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SUMMARY 

Several studies have demonstrated the assay-dependence of cortisol measurement 

and the potential impact this could have on the interpretation of the Synacthen test.  

Prompted by clinical concern that hypoadrenalism was being over-diagnosed, this 

work set out to determine assay-specific serum cortisol and salivary cortisol 

responses to Synacthen stimulation in healthy volunteers. 

It begins with an overview of cortisol assays in serum and saliva from their inception 

50 years ago to the present day; highlighting the limitations of serum total cortisol as 

an analyte and immunoassays for its measurement and exploring salivary free 

cortisol, calculated free cortisol and mass spectrometry as alternatives. 

The study itself recruited a total of 206 healthy volunteers and patients to undergo 

serum and salivary Synacthen tests.  Serum cortisol was measured by gas 

chromatography-mass spectrometry (GC-MS) and by 5 contemporary 

immunoassays, salivary cortisol was measured by liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) and serum free cortisol was calculated using the 

Coolens’ equation and the free cortisol index. 

The results in serum confirmed the assay-dependence of immunoassay cortisol 

measurement, established valid reference ranges for each of the assays studied, 

proposed diagnostic cut-off concentrations and evaluated their performance in 

patients with suspected hypoadrenalism. 

The salivary results were used to establish adult reference ranges specific to the in-

house LC-MS/MS assay used and subsequently demonstrated comparable 

performance in patients with suspected hypoadrenalism to the serum Synacthen test. 

Calculated serum free cortisol performed poorly compared to serum total and salivary 

cortisol and was subject to error because of difficulty measuring cortisol binding 

globulin (CBG). 

Comparisons between the three measures in patients with altered serum protein 

concentrations showed that, of the three, only salivary cortisol had the potential to 

accurately diagnose hypoadrenalism using a single cut-off; although confirmation of 

this finding is needed in a larger patient group. 
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1.1 Cortisol and the hypothalamic-pituitary-adrenal axis 

Cortisol is a steroid hormone produced by the zona fasciculata of the adrenal cortex. 

Its secretion is directly controlled by the release of adrenocorticotrophin (ACTH) from 

the anterior pituitary which, in turn, is regulated by corticotrophin-releasing hormone 

(CRH), and less directly, arginine vasopressin (AVP), secreted by the hypothalamus.  

Cortisol exerts negative feedback on both ACTH and CRH secretion whilst stress acts 

directly on the hypothalamus to stimulate CRH release (Figure 1.1). 

Cortisol is lipophillic and is transported around the body bound to cortisol-binding 

globulin (CBG) and albumin (Mills 1962).  Approximately 80% of total cortisol is bound 

to CBG, 10% is albumin-bound and a further 10% exists in a free, unbound state. It 

is this free fraction that is biologically active and mediates cortisol’s metabolic effects. 

Cortisol plays an essential role in maintaining health and well-being.  It is involved in 

energy metabolism, with effects on the synthesis and breakdown of carbohydrates, 

protein and lipids, water and electrolyte balance, blood pressure control and 

glomerular filtration rate (Demers 2005; Stewart 2011).  It plays a role in inflammation 

and in protecting against infection and maintaining immunity.  There is evidence that 

cortisol has some central effects, as suggested by the emotional disturbances seen 

in both hypo- and hyper-adrenal states.  Cortisol also plays a role in maintaining 

healthy pregnancy and in the initiation of birth (Kamel 2010).  
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Figure 1.1 Regulation of the hypothalamic-pituitary-adrenal axis. 
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1.2 Measuring cortisol 

Because of cortisol’s central metabolic role, it is imperative that accurate methods are 

available for its measurement.  This is particularly important since acute cortisol 

deficiency presents clinically as an Addisonian crisis, characterised by catastrophic 

dehydration and salt wasting, which is potentially fatal.  Consequently, early diagnosis 

is essential.  Milder degrees of adrenal insufficiency are difficult to detect clinically 

due to vague, non-specific symptoms such as fatigue, generalised weakness and 

lethargy.  Thus, diagnosis relies entirely on biochemical testing and requires an alert 

clinician with a high index of suspicion.  Similarly, the early symptoms of cortisol 

excess (Cushing’s syndrome) which include weight gain, hypertension and impaired 

glucose tolerance are easily attributable to other causes, such as simple obesity or 

the metabolic syndrome, leading to delays in biochemical testing and diagnosis. 

Establishing a diagnosis of adrenal disease requires more than simply measuring a 

random serum cortisol concentration, as this measurement alone, although widely 

used, rarely gives sufficient information about adrenal status (Grinspoon and Biller 

1994; Bornstein et al. 2016).  An early morning cortisol measurement is also rarely 

diagnostic, although it can contribute some diagnostically useful information; with a 

concentration below 140 nmol/L suggesting adrenal insufficiency (Kazlauskaite et al. 

2008), a concentration above 450 - 550 nmol/L virtually excluding hypoadrenalism, 

and concentrations between these two extremes indicating the need for further 

testing.  A low early morning cortisol combined with plasma ACTH measurement can 

indicate whether adrenal insufficiency is likely to be primary or secondary (Bornstein 

et al. 2016).  Nevertheless, when adrenal disease is suspected, the most useful tests 

are those that stimulate or suppress the HPA axis – either in its entirety or partially – 

with subsequent measurement of cortisol to quantify the adrenal response.  
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1.2.1 Serum cortisol assays 

Early plasma cortisol assays were restricted to research laboratories as they required 

several labour-intensive steps, given the low concentrations being measured and the 

presence in plasma of numerous other steroid hormones.  In 1962 a simple 

fluorimetric assay that utilised the natural fluorescence of 11-hydroxycorticoids 

(cortisol and corticosterone) in plasma, and could turnaround six samples in an hour 

and a half, was described, marking the beginning of clinical cortisol assays (Mattingly 

1962).  However, fluorimetry was limited by its poor specificity for cortisol and low 

sample throughput and was replaced by radioimmunoassay (RIA) some 10 years 

later (Campuzano et al. 1973). 

This first RIA used rabbit anti-cortisol antibodies raised against a cortisol-21-

hemisuccinate-bovine serum albumin (BSA) conjugate which showed no cross-

reactivity with corticosterone, 11-deoxycortisol, oestradiol, progesterone or 

testosterone.  Samples were heated in boiling water for 5 minutes before being 

assayed to destroy endogenous CBG, and were then incubated with anti-cortisol 

antibody and radiolabelled cortisol for 40 hours at 5C.  Despite the prolonged 

incubation time, this assay was considered to be relatively quick, as it did not require 

pre-analytical sample extraction, and it became the method of choice for cortisol 

measurement for many years. 

The main limitations of RIA included large variations in the specificity and affinity of 

different antibodies for cortisol and other steroid hormones and the requirement to 

release the steroid molecule from its carrier protein before it could be measured.  This 

can be achieved in several ways, including heat treatment, which denatures CBG and 

other serum proteins, and typically involves incubating the sample at 60C for 30 - 60 

minutes (Holder 2006; Jung et al. 2011) or the addition of an agent, such as low pH, 

8-anilinonaphthalene sulfonic acid (8-ANS) (Brock et al. 1978; McConway and 
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Chapman 1986) or a competing steroid e.g. Danazol (Haning et al. 1982), to displace 

cortisol from its binding proteins. 

With time, cortisol RIAs underwent further development to enable pre-analytical 

sample extraction steps to be removed and enzyme and chemiluminescent detection 

to be introduced in place of radioactivity (Kominami et al. 1980; Lindstrom et al. 1982).  

The first automated cortisol immunoassay was described in 1992 (Bacarese-Hamilton 

et al. 1992) and these are now the method of choice for most clinical laboratories; 

although there is increasing interest in the definitive identification of cortisol offered 

by mass methods, particularly in more specialised laboratories (Owen et al. 2013a).  

Assays that measure bioactive, free cortisol are also available (Kirchhoff et al. 2011), 

but there has been little success in developing one that is easy to use, cost-effective 

and with sufficiently high throughput to meet the requirements of a clinical laboratory.  

1.2.1.1 Immunoassays 

Automated cortisol assays are solid phase heterogeneous competitive binding 

immunoassays.  A sample of serum is added to a reaction cuvette and incubated with 

anti-cortisol antibodies attached to microparticles (the solid phase) and a labelled 

cortisol conjugate.  Cortisol in the sample and the labelled cortisol conjugate compete 

for antibody binding sites on the microparticles (figure 1.2).  Unbound cortisol from 

the sample and the labelled conjugate is washed away and a chemiluminescent 

signal, which is inversely proportional to the cortisol concentration in the sample, is 

produced and measured. 
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Figure 1.2 Principle of a solid phase competitive binding immunoassay  

 

In common with other steroids, cortisol is not immunogenic.  Thus, in order to obtain 

anti-cortisol antibodies a cortisol derivative is covalently bound to an immunogenic 

protein e.g. bovine serum albumin (BSA) and the complex is injected into an 

appropriate host animal (Campuzano et al. 1973).  To enhance antibody specificity 

for cortisol a site that is remote from its specific functional groups should be chosen 

for attachment to the protein carrier, and extensive work has been carried out to find 

the optimum cortisol immunogen for creating specific antibodies.  Nonetheless, the 

use of different antibodies, each with differing affinity and specificity for cortisol in the 

different cortisol immunoassays, will undoubtedly result in differences in cortisol 

measurement between them.  Furthermore, as immunoassays are only able to 

identify the presence of an immunoreactive molecule, but not to confirm its nature, 

antibody cross-reactivity with other steroid hormones (table 1.1) will further contribute 
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to variability between the different commercial assays.  Cortisol binding to its carrier 

protein can also interfere with immunoassay performance as antibody binding sites 

may be altered or hidden as a result.  These factors, and others, which affect cortisol 

immunoassay performance are discussed in detail below. 

Table 1.1 Manufacturer-reported interference from cross-reacting steroid hormones 

Substance 
Abbott 

Architect 
Beckman 
Access 

Centaur 
Advia 

Roche 
E170 

Immulite 
2000 

Aldosterone ND NR 0.3 NR 0.1 

Allotetrahydrocortisol NR NR 6.5 165 ND 

Corticosterone 0.9 2.08 5.3 5.8 1.2 

Cortisone 2.7 8.06 31.1 0.30 1.0 

11-deoxycorticosterone ND 0.91 1.8 0.69 ND 

11-deoxycortisol 1.9 17.8 23.3 4.1 1.6 

21-deoxycortisol NR NR 8.1 45.4 NR 

Dexamethasone NR 0.04 0.2 0.08 ND 

Fludrocortisone 36.6 NR NR NR NR 

6β-hydroxycortisol 0.2 NR 6.8 158 NR 

17α-hydroxyprogesterone 0.6 5.33 1.2 1.5 0.2 

Pregnenolone ND NR 0.5 NR NR 

Prednisolone 12.3 7.60 109 171 62 

6-methyl-prednisolone 0.1 NR 26.2 389 22-25 

Prednisone 0.6 3.05 34 0.28 6.1 

Progesterone ND 0.46 ND 0.35 ND 

Spironolactone ND NR ND NR ND 

Testosterone ND NR 0.2 NR NR 

Samples were spiked with varying concentrations of the hormone or drug in question, 
starting at 10 ug/dL and increasing up to a maximum of 1000 ug/dL, and the 
percentage increase in cortisol concentration was reported.  Thus, it can be seen that 
aldosterone does not interfere in the Siemens Immulite 2000 assay as there was no 
increase in serum cortisol concentration, even at 1000 ug/dL of Aldosterone.  In 
contrast, 10 ug/L of prednisolone was sufficient to increase cortisol concentration by 
171% with the Roche E170 assay. (NB. 1 ug/dL of cortisol = 27.6 nmol/L) 
Interference is reported as a percentage.  
ND = none detected; NR = not reported 
Information extracted from each manufacturer’s cortisol kit insert. 

 

1.2.1.1.1 Assay variability and instability 

Despite the limitations noted by early steroid RIA workers, the significance of 

differences between automated cortisol immunoassays was not widely considered 

until a study by Clark et al in 1998 (Clark et al. 1998).  Cortisol concentration pre- and 

post- Synacthen stimulation of the adrenal gland was measured using four widely 
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available immunoassays: the TDX (Abbott Diagnostics), ACS 180 (Chiron 

Diagnostics), DELFIA (Pharmacia Wallac) and Coat-a-Count (Diagnostic Products 

Corp DPC).  Median cortisol concentration 30 minutes post-Synacthen ranged from 

707 nmol/L for the DELFIA assay to 866 nmol/L for the Coat-a-Count; with a lower 

limit (defined as the 5th percentile) which ranged from 510 nmol/L (DELFIA) to 626 

nmol/L (TDX).  This demonstrated the assay dependence of cortisol cut-offs and the 

risk that patients could be misdiagnosed with adrenal insufficiency simply by virtue of 

the cortisol assay used.  Surprisingly, this work did not prompt widespread application 

of method-specific cortisol cut-offs for interpreting the Synacthen test and most 

laboratories continued to use the widely quoted, historical, 550 nmol/L cut-off (Chatha 

et al. 2010).  But perhaps of even greater concern is the fact that the need for method-

specific cut-offs did not become embedded in clinical practice and the diagnosis of 

adrenal insufficiency continued to rest on a single, poorly evidenced cortisol result. 

Since that work a new generation of cortisol immunoassays has come into use and 

whilst some laboratories have continued to use their old validated cut-offs and 

reference ranges, others have attempted to adjust these values by direct comparison 

between their old and new assays.  However, such adjustments have not been 

clinically validated and, in reality, they offer little improvement over the continued use 

of the old cut-off.  More recent work has confirmed the ongoing need for method-

specific cut-offs with the new assays (Klose et al. 2007), but for most of these, such 

cut-offs remain to be established.  This is particularly important given the gravity of 

misdiagnosing adrenal insufficiency – both in terms of an Addisonian crisis in an 

undiagnosed patient and, conversely, unnecessary steroid replacement in an 

incorrectly diagnosed patient. 

The long-term validity of any newly established cortisol cut-offs or reference ranges, 

however, is likely to require further investigation.  A recent study designed to explore 
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the effect of gender and matrix on immunoassay cortisol measurements (Dodd et al. 

2014) identified changes in assay performance over a three year period, despite no 

major changes in assay formulation over the same period (table 1.2).  This change in 

cortisol measurement over time (assay drift or instability) is likely to be due to 

manufacturers’ attempts to better align their assays with mass methods and, to some 

extent, to variability within antibody populations; but it means that any new cut-off is 

unlikely to remain valid for the entire lifetime of the assay.  Thus, to accurately 

determine method-specific cortisol responses to the short Synacthen test, there is 

first a need for this response to be defined by the gold standard gas chromatography 

– mass spectrometry (GC-MS) method.  This would provide a reference point from 

which current assay-specific characteristics could be identified and to which future 

assay shifts could be compared to ensure cut-offs are adjusted appropriately. 

Table 1.2 Mean assay bias ratios in 2010 and 2013. 

 
Mean Bias Ratio 2010 

 
Mean Bias Ratio 2013 

 

Assay 
 

Total 
 

Males 
 

Females 
 

Total 
 

Males 
 

Females 
 

Roche E170 
 

1.30 
 

1.36 
 

1.25 
 

1.26 
 

1.28 
 

1.23 
 

Siemens Centaur 
 

1.06 
 

1.08 
 

1.05 
 

1.17 
 

1.19 
 

1.14 
 

Abbott Architect 
 

1.02 
 

1.04 
 

1.00 
 

0.94 
 

0.95 
 

0.93 
 

Beckman Access 
 

1.07 
 

1.09 
 

1.05 
 

0.98 
 

1.00 
 

0.95 
 

An individual sample’s bias ratio was calculated by dividing its immunoassay cortisol 
concentration by the corresponding GC-MS concentration.  A mean assay bias ratio 
was then calculated for each immunoassay. 
 
Reproduced with permission from Dodd et al. The effect of serum matrix and gender 
on cortisol measurement by commonly used immunoassays. Ann Clin Biochem 
2014;51:379-85. (Sage Publications Ltd) 

 

The increasing divergence of cortisol assays is also evident when examining external 

quality assurance (EQA) data (figure 1.3) (UKNEQAS Annual review 2010-2013).  
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The majority of UK participants in the UKNEQAS cortisol scheme measure cortisol 

using one of the following immunoassays: Roche Elecsys (44%), Siemens ADVIA 

Centaur (20%), Abbott Architect (19%) and Beckman Access (10%).  The scheme 

organisers calculate a B score, or specimen percentage bias, to demonstrate how far 

each laboratory’s result deviates from the target concentration; which in this case is 

the all laboratory trimmed mean (ALTM)1.  An arbitrary acceptable limit of 

performance of 10% above or below the target mean has been set.  Figure 1.4 shows 

the percentage of laboratories failing to meet this target and demonstrates an 

increasing problem over the past 4 years.  This is unlikely to be explained by 

worsening laboratory performance, but indicates that current cortisol immunoassays 

are so different to each other that attempts to combine their results to create a single, 

meaningful mean are impossible.   UKNEQAS is, therefore, working towards defining 

a more suitable target concentration to replace the ALTM which is likely to utilise GC-

MS or LC-MS/MS methodology.  

  

                                                
1 The all laboratory trimmed mean is the mean of all the results generated by participating 

laboratories, calculated after outlying results – typically the top and bottom 5 or 10% – have been 

excluded. 
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Figure 1.3 Cortisol EQA report (UKNEQAS).  EQA samples are circulated to 

participating labs at monthly or fortnightly intervals and this summary report is 

produced to show the results.  The methods being used are listed and a mean for 

each is provided.  The ALTM is used as the target result for comparison despite 

reflecting each individual method mean poorly. 
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Figure 1.4 Trends in laboratories with bias scores outside acceptable limits.  Each 

bar represents the percentage of laboratories participating in the UKNEQAS cortisol 

EQA scheme whose B scores are outside acceptable limits of performance. 

The B score is the average %bias [(result-target)/(target) * 100%] of all 30 specimens 

distributed over a six month time window. 

 

Given the ongoing assay changes, it is understandable that some laboratories and 

clinicians may be reluctant to adopt literature-based method-specific cut-offs.  

However, if assay differences continue to be overlooked when interpreting cortisol 

concentrations, particularly in the context of the Synacthen test, the clinical validity of 

these tests will be lost.  In fact, this is already becoming apparent, with some authors 

recommending changes to sample timing in the Synacthen test to improve its 

specificity (Mansoor et al. 2007; Chitale et al. 2013).   

1.2.1.1.2 Assay standardisation2 

Poor standardisation, which is partly due to the different antibodies used by the 

different assays and partly explained by the lack of either a single reference material 

                                                
2Assays should ideally be standardised against an approved reference material using an approved 

reference method in order that they produce interchangeable results.  The International Federation of 

Clinical Chemistry and Laboratory Medicine (IFCC) leads the way in defining appropriate reference 

methods and materials. 
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or method for cortisol, is another factor contributing to the variability of cortisol 

immunoassays.  There are at least 6 certified reference materials for cortisol – ERM-

DA192 and 193 (1985), ERM-DA451/IFCC (1999), SRM 921 (1993), SRM 971 (2011) 

and hydrocortisone USP reference standard, and information from manufacturers of 

current cortisol assays reveals traceability to several of these materials (personal 

correspondence, table 1.3).  There are also several reference methods, the earliest 

of which used isotope dilution-gas chromatography-mass spectrometry (ID-GC-MS) 

(Breuer and Siekmann 1975), with more recent methods relying on liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) for ease of use (Tai and 

Welch 2004); and a variety of these have been used to confirm the validity of current 

cortisol immunoassays (table 1.3). 

Table 1.3 Immunoassay traceability. 

Assay Traceability 

Beckman 
Access 

 

Traceable to United States Pharmacopea reference material.  

Abbott Architect Assay is designed to have a slope of 1.0 +/- 0.1 and a 
correlation coefficient (r) of ≥ 0.95 for serum samples when 

compared to Liquid Chromatography Mass 
Spectrometry/Mass Spectrometry (LC-MS/MS). 

Siemens 
Centaur 

GC-MS 

Roche E170 Standardised against another method which is standardised 
against ID-MS 

IFCC-451 Panel ID/GC/MS gives 89-111% recovery 

DPC Immulite Correlated to Coat-A-Count cortisol assay 
Traceable to an internal standard manufactured using 

qualified materials and measurement procedures  

Information provided by assay manufacturers regarding the reference material and 
method to which each assay was traceable. 
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1.2.1.1.3 Binding proteins 

Current assays measure total serum cortisol (bound and unbound fractions), and as 

a result are affected by changes in CBG and, to a lesser extent, albumin, 

concentration.  This is a particular problem in patients with protein deficient states.  

The cortisol response to ACTH stimulation in nephrotic patients has been shown to 

be lower, by between 63 and 179 nmol/L, depending on the assay used, than that in 

healthy volunteers (Klose et al. 2005).  This translates into a 50% failure rate with 

both the Immulite 2000 (Diagnostics Products Corp) and autoDelfia (Perkin-Elmer) 

assays, when a 500 nmol/L cut-off is used.  Similar findings have been reported in 

patients with liver impairment and mean albumin concentrations of 21 g/L, with 46% 

of patients failing to achieve a total cortisol of 550 nmol/L post-ACTH stimulation 

(Vincent et al. 2009). 

Acutely unwell patients are also at risk of misleading cortisol results due to low protein 

concentration; however, interpretation of cortisol measurements in this group is 

further complicated by increased synthesis of endogenous steroids by an activated 

HPA axis and a high prevalence of heterophilic antibodies (Cohen et al. 2006; Briegel 

et al. 2009)38.  Assay differences also appear to be more significant in this patient 

group, particularly post-ACTH stimulation (Cohen et al. 2006; Briegel et al. 2009), 

leading some authors to suggest that cortisol immunoassays should not be used for 

measuring cortisol in the critically ill. 

An excess of binding proteins, such as occurs in states of oestrogen excess e.g. 

pregnancy and treatment with oestrogen-containing oral contraceptives (OCP), can 

also cause difficulty in evaluating adrenal status/reserve through overestimation of 

                                                
3 *Heterophilic antibodies are human antibodies, typically produced against antigens from a specific 

animal, which are capable of binding to that animal’s antibodies in an immunoassay; resulting in a false 
positive (or occasionally, negative) result.  E.g. Human anti-mouse antibodies (HAMA). 
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cortisol concentration (Booth et al. 1961).  This increase in total serum cortisol is 

artefactual and not a true reflection of bioavailable cortisol, and, in the context of 

Synacthen stimulation can suggest an adequate adrenal response in a cortisol-

deficient patient. 

1.2.1.1.4 Endogenous and exogenous steroids 

Through their common precursor – cholesterol – and biosynthetic pathway, most 

steroid hormones share structural homology (figure 1.5), which makes the generation 

of entirely specific antibodies difficult (Holder 2006).  Current cortisol immunoassays 

are hampered by varying degrees of antibody cross-reactivity with other steroids 

(table 1.1), both endogenous and exogenous (Playfair et al. 1974; Brossaud et al. 

2009), and can be unreliable in certain clinical settings such as congenital adrenal 

hyperplasia (Curtis 2009), and in patients treated with synthetic glucocorticoids.  To 

some extent, laboratories can use manufacturers’ information about steroid cross-

reactivity to identify interference; however, this information is far from exhaustive, and 

labs are not always aware of patients’ medication.  In fact, the recent implementation 

of an LC-MS/MS cortisol assay in a laboratory serving a large respiratory unit 

revealed the unreported presence of exogenous steroids in up to 50% of patients 

being tested (Owen et al. 2013a).  
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Figure 1.5 Structural homology of cortisol and other steroid molecules. 
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1.2.1.2 Mass methods 

The first reference method for measuring cortisol used GC-MS and was described in 

1975 (Breuer and Siekmann 1975).  Cortisol was derivatised to its heptafluorobutyric 

ester to improve assay sensitivity and tritiated cortisol was added as an internal 

standard to correct for losses due to steroid adsorption to the chromatography 

column.  Despite the high specificity and sensitivity of mass methods, GC-MS cortisol 

assays remain confined to reference and research laboratories as they are labour 

intensive and require expensive specialist equipment and highly-skilled laboratory 

staff. 

In 2001, an LC-MS/MS method for measurement of multiple steroid hormones in 

patients with 11-β-hydroxylase and 21-hydroxylase deficiencies and Addison’s 

disease was described (Kao et al. 2001).  This method had the advantage over 

immunoassay of improved specificity, definitive identification of the substances being 

measured and the ability to perform multiple tests simultaneously.  Advantages over 

GC-MS included higher throughput, elimination of the derivatisation step, lower cost 

and increasing availability of LC-MS/MS equipment in clinical laboratories.  In 2004, 

an LC-MS/MS reference method was described (Tai and Welch 2004) as an 

alternative to GC-MS, and has since replaced the latter as the reference method of 

choice for routine method comparisons (Hawley et al. 2016). 

As LC-MS/MS becomes more widely available in clinical laboratories, there has been 

a move towards using it for routine measurement of steroid hormones, either in 

isolation (Owen et al. 2013a) or as part of a panel of related molecules (Koal et al. 

2012; Ruiter et al. 2012; Keevil 2013; Kyriakopoulou et al. 2013; Keefe et al. 2014; 

Lee et al. 2014).   In fact, the UKNEQAS cortisol scheme demonstrates that several 

such assays are already in use (figure 1.3).  However, if this interest in LC-MS/MS as 

an alternative to immunoassay continues, the cortisol response to Synacthen 
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stimulation and dexamethasone suppression will need to be defined to ensure correct 

interpretation in light of the increased specificity.  Furthermore, unless better efforts 

at assay standardisation are made with LC-MS/MS; including traceability to a single 

reference method and material, it is likely to be affected by similar inter-assay 

differences to those which currently plague immunoassays.  Particularly as such 

differences have already been observed with LC-MS/MS vitamin D and testosterone 

assays – the former due to the lack of common calibrators (Yates et al. 2008) and the 

latter due to factors thought to include differences in sample extraction techniques 

and the type of LC column and mass spectrometer used (Owen et al. 2013b). 

The reproducibility and accuracy of LC-MS/MS assays can be affected by sample 

matrix.  In particular, endogenous impurities e.g. salts in urine samples and co-eluting 

substances such as analyte and drug metabolites can cause ion suppression which 

is a reduction or increase in the efficiency of ion formation (Annesley 2003; Taylor 

2005; Allende et al. 2014).  Careful evaluation of this effect is, therefore, essential 

before introducing a new LC-MS/MS assay into clinical practice. 

1.2.1.3 Free cortisol assays 

Direct measurement of serum free cortisol has been possible since the 1950s, 

however the methods that have been described to date: equilibrium dialysis, 

ultrafiltration and gel filtration, are labour intensive and time consuming.  Attempts to 

modify these assays for semi-routine, specialist services have been moderately 

successful, but there is, as yet, no prospect of a serum free cortisol assay for routine 

clinical use (MacMahon et al. 1983; Kirchhoff et al. 2011). 

Equilibrium dialysis is particularly time consuming.  It involves using a dialysis 

membrane to separate a small volume of plasma from a buffer solution and incubating 

the two for up to 24 hours (Vogeser et al. 2002).  Free cortisol crosses the membrane 

until equilibrium is reached and can be measured in the dialysis buffer.  However, the 
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accuracy of this method is affected by serum leakage across the dialysis membrane 

and by changes in cortisol binding equilibrium within the plasma sample which result 

from its dilution with dialysis buffer. 

Ultrafiltration would seem to offer a more suitable method for adoption for clinical use 

due to its simplicity.  Plasma, separated from a collection chamber by a dialysis 

membrane, is centrifuged for 10 minutes at 37°C and the cortisol concentration in the 

resulting filtrate is measured (MacMahon et al. 1983).  However, substantial variations 

in filtrate yield have been reported; a finding which may be explained by the forced 

filtration disturbing cortisol binding equilibrium in the sample at the membrane 

surface.  Precise temperature control can also be difficult to achieve, particularly in a 

routine laboratory setting, which somewhat limits wider application of this method. 

Gel filtration relies on unbound cortisol moving down a packed glass column more 

slowly than its protein-bound counterpart (Burke 1969a).  As the latter fraction passes 

through the column, the cortisol dissociates from its binding protein until the 

concentration of dissociated cortisol in the column equals the unbound fraction in the 

original sample and no further dissociation occurs.  By replacing the sample with 

buffer at this point, the protein-bound cortisol elutes first and the concentration of 

serum free cortisol can be measured in the later fraction.  This method requires large 

sample volumes to create a steady state in the gel column and, although analysis is 

possible at any temperature, it is not entirely clear how temperatures below 37°C 

affect cortisol-CBG binding equilibrium. 

Routine measurement of serum free cortisol is further hampered by the lack of a 

single, robust reference range.  Most studies have been small and have used in-

house assays to measure cortisol, resulting in significant differences in the ranges 

quoted.  Particularly low substrate concentrations and the lack of a stable quality 

control material have contributed to these differences.  There have been few 
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comparisons between methods, although at least one study has shown good 

correlation between serum free cortisol measured by ultrafiltration and by equilibrium 

dialysis (Burke 1969b; Pretorius et al. 2011). 

As a result of the difficulties in measuring serum free cortisol, interest has turned 

towards deriving calculated estimates as an alternative.  In 1987, Coolens et al  

derived an equation for calculating serum free cortisol (SFC) taking into account the 

binding properties of both CBG and albumin (Coolens et al. 1987).  Correlation 

between this estimate and actual serum free cortisol measured by ultrafiltration was 

found to be excellent.  An alternative marker, the free cortisol index (FCI), defined as 

serum total cortisol divided by CBG, has also been shown to correlate well with serum 

free cortisol measured by gel filtration and with Coolens’ estimate (le Roux et al. 

2002).  However, as is the case for measured serum free cortisol, neither the FCI nor 

SFC has been validated for use in patients with HPA axis disease and CBG 

measurement is, by no means, widely available or, indeed, well-suited to routine 

analysis. 

The search for alternatives to measuring serum free cortisol has, therefore, explored 

cortisol measurement in other media, including urine and saliva; but it is the latter that 

shows more promise in the evaluation of patients with suspected adrenal 

insufficiency. 

1.2.2 Salivary cortisol assays 

Cortisol enters saliva by diffusion (Vining et al. 1983), independently of salivary flow 

rate.  It is not significantly protein-bound and reflects changes in plasma cortisol 

quickly and reliably (Vining and McGinley 1987).  Cortisol’s circadian rhythm and early 

morning peak are detectable in saliva (Walker et al. 1978) and interest in measuring 

salivary cortisol to evaluate the HPA axis began in the 1960s (Riad-Fahmy et al. 1982; 

Vining et al. 1983).  However, as cortisol concentrations in saliva are less than one 
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tenth those in serum, measurement was hampered by the lack of sensitive cortisol 

assays available at the time (Vining et al. 1983). 

Salivary cortisol was first measured successfully by direct RIA in 1978 (Walker et al. 

1978) and more recently automated serum cortisol immunoassays have been 

adapted to measure cortisol in saliva (Deutschbein et al. 2012; Sesay et al. 2013).  

However, the utility of immunoassays is limited by their poor specificity, particularly 

where there is significant antibody cross-reactivity with cortisone which is present in 

high concentration in saliva.  Assay sensitivity can also present a problem as late 

night salivary cortisol concentrations often fall close to, or below, most assays’ 

functional limit of detection. 

In 2003, the first LC-MS/MS assay for measuring salivary cortisol was described and 

put forward as an alternative to RIA to reduce the impact of cross-reactivity (Jonsson 

et al. 2003).  Efforts have since concentrated on adapting LC-MS/MS to provide a 

quick, high-throughput assay.  However, salivary cortisol measurement as an 

alternative to serum is still limited by the lack of a single, validated reference range 

(Baid et al. 2007; Zerikly et al. 2010; Inder et al. 2012) and potential differences arising 

due to poorly standardised assays (Inder et al. 2012).  Using different sample 

collection techniques has also been shown to contribute to the differences observed 

between salivary cortisol assays, as has sample contamination during collection. 

Nonetheless, salivary cortisol is now widely used in clinical laboratories as a 

screening test for Cushing’s syndrome (Nieman et al. 2008) and in monitoring 

hydrocortisone replacement (Wong et al. 2004) in patients with adrenal insufficiency.  

There is, also increasing interest in using it as an alternative to serum total cortisol in 

the interpretation of the cortisol response to Synacthen stimulation (Deutschbein et 

al. 2009; Perogamvros et al. 2010b), particularly in patients with altered protein 
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concentrations e.g. cirrhosis (Galbois et al. 2010); however a valid reference range 

does not yet exist. 

Salivary cortisone has also been put forward as a useful marker of serum free cortisol 

(Perogamvros et al. 2010a; Raff and Singh 2012).  Parotid tissue contains 11β-

hydroxysteroid dehydrogenase type 2 (11β-HSD2) which converts cortisol to 

cortisone (Smith et al. 1996), which has also been shown to correlate well with serum 

free cortisol (Perogamvros et al. 2009; Perogamvros et al. 2010a).  Further work is 

needed to establish suitable reference ranges and cut-offs. 

1.3 Adrenal insufficiency (Oelkers 1996; Arlt and Allolio 2003) 

Adrenal insufficiency was first described in 1855 by Thomas Addison as a syndrome 

characterised by wasting and hyperpigmentation.  His description was of primary 

adrenal insufficiency caused primarily by direct destruction of the adrenal gland by 

tuberculosis; however, the clinical presentation remains the same whatever the 

underlying cause.  The commonest cause of primary adrenal insufficiency in the 

developed world today is autoimmune adrenalitis; other common causes are listed in 

table 1.4. 

Secondary adrenal insufficiency is caused by hypothalamic or pituitary disease 

preventing normal stimulation of the adrenal cortex.  If ACTH deficiency is prolonged, 

the lack of stimulation of the adrenal gland results in cortical atrophy and down-

regulation of adrenal ACTH receptors (Lebrethon et al. 1994). The end result is a 

clinical picture similar to that of primary adrenal insufficiency (table 1.5). 
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___________________________________________________________________ 

Table 1.4 Causes of adrenal insufficiency4 

___________________________________________________________________ 

 

Primary:  Adrenal disease 

- Autoimmune adrenalitis – isolated or autoimmune 

polyglandular syndrome 

- Infection – TB, AIDS, fungus e.g. cryptococcosis, 

histoplasmosis 

- Infiltration – metastases, haemochromatosis, 

sarcoidsosis, amyloidosis 

- Iatrogenic – bilateral adrenalectomy, inadequate 

steroid replacement, cessation of high dose 

steroid therapy, drugs e.g. ketoconazole 

- Genetic – congenital adrenal hyperplasia, 

adrenoleukodystrophy 

- Bilateral adrenal haemorrhage 

 

Secondary:  Pituitary 

- Tumours – adenomas, metastases 

- Infarction – postpartum Sheehan’s syndrome 

- Infection – encephalitis  

- Iatrogenic – surgery, irradiation 

- Trauma 

- Infiltration e.g. TB, sarcoidosis, histiocytosis X 

 

Hypothalamus 

- Tumours – craniopharyngioma, optic glioma 

- Infection – meningitis, encephalitis, TB 

- Iatrogenic – surgery, irradiation 

- Trauma 

- Other – Anorexia nervosa  

                                                
4 Adapted from Arlt et al. 2003. 
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___________________________________________________________________ 

Table 1.5 Clinical features of adrenal insufficiency5 

___________________________________________________________________ 

 

Symptoms:   Fatigue 

    Generalised weakness 

    Lack of energy 

    Anorexia and weight loss 

    Abdominal pain 

    Myalgia and joint pain 

    Dizziness 

 

Signs:    Low blood pressure (and postural hypotension) 

    Fever 

    Pallor (Alabaster-skin, 2° adrenal insufficiency) 

    Hyperpigmentation (1° adrenal insufficiency) 

    Anaemia 

 

Biochemistry:   Hyponatraemia 

    Hyperkalaemia 

    Raised urea 

    Hypercalcaemia 

    Hypoglycaemia 

 

 

 

 

Acute adrenal crisis:  Hypovolaemic shock 

    Acute abdominal pain  

    Vomiting 

    Fever 

  

                                                
5 Adapted from Arlt et al 2003. 
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1.4 Diagnosing adrenal insufficiency 

The gold-standard test of HPA axis function is the insulin tolerance test (ITT), first 

described in 1963 (Landon et al. 1963).  Insulin-induced hypoglycaemic stress 

stimulates the hypothalamus directly, resulting in CRH release and an increase in 

serum cortisol; thus demonstrating the integrity of the entire axis, from hypothalamus 

to adrenal gland.  In 1969, Plumpton and Besser demonstrated that an adequate 

adrenal response to insulin-induced hypoglycaemia could accurately predict a cortisol 

rise in patients undergoing major surgery (Plumpton and Besser 1969).  They noted 

marked inter-individual variability in the magnitude of the response, although the 

stress of surgery reliably provoked a larger and more prolonged response than that 

seen with the ITT.  Following surgery, none of the patients with a normal cortisol 

response to insulin-induced hypoglycaemia developed features of adrenal 

insufficiency, confirming the ITT’s accuracy as a test of HPA axis function. 

However, this test is potentially dangerous and often unpleasant for patients.  It is 

contra-indicated in several patient groups, including those with epilepsy and coronary 

artery disease and must be used with caution in children (Shah et al. 1992) and the 

elderly.  It requires careful patient monitoring by experienced staff, with multiple timed 

blood collections to accurately identify a cortisol peak (Jones et al. 1994).  

Accordingly, it is rarely used as the first line test for investigating adrenal insufficiency 

(Reynolds et al. 2006). 

Used even less is the Metyrapone test, which blocks conversion of 11-deoxycortisol 

to cortisol (Fiad et al. 1994; Grinspoon and Biller 1994).  The resultant low cortisol 

exerts positive feedback on both the hypothalamus and pituitary, resulting in CRH 

and ACTH release. The ACTH stimulates the adrenal gland to produce cortisol, 

leading to an increase in cortisol precursors, and in particular, 11-deoxycortisol.  This 

rise is taken to indicate an adequate pituitary response to cortisol deficiency. 
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As with the ITT, the Metyrapone test assesses the entire HPA axis, although the 

stimulus is cortisol deficiency rather than stress.  Its main disadvantages lie in the 

lack of accurate assays to measure 11-deoxycortisol and the risk of inducing adrenal 

crisis in patients with adrenal insufficiency.  It is not widely used in the UK and the 

short Synacthen test (SST) has now replaced the ITT as the first line for testing 

adrenal reserve (Reynolds et al. 2006). 

The short Synacthen test was first described in 1965 as a safe and quick test of 

adrenal function (Wood et al. 1965).  A supraphysiological dose of Synacthen, a 

synthetic peptide consisting of the first 24 amino acids of natural ACTH, is 

administered parenterally and stimulates the adrenal cortex directly, resulting in 

raised cortisol, unless there has been significant destruction or atrophy of the adrenal 

gland (Dorin et al. 2003).  The cortisol response is measured 30 minutes after the 

Synacthen dose, giving a direct assessment of adrenal gland function but only an 

indirect measure of pituitary function (Borst et al. 1982). 

Nevertheless, the cortisol response to Synacthen stimulation has been shown to 

correlate well with the response to insulin-induced hypoglycaemia in healthy 

volunteers and in patients with varying degrees of HPA axis impairment (Kehlet et al. 

1976; Lindholm et al. 1978).  The Synacthen test also correlated well with the stress 

of major surgery (Kehlet and Binder 1973), suggesting it could be used as a reliable 

alternative to the ITT in patients undergoing assessment of the HPA axis (Stewart et 

al. 1988). 

Conversely, there have also been reports of patients with HPA axis dysfunction, 

confirmed by the Metyrapone test and clinical response to glucocorticoid 

replacement, whose cortisol response to Synacthen stimulation was “normal”, 

highlighting the potential danger of relying solely on the Synacthen test to diagnose 

HPA axis disease (Streeten et al. 1996). 
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These concerns about failing to detect HPA axis disease and adrenal insufficiency 

appear to have overshadowed any relating to overdiagnosis of adrenal insufficiency 

and consequent over-treatment, despite the potential harm from long-term 

glucocorticoid replacement.  In a study comparing ITT and Synacthen test results in 

patients with hypothalamo-pituitary disorders, Stewart et al reported 10 discordant 

results from a total of 70 (Stewart et al. 1988).  Nine of these failed the Synacthen 

test and subsequently passed the ITT, leading the authors to recommend using the 

Synacthen test as first line, followed by an ITT in those who failed.  However, this is 

not routinely done. 

1.5 Limitations of the short Synacthen test 

Due to its widespread use and the serious nature of the disease it is used to detect, 

the SST has continued to come under increasing scrutiny over the past 30 years.  It 

has been shown to have no role in the diagnosis of acute pituitary disease nor in the 

assessment of the HPA axis in the early weeks post pituitary surgery (Cunningham 

et al. 1983; Grinspoon and Biller 1994; Courtney et al. 2000; Dickstein 2001; Klose et 

al. 2005) because significant adrenal atrophy develops over weeks and, until it does, 

the risk of a false negative result is high (Dorin et al. 2003).  Its role as the test of 

choice for investigating adrenal disease in other settings has also been brought into 

question by concerns over the most appropriate dose of Synacthen to use (Abdu et 

al. 1999), difficulties in determining the correct cortisol cut-off (Stewart et al. 1988; 

Clayton 1989; Fiad et al. 1994; Clark et al. 1998) and the impact of altered CBG levels 

on total cortisol measurement (Coolens et al. 1987; Dhillo et al. 2002; Moisey et al. 

2006). 
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1.5.1 Synacthen dose 

There has long been concern that the standard, 250 µg, dose of Synacthen is in such 

excess that it could elicit a cortisol response from a partially atrophied adrenal cortex 

and several authors have proposed a lower, 1 µg, dose as a more meaningful 

stimulus for assessing adrenal reserve (Borst et al. 1982; Crowley et al. 1991; 

Dickstein et al. 1991; Abdu et al. 1999).  However, the low dose test may itself be 

subject to error due to the lack of commercial low dose Synacthen preparations and 

the consequent requirement to dilute a standard (1 mL) 250 µg Synacthen vial prior 

to administration (Thaler and Blevins 1998).  Synacthen adsorption to the plastic 

syringes and other devices used for its administration can also pose a problem and 

in inexperienced hands the low dose SST is unlikely to be a reliable test of adrenal 

function. 

1.5.2 Cortisol cut-off 

Determining the most appropriate cortisol cut-off for use in the standard short 

Synacthen test has proved difficult due to disagreement over how it should be defined 

(Grinspoon and Biller 1994; Mayenknecht et al. 1998; Weintrob et al. 1998; Park et 

al. 1999).  Some authors have suggested that the 30-minute cortisol cut-off value 

should be set to allow close correlation with the result of the insulin tolerance test 

(Hurel et al. 1996; Abdu et al. 1999), and, indeed, the widely quoted 550 nmol/L cut-

off was used for precisely this reason.  Others have defined a lower limit of normal 

using the 2.5th or 5th percentile of the response in a cohort of healthy volunteers (Clark 

et al. 1998; Klose et al. 2007).  Still others have suggested using the 60-minute 

cortisol result to define the response (Mansoor et al. 2007) and it is now perfectly 

clear that, no matter how the cut-off is defined – and correlation with the insulin 

tolerance test would be ideal, although potentially difficult to achieve due to the risks 

associated with testing –  a single cut-off is no longer applicable (Clark et al. 1998; 
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Klose et al. 2007).  Furthermore, whilst correlation with the cortisol response to 

insulin-induced hypoglycaemia is desirable, this too is affected by changes to cortisol 

assays and will itself need to be redefined. 

It is also time for the difficulties associated with using an absolute cortisol cut-off to 

be addressed.  Those within the laboratory are well aware of the concept of assay 

precision and the slight differences between repeated analyses performed on the 

same sample.  Clinicians are perhaps less aware of this concept; however, with 

manufacturer-quoted CVs of 3.8% to ≤ 10% for cortisol assays at the typical cut-off 

concentration of 500 – 550 nmol/L, continuing to use an absolute cut-off will mean 

some patients are misclassified purely because of assay imprecision.  

1.5.3 Total versus free cortisol 

As current cortisol immunoassays are only able to measure total serum cortisol 

(bound and unbound fractions), changes in CBG and, to a lesser extent, albumin 

concentration impact directly on cortisol measurement, making it an unreliable marker 

of adrenal function in patients with significantly altered protein concentrations 

(Coolens et al. 1987; Hamrahian et al. 2004; Ho et al. 2006; Vincent et al. 2009).  

Thus, adrenal status may be defined purely on the basis of a patient’s clinical 

condition rather than true assessment of HPA axis function.   

1.6 Assessing the adrenal glands in patients with acute disease 

Cortisol production in the acutely unwell increases up to 6-fold due to a stress-induced 

increase in production of CRH, and consequently, ACTH, and reduced negative 

feedback from cortisol (Cooper and Stewart 2003).  Loss of the diurnal pattern of 

cortisol secretion and a reduction in CBG concentration, leads to increased 

concentrations of circulating free corticosteroids.  These changes are mediated by an 

increase in circulating cytokines, in particular tumour necrosis factor α, interleukin-1 
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and interleukin-6, which also act to increase cortisol at the tissue level by increasing 

glucocorticoid receptor affinity for cortisol and reducing peripheral cortisol metabolism 

(Chrousos 1995; Cooper and Stewart 2003). 

Collectively, these changes are important for regulating the body’s response to insult; 

however, they can also be directly impaired by the insult.  For example, CRH and 

ACTH release may be impaired in patients with head injuries, a deranged clotting 

process may lead to adrenal haemorrhage, significant exogenous corticosteroid use 

may suppress the HPA axis, certain medications can inhibit enzymes involved in 

cortisol biosynthesis and can increase hepatic metabolism of cortisol, and excessive 

cytokine levels can suppress the adrenal cortex and cause end-organ resistance to 

cortisol (Cooper and Stewart 2003).  Thus, patients with an acute illness can develop 

a functional adrenal insufficiency i.e. a transient (for the most part) episode of 

subnormal corticosteroid production.  

Current serum cortisol assays can add further confusion to this already complex 

interplay between acute disease and adrenal cortex, making true assessment of 

adrenal function virtually impossible.  In a study by Hamrahian et al, which considered 

the impact of low serum protein concentrations (defined as an albumin concentration 

below 25 g/L) in the critically ill on their response to the standard SST, measurement 

of ACTH and serum free cortisol identified an activated HPA axis in all patients 

(Hamrahian et al. 2004).  However, in 14 out of 36 patients, the serum total cortisol 

response was consistent with adrenal insufficiency.  This led the investigators to 

suggest using serum free cortisol as a marker of the HPA axis in critically ill patients, 

although evidence to show that this measurement correlates with clinical outcome 

any better than serum total cortisol is currently lacking. 

In a subsequent study (Cohen et al. 2006), in which a standard SST was performed 

in 9 critically ill patients admitted to the general intensive care unit of a metropolitan 
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hospital, the extent to which assay differences influence interpretation of the 

Synacthen test in this population was clearly demonstrated.  Cortisol was analysed 

by HPLC and 3 immunoassays, with concordant SST results across all assays in only 

4 out of the 9 patients, leading the authors to suggest that unrecognised interassay 

variability is likely to have contributed to confusion over the definition of relative 

adrenal insufficiency in intensive care patients.  They also warned that clinical 

management of such patients was being determined by the cortisol immunoassay 

used by their local laboratory rather than their actual adrenal status, and 

recommended identifying other, more appropriate, methods for evaluating the HPA 

axis in these patients. 

Similar findings were reported in an offshoot study  of the multi-national CORTICUS 

(corticosteroid therapy of septic shock) study – whose main aim was to evaluate the 

role of hydrocortisone treatment in patients with septic shock (Briegel et al. 2009).  

Serum total cortisol measurements from 12 different local cortisol assays were 

compared with the Roche Elecsys immunoassay at a central laboratory and an LC- 

MS/MS reference method.  The correlation coefficient for the overall concordance 

between the central laboratory immunoassay and local assays was 0.60; falling to 

0.54 post-Synacthen stimulation.  When local assays were compared to LC-MS/MS, 

the corresponding coefficients ranged from 0.43 to 0.97.  Furthermore, although a 

comparison of cortisol measurements from an outpatient population showed excellent 

correlation between the Roche Elecsys assay and LC-MS/MS reference method, this 

fell when a critically ill population was used instead.  Overall, differences between 

central and local laboratory immunoassays resulted in misclassification of 

approximately 25% of patients and LC-MS/MS was recommended as the assay of 

choice measuring cortisol in the acutely ill. 
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1.7 Thesis aims 

This study was conceived following discussions with local Endocrinologists who 

perceived that an increasing number of patients were being diagnosed with 

hypoadrenalism following a failed Synacthen test, despite a lack of convincing clinical 

features.  Differences between cortisol assays were well recognised, as was the need 

for assay-specific cut-offs.  The cortisol cut-off in use in the laboratory at the time was 

derived from the literature and, at 550 nmol/L was not too dissimilar to the 5th 

percentile ranges of 510 – 626 nmol/L suggested by Clark et al (Clark et al. 1998).  

However, the laboratory’s Siemens assay was one of several new generation assays, 

which also included the Abbott, Immulite, Beckman and Roche, and consequently 

had not been included in the study by Clark et al.  There was, thus, no real evidence 

supporting the validity of the cortisol cut-off quoted by the lab. 

This led to the hypothesis that the laboratory’s cut-off was wrong and was leading to 

patients being incorrectly diagnosed with hypoadrenalism when, in fact, their HPA 

axis was intact.  There was concern, however, that should a new cut-off be 

established locally, this might not be applicable across all assay platforms, given what 

was already known about immunoassay performance, meaning a similar situation 

could arise following any future platform changes. 

Furthermore, given the effect of altered CBG concentration on serum total cortisol, it 

was postulated that a cut-off established in patients with CBG concentrations within 

the normal range could not be applied to patients with high or low serum CBG 

concentrations, and separate validated cut-offs would be needed for these groups.  

Conversely, a validated free cortisol cut-off – be it salivary or in serum – would be 

expected to apply to all patient groups, irrespective of serum CBG concentration. 
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The aims of this study were, therefore: 

 To establish valid serum total cortisol cut-offs for use with the short Synacthen 

test in patients with normal and altered CBG concentrations. 

 To investigate, using current assays, the effect of assay differences on these 

cut-offs. 

 To explore salivary free cortisol and calculated serum free cortisol as 

alternatives to serum total cortisol in interpreting the short Synacthen test in 

patients with altered CBG concentrations. 

Its primary objectives were to: 

 Define the distribution of, and effect of gender on, serum total cortisol 

measured by GC-MS following Synacthen stimulation in healthy volunteers 

and establish a reference range and lower reference limit for this response. 

 Establish the lower reference limit for the cortisol response to Synacthen in 

healthy volunteers for five widely-used commercially available cortisol 

immunoassays. 

 Define the salivary cortisol and calculated serum free cortisol responses to 

Synacthen in healthy volunteers and establish a reference range and lower 

reference limit for each. 

 Apply these newly defined cut-offs in groups of patients with suspected 

adrenal insufficiency and high and low serum CBG concentration, respectively 

to determine their validity. 
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2.1 Study Subjects 

2.1.1 Healthy volunteers 

2.1.1.1 Recruitment 

Volunteers aged between 20 and 66 were recruited from staff at the University 

Hospital of Wales (UHW) and Cardiff University and their friends.  Posters (appendix 

1) were displayed around the hospital and University, and interested parties were 

given further information and invited to participate.  On completion of their SST, 

volunteers were given copies of the information sheet (appendix 2) to pass on to 

colleagues and friends. 

2.1.1.2 Exclusion and inclusion criteria 

Criteria for exclusion included pregnancy and breastfeeding, significant intercurrent 

disease, a history of thyroid or other autoimmune disease, previous sensitivity to 

Synacthen, asthma or an allergic disorder and treatment with corticosteroids.  To be 

included in the study subjects had to be in self-proclaimed good health, free of illness 

on the day of testing and not taking any drug therapy.  In women of childbearing 

potential, pregnancy was excluded by urinary pregnancy test before participation in 

the trial. 

Of 172 subjects interested in participating a total of 7 were excluded due to asthma 

(3), topical steroid use (1), history of allergy to aspirin and walnuts (1) and 

autoimmune hypothyroidism (1); one was excluded due to difficulty collecting 

baseline blood (1).  Following entry into the study, two female volunteers, in whom 

baseline cortisol was measured but the SST could not be completed due to difficulty 

obtaining a post-Synacthen blood sample, were subsequently excluded from 

analysis. 
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The study protocol (appendix 3) was approved by the South East Wales Research 

Ethics Committee, Cardiff University (study sponsors) and the UK Competent 

Authority (the Medicines and Healthcare Products Regulatory Agency).  All subjects 

gave written informed consent before study commencement. 

2.1.1.3 Subject characteristics 

Of the 163 volunteers recruited, 60 were male and 103 female (88 premenopausal 

and 15 postmenopausal).  At the time of testing, twenty-four of the premenopausal 

female participants were taking an oestrogen-containing oral contraceptive pill (OCP) 

and were excluded from the female healthy volunteer group.  Seventy-nine women 

were included in the female group.  The mean age (and range) of the male and female 

groups was 37.1 (22-62) years and 40.7 (20-66) years, respectively. 

2.1.1.4 Female volunteers taking exogenous oestrogens 

There were 24 premenopausal women taking an oestrogen-containing oral 

contraceptive pill (OCP) containing between 20 and 35 micrograms of 

ethinyloestradiol.  The mean age of these subjects was 28.7 years (range 21 to 40).  

To avoid the possibility of differences in cortisol concentration due to menstrual cycle 

phase, Synacthen testing in this group was undertaken during the follicular phase of 

the menstrual cycle. 

2.1.2 Patients with suspected adrenal insufficiency 

Thirty patients with established or suspected adrenal insufficiency were recruited from 

Endocrine clinics at the UHW.  Inclusion and exclusion criteria were as for healthy 

volunteers, with the exception that a history of autoimmune disease or steroid 

treatment did not preclude participation in the study. 

Of the thirty patients recruited, three were known to have Addison’s disease and were 

on hydrocortisone and fludrocortisone replacement therapy; three had other 
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autoimmune disease including type 1 diabetes and recurrent hypoglycaemic 

episodes (2) and autoimmune hypothyroidism and vitamin B12 deficiency (1); ten had 

a pituitary adenoma and five of these had undergone pituitary surgery; two had 

undergone intracranial surgery or radiotherapy for other reasons; one had undergone 

adrenal surgery; four were on long term steroid treatment and seven had non-specific 

symptoms but adrenal insufficiency was suspected clinically (table 2.1).  This group 

comprised 13 men and 17 women with a mean age of 52.4 years (range 23 – 82). 

Results from patients with known Addison’s disease and, hence, undetectable serum 

cortisol were excluded from calculations of the mean in all arms of the study to avoid 

introducing negative bias to comparisons between mean concentrations in patients 

with suspected hypoadrenalism and healthy volunteers. 
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Table 2.1 Summary of the clinical history and medication of patients with suspected adrenal insufficiency 

Patient Age Gender Clinical Details Medication 

     
1 67 F Addison's + Hypothyroidism Hydrocortisone 15mg/10mg; Fludrocortisone 25mcg; T4 

100mcg 
2 63 M Addison's, T2DM, Prostate Ca Hydrocortisone 30mg/20mg; Fludrocortisone 100 mcg; 

Avandamet 
3 65 F Pituitary Macroadenoma  
4 82 F Non-functioning Pituitary Macroadenoma (surgery 2004), T2DM, IHD  
5 57 F Fatigue, Asthma, Recurrent steroids Seretide, Atrovent, Salbutamol 
6 61 M Non-functioning Pituitary Adenoma  
7 74 M Non-functioning Pituitary Adenoma, IHD, Psoriasis  
8 46 F Symptoms of IBS  
9 54 M Hypogonadotrophic hypogonadism, Gynaecomastia, Normal MRI  

10 62 M Pituitary adenoma invading L cavernous sinus, Transsphenoidal resection Jan 09, T2DM Hydrocortisone 10mg/10mg; T4, Metformin, Simvastatin, 
Sustanon 

11 64 M L adrenalectomy for subclinical Cushing’s - Jan 09, T2DM, UC, IHD, Recently stopped high dose steroids Hydrocortisone 10mg/10mg; Metformin; Insulin; 
Azathioprine; Irbesartan; Amlodipine; Simvastatin; 
Salbutamol; Omeprazole; Diltiazem; GTN; Aspirin 

12 40 F Addison's, Graves' in remission Hydrocortisone 20mg/5mg/5mg; Fudrocortisone 100mcg 
13 35 M Craniopharyngioma, Partial Hypopituitarism due to surgery, T2DM T4; Tostran; GH; Desmospray; Metformin; Ramipril; 

Bisoprolol; Aspirin; Simvastatin; GTN spray 
14 39 F Dizziness, postural low BP  
15 43 M T1DM, recurrent severe hypos, weight loss Lantus and Novorapid 
16 50 M Non-functioning Pituitary Adenoma; Surgery Feb 09; Hypogonadotrophic hypogonadism  
17 64 M Crohn's Disease + ileal resections, on + off steroids for 2 years  
18 47 F Autoimmune hypothyroidism, B12 deficiency, tiredness  
19 47 F Non-functioning pituitary microadenoma, Primary hypothyroidism Thyroxine 
20 46 M Low random cortisol and testosterone, Normal Pituitary scan Gabapentin; Simvastatin; Raniditine; Allopurinol; Oxycontin; 

Amitriptyline; Lansoprazole; Colofac; Testosterone patch 
21 81 F Adrenal suppression secondary to recurrent steroid treatment, COPD, IHD, Cerebrovascular disease, osteoporosis Prednisolone 10m; Lansoprazole 
22 70 F Non-functioning pituitary adenoma, transsphenoidal hypophysectomy, post-op transient DI, primary hypothyroidism  
23 36 M T1DM, recurrent severe hypos, steroids Hydrocortisone 10mg/10mg 
24 55 M Partial hypopituitarism secondary to cranial radiotherapy, GH deficiency, primary hypothyroidism, T2DM GH; andropatch, Irbesartan; Simvastatin; Mebeverine; 

Allopurinol 
25 23 F Pituitary Microadenoma, PCOS Cilest 
26 43 F Non-functioning pituitary adenoma, transsphenoidal surgery 2006, probably MEN1, partial anterior hypopituitarism GH; Simvastatin; Amlodipine 
27 46 F ?Addison's disease  
28 54 F Non-specific symptoms - aches, pains, headaches, fatigue, low mood, forgetful - ? Hypopituitarism Gabapentin; Solpadol; Fluoxetine 
29 28 F Iatrogenic hypoadrenalism, previous steroid treatment for sarcoid Hydrocortisone 10mg/10mg 
30 29 F Fatigue, dizziness  
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A pre-test likelihood of hypoadrenalism was derived for each patient from the 

available clinical information.  This was an arbitrary score, designed to stratify patients 

into categories of low or high clinical risk of disease, to which the outcome of the 

Synacthen test could be compared.  Presenting features were split into 2 categories 

– clinical history and medication – and a risk score, based on my clinical judgment, 

was assigned to each (table 2.2). 

Within each category, a score of 1 was defined as “no convincing clinical risk factors 

for hypoadrenalism” and a score of 5 as “definite hypoadrenalism”.  Scores in 

between the two extremes were defined as “possible, but unlikely” (2), “possible” (3) 

and “probable” (4) hypoadrenalism; although no criteria were assigned this latter 

score. 

The scores from the two categories were then added to give the pre-test likelihood of 

disease, with an overall score of 5 or more indicating a high probability of disease, as 

it would comprise at least one definite or probable criterion or two possible criteria, 

although one of these could be “possible, but unlikely” (2).  An overall score of 10 was 

considered “definite hypoadrenalism” and a score of 2 or less indicated a low 

probability of disease. 

Where more than one criterion within the same category was present these were 

added together, e.g. treatment with both oral and inhaled corticosteroids would result 

in a medication score of 5, to which the clinical score would be added.  One major 

weakness of this scoring system, however, was that patients with an overall score of 

3 or 4 were considered to have an indeterminate risk.  This arose as a result of my 

concern not to underestimate risk. 

Finally, agreement between this score and the actual cortisol response to Synacthen 

was evaluated and the percentage agreement established. 
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Table 2.2 Criteria for establishing the pre-test likelihood of hypoadrenalism. 

 
Criteria 

 
Score: 

 
Clinical:  
 

Pre-existing Addison’s disease or hypopituitarism 
 

5 

Unilateral adrenalectomy 
 

3 

Pituitary adenoma with evidence of partial pituitary insufficiency 
 

3 

Pituitary macroadenoma without evidence of partial pituitary 
insufficiency 

2 

Symptoms of hypoadrenalism (3 or more) 
 

3 

Other autoimmune disease 
 

3 

None of the above 
 

1 

 
Medication: 
 

Replacement hydrocortisone &/or fludrocortisone 5 
 

Other oral corticosteroids 
 

3 

Inhaled corticosteroids 
 

2 

Other drugs affecting the HPA axis 
 

1 

No relevant medication 
 

1 

The criteria for determining the pre-test probability of adrenal disease were derived 
from the clinical information provided in table 2.1.  Each criterion was given a score 
between 1 and 5, based on personal judgement.  A score of 1 was defined as “no 
convincing clinical risk factors for hypoadrenalism” 2 “hypoadrenalism possible, but 
unlikely”, 3 “hypoadrenalism possible”, 4 “hypoadrenalism probable” and 5 “definite 
hypoadrenalism”. 

 

Patients were followed up 5 years after undergoing their Synacthen test, using 

information extracted from clinic letters and biochemistry test results stored on the 

electronic clinical portal, to confirm that the test outcome had been correct. 
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2.1.3 Patients with low serum albumin 

A total of 11 patients with either a recently diagnosed, untreated nephrotic syndrome 

(1) or established liver cirrhosis (10) were recruited from UHW renal and liver clinics.  

Inclusion and exclusion criteria were as for healthy volunteers except underlying renal 

or liver disease was a condition for inclusion.  Patients were identified on the basis of 

a recent serum albumin concentration below the reference range of 35 – 50 g/L.  

Serum albumin concentration was repeated on the day of the Synacthen test and one 

of the 11 patients was subsequently excluded due to a serum albumin concentration 

within the normal range (38 g/L). 

The final group comprised 7 men and 3 women with a mean age of 57.4 years (range 

42 – 78) and mean albumin concentration 30.3 g/L (range 29 – 34). 

2.2 Sample collection and processing 

2.2.1 Short Synacthen test 

The short Synacthen tests were carried out in the morning between 08.30 and 11.30 

h. Subjects were not required to fast overnight, but were restricted from eating, 

drinking or smoking for the 30 minutes before the test.  There were no restrictions on 

physical exercise prior to the test but participants were asked to rest in a sitting 

position for 15 minutes before the test began and then for the duration of the test.  

Women under the age of 40 were tested in days 1-7 of the follicular phase of their 

menstrual cycle, but in older women there were no particular timing requirements. 

Once informed consent had been obtained, subjects were asked to collect a 5 mL 

saliva sample by passive drooling into a Universal container. An indwelling catheter 

was inserted into a superficial antecubital vein and 20 mL of blood were collected into 

plain tubes with no serum separator gel.  A 250 µg bolus of synthetic ACTH1-24 

(Tetracosactide) (Synacthen, Alliance Pharmaceuticals Ltd, Wiltshire) was 
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administered intravenously and thirty minutes later a further 20 mL of blood were 

collected and subjects were asked to collect a second 5 mL saliva sample.  This 

procedure was followed in healthy volunteers and patient groups. 

2.2.2 Post collection sample handling 

Blood samples were allowed to clot and following separation the serum was split into 

multiple aliquots; one of which was analysed immediately using the Siemens Centaur 

assay, to exclude adrenal insufficiency.  The remainder were stored frozen, with the 

saliva samples, at -20°C.  Subsequent sample processing was determined according 

to the group being studied.  Thus, samples from healthy volunteers, who were 

recruited to allow the characteristics of baseline and post-Synacthen cortisol 

measurement to be identified, to examine the effect of assay on these characteristics 

and to define method-specific cortisol cut-offs post-Synacthen; were analysed by GC-

MS and five automated immunoassays.  Samples from patients with suspected 

hypoadrenalism, who were recruited to enable comparison between cortisol 

concentrations in a healthy population and in patients with a clinical indication for 

testing the adrenal axis, were analysed by a single automated immunoassay (Abbott 

Architect).  Samples from patients with low serum albumin, who were recruited to 

explore the effect of altered protein concentration on cortisol measurement, were 

analysed by GC-MS and the Abbott Architect immunoassay. 

Samples from healthy volunteers were removed for analysis in batches over a 10 

week period (figure 2.1).  This included repeat analysis on the Centaur to exclude 

sample degradation, whilst the remaining aliquots were sent to external laboratories 

for analysis according to the protocol (appendix 4).  Samples from patients with 

established or potential adrenal disease were subsequently analysed in a single batch 

in the UHW Biochemistry laboratory using the Abbott Architect assay.  Samples from 
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patients with low serum albumin were analysed in single batches by GC-MS and the 

Abbott Architect assay.  

 

Figure 2.1 Description of processing and analysis of samples from healthy 

volunteers.  Following storage, patient samples were analysed either by the Abbott 

Architect alone or by the Abbott Architect and GC-MS assays (see text). 
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2.2.3 Assay reformulation 

During the course of the study, Siemens announced a minor reformulation of their 

Advia Centaur cortisol assay.  This practice is not unusual and in the context of 

cortisol assays is likely to represent an attempt to align them more closely with an LC-

MS/MS reference method.  Because of the timing of the assay change it was possible 

to study its impact on cortisol measurement directly.  Stored aliquots of serum from 

healthy volunteers were analysed in batches on the new Centaur assay for 

comparison to the Centaur results from the start of the study. 

2.3 Analytical methods 

2.3.1 Serum cortisol 

Total cortisol from healthy volunteers, including women taking an OCP, was 

measured by the Welsh External Quality Assurance Scheme (WEQAS) Reference 

Laboratory using a modified version of their gas chromatography-mass spectrometry 

(GC-MS) reference method and by five automated immunoassays: the Advia Centaur 

(Siemens AG, Erlangen, Germany), Modular Analytics E170 (Roche, GmbH, 

Mannheim, Germany), Immulite 2000 (Siemens AG, Erlangen, Germany), Beckman 

Access (Beckman Coulter Inc., Brea, CA) and Abbott Architect (Abbott Laboratories, 

Illinois).  Total cortisol in samples from patients with low serum albumin was 

measured by GC-MS and the Abbott Architect assay and from patients with 

suspected adrenal disease by the Abbott Architect assay only. 

2.3.1.1 GC-MS cortisol6 

The assay used was a modified version of the reference method developed and 

validated by the WEQAS Reference Laboratory, and differs in that it uses a 

                                                
6 Analysis performed by staff at the WEQAS reference laboratory 
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conventional 6-point calibration curve instead of the bracketed standard curve used 

in the reference method.  It is described in some detail, below. 

Samples and quality controls were thawed at room temperature and mixed.  A 0.5 mL 

aliquot of each was dispensed in duplicate into 2.5 mL of 1% Sodium Chloride (NaCl) 

solution and deuterated cortisol was added as internal standard.  Samples were then 

mixed and stored overnight at 4°C.  The following day, cortisol was extracted with 

dichloromethane (DCM, 7 mL) and mixed vigorously.  The tubes were centrifuged at 

2500 rpm for 20 minutes at 10°C, and the upper aqueous layer discarded.  The 

organic phase was decanted into labelled glass tubes, placed in a heating block and 

evaporated to dryness under a gentle stream of nitrogen at 30°C. 

The dried extract was reconstituted in 200 µL of a chloroform/cyclohexane/methanol 

column solvent mix and further purified using LH-20 chromatography.  LH-20 columns 

were constructed using a glass Pasteur pipette with a loose glass wool plug at the 

narrow end, and packed with LH-20 particles that had been soaked overnight at room 

temperature in the chloroform/cyclohexane/methanol (100:80:15, v/v) solvent mix.  

The columns were washed with 3 mL of column solvent and the reconstituted sample 

was applied.  Following a final column wash with 1.5 mL of solvent mix, the cortisol 

was eluted into reaction vials containing 60 µg of 5α-androstane to reduce 

deterioration of cortisol and the samples were evaporated to dryness.  

Derivatisation of cortisol to its heptafluorobutyric ester was initiated by reconstituting 

the dried extract with 25 µL each of acetone and heptafluorobutyric anhydride (HFBA) 

and mixing thoroughly.  Samples were derivatised for 45 minutes, dried under 

nitrogen, reconstituted with 50 µL cyclohexane and thoroughly mixed before GC-MS 

analysis. 

The GC-MS instrument was an Agilent 5973 mass spectrometer coupled with a 6890 

gas chromatograph.  The GC column was 15 m long with 0.32 mm internal diameter 
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and 0.25 µm film thickness (Agilent technologies).  The derivatised cortisol was 

injected via a split/splitless ptv injection system at 75°C, ramped up to a final 

temperature of 270°C, held for 1 minute.  Initial oven temperature was 100°C ramped 

to a final temperature of 290°C.  Helium was used as the carrier gas at a constant 

flow with a column head pressure of 35 kPa (5 psi).  The MS was operated under 

electron impact (70 eV) and selective-ion monitoring mode, monitoring at mass to 

charge ratios (m/z) of 489 and 491 for cortisol and d2-cortisol respectively.  Retention 

time of derivatised cortisol was 7.3 minutes.  Data acquisition and quantitation of 

cortisol levels were achieved using Chemstation software. 

High, medium and low quality control samples (average concentrations: 657 nmol/L, 

363 nmol/L and 120 nmol/L respectively) were included in every run and processed 

identically to study samples. 

2.3.1.2 Automated cortisol immunoassays7 

For ease of reference the assays used will be referred to by manufacturer name 

throughout the text, while the two Siemens assays will be referred to as Centaur and 

Immulite respectively.  All assays were solid-phase, competitive binding 

immunoassays with chemiluminescent detection, except the Roche which uses 

electrochemiluminescent detection.  The Centaur and Abbott analyses were both 

undertaken at the University Hospital of Wales’ Biochemistry laboratory which 

underwent a change of equipment during the study.  The Roche, Immulite and 

Beckman analyses were undertaken at the Biochemistry laboratories at Prince 

Charles Hospital, Merthyr Tydfil, Bristol Royal Infirmary, Bristol and Southampton 

General Hospital, Southampton, respectively.  All participating laboratories were 

enrolled in the UKNEQAS external quality assurance scheme at the time of analysis 

and their cortisol assays were performing well within their method groups (Table 2.3). 

                                                
7 Analysis performed by laboratory staff at the respective hospitals 
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Table 2.3 Cortisol assay EQA performance. 

 Centaur Abbott Roche Immulite Beckman 

UKNEQAS 
ABC 

Scores 

A  64 
B  +5.1 
C  6.1 

A  93 
B  -8.5 
C  8.0 

A  65 
B  +5.7 
C  6.6 

A  82 
B  +0.4 
C  10.6 

A  133 
B  -9.9 
C  10.6 

UKNEQAS ABC scores for each of the cortisol assays included in the study. 
A score = transformed accuracy score which includes a degree of difficulty factor to 
make it comparable across different analytes.  For most analytes an A score below 
100 indicates good performance. 
B score = bias score which assesses the assay’s bias (and its direction) relative to 
the target value. 
C score = consistency of bias score i.e. are the magnitude and direction of the assay’s 
bias consistent? 
Data provided by each participating laboratory before analysis began and reproduced 
with kind permission of F MacKenzie, UKNEQAS. 

 

Batches, comprising samples from a maximum of 17 subjects (i.e. a total of 34 

samples, as each subject had a baseline and post-Synacthen sample) and three 

internal quality control (iQC) serum pools with GC-MS assigned target concentrations 

of 76, 528 and 696 nmol/L respectively, were sent to participating laboratories for 

analysis once a week over 10 weeks.  Analysis of the three iQC pools over the 10-

week period provided the data needed to determine the interassay (between batch) 

precision for each assay (Table 2.4).  
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Table 2.4 Assay precision. 

 

GC-MS Target [Cortisol] 
nmol/L Mean 

[Cortisol] 
CV% 

Number of 
replicates 

76.1 527.7 696.4 

 
Assay mean [Cortisol] 

nmol/L 
   

Centaur 
121.3 

 
 

646.4 
 
 

891.1 

 
NA 

5.0 
4.4 
2.1 

10 
10 
10 

Roche 
116.3 

 
 

612.7 
 
 

818.1 

 
NA 

9.8 
6.1 
6.6 

10 
10 
10 

Immulite 
116.7 

 
 

694.8 
 
 

978.0 

 
NA 

10.2 
7.7 
7.2 

9 
9 
9 

Beckman 
124.4 

 
 

619.6 
 
 

827.7 

 
NA 

9.9 
5.0 
2.5 

10 
10 
9 

Abbott NA NA NA 
96.5 

549.2 
840.1 

10.4 
5.4 
6.8 

135 
131 
146 

Interassay CVs for the Centaur, Roche, Immulite and Beckman assays were 
established using pooled serum samples with GC-MS-assigned target 
concentrations, kindly provided by WEQAS.  Interassay CV for the Abbott assay was 
determined from the mean and SD of multiple runs of 3 single serum samples with 
unknown cortisol concentration.   
 

2.3.2 Serum CBG8 

The serum CBG assay is a manual solid-phase, competitive binding 

radioimmunoassay from Biosource (Nivelles, Belgium).  125I-labelled CBG competes 

with CBG in the sample or calibrator for binding sites on mouse anti-CBG antibodies 

which are immobilised onto the walls of specially designed polystyrene tubes by goat 

anti-mouse antibodies.  The radioactive signal produced by bound labelled CBG is 

measured using a gamma counter, and is inversely proportional to the concentration 

of CBG in the sample.  Prior to analysis, samples require a 25-fold dilution and this 

was done by adding 100 µL of sample to 2.4 mL of the dilution buffer provided and 

mixing well.  Diluted samples, calibrators and controls were run in duplicate and 100 

                                                
8 Analysis performed by Dr Atilla Turkes, Mr Alan Pickett and myself. 
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µl of each was dispensed into the antibody-coated tubes.  100 µL of 125I-labelled CBG 

was added to each tube, followed by 100 µL of anti-CBG anti-serum.  The reaction 

mixture was incubated for 2 hours at room temperature, with continuous shaking at 

400 rpm.  The liquid content of each tube was aspirated and the tubes were washed 

with 2 mL of wash buffer and aspirated to dryness again.  The tubes were counted in 

a gamma counter for 60 seconds.   

In addition to the samples, calibrators and controls, two plain plastic tubes containing 

100 µl of 125I-labelled CBG were used to determine the total radioactivity count and a 

“blank” coated tube was included to determine any non-specific binding (NSB)9.  

Included with the kit’s calibrators was a “zero calibrator”, also known as the “maximum 

binding” tube which contains both 125I-labelled CBG and anti-CBG anti-serum but no 

competing CBG.  This makes it possible to determine the maximum amount of binding 

that can occur between the radioactive CBG and its antibody in the absence of 

competition, and demonstrates that there is a sufficient amount of antibody in the 

reaction mixture. 

Assay performance was deemed acceptable, with intra- and inter-assay CVs of 7.6% 

and 12.8% respectively at a concentration of 30 mg/L and 3.1% and 8.7% respectively 

at a concentration of 110 mg/L.  

2.3.3 Salivary cortisol 

Salivary cortisol was measured by Dr Atilla Turkes and Mrs Sarah Tenant from UHW 

Biochemistry using an in-house LC-MS/MS method.  A 250 µL aliquot of saliva, 

containing 5 nmol/L deuterated cortisol was extracted with 2 mL of dichloromethane. 

The tubes were centrifuged for 5 min at 4000 rpm and the top aqueous layer was 

                                                
9 Non-specific binding is measured as the amount of radioactivity present in a control or “blank” 

coated tube which has been handled in an identical way to the sample tubes but contains only 125I-

labelled CBG and the reaction buffer, but no competing CBG and no anti-CBG antibodies.  It is used 

to identify any direct, non-antibody mediated binding of the label to the walls of the reaction tube or 

to any components of the reaction buffer. 
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discarded. The solvent phase was evaporated under a gentle stream of nitrogen and 

the dried extract was reconstituted with 250 µl of mobile phase.  A 20 µl volume of 

this extract was injected into the LC-MS/MS instrument for analysis. 

The LC-MS/MS instrument was a Premier XE triple quadrupole tandem mass 

spectrometer (Micromass MS Technologies, Manchester, UK) with an Acquity ultra-

performance liquid chromatography (UPLC) system comprising a binary pump and 

auto-sampler (Waters Ltd, California, USA).  The LC column was a silica-based 

reverse-phase C18 (1.7μm, 2.1x50 mm) column (Waters Ltd) and the 

chromatographic mobile phases were composed of two solutions; (A) deionised water 

containing 2 mmol/L ammonium acetate and 0.1% v/v formic acid and (B) methanol 

containing 2 mmol/L ammonium acetate and 0.1% v/v formic acid.  The mobile phase 

was delivered, after sample injection, at an initial flow rate of 0.40 mL/min.  The 

retention time for cortisol and d4-cortisol was 0.95 min and the analysis time for each 

sample was 4.5 min.  

The MS/MS was operated with electrospray ionisation (ESI) source and Z-spray 

interface and selected reaction monitoring mode, monitoring at a mass to charge ratio 

(m/z) of 363.3 transitioning to 121.1 (363.3>121.2) for cortisol and 365.3 to 121.2 

(365.3>121.2) for d2-cortisol.  Data acquisition and quantitation of cortisol levels were 

achieved using MassLynx NT and QuanLynx (Waters Ltd.) software, respectively. 

The intra- and inter-assay CVs were 5.6% and 6.0% respectively at a concentration 

of 1.2 nmol/L, 2.3% and 5.8% respectively at 5.4 nmol/L and 3.0% and 3.8% 

respectively at 15.1 nmol/L. 

2.4 Statistics 

Statistical analyses were performed using SPSS versions 16.0, 19.0 and 23.0 (SPSS 

Inc., Chicago, Illinois and IBM Corporation, New York).  The Kolmogorov-Smirnov 

test was used to determine whether data were normally distributed and, for 
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consistency, given that not all data were normally distributed, all were log transformed 

before analysis.  Calculations of the mean and reference ranges were carried out on 

the log transformed data and were transformed back to give meaningful results. 

Comparisons between means were made using the paired and unpaired t-tests and 

Mann-Whitney U test, where data remained non-parametric following log 

transformation.  In all cases, a p-value <0.05 indicated a significant difference.  

Specific details of the analyses carried out are included in the relevant chapters. 
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CHAPTER 3 

 

DETERMINING THE METHOD-SPECIFIC SERUM CORTISOL 

RESPONSE TO SYNACTHEN 
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3.1 Introduction 

The concept of using assay-specific cut-offs to interpret the cortisol response to 

Synacthen is not a new one (Clark et al. 1998; Klose et al. 2007).  However, earlier 

studies have either been limited to a small number of immunoassays (Klose et al. 

2007) or have used assays that are now obsolete (Clark et al. 1998).  Thus, we do 

not have validated cortisol reference ranges or cut-offs for the majority of current 

immunoassays, despite evidence that we should.  Differences in the characteristics 

of the cortisol response to Synacthen, including gender effect and distributional form, 

have also been identified but remain unexplained. 

Clinically, there is growing concern that current cut-offs have resulted in 

overdiagnosis of adrenal insufficiency in patients with few, if any, definitive features 

of the disease.  The need to review immunoassay measurement of cortisol in general 

and the cortisol response to Synacthen, specifically, is therefore clearly established 

from both a clinical and a laboratory perspective. 

3.2 Aims 

The work described in this chapter was undertaken to: 

 Clarify the distributional pattern of serum cortisol measurements in men and 

women and identify any significant gender differences in concentration. 

 Define the cortisol response to Synacthen in healthy volunteers using a 

modified version of the GC-MS reference method. 

 Compare cortisol measurement by GC-MS to its measurement by five 

commercially available cortisol immunoassays to identify differences and 

quantify assay bias for each. 

 Establish the lower reference limit for the cortisol response to Synacthen in 

the immunoassays studied. 
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 Explore the validity of an assay-specific lower reference limit for cortisol in a 

cohort of patients with suspected hypoadrenalism. 

3.3 Subjects and sample analysis 

3.3.1 Healthy volunteers 

This group consisted of 60 male and 79 female volunteers, as described in chapter 

2.  Serum total cortisol in this group was measured by GC-MS and the Centaur, Abbot, 

Roche, Immulite and Beckman immunoassays. 

3.3.2 Patients with suspected hypoadrenalism 

This group consisted of 13 male and 17 female recruits, whose clinical details are 

summarised in table 2.1.  Serum total cortisol in this group was measured by the 

Abbott immunoassay only. 

3.4 Statistics 

3.4.1 Samples from healthy volunteers 

All results were log-transformed before calculating mean cortisol concentrations and 

2.5th to 97.5th percentile ranges for each assay at each time point.  A lower reference 

limit (LRL) for the cortisol response to Synacthen, equivalent to the 2.5th percentile 

result, was calculated for each assay from the mean cortisol concentration at 30 

minutes, using the equation “mean – 1.96*SD”.  For the purposes of this study, the 

LRL was used as the cut-off for differentiating between glucocorticoid sufficiency and 

deficiency. 

An assay-specific bias ratio, indicating the magnitude and direction of each 

immunoassay’s bias relative to GC-MS, was calculated for each sample (at each time 

point) by dividing the untransformed immunoassay result by the matched GC-MS 

result, and a mean value was calculated.  Baseline and post-Synacthen results were 
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combined before the correlation between each immunoassay and GC-MS was 

studied using scatter plots and bias ratios. 

Differences between method means and bias ratios were compared using the paired 

t-test.  Gender differences were evaluated using the unpaired t-test, or the Mann-

Witney U test in cases of non-parametric data.  In all cases a p-value <0.05 was 

considered statistically significant. 

3.4.2 Assay reformulation study 

Mean cortisol concentration, overall assay bias and a lower reference limit for the 

cortisol response to Synacthen were calculated for the new Centaur assay as 

described above, and compared to the results from the old assay using the paired t-

test. 

3.4.3 Comparison to patients with established or potential adrenal disease 

Mean cortisol concentration was calculated at baseline and post-Synacthen in the 

patient group and compared to the respective mean concentrations in healthy 

volunteers using the unpaired t-test.  Patients whose baseline serum cortisol was 

undetectable were excluded from calculations of the mean. 

3.5 Results 

3.5.1 Defining cortisol characteristics using GC-MS 

3.5.1.1 At baseline 

Baseline cortisol was normally distributed in male but not in female volunteers, in 

whom concentrations were skewed to the right (figure 3.1).  Further examination of 

the 8 women with the highest cortisol concentrations showed an over-representation 

of post-menopausal women; 37.5% (3/8) compared to 19% (15/79) overall.  The 

mean age of this group was also significantly higher than that of the female group as 

a whole (43.5 vs 40.3 years, respectively).  There was no significant gender 
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difference, however, (table 3.1) and on combining the male and female groups, 

cortisol concentrations were found to be independent of age (R2 = 0.003, p-value = 

0.26).  Baseline cortisol concentration, measured by GC-MS, ranged between 92 and 

603 nmol/L in males and 117 and 536 nmol/L in females. 

 

Figure 3.1 Distribution of baseline serum total cortisol concentration in males and 

females.  The distribution was examined using the Kolmogorov-Smirnov test, with a 

P-value >0.05 indicating a normal distribution. 

 

Table 3.1 Assay-specific baseline serum total cortisol concentration in healthy 

volunteers. 

 Baseline mean [cortisol] (2.5th – 97.5th centile) nmol/L 

Assay 
Males 
n = 60 

Females 
n = 79 

P-value* 

GC-MS 274 (131 - 575) 254 (139 - 463) 0.193 

Centaur 298 (158 - 565) 257 (138 - 477) 0.023* 

Abbott  289 (151 - 556) 247 (134 - 455) 0.018* 

Roche  370 (182 - 750) 292 (147 - 581) 0.001* 

Immulite  316 (165 - 604) 267 (144 - 495) 0.003* 

Beckman 293 (160 - 538) 252 (143 - 444) 0.011* 

* P-value <0.05 indicates a significant difference between gender means.  

 

3.5.1.2 In response to Synacthen stimulation 

After Synacthen stimulation, GC-MS cortisol remained normally distributed in male 

but not in female volunteers, in whom concentrations remained skewed to the right 
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(figure 3.2).  There was no significant difference in cortisol concentration between 

genders (table 3.2) and concentrations remained unaffected by age (R2 = 0.14; p = 

0.11).  Post-Synacthen cortisol concentrations ranged between 404 and 778 nmol/L 

in males and 388 and 824 nmol/L in females.  As anticipated, stimulated mean cortisol 

concentration was significantly higher than mean baseline cortisol in both male and 

female subjects (p < 0.001; figure 3.3). 

 

Figure 3.2 Distribution of post-Synacthen serum total cortisol concentration in males 

and females.  The distribution was examined using the Kolmogorov-Smirnov test, with 

a P-value >0.05 indicating a normal distribution. 

 

Table 3.2 Assay-specific post-Synacthen serum total cortisol concentration in healthy 

volunteers. 

 
Post-Synacthen mean [cortisol] (2.5th – 97.5th centile) 

nmol/L 

Assay 
Males 
n = 60 

Females 
n = 79 

P-value 

GC-MS 563 (418 - 757) 555 (421 - 731) 0.594 

Centaur 599 (448 - 802) 578 (446 - 750) 0.138 

Abbott  577 (430 - 773) 542 (416 - 707) 0.012* 

Roche  772 (574 - 1039) 712 (524 - 967) 0.003* 

Immulite  641 (469 - 874) 628 (478 - 826) 0.449 

Beckman 625 (459 - 852) 594 (455 - 777) 0.045* 

*P-value <0.05 indicates a significant difference between means. 
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Figure 3.3 Mean GC-MS serum total cortisol concentration at 0 and 30 minutes by 

gender.  There was no significant gender difference at either timepoint, but mean 

cortisol concentration was significantly lower at baseline (0) than post-Synacthen (30) 

(p <0.001). 

 

3.5.2 The effect of assay on cortisol characteristics 

3.5.2.1 At baseline 

The normal distribution of baseline cortisol concentrations in males persisted for all 

immunoassays apart from the Immulite and, in line with GC-MS results, baseline 

cortisol in females was not normally distributed with any immunoassay.  In contrast 

to GC-MS, all immunoassays showed a statistically significant gender difference in 

mean baseline cortisol concentration, with significantly higher concentrations in male 

subjects (table 3.1).  The difference between GC-MS mean cortisol concentration and 

immunoassay cortisol was statistically significant in males for all assays and in 

females for all but the Abbott and Beckman assays (figure 3.4). 

TIME POINT 
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Figure 3.4 Mean assay-specific baseline serum total cortisol concentrations in males 

and females.  * denotes statistically significant (P<0.05) gender differences within an 

assay, † denotes a statistically significant difference (P<0.05) from GC-MS cortisol in 

males; ‡ denotes a statistically significant difference (P<0.05) from GC-MS cortisol in 

females. 

 

3.5.2.2 In response to Synacthen stimulation 

When measured by immunoassay, post-Synacthen cortisol remained normally 

distributed in males and, in contrast to its measurement by GC-MS, became normally 

distributed in females with all immunoassays apart from the Centaur.  The gender 

difference identified in baseline cortisol persisted in post-stimulation cortisol 

concentrations with the Abbott, Roche and Beckman assays, with a significantly 

higher cortisol response in males (table 3.2). For all assays, the mean cortisol 

concentration differed significantly from GC-MS cortisol in both male and female 

subjects, although the clinical significance of this difference is arguable for the 

Centaur and Abbott assays (figure 3.5).  
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Figure 3.5 Mean assay-specific post-Synacthen serum total cortisol concentrations 

in males and females.  * denotes statistically significant (P<0.05) gender differences 

within an assay, † denotes a statistically significant difference (P<0.05) from GC-MS 

cortisol in males; ‡ denotes a statistically significant difference (P<0.05) from GC-MS 

cortisol in females. 

 

3.5.3 Correlation between immunoassay and GC-MS 

3.5.3.1 Correlation plots 

There was good correlation between immunoassay and GC-MS cortisol 

measurements for both baseline and post-Synacthen samples.  The data were, 

therefore, combined to create a single correlation plot for each assay, covering a 

range of cortisol concentrations between 92 and 824 nmol/L (figure 3.6). 

The correlation plots show there was a slight gender effect on the relationship, with 

samples from male subjects showing slightly higher positive bias than samples from 

female subjects for all assays apart from the Architect for which there was virtually no 

bias for male samples, and a small negative bias for samples from females.  Bias also 

appear to be influenced to some extent by cortisol concentration, with the line of best 
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fit showing overall negative bias at higher concentrations with the Abbott assay and 

marginally less bias for the Centaur, Immulite and Beckman assays.  The Roche 

assay showed positive bias across the entire concentration range. 

  



Chapter 3  Serum Cortisol 

63 

 

Figure 3.6 Correlation between log-transformed immunoassay and GC-MS cortisol 

in healthy volunteers.  A) Centaur, B) Abbott, C) Roche, D) Immulite and (E) Beckman 

assays.  The solid line represents equivalence between methods; the dotted line is 

the line of best fit.  ● = males; ● = females. 
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3.5.3.2 Bias ratios 

A single mean bias ratio was calculated from all male and female samples at baseline 

and post-Synacthen stimulation.  The overall bias ratio was positive for all assays and 

greatest in the Roche and Immulite assays, reaching almost 30% for the Roche (table 

3.3).  Overall bias for the Centaur, Abbott and Beckman assays was less marked, 

ranging from 2 to 7%.  

Table 3.3 Mean assay bias ratios for male and female subjects combined. 

 Mean Bias Ratio 

Assay Overall 0 Minute 30 Minute 

Centaur 1.06 1.07 1.05 

Abbott 1.02 1.03 1.00 

Roche 1.30 1.27 1.33 

Immulite 1.13 1.12 1.14 

Beckman 1.07 1.04 1.09 

Overall mean bias ratio was calculated using both male and female baseline (0 
minute) and post-Synacthen (30 minute) cortisol concentrations. 

 

Assay bias was affected by cortisol concentration, with greater bias noted at lower 

concentrations (baseline measurements) for the Centaur and Abbott assays, and the 

opposite effect (greater bias at higher concentrations) for the Roche, Immulite and 

Beckman assays (table 3.3).  This concentration-dependent bias difference was 

statistically significant for all assays other than the Centaur, although its clinical 

significance is less clear as it ranged from as little as 2% for the Immulite assay to a 

maximum of 6% for the Roche.  

Assay bias was also affected by gender, with greater positive bias in males than in 

females (table 3.4).  This difference was statistically significant for all assays; despite 

its small magnitude (3-4%) in all apart from the Roche.  For the Roche, the difference 

between genders was 11% which is likely to be of clinical, as well as statistical, 

significance. 
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Table 3.4 Mean assay bias ratio by gender. 

 Overall Mean Assay Bias Ratio 

Assay Males Females P-value 

Centaur 1.08 1.05 P=0.008 

Abbott 1.04 1.00 P<0.001 

Roche 1.36 1.25 P<0.001 

Immulite 1.15 1.11 P=0.011 

Beckman 1.09 1.05 P=0.001 

Gender-specific assay bias ratios were calculated using baseline (0 minute) and post-
Synacthen (30 minute) cortisol concentrations combined. 

 

3.5.4 Assay-specific lower reference limits for the cortisol response to Synacthen 

The lower reference limit for the cortisol response to Synacthen was defined by GC-

MS as 418 nmol/L in males and 421 nmol/L in females.  A gender-specific lower 

reference limit was also determined for each immunoassay (Table 3.5).   

Table 3.5 Assay-specific lower reference limits for post-Synacthen cortisol by gender: 

Assay Males Females 

GC-MS 418 421 

Centaur 448 446 

Abbott 430 416 

Roche 574 524 

Immulite 469 478 

Beckman 459 455 

Lower reference limit of cortisol was calculated from log-transformed data as mean – 
1.96*SD. 

 

Since mean cortisol concentration post-Synacthen was not gender-dependent for the 

GC-MS, Centaur and Immulite (2000) assays (table 3.2) a single lower limit was 

calculated by combining the males and females and deriving a single mean and lower 

reference range.  This was not possible for the Roche, Abbott and Beckman assays 

for which mean cortisol concentration post-Synacthen was gender dependent. 

However, the difference between the lower reference limit for cortisol in males and 

females for the Abbott and Beckman assays (14 nmol/L and 4 nmol/L, respectively) 

fell within their precision limits (CVs of 5.4% and 5.0% respectively at 549 and 620 

nmol/L (table 2.4)), indicating that gender-specific reference ranges would not be 
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necessary for these assays in clinical practice.  Thus, a single lower limit was derived 

using the higher of the two gender limits (in both cases, the male limit).  For the Roche 

assay, gender-specific lower limits were retained, given the 50 nmol/L difference 

between the male and female lower limits (table 3.6).  

Table 3.6 Assay-specific estimated lower reference limits for post-Synacthen cortisol 

in healthy adult volunteers. 

Assay Males Females Adults 

GC-MS 417 422 420 

Centaur 448 446 446 

Abbott 430 416 430 

Roche 574 524 NA 

Immulite 469 478 474 

Beckman 459 455 459 

For the GC-MS, Centaur and Immulite assays, male and female means were 
combined to allow calculation of a single adult lower limit.  For the Abbott and 
Beckman assays, both with significantly different gender means, the male lower limit, 
which was the higher of the two, was used as applicable to both. 

 

3.5.5 The effect of assay reformulation on cortisol measurement 

The results reported above are those from the reformulated Centaur assay.  In 

contrast to the new assay, baseline and post-Synacthen cortisol concentrations 

measured by the old assay were normally distributed about the mean in both female 

and male subjects.  The old assay detected a statistically significant gender difference 

in baseline cortisol concentrations which was also apparent with the new assay (figure 

3.4).  Statistically significant differences in mean cortisol concentration at baseline 

and post-Synacthen, in assay bias and in the lower reference limit for the cortisol 

response to Synacthen were also detected between the two assays (table 3.7).  
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Table 3.7 Changes in serum total cortisol measurement following reformulation of the 

Siemens Centaur assay. 

 
Mean [cortisol] (nmol/L) Overall 

assay 
bias 
ratio 

Lower reference limit 
Baseline Post-Synacthen 

 Males Females Males Females Males Females Adults 

Old 
Centaur 

336 289 656 638 1.18 496 502 499 

New 
Centaur 

299 257 599 578 1.06 448 446 446 

Mean serum total cortisol concentration, assay bias ratio and lower reference limits 
differed significantly (P<0.0) between the two assays.  The gender-difference in mean 
baseline cortisol concentration seen with the old assay persisted with the new (p 
<0.05) but was not present post-Synacthen stimulation.  A single adult lower 
reference limit was therefore calculated from male and female samples combined. 
For each assay, overall mean bias ratio was calculated from male and female, 
baseline and post-Synacthen cortisol concentrations. 
 

3.5.6 Comparison between healthy volunteers and patients with potential adrenal 

disease 

3.5.6.1 Mean cortisol concentration 

The patients with potential adrenal disease were a heterogeneous group consisting 

of those with longstanding Addison’s disease, patients at risk of hypoadrenalism but 

little in the way of clinical symptoms and others with symptoms consistent with 

hypoadrenalism but no clear clinical risk (table 2.1).  Despite this, mean cortisol 

concentration in this group was significantly lower than in healthy volunteers at 

baseline (218 (112 – 424) nmol/L vs 261 (132 – 515) nmol/L; P=0.012) and post-

Synacthen stimulation (461 (279 – 763) nmol/L vs 557 (418 – 742 nmol/L); P=0.001), 

even after exclusion of the three patients with undetectable cortisol concentrations 

(figure 3.7). 
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Figure 3.7 Baseline and post-Synacthen serum total cortisol in healthy volunteers 

and patients with suspected hypoadrenalism.  Each dot represents an individual 

subject.  The upper and lower dotted lines in each graph represent the 2.5th and 97.5th 

percentiles in healthy volunteers, while the dark continuous lines represent mean 

concentration. 

 

3.5.6.2 Diagnosing hypoadrenalism 

Using the cut-offs determined by this study, 40% (12/30) of the patients within the 

“hypoadrenal” group failed the short Synacthen test, compared to 1.4% of healthy 

volunteers; however not all patients within this group had definite disease.  The 

outcome of the Synacthen test in each patient was, therefore, compared to the pre-

test probability of disease, calculated using the criteria set out in table 2.2. 

This score was not a definitive measure of the presence or absence of adrenal 

insufficiency nor has it been clinically validated; but as a definitive diagnosis was not 

available at the time of testing, it provided some indication of how well the new cut-

off correlated with clinical suspicion of disease.  Table 3.8 shows the predicted 

outcome of the Synacthen test based on the pre-test probability score and the actual 

test outcome, whilst the agreement between the pre-test score and the Synacthen 

test is summarised in table 3.9. 
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Of the 10 patients with a high pre-test probability of adrenal insufficiency, 9 (90%) 

failed the Synacthen test, using the lower reference limit for the Abbot assay of 430 

nmol/L; while 13 (87%) of the 15 patients with a low pre-test probability passed the 

Synacthen test. 

The pre-test score was indeterminate (4) in five patients (table 3.8).  Three of these 

(patients 13, 16 and 26) were referred for testing as a result of a pituitary adenoma 

and partial anterior hypopituitarism (growth hormone deficiency and/or 

hypogonadotrophic hypogonadism) and all 3 passed the Synacthen test.  One of the 

other two patients (patient 15) had type 1 diabetes with recurrent hypoglycaemia, 

weight loss and fatigue and the other (patient 18) had primary hypothyroidism and 

vitamin B12 deficiency.  Patient 15 failed the Synacthen test whilst patient 18 passed, 

and whilst both clinical scenarios could be consistent with an increased risk of 

autoimmune hypoadrenalism, the former is more suggestive. 
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Table 3.8 Pre-test probability of hypoadrenalism and Synacthen test outcome in 

patients with suspected hypoadrenalism. 

Patient 
number 

Gender Age 
Likelihood 

score 

Post-
Synacthen 
[cortisol] 

Synacthen 
test - 

outcome 

1 F 67 10 <28 Fail 

2 M 63 10 <28 Fail 

3 F 65 2 637 Pass 

4 F 82 2 530 Pass 

5 F 57 6 515 Pass 

6 M 61 2 431 Pass 

7 M 74 2 459 Pass 

8 F 46 2 490 Pass 

9 M 54 2 502 Pass 

10 M 62 7 279 Fail 

11 M 64 8 414 Fail 

12 F 40 10 <28 Fail 

13 M 35 4 451 Pass 

14 F 39 2 406 Fail 

15 M 43 4 379 Fail 

16 M 50 4 468 Pass 

17 M 64 2 396 Fail 

18 F 47 4 478 Pass 

19 F 47 2 524 Pass 

20 M 46 2 550 Pass 

21 F 81 8 373 Fail 

22 F 70 6 404 Fail 

23 M 36 8 201 Fail 

24 M 55 2 554 Pass 

25 F 23 2 622 Pass 

26 F 43 4 551 Pass 

27 F 46 2 465 Pass 

28 F 54 2 762 Pass 

29 F 28 10 396 Fail 

30 F 29 2 495 Pass 

Pre-test probability was calculated from criteria set out in table 2.2.  A low score was 
defined as 2 or less, a high score 5 or more and a score of 3 or 4 as indeterminate. 
A post-Synacthen serum cortisol concentration ≥ 430 nmol/L was defined as a “pass”. 
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Table 3.9 Agreement between pre-test probability and Synacthen test outcome. 

 Synacthen test  

Pre-test 
probability 

Pass Fail Totals Percentage 
agreement 

High 1 9 10 90% 

Low 13 2 15 87% 

Indeterminate 4 1 5 - 

Totals 18 12 30 88% 

Summary of the results from table 3.8 showing the agreement between pre-test 
probability and the result of the Synacthen test.  Agreement is defined as a failed 
Synacthen test when pre-test probability is high and a Synacthen test pass when pre-
test probability is low.  A serum cortisol concentration ≥ 430 nmol/L was defined as a 
“pass”. 

 

3.6 Discussion 

3.6.1 Cortisol characteristics 

Previous studies have shown conflicting results with respect to both the distributional 

form of baseline and post-Synacthen cortisol concentration and the effect of gender. 

Clark et al found the cortisol response to Synacthen to be non-Gaussian, and both 

method- and gender-dependent (Clark et al. 1998), whilst Klose and colleagues 

confirmed clinically significant inter-assay differences but did not find a gender effect 

or evidence for non-normal distribution (Klose et al. 2007). By using GC-MS to 

measure total cortisol it was possible to establish which of these features were 

genuine and which attributable to the imperfections of immunoassay. 

Thus, there was no significant gender difference in baseline cortisol concentration or 

in the cortisol response to Synacthen, although cortisol concentrations were normally 

distributed about the mean in males only.  This difference in the distributional form 

between genders might be explained by variations in endogenous oestradiol 

concentration, and hence CBG, in the female population.  This is supported by the 

finding that the free cortisol index (total cortisol divided by CBG), which has been 

shown to correlate well with measured serum free cortisol (le Roux et al. 2002) was 

normally distributed in both our male and female groups (chapter 5).  However, 
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against this is the work by Stewart et al and Kirschbaum et al, which failed to show 

an effect of menstrual cycle phase (follicular versus luteal) on mean cortisol 

concentrations throughout the day or on the cortisol response to Synacthen 

stimulation respectively (Stewart et al. 1993; Kirschbaum et al. 1999), despite 

evidence of significantly different oestradiol concentrations between the two groups.  

Menopausal status also appears to play some part in the skewed distribution in 

women, as evidenced by the higher proportion of menopausal women at the high end 

of the concentration range. 

Immunoassay cortisol showed gender differences and differences in distribution 

about the mean when compared to GC-MS cortisol measurement.  Most notably, for 

all assays apart from the Centaur, post-Synacthen cortisol concentrations were 

normally distributed in females as well as in males.  This may be explained by the 

poor specificity of immunoassay antibodies for cortisol, which results in steroid 

hormones other than cortisol being measured.  It is, therefore, not surprising that 

“immunoassay cortisol” behaves differently to the actual cortisol measured by GC-

MS. 

Another significant deviation from GC-MS was seen with the Abbott, Roche and 

Beckman assays.  These showed a significant gender difference in baseline and post-

Synacthen cortisol concentrations, with significantly higher concentrations seen in 

male subjects.  These differences were statistically significant for all three assays, 

and for the Roche assay, with a 78 nmol/L difference at baseline and 60 nmol/L 

difference post-Synacthen, an equally relevant clinical difference.  However, for the 

Abbot and Beckman assays, whose concentrations differed by 40-45 nmol/L and 30-

35 nmol/L at baseline and post-Synacthen respectively, the clinical significance is 

less clear, particularly if allowance is made for assay imprecision at these 

concentrations. 
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3.6.2 Immunoassay and GC-MS correlation 

All immunoassays studied correlated well with GC-MS, but showed slight positive 

bias for both male and female subjects.  Overall bias ranged from 2 to 30% and was 

greatest for the Roche assay followed by the Immulite, Beckman, Centaur and Abbott 

assays, respectively.  This positive bias was not unexpected given what is known 

about antibody specificity but was in contrast to the findings of a UK-wide audit of the 

short Synacthen test which showed immunoassay cortisol was negatively biased 

relative to isotope dilution – GC-MS assigned values (Chatha et al. 2010).  Negative 

bias was also reported for the Abbott and Beckman assays by Dodd et al who went 

on to demonstrate that mean assay bias had, in fact, gone from being positive in 2010 

to negative in 2013 (table 1.2) (Dodd et al. 2014).  As there had been no reports of 

major assay reformulations over this period, it is likely that minor reformulations had 

been carried out by manufacturers but had, possibly, been considered too 

insignificant to warrant disclosure. 

Siemens’ reformulation of their Centaur assay allowed the effects of assay changes 

to be studied.  Mean cortisol concentrations fell significantly for all subjects with the 

new assay (table 3.7) and mean assay bias fell from 18 to 6%.  Users were informed 

of the assay change but there was no accompanying recommendation for them to 

alter their reference ranges.  These ongoing changes to cortisol immunoassays raise 

questions about how long these assays can remain useful in clinical practice.  The 

Synacthen test requires valid cortisol cut-offs to allow it to discriminate between a 

normal and abnormal HPA axis, but with ever changing assays it is increasingly 

difficult to define the true cortisol response to Synacthen. 

3.6.3 Assay specific cut-offs 

This study is the largest to examine the cortisol response to the standard dose 

Synacthen test and the first to compare results from five widely used immunoassays 
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to a reference mass spectrometry method.  The results illustrate the influence of 

assay performance on cortisol measurement, which is such that mean cortisol 

concentrations post-Synacthen vary by as much as 230 nmol/L (542 nmol/l in females 

with the Abbott assay to 772 nmol/l in males with the Roche). This finding may be 

explained by differences in assay calibration or in the specificity of assay antibodies, 

but irrespective of its origin, it has the potential to cause patient misclassification; 

hence the need for assay-specific reference ranges and lower reference limits.  

In contrast to the mean cortisol response to Synacthen, the lower limit of the 

normative range, defined as the 2.5th percentile value of the log transformed data, 

showed much less of a gender difference, ranging from 2 to 14 nmol/L for the Centaur, 

Abbott, Immulite and Beckman assays.  As these differences were too small to be of 

clinical significance and fell within the precision limits of their assays, there was no 

need for gender related reference limits for these assays. However, for the Roche 

assay, the difference between male and female lower limits was 50 nmol/L and, 

consequently, gender-specific lower limits are required.  

Prior to this study, a cortisol cut-off of 550 nmol/L was used locally to define an 

adequate response to Synacthen stimulation.  This limit was based on the method-

specific cortisol response to Synacthen defined by Clark et al in 1998 and the assay 

that was in use in the laboratory at that time.  However, the laboratory has changed 

its cortisol assay twice since 1998, with no associated change in cortisol cut-off.  This 

study shows that continuing to use this cut-off would potentially result in a 

misdiagnosis of adrenal insufficiency in a significant number of healthy individuals 

(27%, 42%, 16% & 21% with the Centaur, Abbott, Immulite and Beckman assays 

respectively, falling to 12%, 19%, 4% & 9% respectively at a cut-off of 500 nmol/l).  

Conversely, by applying assay-specific lower reference limits, the percentage of false 

positive Synacthen tests in healthy volunteers reduces to 2% or less for all the above 

assays.  The newly defined reference ranges thus have the potential to reduce 
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inappropriate treatment and costly follow-up investigations for patients with a low pre-

test probability of hypoadrenalism.  

3.6.4 Patients with suspected hypoadrenalism 

The validity of our assay-specific lower reference limits in a population with potential 

adrenal insufficiency was put to the test in a group of patients referred for a Synacthen 

test from specialist Endocrine clinics.  Twelve of the 30 patients tested (40%) failed 

the Synacthen test, which, at first glance, might suggest the lower reference limit is 

not valid in a diseased population; particularly as 80% of patients (24/30) would have 

failed the test were the 550 nmol/L cut-off used instead. 

However, this patient group was markedly heterogeneous and included patients with 

longstanding Addison’s disease on daily glucocorticoid replacement and others with 

non-specific symptoms such as fatigue, but little else (table 2.1).  Each patient was, 

therefore, stratified into a high or low pre-test probability of disease on the basis of 

criteria set out in table 2.2 before the outcome of the Synacthen test was known. 

Subsequent analysis, using the Abbott-specific lower reference limit, showed good 

agreement between the Synacthen test result and the pre-test probability of disease, 

with 90% (9/10) of patients with a high pre-test probability failing the Synacthen test 

and 87% (13/15) of those with a low probability, passing the test.  In contrast, the 550 

nmol/L cut-off would have resulted in all 10 patients with a high pre-test probability 

failing the Synacthen test, along with 11 of the 15 patients (73%) with a low pre-test 

probability as well. 

Only 3 patients showed disagreement between the pre-test probability score and the 

outcome of the Synacthen test when the Abbott-specific cut-off was used.  Patient 5 

had a high pre-test probability of disease but passed the Synacthen test, whilst 

patients 14 and 17 had a low pre-test score but failed the test; all are considered in 

more detail below. 
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Patient 5 was a 57-year-old woman who gave a history of asthma for which she took 

a daily Seretide inhaler (2)10, intermittent courses of oral glucocorticoids (3) and her 

only clinical complaint was of fatigue (1), giving her a total score of 6.  She passed 

her Synacthen test convincingly, with a post-Synacthen cortisol of 515 nmol/L, 

although her baseline cortisol was relatively high amongst the patient group, at 360 

nmol/L, raising the possibility of interference from exogenous glucocorticoids as the 

cause.  

Another possible explanation for the discordance between pre-test probability and 

Synacthen test outcome in this patient is incorrect risk scoring, as ascribing a score 

of 3 to intermittent oral glucocorticoid use may be over-cautious, particularly as exact 

details of dosage, frequency and compliance were lacking.  Thus, a more accurate 

total score might have been 3 or 4, reflecting the fact that her risk is not entirely clear-

cut.  This also highlights the limitations of the proposed clinical risk score, which 

clearly requires further validation before it can be considered for clinical practice.  

Subsequent follow-up confirmed she did not have hypoadrenalism despite the high 

pre-test probability. 

Patient 14 was a 39-year-old woman who complained of dizziness and postural 

hypotension, and was assigned a score of 2.  Nevertheless, she failed the Synacthen 

test convincingly, with a cortisol of 406 nmol/L and, perhaps, with hindsight her score 

was inappropriately low, given that postural hypotension is an unusual symptom in a 

young patient not treated with anti-hypertensive medication.  Subsequent review of 

her notes, however, confirmed that she did not have hypoadrenalism at the time of 

testing, nor had she developed it since. 

Patient 17, a 64-year-old man with Crohn’s disease and recurrent oral steroid use, 

was also a potential candidate for iatrogenic secondary hypoadrenalism, despite the 

                                                
10 The score for each risk factor is included in brackets, as described in table 2.2. 
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low pre-test score.  He also failed the Synacthen test convincingly, with a cortisol of 

396 nmol/L, but was subsequently lost to follow-up and does not appear to have been 

commenced on glucocorticoid replacement. 

Subsequent long-term follow up of the remaining patients with suspected 

hypoadrenalism confirmed adrenal insufficiency in patients 1, 2, 10, 12 and 23, all of 

whom had a pre-test probability of 7 or higher and failed the Synacthen test.  Patients 

11 and 29 scored 8 and 10, respectively, and had iatrogenic secondary adrenal 

insufficiency at the time of the study, confirmed on Synacthen testing, but they 

subsequently recovered and stopped their glucocorticoid treatment. 

Patient 22 also had a high pre-test probability score and failed her salivary Synacthen 

test; however several subsequent Synacthen tests excluded hypoadrenalism until 

she underwent further pituitary surgery in 2016.  Nevertheless, she was clearly at high 

risk of pituitary disease and her failed Synacthen test may have been a true reflection 

of mild secondary adrenal insufficiency. 

Comparing the outcome of the Synacthen test and pre-test probability to actual 

outcome 5 years later provides a more robust tool for determining their diagnostic 

accuracy.  Thus, both are shown to perform well, with sensitivities and negative 

predictive values of 100%, assuming that patients who were lost to follow-up had not 

received treatment for hypoadrenalism elsewhere or died from the disease, and a 

specificity of 78% for the Synacthen test, compared to 65% for the pre-test probability 

score, whose specificity suffers as a result of the inclusion of an “indeterminate” risk 

categorisation. 

The validity of using a single cut-off to diagnose adrenal insufficiency also needs to 

be addressed.  Disease of the HPA axis is a continuum and cortisol values lying just 

above the lower reference limit may well represent impaired HPA axis function in 

patients where the clinical features are suggestive. In such cases, a single cut-off is 



Chapter 3  Serum Cortisol 

78 

no replacement for good clinical judgement and it is recommended that the lower 

limits defined in this study are used as a guide to aid in the diagnosis of adrenal 

insufficiency rather than as an absolute. 

3.6.4 Conclusions 

Measuring cortisol by immunoassay affects not only its concentration but also its 

distributional form and can create gender differences where, in fact, there are none.  

Comparing immunoassay cortisol to GC-MS measurements identified assay effects 

that could account for some of the contradictory findings reported in previous studies 

of the short Synacthen test.  Recognising the extent to which cortisol concentrations 

are affected by assay is essential for the correct interpretation of the Synacthen test. 

This study developed lower reference limits for the cortisol response to Synacthen for 

five widely used automated immunoassays and demonstrated that the 550 nmol/L 

cortisol cut-off is too high for most assays.  As a result of this work, local laboratories 

adjusted their cortisol cut-off in line with newly defined reference ranges and it is 

recommended that other laboratories do the same.  However, adopting more 

appropriate reference ranges does not alter the fact that inter-individual variation and 

the accuracy and precision of cortisol assays will limit the value of a single, fixed cut-

off concentration for identifying adrenal insufficiency.  It is, therefore, advisable that a 

more flexible approach to diagnosis is adopted; one which combines the cortisol 

response to Synacthen with the pre-test probability of disease. 

Endocrinologists investigating patients with suspected adrenal insufficiency need to 

be aware of the limitations of immunoassay cortisol measurement and should clarify 

which method is in use in their laboratories before interpreting post-Synacthen cortisol 

concentration. In light of these findings, it is likely that the cortisol response to the 

insulin stress test will also need to be redefined. 
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CHAPTER 4 

 

DETERMINING THE SALIVARY CORTISOL RESPONSE TO 

SYNACTHEN STIMULATION 
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4.1 Introduction 

Salivary cortisol offers a non-invasive, relatively stress-free alternative to 

measurement of cortisol in serum and has the potential advantage over the latter of 

directly evaluating free, bioavailable cortisol.  Salivary cortisol assays have been 

available for over 35 years; however early radioimmunoassays lacked specificity, 

current immunoassays lack sensitivity at the lower end of the range and LC-MS/MS 

assays have, until relatively recently, lacked the necessary turnaround time for urgent 

assessment of a patient with suspected adrenal failure (Owen et al. 2013a). 

Developments in LC-MS/MS technology and their increasing availability in clinical 

laboratories have led to renewed interest in using salivary cortisol to evaluate the HPA 

axis.  In particular, late night salivary cortisol is now well established as a screen for 

Cushing’s syndrome; and despite several different diagnostic cut-offs being reported 

in the literature (Baid et al. 2007; Zerikly et al. 2010; Erickson et al. 2012), for most 

assays the cut-off falls somewhere below 3 nmol/L.  Nevertheless, until LC-MS/MS 

salivary cortisol assays are better standardised, laboratories will need to define their 

own cut-offs. 

Salivary cortisol as an alternative to serum total cortisol in evaluating glucocorticoid 

sufficiency in patients with low protein secondary to liver disease or an acute phase 

response has also received significant interest (Cohen et al. 2004; Arafah 2006; 

Galbois et al. 2010; Elbuken et al. 2016) and has been recommended as the method 

of choice in these scenarios.  However, the salivary cortisol response to Synacthen 

stimulation in a healthy population is not yet defined and until this has been done it 

will not be possible to thoroughly evaluate its performance in disease. 
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4.2 Aims 

The work described in this chapter was undertaken to: 

 Define the salivary cortisol response to Synacthen in healthy volunteers and 

establish the lower reference limit for this response using an in-house LC-

MS/MS assay. 

 Evaluate salivary cortisol as an alternative to serum total cortisol in the 

interpretation of the short Synacthen test in patients with potential 

hypoadrenalism. 

 Explore and compare the relationship between serum total and salivary free 

cortisol responses to Synacthen stimulation in health and disease. 

4.3 Subjects and sample analysis 

4.3.1 Healthy volunteers 

This group consisted of 60 male and 79 female volunteers, as described in chapter 

2.  Salivary cortisol was measured by the, previously described, in-house LC-MS/MS 

assay within 1 year of sample collection. 

4.3.2 Patients with suspected hypoadrenalism 

This group consisted of 13 male and 17 female recruits, whose clinical details are 

summarised in table 2.1 and their salivary cortisol was also measured by LC-MS/MS 

within 1 year of sample collection.  One patient (patient 21; table 2.1) was excluded 

from this arm of the study due to a lack of sufficient post-Synacthen saliva for analysis.  

The salivary cortisol results from the three patients with suppressed baseline serum 

cortisol were not included in calculations of the mean or comparisons with healthy 

volunteers, to avoid negatively skewing the results. 
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4.4 Statistics 

4.4.1 Healthy volunteers 

Mean salivary cortisol and reference ranges, defined as “mean ± 1.96*SD”, were 

calculated from log-transformed data at baseline and 30 minutes post-Synacthen.  

The 2.5th centile (mean – 1.96*SD), or lower reference limit, of this response was 

used as a cut-off concentration to differentiate between glucocorticoid sufficiency and 

deficiency.  Despite log-transformation, salivary cortisol was not normally distributed 

in males or females at either time point so differences between genders and time-

points were evaluated using the Mann-Whitney U test. 

Baseline and post-Synacthen results were combined before the correlation between 

serum and salivary cortisol was examined using scatter plots. 

4.4.2 Patients with established or potential adrenal disease 

Mean salivary cortisol concentrations in this group were calculated from log-

transformed data at baseline and 30 minutes post-Synacthen and were compared to 

healthy volunteers using the Mann-Whitney U test.  The pre-test probability of HPA 

axis disease in each patient was compared to the salivary cortisol response and a 

percentage agreement calculated.  Agreement between serum and salivary cortisol 

responses to Synacthen was similarly evaluated. 

Scatter plots were used to explore the correlation between combined baseline and 

post-Synacthen serum and salivary cortisol concentrations in this population.  In all 

comparisons, a p-value <0.05 was considered significant. 
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4.5 Results 

4.5.1 Salivary cortisol in healthy volunteers 

4.5.1.1 At baseline 

Salivary cortisol was not normally distributed in males or females (figure 4.1) and was 

skewed to the right, reflecting a similar pattern to that seen in total serum cortisol in 

women but not in men (figure 3.1).  There was no age effect and no significant 

concentration difference between genders (table 4.1, figure 4.2), with concentrations 

ranging between 0.6 and 12.0 nmol/L in men and 0.8 to 9.2 nmol/L in women. 

 

Figure 4.1 Distribution of baseline salivary cortisol concentration in males and 

females.  The distribution was examined using the Kolmogorov-Smirnov test, with a 

P-value >0.05 indicating a normal distribution. 
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Table 4.1 Salivary cortisol concentration in healthy volunteers. 

 Mean salivary [cortisol] (2.5th – 97.5th percentile) – nmol/L 

 Male Female P value* Combined Adult 

0 Minute 3.2 (0.8 – 12.0) 2.7 (1.0 – 7.5) 0.125 2.9 (0.9 – 9.2) 

30 Minute 19.1 (9.8 – 37.3) 19.6 (10.9 – 36.2) 0.443 19.3 (10.3 – 36.2) 

 
* P-value <0.05 indicates a significant difference between gender means.  
 

 

Figure 4.2 Mean salivary cortisol concentration at 0 and 30 minutes by gender. 

There was no significant gender difference at either timepoint (p = 0.115 at baseline; 

p = 0.591 post-Synacthen), but mean salivary cortisol concentration was significantly 

lower at baseline than post-Synacthen concentration (P <0.001). 

 

 

4.5.1.2 Post-Synacthen stimulation 

Salivary cortisol continued to be skewed to the right following Synacthen stimulation 

(figure 4.3), ranging from 10.5 to 39.7 nmol/L in men and 10.1 to 34.8 nmol/L in 

women.  There was no significant gender difference in concentration (table 4.1, figure 

4.2).  The post-Synacthen salivary cortisol concentration was, on average, 29 times 
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lower than the serum cortisol response (range 14 to 60 times).  It increased an 

average of 7.9 times (range 1.4 – 27.6 times) the baseline salivary concentration and 

the mean incremental rise was 17.4 nmol/L (range 4.5 – 37.5 nmol/L) across the 

entire group. 

 

Figure 4.3 Distribution of post-Synacthen salivary cortisol concentration in males and 

females.  The distribution was examined using the Kolmogorov-Smirnov test, with a 

P-value >0.05 indicating a normal distribution. 

 

4.5.1.3 Reference range and lower limit of normal 

The mean salivary cortisol response to Synacthen in healthy adults was 19.3 nmol/L, 

with a 2.5th to 97.5th centile range of 10.3 to 36.2 nmol/L.  The lower limit of this 

reference range was arbitrarily used to define the cut-off concentration above which 

adrenal insufficiency can be excluded, in line with the definition used for the serum 

cut-off (section 3.4.1).  
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4.5.2 Salivary cortisol in patients with potential adrenal insufficiency 

4.5.2.1 Mean salivary cortisol concentration at baseline and post-Synacthen 

stimulation 

Mean baseline salivary cortisol concentration in patients with suspected adrenal 

insufficiency was 2.6 nmol/L and did not differ significantly from the mean baseline 

concentration of 2.9 nmol/L seen in healthy volunteers (p = 0.418) (figure 4.4).  In 

contrast, the mean concentration post-Synacthen stimulation in this cohort was 11.3 

nmol/L which was significantly lower than the corresponding concentration of 19.3 

nmol/L in healthy volunteers (p<0.001), despite excluding patients with undetectable 

serum total cortisol concentrations (<28 nmol/L) (figure 4.4).  

 

Figure 4.4 Baseline and post-Synacthen salivary cortisol in healthy volunteers and 

patients with suspected hypoadrenalism.  Each dot represents an individual subject.  

The upper and lower dotted lines in each graph represent the 2.5th and 97.5th 

percentiles in healthy volunteers, while the dark continuous lines represent mean 

concentration. 

 

4.5.2.2 Salivary cortisol to diagnose adrenal disease 

Eleven patients (38%) in the group with potential hypoadrenalism had salivary cortisol 

concentrations below the 10.3 nmol/L cut-off and failed the Synacthen test (table 4.2).  
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In contrast, only 3 (1.8%) of the healthy volunteers failed to achieve a concentration 

above this cut-off. 

Ten of the 30 patients studied had a pre-test probability score of 5 or more and were 

considered at high risk for adrenal insufficiency.  One of these was the patient in 

whom the post-Synacthen saliva sample was of insufficient volume to allow analysis.  

Of the remaining nine, eight (88.9%) were identified by the salivary cortisol response, 

while one patient passed the Synacthen test convincingly, with a salivary cortisol 

concentration of 17.5 nmol/L.  

Fifteen patients were considered low risk for hypoadrenalism, with pre-test probability 

scores of 2 or less.  Fourteen of these (93.3%) passed the Synacthen test and one 

failed by a small margin, with a post-Synacthen cortisol concentration of 9.9 nmol/L.  

Five patients scored 4, placing them in the indeterminate risk group; three patients 

passed the Synacthen test (patients 15, 18 and 26), with concentrations of 10.9 

nmol/L, 11.7 nmol/L and 27.6 nmol/L, whilst 2 patients failed (patients 13 and 16) with 

concentrations of 8.7 nmol/L and 8.6 nmol/L, respectively.  Table 4.3 shows the 

agreement between pre-test probability and the result of the salivary Synacthen test. 
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Table 4.2 Pre-test probability of hypoadrenalism and outcome of salivary Synacthen 

test in patients with suspected hypoadrenalism. 

Patient 
number 

Gender Age 
Likelihood 

score 

Post-
Synacthen 

[saliva] 

Saliva 
outcome 

      
1 F 67 10 1.0 Fail 
2 M 63 10 0.2 Fail 
3 F 65 2 19.0 Pass 
4 F 82 2 39.3 Pass 
5 F 57 6 17.5 Pass 
6 M 61 2 17.1 Pass 
7 M 74 2 14.8 Pass 
8 F 46 2 17.5 Pass 
9 M 54 2 9.9 Fail 
10 M 62 7 1.3 Fail 
11 M 64 8 6.2 Fail 
12 F 40 10 0.3 Fail 
13 M 35 4 8.7 Fail 
14 F 39 2 16.3 Pass 
15 M 43 4 10.9 Pass 
16 M 50 4 8.6 Fail 
17 M 64 2 15.6 Pass 
18 F 47 4 11.7 Pass 
19 F 47 2 22.3 Pass 
20 M 46 2 12.4 Pass 
21 F 81 8 - - 
22 F 70 6 6.7 Fail 
23 M 36 8 0.5 Fail 
24 M 55 2 13.0 Pass 
25 F 23 2 22.7 Pass 
26 F 43 4 27.6 Pass 
27 F 46 2 14.6 Pass 
28 F 54 2 21.7 Pass 
29 F 28 10 8.5 Fail 
30 F 29 2 11.1 Pass 
      

 

Pre-test probability was calculated from criteria set out in table 2.2.  A low score was 
defined as 2 or less, a high score 5 or more and a score of 3 or 4 as indeterminate. 
A salivary cortisol concentration ≥ 10.3 nmol/L was defined as a “pass”. 
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Table 4.3 Agreement between pre-test probability and Synacthen test salivary result. 

 Synacthen test  

Pre-test probability Pass Fail Total Percentage agreement 

High 1 8 9 89 

Low 14 1 15 93 

Indeterminate 3 2 5 - 

Total 18 11 29 92 

 
Summary of the results from table 4.2 showing the agreement between pre-test 
probability and the result of the salivary Synacthen test.  Agreement is defined as a 
failed Synacthen test when pre-test probability is high and a Synacthen test pass 
when pre-test probability is low.  A salivary cortisol concentration ≥ 10.3 nmol/L was 
defined as a “pass”. 
 

4.5.2.3 Total serum cortisol versus salivary cortisol in diagnosing adrenal insufficiency 

Ten of the patients studied had a high pre-test probability score of hypoadrenalism 

compared to twelve who failed the Synacthen test using serum cortisol 

measurements and eleven who failed using salivary cortisol.  Tables 3.9 and 4.3 show 

the agreement between the pre-test probability of disease and serum and salivary 

test outcomes, respectively. 

Comparison between the performance of the two tests shows similar agreement with 

the pre-test probability score when the likelihood of disease is high (89% for the 

salivary test vs 90% for serum), but that the salivary cortisol test shows better 

agreement with the score in patients considered to be at lower risk (93 vs 87% 

concordance).  Overall agreement between the salivary cortisol test and pre-test 

likelihood of disease was also slightly higher at 92%, versus 88% for serum total 

cortisol. 

Table 4.4 shows the agreement between the two tests, irrespective of their agreement 

with the pre-test prediction.  The result of the serum test was considered the gold 

standard for the purposes of this comparison and the salivary test shows better 

agreement with this result in patients who pass the Synacthen test (15/18) than it 
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does in those who fail the test (8/12).  Overall agreement between the two tests is 

79%. 

Table 4.4 Agreement between serum and saliva Synacthen test results. 

 Synacthen result (Saliva)  

Synacthen result 
(Serum) 

Pass Fail Total 
Percentage 
agreement 

Pass 15 3 18 83% 

Fail 3 8 11 67% 

Total 18 11 29 79% 

Summary of the results from table 4.2 showing agreement between serum and 
salivary Synacthen tests, irrespective of their agreement with pre-test probability.  A 
serum cortisol concentration ≥ 430 nmol/L and a salivary cortisol concentration ≥ 10.3 
nmol/L were defined as a “pass”. 

 

There were 6 patients with discrepant serum and salivary results (table 4.5).  Three 

had an indeterminate pre-test likelihood score of 4, but three patients were considered 

low risk for adrenal insufficiency and subsequently failed either the serum or salivary 

Synacthen test.  The patient who was considered high risk but passed both 

Synacthen tests was considered in some detail in chapter 3. 

Table 4.5 Discrepancies between predicted and/or Synacthen test outcome and 

salivary cortisol outcome. 

Patient 
number 

Gender Age 
Likelihood 

score 
Predicted 
outcome 

Synacthen test 
outcome 

Saliva 
outcome 

       

9 M 54 2 Pass Pass Fail 

14 F 39 2 Pass Fail Pass 

17 M 64 2 Pass Fail Pass 

       

13 M 35 4 Indeterminate Pass Fail 

15 M 43 4 Indeterminate Fail Pass 

16 M 50 4 Indeterminate Pass Fail 

       

5 F 57 6 Fail Pass Pass 

 
Predicted outcome was determined from the pre-test probability, with a low score 
defined as 2 or less, a high score 5 or more and an indeterminate score 3 or 4. 
A serum cortisol concentration ≥ 430 nmol/L and a salivary cortisol concentration ≥ 
10.3 nmol/L were defined as a “pass”. 
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Figure 4.5 shows post-Synacthen salivary and serum cortisol concentrations in 

healthy volunteers and patients with possible hypoadrenalism.  The range of salivary 

cortisol responses is wider than that of serum cortisol, but both exhibit considerable 

overlap between healthy volunteers and patients with potential adrenal disease, 

despite the lower mean concentration in the latter group.  In light of the wider range 

of “normal” responses, it is somewhat surprising that salivary cortisol shows better 

agreement with the pre-test probability of disease than serum cortisol.  Nevertheless, 

the results presented here suggest a single salivary cortisol cut-off can be as reliable 

as a serum cut-off in the interpretation of the Synacthen test.  

 

Figure 4.5 Post-Synacthen salivary and serum cortisol concentrations in healthy 

volunteers and patients with suspected hypoadrenalism.  Each dot represents an 

individual subject.  The upper and lower dotted lines in each graph represent the 2.5th 

and 97.5th percentiles in healthy volunteers. 

 

4.5.3 Correlation between salivary free and serum total cortisol in health and disease 

Baseline and post-Synacthen results were combined before the correlation between 

salivary and serum total cortisol was studied.  Salivary cortisol correlated well with 

serum total cortisol measured by both GC-MS (figure 4.6A) and the Abbott 

immunoassay (figure 4.6A), with no real difference in the strength of the correlation 
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between the two assays.  The correlation was not affected by gender, but there was 

less scatter at higher cortisol concentrations, suggesting better correlation. 

The relationship between serum and salivary cortisol concentration was maintained 

in patients with suspected adrenal disease and was not visibly different to the 

relationship seen in healthy volunteers (figure 4.6C and D).  
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Figure 4.6 Correlation between log-transformed salivary cortisol and serum total 

cortisol measured by GC-MS and the Abbott immunoassay in healthy volunteers and 

patients with suspected hypoadrenalism.  Panel (A) shows the relationship with GC-

MS cortisol in healthy volunteers, (B) the relationship with Abbott cortisol in healthy 

volunteers, (C) the relationship with Abbott cortisol in patients with suspected 

hypoadrenalism and (D) the relationship with Abbott cortisol in the two groups 

combined.  The solid line represents equivalence between the two; the dotted line is 

the line of best fit.  ● males; ● females; ● patients with suspected hypoadrenalism 
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4.6 Discussion 

4.6.1 Defining salivary cortisol in healthy volunteers 

Measurement of serum free cortisol, the bioactive fraction of total cortisol, remains 

beyond the reach of routine clinical laboratories, and serum total cortisol remains the 

analyte of choice for evaluating suspected hypoadrenalism, despite well-recognised 

assay and biological limitations.  Salivary cortisol, which is free and protein-unbound, 

offers a possible surrogate measure of serum free cortisol for the evaluation of the 

hypothalamic-pituitary-adrenal axis but also provides an opportunity to gain a better 

understanding of how bioactive cortisol behaves in a healthy population. 

The skewed distribution of baseline salivary cortisol in male and female volunteers 

contrasts with the normal distribution of serum total cortisol reported in males, but not 

females, in this study and the normal distribution noted in other studies of the serum 

cortisol response to Synacthen stimulation (Klose et al. 2007).  This distribution is not 

surprising given the influence of external factors, such as BMI, ethnicity, stress and 

disrupted sleep on cortisol concentration (Veldhuis et al. 2009; Amirian et al. 2015; 

DeSantis et al. 2015), none of which were used as exclusion criteria for recruitment 

into this study. 

Salivary cortisol has been shown to predict mortality in elderly patients with chronic 

disease (Schoorlemmer et al. 2009) and, in contrast to serum total cortisol, early 

morning salivary cortisol is significantly higher in patients followed up one year after 

suffering a subarachnoid haemorrhage than in healthy volunteers (Poll et al. 2013).  

This has led to the suggestion that salivary cortisol gives different information to 

serum total cortisol.  Thus, a better understanding of baseline salivary cortisol in 

health is needed to help with its interpretation in patients with non-adrenal disease 

which is, nonetheless, influenced by cortisol. This study contributes to existing 
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knowledge by defining the distribution and concentration of baseline salivary cortisol 

in a large cohort of healthy volunteers. 

Baseline salivary cortisol concentrations ranged between 0.6 and 12.0 nmol/L and 

showed significant overlap with concentrations in patients with suspected 

hypoadrenalism, which ranged between 0.3 and 12.2 nmol/L.  The mean 

concentration of 2.9 nmol/L in healthy volunteers was lower than the 6.7 nmol/L 

reported by Perogamvros et al in their study of the salivary cortisol response to 

Synacthen stimulation in a group of 14 control subjects (gender undefined) 

(Perogamvros et al. 2010a), but not too dissimilar to the 3.9 nmol/L reported by the 

same author in a group of 68 patients who presented to a specialised Endocrine unit 

for investigation of adrenal function and were subsequently found to have a normal 

response to Synacthen stimulation (Perogamvros et al. 2010b).  In both studies, 

salivary cortisol was measured by an in-house LC-MS/MS assay. 

Sample timing, collection technique (Poll et al. 2007) and method differences (Patel 

et al. 2004a; Kosak et al. 2014) may explain some of the concentration difference 

observed between the results of this study and those in the literature.  Although as 

this is the largest study to date to use an LC-MS/MS cortisol assay, the results 

presented here are likely to be the most representative of concentrations in the 

general population.  However, given the lower concentrations reported in this study, 

further evaluation of the salivary cortisol assay, to ensure it meets the criteria required 

for validation of an LC-MS/MS assay (Honour 2011), is needed, as is comparison with 

other LC-MS/MS assays through participation in an EQA scheme. 

In fact, such a scheme exists already.  It includes 72 assays, 15 of which are LC-

MS/MS; with ELISA and luminescent immunoassay making up the majority of the 

remainder.  The scheme runs twice a year, distributing 3 salivary samples on each 

occasion.  Variability in cortisol concentration across all assays is huge, with results 
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between 1.8 nmol/L and 15.5 nmol/L reported for a sample with a mean LC-MS/MS 

concentration of 3.5 nmol/L; results between 15.7 nmol/L and 56.3 nmol/L for a 

sample with a mean LC-MS/MS concentration of 16.9 nmol/L and between 8.3 nmol/L 

and 34.3 nmol/L for a sample with a mean LC-MS/MS concentration of 9.9 nmol/L.  

LC-MS/MS assays show much less variability, with concentrations ranging between 

1.8 nmol/L and 4.2 nmol/L, 15.7 nmol/L and 19.3 nmol/L and 8.3 nmol/L and 11.3 

nmol/L, respectively, for the same three samples.  The results from the assay used in 

this study, however, are typically at the lower end of this range, with concentrations 

of 3.5 nmol/L, 15.7 nmol/L and 8.3 nmol/L, respectively. 

This study also explored the possibility of using baseline salivary cortisol 

concentration as a predictor of the Synacthen test result.  Patel et al showed in a 

study of salivary cortisol measurement in patients taking steroid nose drops that a 

subnormal morning salivary cortisol (defined as a result <2.8 nmol/L) identified an 

impaired Synacthen test result with a positive predictive value of 100% (Patel et al. 

2001).  In contrast, in this study, baseline salivary cortisol concentrations in patients 

with confirmed hypoadrenalism at the time of testing (patients 1, 2, 10, 11, 12, 23 and 

29) fell between 0.3 and 3.3 nmol/L, compared to concentrations between 1.1 and 

12.2 nmol/L in patients who passed the test and concentrations between 0.6 and 12.0 

nmol/L in healthy volunteers.  Any cut-off designed to identify all hypoadrenal patients 

would, therefore, overlap with results from healthy volunteers and patients with 

normal adrenal function, meaning a positive predictive value of 100% is impossible. 

Thus, this study suggests that baseline salivary cortisol is of limited value as a 

predictor of hypoadrenalism.  This might be explained by differences in sampling time, 

as participants in this study underwent Synacthen testing at any time between 8.0 

and 11.0 am, whereas Patel et al used samples collected between 6.0 and 8.0 am to 

define their early morning cortisol concentrations (Patel et al. 2001; Patel et al. 2004b) 

and Deutschbein et al used samples collected between 8.0 and 9.0 am (Deutschbein 
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et al. 2009).  Furthermore, substantial falls in salivary cortisol concentration 

throughout the course of the morning have been reported (Dorn et al. 2007) and 

hence the heterogeneity of sample collection times might explain the wide range of 

baseline salivary cortisol concentrations and the poor correlation between baseline 

concentration and response to Synacthen test.  However, further study in a larger 

group of patients with confirmed hypoadrenalism is needed to confirm that baseline 

salivary cortisol concentrations in patients and healthy volunteers are not significantly 

different.   

Post-Synacthen: 

The post-Synacthen salivary cortisol response was similarly broad – ranging from 

10.1 to 39.7 nmol/L, with little correlation between baseline and post-Synacthen 

concentration (r2=0.06).  Nevertheless, it was possible to define a “cut-off” for 

diagnosing hypoadrenalism using the lower limit of the normal range (the 2.5th 

percentile of the log transformed data) which when applied to the results in healthy 

volunteers excluded hypoadrenalism in all but one of them.  This “cut-off” performed 

slightly better than both the Abbott and GC-MS serum cortisol “cut-offs” which 

diagnosed hypoadrenalism in 2 and 4 healthy volunteers respectively.  In each of 

these cases cortisol concentration fell below the cut-off with only one test i.e. either 

salivary, serum Abbott or serum GC-MS cortisol.  

This confirms the results of other studies that have explored salivary cortisol as an 

alternative to serum for evaluating adrenal disease; although the reference ranges 

and cut-off derived in this study are considerably different to those quoted in the 

literature.  This may be explained by assay differences; a study by Deutschbein et al 

used a modified serum cortisol RIA to measure salivary cortisol in 21 healthy controls 

and reported a mean peak salivary cortisol of 60.6 nmol/L at 30 minutes (Deutschbein 

et al. 2009).  Different sampling times may also be to blame; Perogamvros et al 
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reported a mean peak salivary cortisol at 60 minutes of 36.7 nmol/L in 68 patients 

with suspected adrenal insufficiency in whom disease was subsequently excluded 

(Perogamvros et al. 2010b), although the 30 minute response was 24.6 nmol/L which 

compares well to the mean of 19.3 nmol/L reported in this study.  Cohort size is also 

likely to play a part in the differences observed between mean concentrations due to 

the wide range of responses and the greater impact this will have on mean 

concentration with fewer subjects. 

Differences between salivary cortisol LC-MS/MS assays also make it difficult to 

establish a single, universal reference range; however, the range established by this 

study for the post-Synacthen response is narrower than many of those reported in 

the literature and includes the largest cohort of healthy volunteers yet studied.  This 

provides a good starting point for further work to confirm the validity of the “normal” 

response, as defined in healthy volunteers, in a group of patients with unequivocal 

adrenal disease. 

Further evaluation of salivary cortisol, using a well-defined healthy population with no 

co-morbidities such as hypertension, depression or high BMI, which can confound 

baseline cortisol concentration, would also be of use as it may provide a narrower 

range and distribution of baseline concentrations with less overlap with patients with 

possible hypoadrenalism, enabling the definition of a baseline salivary cortisol 

concentration which distinguishes adrenal insufficiency from adequate adrenal 

function without the need for a Synacthen test.  This would be invaluable as at present 

salivary cortisol offers little advantage over serum total cortisol in the evaluation of 

adrenal disease as both require a Synacthen stimulation test for meaningful 

interpretation, and serum cortisol immunoassays are currently quicker and less labour 

intensive than salivary LC-MS/MS assays.   
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4.6.2 Salivary cortisol as an alternative to serum total cortisol 

Patients with suspected hypoadrenalism 

The salivary Synacthen test compared well to the pre-test probability score in 

evaluating patients with suspected hypoadrenalism, identifying 8 of the 9 patients 

considered at high risk, and 14 of the 15 patients at low risk, correctly.  A further 5 

patients had an indeterminate score, highlighting the limitations of the pre-test 

probability scoring criteria; but these will not be considered in more detail here. 

Only 2 patients had a Synacthen test result that was at odds with the pre-test 

probability score: patient 5, who has been considered in some detail in chapter 3 but 

whose salivary cortisol result warrants some further discussion here and patient 9. 

Patient 5 had a high pre-test probability score of 6 but passed the salivary Synacthen 

test.  Her baseline salivary cortisol concentration was 12.2 nmol/L, rising by 5.3 

nmol/L, to 17.5 nmol/L post-Synacthen.  This contrasts sharply with the corresponding 

mean baseline cortisol and post-Synacthen increment of 2.7 nmol/L and 17.4 nmol/L, 

respectively, in healthy female volunteers, raising the possibility of sample 

contamination with oral or inhaled glucocorticoid as the cause of the discrepant 

outcome.  However, as LC-MS/MS assays are specific for cortisol, the patient would 

need to have taken hydrocortisone specifically, just before producing the baseline 

sample for interference to affect the 30-minute sample as well (Perogamvros et al. 

2010a), and she did not report this being the case.  Furthermore, subsequent review 

of her records 5 years later confirmed that she had not required treatment for adrenal 

insufficiency nor had she undergone further testing, thus confirming the outcome of 

the test. 

Patient 9 was defined as low risk for adrenal insufficiency, scoring 2 on the pre-test 

likelihood scale.  He had hypogonadotrophic hypogonadism and gynaecomastia, with 
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no biochemical or radiological evidence of pituitary or autoimmune disease.  His 

baseline salivary cortisol was 2.9 nmol/L, rising to 9.9 nmol/L post-Synacthen; a 

borderline fail.  Again this raises questions about the validity of the pre-test probability 

scoring system as his hypogonadotrophic hypogonadism could be an indication of 

pituitary disease, although the lack of other radiological or biochemical evidence of 

disease is somewhat against this. 

A review of his medical notes 5 years after the Synacthen test revealed he missed a 

follow-up appointment 1 year after the test and had no further contact with the 

hospital.  This makes it impossible to either confirm or exclude subsequent adrenal 

insufficiency; although it is unlikely given that he has not re-presented to hospital in 

the intervening years.  Nevertheless, this highlights the need for some flexibility when 

using a single cut-off concentration to interpret the Synacthen test, particularly at 

concentrations close to the cut-off.  It all demonstrates the value of using a pre-test 

probability of disease when interpreting the result, particularly one that has been 

properly validated. 

As discussed in chapter 3, subsequent follow up of the remaining patients with 

suspected hypoadrenalism confirmed adrenal insufficiency in 7 patients (1, 2, 10, 11, 

12, 23 and 29), all of whom had a pre-test probability of 7 or higher and were correctly 

identified by the salivary Synacthen test. 

Comparison between serum and salivary Synacthen tests: 

This study showed good correlation between salivary and serum total cortisol 

concentrations in both healthy volunteers and patients with suspected 

hypoadrenalism, despite the former reflecting free cortisol concentration and the latter 

free and protein-bound cortisol combined. 

Direct comparison between the two tests showed a different outcome for the salivary 

Synacthen test in 3/139 (2%) healthy volunteers when compared to serum cortisol 
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measured by the Abbott immunoassay and in 5/139 (4%) volunteers when compared 

to GC-MS cortisol.  This difference rose to 21% in patients with suspected 

hypoadrenalism, with disagreement between salivary cortisol and serum cortisol 

measured by the Abbott immunoassay in 6 of the 29 patients studied.  

Nevertheless, based on clinical outcome 5 years later and an assumption that 

patients who were lost to follow-up had not succumbed to hypoadrenalism, and using 

the cut-offs derived in this thesis, both tests had 100% sensitivity for detecting 

genuine hypoadrenalism and a negative predictive value of 100% for excluding 

disease.  Specificity was 82% for salivary cortisol and 78% for serum cortisol, whilst 

the positive predictive value was 64% for salivary cortisol and 54% for serum cortisol.  

These results suggest, therefore, that the salivary Synacthen test may be marginally 

superior to serum for evaluating hypoadrenalism. 

Limitations: 

This work aimed to define and validate a salivary cortisol cut-off for use with the 

Synacthen test and whilst it has achieved this to a certain extent, inclusion of a larger 

group of patients with confirmed adrenal insufficiency would have allowed more 

robust testing of the cut-off.  Further work comparing the salivary Synacthen test to 

the insulin tolerance test, which is still considered the gold-standard for diagnosing 

hypoadrenalism, would also help confirm that the cut-off performs as well as this study 

suggests.  However, such a study would prove challenging to undertake, especially 

in healthy volunteers, given the unpleasant effects of hypoglycaemia. 

The scoring system used in this study to assign a pre-test likelihood of 

hypoadrenalism was designed to create a reference point for each patient to which 

the serum and salivary cortisol results could be compared, but it has not been properly 

validated as a tool for this purpose.  Comparison of the pre-test score to the confirmed 

diagnosis 5 years after the Synacthen test showed it had 100% sensitivity for 
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detecting hypoadrenalism but only 65% specificity and positive and negative 

predictive values of 47% and 100% respectively.  Thus, although it matches both 

serum and salivary Synacthen tests’ sensitivity and negative predictive value, it has 

worse specificity because of the inclusion of an indeterminate risk group.  A better 

alternative might, therefore, be to seek consensus from a cohort of Endocrinologists 

as to the criteria that constitute high risk and use these to develop a more robust, 

universal scoring system which can then be tested in a patient population. 

Finally, as both salivary cortisol and cortisone have been shown to correlate well with 

serum free cortisol (Perogamvros et al. 2010a), including the latter would have 

allowed direct comparison between the two to determine which performed best.  

However, as salivary cortisol has been shown to correlate better with serum free 

cortisol when patients treated with hydrocortisone are excluded, it was considered to 

be the better option.  Salivary cortisone concentration is also influenced by 11β-HSD2 

activity, which adds further potential for misinterpretation, particularly in patients with 

impaired enzyme activity.   

4.6.3. Conclusions 

Saliva is a valid alternative to serum cortisol for interpreting the Synacthen test in 

suspected adrenal insufficiency and may offer marginally better specificity than 

serum.  It also offers the advantage of less invasive sample collection, although as 

Synacthen is administered by either intravenous or intramuscular injection, this 

remains a relatively invasive test. 

Salivary cortisol concentrations correlate well with serum cortisol, with good 

agreement between the serum and salivary cortisol response to Synacthen 

stimulation in healthy volunteers.  However, despite equally good correlation between 

serum and salivary concentrations in patients with suspected hypoadrenalism, there 

is disagreement between the results of the two tests in 1 in 5 patients studied.  Further 
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comparison between the two tests and with the insulin tolerance test in a larger cohort 

of hypoadrenal patients would help to establish if either test clearly out-performed the 

other. 

LC-MS/MS is the method of choice for measuring salivary cortisol but until there is 

better assay standardisation, a single salivary cortisol reference range is unlikely, 

which may limit the use of salivary cortisol assays in routine clinical practice.  A single 

salivary cortisol cut-off for interpreting the Synacthen test is also an attractive 

prospect, but its validity needs to be confirmed in patients with hypoadrenalism before 

it can be used widely.  
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5.1 Introduction 

The initial aims of this study were to define assay-specific serum total cortisol 

reference ranges and a salivary cortisol reference range for the response to 

Synacthen in healthy volunteers and to explore the effect of high CBG on this 

response.  However, the limitations of serum total cortisol in evaluating adrenal 

function are well known and the availability of serum total cortisol and CBG 

measurements in such a large cohort presented an opportunity to explore the 

calculated serum free cortisol response to Synacthen stimulation in healthy 

volunteers as well. 

Two calculated surrogates of serum free cortisol were selected: Coolens’ calculated 

serum free cortisol (SFC) and the free cortisol index (FCI) (Coolens et al. 1987; le 

Roux et al. 2002).  SFC was the first such calculation to be derived and has been 

shown to correlate well with free cortisol measured by ultrafiltration and by LC-MS/MS 

(Coolens et al. 1987; Pretorius et al. 2011).  FCI was subsequently derived as a 

simpler alternative to SFC and has been shown to correlate well with both SFC and 

serum free cortisol measured by gel-filtration in healthy volunteers (le Roux et al. 

2002). 

Calculated serum free cortisol is of particular value in patients with altered serum 

protein concentration (le Roux et al. 2002; Vincent et al. 2009; Fede et al. 2014), 

although its performance in critically ill patients is somewhat less reliable (Bendel et 

al. 2008; Cohen et al. 2013; Molenaar et al. 2015).  There are also concerns about 

the validity of adopting a single reference range, due to poor comparison between 

methods and variable correlation between calculated and measured serum free 

cortisol (Pretorius et al. 2011).  It is, therefore, essential that a suitable “reference 

range” for calculated free cortisol is defined in a healthy population before using it to 

evaluate adrenal function in other patient populations. 
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5.2 Aims 

The work described in this chapter aimed to: 

 Evaluate the role of calculated serum free cortisol in the interpretation of the 

short Synacthen test in healthy volunteers and to define a lower reference limit 

for this response, if possible. 

 Explore the relationship between calculated serum free cortisol, serum total 

cortisol and salivary cortisol in healthy volunteers. 

 Explore serum free cortisol as an alternative to serum total cortisol and 

salivary cortisol in the interpretation of the short Synacthen test in patients 

with presumed disease of the HPA axis. 

5.3 Subjects and sample analysis 

5.3.1 Subjects 

This arm of the study included samples from 139 healthy volunteers (60 male and 79 

female) and 30 patients with possible hypoadrenalism. 

5.3.2 Laboratory investigations 

Serum total cortisol was measured by GC-MS and the five automated immunoassays 

described in chapter 2 in the healthy volunteers and by the Abbott assay only in the 

suspected hypoadrenal patient group.  CBG was measured by RIA (Biosource, 

Nivelles, Belgium) in both groups, although analysis was undertaken 4 years later in 

the patient group than in the healthy volunteers. 

  



Chapter 5  Serum Free Cortisol  

107 

5.3.3 Calculated serum free cortisol 

Serum free cortisol (SFC), was calculated from the Coolens’ equation as follows: 

U = √(Z2 + 0.0122T) – Z 

where Z = 0.0167 + 0.182(G – T) and U, G and T are SFC, CBG and total cortisol in 

µmol/L, respectively. 

The free cortisol index (FCI) was calculated by dividing measured total cortisol by 

CBG and is reported in nmol/mg. 

5.3.4 Statistical analysis 

SFC and FCI were log-transformed for calculation of mean concentrations in the two 

groups and reference ranges in the healthy volunteers.  The three patients with 

established Addison’s disease were excluded from calculations of the mean to avoid 

skewing the results.  The unpaired t-test was used to compare means between the 

two patient groups and between genders within the healthy volunteer group, while the 

paired t-test was used to compare mean SFC and FCI at each time point. 

Assay-specific reference ranges were determined in healthy volunteers and were 

compared using the paired t-test.  The lower limit of the reference range for the Abbott 

assay was used as a cut-off to differentiate between normal adrenal function and 

deficiency, and comparison was made between the free cortisol Synacthen test 

outcome and the pre-test probability of HPA axis disease, as defined in chapter 2.  A 

similar comparison was made between the outcome of the free cortisol Synacthen 

test and the serum and salivary cortisol results.  The relationships between SFC and 

FCI, calculated free cortisol and serum total cortisol and calculated free cortisol and 

salivary cortisol were explored using scatter plots.  In all cases, a p-value <0.05 was 

considered significant. 
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5.4 Results 

5.4.1 CBG concentration 

CBG concentration was significantly lower in males than in females, with no 

significant age effect and no difference between concentrations at baseline and post-

Synacthen.  Mean concentrations (2.5th – 97.5th centile) were 58 (42 – 81) mg/L in 

men and 64 (43 – 95) mg/L in women. 

5.4.2 Serum free cortisol and free cortisol index 

5.4.2.1 Baseline 

Coolens’ serum free cortisol (SFC) calculated from GC-MS cortisol correlated well 

with the free cortisol index (FCI), although the relationship was non-linear (figure 5.1).  

Baseline SFC more closely resembled serum total cortisol in that it was normally 

distributed in males, but not females, whereas FCI was normally distributed in both 

genders.  In contrast to serum total cortisol, differences between genders were 

significant (p<0.005) for both SFC and FCI at baseline (tables 5.1 and 5.2, figure 5.2); 

and for each gender, baseline SFC was significantly higher than FCI (p<0.005) 

(figures 5.1 & 5.2); with mean concentrations of 9.5 and 4.6 nmol/mg respectively in 

males and 7.7 and 3.9 nmol/mg in females (tables 5.1 and 5.2). 
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Figure 5.1 Correlation between GC-MS SFC and FCI.  The solid line shows perfect 
correlation between methods whilst the dotted line is the line of best fit which is non-
linear. 

 

Table 5.1 Assay-specific baseline serum free cortisol in healthy volunteers. 

 Mean Serum Free Cortisol (2.5th – 97.5th centile) (nmol/L) 

Assay 
Males 
n = 60 

Females 
n = 79 

P-value* 
 

GC-MS 9.5 (4.0 – 22.6) 7.7 (3.5 – 16.7) P<0.005 

Centaur 10.4 (4.5 – 23.9) 8.1 (3.6 – 18.4) P<0.001 

Abbott 10.0 (4.2 – 24.0) 7.7 (3.5 – 17.0) P<0.001 

Roche 13.9 (5.1 – 37.5) 9.6 (4.0 – 23.1) P<0.001 

Immulite 11.8 (4.6 – 30.1) 8.5 (3.8 – 19.0) P<0.001 

Beckman 10.2 (4.6 – 22.5) 7.9 (3.5 – 17.5) P<0.001 

*P-value <0.05 indicates a significant difference between means. 
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Table 5.2 Assay-specific baseline FCI in healthy volunteers. 

 Mean Free Cortisol Index (2.5th – 97.5th centile) (nmol/mg) 

Assay 
Males 
n = 60 

Females 
n = 79 

P-value* 

GC-MS 4.6 (2.3 – 9.3) 3.9 (2.0 – 7.4) P<0.005 

Centaur 5.0 (2.6 – 9.7) 4.0 (2.0 – 8.0) P<0.001 

Abbott 4.8 (2.4 – 9.8) 3.9 (2.0 – 7.6) P<0.001 

Roche 6.2 (2.9 – 13.0) 4.6 (2.3 – 9.4) P<0.001 

Immulite 5.5 (2.7 – 11.0) 4.2 (2.2 – 8.2) P<0.001 

Beckman 4.9 (2.6 – 9.2) 4.0 (2.0 – 7.7) P<0.001 

*P-value <0.05 indicates a significant difference between means. 

 

 

Figure 5.2 Baseline GC-MS SFC and FCI in healthy volunteers.  The difference 

between genders was significant (p<0.005) for both SFC and FCI and SFC was 

significantly higher than FCI (p<0.005). 

 

5.4.2.2 Post-Synacthen 

Following Synacthen stimulation, SFC was not normally distributed in males or 

females, while FCI remained normally distributed in both.  Gender differences 

remained significant (p<0.005) (tables 5.3 and 5.4, figure 5.3) and SFC remained 

significantly higher than FCI (p<0.005) (figure 5.3); with mean concentrations of 26.5 



Chapter 5  Serum Free Cortisol  

111 

and 9.7 nmol/mg in males and 23.0 and 8.8 nmol/mg in females, respectively (tables 

5.3 and 5.4). 

Table 5.3 Assay-specific post-Synacthen SFC in healthy volunteers. 

 Mean Serum Free Cortisol (2.5th – 97.5th centile) (nmol/L) 

Assay 
Males 
n = 60 

Females 
n = 79 

P-value* 

GC-MS 26.5 (15.3 – 45.7) 23.0 (13.4 – 39.5) P<0.005 

Centaur 29.7 (16.6 – 53.2) 24.4 (13.4 – 44.3) P<0.001 

Abbott 27.9 (15.8 – 49.2) 22.0 (12.5 – 38.8) P<0.001 

Roche 46.9 (24.2 – 91.1) 34.7 (18.0 – 66.9) P<0.001 

Immulite 33.4 (17.6 – 63.3) 27.9 (15.1 – 51.5) P=0.001 

Beckman 32.0 (16.9 – 60.6) 25.5 (13.4 – 48.6) P<0.001 

*P-value <0.05 indicates a significant difference between means. 

 

Table 5.4 Assay-specific post-Synacthen FCI in healthy volunteers 

 Mean Free Cortisol Index (2.5th – 97.5th centile) (nmol/mg) 

Assay 
Males 
n = 60 

Females 
n = 79 

P-value 

GC-MS 9.7 (6.7 – 14.0) 8.8 (6.0 – 12.8) P<0.005 

Centaur 10.4 (7.2 – 15.1) 9.1 (6.1 – 13.6) P<0.001 

Abbott 10.0 (6.9 – 14.5) 8.5 (5.7 – 12.7) P<0.001 

Roche 13.4 (9.1 – 19.6) 11.2 (7.5 – 16.8) P<0.001 

Immulite 11.1 (7.5 – 16.5) 9.9 (6.6 – 14.8) P=0.001 

Beckman 10.9 (7.3 – 16.2) 9.4 (6.1 – 14.4) P<0.001 

*P-value <0.05 indicates a significant difference between means. 
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Figure 5.3 Post-Synacthen GC-MS SFC and FCI in healthy volunteers.  The 

difference between genders was significant (p<0.005) for both SFC and FCI; and SFC 

was significantly higher than FCI (p<0.005). 

 

5.4.2.3 Assay-specific ranges 

Separate male and female SFC and FCI were calculated for each immunoassay at 

each time-point (tables 5.1 – 5.4) and, for males, all were shown to differ significantly 

from those calculated from GC-MS cortisol (p<0.05) (figures 5.4 and 5.5).  

Comparison between immunoassays in males showed no difference between either 

parameter for the Beckman assay when compared to the Centaur and Abbott assays 

at baseline (figure 5.4), although all assays were significantly different from each other 

post-Synacthen (figure 5.5). 

For females, and in line with serum total cortisol, baseline Abbott and Beckman SFC 

and FCI did not differ significantly from each other or from those calculated from GC-

MS cortisol (figure 5.4).  Post-Synacthen, all immunoassays differed from each other 

and from GC-MS (figure 5.5). 
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Figure 5.4 Mean assay-specific baseline SFC (a) and FCI (b) in males and females.  

Comparisons between assays were made within gender groups.  † denotes 

statistically significant difference (P<0.05) from GC-MS cortisol in males; ‡ denotes 

statistically significant difference (P<0.05) from GC-MS cortisol in females; * and ** 

denote immunoassays which do not differ significantly from each other in males and 

females, respectively. 

 

 

Figure 5.5 Mean assay-specific post-Synacthen SFC (a) and FCI (b) in males and 

females.  † denotes statistically significant difference (P<0.05) from GC-MS cortisol 

in males; ‡ denotes statistically significant difference (P<0.05) from GC-MS cortisol 

in females 
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5.4.2.4 Lower reference limits 

The 2.5th percentile, or lower reference limit, of the GC-MS-calculated free cortisol 

response to Synacthen stimulation was 15.3 in males and 13.4 in females for SFC 

and 6.7 nmol/mg in males and 6.0 nmol/mg in females for FCI.  The corresponding 

lower reference limits for immunoassay SFC ranged between 15.8 and 24.2 in males 

and 12.5 to 18.0 in females (table 5.3) and for FCI, between 6.9 and 9.1 nmol/mg in 

males and 5.7 and 7.5 nmol/mg in females (table 5.4). 

5.4.3 Correlation with serum total cortisol and salivary free cortisol 

5.4.3.1 Serum 

SFC and FCI correlated equally well with GC-MS cortisol across the range of 

concentrations studied, with no obvious gender difference (figures 5.6A and 5.7A), 

although the relationship between SFC and GC-MS cortisol was non-linear.  The 

relationship between log-transformed calculated free cortisol and serum cortisol 

concentration was also explored, and showed better correlation (figures 5.6B and 

5.7B) than the raw data, with less scatter and a clear linear relationship in both cases.  

Subsequent comparisons between free cortisol calculated from immunoassay cortisol 

were therefore made using log-transformed data. 
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Figure 5.6 Correlation between GC-MS SFC and serum total cortisol measured by 
GC-MS (A) and between their log-transformed derivatives (B).  The solid line 
represents perfect correlation; dotted line is the line of best fit. 
 

 

Figure 5.7 Correlation between GC-MS FCI and serum total cortisol measured by 
GC-MS (A) and between their log-transformed derivatives (B).  The solid line 
represents perfect correlation; dotted line is the line of best fit. 
 

The correlation between immunoassay SFC and FCI and serum total cortisol 

measured by GC-MS (figures 5.8 & 5.9) was broadly similar to that between GC-MS 

SFC and FCI and serum total cortisol, with minor differences in the overall 

relationships due to assay differences, particularly for SFC.  
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Figure 5.8 Correlation between log-transformed SFC and serum total cortisol 

measured by GC-MS.  The graphs show the relationship between SFC calculated 

from cortisol measured by (A) GC-MS, (B) Centaur, (C) Abbott, (D) Roche, (E) 

Immulite and (F) Beckman assays, respectively.  The solid line represents perfect 

correlation; dotted line is the line of best fit.  
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Figure 5.9 Correlation between log-transformed FCI and serum total cortisol 

measured by GC-MS.  The graphs show the relationship between FCI calculated from 

cortisol measured by (A) GC-MS, (B) Centaur, (C) Abbott, (D) Roche, (E) Immulite 

and (F) Beckman assays, respectively.  The solid line represents perfect correlation; 

dotted line is the line of best fit. 
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5.4.3.2 Saliva 

GC-MS SFC and FCI correlated reasonably well with salivary cortisol (figures 5.10 & 

5.11), although with wider scatter than the correlation with serum total cortisol, despite 

similar correlation coefficients.  Correlation between the log-transformed data was, 

again, slightly improved over the raw data and was used for subsequent comparisons. 

 

Figure 5.10 Correlation between GC-MS SFC and salivary cortisol (A) and between 

their log-transformed derivatives (B).  The solid line represents equivalence 

between methods; dotted line is the line of best fit, which is non-linear for the direct 

correlation. 

 

 
Figure 5.11 Correlation between GC-MS FCI and salivary cortisol (A) and between 

their log-transformed derivatives (B).  The solid line represents equivalence 

between methods; dotted line is the line of best fit, which is non-linear for the direct 

correlation.  
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Immunoassay SFC and FCI also correlated well with salivary cortisol, with little 

difference between assays, apart from the Roche SFC which showed positive bias 

relative to GC-MS and the other immunoassays (figure 5.12).  Correlation 

coefficients were similar (R2 = 0.7 – 0.8) for most assays for both parameters; 

nevertheless, FCI appeared to show less in the way of assay-specific differences in 

its correlation with salivary cortisol than SFC (figure 5.12 & 5.13). 
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Figure 5.12 Correlation between log-transformed SFC and salivary cortisol.  The 

graphs show the relationship between SFC calculated from cortisol measured by (A) 

GC-MS, (B) Centaur, (C) Abbott, (D) Roche, (E) Immulite and (F) Beckman assays, 

respectively.  The solid line represents equivalence between methods; dotted line is 

the line of best fit. 
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Figure 5.13 Correlation between log-transformed FCI and salivary cortisol.  The 

graphs show the relationship between FCI calculated from cortisol measured by (A) 

GC-MS, (B) Centaur, (C) Abbott, (D) Roche, (E) Immulite and (F) Beckman assays, 

respectively.  The solid line represents equivalence between methods; dotted line is 

the line of best fit. 
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5.4.4 Comparison between healthy volunteers and patients with potential 

hypoadrenalism 

5.4.4.1 CBG and calculated free cortisol 

CBG was significantly lower in patients with potential hypoadrenalism than in healthy 

volunteers; mean concentration 46 mg/L (28 – 73 mg/L) compared to 58 mg/L in 

healthy males and 64 mg/L in females (p<0.001).  However, mean SFC and FCI in 

male patients were no different to those in healthy volunteers at baseline (10.7 vs 

10.0; p=0.648 and 4.8 nmol/mg vs 4.8 nmol/mg; p=0.960) or post-Synacthen (31.3 vs 

27.9, p=0.247 and 10.4 nmol/mg vs 10.0 nmol/mg; p=0.584). 

Mean SFC and FCI in female patients were not significantly different to those in male 

patients at baseline (p = 0.983 and 0.880, respectively) or post-Synacthen (p = 0.751 

and 0.949) and were, consequently, significantly higher than those in healthy female 

volunteers (10.8 vs 7.7; p<0.005 and 4.7 nmol/mg vs 3.9 nmol/mg; p<0.001 at 

baseline and 32.7 vs 22.0; p<0.001 and 10.3 nmol/mg vs 8.5 nmol/mg; p<0.005 post-

Synacthen). 

When male and female samples were combined, mean baseline SFC, but not FCI, 

was significantly higher in patients with suspected hypoadrenalism than in healthy 

volunteers (10.8 nmol/L vs 8.6 nmol/L, p<0.05; and for FCI, 4.8 nmol/mg vs 4.3 

nmol/mg, p = 0.138).  Post-Synacthen, both SFC and FCI were significantly higher in 

the patient group (32.0 nmol/L vs 24.4, p<0.001 and 10.3 nmol/mg vs 9.1 nmol/mg, 

p<0.01, respectively) (figures 5.14 & 5.15). 
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Figure 5.14 Baseline and post-Synacthen SFC in healthy volunteers and patients 

with suspected hypoadrenalism.  Each dot represents an individual subject.  The 

upper and lower dotted lines in each graph represent the 2.5th and 97.5th percentiles 

in healthy volunteers, while the dark continuous lines represent mean concentration. 

 

 

Figure 5.15 Baseline and post-Synacthen FCI in healthy volunteers and patients with 

suspected hypoadrenalism.  Each dot represents an individual subject.  The upper 

and lower dotted lines in each graph represent the 2.5th and 97.5th percentiles in 

healthy volunteers, while the dark continuous lines represent mean concentration. 
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5.4.4.2 Correlation with serum and salivary cortisol 

SFC and FCI correlated well with serum total cortisol in patients with possible 

hypoadrenalism, with a similar pattern to that seen in healthy volunteers (figure 5.16), 

but with slight positive bias, particularly with SFC. 

 

Figure 5.16 Correlation between log-transformed SFC and FCI and serum total 

cortisol.  The graphs show the relationship between Abbott (SFC) and serum total 

cortisol measured by the Abbott assay (A) and Abbott FCI and serum total cortisol 

measured by the Abbott assay (B) in healthy volunteers and patients with suspected 

hypoadrenalism, separately and combined.  The solid line represents equivalence 

between methods; the dotted line is the line of best fit. 

 

The correlation between SFC and FCI and salivary cortisol in potentially hypoadrenal 

patients was also similar to that seen in healthy volunteers (figure 5.17) and the slight 

positive bias noted in the relationship between the calculated free cortisol parameters 

and serum total cortisol persisted. 
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Figure 5.17 Correlation between log-transformed SFC and FCI and salivary cortisol.  

The graphs show the relationship between Abbott (SFC) and salivary cortisol (A) and 

Abbott FCI and salivary cortisol (B) in healthy volunteers and patients with suspected 

hypoadrenalism, separately and combined.  The solid line represents equivalence 

between methods; the dotted line is the line of best fit. 

 

5.4.4.3 Diagnosing hypoadrenalism 

The outcome of the Synacthen test was the same in patients with possible adrenal 

insufficiency irrespective of whether SFC or FCI was used.  Thus, using the lower 

reference limits derived above, four patients (14%) would have failed the Synacthen 

test with either parameter (table 5.5), compared to 2 male volunteers (3%) and 2 or 3 

female volunteers (3-4%), depending on whether SFC or FCI was used.  This 

contrasts with the outcomes seen with both serum and salivary cortisol whereby 12 

and 10 patients, respectively, failed the Synacthen test, compared with only 3 healthy 

volunteers. 
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As discussed in chapters 3 and 4, a pre-test likelihood of adrenal insufficiency was 

determined for each patient, based on their presenting symptoms and medical history, 

and was used to explore agreement between high clinical suspicion of adrenal 

disease and test outcome.  Calculated free cortisol performed poorly in this 

comparison, detecting only 4 of the 10 patients with a high pre-test probability (table 

5.6).  However, the pre-test probability over-estimated the presence of disease, as 

only 7 of the high risk patients were subsequently shown to have hypoadrenalism, 

either known at the time of testing or confirmed later.  SFC and FCI correctly identified 

only 4 of these 7 patients (patients 1, 2, 12 and 23), compared to serum and salivary 

cortisol which identified them all.  Calculated free cortisol thus appears to have greater 

specificity than either serum or salivary cortisol but at the expense of sensitivity. 
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Table 5.5 Pre-test probability of hypoadrenalism and outcome of post-Synacthen 

SFC and FCI in patients with suspected adrenal insufficiency. 

Patient 
number 

Gender Age 
Likelihood 

score 

Post-
Synacthen 

(SFC) 
Outcome 

Post-
Synacthen 

(FCI) 
Outcome 

        
1 F 67 10 1.0 Fail 0.5 Fail 
2 M 63 10 1.3 Fail 0.7 Fail 
3 F 65 2 30.6 Pass 9.5 Pass 
4 F 82 2 45.5 Pass 12.9 Pass 
5 F 57 6 24.8 Pass 8.4 Pass 
6 M 61 2 36.9 Pass 11.8 Pass 
7 M 74 2 49.4 Pass 14.5 Pass 
8 F 46 2 48.2 Pass 13.9 Pass 
9 M 54 2 36.6 Pass 11.2 Pass 
10 M 62 7 18.0 Pass 7.3 Pass 
11 M 64 8 27.1 Pass 9.4 Pass 
12 F 40 10 0.9 Fail 0.5 Fail 
13 M 35 4 44.1 Pass 13.3 Pass 
14 F 39 2 46.0 Pass 14.4 Pass 
15 M 43 4 23.0 Pass 8.4 Pass 
16 M 50 4 31.2 Pass 10.1 Pass 
17 M 64 2 32.6 Pass 10.9 Pass 
18 F 47 4 34.3 Pass 10.8 Pass 
19 F 47 2 33.8 Pass 10.5 Pass 
20 M 46 2 58.5 Pass 15.4 Pass 
21 F 81 8 33.2 Pass 11.3 Pass 
22 F 70 6 23.2 Pass 8.3 Pass 
23 M 36 8 13.9 Fail 6.2 Fail 
24 M 55 2 31.6 Pass 9.9 Pass 
25 F 23 2 21.4 Pass 7.4 Pass 
26 F 43 4 30.8 Pass 9.7 Pass 
27 F 46 2 33.0 Pass 10.6 Pass 
28 F 54 2 53.8 Pass 13.1 Pass 
29 F 28 10 25.5 Pass 9.0 Pass 
30 F 29 2 25.6 Pass 8.7 Pass 
        

Pre-test probability was calculated from criteria set out in table 2.2.  A low score was 
defined as 2 or less, a high score 5 or more and a score of 3 or 4 as indeterminate. 
SFC and FCI were calculated from serum cortisol measured by the Abbott assay with 
a “pass” defined as an SFC ≥ 15.8 in males and ≥ 12.5 in females or an FCI ≥ 6.9 
nmol/mg in males and ≥ 5.7 nmol/mg in females. 
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Table 5.6 Agreement between pre-test probability of hypoadrenalism and the 

outcome of the Synacthen test. 

 Synacthen test  

Pre-test 
probability 

Pass Fail Totals 
Percentage 
agreement 

High 6 4 10 40% 

Low 15 0 15 100% 

Indeterminate 5 0 5 - 

Totals 26 4 30 76% 

This table depicts the outcome of the Synacthen test with both SFC and FCI, as their 
performance did not differ.  Agreement is defined as a failed Synacthen test when 
pre-test probability is high and a Synacthen test pass when pre-test probability is low. 

 

5.5 Discussion 

5.5.1 Cortisol binding globulin 

5.5.1.1 Healthy volunteers 

CBG concentrations in healthy volunteers ranged between 38 and 88 mg/L in men 

and 38 and 99 mg/L in women, with a significantly lower mean concentration in men 

(58 mg/L) than in women (64 mg/L).  The clinical relevance of this difference is 

debatable, given the wide range of concentrations observed and it contrasts with the 

results of several other studies which show a single reference range for healthy 

volunteers (Coolens et al. 1987; Davidson et al. 2006; Poomthavorn et al. 2009; 

Vincent et al. 2009; Barlow et al. 2010; Perogamvros et al. 2011).  These ranges are 

typically wide, but the mean concentration tends to be lower than that reported in this 

study, often falling between 45 and 50 mg/L (Qureshi et al. 2007; Poomthavorn et al. 

2009; Tan et al. 2010) or even lower (Coolens et al. 1987). 

However, patient numbers in these studies are small and CBG assays are not 

standardised and have no external quality assurance scheme.  Thus, it is not possible 

to confirm that different assays produce comparable results or, indeed, that different 

batches of the same assay are comparable.  Manufacturer-derived reference ranges 
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can also be unreliable, due to small patient numbers and inadequate selection criteria 

e.g. inclusion of women taking exogenous oestrogens. 

It is, therefore, not surprising that few studies show agreement with the results 

presented here.  Although, in their study of serum free cortisol in a group of patients 

with bronchiectasis, Barlow et al reported equally wide CBG concentrations, ranging 

between 28 and 85 mg/L, noting, as with this study, that this was wider and somewhat 

higher than the manufacturer’s quoted range of 31 – 53 mg/L (Barlow et al. 2010). 

5.5.1.2 Patients with suspected hypoadrenalism 

CBG concentrations in the potentially hypoadrenal patient group ranged between 26 

and 84 mg/L, with a mean concentration of 46 mg/L which was significantly lower than 

that in healthy volunteers.  This was an unexpected finding for which there are several 

possible explanations.  Samples from this patient group were collected 1 – 2 years 

later than the samples from healthy volunteers and were stored frozen at -80°C for 

up to 4 years prior to analysis.  Thus, it is possible that the lower concentrations are 

due to sample degradation, although this explanation is thought to be unlikely as CBG 

has been shown to be stable for at least six freeze-thaw cycles when stored at -25°C 

for 2 years (Barlow et al. 2010).  A more likely explanation and one that cannot be 

excluded is that this difference simply represents the variable performance of different 

batches of the CBG assay. 

It is also possible that this represents a genuine difference, arising as an adaptive 

response to lower serum cortisol concentrations, in an attempt to preserve 

bioavailable cortisol in the face of diminishing synthesis.  Tan et al reported 

significantly lower CBG concentrations in patients with severe liver disease who had 

evidence of adrenal insufficiency compared to those who did not (Tan et al. 2010), 

but this has not been reported elsewhere and other studies have shown no difference 

in CBG concentration between patients with adrenal insufficiency and those with 
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normal adrenal function (Coolens et al. 1987; Barlow et al. 2010).  Furthermore, if this 

were a genuine effect it would be expected that CBG concentrations would be lowest 

in the five patients with confirmed hypoadrenalism (patients 1, 2, 10, 12 and 23); but 

this was not the case. 

The positive bias in the correlation between SFC and FCI and salivary cortisol in 

patients with suspected hypoadrenalism relative to the relationship in healthy 

volunteers also points towards artefactually low CBG concentrations in this group, as 

there is no clear explanation why this should be the case. 

5.5.2 Calculated free cortisol 

Free cortisol calculated from the Coolens’ equation (SFC) and free cortisol index (FCI) 

behaved similarly in healthy volunteers, with no particular advantage of one over the 

other, except that FCI is easier to calculate and thus less subject to error.  Using the 

lower limit of the reference range as a cut-off for identifying adrenal insufficiency, SFC 

incorrectly diagnosed disease in 2 (Immulite) to 6 (Roche) healthy volunteers, while 

FCI diagnosed disease in 4 (Centaur, Immulite, Beckman) to 6 (Roche) subjects.  This 

was similar to serum total cortisol which would have diagnosed adrenal insufficiency 

in 2 (Abbott) to 5 (Roche) healthy volunteers, but contrasted with salivary cortisol 

which diagnosed disease in only 1 healthy volunteer. 

A further disadvantage of calculated free cortisol over salivary cortisol was its assay-

dependence, meaning that no single “reference range” is applicable.  It also requires 

measurement of CBG, the limitations of which have already been discussed.  Thus, 

of the three, calculated free cortisol is the least robust.  Nevertheless, both SFC and 

FCI exhibited better specificity in patients with suspected hypoadrenalism than either 

serum total cortisol or salivary cortisol, although this came at the expense of 

sensitivity, which, given the life-threatening potential of undiagnosed adrenal 

insufficiency, is unacceptable. 
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Overall agreement between post-Synacthen calculated free cortisol and serum total 

or salivary cortisol in patients with possible hypoadrenalism was also a cause for 

concern.  Nine patients (30%) who passed the Synacthen test with SFC and FCI failed 

with serum cortisol and 7 patients (24%) failed with salivary cortisol.  This suggests 

that despite the good correlation between free and total serum cortisol and between 

free cortisol in serum and saliva, agreement is poor and the relationship is more 

complex than simple correlation plots show. 

A similar suggestion was made by Mallat in response to a study by Estrada-Y-Martin 

et al which reported good correlation between serum free and salivary cortisol and 

recommended using the latter as an alternative to serum free cortisol in patients with 

septic shock (Estrada and Orlander 2011; Mallat 2012).  Mallat made the point that 

the strength of the relationship between two variables does not in itself make the two 

interchangeable.  This is further highlighted in this study by the finding that mean SFC 

and FCI concentrations in patients with suspected hypoadrenalism were significantly 

higher than in healthy volunteers, while the opposite was true of serum total cortisol 

and salivary cortisol.  Thus, calculated free cortisol is not a simple surrogate for either 

serum total or salivary free cortisol, and interpretation of the differences between them 

is limited because of the possible inaccuracies in CBG measurement. 

Mean post-Synacthen SFC concentrations in healthy volunteers ranged between 

22.0 nmol/L (female, Abbott) and 46.9 nmol/L (male, Roche) in this study, with an 

equivalent mean FCI range of 8.5 nmol/mg to 13.4 nmol/mg, depending on assay and 

gender.  These results were lower than other studies suggest, with LeRoux et al 

reporting a mean post-Synacthen FCI of 15.2 nmol/mg in healthy volunteers, using 

total cortisol measured by a Roche RIA and Barlow et al, defining a mean post-

Synacthen SFC of 69 in a group of patients with lung disease, using the original 

Centaur assay (le Roux et al. 2002; Barlow et al. 2010).  Other ranges of calculated 

and measured serum free cortisol have been reported (Bonte et al. 1999; Pretorius 
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et al. 2011), and calculated free cortisol has been shown at times to be both higher 

(Barlow et al. 2010) and lower (Tan et al. 2010) than measured free cortisol, making 

it impossible to extract a single, meaningful reference range from the existing 

literature.  A particular strength of this study, however, is the number of healthy 

volunteers included and the wide range of assays studied. 

5.5.3 Limitations 

Given the differences between the results of this study and others and the different 

behaviour exhibited by calculated free cortisol compared to serum total or salivary 

free cortisol in the “hypoadrenal” patients, it would have been useful to have included 

measured serum free cortisol in addition to calculated SFC and FCI.  This would have 

eliminated the uncertainty surrounding CBG measurement and would have shown 

conclusively whether serum free cortisol differs between healthy volunteers and this 

group of patients. 

The delay in analysing CBG in the patient group also introduced unnecessary 

questions about the reliability of the results, although the delay itself is less likely to 

be the real problem, rather the use of different batches of the CBG assay.  This could 

have been easily overcome by including independent quality control material with 

each batch of samples as an internal standard to confirm comparable assay 

performance. 

Another weakness of this study is the mixed nature of the patient group and its small 

size.  Including patients with established adrenal disease is unhelpful in establishing 

cut-offs to differentiate between normal adrenal function and the early stages of a 

failing gland, but is essential because it demonstrates the disparate concentrations 

between this group and healthy volunteers and provides reassurance that severe 

disease will not be missed, irrespective of diagnostic cut-off.  The other groups of 

patients included – those with non-specific symptoms but no clear risk factors for 
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hypoadrenalism, those with risk factors but no clear symptoms and those with a 

combination of both – are precisely the ones who need to be studied, but their 

numbers were not large enough to allow any definite conclusions to be made about 

their cortisol response to Synacthen stimulation.  Nevertheless, the lower serum total 

cortisol and salivary free cortisol in these patients hint at a possible role for cortisol in 

their symptoms. 

Furthermore, the differences between serum total cortisol, salivary cortisol and 

possibly calculated free cortisol in this group suggest all three need to be studied to 

better understand early changes in the HPA axis and to explore a possible role for 

minor changes in bioavailable cortisol in patients with the non-specific symptoms of 

adrenal insufficiency but without evidence of actual disease. 

5.5.4 Further work 

A useful extension to this study would be to compare the serum total cortisol, salivary 

free cortisol and measured and calculated serum free cortisol concentrations and 

responses to Synacthen between cohorts of patients as outlined above and a small 

group of healthy volunteers.  However, although this may help further our 

understanding of cortisol and the HPA axis, serum free cortisol is not a viable 

alternative to serum total cortisol or salivary cortisol at present and cannot replace 

either until better CBG and free cortisol assays are available. 
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CHAPTER 6 

 

THE EFFECT OF ALTERED PROTEIN STATES ON THE 

CORTISOL RESPONSE TO SYNACTHEN 
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6.1 Introduction 

Serum cortisol is predominantly protein-bound and consequently measurement of 

total cortisol is affected by changes in serum protein concentration.  Patients with the 

nephrotic syndrome and liver cirrhosis have low serum albumin and CBG 

concentrations and show a lower serum total cortisol response to ACTH stimulation 

than do healthy volunteers (Klose et al. 2007; Fede et al. 2014).  Acutely unwell 

patients also have low serum protein, but interpretation of serum total cortisol 

measured by immunoassay is complicated by increased concentrations of 

endogenous steroids, high prevalence of heterophilic antibodies (Briegel et al. 2009) 

and accentuation of the differences between immunoassays (Cohen et al. 2006), 

particularly following Synacthen stimulation. 

This latter group of patients was therefore excluded from this study to avoid 

confounding its primary aim of exploring the effect of altered protein concentrations 

on cortisol measurement.  Nevertheless, the results presented here are likely to prove 

useful in future studies attempting to further the understanding of cortisol 

measurement in these patients.  The inclusion of serum cortisol measured by GC-MS 

and of salivary cortisol measurement in this study was designed to identify whether 

either of these could provide an alternative to immunoassay cortisol for evaluating the 

HPA axis in patients with low serum protein concentrations.  However, it is also likely 

to provide a useful baseline for those considering the value of these measures in 

assessing the HPA axis in acutely unwell patients. 

In contrast to patients with low serum protein, those with high concentrations, as seen 

in states of oestrogen excess e.g. pregnancy and combined oral contraceptive use 

have higher mean post-ACTH cortisol concentrations than the general population 

(Meulenberg et al. 1987; Jung et al. 2011).  Despite this overall increase, 

immunoassay cortisol in this group shows an unexpected negative bias relative to 
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cortisol measured by LC-MS/MS (Jung et al. 2011).  This difference can be eliminated 

by heat-treatment and is thought to be due to reduced cortisol detection by 

immunoassay antibodies due to its increased binding to CBG. 

6.2 Aims 

The work described in this chapter was undertaken: 

 To investigate the effects of increased CBG concentration in women taking an 

oestrogen-containing oral contraceptive pill on serum total cortisol 

measurement, salivary cortisol measurement and calculated serum free 

cortisol. 

 To examine the relationship between immunoassay and GC-MS cortisol 

measurement in women taking exogenous oestrogens to identify any 

interference and determine how this can be overcome. 

 To investigate the effects of reduced CBG concentration in patients with the 

nephrotic syndrome or liver cirrhosis on serum total cortisol measurement, 

salivary cortisol measurement and calculated serum free cortisol. 

 To explore the effects of altered protein states on the serum total cortisol, 

salivary cortisol and calculated free cortisol responses to Synacthen 

stimulation.  

6.3 Subjects and sample analysis 

6.3.1 Healthy volunteers 

This group consisted of 60 male and 79 female volunteers, as described in chapter 

2.  Serum total cortisol was measured by GC-MS and the Centaur, Abbot, Roche, 

Immulite and Beckman immunoassays; salivary cortisol was measured by LC-MS/MS 

and CBG was measured by RIA. 
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6.3.2 Patients with low serum albumin 

There were 7 men and 3 women in the low protein group.  Mean albumin 

concentration at the time of the Synacthen test was 30.3 g/L (range 29 – 34).  Serum 

total cortisol was measured by GC-MS and the Abbot immunoassay; salivary cortisol 

was measured by LC-MS/MS and CBG was measured by RIA; analyses were carried 

out 4 - 5 years later than those in healthy volunteers. 

6.3.3 Female volunteers taking exogenous oestrogen 

This group comprised 24 young, premenopausal women, ranging in age between 21 

and 40 years.  Serum total cortisol was measured by GC-MS and the Centaur, Abbot, 

Roche, Immulite and Beckman immunoassays; salivary cortisol was measured by 

LC-MS/MS and CBG was measured by RIA. 

6.3.4 Subjects for interference studies 

The laboratory information management system (LIMS) was used to identify 9 women 

in the third trimester of pregnancy (≥ 28 weeks) who attended a hospital antenatal 

clinic or ward and 9 male (M), 9 female (F) and 9 young female (YF) patients whose 

general practitioner had requested serum cortisol measurement as part of their 

routine care.  Female patients were defined as women over the age of 45 who were 

considered unlikely to be taking an oestrogen containing oral contraceptive pill, whilst 

the young females were under the age of 35 and hence considered a better match 

for the pregnant women.  As no clinical history was available, it was impossible to 

exclude those taking exogenous steroids or oestrogens. 

Samples were retrieved from storage 5 days after the initial request (i.e. just prior to 

being discarded) and anonymised.  The effects of heat and Danazol treatment on 

serum total cortisol measurement using the Abbott Architect assay were then studied. 
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Once the initial investigations had been completed, a random selection of 20 samples 

each from the male and female volunteers and 19 samples from the OCP-female 

volunteers were chosen and a further 20 samples from women in the third trimester 

of pregnancy were retrieved as described above. 

6.4 Interference studies 

6.4.1 Initial investigations 

6.4.1.1 Heat treatment 

Serum from 3 each of the pregnant, male, female and young female subjects was 

split into four 300 L aliquots.  Baseline serum total cortisol was measured in 1 aliquot 

and the three remaining aliquots were incubated in a 60°C water bath for 30, 60 and 

120 minutes respectively.  Samples were then left to cool for 30 minutes at room 

temperature before being analysed. 

6.4.1.2 Danazol treatment 

Baseline cortisol was measured in serum from 3 each of the pregnant, male, female 

and young female subjects.  Separate aliquots of serum were created from each 

sample and a 200 mg/L stock solution of Danazol dissolved in 100% Methanol was 

used to prepare samples containing concentrations of 0.2 mg/L, 0.5 mg/L, 1.0 mg/L 

and 10 mg/L of Danazol, corresponding to 592.6 nmol/L, 1481.5 nmol/L, 2963 nmol/L 

and 29,630 nmol/L respectively.  A blank sample was prepared by spiking a further 

aliquot with an equivalent volume of Methanol.  Total cortisol was re-measured after 

incubation at room temperature for 1 hour and again after 24 hours. 

The experiment was repeated in the remaining 12 samples but with Danazol 

concentrations of 10 mg/L, 20 mg/L and 40 mg/L, corresponding to 29,630 nmol/L, 

59,259 nmol/L and 118,519 nmol/L, and an incubation period of 1 hour only. 
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6.4.2 Study samples 

Samples were run in batches of 20 (5 each of male, female, OCP female and pregnant 

subjects) over 4 separate days.  Baseline cortisol was measured in each sample, 

following which one aliquot was incubated at 60°C for 30 minutes and allowed to cool 

to room temperature for 30 minutes before cortisol was re-measured.  Two further 

aliquots were created from each sample – one was spiked with Danazol to give a final 

concentration of 10 mg/L and the other with an equivalent volume of 100% Methanol.  

These aliquots were incubated at room temperature for 1 hour before analysis. 

6.5 Statistics 

6.5.1 Main study subjects 

Serum, salivary and calculated free cortisol results were log-transformed for 

calculation of mean concentrations and reference ranges in each group at each time 

point, although the OCP-female and low protein groups were too small for valid 

reference ranges to be derived.  Differences between cortisol concentrations in the 

three groups were compared using the unpaired t-test, or the Mann-Whitney U test 

for non-parametric data.  In all cases, a p-value <0.05 was considered significant. 

Differences in the relationship between immunoassay and GC-MS serum cortisol, 

salivary cortisol and GC-MS serum cortisol and calculated free cortisol and GC-MS 

serum cortisol between the 3 groups were studied using scatter plots, and, in the case 

of serum cortisol, Bland-Altman plots. 

6.5.2 Interference studies 

The percentage increase in serum cortisol from baseline was calculated for heat 

treated samples by dividing the concentration post-treatment by the pre-treatment 

result.  For the Danazol-treated samples the percentage increase was calculated by 

dividing the Danazol-spiked concentration by the result of the Methanol-spiked blank. 
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The unpaired t-test was used to compare the increases in cortisol concentration 

following heat or Danazol treatment between the different patient groups with a p-

value of < 0.05 indicating a significant difference. 

6.6 Results 

6.6.1 Serum total cortisol 

6.6.1.1 Mean concentration and lower reference limits 

Serum cortisol measured by GC-MS was normally distributed at baseline and 

following Synacthen stimulation in women taking exogenous oestrogen (OCP-

females) and in patients with low serum protein.  Mean baseline concentrations were 

537 nmol/L in OCP-females and 305 nmol/L in low protein patients, with mean post-

Synacthen concentrations of 869 nmol/L and 552 nmol/L, respectively (table 6.1). 

For women taking an OCP, cortisol was measured by all 5 of the immunoassays 

studied, with mean concentrations ranging between 429 nmol/L and 646 nmol/L at 

baseline and 747 nmol/L and 1026 nmol/L post-Synacthen, depending on the assay 

used.  Mean concentrations measured by the Abbott immunoassay in the low protein 

group were 282 nmol/L at baseline and 514 nmol/L post-Synacthen (table 6.1). 

Both groups were too small for a robust lower reference limit for the response to 

Synacthen to be determined; however, an assay-specific 95th percentile range was 

calculated for each group (table 6.1) and was used to compare responses in these 

patient types with those in healthy volunteers, with the aim of highlighting any obvious 

differences. 
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Table 6.1 Assay-specific serum total cortisol concentrations in OCP females and 

patients with low serum protein at baseline and post-Synacthen. 

 Mean [Cortisol] (2.5th – 97.5th centile) nmol/L 

 OCP-females (n = 24) Low-protein patients (n = 10) 

Assay Baseline Post-Synacthen Baseline Post-Synacthen 

GC-MS 537 (315 - 914) 869 (649 - 1162) 305 (173 – 537) 552 (393 – 776) 

Centaur 488 (323 - 738) 763 (619 – 940) - - 

Abbott  465 (301 - 718) 747 (577 - 967) 282 (167 – 476) 514 (384 – 688) 

Roche  646 (383 - 1090) 1026 (791 - 1330) - - 

Immulite  510 (330 - 788) 850 (688 - 1051) - - 

Beckman 429 (286 - 643) 757 (604 - 948) - - 

 

6.6.1.2 Comparison with healthy volunteers 

Mean cortisol concentration in women taking exogenous oestrogen was significantly 

higher at baseline (table 6.2, figure 6.1) and post-Synacthen (table 6.3, figure 6.1) 

than in healthy female volunteers for all assays studied.  The Beckman assay showed 

the smallest differences – 177 nmol/L at baseline and 163 nmol/L post-Synacthen, 

whilst the equivalent differences for the Roche assay were 354 nmol/L and 314 

nmol/L, respectively.  This translated into a post-Synacthen 2.5th centile concentration 

up to 267 nmol/L higher (Roche assay) in women taking exogenous oestrogen than 

in those who were not. 

Table 6.2 Assay-specific serum total cortisol concentrations in female volunteers and 

OCP-females at baseline. 

 Baseline Mean [Cortisol] (2.5th – 97.5th centile) nmol/L 

Assay 
Non –OCP females 

n = 79 
OCP females 

n = 24 
P-value* 

GC-MS 248 (134 - 459) 537 (315 - 914) P < 0.001 

Centaur 257 (138 - 477) 488 (323 - 738) P < 0.001 

Abbott  247 (134 - 455) 465 (301 - 718) P < 0.001 

Roche  292 (147 - 581) 646 (383 - 1090) P < 0.001 

Immulite  267 (144 - 495) 510 (330 - 788) P < 0.001 

Beckman 252 (143 - 444) 429 (286 - 643) P < 0.001 

 
*P-value <0.05 indicates a significant difference between means. 
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Table 6.3 Assay-specific serum total cortisol concentrations in female volunteers and 

OCP-females post-Synacthen. 

 Post-Synacthen Mean [Cortisol] (2.5th – 97.5th centile) nmol/L 

Assay 
Non-OCP females 

n = 79 
OCP females 

n = 24 
P-value* 

GC-MS 558 (422 - 737) 869 (649 - 1162) P < 0.001 

Centaur 578 (446 - 750) 763 (619 – 940) P < 0.001 

Abbott  542 (416 - 707) 747 (577 - 967) P < 0.001 

Roche  712 (524 - 967) 1026 (791 - 1330) P < 0.001 

Immulite  628 (478 - 826) 850 (688 - 1051) P < 0.001 

Beckman 594 (455 - 777) 757 (604 - 948) P < 0.001 

 
*P-value <0.05 indicates a significant difference between means. 

 

 

Figure 6.1 Mean serum cortisol in healthy volunteers, patients with low serum protein 

concentration and women taking an OCP at baseline and post-Synacthen. 

 

Mean baseline cortisol concentration measured by GC-MS was not significantly 

different in low protein patients than in healthy male or female volunteers (figure 6.1, 

table 6.4).  This remained the case following Synacthen stimulation.  When serum 

cortisol was measured using the Abbott assay, however, post-Synacthen cortisol 

concentration in low protein patients was significantly lower than in healthy male 

volunteers (table 6.4). 
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Table 6.4 Serum total cortisol concentration in patients with low serum protein and 

healthy volunteers by GC-MS and the Abbott immunoassay. 

 Mean serum [cortisol] (2.5th – 97.5th percentile) nmol/L 

 
Low protein 

patients 
Males P-value Females P-value 

Baseline  

GC-MS 305 (173 – 537) 274 (131 - 575) 0.363 254 (139 - 463) 0.052 

Abbott 282 (167 – 476) 289 (151 - 556) 0.967 247 (134 - 455) 0.201 

Post-Synacthen  

GC-MS 552 (393 – 776) 563 (418 - 757) 0.804 555 (421 - 731) 0.838 

Abbott 514 (384 – 688) 577 (430 - 773) 0.027* 542 (416 - 707) 0.251 

 
P-value <0.05 indicates a significant difference between means. 

 

6.6.1.3 Correlation between immunoassay and GC-MS 

Cortisol measured by immunoassay was plotted against GC-MS cortisol for healthy 

volunteers and OCP-females and showed good correlation, but with some evidence 

of negative bias at higher concentrations for all assays apart from the Roche (figure 

6.2).  Further examination of the plots suggested that this negative bias arose 

predominantly in samples from women taking exogenous oestrogens, which 

appeared to behave differently to those from healthy volunteers. 

This was confirmed on the corresponding Bland-Altman plots for each immunoassay 

(figure 6.3).  Immunoassay cortisol from OCP-females showed negative bias relative 

to GC-MS except with the Roche assay where bias remained positive, albeit to a 

lesser extent than in non-OCP subjects.  Given the lack of specificity of cortisol 

immunoassays, particularly in comparison to GC-MS, this was an unexpected finding 

which suggested under-recovery of cortisol in this group. 
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Figure 6.2 Correlation between log-transformed immunoassay and GC-MS cortisol 

in healthy volunteers and OCP-females.  A) Centaur, B) Abbott, C) Roche, D) 

Immulite and (E) Beckman assays.  The solid line represents equivalence between 

methods; dotted line equals line of best fit. 

 ● = males; ● = non-OCP females; ● = OCP-females. 
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Figure 6.3 Bland-Altman plots comparing immunoassay and GC-MS cortisol in 

healthy volunteers and OCP-females.  A) Centaur, B) Abbott, C) Immulite, D) 

Beckman and E) Roche.  x-axis = difference between immunoassay and GC-MS 

cortisol concentrations, y-axis = GC-MS cortisol concentration 

The solid line represents equivalence between methods.  Scatter of results above 

and below the line represents positive and negative bias of the immunoassay 

respectively.  ● = males; ● = non-OCP females; ● = OCP-females. 
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To further evaluate the observed bias, mean bias ratios were calculated for the OCP 

female group for each immunoassay relative to GC-MS, as described in section 3.4.  

In line with the findings from the correlation and Bland-Altman plots, the mean bias 

ratio for this group was negative for all immunoassays apart from the Roche, ranging 

from 0.96 (a negative bias of 4%) for the Immulite assay to 0.83 for the Beckman.  

This contrasted with the bias in non-OCP subjects which was positive for all assays 

(table 6.5). 

The calculated mean bias ratio was also helpful in demonstrating that the Roche 

assay was not excluded from the negative bias affecting samples from OCP females 

in the other assays, although the effect was diminished.  Thus, although remaining 

positive, the bias exhibited by the Roche assay was almost halved; falling from 30% 

in non-OCP subjects to 18% in OCP females (table 6.5). 

Table 6.5 Mean assay-specific bias ratios for healthy volunteers and OCP females. 

 Overall Mean Bias Ratio 

Assay Healthy volunteers OCP Females P-value* 

Centaur 1.06 0.89 P<0.001 

Abbott 1.02 0.86 P<0.001 

Roche 1.30 1.18 P<0.001 

Immulite 1.13 0.96 P<0.001 

Beckman 1.07 0.83 P<0.001 

Overall mean bias ratio was calculated using combined baseline and post-Synacthen 

cortisol concentrations.  * P-value <0.05 indicates a significant difference. 

 

Cortisol in patients with low serum protein measured by the Abbott immunoassay also 

correlated well with GC-MS cortisol, albeit with a slight negative bias across the range 

of concentrations studied (figure 6.4A).  On initial inspection, there was no suggestion 

that the relationship was any different to that in healthy volunteers (figure 6.4B), and 

this was largely supported by the Bland-Altman plot (figure 6.5).  The mean bias ratio, 

however, was significantly lower in this group than in male volunteers (p<0.05) 

although not in comparison to female volunteers (p=0.642) (figure 6.6).  This makes 
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a genuine difference between immunoassay cortisol measurement in low protein 

patients and healthy volunteers unlikely. 

 

Figure 6.4 Correlation between log-transformed Abbott and GC-MS cortisol in 

healthy volunteers and low protein patients.  Panel A shows the correlation in low 

protein patients and B shows the two groups combined.  The solid line represents 

equivalence between methods; dotted line equals line of best fit. 

 

 

Figure 6.5 Bland-Altman plot comparing Abbott and GC-MS cortisol in healthy 

volunteers and low protein patients.  The solid line represents equivalence between 

methods. 
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Figure 6.6 Bland-Altman plot comparing Abbott and GC-MS cortisol and mean bias 

ratios for all patient groups.  The solid line represents equivalence between methods. 

 

6.6.1.4 Interference studies 

It was assumed that the negative bias observed with samples from OCP-females was 

due to excess CBG binding to cortisol and blocking the immunoassay antibodies’ 

ability to find their binding sites on the cortisol molecule.  Further investigations, aimed 

at displacing cortisol from CBG were therefore undertaken. 

 

Initial investigations 

Studies using heat treatment to denature CBG (and other proteins) and Danazol to 

competitively displace cortisol from CBG were designed and carried out in serum from 

pregnant and non-pregnant patients to determine the optimum conditions to use with 

study samples.  Serum cortisol increased by up to 124% in pregnant women, 26% in 

men, 33% in women and 52% in young women following heat treatment at 60°C for 

30, 60 or 120 minutes (table 6.6).  This effect was observed at all time points and was 

not appreciably greater with longer incubation times. 
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A further 3 samples from each patient group were spiked with Danazol at 

concentrations ranging from 0.2 mg/L to 10 mg/L, which corresponded to 

concentrations 1 to 3 times and 55 to 157 times higher than the baseline cortisol 

concentrations in these samples, respectively.  Serum cortisol did not increase 

significantly from baseline with Danazol concentrations below 10 mg/L, but increases 

of up to 43%, 24%, and 23% were seen in pregnant subjects, males and females, 

respectively, at this concentration (table 6.7). 

Increasing the incubation time from 1 to 24 hours resulted in a further increase in 

cortisol concentrations from baseline in pregnant samples but not in the other groups 

(table 6.8).  Similarly, increasing the concentration of Danazol to 20 mg/L or 40 mg/L 

had little effect on the post-treatment cortisol concentration (table 6.9). 

Table 6.10 shows a summary of the effects of the different treatments and identifies 

the two which were selected for use with patient samples – namely heat treatment at 

60°C for 30 minutes and spiking with 10 mg/L of Danazol for 1 hour at room 

temperature. 
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Table 6.6 Effect of heat treatment on immunoassay cortisol. 

 
 

Baseline [cortisol] nmol/L 

P1 P2 P3 M1 M2 M3 F1 F2 F3 YF1 YF2 YF3 

334.8 544.3 319.9 359.7 363.8 228.8 212.8 283.3 340.0 329.7 329.5 480.6 

[Cortisol] nmol/L @: 
30 minutes 519.4 1125.1 462.5 431.6 453.9 277.8 272.5 359.3 446.3 392.4 500.3 594.6 

 
60 minutes 514.5 1219.7 482.4 433.2 437.1 289.4 260.1 357.8 453.5 400.8 486 612.1 

 
120 minutes 520.5 1151.7 458.8 420.4 438.5 280.9 265.9 354.4 445.3 398.4 490.6 557.1 

 
Mean [cortisol] nmol/L 518.1 1165.5 467.9 428.4 443.2 282.7 266.2 357.2 448.4 397.2 492.3 587.9 

Percentage increase @: 
30 minutes 55 107 45 20 25 21 28 27 31 19 52 24 

 
60 minutes 54 124 51 20 20 26 22 26 33 22 47 27 

 
120 minutes 55 112 43 17 21 23 25 25 31 21 49 16 

Mean percentage 
increase 55 114 46 19 22 24 25 26 32 20 49 22 

The table shows serum total cortisol concentrations measured before and after samples were incubated at 60°C for 30, 60 and 120 minutes 

respectively and the corresponding percentage increase in concentration from baseline.  The increase in sample YF2 was more in keeping with 

that seen in pregnant women, suggesting the patient may have been pregnant or taking an oestrogen-containing OCP, so these results were 

excluded from final calculations of the overall mean percentage increase.  The increase in sample P2 also appeared out of step with the results 

from the other pregnant samples and was similarly excluded from further analysis.  P – pregnant women, M – male, F – female (aged ≥ 40 years) 

and YF – young female (aged ≤ 35 years). 

.   
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Table 6.7 Effect of Danazol treatment on immunoassay cortisol (1-hour incubation). 

Spiked baseline [cortisol] 
nmol/L 

P1 P2 P3 M1 M2 M3 F1 F2 F3 YF1 YF2 YF3 

 
439.5 398.5 437.9 296.4 217.4 253.5 379.5 295.7 199.3 171.3 510.8 244.1 

[Cortisol] nmol/L with: 
0.2 mg/L Danazol 443.3 396.4 432.4 301.9 229.0 - 377.0 292.1 202.7 171.4 527.4 245.3 

 
0.5 mg/L Danazol 444.9 396.5 444.2 294.2 213.8 259.3 389.9 288.0 196.8 176.5 528.9 245.5 

 
1.0 mg/L Danazol 479.5 414.4 457.5 307.1 230.6 260.3 397.2 307.9 207.6 176.1 526.8 246.7 

 
10 mg/L Danazol 629.9 529.8 574.6 368.3 260.0 287.5 465.2 336.8 230.5 210.0 603.9 293.0 

Percentage increase with: 
0.2 mg/L Danazol 1 -1 -1 2 5 - -1 -1 2 0 3 0 

 
0.5 mg/L Danazol 1 -1 1 -1 -2 2 3 -3 -1 3 4 1 

 
1.0 mg/L Danazol 9 4 4 4 6 3 5 4 4 3 3 1 

 
10 mg/L Danazol 43 33 31 24 20 13 23 14 16 23 18 20 

The table shows serum total cortisol concentrations measured before and after samples were incubated with varying concentrations of Danazol 

(0.2 mg/L, 0.5 mg/L, 1.0 mg/L and 10 mg/L, respectively) for 1 hour at room temperature and the corresponding percentage increase in 

concentration from baseline.  The 12 samples treated with Danazol were not the same ones described in the heat treatment studies. 

P – pregnant women, M – male, F – female (aged ≥ 40 years) and YF – young female (aged ≤ 35 years). 
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Table 6.8 Effect of Danazol treatment on immunoassay cortisol (24-hour incubation).  

Spiked baseline [cortisol] 
nmol/L 

P1 P2 P3 M1 M2 M3 F1 F2 F3 YF1 YF2 YF3 

 
441.2 402.8 432.3 303.0 227.3 272.7 399.1 302.0 204.6 180.4 538.3 252.1 

[Cortisol] nmol/L with: 
0.2 mg/L Danazol 458.0 399.6 449.8 299.5 235.2 - 399.7 307.4 210.5 186.3 548.6 262.7 

 
0.5 mg/L Danazol 456.2 412.4 474.8 310.6 242.8 268.5 417.6 303.1 213.5 192.8 562.4 262.1 

 
1.0 mg/L Danazol 487.0 427.3 475.2 335.8 244.6 287.7 420.9 317.1 215.5 194.9 555.2 273.5 

 
10 mg/L Danazol 656.4 548.2 591.0 366.8 265.0 321.4 474.4 351.6 238.6 211.2 625.7 306.0 

Percentage increase with: 
0.2 mg/L Danazol 4 -1 4 -1 3 - 0 2 3 3 2 4 

 
0.5 mg/L Danazol 3 2 10 3 7 -2 5 0 4 7 4 4 

 
1.0 mg/L Danazol 10 6 10 11 8 6 5 5 5 8 3 8 

 
10 mg/L Danazol 49 36 37 21 17 18 19 16 17 17 16 21 

The table shows serum total cortisol concentrations measured before and after samples were incubated with varying concentrations of Danazol 

(0.2 mg/L, 0.5 mg/L, 1.0 mg/L and 10 mg/L, respectively) for 24 hours at room temperature and the corresponding percentage increase in 

concentration from baseline.  These were the same 12 samples from the 1-hour incubation studies.  P – pregnant women, M – male, F – female 

(aged ≥ 40 years) and YF – young female (aged ≤ 35 years). 
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Table 6.9 Effect of high concentration Danazol treatment on immunoassay cortisol (1-hour incubation). 

Spiked baseline [cortisol] nmol/L 

P1 P2 P3 M1 M2 M3 F1 F2 F3 YF1 YF2 YF3 

 
256 1288 490.8 171.8 177.7 246.7 200.3 273.3 - 111.3 244.6 190.6 

[Cortisol] nmol/L with: 
20 mg/L Danazol 347.1 1740.6 624.3 207.7 222.2 298.9 250.7 337.6 213.9 133.2 298.4 221.6 

 
40 mg/L Danazol* - - 577.1 - - 245.6 - - 185.3 - - 183.7 

Percentage increase with: 
20 mg/L Danazol 36 35 27 21 25 21 25 24 - 20 22 16 

 
40 mg/L Danazol - - 31 - - 16 - - 23 - - 13 

The table shows serum total cortisol concentrations measured before and after samples were incubated for 1-hour at room temperature with 20 

mg/L or 40 mg/L concentrations of Danazol, respectively, and in samples P3, M3 and YF3, with both.  These 12 samples were different to those 

used in the other studies.  P – pregnant woman, M – male, F – female (aged ≥ 40 years) and YF – young female (aged ≤ 35 years). 
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Table 6.10 Mean percentage increase in serum cortisol concentration measured by 

the Abbott assay following heat and Danazol treatment. 

 Pregnant Non-pregnant 

Heat Treatment   
30 minutes 1.50 1.24 
60 minutes 1.52 1.25 
120 minutes 1.49 1.22 

   

Danazol concentration – 1-hr incubation   
0.2 mg/L 1.00 1.01 
0.5 mg/L 1.01 1.01 
1.0 mg/L 1.06 1.04 
10 mg/L 1.36 1.19 
20 mg/L 1.33 1.22 
40 mg/L 1.31 1.17 

   

Danazol concentration – 24-hr incubation   
0.2 mg/L 1.02 1.02 
0.5 mg/L 1.05 1.04 
1.0 mg/L 1.09 1.07 
10 mg/L 1.41 1.18 

The non-pregnant results were calculated from male, female and young female 

patients combined.  The percentage increase in cortisol concentration following heat 

treatment was calculated from unspiked baseline samples, while the increase 

following Danazol treatment was calculated from a baseline that had been spiked with 

an equivalent volume of 100% methanol.  The red boxes highlight the pre-treatment 

conditions that were used to investigate study subjects. 

 

Study samples: 

Baseline cortisol concentrations did not differ significantly between pregnant and 

OCP-females (p=0.844) nor between male and female volunteers (p=0.430) (table 

6.11).  The increase in cortisol concentration from baseline was significantly higher 

following heat treatment than with Danazol for all patient groups (p<0.001) and was 

higher for both treatments in pregnant patients than in any other group (p<0.01).  

OCP-females also showed significantly greater increases in cortisol following 

treatment than both male and female volunteers (p<0.001).  The differences between 

the effects of heat and Danazol treatment on male and female samples were small 

but statistically significant (heat treatment, p=0.045; Danazol p=0.048). 
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Table 6.11 Effect of heat and Danazol treatment on cortisol measurement by the 

Abbott assay in pregnant patients and healthy male, female and OCP-female 

volunteers. 

 
Mean baseline 

[cortisol] in nmol/L 
Mean [cortisol] in 
nmol/L following: 

Percentage 
increase 

following: 

 Unspiked Spiked Heat Danazol Heat Danazol 
Pregnant 
women 

434.3 412.6 717.5 560.5 66 (15) 35 (5) 

OCP-females 427.7 403.6 656.4 526.0 53 (10) 30 (5) 
Females 237.4 220.3 303.1 262.8 27 (8) 19 (5) 

Males 260.6 241.2 316.3 279.9 22 (8) 17 (4) 

Serum total cortisol was measured in 20 samples each from anonymised pregnant 

women, male and female healthy volunteers and 19 samples from healthy OCP 

females before and after heat and Danazol treatment, and mean concentrations were 

calculated.  The percentage increase in cortisol concentration following heat 

treatment was calculated from the unspiked baseline samples, while the increase 

following Danazol treatment was calculated from a baseline that had been spiked with 

an equivalent volume of 100% methanol. 

 

Figure 6.7 shows a series of Bland-Altman plots examining the effect of Danazol and 

heat treatment on the performance of the Abbott assay relative to GC-MS.  Figure 

6.7a shows the negative bias of the Abbott assay relative to GC-MS with samples 

from OCP-females.  Following treatment with Danazol, cortisol concentration is 

significantly higher than at baseline for all sample types (p<0.001), although some 

OCP females continue to show negative bias relative to GC-MS (figure 6.7b).  Heat 

treatment overcomes the negative bias almost completely, revealing a proportional 

positive bias across all concentrations (figure 6.7c). 
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Figure 6.7 Bland-Altman plots comparing baseline cortisol measured by the Abbott immunoassay with GC-MS cortisol in healthy male, female 

and OCP-female volunteers.  Panel (A) shows the relationship between samples before either treatment, (B) shows the effect of incubating the 

samples with Danazol at a concentration of 10 mg/L for 1 hour and (C) shows the effect of incubating the samples at 60°C for 30 minutes before 

analysis. 
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6.6.2. Salivary cortisol 

6.6.2.1 Mean concentration and lower reference limits 

Salivary cortisol was not normally distributed in women taking exogenous oestrogen 

at baseline or post-Synacthen but was normally distributed at both time points in 

patients with low serum protein.  Mean baseline concentration was 5.1 nmol/L in 

OCP-females and 5.3 nmol/L in low protein patients, rising to 19.7 nmol/L and 19.0 

nmol/L, respectively, following Synacthen stimulation (table 6.12).  

Table 6.12 Salivary cortisol concentration in all patient groups at baseline and post-

Synacthen. 

 Mean salivary [cortisol] (2.5th – 97.5th percentile) – nmol/L 

 OCP-Females Healthy volunteers Low protein patients 

0 Minute 5.1 (1.9 – 14.0) 2.9 (0.9 – 9.2) 5.3 (1.1 – 26.2) 

30 Minute 19.7 (9.5 – 41.2) 19.3 (10.3 – 36.2) 19.0 (7.7 – 46.9) 

 

6.6.2.2 Comparison with healthy volunteers 

Baseline salivary cortisol was significantly higher in women taking exogenous 

oestrogen and in patients with low serum protein than in male or female volunteers 

(p<0.001) but there was no significant difference between the two altered protein 

groups (p=0.897) (figure 6.8).  There was also no significant difference between any 

of the groups (males, females, OCP-females or low protein patients) following 

Synacthen stimulation (p-values 0.591 to 0.971) (figure 6.8). 
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Figure 6.8 Mean salivary cortisol concentration in healthy volunteers, patients with 

low serum protein concentration and women taking an OCP at baseline and post-

Synacthen. 

 

6.6.2.3 Correlation with serum cortisol 

Salivary cortisol in women taking exogenous oestrogen and in those with low serum 

protein concentration correlated well with serum cortisol measured by GC-MS and 

the Abbott immunoassay, although the correlation was weaker than that in healthy 

volunteers (Figure 6.9 A & B).  Salivary cortisol was negatively biased relative to 

serum cortisol in all groups at lower concentrations but this was most marked in the 

exogenous oestrogen group and least in patients with low serum protein.  Positive 

bias was observed at higher concentrations, particularly in healthy volunteers and low 

protein patients, less in women taking exogenous oestrogens (Figure 6.9). 

Comparing the relationship between salivary and serum cortisol in women taking 

exogenous oestrogens with that in patients with low serum protein showed overall 

negative bias in the oestrogen group compared to overall positive bias in the low-

protein group (figure 6.10), despite a similar range of salivary cortisol concentrations. 
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Figure 6.9 Correlation between log-transformed salivary cortisol and serum cortisol measured by GCMS and immunoassay (Abbott) cortisol in 

all groups studied.  Panel (A) shows the relationship between salivary cortisol and GC-MS cortisol in OCP-females, low-protein patients, healthy 

volunteers and the three combined and (B) shows the respective relationships between salivary cortisol and Abbott cortisol.  The solid line 

represents equivalence between methods; dotted line equals line of best fit. 
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Figure 6.10 Correlation between log-transformed salivary cortisol and serum total 

cortisol in OCP-females and low-protein patients.  Panel (A) shows the relationship 

with GC-MS cortisol and (B) the relationship with Abbott cortisol. 

 

6.6.3 Calculated free cortisol 

6.6.3.1 Mean concentration and lower reference limits 

Serum free cortisol (SFC) and free cortisol index (FCI) were calculated from serum 

total cortisol measured by GC-MS (GC-MS SFC; GC-MS FCI) and the five 

immunoassays studied in women taking exogenous oestrogen and from GC-MS and 

Abbott cortisol in patients with low serum protein.  Both GC-MS parameters were 

normally distributed at baseline but not post-Synacthen stimulation in OCP-females 

and were normally distributed at both time points in patients with low serum protein. 

In both patient groups SFC was significantly higher than FCI at each time-point 

(p<0.001) (tables 6.13 to 6.16) and both parameters were assay-dependent, although 

in women taking exogenous oestrogen there was no significant difference between 

either SFC or FCI with the GC-MS and Centaur assays at baseline or between GC-
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MS, Centaur and Immulite assays or Abbott and Beckman assays post-Synacthen 

stimulation (tables 6.13 to 6.16).



Chapter 6      Altered Protein States  

162 

Table 6.13 Baseline SFC in male and female healthy volunteers, low-protein patients and OCP-females. 

 Mean Baseline Serum Free Cortisol (2.5th – 97.5th centile) 

Assay 
Low protein 

patients n = 10 
Males  
n = 60 

Females 
n = 79 

OCP females 
n = 24 

GC-MS 18.7 (9.2 – 38.0) 9.5 (4.0 – 22.6) 7.7 (3.5 – 16.7) 10.1 (6.4 – 16.1) 

Centaur - 10.4 (4.5 – 23.9) 8.1 (3.6 – 18.4) 9.6 (6.3 – 14.7) 

Abbott  16.7( 8.4 – 33.1) 10.0 (4.2 – 24.0) 7.7 (3.5 – 17.0) 8.2 (5.0 – 13.3) 

Roche  - 13.9 (5.1 – 37.5) 9.6 (4.0 – 23.1) 12.5 (7.4 – 21.4) 

Immulite  - 11.8 (4.6 – 30.1) 8.5 (3.8 – 19.0) 9.2 (5.6 – 15.0) 

Beckman - 10.2 (4.6 – 22.5) 7.9 (3.5 – 17.5) 7.4 (4.7 – 11.7) 

 

Table 6.14 Baseline FCI in male and female healthy volunteers, low-protein patients and OCP-females. 

 Mean Baseline Free Cortisol Index (2.5th – 97.5th centile) 

Assay 
Low protein 

patients n = 10 
Males  
n = 60 

Females 
n = 79 

OCP females 
n = 24 

GC-MS 7.3 (4.3 – 12.4) 4.6 (2.3 – 9.3) 3.9 (2.0 – 7.4) 4.7 (3.3 – 6.7) 

Centaur - 5.0 (2.6 – 9.7) 4.0 (2.0 – 8.0) 4.5 (3.2 – 6.3) 

Abbott  6.8 (4.0 – 11.5) 4.8 (2.4 – 9.8) 3.9 (2.0 – 7.6) 4.0 (2.7 – 5.9) 

Roche  - 6.2 (2.9 – 13.0) 4.6 (2.3 – 9.4) 5.5 (3.7 – 8.2) 

Immulite  - 5.5 (2.7 – 11.0) 4.2 (2.2 – 8.2) 4.3 (2.9 – 6.4) 

Beckman - 4.9 (2.6 – 9.2) 4.0 (2.0 – 7.7) 3.7 (2.5 – 5.3) 
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Table 6.15 SFC in male and female healthy volunteers, low-protein patients and OCP-females post-Synacthen. 

 Mean Post-Synacthen Serum Free Cortisol (2.5th – 97.5th centile) 

Assay 
Low protein 

patients n = 10 
Males  
n = 60 

Females 
n = 79 

OCP females 
n = 24 

GC-MS 50.0 (34.8 – 71.9) 26.5 (15.3 – 45.7) 23.0 (13.4 – 39.5) 20.1 (12.1 – 33.2) 

Centaur  29.7 (16.6 – 53.2) 24.4 (13.4 – 44.3) 19.0 (11.2 – 32.1) 

Abbott  44.0 (31.4 – 61.7) 27.9 (15.8 – 49.2) 22.0 (12.5 – 38.8) 16.1 (9.91– 26.1) 

Roche  - 46.9 (24.2 – 91.1) 34.7 (18.0 – 66.9) 26.4 (15.2 – 45.8) 

Immulite  - 33.4 (17.6 – 63.3) 27.9 (15.1 – 51.5) 19.5 (11.2 – 33.9) 

Beckman - 32.0 (16.9 – 60.6) 25.5 (13.4 – 48.6) 16.4 (10.0 – 27.0) 

 

Table 6.16 FCI in male and female healthy volunteers, low-protein patients and OCP-females post-Synacthen. 

 Mean Post-Synacthen Free Cortisol Index (2.5th – 97.5th centile) 

Assay 
Low protein 

patients n = 10 
Males  
n = 60 

Females 
n = 79 

OCP females 
n = 24 

GC-MS 13.7 (10.9 – 17.4) 9.7 (6.7 – 14.0) 8.8 (6.0 – 12.8) 7.7 (5.5 – 10.6) 

Centaur - 10.4 (7.2 – 15.1) 9.1 (6.1 – 13.6) 7.4 (5.2 – 10.5) 

Abbott  12.8 (10.0 – 16.4) 10.0 (6.9 – 14.5) 8.5 (5.7 – 12.7) 6.6 (4.7 – 9.3) 

Roche  - 13.4 (9.1 – 19.6) 11.2 (7.5 – 16.8) 9.1 (6.5 – 12.6) 

Immulite  - 11.1 (7.5 – 16.5) 9.9 (6.6 – 14.8) 7.5 (5.2 – 10.9) 

Beckman - 10.9 (7.3 – 16.2) 9.4 (6.1 – 14.4) 6.7 (4.7 – 9.5) 
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6.6.3.2 Comparison with healthy volunteers 

Mean CBG concentration was 116 mg/L in women taking exogenous oestrogen which 

was significantly higher (p<0.001) than the corresponding concentrations of 58 mg/L 

and 64 mg/L in healthy male and female volunteers, respectively.  Mean 

concentration in patients with low serum protein was 41 mg/L which was significantly 

lower (p<0.001) than in healthy volunteers. 

The higher CBG concentration in OCP-females, however, was not enough to off-set 

the increased serum total cortisol concentration than in female volunteers and thus 

mean baseline SFC and FCI were also significantly higher when total cortisol was 

measured by GC-MS or the Roche assay (p<0.05).  For all other assays, there was 

no significant difference (tables 6.13 & 6.14).  Following Synacthen stimulation, mean 

SFC and FCI were significantly lower in OCP-females than in healthy female 

volunteers (p<0.05) (tables 6.15 & 6.16), although this effect was less marked with 

GC-MS than with any of the immunoassays studied. 

In the low protein patients, mean SFC and FCI were significantly higher than in 

healthy volunteers and OCP-females at baseline and post-Synacthen (tables 6.13 – 

6.16) 

6.6.3.3 Correlation with serum and salivary cortisol 

SFC and FCI correlated well with GC-MS cortisol in women taking exogenous 

oestrogen and in patients with low serum protein (figure 6.11), although the 

relationships differed from those in healthy volunteers.  In OCP-females both 

relationships showed negative bias relative to those in healthy volunteers, whilst in 

low protein patients the relationships were positively biased – particularly in the case 

of SFC (figure 6.11) 
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There was also good correlation with salivary cortisol (figure 6.12), with better 

agreement with healthy volunteers in each relationship, for both OCP-females and 

low protein patients (figure 6.12). 
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Figure 6.11 Correlation between log-transformed calculated free cortisol (SFC and FCI) and serum cortisol measured by GCMS in all groups 

studied.  Panel (A) shows the relationship in low-protein patients, (B) male volunteers, (C) female volunteers and (D) OCP-females.  The solid 

line represents equivalence between methods. 
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Figure 6.12 Correlation between log-transformed calculated free cortisol (SFC and FCI) and salivary cortisol in all groups studied.  Panel (A) 

shows the relationship in low-protein patients, (B) male volunteers, (C) female volunteers and (D) OCP-females.  The solid line represents 

equivalence between methods. 

 



Chapter 6  Altered Protein States  

168 

6.7 Discussion 

6.7.1 Serum total cortisol 

Serum total cortisol is affected by changes in serum protein concentration 

(Meulenberg et al. 1987; Klose et al. 2007; Galbois et al. 2010), leading to the 

potential for adrenal insufficiency to be misdiagnosed or missed in certain patients.  

Women taking exogenous oestrogens have significantly higher CBG concentrations 

than women not taking exogenous oestrogens and mean post-Synacthen cortisol 

concentrations up to 314 nmol/L higher; so using the same cortisol cut-off to diagnose 

adrenal insufficiency in this group would lead to some patients being missed.  Some 

authors have suggested this effect is best overcome by stopping the OCP for 6 weeks 

before testing (Simunkova et al. 2008); however, this is neither convenient for patients 

nor clinically feasible when expedient testing is required and a preferable approach 

would be to define a more accurate cut-off in this group. 

This study has demonstrated that the magnitude of this difference is assay-dependent 

and, consequently, assay-specific cut-offs are needed for this patient group; however 

patient numbers were too small to allow a lower reference limit or cut-off to be defined.  

This study also identified a previously unreported negative bias, relative to GC-MS, 

in immunoassay cortisol measurement in patients taking exogenous oestrogen.  A 

similar effect was described in pregnant women in a study by Jung et al and was 

shown to be overcome by heating samples to 60°C prior to analysis (Jung et al. 2011). 

This bias was presumed to be secondary to excessive cortisol binding to CBG which 

is denatured by heat, following which cortisol is released, becoming available for 

detection by anti-cortisol antibodies.  However, the effects of heat treatment are non-

specific, affecting many, if not all, serum proteins, so eliminating bias in this manner 

does not confirm excess cortisol-CBG binding as the cause.  In contrast, by using 

Danazol, a synthetic steroid which binds to CBG, thus displacing cortisol, and which 
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does not cross-react with cortisol antibodies, to reduce the negative bias, it was 

possible to confirm CBG-cortisol binding as the cause.  This is further supported by 

the evidence of reduced negative bias in the Roche assay, which uses Danazol to 

dissociate cortisol from CBG prior to analysis, compared to the Abbott assay which 

relies on a pH change and its antibody’s affinity for cortisol, which may be sufficient 

when CBG concentrations are within normal limits, but not when CBG is present in 

excess. 

The negative bias in samples from women taking exogenous oestrogens further 

complicates measurement of cortisol in this patient group, and, in particular, raises 

questions about the utility of immunoassays.  It is not feasible to subject all samples 

from oestrogen-treated or pregnant women to a heat-treatment step prior to analysis, 

particularly as clinical information is frequently lacking, meaning labs could not reliably 

determine which samples required treatment.  Neither is it feasible for all clinical 

laboratories to replace immunoassays with LC-MS/MS.  Therefore, selecting 

immunoassays that include a steroid displacement step prior to analysis or putting 

pressure on manufacturers to routinely implement such a step would seem to be the 

best available options. 

The evidence surrounding the serum cortisol response to Synacthen stimulation in 

patients with low serum albumin concentrations is somewhat confusing.  Many of the 

studies have been undertaken in critically ill patients in whom the effect of 

hypoproteinaemia on cortisol measurement and interpretation of the Synacthen test 

is confounded by an activated HPA axis and disturbance of the free:bound cortisol 

equilibrium.  Others have selected patients on the basis of their Child-Pugh score, 

rather than serum albumin concentration, resulting in the recruitment of patients with 

serum albumin concentrations that are no different to those in the healthy volunteer 

group (Rauschecker et al. 2016).  Klose et al included a small group of patients with 

the nephrotic syndrome in their study of the factors affecting interpretation of the 
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Synacthen test; however, they do not make clear what the serum albumin or CBG 

concentrations were in their patient group and in any case Galbois et al showed little 

correlation between serum albumin and CBG concentrations in their study of adrenal 

function in hospitalised cirrhotic patients (Klose et al. 2007; Galbois et al. 2010). 

This study selected a group of outpatients with a diagnosis of either cirrhosis or the 

nephrotic syndrome who had a serum albumin concentration between 24 and 34 g/L.  

Serum CBG was shown to be significantly lower in this group than in healthy 

volunteers but there was no clinically significant difference in serum total cortisol at 

baseline or post-Synacthen between the two groups.  This suggests that serum total 

cortisol can be reliably used to evaluate the adrenal axis in well patients with 

moderately low serum albumin, although as only one of the ten patients studied had 

a serum albumin concentration below 29 g/L, further confirmation in patients with 

lower serum albumin is still required. 

6.7.2 Salivary cortisol 

Salivary cortisol has been suggested as an alternative to serum total cortisol for 

evaluating the adrenal axis in healthy patients (Deutschbein et al. 2009), acutely 

unwell hospitalised patients (Raff et al. 2008), patients with cirrhosis (Galbois et al. 

2010) and women taking an oral contraceptive oestrogen-containing pill (Simunkova 

et al. 2008).  It shows good agreement with serum total cortisol in healthy patients 

and correlates better with HPA axis disease than serum total cortisol in patients with 

altered protein states. 

This study confirmed that there is no significant difference between the mean salivary 

cortisol response to Synacthen in healthy volunteers, women taking an oestrogen-

containing OCP and patients with mild hypoproteinaemia secondary to cirrhosis or 

the nephrotic syndrome and suggests that this could be used as a suitable alternative 

to serum total cortisol for identifying patients with adrenal insufficiency without the 
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need for specific cut-offs in different populations.  However, salivary cortisol was not 

100% specific in patients with altered protein concentrations, as two of the OCP-

females and one patient with low serum protein failed the salivary Synacthen test 

when the 10.3 nmol/L lower reference limit derived in chapter 4 was used.  None of 

these patients had symptoms of adrenal insufficiency at the time of testing, so the risk 

of over-diagnosis in some patients remains. 

Comparison with serum cortisol revealed that none of these patients would have 

failed the Synacthen test based on their serum cortisol concentration if the lower 

reference limit derived in healthy volunteers was used as a cut-off.  However, using 

the lower reference limit of the serum response in the OCP group; one of the OCP-

females would also have failed with serum cortisol measured by GC-MS and the 

Centaur assay, although not with any of the other 4 immunoassays, but the other 

would not. 

Mean baseline salivary cortisol was significantly higher in women taking exogenous 

oestrogen and in patients with low serum protein than in healthy volunteers.  This was 

not entirely unexpected in either patient group as both findings have been reported 

elsewhere.  Boisseau et al showed that women taking an oestrogen-containing OCP 

had higher basal salivary cortisol concentrations than their untreated counterparts 

and reduced HPA responsiveness to exercise (Boisseau et al. 2013).  The 

mechanism behind these findings is not known nor is its significance; however, it 

indicates that the higher serum total cortisol concentrations seen in women taking an 

OCP are not simply due to increased serum protein concentration but represent a 

genuine physiological, or pathological, effect.  Further study to try to understand the 

significance of this effect is now needed. 

Several studies have explored free cortisol concentration in patients with low serum 

protein due to cirrhosis or secondary to acute disease, although most used serum 
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free cortisol rather than salivary cortisol in their investigations (Tan et al. 2010; 

Degand et al. 2015).  Thevenot et al measured both serum free cortisol and salivary 

cortisol and showed a non-significant increase in both in patients with liver disease of 

increasing severity (progression from Child-Pugh score A through to C, 

corresponding to serum albumin concentrations of 37.3 ± 4.8 g/L, 26.9 ± 5.3 g/L and 

24.3 ± 5.5 g/L), despite progressively lower serum total cortisol concentrations 

(Thevenot et al. 2011). 

Serum free cortisol has been shown to be significantly higher in patients with cirrhosis 

than in healthy volunteers, despite equivalent baseline total cortisol concentrations 

(Tan et al. 2010; Degand et al. 2015), and although salivary free cortisol was not 

measured in these studies a similar finding would be expected.  The results of this 

study suggest that this is, indeed, the case – salivary free cortisol is higher in patients 

with low serum protein than in healthy volunteers.  It has been suggested that this 

reflects disease severity and associated underlying inflammation; although the 

presence of this finding in a relatively healthy outpatient population with mild 

hypoalbuminaemia suggests that this may not be the case.  Further study, designed 

to explore differences in free cortisol rather than total cortisol in this population is, 

therefore, needed. 

The correlation between salivary free cortisol and serum total cortisol was slightly 

weaker in women taking an OCP and patients with low serum protein than in healthy 

volunteers, with the relationship in OCP-females showing overall negative bias 

relative to that in healthy volunteers and low protein patients showing positive bias.  

This finding can be explained by the differing CBG concentrations between the three 

groups which result in differences in the fraction of unbound cortisol available for 

diffusion into saliva (Vining and McGinley 1987).  Thus, a larger proportion of serum 

total cortisol is free in patients with low serum protein compared to healthy volunteers, 
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who in turn have a larger proportion of free cortisol than women taking exogenous 

oestrogen.  A similar pattern would not be expected in the relationship between serum 

free cortisol and salivary free cortisol. 

6.7.3 Calculated free cortisol 

Serum free cortisol was higher than free cortisol index for all assays, at all time points 

and for all patient groups but they paralleled each other in behaviour so will be 

considered together as calculated free cortisol (CFC).  Baseline calculated free 

cortisol was shown to be higher in women taking exogenous oestrogens and patients 

with low serum protein than in healthy volunteers.  However, the difference between 

OCP-females and healthy volunteers was only significant for CFC derived from 

cortisol measured by GC-MS and the Roche assay; while the difference between low 

protein patients and healthy volunteers which, based on salivary cortisol 

concentration, was expected to parallel that seen in OCP-females was significantly 

higher, at roughly twice the value in healthy volunteers. 

The inconsistency in these differences is likely to be explained by measurement 

inaccuracies rather than being a genuine effect.  Serum total cortisol in women taking 

exogenous oestrogen is subject to negative bias with all immunoassays apart from 

the Roche, hence the lack of a significant difference with the other assays.  The 

reliability of CBG measurement in the low protein group has already been called into 

question, and the high CFC lends support to the suggestion that differences between 

the two CBG assays might account for some of the difference in CBG concentration 

between healthy volunteers and the low protein group. 

6.7.4 Limitations 

Recruitment criteria for the patients with low serum protein included a diagnosis of 

cirrhosis or the nephrotic syndrome and serum albumin concentration below the lower 
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limit of the reference range (35 mg/L), with the expectation that this group would have 

lower serum CBG and total cortisol concentrations than healthy volunteers.  When it 

became apparent that there was no significant difference between baseline serum 

total cortisol in the two groups there was concern that the wrong patient group had 

been selected.  However, the mean albumin concentration of 30.3 ± 2.9 g/L was only 

slightly higher than that used by Tan et al in their study of adrenal function in stable 

severe liver disease (28.8 ± 1.0 g/L) and was lower than the 36 ± 4 g/L used in the 

study by Rauschecker et al to define the free cortisol response to Synacthen in mildly 

cirrhotic patients, suggesting this group was reasonably representative of moderate 

hypoalbuminaemia (Tan et al. 2010; Rauschecker et al. 2016).  Nevertheless, 

comparing mean serum albumin concentration in this group to that in the healthy 

volunteers and OCP-females would have been a useful addition to this work. 

As expected, serum CBG was significantly lower in patients with low serum protein 

than in healthy volunteers.  However, in common with the samples from patients with 

suspected hypoadrenalism, samples from this group were stored at -80C for 4 years 

prior to analysis, raising similar questions to those addressed in chapter 5 about 

sample stability and assay variation contributing to the lower concentrations seen.  

Consequently, measurement of serum free cortisol would have been preferable to 

calculated surrogates as it would provide better understanding of the relationship 

between serum total and free cortisol and between salivary cortisol and serum free 

cortisol in patients with altered protein states.  It would also allow better evaluation of 

how well the relationship between measured and calculated free cortisol is maintained 

in these states. 

6.7.5 Further work 

This study has shown that serum total cortisol can be used to evaluate the adrenal 

axis in well patients with mild to moderate hypoproteinaemia but not in women taking 
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an OCP, in whom a separate reference range is needed if oestrogen cannot be 

discontinued for 6 weeks in advance of the test.  Salivary cortisol is valid in both 

groups, whilst calculated free cortisol performs less well in either group than in healthy 

volunteers.  Further work is now needed to explore the serum total cortisol response 

to Synacthen in well patients with severe hypoproteinaemia and the salivary cortisol 

response in unwell patients – both those with cirrhosis and those in a critical care 

setting. 
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The initial premise of this work was that adrenal insufficiency was being over-

diagnosed in patients with an intact HPA axis undergoing a Synacthen test because 

the wrong cortisol cut-off was being used.  The results presented here confirm that 

this was the case, with 10% of healthy volunteers failing the Synacthen test when the 

550 nmol/L cut-off was used.  This would have risen to a 27% false positive rate, had 

the cut-off remained the same when the Centaur cortisol assay was reformulated in 

2010, and 42% false positive rate when the laboratory switched to the Abbott assay 

later that same year.  An assay-specific cortisol lower reference limit is thus essential 

for the Synacthen test to retain any value as a diagnostic tool in the assessment of 

adrenal insufficiency or HPA axis dysfunction. 

The stated aims of this thesis were: 

 To establish valid serum total cortisol cut-offs for use with the short Synacthen 

test in patients with normal and altered CBG concentrations. 

 To investigate, using current assays, the effect of assay differences on these 

cut-offs. 

 To explore salivary free cortisol and calculated serum free cortisol as 

alternatives to serum total cortisol in interpreting the short Synacthen test in 

patients with altered CBG concentrations. 

The following discussion sets out how these aims were to be addressed and explores 

the extent to which they were achieved. 

7.1 Serum total cortisol response to Synacthen stimulation 

The limitations of cortisol immunoassays, including their poor specificity (Curtis 2009; 

Owen et al. 2013a) and lack of standardisation, make it difficult to define the true 

nature of the cortisol response to Synacthen stimulation.  Mass spectrometry, on the 

other hand, suffers none of these limitations and provides definitive identification of 
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cortisol, and is, therefore, ideally placed to reliably define the response.  Using GC-

MS, the cortisol response to Synacthen stimulation was shown to be unaffected by 

age or gender.  A single reference range and lower reference limit (defined as the 

2.5th percentile) were calculated in healthy volunteers and, at 420 nmol/L, the latter 

was noted to be significantly lower than the 550 nmol/L cut-off historically used to 

diagnose adrenal insufficiency. 

Reference ranges and lower reference limits were subsequently calculated for the 

five immunoassays included in the study.  The Centaur and Immulite assays most 

closely resembled GC-MS, in that they showed no gender effect, and for each, a 

single lower reference limit was calculated.  This was determined as 446 nmol/L for 

the Centaur and 474 nmol/L for the Immulite assay.  The Abbott and Beckman assays 

showed significantly different male and female ranges, but their lower reference limits 

were close enough for the male limit, which was higher than the female limit, to be 

adopted as the assay-specific cut-off.  Thus, a lower reference limit of 430 nmol/L 

was recommended for the Abbott assay and 459 nmol/L for the Beckman.  For the 

Roche assay, the differences between genders were too great, necessitating gender-

specific lower reference limits of 574 nmol/L in men and 524 nmol/L in women. 

The newly-defined Abbott lower reference limit was subsequently applied to a group 

of patients with suspected adrenal insufficiency undergoing Synacthen testing, to 

establish its ability to correctly identify disease.  It performed well, with a sensitivity 

and negative predictive value of 100% and a specificity of 78%.  In comparison, the 

550 nmol/L cut-off would have had an equivalent sensitivity and negative predictive 

value, but with a specificity of only 26%, and, given that long-term exogenous 

glucocorticoids are not without side-effects, such a high failure rate is unacceptable.  

These findings demonstrate the superiority of an assay-specific lower reference limit 

over the 550 nmol/L cut-off, particularly in terms of avoiding over-diagnosis. 
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This study also included a pre-test probability score derived from patients’ symptoms 

and clinical history.  This was a subjective score based entirely on the author’s clinical 

judgement and has not been validated in any way.  Nevertheless, it had the same 

sensitivity and negative predictive value as the Synacthen test, with a specificity of 

65%, which did not overlap entirely with the false positive results from the Synacthen 

test.  Thus it may be possible to improve the specificity of the Synacthen test by 

combining its result with a pre-test probability of disease score, albeit one which has 

been derived by consensus from a group of Consultant Endocrinologists, either locally 

or at a national level, and extensively validated in an appropriate population. 

One of the objectives of this study was to determine the validity of the newly defined 

cut-offs in patients with suspected adrenal insufficiency, and to a certain extent this 

has been achieved.  However, the patient group was not large or homogeneous 

enough to unequivocally state that the cut-offs established in healthy volunteers are 

equally valid in patients with adrenal insufficiency.  Furthermore, testing in the patient 

group was only performed with the Abbott assay, so even with a larger, better defined 

group of patients it would not be possible to confirm that all the lower reference limits 

determined in this study could accurately differentiate between adrenal insufficiency 

and normal adrenal function.  Nevertheless, the results from the Abbott assay are 

encouraging, the lower reference limits for 4 of the immunoassays studied fall within 

50 nmol/L of each other and their performance in healthy volunteers is broadly similar.  

There is, thus, no reason to suggest their performance in patients with adrenal 

disease would be significantly worse than that of the Abbott. 

Another of the objectives was to determine whether a cortisol cut-off determined in 

patients with normal serum CBG concentrations was equally valid in patients with 

high and low serum CBG concentration.  To this end a group of women taking an 

oestrogen-containing oral contraceptive pill and a group of patients with low serum 
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protein as a result of the nephrotic syndrome or cirrhosis underwent Synacthen 

testing.  The lower reference limit in women taking exogenous oestrogen was 

between 145 nmol/L and 267 nmol/L higher than in healthy volunteers with normal 

CBG concentrations, depending on the assay used.  None of the 24 women studied 

failed the Synacthen test, which was not unexpected as they were healthy volunteers; 

however, this contrasted with a 1.4% false positive rate in healthy volunteers not 

taking oestrogens, and, given how much higher the cortisol response in the oestrogen 

group was, there is a risk that the cut-offs derived in this study would miss adrenal 

insufficiency, particularly in its early stages. 

In patients with low serum protein, the opposite was true.  Mean serum cortisol 

concentration post Synacthen was 514 nmol/L for the Abbott assay and 552 nmol/L 

with GC-MS, with corresponding lower limits of 384 nmol/L and 393 nmol/L, 

respectively.  Two of the ten patients studied (20%) would have failed the Synacthen 

test using the Abbott-specific cut-off of 430 nmol/L, compared to 2 out of 139 healthy 

volunteers (1.4%) and none of the 24 women taking oestrogens.  This false positive 

rate would have risen to 70% if the 550 nmol/L cut-off were used instead. 

Similar findings have been reported elsewhere, with Klose et al showing a 50% failure 

rate with the Synacthen test in a group of patients with the nephrotic syndrome when 

a 500 nmol/L cut-off was used (Klose et al. 2007).  A similar proportion (46%) of 

cirrhotic patients, with mean serum albumin concentration of 21 g/L, failed to achieve 

a total cortisol of 550 nmol/L post Synacthen stimulation (Vincent et al. 2009). 

Thus, this study confirms the need for assay-specific serum total cortisol reference 

ranges and lower reference limits and succeeds in defining these in healthy 

volunteers and, to some extent, in validating them in patients with suspected adrenal 

insufficiency.  It demonstrates that these cut-offs, if used in patients with altered CBG 

concentrations, would result in either under- or over-diagnosis of adrenal 
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insufficiency, depending on whether CBG was high or low, indicating a need for 

separate validated reference ranges in these groups if serum total cortisol is to be 

used.  Alternatively, consideration should be given to using either salivary or serum 

free cortisol in the assessment of the HPA axis in these patients. 

7.2 Salivary free cortisol 

A further objective of this study was to establish a reference range and lower 

reference limit for the salivary cortisol response to Synacthen in healthy volunteers 

and determine their validity in patients with suspected adrenal insufficiency and high 

and low serum CBG concentration.  Salivary free cortisol has the advantage over 

serum total cortisol in that it should be unaffected by changes in serum protein 

concentration and samples are easier to collect.  A mean salivary cortisol 

concentration of 19.3 nmol/L was shown to be valid in both male and female healthy 

volunteers, with a lower reference limit of 10.3 nmol/L.  Applying this cut-off in patients 

with suspected adrenal insufficiency showed it performed better than serum total 

cortisol, matching the latter’s sensitivity and negative predictive value of 100%, but 

with a higher specificity of 82%.  It also out-performed serum total cortisol in healthy 

volunteers, with only 1 of the 139 recruits (0.7%) failing to reach the cut-off. 

As expected, in patients with low serum protein and in women taking an OCP, the 

post-Synacthen response was independent of serum CBG concentration.  Despite 

slight differences between the range of responses, there was no significant difference 

between mean salivary cortisol in healthy volunteers and those with either high or low 

CBG, although false positive results were more prevalent in both the latter groups.  In 

women taking oestrogens, 2 out of 24 (8%) failed the Synacthen test using the cut-

off defined in healthy volunteers, whilst 1 of the 10 patients with low protein (10%) 

failed.  Salivary cortisol, therefore, offers a very real alternative to serum total cortisol; 

but does not eliminate the potential for misdiagnosis entirely. 
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However, salivary cortisol has some way to go before it can be used routinely to 

evaluate patients with suspected adrenal insufficiency.  It is measured by non-

standardised LC-MS/MS assays, and its external quality assurance scheme, which 

includes 15 assays, shows these vary substantially.  The results from the assay used 

in this study typically fall at, or near, the lower end of the range, which may help 

explain why the concentrations presented here are lower than many of those in the 

literature, which are, themselves, equally diverse (Perogamvros et al. 2009; Montsko 

et al. 2014; Cornes et al. 2015).  These results are, consequently, not applicable to 

other assays and cannot be put forward as a single, valid cut-off for use with the 

Synacthen test.  Laboratories will, therefore, need to determine their own reference 

ranges and cut-offs, but for these to be accurate they will need to include large 

numbers of patients and controls, and ideally should also include a comparison to the 

insulin tolerance test. 

Such large-scale studies are not feasible for most clinical laboratories and it is difficult 

to envisage saliva ever replacing serum total cortisol for routine evaluation of patients 

with suspected adrenal insufficiency.  Its main role is, therefore, likely to be found in 

evaluating the HPA axis in critically unwell patients, given the inaccuracy in serum 

total cortisol in these patients (Hamrahian et al. 2004; Cohen et al. 2006; Briegel et 

al. 2009).  It may also have a role to play in evaluating adrenal function in patients 

with altered serum CBG concentrations, particularly those with low serum protein. 

Thus, this study was able to establish a reference range and lower reference limit for 

the salivary cortisol response to Synacthen and was able to demonstrate that this cut-

off was valid in patients with suspected adrenal insufficiency and in those with altered 

CBG concentration.  However, differences between salivary cortisol assays limit the 

widespread utility of this cut-off and further work exploring its response to the insulin 
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stress test and its performance in larger groups of patients with altered serum protein 

concentration and hypoadrenalism is needed. 

7.3 Calculated serum free cortisol 

The final objective of this study was to establish a reference range and lower 

reference limit for the calculated serum free cortisol response to Synacthen in healthy 

volunteers and determine its validity in the groups of patients mentioned above.  

Calculated, rather than measured, serum free cortisol was chosen because of the 

lack of availability of routine serum free cortisol assays, and both Coolens’ serum free 

cortisol (SFC) and the free cortisol index (FCI) were calculated to establish whether 

either showed superiority over the other. 

The results presented here show that both calculated parameters were assay and 

gender- dependent, thus offering a slight disadvantage over serum total cortisol, 

which exhibits assay, but not gender, dependence.  Twelve different reference ranges 

and lower reference limits were, therefore, required for each of the two calculated 

parameters and the outcome of the Synacthen test depended on which assay was 

being used.  Thus, the Immulite SFC cut-off misdiagnosed adrenal insufficiency in 2 

healthy volunteers compared to 6 with the Roche cut-off. 

Calculated serum free cortisol also performed worse in patients with suspected 

adrenal insufficiency.  This was because serum CBG concentration in this group was 

found to be significantly lower than in healthy volunteers, resulting in higher mean 

calculated serum free cortisol.  This finding may have been genuine, but it did not fit 

with the results of serum total and salivary free cortisol in this group, which were both 

lower than in healthy volunteers, and could not be verified because serum free cortisol 

had not been measured.  This effect lowered the sensitivity of the Synacthen test to 

57% when calculated serum free cortisol was used, although the corresponding 

specificity was 100%. 
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The utility of calculated serum free cortisol in interpreting the Synacthen test in 

patients with altered CBG concentrations was also difficult to establish.  The mean 

response in women taking exogenous oestrogens was significantly lower than in 

healthy volunteers, whilst in patients with low serum protein it was significantly higher.  

Again, the lack of measured serum free cortisol for comparison made it impossible to 

ascertain whether this was a genuine effect or an artefact of measurement, although 

its disagreement with the salivary free cortisol response in these groups, supported it 

being artefactual.  It has also been suggested that calculated serum free cortisol 

parameters, which were determined in patients with normal CBG concentrations, may 

not be valid in patients with altered CBG concentration (Cohen et al. 2013; Molenaar 

et al. 2015), or, indeed, in patients undergoing a Synacthen test (Barlow et al. 2010). 

Thus, although it was possible to calculate reference ranges and lower reference 

limits for SFC and FCI in healthy volunteers, these could not be validated in patients 

with suspected adrenal insufficiency and the utility of calculated serum free cortisol in 

patients with altered CBG concentration was not established. 

7.4 General conclusions 

7.4.1 Summary of findings 

The main findings of this thesis can, therefore, be summarised as follows: 

 Assay-specific reference ranges for the serum total cortisol response to 

Synacthen are needed to avoid over-diagnosing adrenal insufficiency.  

However, even with assay-specific ranges, the Synacthen test will potentially 

misdiagnose adrenal insufficiency in over 1 in 5 unaffected patients when 

serum total cortisol is used. 

 Salivary cortisol is a suitable alternative to serum total cortisol for evaluating 

suspected adrenal insufficiency and offers better specificity.  Unlike serum 
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total cortisol, it does not appear to be affected by changes in CBG 

concentration and, hence, offers the potential for a single cut-off to be used in 

the interpretation of the Synacthen test. 

 Calculated serum free cortisol does not present a reliable alternative to either 

serum total or salivary cortisol in the interpretation of the Synacthen test. 

In addition to its main findings, this study also suggested a potential role for a pre-test 

likelihood of disease score in improving the diagnostic specificity of the Synacthen 

test, it identified ongoing changes to cortisol immunoassays, difficulties in measuring 

serum CBG and potential differences between serum total and serum free cortisol in 

healthy volunteers.  These are briefly discussed below. 

7.4.2 Pre-test likelihood of disease 

The increase in failed Synacthen tests in patients with few clinical features of adrenal 

insufficiency that first prompted this study, suggests that the pre-test probability of 

disease is not always considered before testing is undertaken.  This study derived a 

pre-test score which showed 88% concordance with the outcome of the Synacthen 

test.  Combining this score with the result of the Synacthen test was subsequently 

shown to improve diagnostic specificity from 78% with the Synacthen test alone to 

87%.  There is, therefore, likely to be some diagnostic gain from deriving and applying 

such a score to patients undergoing Synacthen testing, particularly when testing is 

being undertaken by non-specialists. 

7.4.3 Cortisol immunoassays 

Despite 50 years of cortisol assays, measurement of serum total cortisol continues to 

present significant challenges.  Differences between immunoassays necessitate 

assay-specific reference ranges and cut-offs, but ongoing changes in assay 

performance mean these do not remain valid indefinitely.  This was highlighted in this 
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study by the reformulation of the Siemens Centaur assay.  This lowered the assay-

specific cut-off from 499 nmol/L to 446 nmol/L, but despite alerting users to a change 

in the assay, the manufacturer did not indicate that a reference range change would 

be necessary.  Similar changes have been noted with the Abbott assay over the past 

3 years.  EQA returns have identified a gradual reduction in cortisol concentration, 

although there has been no formal notification of any change by the manufacturer.  

The Roche assay has also seen significant change recently.  This has eliminated the 

gender difference but has left Roche users without a valid cortisol reference range or 

cut-off. 

LC-MS/MS assays offer a potential solution to this problem, particularly with the 

improved throughput and turnaround times of current assays (Owen et al. 2013a).  

They also provide a more accurate measure of serum total cortisol than immunoassay 

in patients with high serum protein concentrations, those taking exogenous 

glucocorticoids (Owen et al. 2013a) and the critically ill (Briegel et al. 2009).  

Nevertheless, LC-MS/MS is not yet prevalent enough in clinical laboratories to 

recommend abandoning cortisol immunoassays in its favour. 

7.4.4 CBG measurement 

This study highlights the pitfalls of using non-standardised assays without external 

quality assurance checks.  Serum CBG assays fall into this category and, as a result, 

it was impossible to determine whether differences between calculated serum free 

cortisol responses in different patient groups were genuine.  In particular, low CBG 

concentrations in patients with suspected adrenal disease, which resulted in 

equivalent serum free cortisol concentrations in patients with potential adrenal 

disease and healthy volunteers, could not be adequately explained.  These results 

did not match those found with serum total or salivary cortisol and contradicted the 

findings of other studies which have shown lower measured serum free cortisol in 
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patients with adrenal insufficiency than in healthy volunteers (Rauschecker et al. 

2016). 

7.4.5 Serum free cortisol 

Serum total cortisol differentiates between gross adrenal insufficiency and “normal” 

adrenal function well, but does not permit an understanding of the nuances of 

fluctuations in bioavailable cortisol.  This study demonstrated significantly lower 

calculated serum free cortisol concentrations in men than in women, despite there 

being no significant gender difference in baseline serum total cortisol or salivary 

cortisol concentration.  A similar gender difference in measured serum free cortisol 

has been reported elsewhere (Sofer et al. 2016), suggesting it is likely to be a genuine 

finding that is undetectable with serum total cortisol. 

Thus, serum total cortisol may not reflect serum free cortisol concentration accurately 

enough to allow a clear understanding of cortisol’s full physiological role.  To date, it 

has been suggested that cortisol excess plays a part in depression (Scott and Dinan 

1998), the metabolic syndrome (Reinehr et al. 2014), cardiovascular disease and 

hypertension (Morelli et al. 2010).  Low urinary free cortisol and hypofunction of the 

HPA axis have been linked with chronic fatigue (Scott and Dinan 1998; Scott et al. 

1998).  However, to establish whether cortisol has a direct causative role in these 

conditions requires a thorough understanding of free cortisol in health, which can only 

be gained by measuring serum free cortisol directly. 

7.5 Further work 

This study has shown that calculated free cortisol is not reliable enough to replace 

measured serum free cortisol in the evaluation of the HPA axis.  Further work using 

measured serum free cortisol in this setting is therefore needed.  Defining a reference 

range for serum free cortisol in a well-defined “healthy” population is also needed, in 
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order to understand cortisol’s contribution to disease.  However, this will require 

improved assays. 

Salivary cortisol has the potential to replace serum total cortisol for evaluating the 

HPA axis in patients with altered serum protein concentrations.  Further studies 

exploring the salivary cortisol response to the insulin stress test and larger studies in 

patients with altered serum protein concentration and hypoadrenalism are necessary 

before it can be safely used for this purpose. 

Ongoing changes to cortisol immunassays threaten the reliability of their reference 

ranges and cut-offs.  By comparing immunoassay results to those measured by GC-

MS, this study has provided a reference point against which future assay changes 

can be quantified.  This should allow valid reference ranges to be derived in the future, 

without a need to repeat the work undertaken here.  External quality assurance 

laboratories have access to high quality mass methods and are ideally placed to 

undertake this work, although the cooperation of assay manufacturers will be 

required. 
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Appendix 2 – Volunteer information sheet 

 
 

VOLUNTEER INFORMATION SHEET 
(Version 4 October 2008) 

 
 
 

1. The Study 
 
Determination of method-specific normal cortisol and adrenal hormone 
responses to the short Synacthen test. 
 
2. Introduction 
 
You are being invited to take part in a clinical research study. 
Before you decide whether you wish to become involved it is 
important that you understand why the research is being done 
and what it will involve. Please take time to read the following 
information carefully and discuss it with others if you wish. 
Please do not hesitate to ask us if there is anything that is not 
clear or if you would like more information. Take time to 
consider whether or not you would wish to take part. 
 
Thank you for reading this. 
 
3. What is the purpose of this study? 
 
Your body contains two glands, known as the adrenal glands, 
which produce a hormone called cortisol.  Cortisol has many 
roles in the body including regulating blood pressure and blood 
sugar levels, keeping your skin and bones healthy and 
strengthening your immune system. The Synacthen test is 
used to assess the adrenal gland. In this test, patients are 
given a synthetic hormone, which stimulates the gland to 
produce cortisol.  A blood sample is taken before and after 
Synacthen is given and the amount of cortisol produced is 
measured on both samples. The level of cortisol in the second 
sample is used to diagnose an under-active adrenal gland.  
However, we do not yet know for certain what absolute level 
of cortisol we should use to rule out abnormal adrenal glands.  
One of the purposes of this study is to define the normal 
cortisol response to Synacthen in healthy volunteers. 
 
Another purpose of this study is to establish whether the 
cortisol level used to diagnose under-active adrenal glands is 
the same no matter where and how it is measured.  Currently 
in the United Kingdom there are several different ways of 
measuring cortisol.  These all rely on the same principle but 
use different machines to make the measurement.  One study, 
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carried out 10 years ago, showed that the different ways of 
measuring cortisol did give significantly different cortisol levels, 
and suggested that the level of cortisol needed to rule out 
under-active adrenal glands should depend on the method 
used to measure cortisol.  Our laboratory now uses a new 
method and as a result we do not know for sure whether the 
cortisol level we rely on to make the diagnosis of adrenal 
under-activity is valid.  We hope to establish the appropriate 
levels of cortisol for use in our laboratory as well as for some 
of the other common cortisol methods in use in the United 
Kingdom today. 
 
We will also be looking at the normal salivary cortisol response 
to Synacthen as recent work has suggested that measuring 
cortisol in saliva may be better than measuring it in blood.  
Patients might prefer this way too as it would mean they would 
not have to give blood.  
 
Finally, in women under the age of 40 we will also measure 
some of the hormones that precede the formation of cortisol 
(17-hydroxyprogesterone,11-deoxycortisone, 
androstenedione and testosterone). In a rare condition known 
as congenital adrenal hyperplasia one of the steps in cortisol 
synthesis is blocked resulting in low cortisol and raised levels 
of these other hormones.  We hope to establish a reference 
range for these cortisol precursors in normal individuals. 
 
4. Why have I been chosen? 
 
You have been chosen for this study because you are fit and 
healthy with no medical conditions that prevent you from 
undergoing a short Synacthen test. 
 
5. Do I have to take part? 
 
It is up to you to decide whether or not to take part. If you 
decide to take part you will be given this information sheet to 
keep and be asked to sign a consent form. If you decide to 
take part you are still free to withdraw at any time and without 
giving a reason. A decision to withdraw at any time, or a 
decision not to take part, will not affect the standard of medical 
care you receive or your legal rights in any way. 
 
6. What will happen to me if I do take part? 
 
You will be asked to attend the clinical research 
facility/endocrine unit for a total of 90 minutes for this test to be 
carried out.  
On arrival you will have your pulse and blood pressure 
measured and a thorough inspection of the inside of your 
mouth will be made.  You will be given a small pot and asked 
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to provide a sample of saliva (spit).  An intravenous cannula 
(drip) will be inserted into your arm. You will have the option of 
a small local anaesthetic injection before this if you prefer.  We 
will take 20 ml of blood (approximately 4 teaspoonfuls) from 
the cannula and then inject 1 ml of Synacthen. This will be 
washed through with 10 ml of salty water.  30 minutes later a 
further 20 ml of blood (approximately 4 teaspoonfuls) will be 
removed from the cannula.  This will not require a further 
injection.  The cannula will then be removed.  You will also be 
asked to provide a second sample of saliva at this time. 
30 minutes later a further 10ml of blood (approximately 2 
teaspoonfuls) will be collected. This will require a further 
needle-prick. 
You will be asked to remain on the unit for a further 30 minutes.  
At the end of this time, your pulse and blood pressure will be 
measured again and a repeat inspection of the inside of your 
mouth will be made. 
One week after your short synacthen test you will be 
telephoned at home by the person who carried out the test, or 
a colleague also involved in the study, to ensure you are well 
and have not experienced any side effects. 
 
7. What if my response to Synacthen is abnormal?  
 
It is very rare to have under-active adrenal glands.  However, 
if your cortisol response to Synacthen is lower than expected, 
we will contact you by telephone to let you know.  We will then 
write to your GP to inform him/her of your result and we will 
arrange for you to be seen in the Endocrine clinic for further 
investigation and treatment. 
 
8. What do I have to do? 
 
You will not need to be fasting and there is no specific 
preparation for this test.  However, you will need to refrain from 
smoking for the 30 minutes before the test and during the test 
itself.  
 
9. What is Synacthen? 
 
Your brain produces a hormone known as 
adrenocorticotrophin (ACTH). This hormone stimulates the 
adrenal glands to produce cortisol.  Synacthen is a man-made 
equivalent of ACTH and acts in a similar way to your body’s 
own hormone, i.e. stimulates the adrenal glands to produce 
cortisol. 
 
10. What are the side effects of Synacthen? 
 
Synacthen is a very safe drug with very few side-effects. 
However, as it is a man-made hormone there is a small risk 
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that you may be allergic to it.  If this occurs, you may 
experience marked redness, swelling and itching around the 
injection site.  In more severe cases you may feel light-headed 
and dizzy and experience nausea and/or vomiting. You may 
also notice a generalised itching with flushing and swelling.  
Very rarely, a full allergic reaction may develop with swelling 
of the lips and airways and shortness of breath.  Because of 
this risk, all necessary treatments for an allergic reaction will 
be available on the unit for the duration of your visit. 
Although allergy to Synacthen has been reported, it is very 
rare in people who are not allergic to other things and who do 
not have asthma.  If you do have asthma, suffer from allergies 
or have previously had an allergic reaction to Synacthen, you 
must tell the doctor or nurse looking after you, as this will 
prevent you from taking part in this study. 
 
11. What are the possible disadvantages and risks of 
taking part? 
 
There is a very small risk of an allergic reaction to Synacthen.  
This is described above. If you do develop dizziness or 
become light-headed, you will be advised not to drive or 
operate machinery until this has passed. You may experience 
possible discomfort (temporary pain, swelling, bruising and 
rarely infection) from the insertion of the venous cannula and 
withdrawal of blood. No other side effects are anticipated from 
the study procedures. 
 
The risks to an unborn human foetus or a breastfed child from 
Synacthen are not fully known. Because of this, women who 
are pregnant or breastfeeding a child may not participate in 
this trial.  All women of child-bearing age will be asked to have 
a pregnancy test before taking part to exclude the possibility 
of pregnancy.  
 
12. What are the potential benefits of taking part? 
 
You are unlikely to benefit directly by taking part in this study. 
However, the information we get will ensure that the short 
synacthen test used in diagnosing under-active adrenal glands 
is reliable and accurate.   
 
13. What if new information becomes available? 
 
Sometimes during the course of a research project, new 
information becomes available about the drug that is being 
studied. If this happens, your research doctor will tell you about 
it and discuss with you whether you want to continue in the 
study. If you decide to withdraw, your research doctor will 
make arrangements for your care to continue. If you decide to 
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continue in the study you will be asked to sign an updated 
consent form.  
 
Also, on receiving new information your research doctor might 
consider it to be in your best interests to withdraw you from the 
study. He/she will explain the reasons and arrange for your 
care to continue.    
 
14. What if something goes wrong? 
 
The study is indemnified by Cardiff University and if you are 
harmed by taking part in this research project, compensation 
will be available.  
If you are harmed due to someone’s negligence, then you may 
have grounds for a legal action but you may have to pay for it. 
Regardless of this, if you wish to complain, or have any 
concerns about any aspect of the way you have been 
approached or treated during the course of this study, the 
normal National Health Service complaints mechanisms 
should be available to you. 
 
15. Will my taking part in this study be kept confidential? 
 
All information which is collected about you during the course 
of the research will be kept strictly confidential. Any information 
about you which leaves the hospital will have your name and 
address removed so that you cannot be recognised from it. 
With your permission your GP will be informed of your 
participation in this study. With your permission we may also 
look at sections of your medical notes which are relevant to the 
research study.  
 
16. What will happen to the samples I give? 
 
The blood and saliva samples taken from you for this study will 
be analysed and then stored for up to 2 months in the 
department of medical biochemistry.  They will then be 
destroyed by incineration according to standard clinical 
practice. 
 
17. What will happen to the results of the research study? 
 
The results of the research study will be prepared for 
publication in appropriate medical journals together with 
presentation at medical conferences. They will also be 
submitted to the Royal College of Pathologists as part of Dr 
Nadia El-Farhan’s final dissertation. Patients participating in 
the study will be able to obtain a copy of the results after they 
have been published in the relevant journal(s). Patients will not 
be identified in any report/publication.  
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18. Who is organising and funding the research? 
 
The study is being organised by Dr Aled Rees in the Section 
of Endocrinology (the Principal Investigator) Dr Carol Evans 
(Principal Biochemist) and Dr Nadia El-Farhan (Specialist 
Registrar) from the department of Medical Biochemistry. 
Funding for the study is provided from the Department of 
Medical Biochemistry and the Section of Endocrinology in the 
Heath hospital. The doctors conducting the research are not 
being paid for recruiting and looking after patients in the study. 
 
19. Who has reviewed the study? 
 
The study has been reviewed by the Cardiff and Vale NHS 
Trust/Cardiff University peer and risk review committee and by 
the South East Wales Local Research Ethics Committee. 
 
20. Contact for further information 
 
Should you have any further questions or queries regarding 
this research study, then please do not hesitate to contact me 
on 029 20748346 or Dr Aled Rees on 029 20745002 during 
working hours.  If anything arises outside of normal working 
hours then I can be contacted directly on (07889) 159792. 
 
Thank you for taking part in this study. 
 
 
 
Dr Nadia El-Farhan 
Specialist Registrar in Chemical Pathology (Metabolic 
Medicine) 
 
 
You will be given a copy of this Patient Information Sheet and 
a signed consent form to keep. 
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Appendix 3 – Study protocol 

Determination of method-specific normal cortisol and adrenal hormone 
reponses to the short Synacthen® test  
 
Short Title: Short Synacthen® test Study 
 
Trust reference 06/DTD/3791E 
 
EudraCT number 2007-000056-14 
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Healthcare Professionals involved in the study 
 
 

Name  Signature Date 

Dr Nadia El-Farhan   

Dr Carol Evans   

Dr Aled Rees   

Dr Steve Davies   

Prof Maurice Scanlon   

Sister Niki Davies   

Sister Janet Lewis   

Dr Atilla Turkes   

Mr David Ducroq   

Mr Alan Pickett   

Mr Robert Henley   

Mr Gareth Jones   
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List of Abbreviations 
 
ACTH  adrenocorticotropic hormone 
CBG   cortisol binding globulin  
17OHP  17 Hydroxyprogesterone  
UHW   University Hospital of Wales 
 
 
1. BRIEF SUMMARY 
The Synacthen® test is used to assess adrenal sufficiency. The adrenal steroid 
hormone, cortisol, is measured before and after injection of Synacthen®. In normal 
individuals serum cortisol rises to an arbitrary value (or cut off).  Method dependent 
cut-offs for the assays currently in use in clinical laboratories in the UK are not 
available. We will perform Synacthen® tests in 120 healthy subjects (60 female and 
60 male) aged 18-80. Since oestrogens increase cortisol levels we will also assess 
60 females taking oral contraceptive pills containing oestrogen. We will derive method 
dependent cut-offs for the serum and saliva cortisol response and compare serum 
cortisol methods. 
 
Deficiency of enzymes needed for cortisol biosynthesis cause congenital adrenal 
hyperplasia. This is characterised by increased serum concentrations of 17 
Hydroxyprogesterone (17OHP), an intermediate in the pathway. In mild cases, 
measurement of 17OHP after Synacthen® stimulation can be used to assist in 
diagnosis. As a secondary objective, we will derive a normal 17OHP response using 
serum collected as part of the Synacthen® test study. 
 
2. BACKGROUND 
Short Synacthen® test cortisol response 
Synacthen® is a synthetic analogue of ACTH which has been used since the 1960s 
to assess adrenal sufficiency. It is now well established as a first line test to investigate 
diseases of the hypothalamo-pituitary-adrenal axis and to assess adrenal function in 
patients on long-term corticosteroid therapy. Briefly, cortisol is measured before and 
after injection of 250 micrograms of Synacthen®. In a normal individual serum cortisol 
will rise to concentrations greater than an arbitrary value (typically 550 nmol/l) 30 
minutes after administration of Synacthen®.  
 
In 2004 the All Wales Clinical Biochemistry Audit group surveyed protocols for 
performing and interpreting short Synacthen® tests (1). This identified wide 
differences in practice within Wales. As a result standards were drawn up for 
performance of the test. It was noted that there was considerable variability or bias 
between cortisol immunoassays and that the cortisol cut-off chosen for interpretation 
of the short Synacthen® test should be method dependent. 
 
Clark et al., in 1998 reported cortisol cut-offs following Synacthen® using 4 well 
established commercially available cortisol immunoassays (2). This study 
demonstrated considerable differences between the cortisol immunoassays used in 
clinical laboratories at the time. It was also apparent that there were differences in 
gender-related responses to Synacthen® although there was no dependence on age. 
In the 8 years since publication of this study there have been advances in formulation 
of cortisol immunoassays as well as the instrumentation used to perform analyses. At 
UHW cortisol is currently assayed using the Bayer Centaur automated immunoassay 
analyser. This assay was not available at the time of the study by Clark et al.,. Our 
current short Synacthen® test cut-offs therefore rely on historical reference ranges 
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which have become outdated. A re-evaluation of the cortisol cut-off is required to 
ensure that patients are not incorrectly classified. 
 
It has been long been recognised that oestrogens (including ethinyloestradiol 
prescribed in combined oral contraceptive pills) increase total (but not free) serum 
cortisol levels. The degree of increase is related to the dose used and is thought to 
be due to an elevation in cortisol binding globulin (CBG) (3). Although the rise in free 
serum cortisol to supra-physiological doses of ACTH (i.e. the Synacthen® test) is 
unlikely to be affected by concomitant oestrogen therapy, no comparisons of total 
serum cortisol in response to Synacthen® have been performed between women 
taking oestrogens and those who are not. Knowledge of the salivary cortisol response 
may also be useful in patients with decreased serum CBG concentrations e.g. severe 
nephrotic syndrome in whom the serum cortisol response may be misleading (4). We 
therefore plan to measure salivary cortisol as part of our study protocol to assess the 
response of free cortisol. 
 
Short Synacthen® test 17 hydroxyprogesterone response 
17 Hydroxyprogesterone (17OHP) is an intermediate in the biosynthesis of cortisol. 
Deficiency of 21-hydroxylase enzyme activity leads to an increased concentration of 
17OHP in the peripheral circulation. The short Synacthen® test can be used to assist 
in diagnosis of mild cases of congenital adrenal hyperplasia. Current reference 
ranges are taken from the literature. 
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3. SUMMARY OF SYNACTHEN® CHARACTERISTICS 
 

Name of the Medicinal Product ®Ampoules 250mcg 

Qualitative and Quantitative 
Composition  

Tetracosactide acetate PhEur 250micrograms per 
ampoule. 

Pharmaceutical form A clear colourless sterile solution in a clear glass 
ampoule. 

Therapeutic indications Diagnostic test for the investigation of 
adrenocortical insufficiency. 

Posology and method of 
administration 

Adults: This preparation of Synacthen® is intended 
for administration for diagnostic purposes only as a 
single intramuscular or intravenous dose; it is not 
to be used for repeated therapeutic administration.  
The 30-minute Synacthen® diagnostic test: This 
test is based on measurement of the plasma 
cortisol concentration immediately before and 
exactly 30 minutes after an intramuscular or 
intravenous injection of 250 micrograms (1ml) 
Synacthen®.  
Elderly: There is no evidence to suggest that 
dosage should be different in the elderly. 

Contraindications History of hypersensitivity to ACTH, Synacthen® or 
Synacthen® Depot. Synacthen® is contra-indicated 
in patients with allergic disorders (e.g. asthma). 

Special warnings and precautions 
for use 

Before using Synacthen®, the doctor should make 
every effort to find out whether the patient is 
suffering from, or has a history of, allergic 
disorders (see Section 4.3 “Contra-indications”). In 
particular, he should enquire whether the patient 
has previously experienced adverse reactions to 
ACTH, Synacthen® or other drugs.  
Synacthen® should only be administered under 
the supervision of appropriate senior hospital 
medical staff (e.g. consultants).  
If local or systemic hypersensitivity reactions occur 
after the injection (for example, marked redness 
and pain at the injection site, urticaria, pruritus, 
flushing, faintness or dyspnoea), Synacthen® or 
other ACTH preparations should be avoided in the 
future. Hypersensitivity reactions tend to occur 
within 30 minutes of an injection. The patient 
should therefore be kept under observation during 
this time.  
Preparation should be made in advance to combat 
any anaphylactic reaction that may occur after an 
injection of Synacthen®. In the event of a serious 
anaphylactic reaction occurring, the following 
measures must be taken immediately: administer 
adrenaline (0.4 to 1 ml of a 0.1% solution 
intramuscularly or 0.1 to 0.2 ml of a 0.1% solution 
in 10 ml physiological saline slowly intravenously) 
as well as a large intravenous dose of a 
corticosteroid (for example 100 mg to 500 mg 
hydrocortisone, three or four times in 24 hours), 
repeating the dose if necessary.  
The hydrocortisone product information prepared by 
the manufacturer should also be consulted. 



Appendices   

 

Interaction with other medicinal 
products and other forms of 
interaction 

None known. 

Pregnancy and lactation The Synacthen® test should not be utilised during 
pregnancy and lactation unless there are 
compelling reasons for doing so. 

Effects on ability to drive and use 
machines 

Patients should be warned of the potential hazards 
of driving or operating machinery if they experience 
side effects such as dizziness. 

Undesirable effects Hypersensitivity reactions: Synacthen® may 
provoke hypersensitivity reactions. In patients 
suffering from, or susceptible to, allergic disorders 
(especially asthma) this may take the form of 
anaphylactic shock (see Section “Contra-
indications”).  
Hypersensitivity may be manifested as skin 
reactions at the injection site, dizziness, nausea, 
vomiting, urticaria, pruritus, flushing, malaise, 
dyspnoea, angioneurotic oedema and Quinke's 
oedema.  

Other side effects are unlikely to be observed with 
short-term use of Synacthen® as a diagnostic tool. 
Should information be required on the side effects 
reported with therapeutic use of tetracosactide 
acetate, see Synacthen® Depot Summary of 
Product Characteristics. 

 

Overdose Overdosage is unlikely to be a problem when the 
product is used as a single dose for diagnostic 
purposes. 

Pharmacodynamic properties Tetracosactide acetate consists of the first 24 
amino acids occurring in the natural corticotropic 
hormone (ACTH) sequence and displays the same 
physiological properties as ACTH. In the adrenal 
cortex, it stimulates the biosynthesis of 
glucocorticoids, mineralocorticoids, and, to a lesser 
extent androgens.  
The site of action of ACTH is the plasma membrane 
of the adrenocortical cells, where it binds to a 
specific receptor. The hormone-receptor complex 
activates adenylate cyclase, stimulating the 
production of cyclic AMP (adenosine 
monophosphate) and so promoting the synthesis of 
pregnenolone from cholesterol. From pregnenolone 
the various corticosteroids are produced via 
different enzymatic pathways. 
 

Pharmacokinetic properties Following an intravenous injection, elimination of 
tetracosactide acetate from the plasma consists of 
3 phases. The half-lives of these phases are 
approximately 7 minutes (0 to 1 hour), 37 minutes 
(1 to 2 hours) and 3 hours thereafter.  
Tetracosactide acetate has an apparent volume of 
distribution of approximately 0.4L/kg.  
In the serum, tetracosactide acetate is broken 
down by serum endopeptidases into inactive 
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oligopeptides and then by aminopeptidases into 
free amino acids. The rapid elimination from 
plasma is probably not attributable to this relatively 
slow cleavage process, but rather to the rapid 
concentration of the active substance in the 
adrenal glands and kidneys.  
Following an iv dose of 131I-labelled tetracosactide 
acetate, 95 to 100% of the radioactivity is excreted 
in the urine within 24 hours. 

Preclinical safety data There are no pre-clinical data of relevance to the 
prescriber, which are additional to those already 
included in other sections of the Summary of 
Product Characteristics. 

List of excipients Acetic acid, sodium acetate, sodium chloride and 
water. 

Incompatibilities None known. 

Shelf life 5 years. 

Special precautions for storage Synacthen® should be protected from light and 
stored in a refrigerator (2 - 8°C). 

Nature and contents of container The ampoules are colourless glass PhEur type I. 
Five ampoules are packed in a cardboard box. 

Instructions for use, handling and 
disposal 

Shake well before use. 

Marketing authorisation holder 
 

Alliance Pharmaceuticals Ltd  
Avonbridge House  
Bath Road  
Chippenham  
Wiltshire  
SN15 2BB 

Marketing Authorisation 
number(s) 
  

PL 16853/0017 
 

Date of first 
authorisation/renewal of the 
authorisation 

25 June 1998 

Date of revision of the text 
 

February 2005 

Legal Status Alliance, Alliance Pharmaceuticals and associated 
devices are registered Trademarks of Alliance 
Pharmaceuticals Ltd. 

 
 
 
 
4. TRIAL OBJECTIVES AND PURPOSE 

1. To define the cortisol response to Synacthen® in normal volunteers using 
commercially available cortisol immunoassays in use in clinical laboratories 
in the UK.  

2. To compare cortisol results against the gold standard method gas 
chromatography - mass spectrometry. 

3. To investigate the effect of oral contraceptives containing ethinyloestradiol 
on the cortisol cut-off in response to Synacthen®. 

4. To define the salivary cortisol response to Synacthen® in normal volunteers 
5. To define the 17OHP response to Synacthen® in normal female volunteers. 

 
 
5. TRIAL DESIGN 
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End-points 
1. The primary end-point of the study will be to establish method dependent 

cortisol cut offs for the normal response to Synacthen® using the 5th 
percentile.  

2. Cortisol measurements by immunoassay will be compared with the GC-
MS gold standard method for normal volunteers and patients with 
hypopituitarism and hypoadrenalism.  

3. Synacthen® responses in women taking ethinyloestradiol-containing 
contraceptive pills will be compared with those who are not. 

4. We will establish cut offs for the salivary cortisol response to 
Synacthen® in normal volunteers using the 5th percentile.  

5. We will establish a 17OHP cut off in response to Synacthen® in normal 
female volunteers using the 5th percentile. 

 
Subjects 
We aim to recruit  
120 normal volunteers (60 male and 60 female). 
60 females taking an ethinyloestradiol-containing oral contraceptive (details of the 
preparation to be noted). 
60 patients with hypoadrenalism or hypopituitarism having a short Synacthen® test 
as part of their clinical care. 
 
 
Short Synacthen® Test Procedure 
 

1. The short Synacthen® test will be performed by experienced nursing staff 
(Sisters Nikki Davies and Janet Lewis) in the Endocrine Investigation Unit on 
B7. The test will be performed between 9 and 10 am.  No smoking is allowed 
in the 30 minutes prior to or during the test. The patient should remain at 
rest. Subjects are not required to be fasting and can drink freely during the 
test. The subject should be asked to rinse their mouth with water 15 minutes 

before commencing the test. 
2. Pulse, blood pressure and respiratory rate as indicators for any possible 

anaphylaxis in addition to clinical inspection of the mouth to look for signs of 
oedema will be recorded before the test. 

3. Synacthen® testing has been very rarely associated with an anaphylactic 
response (none recorded at UHW in over 20 years). Full resuscitation 
facilities are available on the ward. Any adverse drug reactions would be 
reported in the standard manner.  

4. Collection of the basal saliva sample should be done prior to collection of 
blood or injection by asking the subject to passively drool into a universal 
container (5mL or 1 teaspoon of saliva should be collected). 

5. Subjects will be offered a subcutaneous local anaesthetic injection (lidocaine 
0.5%) before insertion of the IV cannula.  

6. Collect 20 ml blood into plain (red top) vacutainers (no anticoagulant and no 
gel).  Label the tube with the collection time. 

7. Inject Synacthen® (250 µg in 1 ml) intravenously.   
8. Collect 20 ml blood into plain vacutainers (no anticoagulant and no gel) at 30 

minutes after the injection.   
9. Saliva should also be collected 30 minutes after administration of 

Synacthen® as previously described. 
10. For female volunteers under the age of 40, collect a further 10 ml of blood 

into plain vacutainers (no anticoagulant and no gel) 60 minutes after the 
injection. 
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11. Ensure each tube is carefully labelled, including the collection time.  Send 
the samples to the laboratory with 1 request form, stating the analyses 
required.  

12. Observe subjects for a total of 90 minutes after the Synacthen injection.  
Monitor pulse, blood pressure and respiratory rate as indicators for any 
possible anaphylaxis in addition to clinical inspection of the mouth to look for 
signs of oedema before allowing patient to leave. 

 
 
Synacthen® Supply, Storage, Packaging and Labelling 
On receipt of a requisition form the pharmacy clinical trials department will supply the 
investigators with sufficient stock of Tetracosactide 250 mcg/ml injection 
(Synacthen® manufactured by Alliance – 5 ampoules per box). Each box will be 
labelled ‘For Clinical Trial Use Only’ and with ‘For use in Synacthen® project ID 2007-
000056-14’. These boxes of Synacthen® should be stored separately from usual B7 
Endocrine unit stock of Synacthen®.  The drug will be stored under recommended 
conditions (between 2ºC and 8ºC). The pharmacy will also prepare an accountability 
form for the investigators to complete whenever they administer a dose of 
Synacthen® to study volunteers. This accountability form will enable recording of date 
of administration, subject name and/or number, batch number and expiry date of 
ampoule administered. 
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Flow chart of procedure 
 
 

 
  

Check exclusion criteria 

Check history 

Pregnancy test if relevant 

Consent obtained 

Basal blood and saliva samples 

IV cannula placed and drug administered 

30 minute blood and saliva samples obtained 

60 minute blood sample obtained (females under 40) 

Observe for a total of 90 minutes post injection 

Follow-up phone call 

 

Day 21 

Visit 1 (Day 14) 

Appointment to attend EIU B7 or 

CRF @ 8.00 
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Biochemical Analyses 
 
Serum cortisol will be measured on the basal and 30 minute serum samples using 
the Bayer Centaur automated immunoassay analyser on the day of sampling in the 
Department of Medical Biochemistry UHW.  Further aliquots of serum will be stored 
at -50ºC pending batched analysis of cortisol by various methods. Cortisol will be 
assayed using the Roche E170 automated immunoassay analyser, the Abbott 
automated immunoassay analyser, Immulite automated immunoassay analyser, 
Immulite 2000 automated immunoassay analyser, Beckmann Access automated 
immunoassay analyser, an in-house tandem mass spectrometry assay and the gold 
standard gas chromatography - mass spectrometry. A small number of samples 
(n=25) will be re-measured using the Bayer Centaur cortisol assay to ensure that 
there has been no degradation of serum cortisol during storage. 
 
Salivary cortisol will be measured using a commercially available immunoassay and 
by tandem MS. 
 
17OHP will be measured in basal, 30 and 60 minute samples taken from 60 women 
under the age of 40 using an in-house radioimmunoassay. In addition cortisol, 17 
OHP, 11 deoxycortisol, 21 deoxycortsiol, androstenedione and testosterone will be 
measured by tandem MS. 
 
 
6. STUDY POPULATION 
 
Subject recruitment 
Volunteers will be recruited from Staff in the Directorates of Medicine and Pathology 
in the University Hospital of Wales and Medical Students. Posters will be displayed 
to invite participation. The Welsh Blood Service will be asked to display posters at 
their donation sessions and an investigator will attend these sessions to provide 
further information to any interested individuals.  
 
Patients with hypoadrenalism or hypopituitarism will be recruited from patients under 
the care of Professor M.F. Scanlon, Dr J.S. Davies or Dr D.A. Rees having a short 
Synacthen® test as part of their clinical care. Between 5 and 10 such patients 
undergo short synacthen tests per week in the Endocrine Investigation Unit. 
Potential participants (those with suspected primary or secondary adrenal 
insufficiency) will initially be identified from the Endocrinology analyser database at 
the University Hospital of Wales. Eligible subjects will be invited to participate through 
a letter from the clinician responsible for their care (Dr J S Davies, Professor M F 
Scanlon, Dr D A Rees). Potential participants will also be identified as they pass 
through the Endocrine clinic systems at UHW (Professor M F Scanlon, Dr J S Davies, 
Dr D A Rees) and will be invited to participate by the clinician responsible for their 
care. All patients with adrenal insufficiency identified by means of the synacthen test 
will be treated and followed up in the Endocrinology clinic according to standard 
clinical practice. 
 
Screening log 
Investigators will maintain a record of all volunteers who were considered for the study 
but who were not enrolled. The reason for exclusion will be recorded. 
Investigators will also maintain a record of all volunteers who were enrolled onto the 
study (i.e. who signed the consent form). In the event that the test was not performed 
the reason will be recorded. 
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It is planned to recruit 180 healthy volunteers and 60 patients with hypoadrenalism or 
pituitary insufficiency. 
 
Subject inclusion criteria 
Volunteers will be in self-proclaimed good health. Subjects will be free of illness on 
the day of testing and will not be taking drug therapy.  
Female subjects under the age of 40 will undergo the test in the follicular phase of 
the menstrual cycle. Ideally in the first five days following menstruation. 
 
Females taking an ethinyloestradiol-containing oral contraceptive will be recruited.  
Details of the preparation will be noted. 
 
Subject exclusion criteria 
Subjects will not be included in the study if he/she: 

1) Is pregnant or lactating. Females of childbearing potential must have a 
negative pregnancy test before enrollment onto the study. Non-child bearing 
potential is defined as post-menopausal for at least 1 year, surgical 
sterilisation or hysterectomy at least three months before the start of the 
study, 

2) Is using corticosteroids, 
3) has any significant intercurrent disease, 
4) has a history of thyroid or other autoimmune disease, 
5) has a previous history of hypersensitivity to Synacthen®, 
6) has a previous history of asthma 
7) has a history of allergic disorder 
8) has any mental condition rendering the patient unable to understand the 

nature or possible consequences of the study, and/or evidence of an 
uncooperative attitude. 

 
Patient inclusion criteria 
Patients will be free of intercurrent illness on the day of testing. 
 
Patient exclusion criteria 
Subjects being investigated for possible adrenal insufficiency will not be included in 
the study if he/she: 
1) Is pregnant or lactating. Females of childbearing potential must have a negative 
pregnancy test before enrolment onto the study. Non-child bearing potential is 
defined as post-menopausal for at least 1 year, surgical sterilisation or hysterectomy 
at least three months before the start of the study. 
2) Is using corticosteroids, 
3) has a previous history of hypersensitivity to Synacthen®, 
4) has a history of asthma or allergic disorder 
5) has any mental condition rendering the patient unable to understand the nature or 
possible consequences of the study, and/or evidence of an uncooperative attitude. 
 
Withdrawal of subjects 
Subjects will be free to withdraw from the study at any time without giving reasons. 
Where reasons are given these will be recorded on a case report form (CRF). 
Recruitment will continue until the agreed number of participants has been achieved. 
 
7. TREATMENT OF SUBJECTS 
 
Consent 
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Potential participants will initially be identified by poster advertisement at the 
University Hospital of Wales. The volunteer information sheet will explain the nature 
of the study, its purpose, the procedures involved, the expected duration, the potential 
risks and benefits involved and any discomfort it may entail. Eligible subjects will be 
invited to participate by Dr Aled Rees, Dr Carol Evans, Dr Nadia El-Farhan, Sister 
Nikki Davies or Sister Janet Lewis. A subject screening log will be used to record all 
contacts (Appendix 1). Each subject will be informed that participation in the study is 
voluntary and that they may withdraw from the study at any time. Participants will be 
given adequate time to review the volunteer information sheet and will have sufficient 
opportunity to understand the objectives, risks and inconveniences of the study and 
the conditions under which it is to be conducted.  The following individuals will be 
permitted to take consent: 
 
Dr Aled Rees 
Dr Nadia El-Farhan 
Sister Nikki Davies 
Sister Janet Lewis 
 
This informed consent will be given by means of a standard written statement, written 
in non-technical language. The subject should read and consider the statement 
before signing and dating it, and will be given a copy of the signed document. No 
subject can enter the study before his/her informed consent has been obtained. 
Participation will be recorded in a subject enrolment log (Appendix 2).  Participants 
will be assigned a subject number to ensure anonymity. 
 
Patient care 
With their consent we will write to the patients GPs to inform them that they are 
participating in this trial. 
Although subjects by definition will be healthy it is possible that some subjects will 
have clinically unsuspected and significant adrenal suppression. If this is identified 
then they will be offered review by Dr Rees.  
 
Follow up of subjects and patients 
A follow up phone call will be made by Sister Nikki Davies, Sister Janet Lewis, Dr 
Aled Rees or Dr Nadia El-Farhan. 
 
8. ASSESSMENT OF SAFETY 
 
Expected adverse reactions: 
Hypersensitivity reactions: Synacthen® may provoke hypersensitivity reactions. In 
patients suffering from, or susceptible to, allergic disorders (especially asthma) this 
may take the form of anaphylactic shock (see Section 3 “Contra-indications”).  
Hypersensitivity may be manifested as skin reactions at the injection site, dizziness, 
nausea, vomiting, urticaria, pruritus, flushing, malaise, dyspnoea, angioneurotic 
oedema and Quinke's oedema. Any increased incidence of any adverse reaction 
(expected or unexpected) will be discussed by the trial management group and a 
decision taken to terminate the study where appropriate. 
 
Instructions on the reporting procedures for serious adverse events  
Information about all non-serious and serious adverse events (SAEs), irrespective of 
causality, whether volunteered by the subject, discovered by investigator questioning, 
or detected through physical examination, laboratory test or other means, will be 
collected and recorded in the case report form. Medical conditions/diseases present 
before starting the study are only considered adverse events if they worsen after the 
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study procedures. Abnormal laboratory values or test results constitute adverse 
events only if they induce clinical signs or symptoms or require therapy, or are 
considered clinically significant for any reason, in which case they will be recorded on 
a case report form (appendix 3 for subjects, appendix 4 for patients).  
 
Where possible, each adverse event will also be described by: 
1. Its duration 
2. The severity grade (mild, moderate, severe) 
3. The action(s) taken 
  
Serious adverse events 
Information about all SAEs will be collected and recorded. All SAEs will be reported 
in accordance with Cardiff University’s Policy and Procedure for Reporting Research 
Related Adverse Events. 
 A SAE is an undesirable sign, symptom or medical condition which: 
1. is fatal or life-threatening 
2. required or prolonged hospitalisation 
3. was significantly or permanently disabling or incapacitating 
4. constitutes a congenital anomaly or a birth defect 
5. are medically significant, may jeopardise the subject and may require medical or 
surgical intervention to prevent one of the outcomes listed above. 
 
Any SAE, irrespective of causality, occurring in a patient after providing informed 
consent and until one week after ending study participation will be recorded. 
 
The Principal Investigator, Dr Rees, will report all SAEs/SUSARs to the Sponsor 
within 24 hours of being made aware of the event. The immediate report may be 
made orally or in writing and shall be promptly followed by a detailed written report. 
This report will be sent to the Sponsor via email or facsimile. Where email is used, 
this must be followed up with a faxed signed version. The Principal Investigator must 
report all SAEs/SUSARs using the SAE Report Form agreed with the sponsor and 
must be accompanied by a completed CIOMS form. 
 
Complete information may not be available within the required timeframes for 
reporting. In this case, the Initial Report will include as much information as is 
available at the time. The Principal Investigator will be required to submit a follow-up 
report as soon as complete information becomes available and in any case no later 
than 24hrs after submission of the Initial Report.  
 
On receipt of each SAE Report Form, the Sponsor will provide a separate assessment 
of the Causality and Expectedness of that SAE. Should any part of the Sponsor’s 
assessment be in conflict with that of the Principal Investigator, then the Sponsor can 
not overrule the PI’s assessment. Both opinions must be recorded and both opinions 
must be submitted to the relevant authorities.  
 
All adverse events (AEs) related to the IMP that are both serious and unexpected (i.e. 
a SUSAR) are subject to expedited reporting: 
1. Fatal or life threatening. The Sponsor must ensure that SUSARs are reported to 
the main REC and the MHRA as soon as possible, but no later than 7 days after the 
Sponsor had information that the case fulfilled the minimum criteria for initial 
expedited reporting. Any additional follow up information should be reported within a 
further 8 days of sending the initial report. All reports should normally be submitted 
by the PI (on behalf of the Sponsor).  
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2. Non fatal or non life-threatening. The Sponsor must ensure that SUSARs are 
reported to the main REC and the MHRA as soon as possible, but no later than 15 
days after the Sponsor had information that the case fulfilled the minimum criteria for 
initial expedited reporting. Any additional follow up information should be reported as 
soon as it becomes available. All reports should normally be submitted by the PI (on 
behalf of the Sponsor).  
 
One year following the granting of a CTA, and thereafter annually, the PI must compile 
an annual safety report, consisting of a list of all the suspected serious adverse 
reactions which have occurred during that year in relation to the trial and submit this 
to the: 

 MHRA 

 Sponsor 

 REC that granted approval 
 
 
9. STATISTICS 
Sample size  
There is a large literature on establishing reference ranges for analyte values. The 
complexity and minimum sample size required to determine reliable reference ranges 
depends on whether or not the analyte values are age dependent. For the cortisol 
response to synacthen®, there is evidence (Clark et al., 1998) that the distributional 
properties are independent of age and so univariate reference ranges are 
appropriate. In such a situation, the IFCC and the FDA recommend that a minimum 
sample size of 60 be used for a Gaussian distribution of values, or for data that can 
be transformed to Gaussian form. In all other situations non-parametric techniques 
should be used with a minimum sample size of 120.  
 
The distribution of Synacthen® stimulated cortisol results is positively skewed (Clark 
et al., 1998). If the data can not be transformed to Gaussian form, then non-
parametric methods will require the sample size to be increased to 120 males and 
120 females to estimate the specified centiles.  
 
 
Statistical Analyses 
The effect of gender differences between the females taking ethinyl oestradiol and 
age and gender matched control subjects on cortisol responses will be assessed 
using either the Mann-Whitney U test, or unpaired t-test for non-Gaussian and 
Gaussian distributions respectively. A p value of less than 0.05 will be considered 
statistically significant. 
 
Cortisol immunoassays will be compared to the GC-MS method by Altman Bland plots 
and linear regression. The relative bias will be assessed by comparing results from 
each immunoassay with the GC-MS result for that sample expressed as a bias ratio. 
Comparison of the bias ratios will be performed using the students t-test. 
 
 
10. PROJECT MANAGEMENT 
Study Management 
Dr Aled Rees, Dr Carol Evans and Dr Nadia El-Farhan will be responsible for the day-
to-day conduct of the study.   
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Dr Aled Rees (Senior Lecturer in Endocrinology) will co-ordinate recruitment and 
obtain subject consent, along with Dr Nadia El-Farhan, Sister Nikki Davies and Sister 
Janet Lewis who will also perform the short Synacthen® tests. 
Mr Alan Pickett (BMS2) will be responsible for receipt and storage of samples in the 
Department of Medical Biochemistry. 
 
Dr Nadia El-Farhan will be responsible for coordinating biochemical analyses, data 
entry and will at a later stage conduct statistical analysis on the data obtained, in 
conjunction with the Department of Medical Statistics. The database will be held on 
the H: drive of a Trust computer in the department of Medical Biochemistry. Cardiff 
and Vale IT department operate a daily incremental back up of the H: drive. Data will 
be archived securely for 15 years after the trial has ended. 
 
A formal meeting will take place on a fortnightly basis to discuss all aspects of the 
study and to plan for the forthcoming fortnight. Informal discussions regarding any 
difficulties that arise with the project will also take place as required. A further bi-
monthly meeting involving Professor Scanlon, Dr Rees, Dr Evans and Dr El-Farhan 
will occur to discuss progress and to focus on manuscript / abstract preparation as 
the results allow. 
 
Procedures for data collection and recording 
The investigator must record all data relating to protocol procedures, study drug 
administration and laboratory data in the Case report form (CRF). The investigator 
may designate authority to complete CRFs to appropriately qualified staff by 
completing the signature log. 
The investigator must sign CRFs to attest to their accuracy and completeness. 
All corrections must be inserted in such a way as to not obscure the original entry. 
The correct data must be inserted, initialled and authorised by site personnel. If it is 
not obvious why a change has been made, a reason must be provided. 
 
Source Data Verification 
All original records and reports will be retained.  Quality control data will be recorded 
for biochemical assays. 
 
Data Quality 
Reasons should be given on the relevant CRF for any missing data or other protocol 
deviations. Any data management queries will be returned to the principal investigator 
who should ensure that these are dealt with promptly. 
 
Changes to the protocol 
Any change or addition to this protocol will require a written protocol amendment. 
Amendments significantly affecting the scope of the investigation or the scientific 
quality of the study will be submitted for additional approval by the Local Research 
Ethics Committee, Cardiff University Research and Development department and 
Cardiff and Vale NHS Trust Research and Development department.  
 
Auditing procedures 
As part of Good Clinical Practice, Dr Rees and Dr Evans will ensure that the study 
protocol and documentation are closely monitored. All study documentation will be 
available for inspection at any time by appropriate regulatory authorities including 
internal audits by the Cardiff University Research and Development audit officer. 
The trial will be conducted in compliance with the protocol, GCP and the applicable 
regulatory requirements. 
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The study will be monitored by Cardiff University R&D office as per the monitoring 
schedule outlined in the sponsorship agreement between the principal investigator 
and the University. 
 
Publication of results 
Any formal presentation or publication of data from this study will be considered as a 
joint publication by the investigators and authorship will be determined by mutual 
agreement. The research findings will be disseminated through peer reviewed 
publications and presentations at regional/national/international meetings. Following 
scientific peer review and publication, the results of the study will be communicated 
directly to all participants and, additionally, to local patient support groups where 
appropriate. 
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Appendix 4 – Sample analysis protocol 

A total of 340 patient and 30 iQC samples will be sent for batched analysis over a 10 week 

period. The prolonged analysis time is intentional and it is important that batches are not 

analysed more frequently than once a week.  It is also useful for the same person (who is 

familiar with this protocol) to run the samples every week.  So if you are unable to run 

samples any particular week then it is preferable for you to leave them until you are next 

available. 

  

1. Sample Preparation: 
 

- Samples will be transported frozen and should remain frozen at -20º until 

analysis 

- On the day of analysis remove one batch from freezer and allow samples to 

thaw and reach room temperature before proceeding 

- Mix samples thoroughly and transfer to tubes suitable for automated 

analysis 

 

2. Sample Analysis: 
 

- Run one batch of samples per week 

- Each batch will contain up to 17 paired patient samples and 3 iQC samples 

(High, Med, Low) 

- Samples should be enrolled on your lab system as for normal patient 

samples and run in the order they are sent 

- Use a single analyser for all study samples i.e. if your lab has more than one 

analyser used for cortisol analysis ensure that it is always the same analyser 

that is used for these samples 

- Record results in the SST Trial Excel spreadsheet supplied 

- On the day of the run please record the following analyser and assay details: 

  1) Results and targets of your laboratory’s iQC levels 

  2) Reagent and Calibration Lot Numbers 

  3) Date of most recent calibration. 

  4) Analyser serial number 

    

3. Post-analysis: 
 

- Refreeze samples post analysis until results have been reviewed 

- Send results of analysis to Mr Alan Pickett (Email: 

Alan.Pickett@cardiffandvale.wales.nhs.uk, Tel: 029 20748368) or Dr Carol 

Evans (Email: Carol.Evans@CardiffandVale.wales.nhs.uk, Tel: 029 2074 

8367) within the week of analysis and before analysis of any further 

batches, but continue weekly analysis unless advised otherwise 

- Once all samples have been analysed please provide details of all cortisol 

EQA returns and UKNEQAS ABC scores received by your lab over the 

entire period of analysis 

 

In case of discordant results (e.g. result of 0 min sample greater than 30 min sample), 

analyser fault or accidental loss of sample: 

 

- Re-assay discordant samples and record both the original result and the result of 

the re-assay. 

mailto:Alan.Pickett@cardiffandvale.wales.nhs.uk
mailto:Carol.Evans@CardiffandVale.wales.nhs.uk
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- If an analyser fault occurs then re-assay samples post repair and record both pre- 

and post-repair results 

- If a further sample is required then please contact Mr Alan Pickett (Tel. 029 

20748368) for further advice. 
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Appendix 5 – Publications 

 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 

 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 



Appendices   

 
 


