
An Open Framework for Flexible Plug-in Privacy
Mechanisms in Crowdsensing Applications
Manos Katsomallos∗†, Spyros Lalis†, Thanasis Papaioannou†, and George Theodorakopoulos‡

emmanouil.katsomallos@u-cergy.fr, {lalis,atpapaioannou}@uth.gr, TheodorakopoulosG@cardiff.ac.uk
∗ETIS/ENSEA - University of Cergy-Pontoise - CNRS, Cergy-Pontoise, France

†University of Thessaly & CERTH, Volos, Greece
‡Cardiff University, Cardiff, UK

Abstract—Preserving user privacy is crucial for the wide
adoption of crowdsensing and participatory sensing applications
that rely on personal devices. Currently, each application comes
with its own hardwired and possibly undocumented privacy
support (if any), while the horizontal protection mechanisms
provided by operating and runtime systems operate at a low level
that can significantly harm application utility, or even render
an application useless. To achieve greater flexibility, we propose
a framework that decouples the privacy mechanism from the
application logic so that it can be developed by another, perhaps
more trusted party, and which allows the dynamic binding of
different privacy mechanisms to the same application running
on the user’s mobile device. We describe a proof-of-concept
implementation of the proposed framework for Android, where
privacy mechanisms are independently developed as separate
plug-in components. Based on a simple but powerful API, it
is possible to implement a wide range of standard privacy
approaches, including collaborative schemes that involve data
exchanges among multiple personal devices.

I. INTRODUCTION

To realize the vision of mass-scale crowdsensing based
on mobile personal devices, like the smartphone, several
challenges need to be tackled. For instance, one has to deal
with asymmetrical and intermittent connectivity, save battery
lifetime, simplify the installation and management of sensing
applications on the smartphone, and address various privacy
and trust concerns.

The privacy issue is of key importance in order for people
to agree/volunteer to provide data via their mobile personal
devices. As a result it has gathered a lot of attention among
researchers, and different methods for preserving user privacy
in crowdsensing scenarios have been proposed and studied in
the literature. But few of these methods are adopted in practice.
Moreover, these implementations are tightly-coupled with the
application logic, making them hard to be inspected, replaced,
let alone reused in other applications. Also, it is doubtful that
one size will fit all. Namely some users may have different
privacy concerns than others, and the privacy needs of the
same user may be context-dependent.

Motivated by the above observations, we propose an open
framework that enables the flexible development, installation
and activation of different privacy mechanisms on mobile
personal devices, as independently developed software com-
ponents that can be used in conjunction with compatible
sensing applications running on the device. We also describe

a prototype implementation of the proposed framework for
EasyHarvest [10], a crowdsensing system for mobile devices.
Note that our contribution is the software framework that
enables a flexible deployment of different privacy mechanisms,
not the privacy mechanisms themselves.

The main features of our framework are briefly as follows:
(i) Privacy mechanisms are developed using a simple yet
powerful API, which also supports the implementation of
collaborative schemes. (ii) Privacy mechanisms are developed
as plug-in components, which can be dynamically loaded and
linked to compatible sensing applications running on personal
devices. (iii) Users can review the privacy mechanisms that
are available, and pick the ones that seem most suitable for
their needs. (iv) Users can set the desired level of privacy for
different spatio-temporal regions, letting the system adjust the
operation of the privacy mechanisms accordingly.

The rest of the paper is structured as follows. Section II
introduces the proposed concept. Section III gives an overview
of the EasyHarvest system. Section IV describes a proof-of-
concept implementation of the proposed privacy framework
for it. Section V gives an overview of related work. Finally,
Section VI concludes the paper and identifies directions for
future work.

II. CONCEPTUAL APPROACH

Users who provide data to crowdsensing applications via
their personal devices have several privacy aspects that might
need to be hidden, e.g., user identity (linking attacks), user
location (trajectory tracing), user activities (activity tracing),
or sensitive attributes (eavesdropping). Different mechanisms
have been proposed to tackle these threats [3], e.g., data
hiding (suppression), perturbation (adding noise to the data
or adding fake data), obfuscation (generalization, mixing)
and anonymization. These mechanisms may be collaborative
(involve multiple users) or standalone, and they may be
internal to the user devices producing the data or rely on
external trusted third parties for privacy preservation. Also,
mechanisms differ in their effectiveness on protecting the user
against the various privacy threats, as well in their impact on
the data utility for the various applications.

Despite this plethora of privacy mechanisms, crowdsensing
applications typically come with hardwired privacy protection
support, if any. Even if the code is open for inspection, the

average user does not have the expertise or the time to check
the existence and/or effectiveness of the privacy mechanism
of every single application. As a consequence, in practice, the
user simply has to trust the persons/organizations that develop
and manage these applications.

We believe that this problem can be addressed, to a large
extent, by introducing privacy support for crowdsensing appli-
cations based on the following principles:

Decoupling: Separate the sensing part of the application
which runs on the personal device and generates data based
on local sensor and personal data feeds, from the mechanism
that preserves the privacy of the user contributing data. Ideally,
the sensing part of the application should be developed without
any concern for user privacy.

Diversity/Flexibility: Support the development of privacy
mechanisms which may have different characteristics and
may protect different privacy attributes. In particular, provide
support for collaborative privacy schemes, which may involve
interaction between multiple personal devices.

Locality: Preserve privacy locally, on the personal device
or among a group of trusted peer devices. Once data leaves
the personal device and reaches external components of the
crowdsensing application on the Internet/cloud, the user has
practically no control over it. Also, support collaborative
privacy mechanisms while minimizing or even eliminating the
reliance on centralized trusted third parties.

Utility: Place the privacy mechanisms at a proper stage of
the information production pipeline, so that they can intercept
and process/filter privacy-sensitive data without blocking low-
level data feeds. Enable the association of each application
with the most suitable privacy mechanism—one that can
effectively protect one or more privacy aspects that are of
importance to the user, while preserving application utility.

Hereinafter, we propose an approach for the structured
development and deployment of crowdsensing applications
and privacy mechanisms on mobile personal devices, shown
in Figure 1. On the one hand, the application owner declares
the data model of the application, and provides the sensing
component that will run on the personal device. The data
model defines the data items and values that are produced by
the sensing component on the personal device—it may also
include additional information about the transformations that
can be performed on the data without harming its utility for
the application. On the other hand, privacy experts review the
data model, and provide suitable privacy mechanisms, which
may filter, distort or aggregate data to protect certain privacy
attributes while maintaining data utility for the application in
question. The type of the transformation performed by a given
privacy mechanism and the impact on data utility can be de-
scribed via suitable (human and machine-readable) metadata.
Finally, users who wish to contribute to a crowdsensing effort
pick and install the respective sensing component along with
one or more compatible privacy mechanism components.

On the personal device, a suitable runtime system is needed
in order to support the dynamic installation, binding and
execution of these software components. Figure 2 shows

Privacy
Expert

User

Application
Owner

develops

picks/installs

inspects

defines

trusts

Application
Sensing

Component
Data Model

Privacy
Mechanism
Component

picks/installs Privacy
Properties

has

has

develops defines

suitable
for

Fig. 1: Structured introduction of privacy mechanisms for
crowdsensing applications: stakeholders and software artifacts.

Application
Sensing

Component

Privacy
Mechanism
Component

Sensors & User
Input

Upstream
Data Transfer

Context

Personal Device

External
Entities

Upstream
Data Transfer

Pe
er

 D
is

co
ve

ry
 &

C
om

m
un

ic
at

io
n

Remote Privacy
Mechanism

Components

Level
Setting

Fig. 2: High-level runtime architecture on the personal device.
Grey boxes stand for the system interfaces/hooks.

an indicative high-level architecture. In a nutshell, the data
produced by the sensing component of the application is
fed into the privacy mechanism component, which in turn
outputs the same type of data towards external application
components (these will typically reside on a remote computing
infrastructure, to perform data aggregation, processing and
visualization). From a purely functional perspective, the pri-
vacy mechanism is transparent to the application (although the
transformation performed on the data may affect utility). This
way it becomes possible to use different privacy mechanisms
for the same application. It is also possible to change the
privacy mechanism for a given application on the fly, with the
runtime taking care of the respective re-binding behind the
scenes. Such a change can be requested by the user, or even
be performed automatically by the runtime in a context-driven
way.

Note that there is no attempt to control the type and/or
amount of data that is locally accessed by the sensing com-
ponent of the application. The information gathered on the
personal device is considered harmless, as long as it does
not propagate to the Internet—and presicel this upstream flow
goes through the privacy mechanism, under the control of
the runtime system. Of course, the application should declare
its data model truthfully. But doing so is in its own interest.
False declarations concerning the value ranges and utility of
the data will result to the application being associated with
an inappropriate privacy mechanism that might easily destroy
application data. Also, assuming strong typing support, the
runtime system can check the data produced by the application
sensing component for type and value range compliance,
and terminate/blacklist applications that violate their officially
declared data model.

III. THE EASYHARVEST SYSTEM

The EasyHarvest system [10] was designed to simplify the
development, managed deployment and controlled execution
of sensing tasks on personal devices. Each sensing task is
an application-specific mobile agent to be replicated on a
large number of devices. Focus is on background tasks that
use the sensors of personal devices, without any explicit
user input (though the system could be extended to support
this), and produce data over a longer time period, in a best-
effort manner. Besides taking sensor measurements, a task can
perform custom processing on the device, before uploading
data to the Internet.

EasyHarvest follows a client-server architecture, shown in
the lower part of Figure 3. The server is managed by the
community that wishes to support crowdsensing applications.
Application owners submit sensing tasks to the server, which
in turn automatically deploys them on personal devices and
collects the data produced by them. At any point, one can
inspect the deployment progress of a given task, and retrieve
the data collected so far. One can also suspend, resume or
permanently remove a task from the server.

The EasyHarvest client provides the runtime environment
for sensing tasks on the personal device. It can subscribe to one
or more servers, which it inquires about application tasks that
need to be executed. If the client decides to accept a task, it
downloads the binary, creates a new task instance locally, and
schedules it for execution on the device. The data produced by
the sensing task is transferred to the server behind the scenes
while dealing with disconnections in a transparent way.

Sensing tasks can be associated with a target geographical
location and time period within the day. These parameters are
supplied when the task is submitted to the server and can be
modified later, if desired. The client receives these parameters
together with the task binary, occasionally checks the server
for updates, and accordingly activates/deactivates the sensing
task depending on the spatio-temporal context of the device.
Post-processing of the data collected on the server, which can
be retrieved data via a suitable machine interface, is left for
external, application-specific subsystems.

bin

pars

server

ST & PM Management UI

client

ST & PM Control UI

data

…

ST Sensors

ST
instance

A
pp

lic
at

io
n-

sp
ec

ifi
c

da
ta

 p
os

t-p
ro

ce
ss

in
g

bin

pars

data

doc

bin
PM

instance

bin

doc…

Com
patible

Peer PM
s

ST

PM

PM
P2P Support

Fig. 3: High-level architecture of EasyHarvest. The client
retrieves tasks (STs) from the server, and runs them on
the personal device. The extensions for the plug-in privacy
mechanisms (PMs) are shown above the dashed line.

TABLE I: Sensing Task Interface

Primitive Description

void onStart(
Context c,
ObjectInputStream s

);

Initialize task in order to (re)start ex-
ecution; previously saved state can be
retrieved via the input stream.

void onStop(
ObjectOutputStream s

);

Release resources held by the task; op-
tionally save state in the output stream.

List<Object> getData();
Return new data produced by the task
since the last invocation.

The current EasyHarvest client prototype is designed for
Android devices. Sensing tasks have the form of Java classes
for the Dalvik environment , and implement a predefined
interface Table I though which they interact with and are
controlled by the client runtime.

Sensing tasks access the sensors (and possibly other data
sources) of the smartphone via the native Android API. The
application developer is free to define the data objects that will
be produced by the task. These must be serializable so that
they can be transferred over the network, and may not contain
any private fields. Respective checks are made when a task is
submitted to the EasyHarvest server, as part of the process for
producing the task binary. At runtime, the EasyHarvest client
performs type-checks to verify that the task indeed produces
the expected type of data.

The user can configure the EasyHarvest client to contact
one or more servers for task download, and to ask for explicit
permission before accepting a sensing task. One can also set
the desired system load (the frequency at which the client
runtime polls the sensing task for data, and synchronizes with
the server) as well as the type of connectivity to use for the
communication (Wi-Fi, cellular).

IV. THE EASYHARVEST PRIVACY FRAMEWORK

We extended the EasyHarvest system to include support
for flexible plug-in privacy mechanisms, along the lines of the
conceptual approach described in Section II. The key elements

of the extended system architecture are shown in Figure 3.
Next, we discuss in detail the implementation.

A. Privacy Mechanism Registration & Installation

Similar to application sensing tasks, privacy mechanisms
are implemented as independent software components which
are registered with the EasyHarvest server. Using a web-
based interface, the privacy expert uploads the source code,
associates the privacy mechanism with one or more sensing
tasks, and provides a description of the mechanism and its
privacy-preservation properties. The server compiles the code,
and checks it for the required methods (see next section).
The code of the mechanism is open-source and available for
inspection by community members, in particular other privacy
experts.

Note that the description of the privacy mechanism is
written by the privacy expert so that it is comprehensible even
by novice users. The privacy mechanism may include, as part
of its metadata, a user-friendly explanation of the expected
privacy results, e.g., “your location will get distorted by x
meters” or “you will be hidden among y people”. Moreover,
the privacy expert provides the expected utility deterioration
per privacy level for each application sensing task. This could
be useful for choosing among privacy mechanisms that provide
equivalent privacy.

As part of its periodic interaction with the server, the
EasyHarvest client queries for privacy mechanisms that can
be used for the application sensing task that runs locally on
the smartphone—this can be done in the background or at the
user’s request. The user browses the list of suitable privacy
mechanisms, reads the description and privacy features and
selects the one to employ for the application. In turn, the
client downloads the privacy mechanism on the device, and
instantiates/binds it to the sensing task. At runtime, the user
sets the privacy level of the mechanism.

B. Interface of Privacy Mechanism Components

Privacy mechanisms are implemented as Java classes for
the Dalvik environment. By convention, a privacy mechanism
shall provide a pre-defined interface Table II. Note that only
a subset of this interface is mandatory (underlined).

The data interface of privacy mechanisms refers to abstract
data objects, just as this is the case for application sensing
tasks. However, the concrete data items that will be fed into
the privacy mechanism at runtime depends on the sensing task
to which the mechanism will be bound. As already discussed
in Section II, the developer of the privacy mechanism must
be familiar with the application-specific data produced by the
sensing task, in order to handle it properly. Also recall that the
privacy mechanism is expected to generate the same type of
data towards the server—corresponding type checks are done
by the client runtime before sending the data upstream.

C. Flexible Privacy Schemes

The above interface allows for the development of fully
standalone as well as collaborative privacy mechanisms. It

TABLE II: Privacy Mechanism Interface

Method/Data Primitives Description

void onStart(
Context c,
int privLevel,
ObjectInputStream s

);

Initialize the privacy mechanism, for
the supplied privacy level; previously
saved state can be retrieved via the
input stream.

void onStop(
ObjectOutputStream s

);

Release resources held by the privacy
mechanism; optionally save state in the
output stream.

List<PMData>
handleAppData(

List<Object> data
);

Process the data produced by the sens-
ing task, return the data to send up-
stream.

List<PMData>
handlePeerData(
List<PMData> data

);

Process the data received from a peer,
return the data to send upstream (only
for collaborative privacy mechanisms).

void onLevelUpdate(
int privLevel

);

Adjust internal operation based on the
newly supplied privacy level setting.

void onPeerGroupUpdate(
List<PeerInfo> peers

);

Adjust internal operation based on the
updated peer group configuration (only
for collaborative privacy mechanisms).

public class PMData {
int destID;
List<Object> data;

}

Data structure for the data produced by
the privacy mechanism, along with the
identifier of the destination for this data
(0 for the server; <>0 for a peer).

public class PeerInfo {
int peerID;
int privLevel;

}

Data structure for peer information,
consisting of the peer identifier and its
current privacy level.

is also possible to implement privacy mechanisms that adapt
their mode of operation, switching between standalone and
collaborative mode, depending on the presence of other peers.
Note that the privacy mechanism can record arbitrary state
information via the onStop() method, and then retrieve it
again via the onStart() method. This way, it is possible for
future executions of the mechanism to exploit information/ex-
perience that was produced in the past.

Standalone privacy mechanisms do not provide the
handlePeerData() and onPeerGroupUpdate()
methods. When the EasyHarvest client detects that these
methods are missing, it sets the privacy mechanism to work in
isolation, as illustrated in Figure 4 (solid lines). Also, in this
case handleAppData() should always set the destination
of the returned PMData object to zero, indicating that the
data should be sent directly to the server.

Sensors ST EH
Client PM EH

Server
EH

Client PM

Fig. 4: Data flow for standalone (solid lines) and collaborative
privacy mechanisms (dashed lines).

Collaborative privacy mechanisms have to implement the
full interface. Method handleAppData() is used to for-
ward locally generated application data to other peers for
further processing and aggregation. Data arriving from other
peers is processed via the handlePeerData() method.
Note that it is possible for the returned data to be sent to
another peer or the server, depending on the destination of
the PMData object. A typical information flow pattern is for
every peer to process the application data, and then forward
it to a peer, which can further process the data before sending
it to the server, as illustrated in Figure 4 (dashed lines).

It is important to stress the fact that a collaborative privacy
mechanism can adapt its operation as a function of the current
peer group configuration. The respective updates are handled
via the onPeerGroupUpdate() method. In our prototype,
the information passed to the privacy mechanism is minimal,
consisting of the identifier and current privacy level of each
peer that is in rage of the local device. It is straightforward
to extend the current implementation in order to include
additional information about each peer.

D. Privacy Settings & Dynamic Privacy Adjustment

The EasyHarvest framework makes it possible for the user
to set a desired privacy level that applies to the installed pri-
vacy mechanism and define so-called privacy regions (in time
and space) where all sensing tasks are suspended. Furthermore,
it offers the option for a more advanced, adaptive behavior
in terms of privacy, depending on the user’s privacy settings
and context. This way, the user is relieved from repeatedly
adjusting the current privacy level, and manually switching
between different privacy mechanisms.

This adaptive operation is introduced in conjunction with the
privacy regions that can be freely defined by the user. More
specifically, the user may associate each region with a different
privacy level: “low”, “medium”, “high” and “block”. Regions
that are not characterized, are considered “free”. The EasyHar-
vest client tracks the user’s spatiotemporal context and adapts
the operation of the privacy mechanisms accordingly.

While in a “free” region, the privacy mechanism (if any)
is deactivated allowing the sensing application task to report
data without any privacy checks. When in a “blocked” region,
the mechanism and sensing application are deactivated (all
sensing activity is halted). In all other cases, if there is a
privacy mechanism that can be used for the sensing application
or a mechanism is already being used for this sensing task,
the EasyHarvest client activates it and sets its privacy level
via onLevelUpdate() according to the user’s preference
(“low”, “medium”, “high”). If there is no compatible privacy
mechanism, the sensing task is deactivated.

Finally, standalone privacy mechanisms might be considered
safer than collaborative ones. To support such a preference,
the EasyHarvest client can be configured to automatically
switch from a collaborative to a standalone privacy mechanism
(provided that such a mechanism exists for the sensing task)
when the user enters a “high” privacy region.

E. Peer-to-Peer Interaction Support

The peer-to-peer group formation and message passing
used for the collaborative privacy mechanisms is based on
Android’s Wi-Fi Peer-to-Peer (Wi-Fi P2P) subsystem. Using
this API, devices that are close to each other can discover,
identify and connect without requiring an intermediate access
point or going on the Internet. The first time a connection is
attempted between two devices, the owner of the target device
is prompted to accept (or decline) the connection, so the user
is in control of the peer group formation. Once a pairing is
successfully established, subsequent interactions can occur in
the background.

When the EasyHarvest client instantiates a collaborative
privacy mechanism, it registers with Wi-Fi P2P a correspond-
ing service with the client’s identifier, the identifier of the
privacy mechanism, and the privacy level. From that point
onwards, the client is notified about the presence of other
peers, and in turn informs the local privacy mechanisms, via
the onPeerGroupUpdate() method, each time a peer that
runs the same privacy mechanism is discovered or disappears.
When a privacy mechanism requests data to be sent to a
peer, the client performs the data transfer using the Wi-Fi P2P
primitives; at the destination, the EasyHarvest client delivers
this data by calling the handlePeerData() method of the
local privacy mechanism component.

V. RELATED WORK

BlurSense [1] is a dynamic fine-grained access control
mechanism that provides secure and customizable access to
the sensors on mobile devices, and allows the definition
and installation of privacy filters (these are supposed to be
developed by security vendors). BlurSense runs in an isolated
sandbox and employs Sensorium, a unified sensor interface,
to access sensor data. This requires specific hooks to be
developed in order for the application’s sensor data requests to
actually go through BlurSense. Also, the filters of BlurSense
do not take into account the context of the personal device
(location or previous history of data emissions), and cannot
work in a collaborative way (between smartphones).

CRePE [4] allows the definition of flexible access control
policies. These can be fixed and apply at all times, or adapt
in a dynamic way based on context-sensitive rules. CRePE
is designed to change Android’s permissions according to
context, but the same principles could be used in our system
to switch between different privacy mechanisms.

Aurasium [11] is a policy enforcement framework for An-
droid applications that automatically repackages applications
to attach user-level sandboxing and policy enforcement code.
It monitors applications’ behavior for security and privacy
violations (sensitive information disclosure, SMS covertly
charging, malicious URL access) and can detect/prevent cases
of privilege escalation attacks. MPdroid [9] is a security frame-
work for Android which supports multiple security policies.
It lets users define their own policy and provides fine-grained
access control to (untrusted) applications. Both Aurasium and
MPdroid follow an “on-off” access model (as most systems).

AnonySense [5] supports opportunistic sensing applications,
while hiding a user’s location among those of several users.
In addition, attribute values reported by users may be either
generalized or suppressed to make each user’s report identical
to a number of other reports. However, these privacy objec-
tives, as well as the anonymization parameters are fixed and
cannot be chosen by users. As such, AnonySense is not a
privacy framework, but rather one (of many possible) privacy
mechanisms that can be accommodated via our framework.
PEPSI [7] takes an Identity-Based Encryption approach to
provide unlinkability for the mobile nodes and the queries
in a participatory sensing context with minimal trust in third
parties. However, sensor-related data does not undergo any
privacy-enhancing transformation.

The PRISM platform [6] controls access to the sensors of
the smartphone, either in a coarse-grained manner or by means
of application-specific energy-usage and bandwidth-usage lim-
its. To prevent sensor data accumulation, PRISM employs
“forced amnesia”, periodically clearing the application state.
TaintDroid [8], similarly to PRISM, tracks sensor data access
by various smartphone applications, to raise user awareness
on privacy leakage and sensor data misuse.

SemaDroid [12] is a framework for controlling sensor
access/usage through hooks in Android that intercept sensor
data requests from various applications. SemaDroid supports
user-defined privacy policies for the various sensor-application
pairs, and transparently provides mocked data to the applica-
tion when access to the respective sensors is restricted. How-
ever, SemaDroid does not consider privacy-enhancing trans-
formations of sensor data or collaborative privacy schemes.
Also, mock-up data may harm application utility.

Finally, ipShield [2] tracks the usage of every sensor em-
ployed by an app and performs a privacy-risk assessment
presenting this information to the user. ipShield recommends
possible privacy actions based on user preferences, and enables
users to define context-aware fine-grained privacy rules, that
can suppress, perturb and playback sensor data.

VI. CONCLUSION & OUTLOOK

We have proposed a concept for separating privacy mecha-
nisms from the sensing part of crowdsensing applications that
run on personal devices, and developing such mechanisms as
plug-ins that can be flexibly bound to the application. We also
presented a proof-of-concept implementation as an extensions
of a crowdsensing system for Android devices.

The proposed approach allows to design and implement
flexible privacy mechanisms, which go beyond the “on-off”
model of current access control mechanisms, and to consider
the utility of the data items produced by the mobile part
of the crowdsensing application. It also allows to implement
collaborative privacy mechanisms, which is impossible with
low-level “on-off” mechanisms. Of course, it is still possible
to emulate an “on-off” approach, is desired, using a privacy
mechanism that simply drops a given type of data.

An interesting research direction would be to define stan-
dards for application-level data types and corresponding utility

functions for privacy-preserving transformations that can be
applied to such data. Based on such models, one could
engineer generic privacy mechanisms, which can be re-used
for different applications. Several extensions can also be made
in our prototype. For instance, more intelligent strategies could
be employed for the dynamic selection/switching of privacy
mechanisms, based on the utility each mechanism can achieve
for the same privacy level setting. Further, historical evidence
on prior interaction/trust among users (e.g., via social net-
works) could be exploited to define more reliable peer groups
for the collaborative privacy mechanisms; with surgical modi-
fications on the server, the client could engage known/trusted
peers even if these are in remote locations. Last but not
least, privacy mechanisms could let the user “callibrate”, in a
personalized manner, key algorithmic parameters with respect
to the generic privacy levels (low, medium, high) assigned to
the different regions, rather than using some hardwired internal
values for all users.

REFERENCES

[1] Justin Cappos, Lai Wang, Rebecca Weiss, Yi Yang, and Yanyan Zhuang.
Blursense: Dynamic fine-grained access control for smartphone privacy.
In Proc. IEEE Sensors Applications Symposium, pages 329–332, 2014.

[2] Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan,
Yasser Shoukry, Matt Millar, and Mani Srivastava. ipshield: a framework
for enforcing context-aware privacy. In Proc. 11th USENIX Symposium
on Networked Systems Design and Implementation, pages 143–156,
2014.

[3] Delphine Christin. Privacy in mobile participatory sensing: current
trends and future challenges. Journal of Systems and Software, 2015.

[4] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. Crepe: Context-
related policy enforcement for android. In Information Security, pages
331–345. Springer, 2011.

[5] Cory Cornelius, Apu Kapadia, David Kotz, Dan Peebles, Minho Shin,
and Nikos Triandopoulos. Anonysense: privacy-aware people-centric
sensing. In Proc. 6th International Conference on Mobile systems,
Applications, and Services, pages 211–224, 2008.

[6] Tathagata Das, Prashanth Mohan, Venkata N Padmanabhan, Ramachan-
dran Ramjee, and Asankhaya Sharma. Prism: platform for remote
sensing using smartphones. In Proc. 8th International Conference on
Mobile systems, Applications, and Services, pages 63–76, 2010.

[7] Emiliano De Cristofaro and Claudio Soriente. Short paper: Pepsi—
privacy-enhanced participatory sensing infrastructure. In Proc. 4th ACM
Conference on Wireless Network Security, pages 23–28, 2011.

[8] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N Sheth. Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems, 32(2):5, 2014.

[9] Tao Guo, Puhan Zhang, Hongliang Liang, and Shuai Shao. Enforcing
multiple security policies for android system. In Proc. 2nd International
Symposium on Computer, Communication, Control and Automation,
2013.

[10] Manos Katsomallos and Spyros Lalis. EasyHarvest: Supporting the
deployment and management of sensing applications on smartphones.
In Proc.IEEE International Conference on Pervasive Computing and
Communications (Workshops), pages 80–85, 2014.

[11] Rubin Xu, Hassen Saı̈di, and Ross Anderson. Aurasium: Practical
policy enforcement for android applications. In Proc. USENIX Security
Symposium, pages 539–552, 2012.

[12] Zhi Xu and Sencun Zhu. Semadroid: A privacy-aware sensor manage-
ment framework for smartphones. In Proc. 5th ACM Conference on
Data and Application Security and Privacy, pages 61–72, 2015.

