GVRISKMGV 

YSSTERVVV 

STERVVVSI 

VVVSIDRFL 

VSIDRFLRV 

RVRDQRGNV 

NVLLSPEEV 

YSSSMMWEI 

INGPESVLV 

LVNTYQWII 

LGTFDTAQI 

GTFDTAQII 

DTAQIIKLL 

NVRGSGMRI 

RGSGMRILV 

NKATKRLTV 

KATKRLTVL 

GTAGVESAV 

TAGVESAVL 

ESAVLRGFL 

SAVLRGFLI 

AVLRGFLIL 

LSINELSNL 

LAKGEKANV 

AKGEKANVL 

KGEKANVLI 

NVLIGQGDV 

IGQGDVVLV 

MKRKRDSSI 

DSQTATKRI 

ATKRIRMAI 
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Antibody Stabilization of Peptide–MHC Multimers Reveals
Functional T Cells Bearing Extremely Low-Affinity TCRs

Katie Tungatt,* Valentina Bianchi,* Michael D. Crowther,* Wendy E. Powell,*

Andrea J. Schauenburg,* Andrew Trimby,* Marco Donia,† John J. Miles,*,‡

Christopher J. Holland,* David K. Cole,* Andrew J. Godkin,* Mark Peakman,x

Per Thor Straten,† Inge Marie Svane,† Andrew K. Sewell,*,1 and Garry Dolton*,1

Fluorochrome-conjugated peptide–MHC (pMHC) multimers are commonly used in combination with flow cytometry for direct ex

vivo visualization and characterization of Ag-specific T cells, but these reagents can fail to stain cells when TCR affinity and/or

TCR cell-surface density are low. pMHC multimer staining of tumor-specific, autoimmune, or MHC class II–restricted T cells can

be particularly challenging, as these T cells tend to express relatively low-affinity TCRs. In this study, we attempted to improve

staining using anti-fluorochrome unconjugated primary Abs followed by secondary staining with anti-Ab fluorochrome-

conjugated Abs to amplify fluorescence intensity. Unexpectedly, we found that the simple addition of an anti-fluorochrome

unconjugated Ab during staining resulted in considerably improved fluorescence intensity with both pMHC tetramers and

dextramers and with PE-, allophycocyanin-, or FITC-based reagents. Importantly, when combined with protein kinase inhibitor

treatment, Ab stabilization allowed pMHC tetramer staining of T cells even when the cognate TCR–pMHC affinity was extremely

low (KD >1 mM) and produced the best results that we have observed to date. We find that this inexpensive addition to pMHC

multimer staining protocols also allows improved recovery of cells that have recently been exposed to Ag, improvements in the

recovery of self-specific T cells from PBMCs or whole-blood samples, and the use of less reagent during staining. In summary, Ab

stabilization of pMHC multimers during T cell staining extends the range of TCR affinities that can be detected, yields consid-

erably enhanced staining intensities, and is compatible with using reduced amounts of these expensive reagents. The Journal of

Immunology, 2015, 194: 463–474.

F
luorochrome-conjugated peptide–MHC (pMHC) multimers
are now widely used in conjunction with flow cytometry
for identifying Ag-specific T cell populations in direct

ex vivo samples (1). The staining of T cells with multimerized
pMHC circumvents the need for cellular activation required by
other T cell detection methodologies and thereby allows detection

of cells that fail to activate or that do not respond with the effector
function(s) used for function-based profiling. pMHC multimer
staining is also compatible with T cell phenotyping directly ex
vivo by using a spectrum of fluorochrome-conjugated Abs specific
for other T cell markers. Our previous studies have demonstrated
that the binding affinity threshold for staining with pMHC class I
(pMHC I) tetramers is significantly higher than that required for
T cell activation (2). Thus, pMHC tetramers fail to stain all T cell
subsets that are capable of responding to any given pMHC Ag.
The disparity between the TCR affinity required for pMHC mul-
timer staining and that required for T cell activation is highlighted
when attempting to identify T cells specific for self-derived pep-
tides (antitumor and autoimmune T cells), which generally bear
TCRs that bind relatively weakly (KD 10–300 mM) (3–5). This
issue is further compounded when staining pMHC class II (pMHC
II)-restricted T cells as, unlike the CD8 molecule, the CD4 co-
receptor does not cooperate to aid TCR–pMHC binding (1, 6–12).
The importance of this issue was highlighted by Sabatino and
colleagues (13), who demonstrated that staining with pMHC II
tetramers ex vivo underestimated the lymphocyte choriome-
ningitis virus glycoprotein61–80 and myelin oligodendrocyte
glycoprotein35–55 CD4+ T cell populations by 4- and 8-fold,
respectively. Demonstrations that pMHC tetramers can fail to
detect the majority of responding cells in polyclonal antiviral and
autoimmune T cell populations (13) highlight the pressing need to
extend pMHC multimer technology to a point where it can be used
to stain all T cells capable of responding to a given pMHC Ag (14,
15). Previously, we have described several improvements in
pMHC multimer technology that extend the range of TCR–pMHC
interactions that can be detected (1). The most promising of these
technologies include use of anti-coreceptor Abs that enhance,

*Institute of Infection and Immunity, Cardiff University School of Medicine, Uni-
versity Hospital, Cardiff CF14 4XN, Wales, United Kingdom; †Center for Cancer
Immune Therapy, Herlev University Hospital, DK-2730 Herlev, Denmark;
‡QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia;
and xDepartment of Immunobiology, King’s College London School of Medicine,
Guy’s Hospital, London SE1 9RT, United Kingdom

1A.K.S. and G.D. contributed equally to this work.

Received for publication July 14, 2014. Accepted for publication October 30, 2014.

G.D. was supported by Juvenile Diabetes Research Foundation award 17-2012-352
(to A.K.S. and M.P.). K.T. was supported by a Cardiff University Presidents Award.
V.B. was supported by Cancer Research Wales. J.J.M. is funded by an Australian
National Health and Medical Research Career Development Fellowship. A.K.S. is
a Wellcome Trust Senior Investigator. D.K.C. is a Wellcome Trust Career Develop-
ment Fellow.

Address correspondence and reprint requests to Dr. Andrew K. Sewell, Cardiff Uni-
versity School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14
4XN, Wales, U.K. E-mail address: sewellak@cardiff.ac.uk

The online version of this article contains supplemental material.

Abbreviations used in this article: 1˚, primary; 2˚, secondary; APL, altered peptide
ligand; hTERT, human telomerase reverse transcriptase; ICS, intracellular cytokine
staining; MFI, mean fluorescence intensity; PFA, paraformaldehyde; PKI, protein
kinase inhibitor; pMHC, peptide–MHC; pMHC I, pMHC class I; pMHC II, pMHC
class II; PPI, preproinsulin; P/S, penicillin and streptomycin; RT, room temperature;
TIL, tumor-infiltrating lymphocyte.

This is an open-access article distributed under the terms of the CC-BY 3.0 Unported
license.

Copyright � 2014 The Authors 0022-1767/14

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1401785

 by guest on July 3, 2017
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

mailto:sewellak@cardiff.ac.uk
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1401785/-/DCSupplemental
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.jimmunol.org/


rather than inhibit, staining (16, 17), use of protein kinase inhibitor
(PKI) during staining (18), and use of ultra-bright high-valency
reagents such as pMHC dextramers (15). Importantly, all of these
methodologies can be used in combination for synergistic effects.
In this study, we examined whether signal amplification via use of
Abs to pMHC multimers could be used for improved detection.
Our data revealed that simple addition of anti-multimer Ab during
pMHC tetramer or dextramer staining can result in substantial
improvements in staining intensity even when a log-fold lower
concentration of reagent was used. We anticipate that this im-
proved methodology will become widely adopted due to the large
potential cost saving and a substantial extension to the range of
TCR affinities that can be detected with pMHC multimers.

Materials and Methods
Cells

T cell clones/lines and tumor-infiltrating lymphocytes (TILs) were cultured
in RPMI 1640 media supplemented with penicillin and streptomycin (P/S),
L-glutamine, 10% FBS, 0.01 M HEPES buffer, nonessential amino acids,
sodium pyruvate (Life Technologies, Paisley, U.K.), 25 ng/ml IL-15
(PeproTech, Rocky Hill, NJ) (T cell clones and TILs only), and either
20 or 200 IU/ml IL-2 (aldesleukin, brand name Proleukin; Prometheus,
San Diego, CA), depending on the stage of culture. Tumor cells and sur-
rogate pancreatic b cells (19) were cultured in RPMI 1640 media sup-
plemented with P/S, L-glutamine, and 10% FBS (R10). Adherent cells
were detached from tissue culture flasks by gently rinsing the cells with
calcium and magnesium chloride–free Dulbecco’s PBS (Life Technolo-
gies), followed by incubation with Dulbecco’s PBS and 2 mM EDTA at
37˚C, until the cells detached.

We made use of the following HLA-A*0201 (HLA-A2)–restricted
CD8+ T cell clones: 1) ILA1, which is specific for the human telomerase
reverse transcriptase (hTERT)–derived peptide ILAKFLHWL (residues
540–548) (20) as well as four altered peptide ligands (APL), referred to as
8E, 4L, 5Y, and 3G, which bind to the ILA-1 TCR with varying affinities
(2, 21); 2) 1E6 and 3F2, which recognize the ALWGPDPAAA epitope
from preproinsulin (PPI: residues 15–24) and originate from the same
patient with type 1 diabetes (19); and 3) VB6G4.24, which recognizes the
heteroclitic peptide ELAGIGILTV (heteroclitic residue in boldface) from
Melan A (residues 26–35) and was derived from TILs of a patient with
malignant melanoma [patient MM909.24 (22)]. We also made use of the
HLA-DRB1*0101 (HLA-DR1)–restricted CD4+ clone DCD10, which
recognizes the PKYVKQNTLKLAT epitope from influenza A hemagglu-
tinin (residues 307–319) (23). T cell clones were routinely expanded by
restimulation with allogeneic PBMCs and PHA as previously described
(24), then cultured for at least 14 d before being used for staining, unless
stated otherwise.

Fresh blood samples were obtained by venipuncture from volunteers
(heparinized) or buffy coats (EDTA treated) from the Welsh Blood Service
in accordance with the appropriate ethical approval. PBMCs were isolated
by density centrifugation over an equal volume of Lymphoprep (Axis
Shields, Oslo, Norway). PBMCs were either used immediately or from
cryopreserved samples, with the latter being treated with 10–50 mg/ml
DNase-I (Roche, Burgess Hill, U.K.) for at least 20 min after thawing at
37˚C. We find that it is preferable to use fresh samples, as previously
frozen samples can exhibit higher background levels of staining with some
pMHC multimers. Cells were frozen in FBS with 10% DMSO using
a controlled-rate freezing device (CoolCell; Biocision, Larkspur, CA) as
per the manufacturer’s instructions and viable cell numbers enumerated by
trypan blue exclusion. Spiked samples were created by mixing clonal
T cells (104) with defrosted PBMCs (106), with the latter being cultured
(24-well plates at a density of 3 to 4 3 106/well in 2 ml R10) for 1 d prior
to staining. The spiked PBMCs were minimally HLA matched for the
restricting HLA of the spiking clone and treated as PBMC.

pMHC multimer assembly

Soluble biotinylated pMHC I and pMHC II were produced as previously
described (12, 25). Tetramers were assembled over five separate 20-min
steps with the successive addition of streptavidin-allophycocyanin or
–R-PE conjugates (Life Technologies) to monomeric pMHC at a molar
streptavidin:pMHC ratio of 1:4. Dextramer (Immudex, Copenhagen,
Denmark) PE, allophycocyanin, and FITC conjugates were assembled with
monomeric pMHC as previously described (15). Protease inhibitors (set 1;
Merck, London, U.K.) and PBS (tetramers) or dextramer buffer (15) were

added to give a final pMHC multimer concentration of 0.1 mg/ml (with
regards to the pMHC component), stored in the dark at 4˚C, and used
within 3 d of assembly. The same monomeric pMHC were used when tet-
ramers and dextramers were assembled for use within the same experiment.

PKI treatment

Cells were treated with the PKI dasatinib (Axon Medchem, Reston, VA) at
a final concentration of 50 nM (18) for 30 min at 37˚C and then stained with
tetramer or dextramer without washing or prechilling to 4˚C. It is impor-
tant to note that PKI is unstable when stored at 4˚C, so 1 mM DMSO
aliquots of PKI were stored at 220˚C. Then for each experiment, working
aliquots of 100 nM were prepared in PBS.

Primary and secondary Abs

Mouse anti-PE (clones PE001, BioLegend, London, U.K.; and eBioPE-
DLF, eBioscience, San Diego, CA), -allophycocyanin (clones APC003,
BioLegend; and eBioAPC-6A2, eBioscience), and -FITC (clone FIT-22;
BioLegend) primary (1˚) unconjugated mAbs were used at a concentra-
tion of 10 mg/ml (0.5 mg/test). Unless otherwise stated, the 1˚ Abs sourced
from BioLegend were used throughout this study. The goat anti-mouse
conjugated secondary (2˚) Abs (multiple adsorbed PE-, allophycocyanin-,
or FITC-conjugated Ig polyclonal; BD Biosciences, Oxford, U.K.) were
used at 2 mg/ml (0.1 mg/test). The fluorochrome conjugated to the 2˚ Abs
were matched to the fluorochrome used for the initial pMHC multimer
staining. Both anti-fluorochrome and anti-Ab Abs were spun at maximum
speed in a microcentrifuge for 1 min to remove any aggregates before
staining cells. The optimal amounts of 1˚ and 2˚ Abs were established
during this study using an Ab matrix on the 1E6 T cell clone. The matrix
covered a range of 1˚ and 2˚ Ab concentrations (0.25–2 mg and 0.025–0.2
mg, respectively), tested individually and in combination. The concentra-
tion used for this study was based upon the highest signal (1˚ and 2˚ Abs in
combination) to noise (2˚ alone) ratio of fluorescent intensity.

Cell staining and flow cytometry

The desired number of cells, which was typically 0.5–1 3 105 of a T cell
clone and 1–3 3 106 TILs, PBMCs, T cell line, or spiked samples, was
transferred to flow cytometry tubes. Cells were washed with buffer (PBS
with 2% FBS) before proceeding to PKI treatment or tetramer/dextramer
staining as required. Tetramer concentrations ranged from 0.02 to 2.4 mg
(0.4–48 mg/ml with respect to the monomeric pMHC concentration) per
stain in 50 ml buffer, and typically 0.3 or 0.5 mg (6 or 10 mg/ml) was used
unless stated otherwise. Dextramer was used at 0.3 mg (6 mg/ml) per stain.
Following tetramer/dextramer addition, cells were placed on ice and in the
dark for 30 min. All subsequent Ab staining of the cells was performed for
20 min on ice and in the dark. Post–pMHC multimer staining, the cells
were washed in buffer and labeled with anti-fluorochrome unconjugated 1˚
Ab, followed by two washes with buffer before the anti-Ab conjugated 2˚
Ab was added. Cells were washed with buffer then PBS and the violet
LIVE/DEAD Fixable Dead Cell Stain, Vivid (Life Technologies) added
and placed in the dark at room temperature (RT) for 5 min, and then Abs
against cell-surface markers were added directly without washing. Sam-
ples were prepared for flow cytometry by washing once in buffer and
resuspended in PBS or 2% paraformaldehyde (PFA). For whole-blood
samples, 0.1–0.125 ml heparanized blood was added to prealiquoted tet-
ramer in flow cytometry tubes and incubated for 10 min at RT, with 0.375–
0.5 ml blood being used per condition. A one-step staining approach was
adopted in which the anti-fluorochrome 1˚ Ab was added directly to the
tetramer staining for 15 min at 4˚C, followed by a mixture of Abs against
cell-surface markers and incubated for a further 15 min at 4˚C. RBCs were
lysed by incubating for 10 min at 37˚C with 2.5 ml lysis buffer (155 mM
NH4Cl, 10 mM KHCO3, and 0.01 mM EDTA [pH 7.2]) and then washed
by the addition of 2 ml of PBS. Lysis was repeated where necessary and
samples were combined for the same condition and run immediately on the
flow cytometer or fixed with 2% PFA for 20 min on ice before two washes
with PBS. A dead stain was not used for the whole-blood samples, al-
though DNA binding reagents could easily be incorporated during the
staining protocol and may give tetramer stains with less background. The
following mAbs were used depending on each experiment: anti–CD8-PE
and anti–CD8-allophycocyanin/PE-vio770 (clone BW135/80; Miltenyi
Biotec, Bergisch Gladbach, Germany); anti–CD3-PerCP (clone BW264/
56; Miltenyi Biotec); anti–CD19-Pacific blue (clone HIB19; Bio-
Legend); and anti–CD14-Pacific blue (clone M5E2; BioLegend). Typi-
cally, PBMC, spiked, and whole-blood samples were gated on single,
viable (not for whole blood), CD192CD142CD3+ lymphocytes and
displayed in bivariate CD8 versus tetramer/dextramer plots. T cell clones
were typically gated on single, viable, CD8+ or CD4+ lymphocytes
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displayed as histograms of tetramer fluorescence. Data were acquired on
an FACSCanto II (BD Biosciences) and analyzed with FlowJo software
(Tree Star, Ashland, OR).

Intracellular cytokine staining assay

Cells were washed from culture medium and incubated in resting media
(RPMI 1640 supplemented with P/S, L-glutamine, and 5% FBS) for 24 h
prior to activation. Subsequently, cells were incubated at 37˚C for 4 h,
with and without (6) APCs, at a 1:1 ratio, in 2 ml resting media (24-well
culture plate with a total cell density of 3–6 3 106/ml) containing
GolgiStop and GolgiPlug (both from BD Biosciences), according to the
manufacturer’s instructions. Cells were then stained as above with
cognate or irrelevant tetramer, 1˚ and 2˚ Ab(s), viability dye, and Abs
against desired cell-surface markers. Cells were prepared for intracel-
lular cytokine staining (ICS) by incubation with Cytofix/Cytoperm (BD
Biosciences) according to the manufacturer’s instructions (including
wash steps), before staining for 20 min on ice with mouse anti-human
IFN-g–allophycocyanin Ab (clone 45-15; Miltenyi Biotec). Cells were
stored overnight (4˚C in the dark) in 2% PFA before flow cytometry and
data analysis.

[51Cr] release cytotoxicity assay

Target cells were labeled for 1 h at 37˚C with 30 mCi chromium (sodium
chromate in normal saline; PerkinElmer, Waltham, MA) per 1 3 106 cells,
washed with R10, and allowed to leach for a further hour at 37˚C in R10 to
remove any excess chromium from the cells. After chromium labeling,
target cells were washed and plated at 2000 cells/well in 96-well tissue
culture plates. T cells were added to give the desired T cell to target cell
ratio and a final volume of 150 ml R10. Target cells were also incubated
alone or with 1% Triton X-100 detergent to give the spontaneous and total
chromium released from the target cells, respectively. After 4 h of incu-
bation, at 37˚C and 5% CO2, the supernatants were harvested (10% of total
volume), mixed with 150 ml Optipahse supermix scintillation mixture
(PerkinElmer) 96-well polyethylene terephthalate plates (PerkinElmer),
sealed, and the amount of released chromium measured indirectly on
a 1450 Microbeta counter (PerkinElmer). The percentage of specific target
cell lysis by T cells was calculated according to the following formula:
(experimental release [with T cells and target cells] 2 spontaneous release
from target cells)/(total release from target cells 2 spontaneous release
from target cells) 3 100.

Tetramer decay assays

T cell clone (5 3 105) was pretreated with PKI then stained with cognate
tetramer 6 an anti-fluorochrome unconjugated 1˚ Ab 6 a conjugated 2˚
Ab. Cells were washed with staining buffer, supernatant aspirated, and
incubated with 10 mg anti–HLA-A2 Ab (clone BB7.2, allophycocyanin
conjugated; eBioscience) or diluted in 3 ml buffer and incubated at RT in
the dark. PKI was present throughout some of the decay assays. Cells were
sampled at the times indicated in the results section, washed with excess
buffer, and fixed with 2% PFA.

Results
Addition of an anti-fluorochrome Ab substantially improves the
staining and detection of T cells with tetramer

We have previously described an important disparity between the
TCR–pMHC affinity required for T cell activation and that re-
quired for effective capture of pMHC tetramers from solution (2).
This difference means that pMHC tetramers do not stain all Ag-
specific T cell populations (2) and represents a particular problem
when pMHC multimers are used to stain self-specific or pMHC
II–restricted T cells with weaker affinity TCRs (1, 3–5, 13). We
made use of the ILA1 T cell clone that recognizes the HLA-A2–
restricted hTERT-derived peptide ILAKFLHWL. This hTERT
peptide is not naturally presented at the tumor cell surface (20)
and therefore provides a model system that is uncomplicated by
the possibility of a natural ligand. We have previously character-
ized a wide range of APL that act as agonists of the ILA1 T cell
and that range in affinity for the ILA1 TCR from KD ∼3 mM to KD

∼2 mM by surface plasmon resonance while binding to HLA-A2
equally well (2, 21). The ILA1 T cell system therefore enables the
TCR–pMHC affinity to be varied, whereas other variables such as
surface density of TCR and CD8 remain identical. Two of the
weaker APL in this system, 4L and 5Y, bind with a KD of 117 and
∼250 mM, respectively, and provide a good model for weakly
binding autoimmune TCRs. A further APL, 8E, still acts as a good
agonist of ILA1 T cells when supplied exogenously at a concen-
tration of 1 mM (2, 21) yet binds to the TCR with a KD ∼2 mM by
extrapolation of response units from surface plasmon resonance
experiments. Previously, we have devised a number of novel
techniques that lower the detection limit of pMHC multimer
staining. These include CD8-enhanced tetramers (10) and the use
of a PKI to prevent the internalization of TCRs from the cell
surface that have not productively captured pMHC multimer from
solution (18). The use of PKI considerably enhanced the range of
TCR affinities amenable to detection with pMHC tetramers (18).
When pMHC multimers are used in conjunction with PKI, the
multimers remain at the cell surface (15, 18). We reasoned that, in
the presence of PKI, pMHC multimers would be available for
further signal amplification using fluorochrome-conjugated Abs.
We therefore set up a staining protocol as shown in Fig. 1 that
included combinations of an anti-PE unconjugated 1˚ and anti-Ab
PE-conjugated 2˚ Abs as indicated. Initial experiments were
conducted using the weak ILA1 ligand HLA-A2–ILALFLHWL

FIGURE 1. Schematic representation of the test and control conditions used in this study. Alongside a standard pMHC multimer (tetramer or

dextramer) staining protocol (test 1), the binding of a mouse anti-fluorochrome unconjugated 1˚ Ab to the pMHC multimer associated fluorochrome

followed by a goat anti-mouse conjugated 2˚ Ab (test 2) was tested to see whether the fluorescence intensity of pMHC multimer staining could be

improved. A number of controls were performed: control 1: pMHC multimer with 1˚ Ab; control 2: pMHC multimer with 2˚ Ab; control 3: 1˚ Ab alone;

control 4: 2˚ Ab alone; control 5: 1˚ and 2˚ Abs in combination; and control 6: unstained. The color coding for tests 1 + 2 and controls 1 + 2 + 6 is used

throughout this study.
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(4L; KD = 117 mM). Tetramers of the weak 4L ligand barely
stained the ILA1 T cell clone in the absence of 50 nM PKI
(Fig. 2A). Addition of PKI enhanced staining by .6-fold. Further
inclusion of 1˚ and 2˚ Abs enhanced staining by ∼20-fold in the
absence of PKI and by ∼6-fold in the presence of PKI (Fig. 2A).
These results show that inclusion of Ab stabilization can have
marked effects on staining even when PKI is not included to
preclude TCR internalization. The additional increase in mean
fluorescence intensity (MFI) observed using anti-pMHC multimer
Ab in the presence of PKI confirmed that these two techniques
could be used in combination. Moreover, there was a 10-fold
enhancement in staining with tetramer and 1˚ Ab compared with
staining with tetramer alone (conditions: control 1 and test 1 in
Fig. 1, respectively). pMHC tetramer staining in the presence of
the 1˚ Ab was also almost four times brighter in the presence of
PKI. This substantial increase in pMHC tetramer staining in the
presence of a 1˚ Ab, but in the absence of any further fluoro-

chrome provided by a 2˚ Ab staining, was highly unexpected. We
next studied this unanticipated large increase in MFI afforded by
simple addition of anti-fluorochrome Ab during pMHC tetramer
staining by examining recovery of the ILA1 clone spiked into an
HLA-A2+ PBMC sample using tetrameric forms of a number of
different APL (Fig. 2B). Complete recovery of spiked ILA1
T cells was achieved in all cases when the 3G ligand (KD ∼3 mM)
was used (considered as 100% recovery). Only 71% of the cells
were recovered with pMHC tetramers of the cognate, hTERT-
derived HLA-A2–ILAKFLHWL ligand (KD ∼35 mM) in the ab-
sence of PKI treatment. This was increased to full recovery when
either PKI or 1˚ Ab were included. The greatest fluorescence in-
tensity was seen when both PKI and 1˚ Ab were included. The
effects of including 1˚ Ab during pMHC tetramer staining became
even more exaggerated with the 4L ligand (KD = 117 mM) in
which recovery with normal tetramer staining in the absence of
PKI treatment or Ab stabilization was extremely poor (6%). With

FIGURE 2. An anti-fluorochrome unconjugated Ab greatly enhanced the staining of T cells with tetramers when TCR–pMHC affinity is weak. (A) ILA1

hTERT-specific CD8+ T cells 6 50 nM PKI were stained with HLA-A2 PE-conjugated tetramers, assembled with the 4L peptide (KD = 117 mM) or

irrelevant (HLA-A2–ALWGPDPAAA, PPI) tetramers. Cells were stained with tetramers alone or with an anti-PE unconjugated 1˚ Ab, a 2˚ PE-conjugated

Ab, or 1˚ + 2˚ Abs together. The MFI is shown for each histogram. (B) In a separate experiment, the ILA1 CD8+ clone was spiked in to PBMCs from an

HLA-A2+ donor (used from frozen), treated6 PKI, and stained with PE-conjugated tetramers folded with cognate and APL agonists of the ILA1 clone (KD [mM]

shown in parentheses) or irrelevant epitope (as in A). Tetramers were used alone or in combination with anti-PE unconjugated 1˚ Ab. 2˚ Ab was not used in

this experiment to highlight the unexpected effect of 1˚ anti-fluorochrome Ab. The percentage recovery of gated cells is displayed in the inset and was

determined relative to the proportion of cells that stained with the 3G variant (considered 100%) after subtracting any background seen with the PPI

tetramer. Display is based on viable CD3+CD142CD192 cells.
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the 5Y ligand (KD ∼250 mM), full recovery was only achieved
when tetramer was used with PKI and 1˚ Ab in combination
(Fig. 2B). Remarkably, full recovery of ILA1 clone was still
possible when tetramers of the 8E ligand (KD ∼2 mM) were used
in conjunction with PKI and 1˚ Ab. In the past, we have failed to
recover cells using the 8E ligand using even our best technology to
date of PKI treatment in conjunction with higher valency, ultra-
bright, pMHC dextramers (15). Thus, the simple technology de-
scribed in this study extends the range of TCR–pMHC interactions
that are amenable to detection using pMHC multimers beyond the
current limit possible for these reagents.

Anti-fluorochrome Abs alone or in combination with
conjugated secondary Abs substantially improve staining of
autoimmune T cells with pMHC tetramers

We next looked at whether the increase in the MFI of staining with
pMHC tetramers observed with the ILA1 model system was ap-
plicable with other T cells and with pMHC multimers conjugated
to other fluorochrome molecules. For these experiments, we used
the 1E6 T cell clone that exhibits glucose-dependent killing of HLA-
A2+ human pancreatic b-cells and was derived from a patient with
type 1 diabetes (19). 1E6-mediated killing occurs via the PPI-
derived peptide ALWGPDPAAA presented by the disease risk al-
lele HLA-A2 (19). The 1E6 TCR binds to its cognate HLA-A2–
ALWGPDPAAA with a KD of .250 mM (26, 27). Fig. 3A shows
results with both PE and allophycocyanin reagents using anti-
fluorochrome unconjugated 1˚ Ab clones PE001 and APC003,
respectively. Inclusion of a 1˚ Ab and further fluorescence en-
hancement with anti-Ab conjugated 2˚ Ab increased the MFI of
staining by ∼4-fold and .5-fold for the PE and allophycocyanin
staining, respectively. In both cases, and as seen in the ILA1
system (Fig. 2A), the majority of this increase in fluorescence
intensity was apparent in the absence of a 2˚ Ab. Thus, inclusion
of a 1˚ Ab during pMHC tetramer staining can substantially in-
crease the intensity of staining of an autoimmune T cell clone with
pMHC tetramer. We also tested another anti-PE 1˚ Ab (eBioPE-
DL; BioLegend) and an anti-allophycocyanin 1˚ Ab (eBioAPC-
6A2; BioLegend), which gave increases of 3.5- and 2.4-fold, re-
spectively in the absence of a 2˚ Ab (data not shown). Similar
levels of enhancement were also observed with FITC-conjugated
reagents (dextramer FITC with corresponding reagents, data not
shown), showing that the substantial benefits afforded by addition
of anti-fluorochrome and anti-Ab Abs when staining cognate
autoimmune T cells are generally applicable and evident regard-
less of which fluorochrome is used.

Anti-fluorochrome Abs alone or in combination with
conjugated secondary Abs enhance staining of CD4 T cells
with pMHC II tetramers

The weaker average affinity of TCRs derived from MHC II–re-
stricted T cells (3) and lack of coreceptor help from CD4 (1)
means that it is generally more difficult to stain cognate T cells
with pMHC II tetramer than pMHC I tetramers (28), and pMHC II
tetramers have been shown to miss the majority of Ag-specific
T cells in polyclonal antiviral and autoimmune populations (13).
Given this limit in visualization, we next examined whether in-
clusion of anti-fluorochrome and anti-Ab Abs could be beneficial
in the pMHC II tetramer setting. For these experiments, we made
use of the HLA-DR1–restricted, influenza-specific T cell clone
DCD10. This antiviral T cell clone stains reasonably well with
cognate tetramer, with MFIs of 528 and 199 for the PE and
allophycocyanin reagents, respectively (Fig. 3B). Addition of an
anti-PE or -allophycocyanin unconjugated 1˚ Ab, used alone or in
combination with an anti-Ab conjugated 2˚ Ab enhanced the

staining of this T cell clone by 1.7- and 2.8-fold for PE reagents
and 1.6- and 3.3-fold for allophycocyanin reagents, respectively.
Thus, stabilization of pMHC II tetramers can improve the inten-
sity of cell staining with these reagents.

Ab stabilization illuminates low-affinity T cells otherwise
undetected by conventional tetramer staining and with lower
concentrations of tetramer

We next examined the effect of 1˚ and 2˚ Abs on pMHC tetramer
staining of the tumor-specific CTL clone VB6G4.24 that was
grown from the TILs derived from a patient with stage IV ma-
lignant melanoma (22). This clone efficiently kills the patient’s
autologous tumor even at low E:T ratios but does not stain by
conventional pMHC tetramer staining even when high amounts of
reagent were used (Fig. 4A). Tetramer staining of this clone was
negligible even with 2.4 mg of tetramer (with respect to the pMHC
component). Addition of an anti-PE unconjugated 1˚ Ab enabled
staining of this clone with most of the cognate pMHC tetramer
amounts tested and as low as 0.6 mg (with respect to the pMHC I
component) of tetramer. Further inclusion of an anti-Ab PE-
conjugated 2˚ Ab doubled the staining observed with the 1˚ Ab,
but as before, the majority of the enhancement in MFI was pro-
vided by inclusion of the 1˚ Ab alone.

FIGURE 3. Enhanced tetramer staining of an autoimmune T cell and an

MHC II–restricted T cell with anti-fluorochrome unconjugated and second-

ary conjugated Abs. (A) PKI-treated CD8+ T cell clone 1E6 was left

unstained or stained with PE and allophycocyanin-conjugated cognate HLA-

A2–ALWGPDPAAA (PPI) cognate and HLA-A2–ELAGIGILTV (Melan-A)

irrelevant tetramers, alone or with an anti-fluorochrome unconjugated 1˚

Ab 6 PE- or allophycocyanin-conjugated 2˚ Ab. (B) The CD4+ T cell clone,

DCD10, was left unstained or stained from culture with cognate HLA-DR1–

PKYVKQNTLKLAT (hemagglutinin of influenza) or irrelevant HLA-DR1–

DRFYKTLRAEQASQ (p24 Gag of HIV) PE- and allophycocyanin-conju-

gated tetramer as described in (A). MFIs are shown at the right of each graph.
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Tetramers are most commonly used to stain antipathogen CD8+

T cells and have excelled for such applications (1, 29, 30). The TCRs
of CD8+ T cells raised against non–self-peptides tend to bind with
relatively strong affinity to their cognate pMHC Ag (KD 0.1–10 mM)
(3, 5, 31). We used tetramers to stain CMV-specific T cell pop-
ulations directly ex vivo and showed that inclusion of Ab allowed
full recovery of CMV-specific T cells from PMBC samples even
when .300-fold lower concentrations of pMHC tetramer were used
(just 3 ng with respect to pMHC). CMV-specific T cells could not be
detected as a separate distinct population of cells in the absence of
Ab when this amount of pMHC tetramer was used for staining
(Fig. 4B). Thus, the methodology described in this study allows
recovery of T cells with dramatically lower amounts of pMHC
multimer regardless of the TCR–pMHC affinity and is compatible
with ex vivo staining of PBMC. Lower concentrations of tetramer
could also be used when recovering the 1E6 PPI-specific clone from
spiked HLA-A2+ PBMC samples. Addition of a 1˚ Ab resulted in
recovery of .80% of the 1E6 cells even when 25-fold less pMHC
tetramer was used. Inclusion of a 2˚ Ab allowed full recovery of
cells, even when 25-fold less tetramer was used (data not shown).

Ab stabilization of pMHC tetramer and dextramers gives
superior recovery of T cells from multiple sources

We next compared pMHC multimer staining of a T cell line, TILs,
and PBMC samples using the following conditions: 1) pMHC

multimer alone (test 1, Fig. 1); 2) pMHC multimer + anti-PE
unconjugated 1˚ Ab (control 1, Fig. 1); and 3) pMHC multimer +
the 1˚ Ab + anti-Ab PE-conjugated 2˚ Ab (test 2, Fig. 1) (Fig. 5).
Fig. 5A shows classic tetramer staining of an HLA-A2–restricted
influenza matrix-specific T cell line. As expected, the cognate
CD8+ T cells in this antiviral line stain well with tetramer. Nev-
ertheless, inclusion of a 1˚ Ab during staining almost doubled the
MFI and resulted in recovery of a ∼25% greater population of
cells. Further inclusion of a 2˚ Ab resulted in a further minor
increase in both MFI and percent population recovered. We next
applied the same conditions in the presence of PKI for staining of
HLA-A2–ELAGIGILTV-specific cells in TILs expanded from
a melanoma lesion (Fig. 5B). A total of 2.3% of the cells in these
TILs stained with Melan-A–specific pMHC tetramer. The size of
this population almost doubled when 1˚ Ab was included in the
protocol. The population recovered increased from 3.9 to 4.9%
when a 2˚ Ab was also included. In an independent assay using the
same TILs, the Melan-A specific T cell population segregated into
two clean populations when 1˚ and 2˚ Abs were included with
tetramer (Supplemental Fig. 1A). The VB6G4.24 T cell clone
shown in Fig. 4A was cloned from these TILs and is effective at
killing patient autologous tumors. This clone does not stain with
pMHC tetramer (Fig. 4A), so we assume that this clone is one of
the T cell clonotypes that fails to stain using tetramer alone in the
presence of PKI in Fig. 5B. Importantly, staining can be recovered

FIGURE 4. Anti-fluorochrome and secondary Abs

enable staining of weak-avidity T cells at lower

concentrations of tetramer. (A) The CD8+ VB6G4.24

T cell clone, grown from TILs from a malignant

melanoma patient, kills autologous tumor (top left

panel). The clone was stained with various amounts

of PE-conjugated cognate HLA-A2–ELAGIGILTV

(Melan-A) and irrelevant HLA-A2–ALWGPDPAAA

(PPI) tetramers. Fresh cells were left unstained or

stained with tetramer alone or with an anti-PE un-

conjugated 1˚ Ab 6 PE conjugated 2˚ Ab. The bot-

tom left panel shows the MFI of tetramer staining,

which is shown in the histograms (right panel). (B)

Fresh HLA-A2+ PBMC was stained with HLA-A2–

NLVPMVTAV (pp65 of CMV, top panel) or PPI

(bottom panel) PE-conjugated tetramers. Cells

stained with 0.003 mg were either stained with tet-

ramer alone or tetramer with a combination of 1˚ and

2˚ Abs, as described in (A). The proportion of cells

that stained with 0.003 mg of tetramer is expressed

as a percentage (inset) of the cells that stained with

1 mg of tetramer after subtraction of any background

seen with the PPI tetramer (bottom panel). PBMC

were stained for viability and Abs against CD8,

CD3, CD14, and CD19. No pretreatment with PKI

was used throughout.
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when 1˚ Ab and 1˚ + 2˚ Abs were included in the staining pro-
tocol. Enhanced tetramer staining was also seen when tumor-
specific T cells were relatively abundant. The aforementioned
TILs were enriched for Melan-A–specific cells by coculture with
autologous tumor for 5 d. Twice as many cells were stained with
Melan-A tetramers when 1˚ and 2˚ Abs (9.4% versus 18.9%) were
included, which represents a considerable increase in the number
of T cells being detected (Fig. 5C). Thus, pMHC tetramer staining
in the absence of Ab stabilization can fail to recover effective
cognate CD8+ T cells resulting in a large underestimation of the
size of an Ag-specific T cell population. This large underestima-
tion of effective, Ag-specific CD8+ T cells with pMHC I tetramer
is in accordance with a previous study that showed that most Ag-
specific CD4+ T cells could not be detected by pMHC II tetramer
staining of ex vivo samples (13).
pMHC multimers are most commonly used for detecting Ag-

specific T cell populations directly ex vivo. To compare various

methodologies available in this context, we took advantage of the
fact that there is a relatively large population of naive T cells in
HLA-A2+ individuals that recognize a commonly used variant of
a self-peptide from the Melan-A protein (sequence ELAGI-
GILTV) due to a hardwired germline-encoded recognition motif
(32, 33). Some of these self-specific CD8+ T cells can be detected
by regular tetramer staining (Fig. 5D). The size of this population
increases from 0.03% of CD3+CD8+ cells to 0.09 and 0.11% of
cells when 1˚ Ab and 1˚ + 2˚ Abs were included, respectively. We
recently used this system to show that pMHC dextramers were
better at recovering low-avidity T cells when compared with
pMHC tetramers, with the best recoveries seen when dextramers
were used in the presence of PKI (15). The same effect was also
observed in this study in which use of pMHC dextramer gave 6.6-
fold more cells being recovered than with the equivalent pMHC
tetramer alone in the absence of PKI and 5.2-fold in the presence
of PKI (Fig. 5D). We also tested the effect of Ab with pMHC

FIGURE 5. Ex vivo staining and detection of T cells is improved by the addition of an anti-fluorochrome and conjugated secondary Ab to standard

pMHC multimer staining protocols. (A) AT cell line primed with GILGFVFTL peptide from the influenza virus (flu) was treated with PKI and stained with

cognate HLA-A2 PE-conjugated cognate and control (HLA-A2-RLGPTLMCL from MG50 protein) tetramers (Tet), alone or in combination with anti-PE

unconjugated 1˚ Ab 6 a PE-conjugated 2˚ Ab. (B) TILs from an HLA-A2+ metastatic melanoma patient were treated with PKI and stained with HLA-A2–

ELAGIGILTV (Melan-A) or HLA-A2–ALWGPDPAAA (PPI) PE-conjugated tetramers and Abs as in (A). (C) The staining described in (B) was performed

on TILs that had been cultured with autologous tumor for 5 d. (D) HLA-A2+ PBMCs taken directly ex vivo were incubated 6 PKI and stained with HLA-

A2–ELAGIGILTV or HLA-A2–ILAKFLHWL (hTERT) PE-conjugated tetramers or dextramers (Dex) and Abs as described in (A). Samples were mini-

mally stained for viability, CD3, and CD8, with CD14 and CD19 also being stained in (C). The tetramer+ cells are expressed as a percentage of total cells (A

and B) or CD8+ cells (C) and the MFIs are shown (inset).
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dextramers, which increased recovery from 0.20% for dextramer
alone, to 0.33 and 0.36% when 1˚ Ab and 1˚ + 2˚ Abs were in-
cluded, respectively. In the presence of PKI, the recovery of cells
increased from 0.68% (dextramer alone) to 1.06 and 1.53% when
1˚ Ab and 1˚ + 2˚ Abs were included. In accordance with our
earlier results, higher numbers of CD8+ T cells stained with
pMHC dextramer than with pMHC tetramer, reflecting the ability
of these higher valency reagents to stain T cells bearing lower-
affinity TCRs. Optimal recovery was seen with PKI + pMHC
dextramer + 1˚ + 2˚ Abs. The population recovered using this
combination was 50-fold greater than could be recovered with
pMHC tetramer alone, with no PKI, and 11-fold greater when
pMHC tetramer was used with PKI. Staining of PKI-treated
PBMCs from a second donor with Melan-A dextramers + 1˚ +
2˚ Abs recovered 11-fold more cells than Melan-A tetramers alone
(Supplemental Fig. 1B). Overall, in terms of cellular recovery and
regardless of PKI treatment, pMHC dextramer + 1˚ + 2˚ Ab .
pMHC dextramer + 1˚ Ab. pMHC dextramer. pMHC tetramer +
1˚ + 2˚ Abs . pMHC tetramer + 1˚ Ab . pMHC tetramer.

Ab stabilization is compatible with whole-blood staining with
pMHC tetramers

We next tested the compatibility of Ab stabilization when staining
whole blood with pMHC tetramers. Blood samples from two HLA-
A2+ healthy donors were stained with four different pMHC tet-
ramers as described in the Materials and Methods. Donor 1 had
populations of CD8+ T cells that stained with HLA-A2-
GILGFVFTL (influenza) and HLA-A2–ELAGIGILTV (Melan-A)
tetramers with MFIs of 2334 and 1032, respectively, for the
gates shown in Fig. 6. These MFIs increased to 7276 and 4095
when a 1˚ anti-PE Ab was included, and the number of cells
staining with the ELAGIGILTV Melan-A–specific reagent dou-

bled. Donor 2 had populations of T cells that stained with HLA-
A2–CLGGLLTMV (EBV) and HLA-A2-NLVPMVTAV (CMV)
tetramers, with the 1˚ Ab increasing the MFI of tetramer staining
from 613 to 2115 and 674 to 5774, respectively. We conclude that
Ab stabilization of pMHC multimers is compatible with whole-
blood staining protocols.

Ab stabilization of pMHC tetramers improves recovery of
T cells that have recently been exposed to Ag

Ag engagement is known to trigger and downregulate TCR from
the T cell surface (34) and makes pMHC multimer staining more
difficult due to low TCR density (15). This aspect could be
problematic if staining pathogen-specific T cells during acute or
chronic infections. It is also likely that self-specific T cells, be
they antitumor T cells in TILs or of autoimmune origins, will have
recently encountered their cognate Ag in vivo prior to staining. We
mimicked this situation by exposing TIL to autologous tumor or
autoimmune T cells to target cells endogenously producing cog-
nate self-Ag prior to examining cellular recovery with pMHC
multimers. TILs from an HLA-A2+ metastatic melanoma patient
were incubated with brefeldin A and monensin 6 autologous tu-
mor for 4 h prior to staining with Melan A tetramer and intra-
cellularly with anti–IFN-g Ab (Fig. 7A). After exposure to tumor,
tetramer alone, tetramer with an anti-PE unconjugated 1˚ Ab 6
anti-Ab PE-conjugated 2˚ Ab recovered 29, 62, and 80% of the
ELAGIGILTV-specific T cells that could be recovered without
prior exposure to tumor, respectively. We also examined staining
of the 1E6 PPI-specific T cell clone after incubation with K526
cells expressing HLA-A2 or K526 cells expressing HLA-A2 and
PPI, with the latter termed "surrogate pancreatic b cells." Staining
of 1E6 cells was very poor with tetramer alone postexposure
to K526 cells expressing the cognate Ag compared with when

FIGURE 6. Ab stabilization is compatible with whole-

blood staining with pMHC multimers. Fresh heparinized

whole blood from two HLA-A2+ donors was treated with

PKI then added to prealiquoted PE- (donor 1) or allo-

phycocyanin-conjugated (donor 2) tetramers. Both donors

were stained with HLA-A2–ALWGPDPAAA (PPI) tetra-

mer. Donor 1 was stained with HLA-A2–GILGFVFTL

(influenza [Flu]) and HLA-A2–ELAGIGILTV (Melan-A)

tetramers and donor 2 with HLA-A2–CLGGLLTMV

(EBV) and HLA-A2–NLVPMVTAV (CMV) tetramers.

Anti-PE or allophycocyanin unconjugated 1˚ Ab was

added directly to the cells, followed by a mixture of Abs

against cell-surface markers (CD19, CD14, CD3, and

CD8) before lysis of RBCs. A total number of 33 105 and

1 3 105 CD3+CD192CD142 cells were acquired from 0.5

ml and 0.375 ml of whole blood for donors 1 and 2, re-

spectively. The percentage of cells residing within the gate

and the MFI of this population are shown for each plot.
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1˚ Ab 6 2˚ Ab, were used (11, 80, and 90% of the cells stained
with each condition, respectively; Fig. 7B). This staining pattern

was reflected when 1E6 cells that had been incubated with K526

cells 6 cognate Ag were spiked into HLA-A2+ PBMC. Tetramer +

1˚ + 2˚ Abs was able to recover 94% of the cells that had been

exposed to K526 surrogate b cells, whereas recovery with tetramer +

1˚ Ab or tetramer alone was 35 and 0.2%, respectively (Fig. 7C).

These results confirm our previous findings that tetramers are poor at

recovering T cells following exposure to cognate Ag (15) but show

that the inclusion of 1˚ or 1˚ + 2˚ Abs against tetramer as described

in Fig. 1 can reverse most of this effect and enable effective T cell

staining (Fig. 7B, 7C).

Ab stabilizes pMHC tetramer at the T cell surface

When we initially saw that inclusion of an unconjugated anti-
fluorochrome Ab dramatically improved theMFI of staining during

pMHC tetramer staining, we considered the possibility that the

1˚ Ab might function by somehow stabilizing the fluorochrome

and/or enhancing its ability to emit detectable fluorescence. Sub-

sequent experiments showed the same affect with different Ab

clones and MFI enhancements with anti-allophycocyanin or anti-

FITC Abs and appropriate fluorochrome-conjugated pMHC mul-

timers (Fig. 3 for allophycocyanin data, FITC not shown). We

further tested the stabilization of fluorochrome hypothesis by us-

ing an unconjugated 1˚ Ab against the streptavidin component of

FIGURE 7. Activated T cells can be

detected when tetramers were used with

anti-fluorochrome and secondary Abs. (A)

TILs from a HLA-A2+ metastatic mela-

noma patient were incubated with bre-

feldin A and monensin, 6 autologous

tumor. Cells were stained with cognate

HLA-A2–ELAGIGILTV (Melan A) or

HLA-A2–ALWGPDPAAA, PPI) PE-con-

jugated tetramers (Tet) alone or further

labeled with an anti-PE unconjugated

1˚ Ab 6 PE conjugated 2˚ Ab. Cells were

also stained intracellularly for IFN-g. Tet-

ramer+ cells (red box) from the TILs with

autologous tumor are expressed as a per-

centage (inset, top panel) of tetramer+ cells

(Tet + 1˚ + 2˚ Abs) from the TILs alone

after subtracting the number of gated cells

seen with the PPI tetramer (bottom panel).

(B) The CD8+ T cell clone 1E6, specific for

ALWGPDPAAA from PPI, was incubated

with K562-A2+ or K562-A2+ that express

PPI (the latter process and present the

cognate epitope). At 24 h postincubation,

the cells were treated with 50 nM PKI and

stained with cognate or irrelevant (HLA-

A2–ILAKFLHWL, hTERT) tetramer alone

or further labeled with an anti-PE 1˚ Ab 6
a PE-conjugated 2˚ Ab. The percentages of

1E6 detected above the staining with an

irrelevant tetramer are displayed for each

histogram. (C) From the same experiment

in (B), the 1E6 clone that had been cocul-

tured with K562 or K562-PPI was spiked

in to CD3/CD28-amplified PBMCs (HLA-

A2+) and then PKI treated and stained as

described in (B). The proportion of HLA-

A2–ALWGPDPAAA tetramer+ cells (gated)

from 1E6 activated with K562-PPI is

expressed as a percentage of HLA-A2–

ALWGPDPAAA tetramer+ cells (stained

with Tet + 1˚ + 2˚ Abs) from 1E6 cultured

with K562 (top panel). The gates are based

on staining with an irrelevant tetramer

(bottom panel). All cells were stained for

viability and expression of CD3 and CD8.
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the tetramer. Anti-streptavidin 1˚ Ab enhanced the MFI of tetramer
staining, although not as impressively as the anti-fluorochrome Ab
tested alongside (data not shown). The reduced effect of an anti-
streptavidin Ab compared with anti-PE Ab may reflect steric
difficulties in Ab binding to streptavidin in a PE-conjugated
pMHC tetramer. Overall, there was fluorochrome-independent
1˚ Ab-induced enhancement of tetramer staining regardless of
which anti-pMHC tetramer Ab was used. This made it more
likely that the Ab was functioning by stabilizing pMHC multi-
mer at the T cell surface during the staining protocol. We for-
mally tested this hypothesis using the PPI-specific 3F2 CD8+

T cell clone that bears an identical TCR to the 1E6 T cell clone.
T cells were stained 6 PKI with cognate and control pMHC
tetramer. Samples were fixed with PFA immediately after
staining and washed or taken through subsequent incubations
and washing steps. Surprisingly, almost half of the staining with
pMHC tetramer was lost (Fig. 8A); this loss was greatest in the
absence of PKI. In contrast, the intensity of the initial staining
was maintained in the presence of PKI and 1˚ Ab (Fig. 8). Tet-
ramer staining was completely stable when 1˚ Ab or 1˚ + 2˚ Ab
was included and cells were diluted (Fig. 8B). In contrast, al-
most half of the staining was lost in just 30 min under the
same conditions without inclusion of anti-pMHC tetramer Ab
(Fig. 8B). We also performed pMHC tetramer off rate experiments
in the presence of anti–HLA-A2 Ab to prevent rebinding of TCRs
(Fig. 8C) (12). These conditions exaggerate the dissociation of
pMHC multimer from the cell surface and showed that addition of 2˚
Ab with the 1˚ Ab did not further alter the decay rate (Fig. 8C). The
MFIs of staining in the presence of competing pMHC Ab highlighted
the differences in staining intensities over time with the different
conditions (Fig. 8D). We conclude that cross-linking of pMHC
multimer substantially reduces its dissociation from the cell surface
after staining. Presumably, this effect is also at play during regular
staining and washing protocols. Such losses could be very substantial
given that our own standard ICS protocol involves 12 washes and 3
incubation steps, thereby providing ample opportunity for pMHC
multimer staining to decrease due to dissociation from the T cell
surface. Overall, it appears that there is a large loss of tetramer from
the cell surface over time when stained cells are incubated on ice
as during most pMHC multimer, ICS, and Ab phenotyping experi-
ments. This loss can be largely prevented by stabilizing pMHC
multimer at the cell surface using anti-fluorochrome 1˚ Ab.

Discussion
Fluorescent pMHC multimers are now part of the standard toolset
for the study of Ag-specific T cells (1), but the binding affinity
threshold for staining with these tools can be significantly higher
than that required for T cell activation (2, 13). Thus, pMHC tet-
ramers fail to stain all T cells that are capable of responding to the
pMHC used in the multimer, and there is a pressing need for
reagents that can stain T cells with relatively weak affinity TCRs
such as those that predominate in cancer-specific, autoimmune, or
MHC II–restricted T cell populations. In this study, we examined
whether a combination of anti-fluorochrome unconjugated 1˚ Ab
followed by anti-Ab conjugated 2˚ Ab could be used to boost the
fluorescence signal during pMHC multimer staining and detection
by flow cytometry. Our initial experiments with the ILA1 T cell
clone and the weak 4L ligand showed that a combination of 1˚ and
2˚ Abs could boost the MFI by ∼20-fold compared with regular
tetramer staining. A 6-fold boost in fluorescence was still observed
when the staining was performed in the presence of the PKI
dasatinib that we have previously shown affords considerable
advantages during T cell staining with multimerized pMHC (1, 15,
18). Signal amplification by including a combination of 1˚ and 2˚

Abs was not wholly unexpected, although the 20-fold increase
observed was higher than expected based on calculations of how
much extra fluorochrome this procedure was expected to deliver.
We were also very surprised to observe that the majority of the

signal boost apparent with a combination of 1˚ and 2˚ Ab was still
present when only the unconjugated 1˚ Ab was used. The sub-
stantial increase in MFI observed in the presence of anti-pMHC
tetramer Ab might represent an inexpensive and easy way to in-
crease the utility of pMHC multimers and warranted further in-
vestigation. Recovery of ILA1 T cells spiked into HLA-A2+

PBMC using pMHC tetramers of the 4L, 5Y, and 8E variant that
bind with KDs of 117, ∼250, and ∼2000 mM was 6, 0.1, and 0%,
respectively, with regular tetramer staining. These levels increased
to 100, 33, and 19%, respectively, when a 1˚ Ab was included
during staining. Remarkably, all of the clone could be recovered
with pMHC tetramers of all these ligands when 1˚ Ab was in-
cluded with PKI and we were able to see effective staining of the
ILA1 T cell with the 8E variant agonist. We conclude that the
inclusion of anti-fluorochrome 1˚ Ab during pMHC tetramer
staining substantially increases both the intensity of staining and
the range of TCR–pMHC interactions that can be used to detect
T cells using these reagents. The increase in staining we observed
when an anti-pMHC multimer Ab is included is a general effect
that was also seen with other Ab clones against PE and when
allophycocyanin- or FITC-based pMHC multimers were used in
combination with Abs against the relevant fluorochrome. Inclu-
sion of 1˚ Ab during pMHC tetramer staining also enabled good
detection of T cells even when substantially less pMHC reagent
was used. The benefits of including Ab were evident when
staining T cells specific for viral, tumor, and autoimmune Ags and
with both pMHC tetramers and pMHC dextramers. There was a
distinct hierarchy of cellular recovery of antitumor T cells from a
PMBC sample that ran dextramer + 1˚ + 2˚ Abs . dextramer +
1˚ Ab . dextramer . tetramer + 1˚ + 2˚ Abs. tetramer + 1˚ Ab .
tetramer. Thus, addition of Abs against pMHC multimers during
staining improves MFI and cellular recovery with both pMHC
tetramers and pMHC dextramers. The most sensitive staining pro-
tocol used a combination of: 1) pMHC dextramer; 2) PKI; 3) anti-
fluorochrome unconjugated Ab; and 4) anti-Ab conjugated 2˚ Ab.
It is well documented that TCRs downregulate from the T cell

surface once they are triggered (34). Thus, T cells that have re-
cently engaged cognate Ag exhibit a lower surface density of TCR
and are more difficult to stain with pMHC multimers (15). This
issue becomes particularly problematic when attempting to iden-
tify self-specific T cells (anticancer or autoimmune) that tend to
bear lower affinity TCRs (3) and might be expected to have had
a reasonable chance of recent Ag encounter in vivo. When pMHC
tetramer staining ELAGIGILTV-specific T cells in the TILs ex-
panded from an HLA-A2+ patient with stage IV melanoma after
exposure to autologous tumor, 80% of the original population
could be recovered after pMHC tetramer staining with 1˚ and 2˚
Abs. This compared with just 29% with tetramer alone. Similarly,
almost all of the 1E6 PPI-specific T cells spiked into HLA-A2+

PBMC after incubation with HLA-A2+ cells expressing PPI could
be recovered using pMHC tetramer + 1˚ and 2˚ Abs, whereas none
of the cells could be recovered when stained with pMHC tetramer
alone. Thus, addition of Ab against pMHC multimers during
cellular staining can considerably improve detection of self-
specific T cells that have recently encountered Ag.
We finally examined the mechanism by which staining was

enhanced. The rational of using an unconjugated 1˚ Ab in com-
bination with a conjugated 2˚ Ab was to boost the amount of
fluorochrome that could be loaded onto Ag-specific T cells using
pMHC multimers. In some cases, this methodology increased the
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staining intensity of cognate T cells by ∼20-fold. Simple arith-
metic suggested that the additional fluorochrome added with
a combination of 1˚ and 2˚ Ab could not explain the majority of
the increase in MFI we observed. Experiments confirmed that the
majority of the increase in MFI observed with 1˚ and 2˚ Abs
during staining as described could be induced by addition of just
1˚ Ab. Further experiments showed that the enhancement afforded
by addition of Ab against pMHC tetramers extended to reagents
manufactured with allophycocyanin and FITC specificities in
addition to PE and could be induced with all Ab clones tested.
These experiments, and enhancement observed when using anti-
streptavidin Ab, rule out the possibility that our original obser-
vation was due to an Ab-induced effect on fluorochrome emission.
Instead, it seemed more likely that the major effect observed was
due to an increase in stabilization via a substantially reduced off
rate. Experiments designed to look at tetramer off rates during

standard staining incubations showed that there was a large loss of
tetramer staining during the course of experiments in the absence
of anti-pMHC tetramer Abs. Addition of an Ab against pMHC
tetramer reversed the majority of this loss.
Although the inclusion of both unconjugated 1˚ and conjugated

2˚ Abs gave the best results, our laboratory now routinely stains
using only the former Ab. Use of just 1˚ Ab provides the vast
majority of the enhancement at very little cost (,$0.25 per stain).
Addition of unconjugated 1˚ Ab does not introduce any risk of
increased background staining that is possible with the further
addition of fluorochrome-conjugated 2˚ Abs. Importantly, the
procedures described in this study have been compatible with all
of the polychromatic T cell phenotyping we have attempted to
date, providing the tetramer + 1˚ 6 2˚ Abs are applied prior to
other Abs. Nevertheless, it should be noted that anti-fluorochrome
Abs are bivalent, resulting in the potential that if one binding site

FIGURE 8. Stabilization with an anti-fluoro-

chrome Ab preserves tetramer staining at the surface

of T cells. (A) The CD8+ T cell clone 3F2 was

treated with 50 nM PKI, or left untreated, and

stained with cognate HLA-A2–ALWGPDPAAA

(from preproinsulin) PE-conjugated tetramers or ir-

relevant HLA-A2–NLVPMVTAV (from CMV) tet-

ramers. Cells were stained with tetramer alone

(gray) or tetramer with anti-PE unconjugated 1˚ Ab

(red) 6 a PE-conjugated secondary 2˚ Ab (blue).

Once stained with tetramer6 1˚ Ab 6 2˚ Ab (Start),

the cells were taken through three incubations (20

min on ice) and associated wash steps (two times)

before being analyzed (Finish). The histogram shows

the staining at the start of the assay. (B) 3F2 was

treated with PKI and stained as in (A), then diluted in

an excess volume of buffer (3 ml), and incubated at

RT for the times shown. The histogram shows the

staining at the start of the assay. (C and D) From the

same experiment in (B), cells were incubated at RT

with an anti–HLA-A2 Ab (BB7.2) in 0.1 ml of

buffer and samples taken at the times shown. Graphs

display the percentage of tetramer staining relative

to the start of the experiment for each condition (A–

C) or the MFI (C). PKI was present throughout the

assay for (B)–(D).
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were not occupied by cross-linking pMHC multimer, then it could
be available to bind Abs coupled to tandem dyes, leading to po-
tential artifacts in phenotypic measurements. Although our own
preferred staining protocol includes PKI staining and only 1˚ Ab,
all of the methodologies used in this study show additive benefits
for both the MFI of staining and the range of TCR interactions that
are amenable to detection, thereby allowing researchers to adjust
protocols to suit their own individual needs and circumstances.
In summary, we show that including Abs against pMHC tet-

ramers or dextramers during cell staining can result in substantial
improvements in both the MFI of staining and the range of TCR
interactions amenable to detection, thereby revealing important
cell populations that could not be identified otherwise. The best
results were observed with a combination of pMHC multimer,
PKI, anti-fluorochrome 1˚ Ab, and anti-Ab conjugated 2˚ Ab. Sur-
prisingly, the majority of the benefits observed with this protocol
were still evident when only the 1˚ Ab was included. In addition
to increased MFI and a weaker TCR affinity threshold required
for staining, inclusion of Ab also allowed use of log-fold lower
pMHC multimer reagent concentrations. The mechanism for these
unanticipated affects appears to involve stabilization of reagent
capture at the T cell surface during the staining protocol. We
anticipate that this improved methodology will become routinely
adopted during pMHC multimer staining, as it represents a con-
siderable improvement in the brightness of staining, an extension
in the scope of interactions that can be detected, and large po-
tential cost savings compared with existing technology.
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Supplementary Figure 1: Ex vivo staining and detection of T-cells is improved by the addition of 
an anti-fluorochrome and conjugated secondary antibody to standard pMHC multimer staining 
protocols. (A) TILs from a HLA-A2+ metastatic melanoma patient were left unstained or stained with 
HLA-A2-ELAGIGILTV (from Melan-A) PE conjugated tetramers ± an anti-PE unconjugated 1° Ab ± a 
PE conjugated 2° Ab. These TILs did not stain with irrelevant tetramer (e.g. Figure 5). (B) Peripheral 
blood mononuclear cells (PBMCs) from a healthy donor were stained ex vivo with tetramers or 
dextramers (HLA-A2-ELAGIGILTV) and Abs as in A. Samples were minimally stained for viability, CD3 
and CD8, with CD14 and CD19 also being stained in B. The tetramer+ cells are expressed as a 
percentage of total cells (A) or CD8+ cells (B) and the mean fluorescence intensity shown inset. Cells 
were pre-treated with PKI throughout. 

Supplementary	
  Figure	
  1.	
  Tunga3	
  et	
  al.	
  



More tricks with tetramers: a practical guide to staining T cells

with peptide–MHC multimers

Garry Dolton,1,* Katie Tungatt,1,*

Angharad Lloyd,1 Valentina

Bianchi,1 Sarah M. Theaker,1

Andrew Trimby,1 Christopher J.

Holland,1 Marco Donia,2 Andrew J.

Godkin,1 David K. Cole,1 Per Thor

Straten,2 Mark Peakman,3 Inge

Marie Svane2 and Andrew K. Sewell1

1Division of Infection and Immunity, Cardiff

University School of Medicine, Cardiff, UK,
2Centre for Cancer Immune Therapy, Herlev

University Hospital, Herlev, Denmark and
3Peter Gorer Department of Immunobiology,

King’s College London, Guy’s Hospital,

London, UK

doi:10.1111/imm.12499

Received 3 May 2015; accepted 27 May

2015.

*These authors contributed equally.

Correspondence: Andrew K. Sewell, Division

of Infection and Immunity, Henry Well-

come Building Cardiff University School of

Medicine, University Hospital, Cardiff,

Wales CF14 4XN, UK.

Email: sewellak@cf.ac.uk

Senior author: Andrew Sewell

Summary

Analysis of antigen-specific T-cell populations by flow cytometry with pep-

tide–MHC (pMHC) multimers is now commonplace. These reagents allow

the tracking and phenotyping of T cells during infection, autoimmunity

and cancer, and can be particularly revealing when used for monitoring

therapeutic interventions. In 2009, we reviewed a number of ‘tricks’ that

could be used to improve this powerful technology. More recent advances

have demonstrated the potential benefits of using higher order multimers

and of ‘boosting’ staining by inclusion of an antibody against the pMHC

multimer. These developments now allow staining of T cells where the

interaction between the pMHC and the T-cell receptor is over 20-fold

weaker (KD > 1 mM) than could previously be achieved. Such improve-

ments are particularly relevant when using pMHC multimers to stain

anti-cancer or autoimmune T-cell populations, which tend to bear lower

affinity T-cell receptors. Here, we update our previous work to include dis-

cussion of newer tricks that can produce substantially brighter staining

even when using log-fold lower concentrations of pMHC multimer. We

further provide a practical guide to using pMHC multimers that includes a

description of several common pitfalls and how to circumvent them.

Keywords: peptide–MHC dextramer; peptide–MHC tetramer; T-cell

receptor; T cell.

Introduction

The ab T-cell antigen receptor (TCR) allows T cells to

inspect the proteome for anomalies by sampling peptide

antigens cradled in either MHC class I or II molecules at

the cell surface.1,2 The interaction between TCR and

peptide–MHC (pMHC) is weak, and typically only lasts a

few seconds. Multimerization of soluble pMHC can

considerably extend the half-life of this interaction due to

the avidity effect,3 and can thereby produce reagents that

stably adhere to the cell surface of T cells bearing a cognate

TCR. Peptide-MHC multimers in the form of avidin–bio-
tin-based pMHC tetramers were first used to stain T cells

by Altman et al. in 19964 and have gone on to transform

the analysis of antigen-specific T-cell populations. Peptide-

MHC multimers have been used in many thousands of

studies and spawned the generation of several commercial

companies that sell various forms of these reagents.3 More-

over, pMHC multimers can be used in conjunction with a

cocktail of antibodies raised against other cell surface pro-

teins. This enables co-staining of antigen-specific T cells

and segregation into various phenotypic populations

without the distortion associated with function-based pro-

filing.5–9 Such phenotyping can be informative on antigen-

experience, effector function, and also location of original

antigen encounter, thereby allowing researchers to begin to

deconvolute the complexities of T-cell immunity.

Peptide–MHC multimers are most commonly linked to

fluorochromes, and used to detect T cells by conventional

flow cytometry,10 although next-generation technology

uses pMHC multimers and antibodies that are linked to

rare metal ions (typically lanthanides), which are then

detected via mass spectrometry (MS).6,7,11 This cytometry

by time of flight, or ‘mass cytometry’, offers several

advantages over conventional fluorescent cell sorting, but

also comes with some major disadvantages. One advan-

tage of MS-based detection is that heavy metal ion-based

detection is not limited to the ~ 20 parameters possible
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with conventional flow cytometers; metal-ion-conjugated

antibodies and pMHC multimers could, in theory, be

used to separate cells in over 100 dimensions. MS detec-

tion of heavy metal ions also allows greater sensitivity,

and does not suffer from the spectral overlap or spread-

ing error that is associated with detection of emission

from fluorochromes. One major drawback of mass

cytometry is that it does not yet allow cell sorting on the

light-based properties of forward and side scatter.

Furthermore, it incinerates cells, so making it impossible

to collect them. These shortcomings mean that mass

cytometry is unlikely to fully supplant conventional,

fluorochrome-based cytometry for the analysis of antigen-

specific T-cell populations.11

Limitations of pMHC multimer staining

Peptide–MHC multimers have excelled for analyses of

pathogen-specific CD8+ T-cell responses, but their use for

dissection of autoimmune or anti-cancer T cells or CD4+

T cells is less widespread.3 We have demonstrated that

the TCR–pMHC affinity required for pMHC tetramer

binding exceeds that required for T-cell activation.12 This

difference in affinity threshold means that conventional

pMHC tetramer staining can fail to detect functional T

cells.12–15 Failure to stain cognate T cells that have a low

affinity TCR is likely to be a more serious problem when

pMHC multimers are used to stain self-specific (anti-can-

cer and autoimmune) T-cell populations, which tend to

express lower affinity TCRs.3,16–19 This issue is even

greater when staining pMHCII-restricted T cells because

the CD4 co-receptor, unlike the CD8 molecule, does not

cooperate to aid TCR–pMHC binding.3,20–26 Evavold and

colleagues recently highlighted the potential level of

under-estimation of antigen-specific CD4+ T-cell popula-

tions when staining with pMHCII tetramers ex vivo.19

This study found a high prevalence of low-affinity

pMHCII tetramer-negative effectors during polyclonal

CD4+ T-cell responses, and demonstrated that myelin oli-

godendrocyte glycoprotein (35–55) and lymphocyte cho-

riomeningitis virus glycoprotein (61–80) CD4+ T-cell

populations were under-estimated by eightfold and four-

fold, respectively by pMHCII tetramer staining. We have

further demonstrated that the majority of the Melan A-

specific CD8+ T cells in tumour-infiltrating lymphocyte

(TIL) populations derived from malignant melanoma

samples were not detected by conventional pMHC tetra-

mer staining.13 T-cell clones derived from these TILs that

failed to stain by conventional pMHC tetramer staining

were efficient killers of autologous tumour, indicating

that pMHC tetramers missed fully functional cognate T

cells.13 These demonstrations highlight the pressing need

to extend pMHC multimer technology to a point where

it can be used to stain all T cells capable of responding to

a given pMHC antigen.13,27 Fortunately, new develop-

ments in the last 12 months considerably lower the TCR–
pMHC affinity threshold required for efficient pMHC

multimer staining. These, and other ‘tricks’ for improving

staining with pMHC multimers are described below.

Materials and methods

This study aims to provide an appraisal of the tricks that

can be used to produce enhanced staining of cognate T

cells with pMHC multimers. We review a number of

tricks below. The methodologies for these individual tech-

niques have been published elsewhere as indicated. Here

we apply these procedures to the staining of a number of

different samples in order to demonstrate how they can

be of benefit. We also detail the optimized staining proto-

col that we use in Cardiff within the results, and demon-

strate what each step adds to the procedure. We therefore

only document the materials used in this section.

Manufacture of pMHC tetramers and dextramers

The following streptavidin conjugates were used: strepta-

vidin-allophycocyanin (APC) and -R-phycoerythrin (PE)

(Life Technologies, Paisley, UK); streptavidin-brilliant

violet (BV) 421 and -FITC. (Biolegend, London, UK).

Peptide-MHC tetramer and dextramer were assembled as

previously described.13 Depending on experiment, either

0�3 lg or 0�5 lg (6 or 10 lg/ml) of tetramer or dextr-

amer were used per stain, and equivalent amounts were

used when tetramer and dextramer were being compared.

T-cell clones

The following HLA-A*0201 (HLA A2) -restricted CD8+

T-cell clones were used: ST8.24 and VB25D12.24, which

recognize the peptide EAAGIGILTV, in addition to the

heteroclitic version of the peptide, ELAGIGILTV, from

Melan A (residues 26–35)28,29 and were derived from

TILs of a patient with stage IV malignant melanoma

(patient MM909.24); GD.GIL influenza-specific clone

which recognizes GILGFVFTL from the matrix protein

(residues 58–66); 1E6, which was grown from a patient

with type 1 diabetes30 and recognizes the preproinsulin

(PPI) epitope, ALWGPDPAAA (residues 15–24).31 The

CD4+ HLA-DRB*0101 (HLA DR1) clone, DCD10, which

recognizes PKYVKQNTLKLAT (residues 307–319) from

haemagglutinin of influenza A virus.

Antibody clones

Mouse anti-PE (clone PE001, BioLegend) and anti-APC

(clone APC003, BioLegend) primary (1°) unconjugated

monoclonal antibodies were used at a concentration of

10 lg/ml (0�5 lg/test). Goat anti-mouse conjugated

secondary (2°) antibodies (multiple adsorbed PE- or
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APC-conjugated immunoglobulin polyclonal; BD Bio-

sciences, Oxford, UK) were used at 2 lg/ml (0�1 lg/test).
We used the violet LIVE/DEAD Fixable Dead Cell Stain,

Vivid (Life Technologies). The following monoclonal anti-

bodies were used as indicated for individual experiments:

anti-CD8-PE and anti-CD8-APC (clone BW135/80; Milte-

nyi Biotec, Bergisch Gladbach, Germany); anti-CD3-peridi-

nin chlorophyll protein (PerCP) (clone BW264/56;

Miltenyi Biotec); anti-CD19-Pacific blue (clone HIB19;

BioLegend); and anti-CD14-Pacific blue (clone M5E2; Bio-

Legend). Anti-rat CD2-PE (clone OX34; BioLegend) was

used to stain lentivirally transduced T cells.

Dasatinib

The protein kinase inhibitor (PKI), Dasatinib (Axon

Medchem, VA), was reconstituted in dimethylsulphoxide

(1 mM) and stored frozen in 5 ll one-use aliquots. Each

5 ll aliquot only costs < £0�02 and makes enough reagent

to treat 1000 samples (100 ll volume at 50 nM).

MEL5 TCR transduced CD8 T cells

The HLA A2-restricted Melan A-specific TCR MEL5

recognizes the natural 10-mer peptide, EAAGIGILTV.

The TCR a and b chains32 were cloned into the pELN

third-generation lentivirus vector (a kind gift from James

Riley, University of Pennsylvania). The pELN lentiviral

vector contained a rat CD2 marker to determine the fre-

quency of transduction, and the TCR a and b chains were

separated by a 2A cleavage sequence. Integrase proficient

lentivirus stocks were prepared by co-transfecting 293T/

17 cells by calcium phosphate precipitation with the

transfer vector and packaging plasmids – pRSV.REV

(Addgene #12253), pMDLg/p.RRE (Addgene #12251)33

and pCMV-VSV-G (Addgene #8454).34 Supernatant was

collected after 24-hr and 48-hr incubations, and the lenti-

virus stocks were concentrated by ultracentrifugation and

used to transduce Dynabead (Life Technology) stimulated

CD8+ T cells. The efficiency of lentivirus transduction

was assessed by flow cytometry staining.

Results

Important tricks for improving staining efficiency

Several tricks for improving T-cell staining with pMHC

multimers have been described and are reviewed elsewhere.3

Here we detail the five most important tricks that we cur-

rently apply within our laboratory when staining antigen-

specific T cells. These techniques are: (i) using a bright fluo-

rochrome, (ii) inclusion of a PKI during staining, (iii) stain-

ing with anti-coreceptor antibody after staining with

pMHC multimer, (iv) use of higher-order multimers, and

(v) signal boosting with an anti-multimer antibody. The

benefits of the latter two techniques were published in 2014.

We refer the reader to our previous review3 for a full list of

tricks and a detailed explanation of the benefits of PKI and

correct anti-coreceptor antibody usage.

Using bright fluorochromes

It stands to reason that, when high staining intensity with

pMHC multimer is required, it is better to use reagents

coupled to a bright fluorochrome. This aspect is irrelevant

when using MS-based detection methodology, and is less

important when using pMHC dextramers that can be con-

structed to carry multiple fluorochrome molecules and

also work well with FITC.13 Our favourite ‘flavours’ of

pMHC multimers are constructed with PE and APC. We

have found wide variations in the quality of these reagents

between different manufacturers. We currently use fluoro-

chrome-conjugated streptavidin from Life Technologies

for pMHC tetramers. However, researchers should remain

mindful of the fact that we have not exhaustively tested all

of the various products on the market so there may be

better preparations available. Quantum dots (Q-dots)

offer a good way of making very bright and robust pMHC

multimers.35 Although we have used Q-dot pMHC multi-

mers, we do not have extensive experience with these

reagents. Corry and colleagues directly compared Q-dots

and tetramers for staining the same sample, and while Q-

dots gave brighter staining in this comparison there was a

noticeable staining of the general CD8+ cell population.36

We have also noticed a similar phenomenon when some

pMHC dextramers are used to stain some peripheral

blood mononuclear cell (PBMC) populations.13 Restric-

tion of this non-specific staining to CD8+ T cells suggests

that it is due to the avidity of pMHCI–CD8 interactions

made possible with higher order multimers like Q-dots

and dextramers. However, we remain unsure of why this

background staining of CD8+ T-cell populations is only

observed with some combinations of pMHC and PBMC.

Figure 1(a) shows staining of HLA A2-restricted, influ-

enza-specific CD8+ T-cell clone GD.GIL with pMHC

tetramer manufactured with identical biotinylated HLA

A2-GILGFVFTL monomer, and streptavidin linked to

FITC, PE, APC and BV421 (see Materials and methods for

details). These reagents gave mean fluorescence intensities

(MFI) of 474, 4545, 3886 and 3684, and staining indices

of 5�4, 52�8, 44�2 and 32�3, respectively. The BV421

reagent gave a higher background than the other fluoro-

chromes when staining a T-cell clone (Fig. 1a) and PBMC

(see Supplementary material, Fig. S1). Indeed, at the time

of writing this review a higher degree of background on

PBMC with BV421 cytomegalovirus (CMV) tetramers,

compared with PE tetramers, is displayed on the manufac-

turer’s website. We do not know the reason for the

increase of non-specific staining with the BV421-contain-

ing reagents, but with optimization its use may offer an
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alternative channel if those for PE and APC are being used

for other cell markers.

The benefits of protein kinase inhibitors

Staining with pMHC multimers is critically dependent on

the TCR density at the T-cell surface as effective capture

of a pMHC multimer from solution requires that a sec-

ond TCR engages further pMHC in the multimer during

the duration of the first TCR–pMHC engagement, to

establish an initial avidity effect.3 TCRs are known to

trigger and internalize after engaging cognate antigen,37

and we have shown that pMHC tetramers can fail to stain

anti-cancer and anti-human pancreatic b-cell T cells after

these cells have been exposed to cognate antigen.13,14 For-

tunately, TCR internalization can be inhibited by inclu-

sion of a PKI, such as dasatinib for as little as 30 seconds

before pMHC multimer staining, resulting in substantially

enhanced staining intensities.15 This increase in staining

can be > 50-fold when TCR affinity is extremely low.15

Incubation of T cells in 50 nM dasatinib for 60 min

increases surface concentrations of both TCR and

co-receptor at the cell surface.15 We assume that this

increase is due to inhibition of normal turnover of these

molecules because of inhibited down-regulation. We rec-

ommend researchers to avoid repeated freeze–thawing of

dasatinib by storing it as frozen one-use aliquots for use

within 1 week of being defrosted. PKI treatment also

enhances staining with higher-order multimers such as

pMHC dextramers,13 and has been used in conjunction

with pMHC multimer detection by MS.6 We now include

dasatinib during pMHC multimer staining as a matter of

routine. Inclusion of PKI prevents cellular activation, and

so it is incompatible with function-based profiling tech-

niques such as intracellular cytokine staining. Figure 1(b)

shows that a fully functional T-cell clone, VB25D12.24,

isolated from the TILs of a patient with Stage IV mela-

noma, recognizes Melan A peptide (left panel), and

responds to autologous tumour (middle panel). However,

the clone fails to stain with HLA A2-Melan A tetramer in

the absence of PKI treatment (right panel). Nevertheless,

the clone stains well with cognate tetramer after pre-treat-

ment with 50 nM dasatinib for 30 min. These data serve

to highlight what could be missed during regular pMHC

tetramer staining without added ‘tricks’. Figure 1(c) dem-

onstrates the benefits of dasatinib when staining antigen-

specific T cells in PBMC, the situation where they are

most commonly used. Inclusion of 50 nM dasatinib

increases by fourfold the number of cells detected when

staining with HLA A2-Melan A tetramer.

The importance of anti-coreceptor antibody

Peptide–MHC multimers are normally used in conjunc-

tion with an antibody for the relevant T-cell co-receptor

(anti-CD4 for pMHCII multimers, and anti-CD8 for

pMHCI multimers). It is well established that some anti-

body clones can disrupt staining of cognate T cells, while

some antibodies can augment the interaction of pMHC

multimers with cell surface TCR.22,24,25,38–40 It is conse-

quently preferable to use an anti-coreceptor antibody that

aids pMHC multimer binding, or to stain with pMHC

multimer before staining the T-cell co-receptor.3 Fig-

ure 1(c) demonstrates that staining with CD8 antibody

clone BW135/80, a clone we like to use in our laboratory,

before staining of PBMC with HLA A2 Melan A tetramer,

blocks staining in the absence of PKI and also reduces by

half the number of cells that stain when PKI is included.

The effects are less pronounced for an antiviral (cytomeg-

alovirus) response, but there is still a reduction in the

intensity of overall staining if anti-CD8 antibody is added

first.

Higher valency pMHC multimers

We recently compared staining of antiviral, anticancer

and autoimmune T cells with pMHC tetramers and

pMHC dextramers.13 Peptide-MHC dextramers are dex-

tran-based multimers that can carry greater numbers of

both pMHC and fluorochrome per molecule, due to

the larger scaffold. When staining was compared, we

found that dextramers stain more brightly than tetra-

mers and outperformed them when TCR–pMHC affin-

ity was low. Dextramers also outperformed tetramers

with pMHC class II reagents where there was an

absence of co-receptor stabilization. Importantly, we

also found that staining with pMHC dextramers was

additionally enhanced when PKI was included, demon-

strating that the two techniques are compatible.13

Figure 2 shows pMHC staining of a Melan A-specific

T-cell clone, ST8.24, with a full range of conditions.

Staining with dextramer + PKI was more than threefold

brighter than with tetramer + PKI. Dextramers + PKI

uncovered 25-fold more Melan A-specific cells when

compared with regular tetramer staining of HLA A2+

PBMC (Fig. 5).

Signal boosting with antibodies

We have also recently made use of the ILA1 T-cell clone

that recognizes the pseudo HLA A2-restricted hTERT-

derived epitope ILAKFLHWL,41 and for which we have

characterized a wide range of altered peptide ligands that

act as agonists. These agonist peptides bind to HLA A2

equally well, but exhibit binding affinities for the ILA1

TCR that range from KD ~ 3 lM to KD ~ 2 mM by sur-

face plasmon resonance.12,42 The weakest ligand, 8E, still

acts as a good agonist of ILA1 T cells when supplied

exogenously at a concentration of 1 lM,12,42 yet binds to

the TCR with a KD ~ 2 mM by extrapolation of response
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Figure 1. Tetramer staining of T cells is improved by using bright fluorochromes, protein kinase inhibitor treatment and addition of anti-CD8

antibody after tetramer staining. (a) HLA A2-restricted, influenza (flu) specific T-cell clone (GD.GIL) was stained with FITC, phycoerythrin (PE),

allophycocyanin (APC) and brilliant violet (BV)421-conjugated cognate (matrix protein, GILGFVFTL) or irrelevant (preproinsulin; PPI; AL-

WGPDPAAA) tetramers. The staining index [mean fluorescence intensity (MFI) of flu stain/MFI of PPI stain] is shown underlined. (b) T-cell

clone (VB25D12.24) that recognizes a peptide from Melan A (left) and kills autologous tumour [� pre-treatment with interferon-c (IFNc)], at a
T-cell to tumour ratio of 10:1 (middle), was stained with PE-conjugated Melan A (ELAGIGILTV) and PPI tetramers � protein kinase inhibitor

(PKI) pre-treatment (right). (c) HLA A2+ PBMC used from frozen � PKI were stained with PE-conjugated PPI, Melan A and cytomegalovirus

(CMV) (pp65, NLVPMVATV) tetramers (no PKI for the latter), with anti-CD8 APC antibody added before (lower panel) or after (upper panel)

tetramer staining. The percentage of CD8+ cells that were also tetramer+ is shown inset for each gate and MFI displayed for the CMV tetramer

stain.
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units from surface plasmon resonance experiments. Until

recently, we had failed to stain the ILA1 T-cell well with

pMHC multimers made with HLA A2-ILAKFLHEL (8E),

suggesting that even a combination of the techniques

described above does not allow pMHC multimer staining

with the very weakest TCR ligands.

It has long been known that T cells rapidly internal-

ize pMHC multimers when stained at room temperature

or physiological temperatures.43 Some internalization is

also observed during regular staining protocols on ice

when cells are not pre-chilled.13 Treatment with a PKI,

like dasatinib, prevents TCR triggering and internaliza-

tion of the TCR and any pMHC multimer bound to

it.13,15 We reasoned that this would leave pMHC multi-

mers available at the T-cell surface for further signal

boosting with anti-pMHC multimer antibody. In testing

this hypothesis we discovered that just adding anti-mul-

timer antibody during stains with pMHC dextramers or

pMHC tetramers boosted the MFI of staining, and low-

ered the TCR–pMHC affinity that was amenable to

detection with these reagents. Indeed, adding anti-PE

antibody to staining with PE-conjugated tetramer in the

presence of PKI boosted staining to a point where the

ILA1 T-cell clone could be recovered from HLA A2+

PBMC using tetramer made with HLA A2-ILAKFLHEL,

a ligand that binds to the cognate TCR with extremely

low affinity (KD ~ 2 mM).14 This unexpected enhance-

ment was shown to be the result of a substantial reduc-

tion in the off-rate of pMHC tetramer during the

process of staining and washing before flow cytometric

analysis.14 This boost in staining is so powerful that it

enabled brighter staining of cognate T cells, even when

log-fold lower concentrations of pMHC multimer were

used; thereby allowing for a considerable reduction in

costs.14 Further enhancements were observed when a

fluorochrome-conjugated antibody against the original

anti-pMHC multimer antibody was also included, or

when pMHC dextramers were used. However, this extra

level of enhancement is unlikely to be necessary during

the vast majority of pMHC multimer stains. Staining of

Melan A clone, ST8.24, with PE-conjugated pMHC dex-

tramer in the presence of a 1° antibody increased the

MFI of staining from 11261 to 34766 (Fig. 2). Further

inclusion of a PE-conjugated 2° antibody additionally

increased staining to 65573, while the intensity of back-

ground staining with an irrelevant HLA A2 multimer

remained unchanged at an MFI of ~ 40. The benefits of

signal boosting with antibody are also evident in

Fig. 3(a), where HLA A2 Melan A tetramer was used to

stain cells that were lentivirally transduced with Melan-

specific TCR MEL5, as described in the Materials and

methods. The lentivirus also expressed rat CD2, allow-

ing identification of transduced cells with PE-conjugated

anti-rat CD2 antibody (Fig. 3a). Transduced TCRs have

to compete with the natural endogenous TCR for

expression at the T-cell surface, such that the intro-

duced TCR may be present at a low surface density.

Low TCR density is also a problem during pMHC mul-

timer staining of autoimmune or cancer-specific T cells

that may have recently encountered their cognate anti-

gen in vivo.13,14 Seventeen per cent of the transduced

cells stained with APC-conjugated HLA A2-ELA-

GIGILTV tetramer (Fig. 3a); this increased to 39% when

PKI was included. Further addition of 1°, anti-APC

antibody, or 1° anti-APC antibody + APC-conjugated 2°
antibody increased this percentage to 53% and 65% of

lentivirally transduced cells, respectively, and demon-

strated the benefits of antibody boosting when surface
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Figure 2. Chronological improvements to staining T cells with pep-

tide–MHC (pMHC) multimers. ‘Tricks’ shown by our group to

improve the staining of T cells with pMHC multimers were com-

pared with tetramer alone (baseline) when staining a Melan A-spe-

cific CD8+ clone (ST8.24). ST8.24 was pretreated with protein kinase

inhibitor (PKI) and stained with Melan A (ELAGIGILTV) or irrele-

vant [preproinsulin (PPI); ALWGPDPAAA] multimers (tetramer

and dextramer) followed by the addition of 1° antibody (Ab) � phy-

coerythrin (PE)-conjugated 2° Ab as indicated. Mean fluorescence

intensity (MFI). Fluorescence Minus One (FMO).
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TCR density is low. Furthermore, we recently showed

that signal boosting with antibody can enhance the

ability of tetramers to stain, and detect both autoim-

mune and CD4+ HLA class II restricted T cells.14 Fig-

ure 3(b) shows tetramer staining of PBMC spiked with

the HLA A2 restricted CD8+ T-cell clone, 1E6. This

clone was derived from a patient with type I diabetes,30

and has a TCR that binds weakly to a PPI-derived pep-

tide (ALWGPDPAAA) with a KD of >200 lM.31 This is

a feature that often precludes the effective staining of

autoimmune T cells when tetramers are used without

‘tricks’. Tetramer in combination with PKI recovered

6% of 1E6 from the spiked PBMC, and addition of 1°
anti-PE antibody, alone or in combination with a PE-

conjugated 2° antibody, gave 100% recovery with clear

1E6 T-cell discrimination from non-specific CD8+ T cells

(Fig. 3b). The complete recovery of 1E6 with tetra-

mer + 1° + 2° antibodies was achievable with eightfold

less tetramer compared with tetramer alone, an observa-

tion we had previously shown with even less tetramer

(25-fold).14 CD4+ HLA class II restricted T cells also

present a challenge when staining with tetramers, due to

a lack of co-receptor help from CD43 and possession of

TCRs with weaker average affinities.16 Figure 3c demon-

strates that the addition of a 1° antibody, with or with-

out a 2° antibody, enhances the staining of the HLA

DR1 restricted influenza-specific clone, DCD10, with

1�8-fold and 2�8-fold increases in staining, respectively.
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Figure 3. Improved staining of T-cell receptor (TCR)-transduced, autoimmune and MHC class II restricted T cells with tetramers by applying

various tricks. (a) CD8+ T cells lentivirally co-transduced with a Melan A-specific TCR and rat CD2 � protein kinase inhibitor (PKI) were

stained with allophycocyanin (APC)-conjugated Melan A or irrelevant [preproinsulin (PPI); ALWGPDPAAA] tetramers. In addition to tetramer,

PKI-treated cells were also labelled with unconjugated 1° antibody (Ab) � APC-conjugated 2° Ab, as indicated. The percentage of Melan A tetra-

mer+ cells of rat CD2+ cells is displayed. (b) The PPI-specific CD8+ T-cell clone, 1E6, which was grown from a patient with type I diabetes, was

spiked into HLA A2+ peripheral blood mononuclear cells (PBMC), PKI treated and stained with PPI tetramer (amounts shown for each plot)

� 1° Ab � phycoerythrin (PE)-conjugated 2° Ab. The 1E6 clone is CD8high allowing it to be seen within the PBMC population based on CD8

staining alone. The percentage recovery of 1E6 with PPI tetramer is shown for each condition. (c) An influenza-specific HLA DR restricted CD4+
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We are currently exploring the advantages of using

boosted MHC class II tetramers on anti-tumour CD4+

T-cell clones and ex vivo PBMC samples.

An optimized staining protocol

The techniques described above provide multiple ways to

enhance staining with pMHC multimers. The most sensi-

tive staining we have seen to date included use of: (i)

bright fluorochrome, (ii) PKI, (iii) addition of anti-core-

ceptor antibody after pMHC multimer staining, (iv)

higher order multimers (pMHC dextramers), (v) 1° anti-

pMHC dextramer antibody, and (vi) fluorochrome-con-

jugated 2° antibody14 as summarized in Fig. 2. However,

use of all these tricks together is well beyond what is nec-

essary for most pMHC multimer stains. Since publishing

the above tricks, we have been asked many times by other

researchers to provide an optimal pMHC staining proto-

col. We provide our own optimized protocol in Fig. 4,

but in doing so we advise that researchers adjust their

staining method using the above tricks so as to produce

the best results in their own individual experimental

systems.

The optimal pMHC multimer protocol will vary

depending on the particular assay, the nature of the T

cells and pMHC multimers being used. The tricks

described above work well in conjunction, allowing

researchers to tailor pMHC multimer staining to their

own individual requirements. The most sensitive stain-

ing technique of using a bright fluorochrome using

PKI and pMHC dextramers in conjunction with an

anti-multimer 1° antibody and fluorochrome-conjugated

2° antibody (Fig. 2) is well beyond the requirements of

most experiments. Inclusion of fluorochrome-conjugated

2° antibody adds expense, and the possibility of off-tar-

get staining due to the addition of fluorochrome that

is not conjugated to pMHC; whereas pMHC dextra-

mers are difficult to assemble in-house. Hence our own

preferred standard protocol uses pMHC tetramers, PKI

and anti-tetramer 1° antibody, as described in Fig. 4

(shown by the red arrows and text). This combination

is sufficient for staining T cells with very-low TCR

affinity (KD > 1 mM), and so is more than adequate for

staining the vast majority of antigen-specific T cells.14

Figure 5 demonstrates the improvements possible by

applying the various tricks above to the staining of

HLA A2+ PBMC with HLA A2 Melan A tetramer.

Addition of PKI and 1° antibody to the stain increases

the number of cells recovered by sixfold compared with

no tricks (baseline). Use of PKI and 1° antibody with

pMHC dextramer instead of pMHC tetramer recovers

25-fold more Melan A-specific cells than regular pMHC

tetramer staining. Further addition of 2° antibody

increases staining with tetramer and dextramer to 7�5-

Protocol flow Considerations

Treat defrosted samples with
DNase to remove cell clumps.

Filter if necessary.

Store PKI in frozen working aliquots
and make a fresh dilution weekly.

Remove aggregated
reagent before use by

spinning at full speed for
1 minute in a microfuge.
Avoid aggregates when

pipetting.

Follow manufacturers’ instructions
and optimise for your

system/material

Optimise the amounts needed
for your system/material

* We assemble our pMHC mutimers
24 h in advance of an experiment. We

store them in the dark and only for
short periods (1-2 weeks).

Prepare PBMC sample from fresh or frozen
material

Treat with 50 nM PKI at 37°C for 30 minutes

No wash

Wash with staining buffer

Wash 2X with staining buffer

Wash with staining buffer
then PBS

No wash

Label with 1° Ab for 20 minutes on ice

Add viability stain for 5 minutes at room
temperature

Stain for cell surface markers for 20 minutes on
ice

Flow cytometry, magnetic based sorting or
fixing (2% PFA)

Wash with staining buffer

Label with 2° Ab for 20 minutes on ice

Tetramer* or dextramer* staining for 30
minutes on ice 

Wash with staining buffer
(2% FBS in PBS)

Figure 4. Our protocol for staining peripheral

blood mononuclear cells (PBMC) with pep-

tide–MHC (pMHC) multimers including the

‘tricks’ discussed in this review. Staining is per-

formed in 5 ml ‘FACS’ tubes. Our default pro-

tocol flow is shown by red arrows/text and

involves using tetramer, protein kinase inhibi-

tor (PKI) and 1° antibody (Ab). PKI is some-

times used without other tricks. Dextramers

and/or 2° Ab are used when T cells are partic-

ularly challenging to stain. The same protocol

can be used for staining T cell clones and

lines.

ª 2015 John Wiley & Sons Ltd, Immunology, 146, 11–2218

G. Dolton et al.



fold and 45-fold above standard pMHC tetramer stain-

ing without tricks, respectively. These data demonstrate

the additive nature of these tricks when applied to

pMHC multimer staining of PBMC.

Troubleshooting

Various issues can arise when staining with pMHC

multimers and we are occasionally asked to try and

troubleshoot issues for other laboratories. One of the

commonest problems seems to arise due to aggregation

of the pMHC multimer preparation. This problem can

be quickly eliminated if pMHC multimer is spun in a

microfuge at top speed for 1 min before use to precipi-

tate any aggregates present. Figure 6(a) shows a clean

staining of HLA A2+ PBMC with spun HLA A2 Melan

A tetramer adjacent to the identical stain with this

reagent before spinning. In the absence of centrifugation

there is considerable background in the CD8-negative

cell population, in addition to some high intensity stain-

ing in the CD8+ population. Similar issues are also

apparent, although to a lesser degree, when the same

PBMC are stained with HLA A2-GILGFVFTL influenza-

specific reagents. It is also important to include a ‘dump

channel’ during pMHC multimer analyses that elimi-

nates dead/dying cells, B cells and CD14+ cells that can

take up pMHC multimers non-specifically without the

need for cognate TCR expression. Figure 6(b) shows the

staining of HLA A2+ PBMC with HLA A2-PPI and

HLA A2-CMV tetramers (peptide sequences

ALWGPDPAAA and NLVPMVATV, respectively) � a

viability stain, to demonstrate how dumping of dead

and dying cells, as well as those capable of non-specific

pMHC multimer uptake via macropinocytosis and other

mechanisms, can substantially improve staining with

pMHC multimers.

Detection of non-classical T cells

Recent advances have described how T cells are able to rec-

ognize lipid antigens in the context of CD1a, CD1b, CD1c

and CD1d molecules, or bacterial metabolites in the con-

text of MHC-related protein (MR)1.1,2 Multimeric forms

of CD1-lipid and MR1-metabolite can also be used to iden-

tify and phenotype the T cells that respond to these anti-

gens.44–52 TCR interactions with these non-classical ligands

tend to be relatively robust, such that regular tetrameric

versions of these molecules appear to stain cognate cells

well. Nevertheless, it is likely that the application of higher-

order multimers, PKI and signal boosting with antibodies

(as described for conventional pMHC multimers) will

enhance the intensity of staining, with concomitant poten-
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Figure 5. The combination of tricks greatly

improves the recovery of T cells from periph-

eral blood mononuclear cells (PBMC) with

pMHC multimers. HLA A2+ PBMC were

stained with Melan A (ELAGIGILTV) and

irrelevant [preproinsulin (PPI); AL-

WGPDPAAA] phycoerythrin (PE) -conjugated

tetramers or dextramers � protein kinase

inhibitor (PKI) and unconjugated 1° antibody

(Ab) � PE-conjugated 2° Ab, as indicated.

The recovery of Melan A tetramer or dextr-

amer+ cells (red box) is compared to the stain-

ing with tetramer alone (baseline).
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tial for also using less multimerized non-classical ligand

during staining. It remains to be seen whether the applica-

tion of more sensitive techniques to the staining of non-

classical T cells with multimeric ligands will lead to the dis-

covery of new subsets of T cells.

Conclusions

Fluorochrome-conjugated pMHC multimers have already

revolutionized the study of antigen-specific T cells. Until

recently, the major problem with these reagents has been

that the TCR affinity threshold required for pMHC multi-

mer staining exceeded that required for T-cell activation,

resulting in a failure to detect all T cells capable of

responding to a particular pMHC.12–15 This problem is far

more likely when staining anti-cancer T cells, autoimmune

T cells, or MHC class II-restricted T cells, as such popula-

tions tend to bear TCRs with lower affinity for cognate

antigen.16,17 There is a further issue caused by low TCR

surface densities when staining T cells that have been

recently exposed to antigen.13,14 Recent antigen exposure

can occur naturally in vivo, or artificially during functional

profiling following antigen exposure in vitro (e.g. intracel-

lular cytokine staining).13,14 Newer developments includ-

ing staining in the presence of PKI,15 using higher order

pMHC multimers,13 and boosting staining by including

anti-multimer antibody,14 have lowered the TCR affinity

required for effective pMHC multimer staining by > 20-

fold, while increasing staining intensity. These advances

enhance pMHC multimer technology to a point where it

can be used to stain T cells where the affinity between the

TCR and antigen exceeds a KD of 1 mM.13 It remains to

be determined whether this improvement takes pMHC

multimer staining to a point where it stains all functional

T cells and thereby allows these reagents to realize their

full potential for immune monitoring. Recent addition of

MS-based detection to pMHC multimer staining increases

the number of cell surface molecules that can be studied

simultaneously, and also circumvents the requirement for

spectral overlap compensation during antibody phenotyp-

ing so increasing the power of this influential technology

further still.6,11 Contemporary developments using pyrose-

quencing of TCRs to quantify T cells or inform on their

function53 are still far from routine, so we anticipate that

pMHC multimers will continue to remain prominent for

T-cell detection for many years to come.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1 Comparison of phycoerythrin (PE) and bril-

liant violet (BV)-conjugated tetramers on peripheral

blood mononuclear cells (PBMC). HLA A2+ PBMC +
PKI were stained with Melan A (ELAGIGILTV) and

influenza (flu) (matrix protein; GILGFVFTL) PE-conju-

gated and BV-conjugated tetramers. More background

staining was evident on the CD8� cells with the BV tetra-

mer (red arrows) as observed in Fig. 1.
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