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Abstract 

The use of data-mining as an analytical tool has been increasing in recent years; and the emergence of new manufacturing paradigms such as the 

Industry 4.0 initiative have led many smaller manufacturers to look at utilizing these powerful techniques; however, practical applications are 

still in their infancy, and remain out of reach for many of these small manufacturing enterprises (SME’s). This paper focuses on methods to 

integrate these emerging paradigms into existing manufacturing processes, specifically, how data-mining principles may be used to begin to 

explore the concept of Intelligent Manufacturing under Industry 4.0; with a focus on improving product and process quality.  

In collaboration with an industrial partner; a respected manufacturer of household electronic appliances, techniques were developed using open-

source and freely-available software, running on readily available hardware and using only existing data-collection points, that were able to 

provide actionable feedback which could be used to make improvements to the manufacturing operations; and to increase product quality. This 

paper serves as evidence that the ability to utilise these techniques is now within reach of numerous smaller manufacturing operations, and 

provides a further understanding of how moves towards fully Industry 4.0 ready factories may be made in the years to come. 

 

© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

The principles of data and text mining are long established 

and well understood. However, the resurgence in popularity of 

the field -due to recent successes in the field of machine 

learning algorithms [31] has paved the way for this powerful 

new tool to be adopted by industry.  This forward thinking, 

combined with the development of the relevant technologies 

[28] and the entry into the age of ‘big-data’ [27]; has shifted the 

ability to make use of these powerful methodologies beyond 

the bounds of academic institutions.  

The ‘Industry 4.0’ methodology laid out at the 2013 

Hamburg world fair [42] has developed into a focused and 

unique objective. The term, coined by the German government 

to describe their ongoing vision for manufacturing, whilst this 

concept is multi-faceted and often open to interpretation, there 

exists a clear theme of intelligent manufacturing; which makes 

use of advanced computational technologies, and the 

advancements in digital systems and machine learning 

processes to support decision making, run self-sufficiently via 

networks of distributed control, and to self-adjust and self-

correct should problems arise.  

The objectives have been prompted, in part, by the mounting 

pressures and challenges facing manufacturing industries in the 

new era. There is a massively increased demand for high 

quality, bespoke products [33], developed using sustainable 

and efficient methodologies. To meet this demand, intelligent, 

reconfigurable systems need to be developed. Estimates by 

government agencies put the potential gains in efficiency of 

such processes as high as 30%. 

Initial steps have been taken in the implementation of 

intelligent systems, and many companies with large 

manufacturing requirements have begun to explore the 

potential of this area [4], however, the vast investments needed 

[26] both in capital and skills present a significant obstacle. 

Through this research, we outline a methodology to adopt the 

principles of data-mining and utilize them to support decision 

making with respect to quality, at both the component and 

control levels. 
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2. Literature Review 

2.1. Big Data & Industry 4.0 

Since its introduction, the Industry 4.0 initiative has been 

widely discussed and in the author’s opinion has migrated into 

the role of a popular science buzzword to simply relate 

emerging digital and advanced manufacturing technologies. 

The initiative is broad, and a significant volume of focused 

research remains until such a paradigm can be realized if indeed 

it is possible to develop a system in line with the Industry 4.0 

initiative in its current form at all. 

Much of the shift towards Industry 4.0 has been driven by 

the emergence of ‘Big-Data’, and the issues associated with the 

way industrial operations collect, manage and interpret their 

data remain prevalent [7]. The concept of big data and 

considerations of how to deal with such large datasets is an 

intrinsic challenge of any system operating in an Industry 4.0 

environment as it typically renders traditional statistical 

processing methods useless due to its complexity and sheer 

size. 

Hilbert [13] outlines five main characteristics with which to 

describe big data: Volume, the quantity of generated and stored 

data. Variety, the type, and nature of the data. Velocity, the 

speed at which the data is generated and processed. Variability, 

The consistency of the data. Veracity, the quality of the 

captured data, which can vary massively between devices or 

even individual sensors. These five features of big-data present 

substantial challenges [5, 39], but are the source of its massive 

potential. 

It is well known that the rate of data generation, capture and 

storage is continually increasing [14], and soon the volume of 

data generation in this field will require the consideration of 

potentially unbound datasets and continuous data streams [21]. 

However, despite the vast amounts of information that is being 

generated, relatively few companies involved in the 

manufacturing sector are utilizing this data [16]. 

Current research efforts [2, 26] have attempted to provide 

comprehensive definitions of the necessary ‘criteria’ that need 

to be met, across all areas of the business. Others, have 

attempted to illustrate how the paradigm will be implemented 

in the future [41, 23]. However, Industry 4.0 is a multi-faceted 

problem, and it is unlikely that all aspects of it will be 

applicable to all businesses.  

2.2. Intelligent Manufacturing 

Intelligent Manufacturing describes any manufacturing 

processes which involve a degree of computational 

intelligence. This can be via the use of embedded sensors as in 

the case of IoT technologies [3], and cover the use of analytical 

techniques on historical process data to provide Knowledge 

Discovery and support decision making within manufacturing 

systems [15, 19] or, ultimately, the development and 

implementation of full Cyber-Physical-Systems [20], a 

synthesis of physical and digital technologies across the entire 

manufacturing system; and necessary associated technologies 

and frameworks.  

Intelligent manufacturing itself encompasses many 

emerging technologies and processes that are considered ‘part 

of’ Industry 4.0, and both Theoretical and Technological 

advancements are being seen at an ever increasing rate. Main 

research focuses include: novel automation control systems, 

with a focus on, decentralization, virtualization, 

reconfiguration, and adaptability [29, 9, 18, 35]; the 

development and application of machine learning and artificial 

intelligences [32]; and virtual and augmented reality systems, 

which are being used to bridge gaps in geography, knowledge 

and skill level [24]. In addition, other enabling technologies 

and associated fields of research have also seen renewed 

interest and novel ideas.  Algorithm development and software 

engineering [36] have both seen a variety of successful 

advances in previous years. 

Current implementations have demonstrated adaptive 

scheduling, real-time modelling of processes, and Decision 

Support Systems, that have been used to refine processes and 

component design. Indeed, significant studies in this area have 

resulted in a variety of frameworks by which to classify and 

evaluate such emerging systems [30]. The 5C’s architecture, 

proposed by Lee [17], outlines the different intelligence levels 

achievable, and their associated technologies and capabilities. 

This architecture is illustrated in Figure.1. 

Figure.1. The 5C’s architecture. Figure reproduced from [17] 

 

Many of the aforementioned technologies still require 

significant development before they become realistic to use on 

an industrial scale, and as such are of limited use to those 

without the funding to conduct their own research. Indeed, 

many obstacles to the revolution will become apparent only 

once the research reaches a commercial level. Issues such as 

standardization [37] and validation [10] of such novel 

architectures are likely to further impede  

progress for those manufacturing facilities without the 

necessary resources; as are ethical concerns and political 

interventions [40]. 

Whilst the area of Intelligent Manufacturing is itself a multi-

faceted problem, the recurring element that underpins much of 

this revolution is the collection, utilization and understanding 

of data, or the study of ‘Informatics'; almost all of the areas 

linked with the intelligent manufacturing research area rely on 

the capture and analysis of data in some way. To this end the 

use of advanced data analytics and machine learning is a key 

technology to develop to further these other technologies; and 

the next step in this chain lies in utilizing the vast reserves of 

data through data mining and knowledge discovery, to better 

understand these manufacturing processes. 
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2.3. Industry 4.0 in SME’s 

Initial steps have been taken in the implementation of 

intelligent systems [12], and their appearance in manufacturing 

operations globally is ever increasing.  

Small-scale implementations have achieved success, but 

tend to focus on specific tasks, such as control of motors and 

actuators to maintain process parameters. With a lack of 

understanding at the process scale. 

The reality is that few companies have the necessary 

systems and capital in place to make leaps such as these in their 

operational processes, and find themselves presented with 

substantial barriers with respect to access. Due to the vast scope 

of the technologies and methodologies, and substantial costs 

involved and lack of understanding and competence with 

advanced manufacturing techniques, at the employee level
 
[1]. 

The current literature highlights a gap in the application of 

these technologies. The rate of technological advancement in 

this area is outpacing its adoption in the manufacturing sector, 

as the challenges associated with practical use prevent many of 

the smaller operations from utilizing these advancements. With 

this in mind, the following process was developed and 

validated using a case study, to seek to overcome many of the 

common barriers to access.   

3. Process Development 

This section outlines the approach taken by the authors to 

develop a system within the confines of the existing system to 

implement data-mining to focus on the discovery of patterns 

and knowledge with which to provide a decision support 

system to the production engineers, with a focus on improved 

quality. A system model that provides insights to support 

decision making meets the necessary criteria of the cognition 

level of the 5C’s architecture, demonstrating a level of 

intelligence. The research was conducted with the support of 

an industrial partner, a small manufacturing enterprise that 

produces washing machines and tumble-dryers, in a range of 

models. Discussions with our Industrial partner led to a list of 

criteria to meet as follows: The process must be built around 

the use of archived data; as automated digital collection of the 

data would require significant investment; The process must be 

developed to utilize readily available tools; The process must 

run without interference on established computing hardware 

within the facility. 

Following discussions, a dataset was provided which 

consisted of a collection of re-work records, consisting of brief, 

textual descriptions of observed faults, and the actions taken to 

correct these faults. This was supported by supplementary, 

nominal attributes; such as the model number, the date etc. A 

full list of the attributes can be seen in Table.1. 

Each instance in the dataset was representative of a single 

fault, and the data could be provided at a daily rate or any 

specified combination thereof, and with significant historical 

archived data to support and train. Based on the nature of the 

available dataset, a process was hypothesised that would enable 

the necessary preparation and knowledge extraction of the data. 

Once validated through the case-study, the process would be 

applicable and implementable to many manufacturing 

processes. 

Table 1. Attribute descriptions for the provided dataset. 

Attribute Data Type Description 

Line Nominal The production line used for 

manufacture 

Model Nominal The identifying model code 

Date Date Datestamp of each instance 

Fault Group Text The Group of faults into which the 

specific fault falls, typical values: 

scratch/damage, electrical, fit, etc. 

Fault Text Details of the specific nature of the 

fault 

Remedy Text Details of corrective action/disposal  

Remedy Detail Text Additional notes on corrective action 

Serial Number Nominal The unique serial number of the 

affected product 

Surname Nominal The surname of the quality engineer 

entering the data 

 

The process focuses on building an analytic model to 

produce a set of rules to be used as a decision support system, 

thus targeting the Cognition level in Lee’s 5C’s architecture. A 

flowchart illustrating the steps of the proposed process can be 

seen in Figure.2. 

Figure.2. Flowchart illustrating the proposed system. 

 

The manual data-collection methods resulted in data 

delivery in a discrete time period, typically daily. As such, 

software with which to perform this analysis was chosen on the 

basis of its ability to handle datasets rather than continuous data 

streams. 

The process will use the WEKA (Waikato Environment for 

Knowledge Acquisition) data-mining software. WEKA is a 

powerful, java based, analytical tool focused on the application 

of data-mining techniques to datasets. Whilst many 

professional and supported data-mining software packages 

exist, WEKA offers distinct advantages to SME’s in that it is 

quick and easy to implement and access; easy to use; and 

requires zero financial investment.  

3.1. Case Study 

Pre-processing of collected data is frequently necessary to 

improve accuracy and reliability of predictions. No standard 

data-collection methodologies exist, and the approach was 
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necessarily heuristic. It was decided after careful examination 

of the dataset that as the dataset was only concerned with 

failures and problems that had occurred, there was little 

variation in the sentiment and style of the textual information. 

The vast majority of instances all described some form of 

failure, the variance being the cause, and they were typically 

written by the same operators describing the same issues, and 

hence were syntactically and stylistically similar. To overcome 

this, it was decided to treat each instance of textual information 

nominally; that is, instead of separating each instance out and 

using a bag of words approach, the text contained would act in 

the same way as any other nominal value. The rule-based 

learning algorithms would then be able to build a classification 

model based on the frequency of the attribute values; attribute 

values that occur frequently within the same instance indicate 

a relationship between the attributes. 

The Fault Group attribute was selected to act as our class 

attribute, and describes the category of fault recorded. Typical 

values include: ‘fit’, for faults involving assembly failures, and 

‘scratch/damage’, where components are damaged and 

unusable. Multiple factors may contribute to the occurrence of 

these faults, and an accurate model would produce a set of 

rules, indicating how the different attribute values influence the 

faults observed to be occurring. This rule set can then be used 

as a decision support system, supplying information to the 

process engineers about the observed processes, through the 

construction of an Ishikawa diagram, an established quality and 

process control technique. The presentation of the analysis in 

this way will enable multiple rules to be visualized as the causal 

factors of each category branch on the diagram. 

It was necessary to convert the textual data to the 

lowercase and remove all spaces, to prevent the algorithm 

distinguishing between different capitalizations or descriptions 

of the same problem. The WEKA software considers the same 

value written in the upper case a different value.  

Consideration must also be given to outlier detection; 

infrequently occurring events that may lead to inaccuracies in 

the model. Using the RemoveFrequentValues filter, instances 

with unique attribute values that occur only once in the dataset 

can be removed. The InterquartileRange filter was then applied 

to isolate and remove any other infrequent instances. 

Feature Selection in this instance was deemed unnecessary 

due to the limited number of attributes within the dataset. 

However, consideration was given to the attributes that would 

be used to extract information. Several attributes exhibited little 

variation, and others, it was clear, had little information to offer 

in terms of assembly faults. As such these attributes should be 

removed to minimise noise. 

3.2. Algorithms 

Extensive literature exists covering a wide range of the 

techniques that may be utilised as a part of the data mining 

process. A major family of algorithms are those which focus on  

Rule Based learning. As explained by [22], these algorithms 

are the oldest; some of the simplest; and work by using 

mathematical relationships to determine a set of ‘rules' by 

which to classify the data. As the computing power available 

continues to increase, these algorithms are becoming 

increasingly complex. These types of algorithm were 

considered preliminarily for this research, due to their ease of 

construction and interpretation.  

Two main variations were tested: the PART algorithm, an 

implementation within WEKA of the C4.5 algorithm [25] 

which uses a divide-and-conquer approach to build a decision 

tree, before ‘pruning’ the unnecessary structures within the 

tree; and the JRip or RIPPER (Repeated Incremental Pruning 

to Produce Error Reduction) algorithm [8].  

An initial sample of the dataset containing 1000 instances 

of quality control entries had been used to validate the pre-

processing techniques, however, it was necessary to determine 

the optimum dataset size, as both too many instances and too 

few could lead to inaccurate models. A 6000 instance dataset 

was prepared using the relevant pre-processing techniques, the 

PART and JRip algorithms were then run and evaluated using 

a 10-fold-cross-validation, and the number of instances 

reduced between iterations. The percentage of correctly 

classified instances, when evaluated, is plotted for both 

algorithms in Figure.3a.  

The results of this preliminary assessment indicated that a 

dataset size exceeding 5000 instances leads to negligible gains 

in model accuracy for both algorithms. This corresponds to 

approximately 10 days; an approximate working fortnight's 

worth of records. 

Figure.3. Percentage of correctly classified instances against the number of 

instances. a) Evaluated using 10-fold-cross-validation. b) Evaluated using 

isolated Test Set.  

 

By logically partitioning the dataset into a decided time 

step, both  short-term and long term patterns may be 

discovered, by considering the duration over which the data to 

be analysed was collected. The process also aims to be self-

validating: As rules are uncovered and used to make decisions 

and take corrective actions, where the source of failure is 

resolved, the rules will change to reflect different patterns, as 

the prevalence of the resolved fault will decrease in the dataset. 

In order for this to remain true, each subsequent set of rules 

produced via the method outlined must be considered to 

supersede the previous set in terms of validity; the most recent 

set is the most accurate analysis of the current state.  

One potential issue with using a cross-fold-validation 

technique for model evaluation is that of overfitting, models 

tested on the data used to train them often learn the patterns 

within that dataset, but perform worse when tested on data 

collected at a different instance in time. To remove this factor, 
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and isolated Test-Set consisting of 1000 instances was created 

and used to evaluate the PART and JRip algorithms in the same  

manner as before. The results are shown in Figure.3b. 

The results of the Test-Set evaluation supported the 

conclusion that increases in accuracy are negligible when the 

dataset size begins to exceed 5000 instances. The accuracy of 

the JRip and PART algorithms for the 5000 instance tests were 

94.5% and 96.0% respectively. 

3.3. Improving Model Accuracy 

Two methods of improving classifier accuracy are bagging and 

boosting which are both methods that fall into the category of 

ensemble learning. Standard classifiers build simple models of 

the data, whereas, in ensemble learning, multiple base models 

are combined to produce an amalgamated model. 

 Bagging involves the creation of new datasets for multiple 

classifiers. In bagging, a dataset of N instances (where N is the 

size of the original dataset) is created by randomly drawing 

with replacement. The replacement means that instances from 

the original dataset may occur more than once, or not at all. 

These models then utilise a voting system to fully develop the 

final classifier. 

 Boosting involves the creation of a series of classifiers, 

where each in the series is given a different training set that is 

based on the performance of the preceding classifiers, and their 

prediction errors. Instances that were incorrectly predicted in 

previous models are given a greater weighting than those 

classified correctly and are more likely to be chosen for future 

datasets. In this way, the classifier becomes iteratively better, 

by focusing more heavily on the weaker areas of its learning at 

successive stages. To implement these two ideas into WEKA, 

algorithms exist in the WEKA toolkit, the AdaBoostM1 

algorithm to boost a classifier, and the bagging algorithm 

[6,25].  

The 5000 instance dataset was tested using bagged and 

boosted versions of the algorithms. Whilst running the 

computations, the AdaBoostM1 algorithm, when used with the 

PART algorithm, would cause WEKA to run out of heap 

memory. Whilst it is possible to work around this issue, the 

concept of this case study was to produce a simplified and 

easily implementable procedure, and the necessary 

understanding of computation was judged to be excessive. The 

results of the bagging and boosting and their effects on the 

accuracy of the developed models can be seen in Table.2. 

Table 2. Accuracies of the Bagging and AdaBoostM1 meta-algorithms. 

3.4. Decision Support Generation 

A validated process now exists by which to produce a model, 

consisting of a set of rules, that can be used to support decisions 

regarding product quality issues. The JRip algorithm and the 

Boosting technique (to improve accuracy), can be used to 

produce an accurate model, with a sufficient degree of 

confidence. The model is trained using a 5000 instance dataset. 

This model can then be used to make predictions about the 

patterns contained in any future datasets produced. To 

demonstrate this, a further dataset containing the entries from 

3 days of runtime, a Set of Rules was produced. Those with the 

highest coverage (a metric which expresses the number of 

correctly classified instances in comparison to the number 

incorrectly classified) are shown in Table.3. Rules with a high 

coverage, are not only prevalent in the dataset (and hence occur 

frequently), but are also those which the generated model is 

able to predict with the highest degree of accuracy. 

 

Table 3. Rules Generated by the final model 

 

From Table.3, several insights can be found directly, without 

the use of additional quality tools. For instance, the model 

highlights that the Plinth component on the 85969 model 

produced by the company is a frequent source of failure, 

specifically relating to the fit of the component to the product.  

4.  Case-Study Insights 

The aim of this case study was to establish how best to 

utilise data mining to improve assembly and quality control 

processes; to allow them to be implemented into existing 

systems, with a minimal impact.  

Validated results have been produced which can be easily 

be interpreted and become actionable pieces of information. To 

this end, the proposed system can be said to demonstrate an 

effective Decision Support System and qualifies at the 

cognition level in the 5C’s architecture; demonstrating a level 

of intelligence in-line with the Industry 4.0 initiative. In 

addition, the case-study aims were fully met: the final system 

is implementable, works with archived data, and has a low 

computational requirement by design. The approach is 

adaptable, and as long as suitable care is taken to correctly 

partition the data and understand the effect that this partitioning 

will have, the method can be used to determine a vast number 

of different patterns depending on how the dataset is divided 

initially. Additional study of outlier detection and advanced 

algorithms could further refine the results, however the global 

model accuracy and high coverage of the drawn conclusions 

lead to considerable confidence that the results support real-

world trends. 

Whilst the methods developed demonstrated the 

possibility of using data-mining in this way, they are by no 

means ideal, and several challenges remain to be overcome. 

Rule Class (Fault Group) Coverage 

Fault = Plinth 
AND Model = 85969 

Fit 15.7/0.0 

Fault = Timer knob AND 

Model = 74628 
Fit 31.3/0.0 

Fault = Door Assy Fault 
AND Remedy = Change Part 

Scratch/Damage 45.5/0.0 

Fault = Drum 
AND  Model = 74628 

Fit 175.0/9.0 

Remedy = Retest Auto Auto Test 213.0/0.0 

Remedy = Fit Part 

AND Date = 13/11/2015 
Missing Part 13.2/0.0 

Remedy = Fit Part 
AND Date = 12/11/2015 

Missing Part 9.0/0.0 

Fault = Worktop 
AND Remedy = Refit 

Fit 34.9/0.0 

Algorithm Bagging Accuracy AdaBoostM1 Accuracy 

JRip 95.4% 97.3% 

PART 96.9% - 
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The process is very much a demonstration of supervised 

learning, and whilst valid, it requires significant human input, 

in terms of both processing, and interpretation. The next logical 

step in the evolution of this process would be an automated 

system, which would perform the necessary corrective actions, 

or notify quality and process engineers of emerging trends.  

 

5. Concluding Remarks 

 

As explored previously, many manufacturing enterprises 

are keen to adopt principles of intelligent manufacturing, but 

are presented with a barrier to doing so. This work presents 

evidence, that some of these barriers preventing such adoption, 

may be overcome with considered use of freely available 

software and existing data. The industry 4.0 initiative places 

significant emphasis on the utilisation data to form intelligent 

systems and processes, and by exploring the ways in which 

companies may utilise their existing records, such an intelligent 

system has been presented. Whilst in this instance, the 

methodology proved useful, countless variations in 

manufacturing processes mean that such a problem is difficult 

to generalize to all processes, and significant further work is 

required in this field to realise the full potential of intelligent 

manufacturing. 
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