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Abstract

Notifications from mobile devices frequently prompt us with information, either to

merely inform us or to elicit a reaction. This has led to increasing research interest in

considering an individual’s interruptibility prior to issuing notifications, in order for

them to be positively received. To achieve this, predictive models need to be built from

previous response behaviour where the individual’s interruptibility is known. However,

there are several degrees of freedom in achieving this, from different definitions in what

it means to be interruptible and a notification to be successful, to various methods for

collecting data, and building predictive models.

The primary focus of this thesis is to improve upon the typical convention used for

labelling interruptibility, an area which has had limited direct attention. This includes

the proposal of a flexible framework, called the decision-on-information-gain model,

which passively observes response behaviour in order to support various interruptibility

definitions. In contrast, previous studies have largely surrounded the investigation

of influential contextual factors on predicting interruptibility, using a broad labelling

convention that relies on notifications being responded to fully and potentially a survey

needing to be completed.

The approach is supported through two in-the-wild studies of Android notifications,

one with 11,000 notifications across 90 users, and another with 32,000,000 across 3000

users. Analysis of these datasets shows that: a) responses to notifications is a decision-

making process, whereby individuals can be reachable but not receptive to their content,



x Abstract

supporting the premise of the approach; b) the approach is implementable on typical

Android devices and capable of adapting to different notification designs and user

preferences; and c) the different labels produced by the model are predictable using data

sources that do not require invasive permissions or persistent background monitoring;

however there are notable performance differences between different machine learning

strategies for training and evaluation.



xi

Contents

Acknowledgements vii

Abstract ix

Contents xi

List of Publications xix

List of Figures xxi

List of Tables xxvii

1 Introduction 1

1.1 Mobile notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Interacting with notifications . . . . . . . . . . . . . . . . . . 3

1.1.2 Coexisting notifications . . . . . . . . . . . . . . . . . . . . 4

1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8



xii Contents

2 Background 11

2.1 Overarching themes in studying interruptibility . . . . . . . . . . . . 12

2.2 Variability in the definitions of interruptibility used . . . . . . . . . . 13

2.3 Scenarios and interruptibility . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Choice of interruption . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Choice of study environment . . . . . . . . . . . . . . . . . . 19

2.3.3 Choice of study objective . . . . . . . . . . . . . . . . . . . . 20

2.4 Data collection and labelling . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Strategies for labelling interruptibility . . . . . . . . . . . . . 22

2.4.2 Capturing contextual data . . . . . . . . . . . . . . . . . . . 25

2.4.2.1 Common contextual data traces collected . . . . . . 25

2.4.2.2 Extracting feature variables from the raw traces . . 28

2.4.3 Datasets and participation . . . . . . . . . . . . . . . . . . . 30

2.4.3.1 Incentivising study participation . . . . . . . . . . 32

2.5 Predicting interruptibility . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Finding influential features . . . . . . . . . . . . . . . . . . . 33

2.5.2 From datasets to training sets . . . . . . . . . . . . . . . . . . 34

2.5.3 Training environment: offline vs online . . . . . . . . . . . . 35

2.5.4 Training data: aggregate vs personal . . . . . . . . . . . . . . 36

2.5.5 Classification and evaluation . . . . . . . . . . . . . . . . . . 37

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.1 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Contents xiii

3 Interruptibility behaviour as a decision process 43

3.1 Decomposing response behaviour for labelling interruptibility . . . . 44

3.2 The Decision-On-Information-Gain (DOIG) model . . . . . . . . . . 46

3.2.1 Abstract model . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Applying the DOIG model to Android notifications . . . . . . 48

3.2.2.1 Flexibility and limitations in applying the model for

Android and other notification systems . . . . . . . 50

3.3 Applying the DOIG model: ImprompDo Android application . . . . . 52

3.3.1 Rationale for an in-the-wild application design . . . . . . . . 52

3.3.2 Installation and setup . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Interruptions: Android notifications . . . . . . . . . . . . . . 55

3.3.4 Data collection: response behaviour and contextual data . . . 56

3.3.4.1 Collecting response behaviour for labelling . . . . . 57

3.3.4.2 Collecting contextual data . . . . . . . . . . . . . . 58

3.3.5 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 DOIG model versus black-box labelling . . . . . . . . . . . . . . . . 61

3.4.1 Exploring response time . . . . . . . . . . . . . . . . . . . . 62

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Sampling context and decision data 67

4.1 Investigating sampling stability and usefulness . . . . . . . . . . . . . 68

4.2 Passively sampling data on Android devices with ImprompDo . . . . 69

4.2.1 Investigating data availability and sampling regularity . . . . 70



xiv Contents

4.2.1.1 Data availability . . . . . . . . . . . . . . . . . . . 70

4.2.1.2 Sampling regularity . . . . . . . . . . . . . . . . . 71

4.3 Correlations between contextual data and DOIG labels . . . . . . . . 74

4.3.1 Extracting features from the raw data traces . . . . . . . . . . 74

4.3.2 Correlations between features and DOIG model labels . . . . 76

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Predicting decision making behaviour 81

5.1 Examining machine learning strategies . . . . . . . . . . . . . . . . . 82

5.1.1 Machine learning approach . . . . . . . . . . . . . . . . . . . 83

5.1.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . 83

5.1.1.2 Classifier choice . . . . . . . . . . . . . . . . . . . 84

5.1.1.3 Training and testing models . . . . . . . . . . . . . 84

5.1.1.4 Evaluating model performance . . . . . . . . . . . 85

5.2 Performance of a typical user (AT-AT) . . . . . . . . . . . . . . . . . 87

5.2.1 Classifier performance . . . . . . . . . . . . . . . . . . . . . 87

5.2.1.1 Reducing classifier choice to decision-trees . . . . . 89

5.3 Comparing aggregate and personalised models (AT-PT and PT-PT) . 90

5.3.1 Training from aggregate data (AT-PT) . . . . . . . . . . . . . 92

5.3.2 Training from personal data (PT-PT) . . . . . . . . . . . . . . 93

5.3.3 Comparison with common Android conventions . . . . . . . 96

5.3.3.1 Always interrupt baseline . . . . . . . . . . . . . . 96



Contents xv

5.3.3.2 Volume state baseline . . . . . . . . . . . . . . . . 97

5.4 Predictive models in an online environment . . . . . . . . . . . . . . 102

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Model robustness to variability 109

6.1 Boomerang Notifications Android application . . . . . . . . . . . . . 109

6.1.1 Installation and setup . . . . . . . . . . . . . . . . . . . . . . 113

6.1.2 Data collection process . . . . . . . . . . . . . . . . . . . . . 115

6.1.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Flexibility of the DOIG model . . . . . . . . . . . . . . . . . . . . . 119

6.2.1 Variability in notification properties . . . . . . . . . . . . . . 120

6.2.1.1 Grouping and priority . . . . . . . . . . . . . . . . 120

6.2.1.2 Actions and remove-ability . . . . . . . . . . . . . 121

6.2.1.3 Interruptive nature . . . . . . . . . . . . . . . . . . 123

6.2.1.4 Impact on observable decisions in the DOIG Model 124

6.2.2 Variability in device preferences . . . . . . . . . . . . . . . . 125

6.2.2.1 Notification display preferences . . . . . . . . . . . 126

6.2.2.2 Interruption policies . . . . . . . . . . . . . . . . . 127

6.2.2.3 Impact on observable decisions in the DOIG Model 128

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



xvi Contents

7 Coexisting Notifications 133

7.1 Notification Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Notifications and usage sessions . . . . . . . . . . . . . . . . . . . . 135

7.2.1 Notification stacks . . . . . . . . . . . . . . . . . . . . . . . 136

7.3 Selectivity when managing the notification stack . . . . . . . . . . . . 138

7.3.1 Frequency of notification removals . . . . . . . . . . . . . . . 139

7.3.2 Stack removals and deferment . . . . . . . . . . . . . . . . . 139

7.3.3 When stack management occurs inside sessions . . . . . . . . 142

7.4 Influence of wider usage on individual responses . . . . . . . . . . . 145

7.4.1 Notifications prompt responses to other notifications . . . . . 145

7.4.2 Interruption policies are not representative . . . . . . . . . . . 146

7.4.3 Impact from notification stack characteristics . . . . . . . . . 147

7.5 Implications and impact on the DOIG model . . . . . . . . . . . . . . 149

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Conclusions and future work 153

8.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.1.1 Contributions, key observations, and limitations . . . . . . . . 155

8.1.1.1 Current conventions in interruption research . . . . 155

8.1.1.2 The decision-on-information-gain model . . . . . . 156

8.1.1.3 Robustness: DOIG model flexibility and position

among wider behaviour . . . . . . . . . . . . . . . 158

8.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



Contents xvii

8.2.1 Maximisation of predictive indicators with the DOIG model . 160

8.2.2 Real world application and evolutionary learning . . . . . . . 160

8.2.3 Wider research questions . . . . . . . . . . . . . . . . . . . . 161

8.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 165

Appendices 177

Appendix A ImprompDo App Design & Dataset . . . . . . . . . . . . . 179

Appendix B Boomerang Notifications App Design . . . . . . . . . . . . 189



xviii Contents



xix

List of Publications

This thesis includes work introduced in the following publications:

Turner, L. D., Allen, S. M., and Whitaker, R. M. (2015a). Interruptibility prediction

for ubiquitous systems: Conventions and new directions from a growing field. In Proc.

UbiComp’15, pages 801–812. ACM

Turner, L. D., Allen, S. M., and Whitaker, R. M. (2015b). Push or delay? decompos-

ing smartphone notification response behaviour. In Human Behavior Understanding,

volume 9277 of Lecture Notes in Computer Science, pages 69–83. Springer International

Publishing

Turner, L. D., Allen, S. M., and Whitaker, R. M. (2017b). Reachable but not recept-

ive: Enhancing smartphone interruptibility prediction by modelling the extent of user

engagement with notifications. Pervasive and Mobile Computing

Turner, L. D., Allen, S. M., and Whitaker, R. M. (2017a). Behaviour patterns in

managing stacks of mobile notifications



xx List of Publications



xxi

List of Figures

1.1 An example Android notification. . . . . . . . . . . . . . . . . . . . 2

1.2 Multiple notifications in a notification drawer. . . . . . . . . . . . . . 3

1.3 An example notification icon shown on the Android top bar. . . . . . 4

2.1 Definition groups over time. Figure extended from [121]. . . . . . . . 15

2.2 Use of different experiment environments over time. Figure extended

from [121] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Use of different labelling strategies over time. Figure extended from [121] 24

2.4 Use of different data collection strategies over time. Figure extended

from [121] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 An abstract representation of the common black-box convention for

labelling interruptibility. After being interrupted (!), if a user chooses

to respond and eventually reaches and consumes the content (e.g., by

tapping on a mobile notification), a labelling task is then performed by

the user (either explicitly through a survey or passively) . . . . . . . . 45



xxii List of Figures

3.2 A visualisation of the linear sequence of decisions made during a typical

response to an Android notification (k = 3). After the interruption

occurs (!), at each point new information is given (e.g., the application

icon) the user must decide (e.g., D1) whether to continue on to the next

decision (e.g., D2), (up until either the notification is consumed) or exit

at a particular decision. Figure from [124] . . . . . . . . . . . . . . . 50

3.3 The ImprompDo app listing on the Google Play Store. . . . . . . . . 53

3.4 The main UI screen for the ImprompDo app after initial setup. Figure

from [122] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 The Android notification response process used. Figures from [122, 124] 56

3.6 Visualisation of the the data collection process, from 5 seconds before

delivery up until the notification is consumed (at Tt (5s < Tt < 35s)) or

it expires. Figure from [122] . . . . . . . . . . . . . . . . . . . . . . 57

3.7 A visualisation of the ImprompDo dataset structure. . . . . . . . . . . 59

3.8 Histogram of response times for notifications that were either consumed

or dismissed, using a bin size of 1000 milliseconds . . . . . . . . . . 63

4.1 The reliability of sensor readings within 2 seconds. . . . . . . . . . . 71

5.1 Visualisation of the training and testing approaches (as described in

Section 5.1.1.3). Personally tested approaches are visualised using an

example user (user1). Additionally, each data point cannot be in both

training and testing datasets. ▮ = the training data used and ▮ = the

testing data used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



List of Figures xxiii

5.2 Visualisation of the PPV, NPV, sensitivity and specificity metrics used.

Weighted precision is the average between PPV and NPV perform-

ance, and weighted recall refers to the average between sensitivity and

specificity performance . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 User performance for models trained from aggregate data (AT-PT).

Rv* refers to receptivity when the device is in use. Y-axis represents

prediction performance. Figure from [124] . . . . . . . . . . . . . . . 91

5.4 Predictive performance of AT-PT and PT-PT for more active users.

Rv* refers to receptivity when the device is in use. Y-axes represent

prediction performance. Figures from [124] . . . . . . . . . . . . . . 94

5.5 User performance for models trained from personalised data (PT-PT).

Rv* refers to receptivity when the device is in use. Figure from [124] 95

5.6 Always interrupt baseline PPV performance across users - The user

is always interruptible (default application assumption). Sensitivity is

1.0 and 0 for NPV and specificity, across all models. Y-axis represents

prediction performance. Figure from [124] . . . . . . . . . . . . . . . 97

5.7 A comparison of the volume state baseline against the multi-modal

models trained from aggregated data (AT-PT). Rv* refers to receptivity

when the device is in use. Y-axes represent prediction performance.

Figures from [124] . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.8 A comparison of the volume state baseline against the multi-modal

models for personalised models (PT-PT). Rv* refers to receptivity when

the device is in use. Y-axes represent prediction performance. Figures

from [124] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 Online learning visualisation for the first 21 days, using the mean

value of users with >21 days participation. Y-axes represent prediction

performance. Figures from [124] . . . . . . . . . . . . . . . . . . . . 104



xxiv List of Figures

6.1 An example of the Boomerang Notifications main user interface . . . 110

6.2 User feature: the process for saving a notification . . . . . . . . . . . 111

6.3 The Boomerang Notifications app listing on the Google Play Store. . . 112

6.4 Screenshots from Boomerang Notification’s setup process. . . . . . . 113

6.5 Screenshots of Boomerang Notification’s customisation options for the

user facing features . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Icons for notifications with Normal or higher priority are shown along

the top (left) of the screen as well as in the notification drawer. Low

priority notifications are only shown in the notification drawer . . . . 121

6.7 Interruptive design across interrupting notifications. . . . . . . . . . . 123

6.8 Notification display preferences across users. . . . . . . . . . . . . . 126

6.9 Use of interruption policies across users. . . . . . . . . . . . . . . . . 128

7.1 A typical Android notification drawer showing an example stack of

notifications. Priority notifications refer to those with a priority (set by

the application) of at least “Normal” [3], discussed further in Section 7.2134

7.2 Distribution of the number of sessions in which none, some, or all of

the notifications present in the starting stack are removed by the end

of the session. Considering both: all notifications regardless of their

properties (shown on the left, number of sessions = 1,077,518) and only

priority notifications that are individually dismissable (shown on the

right, number of sessions = 798,358) . . . . . . . . . . . . . . . . . . 140

7.3 The number of usage sessions unique notifications existed within. . . 141



List of Figures xxv

7.4 When notifications are removed within usage sessions, split between

whether the notification was present in the notification stack at the start

of the session, or arrived during, using 20 bins with each representing

5% of the usage session . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.5 The proportion (percentage) of removed priority notifications, grouped

by the number of dismissable priority notifications . . . . . . . . . . 147

7.6 The absolute position of notifications that were removed during usage

sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



xxvi List of Figures



xxvii

List of Tables

2.1 The typical linear paradigm of interruptibility studies, including sub-

components. Table extended from [121] . . . . . . . . . . . . . . . . 12

2.2 A decomposition of the approaches used across studies for: defin-

ing interruptibility, the experiment environment, collecting contextual

data, and collecting interruptibility labels, sorted ascending by year.

Some studies can include the use of multiple types of approaches (e.g.,

if different experiments are performed). PA=Physiological Ability,

CE=Cognitive Effect, US=User Sentiment as defined in Section 2.2.

COE=Controlled environment, EI=Explicit “in-the-wild” environment,

II=Implicit “in-the-wild” environment as discussed in Section 2.3.2 and

defined in Table 2.3. EUS=Explicit User Surveys (i.e., ESM), RS=Real

world machine data sources, SS = Simulated data sources, as discussed

in Section 2.4.2.1 and shown in Figure 2.4. EOS=Explicit opinion

from in situ surveys (i.e., ESM), IIO=Implicit in situ observations of

behaviour, RSL=Retrospective labelling, as discussed in Section 2.4.1

and shown in Figure 2.3. Table extended from [121]. . . . . . . . . . 17

2.3 Common types of experiment environments used. Table extended

from [121] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 A categorisation of commonly captured data traces. Table extended

from [121] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



xxviii List of Tables

2.5 A categorisation of common features. Table extended from [121]. . . 29

2.6 An overview of techniques and algorithms used for interruptibility

prediction. Table extended from [121] . . . . . . . . . . . . . . . . . 39

4.1 Frequency statistics of the (ms) intervals between the start of the

sampling time-windows . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 P-values indicating significance of each feature before the interruption

and the outcome of each decision [122, 124]. Bold values show sig-

nificance using p < .05. * Mann-Whitney U Test ** Kruskal-Wallis

1-way ANOVA. Rc=Receptivity, Eg=Engageability, Rv=Receptivity.

.000 values refer to strong significance < .001. Table from [122, 124] 77

5.1 Classifier performance of the aggregated dataset (AT-AT) using weighted

precision and recall metrics and different measures of interruption suc-

cess (reachability, engageability, receptivity). Classifier names are

those provided by Weka [39]. MC=the multi-class model. Bold values

indicate the highest value across classifiers. Table from [122] . . . . . 88

5.2 Classifier performance (J48) of the aggregated dataset (AT-AT) us-

ing unweighted metrics and different measures of notification success

(reachability, engageability, receptivity). Table from [124] . . . . . . 89

6.1 The top 10 applications that produced notifications. . . . . . . . . . . 117

6.2 Applications that produced the most notifications for 13 example Google

Play Store categories. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 The top 5 applications that produced notifications per notification priority122



List of Tables xxix

A.1 The observable interruption and response process to Android notifica-

tions for versions up to and including v4.4, when the device is not-in-use

at the time the notification is delivered . . . . . . . . . . . . . . . . . 179

A.2 The observable interruption and response process to Android notifica-

tions for versions up and including v4.4, when the device is in-use at

the time the notification is delivered . . . . . . . . . . . . . . . . . . 180

A.3 The randomly chosen triggers used. . . . . . . . . . . . . . . . . . . 181

A.4 Data completeness in notification responses. This is discussed further in

analysis comparing the DOIG model vs typical black-box approaches

to labelling in Chapter 3, Section 3.4 . . . . . . . . . . . . . . . . . . 182

A.5 Frequency statistics of whether notifications were consumed (tapped

on), dismissed, or expired, split between whether the device was in-use

or not at the time the notification was delivered. Superscript charac-

ters are used for cross-referencing values within the table and with

Tables A.6, A.7 and A.8 . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.6 Frequency statistics on the number of notifications removed by the user

by various means. This is used in the analysis of user response time to

notifications in Chapter 3, Section 3.4.1. Superscript characters are used

for cross-referencing values within the table and with Tables A.5, A.7

and A.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.7 Frequency statistics of user response behaviour. Only responses that

were at least reachable are analysed for engage-ability, likewise only

responses where the user was engageable are considered for receptiv-

ity. Dismissals are considered “Not Receptive” in this representation.

Superscript characters are used for cross-referencing values within the

table and with Tables A.5, A.6 and A.8 . . . . . . . . . . . . . . . . . 183



xxx List of Tables

A.8 Calculations used to compare how many additional responses the DOIG

model captures in comparison to typical black-box approaches for

labelling interruptibility. This is discussed in Chapter 3, Section 3.4.

Superscript characters are used for cross-referencing values within the

table and with Tables A.5, A.6 and A.7 . . . . . . . . . . . . . . . . . 183

A.9 For each version of Android, whether the data vectors were consistent in

either always, sometimes, or never containing sensor data. grv=Gravity,

prx=Proxmity, prs=Pressure, lin=Linear Acceleration, rtv=Rotation

Vector, gyr=Gyroscope, mag=Magnetic Field, lgt=Light . . . . . . . . 184

A.10 For those versions of Android that were consistent in some way in

Table A.9, whether they were either always, sometimes, or never con-

sistent. prx=Proximity . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.11 For devices that were used by at least 2 users, whether the data vec-

tors were consistent in either always, sometimes, or never containing

sensor data. grv=Gravity, prx=Proxmity, prs=Pressure, lin=Linear Ac-

celeration, rtv=Rotation Vector, gyr=Gyroscope, mag=Magnetic Field,

lgt=Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.12 For those devices that were consistent in some way in Table A.11,

whether they were either always, sometimes, or never consistent. grv=Gravity,

prx=Proxmity, prs=Pressure, lin=Linear Acceleration, rtv=Rotation Vec-

tor, gyr=Gyroscope, mag=Magnetic Field, lgt=Light. . . . . . . . . . 186

A.13 Features extracted from the sensor/software API data traces. . . . . . 187

B.1 Boomerang Notifications’ user modifiable settings. . . . . . . . . . . 189

B.2 Notifications produced by Boomerang Notifications. . . . . . . . . . 190



1

Chapter 1

Introduction

Over the last decade the rise of the smartphone has had a profound effect on society,

providing opportunities for ubiquitous information retrieval and delivery. Interactions

with mobile devices have shifted from being predominately instigated by the user, to also

include responses to interruptions instigated by applications (apps). This has extended

into the rise of other mobile devices, including tablets and smart wearables.

The app culture has expanded the diversity and frequency of interruptions from phone

calls, alarms, and SMS messages to include notifications - snippets of information from

diverse information sources, intended to inform, persuade, or prompt reaction. The

concept of a notification is not limited to mobile devices, but a common thread exists in

their intention to augment daily life with information. However, inappropriately timed

interruptions from notifications can have a negative effect, at best being an annoyance

and at worst a dangerous distraction. The ubiquitous nature of mobile devices and the

continual evolution of notifications make this a timely issue, with ramifications for both

applications that interrupt and the cognitive demands placed on individuals.

Assessing another person’s interruptibility prior to interaction with them is a natural

human behaviour that is easily handled by the human brain [16, 34, 49, 126, 69]; for

example we naturally assess the likely ramifications of engaging someone before initiat-

ing conversation. However, creating such capability in the context of a machine (such

as a mobile application issuing notifications) is a significant challenge. Towards this, a

central theme in interruptibility research with mobile notifications (and interruptions
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Figure 1.1: An example Android notification.

more broadly) has been to learn from how users interact with the interrupting content (if

at all). However, variation in notification design, as well as in definitions of what makes

someone “interruptible” and a notification successful, has left the area fragmented with

study conclusions that are tightly coupled with specific experiment scenarios [121];

where the boundaries of wider applicability are often unclear [107].

1.1 Mobile notifications

The development of use cases for notifications (and their design) has been an evolution-

ary process. Historically, interruptions from mobile devices were limited to communic-

ation prompts or alarms. Notifications have absorbed these into a flexible platform for

delivering and presenting snippets of information. However, they are autonomous in that

they can be generated by individual applications at any time without any consideration

of interruptibility, and contain any information relevant to that application. An example

(email) notification is shown in Figure 1.1, with further examples, such as an instant

messaging notification, a media player notification and a calendar reminder shown in

Figure 1.2. This has enabled other applications that have previously not attempted to

interact with the user in this manner, such as games, to adopt notifications as a means of

attracting attention.

The implementation of notifications is similar across different mobile devices and

operating systems, with some degrees of freedom in their individual appearance and

interruptive design. Content has traditionally been a short piece of text, however this

has been extended over recent years to also enable other types of content and interactive

features, such as images, lists, and actionable buttons. Notifications can also adopt
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Figure 1.2: Multiple notifications in a notification drawer.

mechanisms to interrupt the user, in addition to merely appearing on the device’s user

interface; using combinations of audio tones, vibration patterns, and visual cues (e.g., a

flashing LED pattern). Finally, notifications have evolved to have variability in their

persistence (i.e., whether a user can remove them) and priority (e.g., whether they

pop-up on the screen), making the concept suitable for a broad range of use cases.

1.1.1 Interacting with notifications

While notifications are tightly associated with individual applications, they are isolated

from their user interfaces. Notifications operate in a push based manner, where an

application dictates when they are created and made known to the user (assuming that

the user has not disabled an application’s ability to push notifications). Therefore, a

user does not need to be using the application, or even using the device, in order for

notifications to arrive. In some use cases this is directly influenced by external sources,

for example, a SMS application will push notifications when the device receives the

message. This is the opposite of user-driven interactions with applications, where a user
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Figure 1.3: An example notification icon shown on the Android top bar.

may open and interact with the user interface in order to pull information from it (e.g.,

perform a Google search or browse Twitter).

As with interruptions in general [73, 75], the response process towards notifications is a

sequential process of pausing the current task and pursuing the content. On Android

devices, after a notification has been generated, it is placed in the notification drawer

(shown in Figure 1.2), where it remains until it is removed and permanently destroyed.

Access to a notification can require the user to traverse a series of screens, particularly

if the device is not in use. Along the way, the user can become aware of various

information about the notification (e.g., the originating app), and decide whether to

pursue further. For example, Figure 1.3 shows a notification icon being displayed along

the top (left) of Android’s user interface.

As well as presenting information, the notification design may also encourage the user

to act upon the notification and perform some direct action in response. However this

is largely use-case dependent, for example, an email notification may have actions for

immediately replying to the email or deleting it, whereas a weather summary notification

may not have any direct response actions and simply display information.

1.1.2 Coexisting notifications

Notifications are designed, delivered, and responded to independently of one another,

however they can coexist together. Multiple notifications that display different informa-

tion for different purposes can be present at any given time (as shown in Figure 1.2),

with any interruptions queued if they arrive in quick succession. On arrival, notifications

are added to a stack where a user can interact with them individually. Historically,

notifications in the stack have been sorted by arrival time, however this has evolved
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to also be influenced by other operation system dependent factors (e.g., an assigned

priority [3]).

However, the nature of mobile operating systems dictate that applications are sand-

boxed [6], including their notifications, where individual applications are typically not

aware of the notifications produced from other applications.

1.2 Problem definition

Notifications bring important utility to daily life, in both alerting a user of information

they would likely otherwise look for (e.g., emails), as well as information they may

not have otherwise considered (e.g., recommendations). However, a user will likely

only find an individual notification useful in isolated contexts, yet they can receive

notifications about any topic at any time. The filtering of this usefulness is largely reliant

on the user, creating a cognitive burden that is accelerated with the increasing frequency

and diversity of notifications [85].

Similarly to other information consumption environments, such as browsing social

media feeds (e.g., [22, 125]) and email clients (e.g., [38]), current implementations of

notification delivery create noise, where the information is not necessarily useful at

the point in time it is seen. This not only diminishes the effectiveness of individual

notifications, but any interruptions could also produce a negative effect in environments

where focus is key (e.g., when driving [59]) or contribute to negative states of mind

(e.g., stress [70]).

Therefore, limiting notification delivery to moments where it could be more useful is a

highly desirable but challenging problem. This leads to the following question as the

motivation for this thesis:

Can a notification delivery system assess and act upon an individual’s interruptive state

in a similar manner to the social conventions that humans typically adopt?
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This question has motivated the research space in general, with studies largely focusing

on improving predictive models of interruptibility through examining the accuracy

improvements that different contextual factors can bring. However, approaches for

collecting and labelling interruption behaviour in order to build accurate predictive

models with this contextual data (i.e., the procedure for determining whether the user

was interruptible or not) have had limited direct attention, with the typical conven-

tions used having a number of limitations that are susceptible to under-representing

interruptibility. Discussed further in the Chapters 2 and 3, these limitations include:

a heavy reliance on human annotation that is assumed to be reliable and accurate; a

common focus on just observing interactions with the notification in isolation, rather

than the interrupting device in general; and strict design assumptions in what makes an

interruption successful.

The central approach adopted by this thesis is to embrace the fragmentation and variab-

ility seen across existing studies. Motivated by the sequence of decisions that a user

makes when receiving and responding to a notification [75], this thesis proposes that

deconstructing how a response is made (from the point of delivery) can improve the

labelling of interruptibility by separating where possible, a representation of a user’s

physiological interruptive state from their sentiment towards the notification content.

This intends to improve upon existing conventions for labelling interruptibility, such as

relying solely on explicit user annotation through surveys, or merely knowledge that

a notification has been removed (as is common in previous studies, e.g., [99, 92]), by

providing a flexible basis to collect behaviour and predict interruptibility for different

definitions and use cases.

1.3 Contributions

The overarching contribution of this thesis is the improvement of the typical mechanism

for measuring the effectiveness of interruptions (such as mobile notifications). In
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doing so, this enables both consumer facing mobile applications, as well as research

applications that issue interruptions (for example, experience sampling surveys for

mood/well-being, e.g. [66, 11]) to define their own definition of a successful interruption

and learn to deliver content at times where a successful response is likely to occur. This

is formed from several individual contributions (summarised below), as a result of a

survey of the literature and analysis of two in-the-wild empirical studies surrounding

Android mobile notifications. Towards this thesis, these contributions have formed and

extended a number of peer-reviewed research papers:

[121] Turner, L. D., Allen, S. M., and Whitaker, R. M. (2015a). Interruptibility

prediction for ubiquitous systems: Conventions and new directions from a growing field.

In Proc. UbiComp’15, pages 801–812. ACM

[122] Turner, L. D., Allen, S. M., and Whitaker, R. M. (2015b). Push or delay? decom-

posing smartphone notification response behaviour. In Human Behavior Understanding,

volume 9277 of Lecture Notes in Computer Science, pages 69–83. Springer International

Publishing

[124] Turner, L. D., Allen, S. M., and Whitaker, R. M. (2017b). Reachable but not

receptive: Enhancing smartphone interruptibility prediction by modelling the extent of

user engagement with notifications. Pervasive and Mobile Computing

[123] Turner, L. D., Allen, S. M., and Whitaker, R. M. (2017a). Behaviour patterns in

managing stacks of mobile notifications

Contributions

C1 A survey of the fragmented research area, developing open research questions by

highlighting limitations and gaps in existing methodologies and conventions for

collecting, labelling, and predicting interruptibility.

C2 A flexible model for labelling interruptibility for different definitions, the Decision-

On-Information-Gain (DOIG) model, that deconstructs the observable behavioural
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trace in a response to a notification.

C3 Analysis into the natural decision behaviour underpinning interactions with noti-

fications, using data collected in-the-wild.

C4 Analysis into the predictability of response behaviour using past behaviour that

is labelled using the DOIG model, including examining the effect of various

machine learning strategies on predictive performance.

C5 A demonstration of the flexibility of DOIG the model for different notification

designs and device preferences, using additional in-the-wild data.

C6 An exploration of where the DOIG model sits amongst wider notification beha-

viour on the device.

Contribution C1 is relevant to [121]; C2, C3, and C4 to [122, 124]; and C5 and C6 to

[123]. Across these contributions, a primary output is the proposal and validation of a

labelling framework (primarily C2, C4, and C5). However the passive nature of the data

collection enables further related contributions to be formed from the resulting datasets

and analyses (C3 and C6).

1.4 Thesis Structure

The outline for the remainder of this thesis is as follows:

Background and research gaps: A survey and meta-analysis of relevant interruptib-

ility literature, exposing key conventions used in collecting and studying interruption

behaviour. Within this, a collection of research questions are proposed from gaps and

limitations in the conventions exposed. A subset of these then shape the scope of the

subsequent chapters. The associated chapter (2) creates contribution C1.

Proposal and implementation of a new labelling method for notifications: A flex-

ible model for inferring and labelling interruptibility using the observable behavi-
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oural trace towards interruptions is developed; called the decision-on-information-gain

(DOIG) model. An empirical study using an Android application is then used to demon-

strate an example implementation of the model and the benefit it brings over the existing

convention for labelling interruptibility. Additionally, the procedure and challenges

associated with collecting the behaviour and correlating contextual data on typical

Android hardware is discussed. The associated chapters (3 and 4) create contributions

C2 and C3.

Predicting decision behaviour towards notifications using the DOIG model: An ana-

lysis into the relative differences in predictive performance for: a) the different labels

produced by the DOIG model that represent various definitions of interruptibility, and b)

different machine learning strategies, including: classifier algorithms, training strategies,

and evaluation criteria. The associated chapter (5) creates contribution C4.

Examining the flexibility of the DOIG model: An empirical investigation (using a

second Android application) into the practical flexibility of the DOIG model when

different notification design characteristics and device preferences are used, through

examining how these can modify the response process that the DOIG model can capture

for labelling. The associated chapter (6) creates contribution C5.

Wider notification behaviour and implications on the DOIG model: An exploration

of notification behaviour from the wider viewpoint of the notification stack, in order to

determine further support for the DOIG model. With analysis surrounding: a) whether

decision making in responses to notifications can also be seen from this viewpoint, and

b) whether potential impacting factors in the wider behaviour may impact responses to

individual notifications. The associated chapter (7) creates contribution C6.

Conclusions and future work: The thesis concludes with a reflection on the contribu-

tions made, as well as a discussion of areas of future work.

Chapters 3 through 7 discuss the empirical studies conducted. These chapters are

uniformly structured to firstly give an extended rationale for the chapter, discussing the
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explicit limitations in the approaches seen in literature that are focused on, along with a

section outline. From this, each group of analysis ends with a summary of the primary

findings, before a closing chapter conclusion that summarises the extent to which the

limitations have been improved upon and the resulting primary contributions towards

this thesis.
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Chapter 2

Background

The following survey explores the wider research area of machine-to-human interrupt-

ibility, using studies surrounding interruptions from computational devices in general.

The reason for this is that the research area is heavily fragmented with investigations

concerning specific interruptions in specific scenarios. However broadly speaking,

this does not create an entirely new research problem from that surrounding mobile

notifications, with similar conventions used in study design, data collection, and data

analysis.

The purpose of this chapter is twofold, firstly, to expose and classify key conventions

used in the literature for: defining interruptibility, collecting data, labelling behaviour,

and predicting interruptibility. Secondly, to provide insight of the wider research space,

which is used as a basis for reflecting on how the contributions of the rest of this thesis

(surrounding an improved framework for labelling interruptibility) may extend to other

types of interruptions and environments.

The survey is organised as follows. Firstly, the broad overarching themes in conducting

research in this area are discussed, followed by an examination of the differences seen in

how interruptibility has been defined across the literature. From this, the typical linear

paradigm of empirical studies is explored (shown in Table 2.1), concerning: defining a

scenario, collecting data, and building predictive models. Within each area, the typical

design choices, assumptions, and implementation practices used are discussed, as well

as the capabilities and limitations in generalising approaches.
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1. Scenario Selection 2. Data Collection 3. Prediction

Decide on the:

- interruptions used

- interruption environment
(e.g., offices, or everyday
life)

- intended objective
(e.g., predict all moments
of interruptibility, or just
in isolated tasks)

Decide on what types of
data to use in representing
interruptions and response
behaviour

Collect data and extract
feature vectors, including
choosing the:

- raw data traces to sample

- feature variable extrac-
tion process

Label the extracted feature
vectors

Aggregate the data to form
a dataset for prediction

Perform pre-processing

Build predictive models,
including choosing the:

- training environment
(e.g., offline or online)

- training data
(e.g., use personal or ag-
gregate data)

Evaluate the predictive
performance

Table 2.1: The typical linear paradigm of interruptibility studies, including sub-
components. Table extended from [121].

As part of this, 10 open research questions for the broader research space are proposed

(as in [121]). The collective breadth of these questions goes beyond the scope of this

thesis, however a subset of the questions help form the focus of the subsequent chapters,

surrounding improving the conventions for labelling interruptibility (discussed further

at the end of the survey in Section 2.6).

2.1 Overarching themes in studying interruptibility

Broadly speaking, interruptions from computational devices often result in a cognitive

burden being placed on the recipient to individually assess and decide on a course of

action [75]. Offloading this to systems that can proactively assess interruptibility before

issuing interruptions (similar to what a human would prior to engaging in conversation,

e.g., [34, 49, 126, 69]) is therefore highly desirable and forms an overarching focus
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across the literature.

Towards this, reviews and empirical studies of interruptibility have surrounded two

distinct approaches; inline with the typical study process shown in Table 2.1. Firstly,

studies have encompassed interruptibility within the concepts and visions of creating

attention-aware systems (e.g., [95, 101, 81, 107]). The second investigates specific

relevant practices towards these systems, such as influential contextual features (e.g.,

[43, 97, 92, 76]) or the effectiveness of human/machine data collection (e.g., [12, 64]).

In doing so, it is assumed that inappropriate interruption has a human cost (e.g., annoy-

ance or cognitive burden), as does the lack of a legitimate interruption (e.g., opportunity

cost). With interruptions in the right context able to augment some task-oriented envir-

onments [47] or even provide productivity stimulus when self initiated [54]. Different

use cases of interruptions are likely to have different priorities associated with these

costs, and this is reflected in the literature with studies sometimes focusing on one or

the other (discussed further in Sections 2.3.3).

Despite this, a consistent standpoint exists in the supportive role of intelligent technology

and the need for accurate interruptibility prediction in order to improve this. This has

resulted in increased academic interest from a wide range of disciplines including:

psychology [79], human-computer interaction [75], and ubiquitous computing [101, 20,

93], as well as diverse application areas including medical [100, 62, 112] and safety

[59] domains.

2.2 Variability in the definitions of interruptibility used

The purpose of inferring interruptibility is to identify (typically in situ) whether it is a

suitable moment to introduce a stimulus that the user may choose to act upon. Thus, to

minimise disruption and maximise timely response rates, interruptions should ideally

occur at the most convenient or opportune moments. However there are degrees of

freedom in what it means to be interruptible, such as being physically interruptible,
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whether the interruption will (or will not) adversely affect a task, or whether the

interruption content is considered useful. This is highlighted through the 2005 survey

conducted by Ho and Intille [43], who report at least 8 definitions of interruptibility

across the literature. More generally, studies can be broadly categorised under 3 groups

(as defined in [121]), where the focus concerns either the:

• physiological ability to switch focus;

• cognitive effect on task performance;

• or user sentiment towards the interruption.

Studies focusing on the physiological ability to switch focus surround the assessment of

the cognitive workload of an individual at the time of interruption, and their capacity to

receive it (i.e., whether they are physically interruptible). At the very lowest level, this

can be assessed with the aid of EEG [71] or pupil size events [9, 13], although achieving

this outside of controlled conditions is currently not a practical basis for measurement.

Studies focusing on the cognitive effect on task performance surround the assessment of

the likely effects the interruption will have on task performance. This has typically been

adopted in task-oriented environments through identifying breakpoints where disruption

is minimised (e.g., [50, 80]). These studies may not predict a user’s interruptibility, but

instead the effect it has on the task. A common measure used for this is the elapsed time

to regain focus after the interruption, referred to as resumption lag (e.g., [50, 8, 80, 51]).

Studies focusing on the user sentiment towards an interruption surround the assessment

of the user’s desire to react and consume the interruption (rather than the effect on the

current task). This can involve more subjective opinions captured using self reports,

termed experience sampling methods (ESM) (e.g., [99, 92]). However, degrees of

freedom can be seen within this, with some studies distinguishing between attentiveness

(e.g., [97, 92]) towards an interruption (i.e., whether the whether the user decides to

attend to the interruption) and receptiveness towards the interruption content (e.g., [29]).

Table 2.2 classifies relevant works of note under these categories and Figure 2.1 visual-
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Figure 2.1: Definition groups over time. Figure extended from [121].

ises their prominence over time. Within this, some studies consider multiple categories

and others do not define an explicit definition of interruptibility; in these cases a judge-

ment is made from the information provided. Overall, there is clear fragmentation

across the groups with all three being continually used over time to some degree. The

small number of studies examining the physiological ability to switch focus is notable,

but likely due to the complexities of data collection (e.g., requiring hardware to enable

EEG readings [71]). Additionally, research into human physiology and cognitive inter-

ruptions is also present in other domains such as neuroscience (e.g., [25, 27]), which is

not included in this meta-analysis.

The high proportion of studies focusing on the cognitive effect on task performance

or user sentiment remains consistent over time. A likely cause for this is the different

experiment scenarios being used, in which only a specific definition may be relevant.

For example, nurses working in an emergency facility are more likely to be concerned

with the effect on task performance rather than their desire to receive it (e.g., [100]),

while office environments (and mobile notifications in general) are relevant to both user

sentiment and the cognitive affect on workload, depending on the interruption content.
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Definition Focus Environment Contextual Data Labelling
Year PA CE US COE EI II EUS RS SS EOS IIO RSL

[80] 2002 X X X X
[47] 2002 X X X X
[44] 2003 X X X X X
[48] 2003 X X X X X
[82] 2004 X X X X X
[46] 2004 X X X X
[8] 2004 X X X X X X X
[32] 2004 X X X
[15] 2004 X X X
[42] 2004 X X X X
[57] 2004 X X X X
[33] 2005 X X X X
[9] 2005 X X X X
[31] 2005 X X X X X
[45] 2005 X X X X
[43] 2005 X X X X
[50] 2006 X X X X
[101] 2006 X
[14] 2006 X X X X X X X
[58] 2006 X X X X
[71] 2007 X X X X X
[119] 2007 X X X X
[51] 2008 X X X X X X
[13] 2008 X X X X X
[104] 2009 X
[17] 2009 X
[54] 2009 X X X X
[29] 2010 X X X X
[53] 2010 X X X X X
[130] 2010 X X X
[36] 2010 X X X X
[113] 2011 X X X X
[118] 2011 X X X X
[30] 2011 X X X X
[102] 2011 X X X X X
[65] 2012 X X X X
[55] 2012 X X X X
[81] 2013 X
[107] 2013 X
[37] 2013 X X X X X X
[115] 2014 X X X
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Definition Focus Environment Contextual Data Labelling
Year PA CE US COE EI II EUS RS SS EOS IIO RSL

[97] 2014 X X X X
[99] 2014 X X X X
[111] 2014 X X X X
[105] 2014 X X X X X X
[92] 2014 X X X X X
[18] 2014 X X X X
[91] 2015 X X X X
[59] 2015 X X X X
[122] 2015 X X X X
[19] 2015 X X
[89] 2015 X X X X
[21] 2015 X X X X X
[114] 2015 X X X X
[129] 2015 X X X X X X X
[61] 2015 X X X X X
[94] 2015 X X X X
[67] 2015 X X X X
[76] 2015 X X X X X
[87] 2015 X X X X X X
[116] 2015 X X X X
[72] 2016 X X X X X X X
[106] 2016 X X X X
[83] 2016 X X X X
[24] 2016 X X X X X
[108] 2016 X X X X X
[77] 2016 X X X X X X X
[56] 2016 X X X X

Table 2.2: A decomposition of the approaches used across studies for: defining in-
terruptibility, the experiment environment, collecting contextual data, and collect-
ing interruptibility labels, sorted ascending by year. Some studies can include the
use of multiple types of approaches (e.g., if different experiments are performed).
PA=Physiological Ability, CE=Cognitive Effect, US=User Sentiment as defined
in Section 2.2. COE=Controlled environment, EI=Explicit “in-the-wild” envir-
onment, II=Implicit “in-the-wild” environment as discussed in Section 2.3.2 and
defined in Table 2.3. EUS=Explicit User Surveys (i.e., ESM), RS=Real world ma-
chine data sources, SS = Simulated data sources, as discussed in Section 2.4.2.1
and shown in Figure 2.4. EOS=Explicit opinion from in situ surveys (i.e., ESM),
IIO=Implicit in situ observations of behaviour, RSL=Retrospective labelling, as
discussed in Section 2.4.1 and shown in Figure 2.3. Table extended from [121].
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Overall, there is a clear disparity in what constitutes interruptibility. The ability to

categorise this is useful for synthesising studies, however a problem still remains in that

the choice here impacts upon the rest of a study (i.e., data collection and labelling) and

ultimately the conclusions made. This issue is a motivation in the focus of the remaining

chapters of this thesis surrounding a flexible framework for labelling interruptibility for

different definitions where possible; this is discussed further at the end of the survey in

Section 2.6.

2.3 Scenarios and interruptibility

The first dimension of interruptibility studies is defining the scenario. At its highest

level, this captures the scope, by defining a channel of interruption (such as mobile

notifications), the study environment (which addresses the physical context in which the

interruption is studied), and the objective for the study.

2.3.1 Choice of interruption

In general, studies typically investigate using a single type of interruption from a single

source. This ranges from messaging communications (e.g., instant messaging [97, 37,

21] or email [53, 56, 61]); to audio recordings (e.g., [32, 31]); to pop-up messages

during device usage (e.g., [33, 116, 129, 85]); to phone calls (e.g., [30, 111, 106]); and

to mobile notifications in general (e.g., [92, 99, 83, 76, 114, 24]). However, our daily

lives typically involve multiple devices that can interact with us in more than one way,

these devices may have multiple means of interaction, they may be restricted by place

or time, and multiple devices can exist at the same time. Exploring how interruptibility

can be affected by issuing interruptions through different channels and devices (i.e.,

predicting how to best interrupt, as well as when) has been a relatively unexplored area,

which leads to the following an open research question:
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(RQ1) How can different channels of interruption (and potentially devices) be used in

combination and to the best effect?

Towards addressing this, Sarter [107] reviews interruption management in a multi-modal

context, and proposes the use of different interruptive cues based on characteristics

of the current activity and the type of interruption, however does not test these with

empirical experiments. Additionally, Okoshi et al [89] experiment with introducing

mobile interruptions onto smart watches in addition to the smartphone. However more

empirical work in this area is needed, particularly involving direct comparisons of

delivering interruption content through different cues and devices. This goes beyond the

scope of this thesis, which surrounds mobile notifications on a single device, however it

remains a direction of future work.

2.3.2 Choice of study environment

Experiment environments have ranged from all moments of daily life (e.g., through

a personal smartphone [92, 115]) through to a more specific focus, such as those

with high social costs (e.g., during collaborative working [40, 60]) or where task

disruption is likely to occur, (e.g., in offices [31, 82]). More generally, experiment

environments are either controlled or in-the-wild, as defined in Table 2.3, with variability

in what constitutes an in-the-wild environment. While controlled environments have

traditionally involved a laboratory setting (e.g., [51, 55, 8]), static office settings may

also fall into this category. For example, in cases where a third party observer is present

(e.g., [54]) or when cameras are added to an existing environment (e.g., [31, 58]).

Table 2.2 classifies existing literature into these different types of environments, with

Figure 2.2 visualising this over time. There is a clear recent increase in experimenting in-

the-wild, this likely due to the spatial and temporal freedom that ubiquitous technologies

such as the smartphone have enabled. However, controlled environments still remain a

popular design choice for experiment scenarios involving set tasks over a finite time
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Type Definition

Controlled environment
The experiment typically takes place in a single static
location (e.g., a laboratory setting), involving simula-
tions of activities and interruptions. Participants are
typically compensated for their time, but not always.

Explicit in-the-wild
The experiment takes place in situ around the daily
lives of the participants. However, the user is con-
tinually aware of the experiment (e.g., if a dedicated
mobile application is used to issue interruptions sur-
veying interruptibility [92]). The participants are
typically incentivised through compensation for their
time, but not always.

Implicit in-the-wild
The experiment takes place in situ around the daily
lives of participants. The experiment is often embed-
ded through other features that the participant finds
useful (e.g., if a mobile app is used that also offers
additional features to the user, such as a mood diary
[99]), providing more natural incentive than explicit
compensation.

Table 2.3: Common types of experiment environments used. Table extended
from [121].

period (e.g., [37]), and where additional technologies need to be introduced into the

environment (e.g., external cameras [91]).

2.3.3 Choice of study objective

The objective for a study concerns what is trying to be predicted in relation to the choice

of interruption and environment. For example, some works focus on classifying any

given moment as either suitable for a particular interruption or not (e.g., [30, 99, 92, 76,

122, 72]), while others focus on exploring the effects of interruptions (e.g., [50, 13]).

There are also studies with a more specific focus, such as predicting the timeliness of

instant messages being read (e.g., [97]) or the time it takes for a user to resume to their

previous task (e.g., [50]).
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Figure 2.2: Use of different experiment environments over time. Figure extended
from [121].

Overall, the scenarios for studying interruptibility can be seen as being heavily domain

and interruption type specific. This creates a problem in that the choices made here

have a profound effect on the later stages (e.g., what data is collected) and ultimately

on interruption prediction systems in the evaluation criteria chosen (i.e., prioritising

the minimisation of false positive or false negative predictions, or both). This creates

uncertainty in assessing the wider applicability for other scenarios [107], which could

require costly implementation and testing to determine. Therefore, another open re-

search question remains in whether a one-size-fits-all framework can be achieved, or

whether conclusions are limited to being tightly coupled with specific scenarios:

(RQ2) Given the diversity of potential scenarios, when are generalised and interoper-

able solutions for interruptibility sufficient, and when are domain specific solutions

necessary?

Little progress has so far been made towards addressing this issue directly, with works

either presenting either broad frameworks that represent an interruption as a general

concept (e.g., the Interruption Management Stage Model [73, 75]) or isolating their
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investigations to specific channels of interruption (e.g., all smartphone notifications

[99, 92, 76]). This research question inspires the focus in the remainder of this thesis,

in considering multiple definitions of interruptibility in labelling, through to assessing

the relative differences in predictive performance for different labels with different

evaluation criteria.

2.4 Data collection and labelling

Towards predicting interruptibility, empirical studies require the collection of a dataset

of previous interruptions where the interruptibility of the user is known (or the effects

task performance are known). In this data, each interruption is typically represented by

a vector of variables that capture the context at a given moment, and a label representing

some categorisation of interruptibility (e.g., interruptible, or not interruptible). However

within this, there are considerable degrees of freedom in how this is achieved.

2.4.1 Strategies for labelling interruptibility

The label used to denote interruptibility is often tightly coupled with the definition

of interruptibility used and the objective of a study. However these labels ultimately

represent interruptibility as either a binary state (e.g., [105]) or on a scale (e.g., [113, 92])

with some threshold then used to convert it to a binary state. This then represents whether

the interruption should or should not have occurred.

In order to retrieve this label, some form of labelling task needs to take place after an

interruption has been issued. However accomplishing this accurately and reliably can

be problematic. Three different approaches are dominant in the literature, explicit and

implicit labelling by the user being interrupted (performed in situ, e.g., [116, 122, 92]),

or retrospective labelling that occurs after the data collection (e.g., [48, 67]).
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Explicit labelling is typically performed directly by the user in situ through self-reporting

(ESM) (e.g., [43, 31, 36, 30, 129, 116]). For example, Choy et al [24] ask the user

the binary question “Are you interruptible?”, whereas others ask the user provide a

response on a scale, e.g., Pejovic and Musolesi [92] ask “Is this a good moment to

interrupt?”. With retrospective labelling also formed from user opinion (e.g., [48, 57]).

However, it is questionable whether a user can accurately and consistently quantify

their interruptibility [111], either in real time (e.g., [43, 31]) or retrospectively (e.g.,

[91]). Additionally, a user may be interruptible, but not to the extent that they wish

to complete the labelling task [48, 72] (e.g., Pejovic et al. [94] only had 36% of their

surveys completed), or they may find doing so undesirable (e.g., if they respond and fill

in a survey, but can state that they are not at all interruptible [116, 129, 92]); leading to

some dedicated studies that focus on finding opportune moments to issue surveys (e.g.,

[83, 78]).

Alternatively, implicit labelling (e.g., [24]) involves observing user actions and making

deductions (e.g., [30, 97]) rather than relying on user annotation. For example, for

studies focusing on user sentiment towards mobile interruptions (discussed in Sec-

tion 2.2) this has included observing whether a phone call is answered (e.g., [111]) or a

notification is tapped on (e.g., [97]). However this loses the benefit of human opinion

and may not be feasible in environments where this behaviour cannot be observed by

machine sources.

The extent that these different types of labelling methods occur in the literature is

shown in Table 2.2, with Figure 2.3 visualising this over time. From this, it is clear

that retrospective labelling has not been widely used in recent years, likely due to

technological advances enabling participant feedback in situ as opposed to relying on

video recordings (e.g., [44, 67]). Interestingly, the debate of using ESM or implicit

observations of behaviour is reflected in the consistent use of both techniques over time.

Across all of the methods used, a primary limitation has been to rely on some final action

being performed by the user. For example, if human annotation is used, this relies on the
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Figure 2.3: Use of different labelling strategies over time. Figure extended
from [121].

individual being willing to complete a survey (e.g., [99, 92, 116, 129, 24]). If implicit

observations are used, this has typically relied on some action being reached, such as a

mobile notification being tapped on, or application opened (e.g. [97, 18, 111]). However,

in some scenarios, the response process could involve multiple steps. Additionally, as

with Android mobile notifications, it may be the case that not all information is available

to the user initially (e.g., the source application or exact content) until the user performs

additional interactions with the device.

This could therefore result in responses that are started but then abandoned, where

arguably some degree of interruptibility is shown, i.e., the user was physically reachable

for interruptions in general, but not receptive to the particular interruption [21]. These

cases may be incorrectly classified as not interruptible because, for example, the user

did not complete the survey. Investigations into the importance of incomplete responses

has received little attention, leading to the following research question:

(RQ3) Can including the extent of a response to an interruption provide additional

semantic value for inferring the user’s attentiveness towards it?
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Across the literature there is a foundation of key works introducing relevant concepts.

Firstly, McFarlane and Latorella show that the act of interrupting and responding is

a decision process [74], however this stops short of modelling the response process

between switching to the interruption and returning to the previous task. Additionally,

as discussed in Section 2.2, several works (e.g., [97, 92, 29]) have proposed concepts

such as attentiveness and receptivity in order to separate willingness to consume an

interruption and liking the content. However, there has been little empirical investigation

into the viability of a framework that labels interruptibility using different definitions

from a trace of response behaviour, and by extension the impact that this has on

prediction. This forms a key focus in the subsequent chapters of this thesis.

2.4.2 Capturing contextual data

The usefulness of the interruptibility label produced is ultimately tied to its ability to be

predicted from contextual data. Therefore a key design consideration is the choice of

what data to capture and how, which can include data representing the current moment

(e.g., [72, 99]) as well as historical activity (e.g., [24]).

2.4.2.1 Common contextual data traces collected

Capturing signals to represent the current context is an essential component in predicting

interruptibility (or the effects of interruptibility). Table 2.4 details the types of data

traces commonly collected in the literature, classified as being from either external

sources to an individual or more latent. These can loosely be described as capturing

what is currently happening and how the user feels respectively. Ideally, this data should

be as rich as possible, however resource constraints and scenario environments typically

dictate a subset of these being used (as shown in Table 2.4). Collection of this data can

involve the use of explicit human annotation through surveys (likewise to labelling), real

world machine sources, or in some cases, simulated data; with Table 2.2 and Figure 2.4



26 2.4 Data collection and labelling

Source Example data traces and studies

External

Smartphone sensors: such as hardware sensors (e.g., [115, 59, 97, 99,
105, 92, 30, 102, 89, 72, 24, 108, 76, 77, 83]) and/or software APIs (e.g.,
[65, 115, 97, 111, 30, 18, 102, 77, 106, 21])
Other physiological sensors: capturing physical state (such as heart rate)
(e.g., [59, 105]) or activity (e.g., [105, 57, 43])
Other environmental sensors: such as sound or motion in a room (e.g.,
[82, 32, 48, 15, 44, 45]) or car (e.g., [59])
Software events: e.g., active windows, keyboard and mouse activity (e.g.,
[50, 51, 55, 82, 32, 118, 80, 42, 15, 44, 46, 45, 33, 116, 61, 85, 72])
Calendar schedules: (e.g., [113, 115, 44, 106])
Temporal logs: e.g., of user actions (e.g., [55, 65, 97, 45, 106])
Spatial logs: e.g., GPS (e.g., [113, 115, 111, 105, 30, 102]) or connections
to antennas (e.g., [82, 99, 111, 92, 46])

Latent
Self reports: experience sampling (e.g., [29, 91, 82, 119, 105, 92, 47, 51,
57, 43, 94, 76, 108]) or post-experiment surveys (e.g., [8, 37, 54])
Qualitative feedback: e.g., post-interviews (e.g., [29, 47])
Third party observer reports: e.g., in situ observation (e.g., [54]) or video
annotations (e.g., [48, 57, 31, 67])
Physiological sensors: e.g., mental state or workload (e.g., [71, 9, 105, 13,
72, 129])

Table 2.4: A categorisation of commonly captured data traces. Table extended
from [121].

showing the use of these different practices over time.

Advances in ubiquitous sensing (such as mobile devices) is a likely cause of the rise in

the use of real world machine sources, such as sensors (e.g., [99, 15]) and experience

sampling (e.g., [92]) over simulated sensors (e.g., [48, 31]) in recent years (Figure 2.4).

Additionally, the personal relationship between these devices and their user has been

argued to allow more “ecologically valid data" [79], rather than using peripheral devices,

such as external cameras (e.g., [48, 31]) or wearable accelerometers (e.g., [43, 57]).

However there is still disagreement over whether sensors should be used [92, 99,

115] or not over user annotation (e.g., through ESM), due to accuracy and reliability

concerns [113, 64, 105], resource requirements [111], and limitations for measuring

latent variables.
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Figure 2.4: Use of different data collection strategies over time. Figure extended
from [121].

However, human involvement either from a third party observer (e.g., [48, 57]) or by the

participant themselves (e.g., [47, 119, 91]) has also been argued to suffer from similar

issues (e.g., [82, 91, 72]). On one hand, it has benefits including being highly flexible

in what can be asked, having a low cost overhead in terms of technical resources, and

allowing the collection of latent variables (e.g., mental state) which aren’t easily ob-

servable by readily available sensors [64]. However, the use of ESM for interruptibility

research specifically has been controversial due to the additional interruption cost it

places on the user [30, 72, 78]. Overall, likewise to labelling, the use of explicit human

annotation and/or implicit machine sources remains a contested issue.

Beyond this debate, a trend in recent years is the consolidation of technologies used

to collect this contextual data, such as only using a smartphone (e.g., [92, 99, 30]).

However the emergence of networked pervasive technologies in the environment (i.e.,

the Internet of Things) and upon the person (i.e., smart wearables), could lead to this

becoming unconsolidated once more with these technologies augmenting existing data

traces. For example, a light sensor in a room may be more consistent and accurate
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than a smartphone equivalent. Additionally this could extend the possibilities of what

contextual data is possible to collect - leading to the question:

(RQ4) How can emerging sensor-equipped ubiquitous technologies (such as wearables)

improve sampling accuracy and reduce collection and processing complexity in-the-

wild?

Tapping into these technologies does not form part of the scope for this thesis, however

forms a direction for future research; with their presence becoming more natural and

accepted (like the smartphone), rather than the presence of foreign peripheral devices

introduced just for experiments.

2.4.2.2 Extracting feature variables from the raw traces

After collecting data traces, feature variables are extracted from the raw data to create a

vector representing the context for predicting interruptibility from (or the effect of the

interruption). A common first step is to apply smoothing techniques to the data, in order

to remove noise (e.g., [71]). However, in conducting the meta-analysis, broadly speaking

there is little evidence of widely adopted conventions within interruptibility studies -

likely due to scenario differences in the use of different data traces and hardware.

The extracted feature variables can be categorised as representing either the: user,

environment, interruption, or the relationships between these. A previous survey by Ho

and Intille [43] detailed 11 measures/variables that have previously been considered

to influence interruptibility. However, due to the volume and breadth of studies since

their work, Table 2.5 extends their observations of the types of features commonly used

across the literature. It should be noted that the variables included here were identified

where they were either explicitly stated or could be confidently inferred. While some

features are likely scenario dependent (e.g., location), there are still large differences

across works in the features used, with only a few reoccurring often. Again this supports

that comparing and building from interruptibility works is challenging [107].
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Type Example types of features

User Features Pupil size event statistics (e.g., [9, 13]), EEG event statistics (e.g.,
[71, 72, 129]), emotion (e.g., [105, 92, 36, 108]), learning style (e.g.,
[115]), personality (e.g., [115], demographics (e.g., [72]), time until
next calendar event (e.g., [46, 113, 106]).

Environment
Features

Location (e.g., [119, 91, 99, 105, 92, 115, 113, 82, 47]), other people
present (e.g., [48, 31, 92]), states e.g., door open/closed (e.g., [31,
32]), cell tower id (e.g., [111]), connectivity (e.g., [111, 76, 46]),
nearby Bluetooth (e.g., [92]), smartphone ringer state [97, 30, 72]),
smartphone screen covered (e.g., [97, 99, 30, 77, 72]), smartphone
orientation or position (e.g., [99, 67]), ambient noise (e.g., [30, 15]),
light intensity (e.g., [72, 122, 24]).

Interruption
Features

Content e.g., text or phone number (e.g., [111, 29, 102, 76]), task
complexity (e.g., [37, 19]), number of queued interruptions (e.g.,
[97]), time between interruptions (e.g., [44]).

User and
Environment
Features

Time of day (e.g., [31, 115, 113, 82, 46, 97, 111, 99, 102]), day of
the week (e.g., [115, 46, 97, 111, 105, 102]), user is in conversation
(e.g., [119, 46, 31, 105, 46, 45, 108]), user’s current activity (e.g.,
[31, 82, 115, 105, 92, 54, 57, 102, 83]), user is present (e.g., [31, 15,
44, 43, 48]), software event statistics (e.g., [97, 46, 82, 65, 118, 42,
18, 15, 54, 32, 44, 45, 33, 86]), unusual environment to be in (e.g.,
[91]), frustration level (e.g., [115, 8, 51]), stress (e.g., [105]), level of
annoyance (e.g., [14]) respiration (e.g., [105]), ambient sound (e.g.,
[82, 46, 44, 108]), car movement (e.g., [59]), human motion (e.g.,
[59, 43, 117]), smartphone motions or acceleration (e.g., [99, 30]),
PC active and inactive time (e.g., [46]), user head position and
posture (e.g., [116]), device use statistics (e.g., [72, 89, 24, 77, 106]).

User and
Interruption
Features

Social relation (e.g., [119, 37, 102, 36, 10]), interruption frequency
(e.g., [37]), content desirability (e.g., [91]), perceived mental effort
(e.g., [8, 37]), perceived task performance (e.g., [37, 8]), resumption
lag (e.g., [50, 8, 65, 80, 51]), perceived timeliness of delivery (e.g.,
[91]), number of primary task errors (e.g., [55, 14]), primary task
duration (e.g., [8, 65, 46, 14]), elapsed time to switch to interruption
(e.g., [97, 105, 45, 51]), primary task complexity (e.g., [115, 37]),
interruption time (e.g., [111, 72]), interruption duration (e.g., [65, 8,
105, 14]), perceived time pressure (e.g., [8]), previous or next task
cue presented (e.g., [55]), elapsed time before user reaction (e.g.,
[42]), influence from social contexts (e.g., [36]).

Table 2.5: A categorisation of common features. Table extended from [121].
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Additionally, in highly constrained and volatile environments such as the smartphone,

this transformation process (e.g., from raw microphone readings to the level of ambient

noise) could be costly in terms of computational resources. Choosing appropriate and

technically feasible data sources to create features from is common at the design phase,

however reflections on the cost of transforming these into features (where relevant) has

received little attention; yet could bring valuable design considerations for future studies

and applications:

(RQ5) Can the utility of potentially influential variables be standardised by considering

the trade-off between accuracy and sampling / processing complexities?

Several works have touched on this within wider domains, however, this is not common

practice for individual interruptibility studies. For example, Lathia et al explore the

issues relating to smartphone sensor sampling stability [64]. A future research direction

could involve the formulation a standardised framework for quantifying the cost of

retrieving individual feature variables on specific hardware, or investigations into the

difficulties of doing. This is not a direct focus in the remainder of this thesis, however

the stability of using typical Android hardware to support the data collection used is

discussed in Chapter 4.

2.4.3 Datasets and participation

Across the literature, datasets have predominantly involved either a small number of

subjects (up to approximately 20 participants) as seen in [32, 111, 92, 76, 116], up

to approximately 100 as seen in [102, 37, 97, 99, 108, 72], with larger analysis of

thousands of users being an uncommon and recent occurrence, as seen in [103, 65, 24].

Establishing guidelines for suitable dataset size and diversity has received little attention,

however the importance of longitudinal data, in order to observe interruptibility habits

over time has been stated (e.g., [71, 92, 55, 111]).

Additionally, there has been little attention towards the scalability and sustainability of
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the architecture to collect datasets (or to support real-world interruptibility prediction

systems). In early works, forming a dataset typically involved manual retrieval of the

data from each participant (e.g., [43]), whereas the introduction of technologies such

as the smartphone has enabled a more autonomous client-server model, supporting

in-the-wild studies (e.g., [99]). With data traces potentially becoming more diverse and

representative of our daily lives (as noted by RQ4), this raises another open question:

(RQ6) What architectural barriers remain in enabling the collection, storage, and

processing of detailed sensor data and interruptibility behaviour at scale? More

specifically, what roles should sensors, personal devices and servers play to minimise

connectivity and processing bottlenecks?

Several architectural frameworks have been proposed that encompass wider intelligent

interruption systems (e.g., Syke’s “Interaction Management System Architectural Model”

[115] and Iqbal and Bailey’s “Oasis” framework for scheduling interruptions around

tasks [52]). However, there is a lack of empirical evidence in the literature that these are

feasible at scale and practical beyond controlled experiments.

Extending from this is the social, ethical and privacy standpoint for architectures and

the resulting datasets, which leads to the following question:

(RQ7) What consent and anonymisation measures are appropriate for applications and

researchers to know how interruptible someone is, and how does this balance with the

potential for bias from the knowledge of behaviour monitoring?

This area has also received little attention but is fundamental to the viability of interrupt-

ibility research for real-world applications. With this in mind, there are currently are

also no widely adopted conventions to provide “open data”, impeding reproducibility of

results. Further to this, the use of other datasets for benchmarking is also not a widely

adopted convention; likely impeded by the different scenario and data collection choices

seen across studies. Addressing RQ6 and RQ7 goes beyond the scope of this thesis,

however remain future research directions.
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2.4.3.1 Incentivising study participation

Additionally, obtaining quality data from participants requires user engagement, which

in turn requires incentivisation. However, if incentives cause deviations from natural

behaviour they can adversely affect a study and its conclusions. The balance of informed

consent and behavioural bias extends beyond interruptibility into the wider research

space of observing and learning from human behaviour (e.g., [79]). Popular methods

within interruptibility studies for addressing bias and incentivisation include: using

monetary compensation (e.g., [33, 91, 50]); providing feedback and visualisations to the

user (e.g., [76, 78]); or providing an additional utility (e.g., mood diary features [99]).

The convention of experimenting in-the-wild (e.g., [92, 103, 71]) also addresses this bias

to an extent by removing the locality limitations of a controlled experiment, promoting

natural behaviour [79]. Ubiquitous technologies such as the smartphone are enablers for

this as the experiment can operate within environments and conventions that the user is

already comfortable with, such as mobile applications (e.g., [99]). However this only

mitigates some data quality issues. For example, in many cases participants in such

studies are self-selecting (e.g., [76, 77, 124, 99]), which can be challenging to control

both the quantity and the quality of data.

2.5 Predicting interruptibility

Machine learning has been commonly used for producing predictive models of inter-

ruptibility. However, there is wide disparity across the literature within the components

involved, from feature selection, through to classifier choice, training environments, and

evaluation criteria. Likewise to the definition of interruptibility, scenario selection, and

data collection, a key theme is the limited consideration of wider applicability of the

choices and results beyond the confines of individual studies. It should also be noted

that not all works study prediction; some simply explore frequency statistics and apply
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statistical tests (e.g., [65, 55, 114, 83, 61, 21]) to determine whether certain factors

correlate with interruptibility labels.

2.5.1 Finding influential features

It is plausible to assume that some chosen feature variables may provide more predictive

power than others. Discovering this can be considered to be a pre-processing step before

the training predictive models, as this can result in uninfluential features being removed.

This can be referred to as feature selection, this step, which is not performed by all

studies, primarily aims to balance the number of features used to build a predictive

model and its accuracy. Additionally, this step can aid with determining and correcting

for issues such as model overfitting (e.g., [68, 129, 24]); where a predictive model is

heavily influenced by outliers in the underlying training data, which results in poor

performance when tested with unseen data.

Common techniques for this include a statistical correlation-based approach (e.g.,

[31, 119, 129, 24]) where correlating features are considered influential to some extent,

and a wrapper-based approach (e.g., [32, 31, 105]), where subsets of features are

evaluated to quantify their effect on classification performance. Feature ranking is

another technique, which ranks features using a defined measure, which has included

measures such as information gain (e.g., [31, 76]) and the number of classifications

that become incorrect after removing a feature (e.g., [97]). Direct comparisons of these

techniques are uncommon in the literature, however, Fogarty et al [31] showed no

significant difference between correlation and wrapper based methods for accuracy in

their study, but the fewer features typically selected in a wrapper-based approach was

deemed favourable. However, whether this is reflective more broadly is unclear.

Across these methods, a feature’s importance is often measured using the effect it has

on predictive performance. However, given the potential environments of practical

interruptibility-aware systems, such as on smartphones, this may not be the only ap-
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propriate measurement. An assumption is often implicitly made across the literature

that the features extracted from the underlying data traces are accurate and reliable;

however there has been investigations that this may not to be the case (e.g., [64, 79]).

An extension of RQ5 could be to also include factors such as reliability and resource

costs of the underlying data traces into the feature selection process.

2.5.2 From datasets to training sets

Predictive models are typically trained from a subset of a dataset, with the remainder

then used for testing the model. The most common technique in the literature to achieve

this is cross-validation (e.g., [58, 32, 71, 129, 72]). This involves splitting the dataset

into a training set and a testing set multiple times and using the mean performance,

mitigating potential skewness from using a single training set.

However, likewise to feature selection (Section 2.5.1), an additional task that can be

performed is balancing the size of the training set with predictive performance (e.g.,

[32, 30]). The motivation behind this process is to reduce the overall complexity of

the model and improve the viability of recreating the model in real-world applications

by reducing the expected storage and processing requirements. In practice however,

studies have had varying success. For example, Fogarty et al [32], showed evidence of

diminishing returns in the accuracy that more training data brings, when using more than

40% of the original dataset. However, Fisher and Simmons [30] show clear fluctuations

in the accuracy as more training data is considered, across several classifiers. In addition

to this, more bespoke methods have been used to reduce training requirements. For

example, Sarker et al [105] attempt to reduce the training data needs by using groups

of cases at opposite polarities (in this case the 6 quickest and the 6 slowest responses

to represent the user being “available” and “unavailable” respectively). However, it is

unclear whether this would be feasible beyond scenarios where response speed is the

primary concern.
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Likewise to feature selection, it is arguable whether balancing the size of the training

set (like the number of features) is the only appropriate measure. The impact of other

factors such as temporal representation and diversity within the training data has not

been widely explored within interruptibility studies, but could offer useful insight

into the training data requirements of future studies and applications, prompting the

following:

(RQ8) How do training dataset characteristics affect the diminishing returns of predic-

tion performance?

Some aspects of the current literature are relevant to this question. For example, Smith et

al consider concept drift in their analysis [111], where the values for some features may

only appear in the test data, hindering the opportunity for an optimal model, motivating

the need for diversity guidelines, if viable. This issue influences the focus of this

thesis somewhat in the experiment of training from personal or aggregated data in the

empirical analyses (Chapter 5), however remains an issue for further direct attention.

2.5.3 Training environment: offline vs online

Interruptibility studies have involved two distinct approaches to training environments:

offline and online environments. Offline training environments are the most prominent

across interruptibility studies (e.g., [119, 48, 72, 122, 24, 108, 116]), and involves

building predictive models from all data, typically after data collection has taken place.

In contrast, online learning (e.g., [76, 92, 111]) refers to a predictive model being

retrained as more data becomes available, creating a feedback loop for relearning

interruption behaviour over time. Within the literature, this approach is often utilised to

improve upon the issue of having a lack of available training data initially, which can be

mitigated by instead retraining models frequently.

Across these, studies have implemented these training environments using different

hardware. Typically, predictive models are trained (and evaluated) after data collection,
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without being deployed into a real-world environment (e.g., [124, 76, 129, 24, 108, 67,

31]). For studies that include the integration of predictive models into the interruption

environment, this has been achieved through either implementing training capabilities

into the interruptive device itself (e.g., a smartphone app [87, 92]) or through sending

the data to a server for training and then sending the model back to the device (e.g.,

[115]).

However establishing guidelines on the suitability of each type of environment for

interruptibility studies is still arguably in its infancy, leading to the following research

question that extends RQ6:

(RQ9) When should intelligent interruption systems adopt online and offline learning,

and what factors in the scenario and data collection influence this choice?

Generally speaking, the majority of current studies largely focus on a single technique,

with only a few recent studies directly comparing performance (e.g., [111, 92]). This

forms part of the focus of this thesis with the analyses conducted in Chapter 5 consider-

ing both together alongside different labels of interruptibility. Nevertheless, it remains a

question in need of further direct contributions alongside RQ6.

2.5.4 Training data: aggregate vs personal

As well as the training environment, the type of training data can also vary, between

either aggregating data from multiple users in order to build a single model (e.g.,

[31, 99, 105, 129, 67]) or keeping training data personal in order to build models

for individual users (e.g., [58, 102, 72]). The debate of using either approach often

concludes in favour of personalisation when compared together (e.g., [92, 76]). This is

can be attributed to the variety of environments, activities, interruptions and preferences

across users in their daily life. Personalised interruptibility models are also typically

used alongside online learning (e.g., [92, 111]), because personal data to train from

will likely be lacking initially in real-world use cases (e.g., newly installed mobile
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applications).

Due to the fragmentation of works in terms of scenarios and features, it is hard to

draw strong conclusions on which technique is more appropriate for which use cases.

Further to this, mixing personal and aggregated data as a hybrid approach has also been

suggested [32, 128]. In this case, aggregated data from other users could provide the

initial model, which could then be removed as personalised data becomes available. As

with offline and online learning, there is an absence of guidelines across the literature of

when each is more appropriate, leading to a similar research question to RQ9:

(RQ10) Do personalised models mean better performance and how does this balance

with increased complexity? Could a hybrid approach using personal and aggregated

data reduce the training requirements for new users?

As prediction involves the use of at least one of these approaches, all works that invest-

igate prediction (e.g., those highlighted in Table 2.6) provide a basis for addressing this

research question. Within this however, the number of comparative works is currently

limited (e.g., [92, 76]). Additionally there has been recent empirical investigation into a

framework for facilitating a hybrid approach to training data for mobile notifications

(e.g., [128]).

Likewise to RQ9, the analyses conducted in this thesis (Chapter 5) provide a basis

towards addressing this question in addition to the above works, with comparisons made

between using personalised and aggregated training data. However, further empirical

studies (particularly beyond mobile notifications) are needed in order to make wider

design considerations.

2.5.5 Classification and evaluation

Across interruptibility studies, several machine learning algorithms and statistical meth-

ods have been used (shown in Table 2.6), with the most common types being: tree, rule,

function or Bayesian based classifiers. A typical convention has been to experiment
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with multiple classifiers and determine which has the highest performance; sometimes

supplemented with using statistical analysis (e.g., [31]). With the introduction of ma-

chine learning suites such as Weka [32, 31, 111, 92, 119] and MOA [92] providing a

convenient means to facilitate this.

However, as with feature selection (Section 2.5.1), accuracy is arguably not the only

metric that could be considered, particularly if training occurs on resource sensitive

technologies such as the smartphone. In these cases, the computational complexity

associated with generating and storing the model (or the connectivity requirements for

sending the data to and from a server) are relevant but have not been widely considered.

Some works consider these factors when choosing classifiers (e.g., [102]), however this

is not a widely adopted convention across the literature.

Similarly there is widespread variation in the evaluation metrics used. Some studies

offer confusion matrices (e.g., [32, 105, 82]), which aid in determining the wider

applicability of the results, however more commonly, explicit evaluation metrics are

chosen. Examples of these include, precision and recall (e.g., [99, 92, 116]), specificity

and sensitivity (e.g., [76]), F-measure scores (e.g., [105, 108, 129, 72]), Kappa statistics

(e.g., [105, 24]) and area under curve values (e.g., [99, 71]). In evaluating the wider

applicability of results, this raises uncertainty, especially when alongside the use of

different conventions in data collection and training, and likewise to those areas, remains

an area in need of further direct attention to be improved upon, where possible.

In addition to evaluating the predictive performance as an absolute value, performance

has also been evaluated by comparing the relative performance of a model in comparison

to baselines. Some studies compare predictive performance against a baseline of

classifying all moments as not interruptible (e.g., [32, 31, 99]) or interruptible (e.g.,

[119]), whereas others have compared performance against human estimators (e.g.,

[48, 31, 113]).

Towards enabling more comparability across works, an opportunity exists to construct a

framework for evaluating and presenting the performance of predictive models of inter-
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Environment Algorithm/Technique Example Studies

Offline

Naïve Bayes [48, 32, 129, 31, 30, 97,
111, 92, 24, 119, 82, 76,
33, 72]

Support Vector Machines [48, 31, 30, 97, 111, 105,
24, 72]

Decision Trees (e.g., J48/C4.5) [48, 31, 30, 99, 87, 86,
24]

Random Forests [97, 59, 76, 67, 24, 72]
Adaboost [48, 31, 92, 72, 76]
Bayesian Network [44, 92, 46, 108]
Logistic Regression [102, 97, 72]
Nearest Neighbour (e.g., k) [30, 111]
Neural Networks [99]
JRip [99]
RUSBoost [111]
Genetic Programming [111]
Association Rule Learning [111]
Adaptive Neuro Fuzzy Inference System [115]
Partial Least Squares [37]

Online

Naïve Bayes [92, 111, 76]
Adaboost [76]
Random Forests [76]
Nearest Neighbour (e.g., k) [111]
Support Vector Machines [111]
RUSBoost [111]
Hoeffding Tree [92]
Ozaboost [92]

Table 2.6: An overview of techniques and algorithms used for interruptibility pre-
diction. Table extended from [121].

ruptibility. Within this would be conventions that cater for different scenario objectives

in regards to evaluation metrics to use and baselines to compare performance against.

Extending this would be the promotion of within-study discussion, or further empirical

work, in how the reported performance may change beyond the interruptibility scenario

of an individual study. As an extension of RQ2, this is a non-trivial problem, where

the solution may not be a unified approach to conducting and evaluating interruptibility

studies, but means in which the likely boundaries of wider applicability can be better
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estimated. Addressing this is not a direct focus of this thesis, however an overarching

theme in the forthcoming analyses is the consideration of these areas where possible

(e.g., in the use of multiple evaluation criteria (Chapter 5)).

2.6 Conclusions

The ability to perceive the interruptibility of another human being has a fundamental

influence on our ability to communicate effectively [16, 34, 126, 69]. The introduction of

pervasive technologies capable of interruption, such as the mobile devices, has extended

the impact of a machine’s inability to do so into our daily lives. As a result, research has

focused on building towards intelligent systems for predicting interruptibility. However,

despite conventions existing in how interruptibility is defined, scenarios are selected,

data is collected, and predictive models created, there remains wide disparity in these

areas, creating challenges in generalising individual conclusions beyond the confines of

individual studies. The intention of this chapter has been to highlight this issue, creating

the following primary contribution:

C1 A survey of the fragmented research area, developing open research questions by

highlighting limitations and gaps in existing methodologies and conventions for

collecting, labelling, and predicting interruptibility.

2.6.1 Thesis scope

The remainder of this thesis focuses on the improvement of a subset of the conventions

exposed, primarily surrounding the labelling of interruptibility and building predictive

models from these. The primary focus is the development and validation of an improved

framework for capturing and labelling response behaviour towards interruptions (such

as mobile notifications), called the decision-on-information-gain (DOIG) model. The

framework is supported through the analysis of the datasets from two large-scale in-the-
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wild empirical studies of Android notifications; which also provide further empirical

exploration of the conventions exposed in this chapter. Where possible, the bounds of

generalisation of the analysis are also discussed.

Additionally, while the open research questions proposed are intended to be a standalone

contribution of this thesis, this scope is relevant to a subset these:

RQ2: Chapters 3-4 and 6-7 contribute towards addressing RQ2 by developing the DOIG

model to be flexible to different interruption scenarios, definitions of interruptibility

(through the ways in which a user can respond), and interruption designs; as well as

validating the need for the framework to be flexible.

RQ3: Chapters 3 and 7 also contribute towards RQ3 while investigating the validity

of the DOIG model, by deconstructing and examining the natural decision-making

behaviour in notification responses.

RQ’s 8, 9, and 10: Chapter 5 contributes towards addressing these by exploring the

relative performance differences between predictive models built for the labels pro-

duced by the DOIG model, using various machine learning strategies for training and

evaluation.

The limitations of these analyses, as well as the remaining research questions, serve as

a basis for future work (discussed in Chapter 8, Section 8.2.3) beyond the scope of this

thesis.



42 2.6 Conclusions



43

Chapter 3

Interruptibility behaviour as a

decision process

Interruptibility can be fundamentally represented as a binary classification problem,

where given a moment in time, an intelligent system (e.g., as part of a mobile app) needs

to decide whether or not to interrupt and deliver information (e.g., through a notification).

This is achieved through a predictive model built from a dataset of previous response

behaviour, typically a set of feature vectors (built from contextual data) with associated

labels of whether the user was interruptible or not. Approaches for determining these

labels has received little direct attention, in comparison to explorations of influential

contextual data (e.g., [43, 58, 81, 99, 76]) and prediction strategies (e.g., [111, 92, 78]).

In this chapter a new method is proposed for capturing and labelling interruption

behaviour. Referred to as the decision-on-information-gain (DOIG) model, the approach

extends the existing convention to label response behaviour from how a response is

made (as well as if), enabling different definitions of interruptibility to be represented. It

can also be implemented passively without a reliance on surveys, demonstrated through

an in-the-wild study.

The rationale behind the approach is discussed further in Section 3.1, and formally

defined in Section 3.2. The practical applicability is then examined in Section 3.3

using an in-the-wild study of 11,346 passively captured responses towards Android

notifications. Section 3.4 then uses the dataset to show how individuals can respond to
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Android notifications in different ways and demonstrates how the DOIG model offers

improvement over the existing convention for labelling, by considering the impact of

partial responses.

3.1 Decomposing response behaviour for labelling in-

terruptibility

While previous empirical studies have been successful in predicting interruptibility

labels (e.g., [30, 102, 76]), a common assumption has been to represent the response

process as a single large decision, where the recipient either responds (fully) or not at all.

As a result, the label produced is often determined through whether the recipient of the

interruption completes a set task (as discussed in Chapter 2, Section 2.4.1). The exact

task has varied across individual study scenarios, ranging from explicit tasks such as

filling in a survey (e.g., [99, 92, 76]) to passive observations of whether the interrupting

content is consumed (e.g., [13, 51, 52, 97]). However common limitations exist with

this approach which help frame the development of the DOIG model, including1:

L3.1 This assumes that if the user is interruptible, then they will complete the labelling

task. This presents data quality issues in the labels produced, particularly in in-

the-wild environments. In many cases this involves a counter intuitive approach

to data collection of interrupting the individual to ask how interruptible they are.

L3.2 This does not consider the potential variability in the extent of a response (no

response started, partial, or complete), resulting in labels potentially being formed

from an under-representation of the response that a recipient gave.

L3.3 This does not account for the subjectively in what response behaviour signifies a

successful interruption, or variability in the content and design of interruptions,

beyond the confines of individual study scenarios.

1 labelled using: L(imitation){chapter number}.{enumeration}
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!
Labelling

task
The unobserved decision process
in if and how a response is made.

Figure 3.1: An abstract representation of the common black-box convention for
labelling interruptibility. After being interrupted (!), if a user chooses to respond
and eventually reaches and consumes the content (e.g., by tapping on a mobile no-
tification), a labelling task is then performed by the user (either explicitly through
a survey or passively).

L3.4 Where an explicit labelling task is used (e.g., surveys), implementation in real-

world applications is often impractical due to the additional intrusiveness and

requirements that this places on recipients.

As a result, existing empirical studies can be broadly grouped together as using a

black-box approach to labelling [122, 124], where the focus is on the user completing a

specific end-goal behaviour that denotes interruptibility (visualised in Figure 3.1). This

motivates adapting the existing labelling convention to improve upon these limitations,

where possible, in order to improve the quality of the training data used for predicting

interruptibility.

While the black-box approach is useful in that it can be wrapped around any interruption,

it under-represents scenarios where information surrounding the interruption is presented

in a step-wise manner and the user has degrees of freedom in how they respond. In these

cases, the recipient could still be considered interruptible if they start to respond but do

not perform the labelling task. For example, in the case of Android mobile notifications,

an application could consider the notification to be a success if the user at least reacts

and notices the notification, even if they do not physically tap on and consume it; or

they may wish to at least differentiate between these cases and where no response is

started at all.

Towards improving upon these limitations, several key contributions in the literature can

be considered. Firstly, the work of McFarlane and Latorella [75] is an early contribution
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that sought to understand the different ways in which individuals handle interruptions.

This included the proposal of an abstract representation of the interruption process for

machine-to-human interactions (Interruption Management Stage Model), which models

a series of decision-making steps from pausing the current task through to returning

back to it. However, this work stops short of modelling the decision processes between

the initial decision to switch focus and finally returning to the previous task (i.e., what

the user does inside the black-box depicted in Figure 3.1 after deciding to respond).

Additionally, within the context of mobile notifications, various works have proposed

sub-components of interruptibility that isolate various definitions, including the attent-

iveness towards a notification (e.g., whether a user responds or not [97, 92]), and the

receptivity towards it (e.g., did the user like what they were interrupted with [76]).

However, while these works show that interruptibility towards mobile notifications can

be defined differently, the resulting fragmentation in these definitions have not been

synthesised together into a flexible framework for labelling response behaviour. This

forms the focus of this work, in synthesising these sub-components with an extension

of the ideology of modelling an interruption response as a decision process.

3.2 The Decision-On-Information-Gain (DOIG) model

The decision-on-information-gain model is a proposed framework for supporting the

capture and labelling of response behaviour towards interruptions [122, 124]. While

the focus of the empirical work in this thesis surrounds Android mobile notifications,

the concept can be generalised into an abstract model, consistent with the previous

work by McFarlane and Latorella [75]. This approach models the extent to which

the recipient pursues information about the interruption from the point of interruption

(i.e., what the user does inside the black-box visualised in Figure 3.1). From this,

interruptibility can be labelled flexibly on a per-application basis, by enabling the

interrupting application to define what type of response behaviour (i.e., the extent to
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which a user responds) signifies that the interruption was successful (discussed further

in Sections 3.2.1 and 3.2.2). The model is therefore the most appropriate for cases

where information surrounding interruptions is revealed in a step-wise manner, such as

with Android mobile notifications. However it is flexible to other scenarios by reverting

back to the existing convention of a single decision in the worse case if all information

is instead revealed at the point of interruption.

3.2.1 Abstract model

The DOIG model follows the decisions a user must engage with (either consciously or

subconsciously) in response to an interruption, dictated by the interruption environment.

These decisions are defined as points in the response where the user must choose whether

to act further to gain more information about the interruption, or exit the interruption

response.

The initial decision is whether to switch focus after being prompted, e.g., after an

audio alert. Subsequently there can be k points where extra information is provided

(such as the identity of the interrupter or the subject topic). This produces a set of

k + 1 sequential decisions that are required for a complete response to the interrup-

tion, D={d1, d2, ...dk+1} - where decision di precedes di+1. While the exact number of

decisions may vary based on the interruption characteristics, a general rule is that a

decision will occur each time the user is given new information as they respond. It is

important to note that this approach intends to observe the natural decisions that are

already being made and that this does not change the response process in any way.

A sub-sequence {d1, d2, ...di}, where i ≤ (k + 1), captures the extent of the users re-

sponse, with di indicating the decision the responder exited the response. An application

can then use this to determine whether the user responded enough (in their opinion) to

be considered interruptible. In comparison, a black-box approach assumes that for an

interruption to be successful, a complete response must be performed, that is while all
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decision steps d1,… , dk+1 are assumed to be carried out, only the final decision dk+1
is typically assessed. Consequently the black-box approach is inherently susceptible

to under-representing the choices that a user makes during the response as they are

presented with more information about the interruption. This is particularly useful for

applications that can consider an interruption to be successful at an earlier decision than

dk+1, e.g., a partial response to a mobile notification, where it is noticed but not tapped

on and consumed.

3.2.2 Applying the DOIG model to Android notifications

Conceptually, the DOIG model is suitable for scenarios using Android notifications.

The nature of Android notifications causes the responder to discover information about

a notification in stages. This enables decisions to be made on whether to continue on

towards consuming a notification, or abandon the response part way through. Rather

than making an assumption on what point in the response behaviour correctly signifies

being interruptible (i.e., the measure of success), which will likely change on at least a

per-application basis, a spectrum of potential responses can be considered (shown in

Figure 3.2); these being:

• Null Responses - Cases where the user does not show any observable response

behaviour, either because the user was not physically interrupted or did not want

to switch tasks for any notification, from any application.

• Partial Responses - Cases where the user begins to respond, but abandons after

further information. For example, they turn the screen on, discover the notification

relates to an email (e.g., through the icon displayed on the top bar, Figure 1.3) but

exit at that point (or after unlocking the device and reading the sender or subject).

• Complete Responses - Cases where the user consumes the notification and

completes a response. For example, tapping on the notification and reading an

email or filling in a survey.
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Given that a response can be null, partial, or complete, the potential measures for

success can be described as whether the user is at least reachable [122], willing to

engage [122] to some extent, or is receptive [29, 122, 76] to what they are interrupted

with. These independent measures fit together under the wider umbrella of mobile

notification interruptibility, providing flexibility for labelling interruption behaviour for

different definitions. From this the following terms can be defined:

• Reachability, which indicates whether a response will at least be started (i.e., not

null), or not.

• Engageability, which indicates whether a response will be started but abandoned

without formally consuming the notification (i.e., partial response), either because

merely noticing the notification is sufficient, or it is undesirable to pursue it

further.

• Receptivity, which indicates whether the user is receptive to the notification con-

tent and either consumes it by removing it in some way (i.e., complete response).

Modelling a range of response behaviour (as shown in Figure 3.2) means that different

definitions of what constitutes a successful notification can be accounted for. It may

be that an application considers a notification to be a success if the user was reachable

(i.e., the response is not null), such as reminders. Whereas others may require the user

to reach a specific later stage in the response (i.e., at least engageable), or consume it

completely and open the application (i.e., receptive).

This is contrary to the wider research space, that typically labels interruptibility using a

strict measure of success (e.g., just receptivity [29]), which often relies on the user to

open the interrupting application (e.g., [97]) or fill in a survey (e.g., [92, 99, 108, 94,

76, 129]).



50 3.2 The Decision-On-Information-Gain (DOIG) model

! Exit

Reachability Engageability Receptivity

(Null Response) (Partial Responses)

(Complete
Response)

D1 D2 D3

Exit Exit Exit

Figure 3.2: A visualisation of the linear sequence of decisions made during a typ-
ical response to an Android notification (k = 3). After the interruption occurs
(!), at each point new information is given (e.g., the application icon) the user
must decide (e.g., D1) whether to continue on to the next decision (e.g., D2), (up
until either the notification is consumed) or exit at a particular decision. Figure
from [124].

3.2.2.1 Flexibility and limitations in applying the model for Android and other

notification systems

Several uncontrollable factors can impact what unique decisions are observable in

response to an Android notification. The DOIG model is flexible to these limitations

by not defining a set number of decisions or strict methods for observing decisions

being made, allowing the model to remain usable if the Android notification ecosystem

evolves over time.

For example, due to technical restrictions imposed by the Android operating system,

some relevant UI events (e.g., accessing the Notification Drawer, shown in Figure 1.2)

are not observable by third party applications without privacy-sensitive Accessibility

permissions. This limits which decisions are observable, particularly when the device

is in use. Discussed further in Appendix Tables A.1 and A.2, if the device is not in

use when the notification is delivered, decision outcomes for D1 and D2 (Figure 3.2)

can be observed through the process of the user turning on the screen (indicating

reachability) and unlocking the device (indicating engageability) to discover more

information. However, if the device is already in use, while a decision process occurs,

there are currently no observable system events for D1 and D2.
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Secondly, technical limitations of these devices prevent the ability to distinguish between

the reasons why a user may not be reachable. For example, it could be that an individual

is not physically interrupted in order to make the first decision to begin responding or

not, or it could be that they were and chose not to switch from their current task. This is

a challenge for interruptibility studies in general, leading to some studies investigating

the physiological ability to switch focus explicitly as discussed in Chapter 2 (e.g., using

EEG readings [71]). However from the perspective of labelling notifications using the

DOIG model, this issue is mitigated as in either case, the outcome remains the same in

that the individual was not reachable and the notification was ineffective.

Thirdly, the example decision process visualised in Figure 3.2 represents a typical An-

droid notification. While the notification convention is standardised and imposes design

constraints, some variability remains for individual applications in what information

can be presented, when, and how. Additionally some more recent versions of Android

can enable the user to show some notifications on the lock-screen. In both of these

cases, the number of observable decisions (k) will need to be adapted, with Chapter 6

addressing this explicitly. For example, D1 and D2 may be merged if the audio tone

used for interruption is distinguishable for a given application.

Beyond Android, other mobile operating systems (such as iOS) or environments (such

as PC tasks [118, 116]) have slightly different implementations of notifications. For

example, on iOS devices, notifications can turn on the screen without explicit user inter-

action. However, as the intention here is to observe and not change how a notification is

presented and responded to, these variations require a flexible model (and for any future

changes), which the DOIG model provides. Finally, in the worse case, the DOIG model

falls back to capturing the same information as a black-box approach (i.e., interruption

interaction events).
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3.3 Applying the DOIG model: ImprompDo Android

application

A bespoke Android application was developed, called ImprompDo [122, 124], to

quantify empirically whether the DOIG model brings a useful utility in capturing

and representing response behaviour towards Android notifications that would other-

wise be missed with a typical black-box approach. ImprompDo captures context data

and response behaviour to productivity notifications in-the-wild (discussed further in

Sections 3.3.3 and 3.3.4) and was distributed freely through the Google Play Store

(shown in Figure 3.3) for devices running Android 4.0 to 4.4 (inclusive), which covered

~85%-94% of the market distribution at the time of the study from July 2014 - January

20152.

Participants of the study were self-selecting and remained anonymous, with the ap-

plication marketed through social media and online news outlets (e.g., [120]). The

application received generally positive reviews from media outlets (e.g., Lifehacker

UK [35]) and users3, but some users did suffer from issues such as device specific

bugs that were challenging to test for, and users being unable to set up the productivity

side of the application successfully. However, this is arguably reflective of Android

applications in general due to device manufacturer variability and serves as an example

of the challenges of performing in-the-wild research studies remotely on these devices.

3.3.1 Rationale for an in-the-wild application design

ImprompDo is an example of an implicit in-the-wild study of interruptibility (as defined

in Chapter 2, Table 2.3). It represents an example of a real world application where

an intelligent interruption system would be suitable, which has been a common design

2 As per Google’s “Dashboards” at the time of the study - https://developer.android.
com/about/dashboards/index.html

3 ImprompDo received an average Google Play Store rating of 4.1/5 by the end of the study

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
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Figure 3.3: The ImprompDo app listing on the Google Play Store.

choice of similar empirical studies in the area, including mood diaries (e.g., [99]), and

apps issuing news stories and weather updates (e.g., [76]). However, it should be noted

that the application’s productivity focus and in-the-wild nature could therefore result

in a bias in user participation towards individuals that are more productivity driven.

To incentivise participation, the app was designed to perform as a useful productivity

tool, rather than through monetary compensation. This aimed to promote natural

behaviour, in comparison to relying on volunteers merely willing to be interrupted, as

seen in previous studies (e.g., [92, 76]). Additionally, the application was developed in

accordance with the ethical research requirements and processes of Cardiff University

and followed Android’s official design guidelines at the time of creation.

Ideally, a dataset should contain response behaviour which represents all possible noti-

fications. In reality, notifications are diverse in design and purpose, and experimenting

with a one-size-fits-all notification would not be possible beyond a controlled research

study. Additionally, interrupting the user without a purpose in an effort to be more gen-
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eric would make the notification unrepresentative of all practical scenarios. Therefore

the notifications produced by the application (discussed further in Section 3.3.3) were

made to be as generic as possible in their interruptive characteristics, in order to remain

broadly representative.

3.3.2 Installation and setup

Through the Google Play Store, self-selecting participants could discover and install the

application onto their Android device in the same manner as other applications. After

installing the application, it remained dormant until the user completed a setup process.

Upon opening ImprompDo for the first time, users were presented with the setup process

and provided with links to a disclaimer, EULA, and privacy policy. Before being able

to progress any further, the user was asked to provide consent to the anonymised data

collection. After granting consent, these documents were then made available for review

at anytime through a menu on the main user interface.

After completing the setup process, a single user interface is then used to manage

the application, shown in Figure 3.4. Users were able to set a time range of hours in

which they were happy for notifications to occur (by default this was 9am to 9pm) and a

maximum frequency within this period (by default this was once per hour). Additionally,

users were required to enable access to at least one of the following one to-do list services

in order for notifications to occur: Google Tasks or Todoist. After which, the application

was able to use the web APIs of the service(s) to retrieve random to-do list items as the

final content shown in the notifications (discussed further in Section 3.3.3). Finally, this

interface could also be used to pause participation indefinitely, alternatively users were

free to uninstall the application at any time.
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Figure 3.4: The main UI screen for the ImprompDo app after initial setup. Figure
from [122].

3.3.3 Interruptions: Android notifications

The application periodically interrupted the user through Android’s notification frame-

work. Notifications used the device’s default tone, vibration pattern and visual cues,

while adhering to the device’s global volume settings in situ. If the user is interrupted,

they respond in the same way as any other Android notification (shown in Figures 3.5a

through 3.5c). That is, assuming the user decides to continue at every decision point

(shown in Figure 3.2), they turn on the screen, unlock the device (unless it is already in

use), access the notification drawer and tap on or dismiss the notification. The user is

then presented with a random item from their to-do list and buttons to manage it.

Each user is interrupted by the notifications periodically using 1 of 4 randomly selected

triggers, while respecting preferences in available hours and frequency (shown in

Figure 3.4). Inspired from the conclusions of related works (e.g., [43, 59]), these are: at

a random time; at the end of a period of acceleration; an X in 10 chance to occur at a

random time, where X increments or decrements each time a notification in that hour

on previous days is consumed or not; and a binary Logistic Regression model trained
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(a) The application icon
shown for an example Im-
prompDo notification

(b) The Notification
Drawer showing an
ImprompDo notification

(c) The application content
shown if the ImprompDo
notification is consumed

Figure 3.5: The Android notification response process used. Figures from [122,
124].

from whether notifications were fully consumed in similar contexts in the previous 7

days. Appendix Table A.3 describes these in greater detail.

As the focus of this study was on near-real time interruptibility, notifications were

removed after 30 seconds if the user did not remove the notification. This allows the

immediate interruptibility of the user to be assessed in various contexts and minimise

the likelihood of a response being the result of a coincidental interaction with the device

at a later time. While response behaviour beyond this timeframe is interesting in its own

right, this is beyond the scope of this analysis. However this forms part of the scope

of Chapter 7, in investigating behavioural patterns in notification behaviour across the

device.

3.3.4 Data collection: response behaviour and contextual data

As notifications are delivered, data samples are taken from hardware sensors and

software APIs on the device using a background service; starting from 5s before and

running until the notification is removed in some way or 30 seconds has past after

delivery (shown in Figure 3.6). Further details of the sampling process are outlined

in Chapter 4, Section 4.2.1. This passive sampling provides a trace of how the user

interacted with the device in response to the notification (e.g., turning the screen on,

unlocking the device, etc), enabling interruptibllity to be labelled in the same manner as

described in Section 3.2.2). Additionally, the data provides an in situ representation of
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0s

Sampling
begins

5s

Notification
is delivered

Tt

Notification
is removed

Else

35s

Notification
expires

Figure 3.6: Visualisation of the the data collection process, from 5 seconds before
delivery up until the notification is consumed (at Tt (5s < Tt < 35s)) or it expires.
Figure from [122].

the device and its environment (similarly to [99, 97]), enabling features to be extracted

for predicting interruptibility from (discussed further in Chapter 4).

In comparison to the typical conventions used in previous studies (discussed in Chapter 2,

and in [121]), this removes limitations such as: relying on the user to provide information

and labelling through surveys (e.g., as used in [92]); permissions that are privacy invasive

and out-of-place for most applications (e.g., as used in [77]) and needing persistent

monitoring of device state changes (e.g., as used in [97]).

3.3.4.1 Collecting response behaviour for labelling

To determine the response behaviour for creating the label, changes in the screen state,

lock state, and notification interaction events are used; which occur as a by-product of

the user conducting the response to each notification (as described in Section 3.2.2). For

example, if the device is not in use, if the user turns the screen on to begin interacting

with the device, this indicates reachability, with unlocking the device to investigate

further indicating engageability. Appendix Tables A.1 and A.2 describe the use of these

events in greater detail.

However, as stated in Section 3.2.2.1, the decisions that are able to be captured varies

depending on whether the device is in use or not at the time the interruption occurred.

To determine this, readings from the screen state API can be used, if the screen is off,

the device can be deemed to be not in use, otherwise it is considered in use. This is

consistent with the approach used by other works investigating smartphone behaviour
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(e.g., [90, 110]). As data readings occurred at irregular intervals, this is calculated from

the reading taken closest to the time of the notification’s delivery, within ±.5 seconds.

3.3.4.2 Collecting contextual data

To gain contextual data for prediction (discussed in Chapters 4 and 5), a bottom-up

approach of collecting from a variety of different data sources was used. To maintain

wider applicability beyond the scope of this study application, data sources were chosen

that: are present on the majority of devices; do not require additional privacy invasive

permissions that would not be consistent with what is expected for most applications

(e.g., microphone, location, calendar), which may also introduce a behavioural bias

even if the user accepts them [63]; require persistent monitoring of the device (e.g.,

device usage data or detailed activity recognition [97]); or require a fundamental change

to how a user interacts with an application (e.g., in needing to answer surveys [92, 76]).

As a result, data was collected from the following sensor and software API sources (in

addition to the current timestamp):

• Linear acceleration (accelerometer)

• Gravity (accelerometer)

• Light sensor

• Proximity sensor

• Battery charging state

• Rotation vector

• Gyroscope

• Pressure sensor

• Magnetic field sensor
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Figure 3.7: A visualisation of the ImprompDo dataset structure.

• Device screen state (on/off) and lock state (locked/unlocked)

• Device volume state (silent, audible, or vibrate)

The sampling process and reliability of these data sources is discussed further in

Chapter 4, along with the features extracted from these data sources. The remainder of

this chapter uses the resulting dataset of this application to compare the DOIG model

against the current black-box convention for labelling interruptibility. This is to firstly

show a benefit to using the DOIG model, before moving forward towards predicting

reachability, engageability, and receptivity using features extracted from the contextual

data.
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3.3.5 Dataset

The resulting dataset from the study contains 11,346 notifications, each with an asso-

ciated set of data vectors containing raw sensor and software API data (visualised in

Figure 3.7). This was collected over 178 days between July 2014 and January 2015,

with 224 participants installing the application over the period and 93 (41.5%) providing

data for at least 1 notification - producing a relatively large population in comparison to

similar studies (as discussed in Chapter 2, Section 2.4.3, and in [121]). Participants used

the application for an average of 26.5 days (Min = 1,Max = 129.6, SD = 35.6), re-

ceived an average of 122 notifications (Min = 1,Max = 781, SD = 175.3), with each

notification having an average of 65.3 data vectors (Min = 0,Max = 840, SD = 7.6).

Further breakdowns of the dataset can be found in Appendix Tables A.4-A.8.

The remaining analysis of this chapter uses this dataset as the basis for determining

whether the DOIG model is comparatively more suitable for labelling interruptibility

than the existing convention. From this, it is also used to explore the feasibility of passive

data collection on Android devices in greater detail (Chapter 4), whether prediction is

worthwhile to pursue (through whether contextual data correlates to the different labels

produced by the model, also in Chapter 4), and in exploring different machine learning

strategies for predicting the labels (Chapter 5).

Beyond this analysis, the versions of Android that were dominant at the time of the

study are limited in their ability to enable the observation of wider notification behaviour

(e.g., what other notifications occur on the device). While the analysis in this chapter

and 4 through 5 is inline with similar works in the area (e.g., [102, 92, 76]), the fast

moving nature of Android’s development has enabled the collection of additional data

from a device-wide viewpoint. This motivates and enables Chapters 6 and 7, which use

further in-the-wild data to a) explore the flexibility of the DOIG model, and b) examine

decision making in the response behaviour beyond an individual notification.
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3.4 DOIG model versus black-box labelling

The purpose of this analysis is to examine the extent to which null, partial, and complete

responses occurred in the dataset, and subsequently examine the benefit of the DOIG

model in labelling this behaviour in comparison to the existing convention. As fewer

decisions can be observed if the device was in use than not, the data was split into

two groups. However, data collection issues prevented either the in use state or overall

response behaviour to be observed for 1287 notifications (11.4%), which were excluded

from the analysis.

A hypothesis can be made in that extending the black-box approach using the DOIG

model captures additional information that is useful for labelling. To determine this

empirically, a comparison can be made between the number of responses captured by

the DOIG model where the user at least partially responded to the notification (i.e.,

the user was reachable, engageable, or receptive), against those responses that would

be captured by a typical black-box approach (i.e., receptive only). As described in

Section 3.2.2, a response is considered partial if the user is at least reachable, but is not

receptive (i.e., the user at least turns the screen on, but does not tap on and consume

the notification, it either expires or is dismissed). Applying a black-box approach to

the same data would typically not capture this data, however, it should be noted that

this could also include the capture of notification dismissals. Therefore the analysis is

conducted for both cases, those that include dismissals and those which do not.

The results show that 1317/10,059 (13.1%) of all cases were partial responses if dis-

missals are included, or 802/10059 (8%) if not. These cases would be missed by a

commonly used black-box approach, which would misclassify these cases as a null-

response (i.e., not interruptible at all). By combining partial responses and complete

responses, the total number of cases where at least some degree of interruptibility

was shown increases from 1056 with a black-box approach to 2373 with the DOIG

model if dismissals are considered as partial responses - a substantial 124.7% increase.

Alternatively, if dismissals are captured by a black-box approach, this increases the total
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from 1571 to 2373, a 51.1% increase. These results show that using the DOIG model

to capture user interactions with the device, and subsequently observe the decisions

being made, isolates responses that are: not started, i.e., null (unreachable) responses;

those that are started but abandoned, i.e., partial (engaged) responses; and those which

consume the notification, i.e., complete (receptive) responses.

From a usability standpoint, this suggests that observing the response process using the

DOIG model is more worthwhile for applications than solely relying on notifications

being consumed. For example, the ImprompDo application represents a use case where

knowing that the user was at least reached is useful as this is indicative that the user made

a decision regarding their productivity. This is not exclusive to to-do list applications and

applies to other applications which issue single purpose notifications (e.g., in hydration

or exercise reminders) where merely seeing that a notification has arrived may have the

desired effect, even if the notification is then not consumed.

Alternatively, for other applications which require the user to completely consume the

notification to be considered successful, the DOIG model still provides a useful utility

in being able to distinguish between cases where the user did not respond at all and

those where they partially did (i.e., they were at least reachable). From a practical

standpoint, the data collection application itself also serves as evidence that passive

observation using the DOIG model is feasible, and without privacy sensitive permissions

or a persistent background service which has commonly been used (e.g., [97]).

3.4.1 Exploring response time

In collecting the ImprompDo dataset, an assumption was made that if a user were

to respond immediately as a result of being interrupted, they would do so within 30

seconds. As this assumption could impact the above comparison of the DOIG model and

the black-box convention, the suitability of this threshold value is explored. Figure 3.8

visualises the response times of notifications that were either consumed or dismissed
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Figure 3.8: Histogram of response times for notifications that were either con-
sumed or dismissed, using a bin size of 1000 milliseconds.

(as a complete response represents the longest response time a user would need).

The results support that the threshold of 30 seconds is suitable to allow a user to

consume the notification, with the majority of responses occurring between 3 and 17

seconds (millisecond statistics: M = 12, 188.8;Min = 481;Max = 29, 958;SD =

6513.9;N = 1571). When splitting the data between those in use and not, there

were only minor changes to the distribution. The primary difference is a quicker

mean response time when the device was in use (M = 897.4;Min = 481;Max =

29, 504;SD = 6039.1;N = 575), which is expected given that the user does not have

to go through the process of unlocking the device. With the mean response time for

cases where the device was not in use taking longer, but still less than half of the 30s

timeout (M = 14, 046.7;Min = 3, 798;Max = 29, 958;SD = 6036.5;N = 996).
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Summary: Observing decision making behaviour in interruption re-

sponses is worthwhile

The above results can be summarised by the following primary findings:

• Individuals are often not immediately interruptible for notifications (i.e., within

30 seconds);

• When they are, users respond to notifications to different extents (i.e,. partial as

well as complete responses);

• The DOIG model offers improvement over the black-box convention for capturing

these cases and labelling interruptibility.

Overall, the high number of null responses emphasises the need for interruptibility

aware notification systems, with the number of partial responses suggesting that this

behaviour should be observed and considered. The DOIG model therefore offers a

useful extension to the existing black-box convention that can help applications in

labelling interruptibility behaviour. However, the model is arguably only useful if

the labels it produces are predictable, which forms a focus of the following chapters

(Chapters 4 and 5).

3.5 Conclusions

While considerable progress has been made concerning capturing and predicting inter-

ruptibility across the literature, the research area is fragmented with specific solutions

for specific interruptions and environments [43, 122]. Despite this, a broad convention

has been to treat the response process towards an interruption as a single decision, with

interruptibility labels determined around whether the user consumes the interruption

content or not - creating a number of limitations as outlined in Section 3.1.

However, depending on the interruption environment, degrees of freedom can exist in
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the response process that result in the user needing to make decisions during the response

itself. For example, in environments where information surrounding the interruption is

delivered in stages that require further interaction to access (as is the case with Android

mobile notifications). Subsequently, partial responses can occur that can indicate some

degree of interruptibility, even if the interruption content is not physically consumed.

In this chapter, a new approach to labelling is proposed (that extends the existing

convention) to expose and capture this behaviour where possible, called the decision-

on-information-gain model. Through an in-the-wild case study of Android notifications,

partial responses were shown to feature prominently in comparison to complete re-

sponses (Section 3.4), demonstrating the utility of the model for labelling interruptibility.

This forms the following contribution to this thesis:

C2 A flexible model for labelling interruptibility for different definitions, the Decision-

On-Information-Gain (DOIG) model, that deconstructs the observable behavioural

trace in a response to a notification.

The model improves upon the limitations of the existing convention outlined in Sec-

tion 3.1. Limitations L3.1 and L3.2 are improved upon by the model deconstructing

how a response is made into the conscious or subconscious decision steps that a user

makes; with the worst case performance being the same as the existing convention (e.g.,

in cases where technical constraints exist in observing decision behaviour). L3.3 is

improved upon by enabling individual applications to infer what decision behaviour (i.e.,

the extent to which a user responded) makes the user interruptible and their interruption

successful. Finally L3.1 and L3.4 are improved upon by utilising passive collection over

human annotation, with the ImprompDo case study providing as a demonstration of the

model being feasible for real-world applications, and without a fundamental change to

notification design or user experience.

As the DOIG model does not alter the response process to notifications, the finer

granularity of observation that it enables produces a second contribution that is related,

but independent to C2, using the ImprompDo dataset:
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C3 Analysis into the natural decision behaviour underpinning interactions with noti-

fications, using data collected in-the-wild.

This analysis has examined what kinds of behaviour can occur inside the “black-box”

(Figure 3.1) of how a response is made, and while this motivates the DOIG model for

labelling, the variety of responses is interesting in its own right.

Subsequent chapters of this thesis build upon this by investigating the practical feasibility

of the DOIG model for implementation on Android devices further, by exploring whether

contextual factors are reliable to sample from and correlate with the labels produced

by the DOIG model (Chapter 4), towards building predictive models (in Chapter 5).

Finally, the flexibility of the model is demonstrated for other, more customised Android

notification designs and the variability that can exist in device preferences (Chapter 6),

as well as whether the decision making behaviour observed in this chapter can be seen

for other notifications across the device (Chapter 7).
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Chapter 4

Sampling context and decision data

The decision-on-information-gain model has been shown to be a useful aid in labelling

interruptibility from response behaviour (Chapter 3). However, its utility is ultimately

tied to the ability to predict the labels it helps to produce. In order to motivate the

building of predictive models of the reachability, engageability, and receptivity labels

produced using the DOIG model, the purpose of this chapter is to examine the feasibility

of passively sampling relevant data on Android devices that can be used for either

creating the labels, or for forming contextual features to use as the basis for prediction.

This also extends the observations of potentially influential contextual data seen in

previous studies (discussed in Chapter 2 and in [121]) by considering both multiple

labels of interruptibility and the technical feasibility of retrieving the data together.

Firstly, the rationale behind this analysis is discussed further in Section 4.1. The data

sampling strategy for the ImprompDo application introduced in Chapter 3 is detailed

in Section 4.2. From this, the practical feasibility of collecting sensor and software

API data from Android devices is examined in Section 4.2.1. Finally, investigations

into correlations between features extracted from this data and different interruptibility

labels is examined in Section 4.3, resulting in preliminary suggestions that the labels

produced by the model are likely to be predictable.
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4.1 Investigating sampling stability and usefulness

The primary rationale for this analysis is to determine the feasibility of using machine

sources (rather than explicit human annotation) to passively implement the DOIG model

on Android devices, in terms of helping to produce labels of interruptibility (as shown in

Chapter 3), and in gathering potentially influential contextual data for building predictive

models. Towards this, two primary limitations in the literature are used to frame the

analysis. Firstly, machines sources have frequently been used across the literature,

however this analysis often stops short of exploring the practical feasibility of retrieving

the data, in favour of moving forward towards prediction. This creates the following

common limitation:

L4.1 The ability for data to be made available when asked for from machine data

sources is often assumed.

As the successful operation of the DOIG model is tied to this being a reasonable

assumption, the sampling stability of the ImprompDo application is firstly explored,

along with strategies to mitigate issues that arise.

From this, before pursuing the predictability of the interruptibility labels produced by

the DOIG model using this dataset, the second part of this chapter explores whether

this would be worthwhile to pursue. This is achieved through determining whether

contextual features extracted from the dataset are correlated to the labels (e.g., whether

the battery charging state correlates to being reachable/not reachable). Empirical studies

have previously commented on the potential predictive power of different contextual

values, however they commonly have the following limitation:

L4.2 Analysis of correlating contextual factors is performed from the perspective of a

single definition of interruptibility (e.g. just receptivity), similarly to limitation

L3.3 in Chapter 3.

This results in conclusions that are confined to this definition, creating challenges in

determining the wider applicability of the results (i.e., for other definitions, such as
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reachability). Therefore this analysis is undertaken with multiple labels representing

different definitions (reachability, engageability, and receptivity).

4.2 Passively sampling data on Android devices with

ImprompDo

In the ImprompDo case study application, data sampling takes place alongside the

delivery of notifications (as discussed in Chapter 3, Section 3.3.3), using a number of

data sources (listed in Chapter 3, Section 3.3.4.2), including sensors (e.g., from the

on-board accelerometer) and software APIs (e.g., the current volume state). Sampling

starts 5 seconds before the notification is delivered, until either 30 seconds have elapsed

or the notification is removed by the user (visualised in Chapter 3, Figure 3.6), enabling

analysis between contextual data just before the interruption and the user’s response

behaviour.

The sampling process consists of creating sets of data vectors, with each containing

a reading from each data source (as visualised in Chapter 3, Figure 3.7). As sensor

readings are delivered by Android asynchronously, a time-window is used to listen for

data. It is closed when either at least one data reading has been collected from all data

sources, or a timeout of 2 seconds has elapsed. If this results in multiple data samples

being taken for a given data source while waiting for the others, only the final reading is

retained so that the time in-between readings across the data sources is minimised. If no

data readings were available after 2 seconds, the reading for that data source is set to

null. A new sampling window is then opened immediately, subject to device speed and

system stability.
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4.2.1 Investigating data availability and sampling regularity

The frequency statistics of the ImprompDo dataset, discussed in Chapter 3, Section 3.3.5,

sheds some light on the existence of sampling differences across users. However, the

extent of this issue requires further investigation for individual data sources, in order to

reflect on the overall suitability. The motivation for this analysis is to examine whether

the asynchronous nature of Android sensors results in gaps in the data vectors, as a

result of data not arriving within the 2-second window. This section examines this by

exploring a) the availability of sensor data when requested, i.e., whether sensor readings

exist or not in the data vectors, and b) the reliability of the 2-second window approach,

by exploring the interval between the start times.

4.2.1.1 Data availability

This section examines how reliable hardware sensors are at providing readings within

the 2-second sampling window, as while a sampling frequency can be suggested by an

application, this is neither guaranteed nor predictable. It should be noted that 1 user did

not have any raw data vectors collected with their notifications, so was excluded from

this analysis.

For each data source sampled, Figure 4.1 shows the number of users where data from

each data source was either: always present in each data vector; sometimes present; or

never present. The results show that no hardware sensors are uniformly reliable, but

that all software API sources were (unsurprisingly) reliable. This suggests that using

machine sources such as screen and lock state for capturing the decision behaviour

required for labelling is reliable, however the contextual data overall is less reliable. It

should also be noted that the never present frequencies include devices that may not

have that particular sensor.

The large proportion of users that sometimes have sensor data warrants further in-

vestigation to see whether these cases can be isolated by operating system version or



4.2 Passively sampling data on Android devices with ImprompDo 71

G
ra

vi
ty

A
cc

el
er

at
io

n

G
yr

os
co

p
e

R
ot

at
io

n
 V

ec
to

r

P
ro

xi
m

it
y

L
ig

h
t

P
re

ss
u
re

M
ag

n
et

ic
 F

ie
ld

D
ev

ic
e 

V
ol

u
m

e

B
at

te
ry

 S
ta

te

S
cr

ee
n
/L

oc
k 

S
ta

te

Hardware sensors and software states

0.0

4.0

8.0

12.0

16.0

20.0

24.0

28.0

32.0

36.0

40.0

44.0

48.0

52.0

56.0

60.0

64.0

68.0

72.0

76.0

80.0

84.0

88.0

92.0

N
u

m
b

e
r 

o
f 

u
se

rs

Always Present Never Present Sometimes Present

Figure 4.1: The reliability of sensor readings within 2 seconds.

device. However, across users using the same version of Android or same device, the

results showed inconsistency across users, with no version or device being consistent in

always containing sensor data (shown in Appendix Tables A.9-A.12). Unfortunately,

this suggests that simply restricting applications to a given version of Android or device

model will not provide guaranteed sampling consistency for sensor data across users.

Therefore, whether this issue can be mitigated by considering multiple sequential data

vectors together (e.g., all vectors in the 5 seconds before a notification is delivered) is

explored in Section 4.2.1.2.

4.2.1.2 Sampling regularity

Data readings need to take place at a reliable rate as environmental context can change

and observations of user interactions with the device need to be made quickly. Firstly,

the standard deviation in the number of sensor readings taken per notification was 7.6

(as shown in Chapter 3, Section 3.3.5). This suggests that there is some variation in the
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M SD Min Max

1000.9 410.5 1.0 33386.0

Table 4.1: Frequency statistics of the (ms) intervals between the start of the
sampling time-windows.

number of samples taken, but does not suggest the regularity. Additionally this may be

due to the listening window readings being up to 2 seconds, rather than a fixed time,

and because sampling stops early if the notification was removed in some way.

The time intervals in-between sampling windows being opened is shown in Table 4.1.

The results show that a sampling window typically occurs just over once per second,

with an average fluctuation of less than half a second; considerably lower then the

2-second time-out for readings to occur, suggesting that the majority of data vectors

contain a complete set of readings. However, there are outlier notifications, which

produced a maximum interval of 33.4 seconds. In this case, a single notification had

only 2 widely spaced raw data vectors taken over the 35-second period. This shows that

while samples are typically taken reliably, there are some minor stability concerns in

scheduling sampling to occur.

Overall, this suggests that requests to sample are typically reliable, but the result may or

may not contain a reading from every source. This leads to question of whether this

reliability can be exploited to mitigate the sensor data availability problems observed

(Section 4.2.1.1). If we assume that the context being captured by these sensors is

unlikely to change considerably in the 5 seconds before a notification is delivered, then

the context before a notification can be built from at least 1 reading across all sampling

windows that occurred in that short period. To investigate this, the mean value was

taken across each data source to create a new single data vector.

The results showed that 8054/11346 (71%) of notifications now had a value for each

data source (an increase of 36.9%). The remaining 3292 (29%) still had some degree of

missing data, however, a proportion of this may be due the device not having a particular

hardware sensor, with 1525/3292 (46.3%) of these cases consistently missing data from
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only 1 sensor. This suggests that taking the mean value can mitigate the reliability

problem, however at the loss of temporal granularity.

Summary: Sensors are reliable, if available

From these results, the primary findings on the feasibility of passive sampling can be

described as:

• Overall, the results show that passive data collection is viable to support labelling

using the DOIG model;

• However data availability issues with the use of on-board sensors presents chal-

lenges in retrieving contextual data on demand;

• It is not feasible to ensure reliable sensor data collection through hardware selec-

tion, however variability can be mitigated by broadening the temporal granularity

of the samples taken and taking mean readings.

Collectively, these findings show support for the use of passive sampling for both

contextual data collection and in helping to capture the decision process in response to

notifications. However, given the time-sensitive requirements of readings relevant to

capturing the response process, such as the screen and lock state readings, it is suggested

that for future applications, this data should be sampled in a separate background

process to the hardware sensor readings. This will help to avoid crucial information

being delayed, such as whether the device is in use. Going forward, the data collected is

examined further to determine the likelihood that the contextual data can predict the

labels produced by the DOIG model.
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4.3 Correlations between contextual data and DOIG la-

bels

To investigate the use of passive sampling for a broad range of notifications as possible,

this section focuses on exploring correlations between contextual data and the different

response behaviour that can occur up until a typical Android notification is consumed.

Further behaviour could occur after this point, such as whether a to-do list item is

completed or an email is replied to, however, as these will depend on the individual

application, this is not included in this analysis.

The ImprompDo dataset is firstly transformed into a set of instances, each representing

a notification, containing a feature vector and the binary interruptibility labels produced

by the DOIG model (Figure 3.2, Chapter 3): reachability, engageability and receptivity.

The feature extraction process to convert the contextual data vectors into a feature vector

is discussed in Section 4.3.1. With analysis of correlations between individual features

before the interruption and reachability, engageability and receptivity labels is explored

in Section 4.3.2.

4.3.1 Extracting features from the raw data traces

Given the variable number of data readings, variable amount of missing data and

potential for noise in the raw data readings, the sets of raw data vectors need to be

converted into a more useful representation. To achieve this, a two-step process was

used:

Flattening step: Following the conclusions of Section 4.2.1.2, the mean value for each

data source is taken across the set of data vectors that span the 5 seconds before the

notification was delivered, creating a single set of values that represent the average

readings.
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Transformation step: These averaged values are transformed into discrete values as

feature variables (features). For example, transforming the proximity sensor value

into Screen_Covered: True/False. The list of features and potential values is shown in

Table 4.2, with the transformation formulas listed in Appendix Table A.13.

The result of the two-step feature extraction process is a vector of features for each

notification, for example:

{Accelerating: False, Ambient_Light: Dark, Screen_Covered: True, Volume_State:

Silent, Orientation: Flat, Charging_State: True, Time_of_Day: Night,

Day_of_the_Week: Sat}

The features chosen were those that were deemed to represent key aspects of the current

state of the device which could logically be hypothesised to be relevant to interruptibility,

taking into account previous similar studies (explored in Chapter 2 and in [121]). As a

result, some less relevant data sources (e.g., atmospheric pressure) were not used.

Statistical analysis procedure

Statistical tests are used to analyse correlations between individual feature variables

and the DOIG model labels. The term correlation is used here to refer to whether the

differences in the underlying distributions are statistically significant (i.e., between cases

where users where reachable or not reachable), independent of the type of statistical test

used.

Firstly, Kolmogorov-Smirnov tests were performed which determined that the distribu-

tions were non-normal, and therefore non-parametric equivalents to t-tests were used.

For variables with 2 possible values in the distribution, Mann-Whitney U tests are

applied. To reduce the likelihood of Type I statistical errors, Kruskal-Wallis one-way

ANOVA with Bonferroni-corrected pairwise post-hoc tests were used for variables

with more than 2 values. Statistical significance of the results are examined first, by
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comparing the p-value against a � = .05 threshold. These results are tabularised to

provide an overview of which variables may be useful and which are not. For key results

with statistical significance, test statistics are reported (�2(degrees of freedom, sample

size) for Kruskal-Wallis one-way ANOVA tests, U and z (z-score, or standard score)

for Mann-Whitney U tests) along with effect sizes (r) [26].

4.3.2 Correlations between features and DOIG model labels

Table 4.2 shows which contextual variables are correlated with which labels. Initial

inspection reveals that some features are only correlated for some labels and these

differences also extend between whether the device is in use or not. This summary

alone suggests that different contextual data may be (consciously or subconsciously)

relevant to the user’s decision behaviour in their response, providing an initial indicator

that prediction is worthwhile to pursue.

While correlation does not imply causation, closer inspection of individual variables

reveals logically plausible effects. For example, the “Volume State” is significant for

reachability when not in use (�2(2, 7737) = 202.209, p < .001). This is expected,

as this is a common mechanism to control physical interruptions from the device.

Pairwise post-hoc tests reflect this, with statistical significance shown between silent

and audible (p < .001, r = −.170), and silent and vibrate (p < .001, r = −.242) pairs,

with medium effect sizes for both. Furthermore, the difference between vibrate and

audible is also significant, but with a much smaller effect size (p < .003, r = .040).

Interestingly, despite the design of the vibration setting intending to lessen the impact of

an interruption, which is arguably closer to silent mode, in practice the effect size shows

that user behaviour towards interruptions through vibration patterns is more similar to

audible tones.

A further example is “Orientation” being significant when the device is in use for

receptivity (�2(2, 2141) = 20.924, p < .001). Pairwise post-hoc tests revealed the
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Not in use In use
Feature variables Rc Eg Rv Rv
Accelerating*

(False, True)
.186 .458 .072 .000

Ambient Light**

(Dark, Dim, Light, Bright)
.000 .039 .000 .000

Screen Covered*

(False, True)
.000 .187 .000 .005

Volume State**

(Silent, Vibrate, Audible)
.000 .009 .011 .000

Orientation**

(Flat, Upright, Other)
.000 .098 .000 .000

Charging State*

(False, True)
.000 .001 .145 .177

Time of Day**

(Morning, Afternoon, Evening, Night)
.002 .125 .936 .000

Day of the Week** .509 .794 .100 .000

Number of cases (n) 7737 1798 1469 2322

Table 4.2: P-values indicating significance of each feature before the interrup-
tion and the outcome of each decision [122, 124]. Bold values show signific-
ance using p < .05. * Mann-Whitney U Test ** Kruskal-Wallis 1-way ANOVA.
Rc=Receptivity, Eg=Engageability, Rv=Receptivity. .000 values refer to strong
significance < .001. Table from [122, 124].

significance pairs to be between groups where the device was flat and those when upright

(p < .001, r = −.087), and between other orientations and upright (p < .001, r = .145).

It could be assumed that when a device is being used for active interaction, it will likely

be relatively upright in the user’s hand, whereas other positions (such as when unlocked

flat on a table) may produce false positives. This is reflected in the p-values and effect

sizes of these pairwise comparisons, and further supported by the difference between

flat and other orientation groups not being significant. Beyond the applicability towards

prediction, this suggests that a multi-modal approach, using measures in addition to the

screen state, could be used to determine whether the device is in use in the future.
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Other variables have more unexpected outcomes, for example, whether the device is

“Accelerating” is significant when the device is in use (U = 482, 548, p < .001, z =

3.788, r = .082) but not when not in use. This is unexpected as if the device is already in

use it could be assumed that the user would be more attentive to notifications, regardless

of whether they were accelerating. However, this could be explained by the level of

focus the user has on an important task when the device is in use. The same argument

concerning the current task being performed could also apply to other variables when

the device is in use. For example “Screen Covered” (U = 147, 285, p < .005, z =

−2.815, r = −0.063), “Ambient Light” (�2(2, 2138) = 20.463, p < .001), and “Volume

State” (�2(2, 2322) = 25.316, p < .001) are all statistically significant, however for

only a small subset of pairs within these (e.g., Dark and Dim (p < .001, r = −.1), and

Dark and Light (p < .004, r = −.092) for “Ambient Light”). Across these the effect

size was low, suggesting that the significance may due to cases where the device was

not in active use, but the screen remained on.

The significance of temporal variables also differs across the use-states. Firstly, the

“Time of Day” was significant for receptivity when the device is in use (�2(3, 2322) =

27.008, p < .001), with pairwise-tests revealing the difference between Morning and the

other groups having the highest effect sizes (Afternoon (p < .004, r = −.083), Evening

(p < .028, r = −.085), Night (p < .001, r = −.154)). This suggests that when the device

is in use in the morning, users are typically focused on their current task and are less

susceptible to interruptions from notifications. Finally, the “Day of the Week” is also

significant for receptivity when the device is in use (�2(6, 2322) = 24.191, p < .001),

but with only a few significant pairs and low effect sizes, suggesting that it may not

have a considerable impact.

Summary: Different correlating factors for different DOIG labels

From the results above, the primary findings from the statistical analyses can be de-

scribed as:
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• Different contextual features before the interruption correlate with different DOIG

labels;

• This also extends to differences between whether the device is in use or not at the

time the notification occurred.

Collectively, these findings suggest that reachability, engageability, and receptivity are

likely to be predictable to some extent from the contextual data collected before the

notification is delivered. However, the medium to low affect sizes suggest the likely

predictive power of individual features may be small, therefore a multi-modal approach

is used going forward in the creation of predictive models. These findings can be further

supported by similar findings in the contexts after the interruption (reported in [124]),

suggesting that different sets of contexts may also influence response behaviour after a

user is at least reachable and begins a response.

4.4 Conclusions

The ability to passively sample relevant contextual data to interruptibility is beneficial

for real-world applications, as this removes the reliance and burden upon the user to

provide this information. Using the ImprompDo dataset introduced in Chapter 3, this

chapter has examined the reliability of sampling hardware and software data sources

on Android devices in order to support the implementation of the DOIG model, and

whether features extracted from these samples may be useful for predicting different

interruptibility labels produced by the DOIG model for typical Android notifications.

Firstly, the reliability of passively sampling data on a variety of Android devices and

versions was explored (addressing limitation L4.1). The results show that the data

sources discussed in Chapter 3 for labelling interruption behaviour with the DOIG

model (e.g., screen and lock state) are reliable. However the results highlight the

potential for unreliability in whether sensor data is available within a 2 second period,
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which impacts on the ability to create contextual features that can be used as the basis

for prediction. While it is unlikely that this can be eliminated through being selective

with Android versions and hardware, using mean values across potentially incomplete

sets of readings (e.g., over a 5s period) reduces this issue considerably. Secondly, the

results show that different contextual features are statistically correlated to different

interruptibility labels produced by the DOIG model (addressing limitation L4.2).

The results of these two analyses supplement contribution C3 of Chapter 3, through

showing the practical feasibility of implementing the DOIG model. Going forward, the

analysis suggests that it may be worthwhile to build predictive models of reachability,

engageability, and receptivity with machine learning, using the features extracted from

the passively sampled data (Table 4.2). This forms the focus of Chapter 5, in exploring

the relative performance differences between models built for each label, along with

different machine learning environments and evaluation criteria.
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Chapter 5

Predicting decision making behaviour

Studies seeking to predict interruptibility using machine learning typically adopt a single

definition of interruptibility (e.g., whether the user is at least reachable, or receptive

to the content). As discussed in Chapter 2, this creates a tight coupling between

experiment scenarios, datasets, and conclusions of individual studies, limiting the ability

to determine the broader applicability. The purpose of this chapter is to explore the

predictive performance of models built for different definitions, by creating independent

models for the reachability, engageability, and receptivity DOIG labels, with the relative

performance differences then examined.

Additionally, degrees of freedom exist in methods for training and testing models,

and in evaluating their performance (as discussed in Chapter 2), with studies typically

performing limited direct comparison of different strategies. Therefore, this analysis

also compares the performance differences of different machine learning strategies for

training and evaluation.

Firstly, further rationale behind exploring a variety of training and evaluation strategies

for the different interruptibility labels is discussed in Section 5.1. The scope and focus of

the analysis is discussed in Section 5.1.1, with initial observations of the performances

of a typical user using different classifier algorithms discussed in Section 5.2. A

comparison of training from the aggregated data of other users or personal data is then

examined in Section 5.3. Finally, the performance of training in an online environment

(where the models are retrained at the end of each day with new data) is explored in
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Section 5.4.

5.1 Examining machine learning strategies

In the context of this thesis, where interruptibility is considered a binary classification

problem, a predictive model is a model that takes a feature vector representing the

current context as input (e.g., as discussed in Chapter 4, Section 4.3.1), and produces an

output that states whether an individual is likely to be interruptible or not in that context.

To achieve this, the model is trained from a set of data instances where interruptibility is

known, with each instance containing a feature vector and a (class) label (i.e., reachable

or not reachable, etc.). The model can then be tested using unseen data, where the

accuracy of the outputted predictions can be evaluated.

Several limitations in the existing literature are used to frame this analysis. Firstly,

in exploring the relative performance differences of the predictive models built for

the reachability, engageability, and receptivity DOIG labels produced, the following

common limitation in the literature is improved upon:

L5.1 Prediction is typically performed by individual studies from the perspective of a

single definition of interruptibility (similarly to limitation L3.3 in Chapter 3 and

limitation L4.2 in Chapter 4).

Secondly, machine learning [39] has been a common means of producing these pre-

dictive models. However, for applications wishing to integrate intelligent interruption

systems into their applications, the choice of learning strategies within machine learning

is arguably a multi-objective problem. As with the sampling of relevant data sources

(discussed in Chapter 4), there is a need to consider both utility and practical feasibility.

Discussed further in Chapter 2, a common thread across the literature is the limited dir-

ect comparison of different methods for training and evaluating models, which forms a

secondary rationale for this analysis, with a particular focus on the following limitations:
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L5.2 While previous studies have included some comparisons of training from aggreg-

ated data or personalised data (e.g., [92]), and between online and offline learning

(e.g., [76]), these are typically not considered together.

L5.3 Evaluation is commonly focused on maximising predictive performance (e.g.,

[99, 97]) rather than considering the diversity in different priorities for differ-

ent applications (e.g., minimising false-positives or false-negatives), and the

practicalities of a real-world implementation (e.g., [128]).

Going forward, as well as examining the relative performance differences across the

different labels produced using the DOIG model (improving upon L5.1), this is achieved

using different machine learning training methods, environments, and evaluation criteria,

in order to suggest additional considerations for future studies and application design.

5.1.1 Machine learning approach

In this chapter, the extent in which reachability, engageability, and receptivity are

predictable is explored using multiple contextual features (multi-modal). The feature

vectors and labels used for prediction are the same as those created for the analysis

in Chapter 4, Section 4.3. The primary aim of the analysis is to explore the relative

differences in the predictive performance across the DOIG labels for different machine

learning methods, however, where appropriate the scope is refined to prune the worse

performing solutions (e.g., classifier choice).

The methods used for each component in the predictive modelling are outlined as

follows.

5.1.1.1 Pre-processing

Analysis of the dataset reveals that the label (class) distribution is imbalanced since

the majority of notifications are null-responses, i.e., users were often unreachable (as
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discussed in Chapter 3, Section 3.4). Without pre-processing, this could lead to false

reporting in model performance, for example, if a model always predicts a single class

and 80% of the data is labelled with that class, then the model is trivially correct 80%

of the time, but practically useless. To prevent this, random-under-sampling (RUS) [41]

was used to produce 100 evenly distributed training datasets for each model.

5.1.1.2 Classifier choice

The choice of classifier algorithms to train the models will be examined as part of the

initial analysis of predictive performance for a typical user (Section 5.2). This is due to

the wide variety of success that has been seen across previous works in using different

classifiers (as discussed in Chapter 2). This analysis will also explore the suitability of

creating either independent binary classification models for each label and use state (e.g.,

at least reachable/not, engageable/not, receptive/not) or mutli-class models (e.g., the

user is either reachable/engageable/receptive/not at all). The results from this analysis

then prune the analysis space for exploring the performance of individual users.

5.1.1.3 Training and testing models

For each DOIG label, three approaches are used for splitting the data where relevant

(visualised in Figure 5.1): Aggregate Trained and Aggregate Tested (AT-AT), where

training and testing data is split from the same aggregated dataset from all users;

Aggregate Trained and Personally Tested (AT-PT), where for each user, the models are

trained from the data of all other users, and tested only against that selected user’s data;

and Personally Trained and Personally Tested (PT-PT), where training and testing data

are both from the data of each individual user. However, as the level of participation

from individual users varied, some users may not have data for all classes (such as if

no notifications occurred when the device was in use), these users are excluded where

relevant.
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Figure 5.1: Visualisation of the training and testing approaches (as described in
Section 5.1.1.3). Personally tested approaches are visualised using an example
user (user1). Additionally, each data point cannot be in both training and testing
datasets. ▮ = the training data used and ▮ = the testing data used.

For testing, 10-fold cross-validation was used for the AT-AT and PT-PT models. As

AT-PT models use separate training and testing datasets, cross-validation would not be

suitable. However, this issue is mitigated as the above analysis is performed on 100

RUS datasets (as defined in Section 5.1.1.1).

5.1.1.4 Evaluating model performance

Different applications may have different priorities on predictive performance (e.g.,

minimising missed opportunities to interrupt (false-negatives), or minimising ineffective

interruptions (false-positives)). To consider this, models are evaluated using different
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Predicted True
(e.g., reachable)

True Positive (TP)

True Negatives (TN)

False Positives (FP)

False Negative (FN)

Sensitivity = TP/(TP+FN) Specificity = (TN/FP+TN) 

PPV = TP/(TP+FP)

NPV = TN/(FN+TN)

Actually True
(e.g., reachable)

Predicted False
(e.g., not reachable)

Actually False
(e.g., not reachable)

Figure 5.2: Visualisation of the PPV, NPV, sensitivity and specificity metrics
used. Weighted precision is the average between PPV and NPV performance, and
weighted recall refers to the average between sensitivity and specificity perform-
ance.

standardised metrics, which are derived from the confusion matrix produced in the

evaluation (visualised in Figure 5.2):

PPV : The positive predictive value (PPV) is a precision metric that refers to the

proportion of cases in the testing dataset that were correctly classified as reachable,

engageable, or receptive.

NPV : The negative predictive value (NPV) is a precision metrics that refers to the

proportion of cases in the testing dataset that were correctly classified as not reachable,

not engageable, or not receptive.

Sensitivity : The sensitivity recall metric refers to the proportion of positive cases (e.g.,

reachable) that were correctly identified against the total number of cases that exist in

the testing dataset. This metric can be paired with PPV.

Specificity : The specificity recall metric refers to the proportion of negative cases (e.g.,

not reachable) that were correctly identified against the total number of cases that exist

in the testing dataset. This metric can be paired with NPV.

Weighted Precision : The weighted precision value refers to the average of the PPV

and NPV metrics, weighted by the number of cases of each class if unbalanced.

Weighted Recall : The weighted recall value refers to the average of the sensitivity

and specificity metrics, weighted by the number of cases of each class if unbalanced.
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Applications that wish to minimise missed opportunities to interrupt (e.g., a game) may

focus on PPV and sensitivity in correctly isolating interruptible moments. Whereas ap-

plications wishing to avoid interrupting during ineffective moments (e.g., a productivity

tool or hydration application) may focus on NPV and specificity in correctly isolating

non-interruptible moments. However, applications may also want to perform reasonably

well at both priorities and consider all metrics together, with weighted precision and

recall metrics offering a summary of these.

5.2 Performance of a typical user (AT-AT)

Firstly, the relative differences between predictive models of reachability, engageability

and receptivity are explored for a typical user, using the aggregated dataset from all

users (AT-AT) for in training and testing the models.

5.2.1 Classifier performance

Table 5.1 examines the predictive performance across 7 common classifiers used in

previous interruptibility works (as discussed in Chapter 2 and in [121]). Firstly, the

results show poor performance for the multi-label model in comparison to the individual

binary-class models dedicated to predicting a single definition of interruptibility. This

suggests that predicting the exact response behaviour is difficult to achieve with the

feature variables in this dataset. However as individual applications are likely to want to

predict if the user will respond at least to the degree that they define the interruption to

be successful, the binary class models are suitable. For example, a hydration reminder

application may require that a user be at least reachable, with any engageable or receptive

behaviour seen as an added positive. From this, only the performances of the individual

binary-class models are reported going forward.

While the mean performances of the binary-class models are not very high, the perform-
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Not in use In use
Classifier Metric Rc Eg Rv MC Rv

AdaBoostM1
Precision 0.6045 0.6064 0.6375 0.2522 0.5927
Recall 0.6026 0.6045 0.6369 0.2976 0.5923

BayesNet
Precision 0.5936 0.5873 0.5955 0.2532 0.4997
Recall 0.5889 0.5831 0.5917 0.2870 0.4996

J48
Precision 0.6065 0.5986 0.6316 0.3376 0.6010
Recall 0.6023 0.5957 0.6294 0.3393 0.6002

Logistic
Precision 0.5719 0.5791 0.6118 0.3217 0.5881
Recall 0.5718 0.5790 0.6117 0.3272 0.5879

NaiveBayes
Precision 0.5715 0.5816 0.6195 0.3408 0.5889
Recall 0.5702 0.5801 0.6174 0.3372 0.5872

RandomForest
Precision 0.5788 0.5769 0.6250 0.3277 0.5939
Recall 0.5787 0.5768 0.6246 0.3283 0.5938

SMO
Precision 0.5664 0.5779 0.6036 0.3233 0.5941
Recall 0.5659 0.5761 0.6017 0.3248 0.5928

Table 5.1: Classifier performance of the aggregated dataset (AT-AT) using
weighted precision and recall metrics and different measures of interruption suc-
cess (reachability, engageability, receptivity). Classifier names are those provided
by Weka [39]. MC=the multi-class model. Bold values indicate the highest value
across classifiers. Table from [122].

ance is similar to other recent studies (e.g., [92, 118, 116]), including those inferring

interruptibility from content data over context (e.g., [76]) and other attentive states (e.g.,

boredom [98]). Given that participation of individual users varied and that humans can

have varying device and interruption habits, this performance (of around 60%) is neither

unexpected nor unreasonable.

Crucially, the results show that partial response behaviour (i.e., reachability) can be

successfully predicted to a similar degree to complete responses (i.e., receptivity). This

is beneficial for real-world implementation as the same classifier can be used for each

use-state without a detrimental affect on performance, improving viability as the mobile

devices can have limited resources. Overall, these results supplement the conclusions

of Chapter 3, in finding that as well as the decision-level labels being worthwhile to
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Not in use In use
Metric Rc Eg Rv Rv
PPV 0.586 0.582 0.617 0.594
Sensitivity 0.699 0.677 0.684 0.610
NPV 0.627 0.614 0.646 0.600
Specificity 0.505 0.514 0.576 0.582

Table 5.2: Classifier performance (J48) of the aggregated dataset (AT-AT) using
unweighted metrics and different measures of notification success (reachability,
engageability, receptivity). Table from [124].

extract, they are also reasonably predictable.

5.2.1.1 Reducing classifier choice to decision-trees

As the results show minimal performance differences across various Bayesian, tree, and

function based classifiers, the J48 tree (C4.5) classifier is used in further analyses as it

offers several advantages beyond performance. Firstly, it has been used successfully in

similar studies (e.g., [99, 88, 31, 30, 86, 24]) and the outputs can be easily interpreted.

Secondly, models created for when the device is in use and not in use can be merged

together simply by adding a top-level node (i.e., in use? {true, false}), rather than

managing multiple models. Finally, storage and traversal of the tree is computationally

inexpensive, an important factor for mobile devices with limited resources.

From this, closer inspection of the metrics reveals further patterns relevant to applic-

ations that may prioritise minimising either false-positives or false-negatives, rather

than the performance of both. Table 5.2 shows of the performance of the J48 algorithm

using the finer grained precision and recall metrics. Overall, the models offer slightly

higher precision in avoiding untimely interruptions (NPV) than finding opportunities

(PPV), suggesting that correctly identifying interruptible moments is more challenging,

at least for one-size-fits-all models from aggregated data; however the reverse is true for

identifying all of these cases (specificity and sensitivity metrics).

Secondly, for cases where the device is not in use, performance typically increases for
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the measures of success that correspond to later points in the response. This suggests

that context, as well as content [76], may be a factor that affects receptivity towards the

interruption. Another unexpected result is the worse performance for receptivity when

the device is in use. This could be explained by the unknown level of engagement that

the user had with their device at that time, with task engagement previously been shown

to be an additional influential feature (e.g., [88, 50, 52]).

Summary: DOIG labels are similarly predictable for a typical user

The results provide an indication of the expected performance of a one-size-fits-all

model built from the aggregated data of all users, producing the following primary

findings:

• Predicting that a user is at least reachable, engageable, or receptive (binary-class

models) yields higher performance than predicting that the user is only reachable,

engageable, or receptive (multi-class models).

• These (binary-class) models produced similar predictive performance across all

of the DOIG labels and use-states, suggesting that adopting a particular definition

of interruptibility will not result in considerable performance gain or loss.

However, as individual users in the ImprompDo dataset participated for different periods

of time, experienced different contexts, and likely have their own interruption habits,

this model may not be representative of every user.

5.3 Comparing aggregate and personalised models (AT-

PT and PT-PT)

This section explores whether the performance of the typical user model (AT-AT) is

representative of the real world; where user participation would be self-selecting and
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Figure 5.3: User performance for models trained from aggregate data (AT-PT).
Rv* refers to receptivity when the device is in use. Y-axis represents prediction
performance. Figure from [124].

level of engagement would vary. To investigate the potential effects of this, separate

models are built to test each user’s data individually. As well as testing at an individual

level, a hypothetical application will have to decide what data to train from. While

personal training data of interruptibility has previously been successful (e.g., [119, 92]),

this data will likely not be available initially (i.e., when a user first installs an application).

The analysis is therefore split between training the models using the data of other users

(AT-PT) and from the individual’s own data (PT-PT).

To examine the results, box-plots are used to visualise the distribution of users (likewise

to [23]), offering a wider view of the typical and outlier performances across users, in

comparison to the use of standard deviations. Outliers are shown using "+" ticks, with

the median performance shown with a horizontal line in the box and the upper and lower

quartiles displayed through the position of the top and bottom of the box respectively.
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5.3.1 Training from aggregate data (AT-PT)

The first set of models were built where, for each user, the training data consists of

the aggregated data of all other users, with the selected user’s data used as testing

data (visualised in Figure 5.1). This is representative of the performance of new users

installing the application where a set of training data from other users already exists.

Figure 5.3 shows the distribution in performance across all individual users (reachability

(N=92), engageability (N=92), receptivity (not in use: N=92, in use: N=83)) and

Figure 5.4a shows results only for more active users (i.e., those with >10 notifications in

the dataset, reachability (N=63), engageability (N=63), receptivity (not in use: N=63, in

use: N=41)). The pruned dataset is used for the remaining analysis, as while the effect

on the overall distribution and medians is low, this removes outlier performances at the

lower and higher quartiles.

The results show that models trained from aggregated data perform very well at correctly

predicting that the user is not reachable, willing to engage, or receptive (NPV) for most

users (seen in the top right of Figure 5.4a), with receptivity also having much smaller

variance. However, these models perform worse at correctly predicting opportune

moments (PPV) for most users, across all measures of success (seen in the bottom left

of Figure 5.4a).

For the recall metrics (sensitivity and specificity), the median performances are close to

the typical user model (Table 5.2) for reachability and engageability (and similar studies,

e.g., [92]), with the exception of sensitivity for receptivity (seen in the bottom left of

Figure 5.4a); however the variance across users is generally high. Overall, this suggests

that individual users are likely to be interruptible in very different contexts, whereas

users are not interruptible in similar contexts, which is logical considering cases such as

during driving.

In comparison with the one-size-fits-all typical user (AT-AT, Section 5.2), the results

highlight the diversity in interruption habits across users, suggesting that the typical
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user model predominantly either underestimates or overestimates per-user performance.

The suitability of training from an aggregated dataset is therefore largely dependent on

an applications desired evaluation priorities.

From the perspective of an application with a higher priority in correctly isolating mo-

ments where the user is not interruptible, models trained from aggregated data perform

reasonably well (shown on the right hand side of Figure 5.4a), with small differences

between models for different the DOIG models and use states. For applications with a

higher priority in avoiding missed opportunities to interruption (or wishing to perform

similarly at both), the low PPV and sensitivity performance overall (shown on the left

side of Figure 5.4a) suggests that these models may not be as suitable, particularly if

receptivity is used as the interruptibility label. However, being able to correctly predict

the inverse of this, that the user is not reachable, could still be useful.

5.3.2 Training from personal data (PT-PT)

The second set of models were trained and tested only using each user’s individual data

(for those users with enough data). To avoid under or over representing performance,

users that produced models for only a single class (i.e., they were always receptive or not)

were also removed. Figure 5.5 shows the performance of all users (reachability (N=75),

engageability (N=73), receptivity (not in use: N=43, in use: N=45)) and Figure 5.4b

shows only those with >10 notifications (reachability (N=43), engageability (N=44),

receptivity (not in use: N=17, in use: N=16).). In this case, the pruning operation

reduces the variance across users considerably across all labels and use states. As users

naturally experienced various contexts, this could be explained by some contexts not

being experienced frequently enough to appear in the training data.

For the pruned dataset, the results show that the use of personalised models typically

outperforms the aggregately trained models (AT-PT, Figure 5.4a) if the evaluation

priority is to isolate opportune moments to interrupt (considering PPV and sensitivity
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(a) AT-PT,for users with >10 notifications.
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(b) PT-PT, for users with >10 notifications.

Figure 5.4: Predictive performance of AT-PT and PT-PT for more active users.
Rv* refers to receptivity when the device is in use. Y-axes represent prediction
performance. Figures from [124].

together on the left of Figure 5.4b). However, the models perform worse than the

aggregate trained models in avoiding ineffective interruptions (considering NPV and

specificity together on the right of Figure 5.4b).
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Figure 5.5: User performance for models trained from personalised data (PT-PT).
Rv* refers to receptivity when the device is in use. Figure from [124].

This suggests that for applications with a greater priority in avoiding missed opportunit-

ies to interrupt (such as the ImprompDo application), or for those wishing to perform

reasonably well at both, personalised models are better suited than those aggregately

trained. This reflects previous conclusions [92, 76], but also shows that this extends

beyond a single measure of success and evaluation metrics.

Closer inspection of the performances shown in Figure 5.4b reveals some slight differ-

ences in the distributions of reachability and engageability as compared to receptivity,

but not to the extent of AT-PT. When the device is not in use, the variance in user

performance is the lowest across all metrics, yet when the device is in use the variance

is the largest across all metrics. Despite this, the low variance across users suggests

that in comparison to AT-PT, personalised models may be more suitable overall for

applications where performance across users needs to be somewhat consistent. However

these differences may be due to the fewer number of users for these models.



96 5.3 Comparing aggregate and personalised models (AT-PT and PT-PT)

5.3.3 Comparison with common Android conventions

Analysis of training from aggregate and personalised data revealed differences in

the prediction performance across the interruptibility labels and evaluation criteria.

Previous studies on inferring other attentive states (e.g., boredom [98]) have found that

despite classifier accuracy not being considerably high, the predictive models can still

be improvement over having no model at all. To examine this in this use case, the

performances of the multi-modal models are compared against typical conventions and

mechanisms available on Android devices, using two baselines.

The aim of these baselines is to achieve the following: a) determine whether having

an interruptibility model is worthwhile at all, and b) whether a multi-modal model

from implicitly observable sensor and API data is worthwhile over only using the user-

declared volume state. However, this analysis is only indicative of the features chosen

from the dataset and not the suitability of the DOIG model for labelling behaviour.

5.3.3.1 Always interrupt baseline

The first baseline is inspired by the default behaviour of applications, where interruptib-

ility is not considered and a notification is assumed to be appropriate to be delivered

at any time. This type of baseline has been used in similar studies (e.g., [31, 99]) to

simulate the extent to which assuming interruptibility produces errors. This is achieved

by instructing the predictive models to classify each piece of training data as the user

being reachable, willing to engage, or receptive, regardless of the training data.

The predictive performance is shown in Figure 5.6. While this captures all moments of

interruptibility (i.e., the sensitivity is 100%), the low PPV demonstrates that in most

moments for most users, they were not interruptible. This is consistent with the findings

of Chapter 3, Section 3.4, and further supports the use of DOIG model to consider

partial responses. Additionally, NPV and specificity performance is understandably

poor as the models do not predict that the user is not reachable, engageable, or receptive.
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Figure 5.6: Always interrupt baseline PPV performance across users - The user is
always interruptible (default application assumption). Sensitivity is 1.0 and 0 for
NPV and specificity, across all models. Y-axis represents prediction performance.
Figure from [124].

Overall, this suggests that some kind of interruptibility prediction model is worthwhile,

with most metrics of the aggregately trained (AT-PT, Figure 5.4a) and personally trained

models (PT-PT, Figure 5.4b) outperforming the baseline. However this alone does not

indicate whether a multi-modal approach using various contextual features is necessary

in comparison to merely considering the volume state of the device (e.g., silent mode).

5.3.3.2 Volume state baseline

As the Android devices in the dataset allow a degree of rule-based interruption man-

agement to take place through manually setting the volume state, the second baseline

involves training and testing models based only on this feature. For example, a user

is conceptually unlikely to be interruptible when the device is in silent mode. The ra-

tionale for this baseline is to use it determine whether other contextual features provide
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(a) Volume state baseline performance (AT-PT).
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(b) Multi-modal model performance (same as Figure 5.4a).

Figure 5.7: A comparison of the volume state baseline against the multi-modal
models trained from aggregated data (AT-PT). Rv* refers to receptivity when the
device is in use. Y-axes represent prediction performance. Figures from [124].

additional utility in reducing the variance between users and in improving typical

accuracy.
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Figure 5.7a shows the performance of the baseline for AT-PT models. Comparing this

with the AT-PT multi-modal model (Figure 5.4a, and shown again in Figure 5.7b for

a side-by-side comparison), the baseline performs slightly worse overall at correctly

classifying interruptible moments (PPV, shown on the left side) when considering the

median and upper quartile values for reachability and engagability and receptivity when

in use. With similar performance to the baseline for receptivity when not in use. For

sensitivity (also shown on the left side), the baseline performs better for reachability

and engagability, but lower for receptivity.

For NPV and specificity (shown on the right side of Figures 5.7a and 5.7b), the general

trend in the performance is the inverse of PPV and specificity. The results suggest

that the median performance of the baseline for NPV across interruptibility labels and

use states is higher or similar to the multi-modal model. This suggests that just using

the volume state may be a better choice than a multi-modal approach if this is the

sole priority, however the multi-modal approach offers less variation between users

and higher specificity. For specificity, the median performances of the baseline when

the device is not in use is considerably worse than the multi-modal model and only

marginally better when the device is in use.

Overall, these results for AT-PT suggest that users may not always base their decisions in

response to a notification purely on the volume state they have set and that the inclusion

of other contextual features can aid in correctly predicting opportunities to interrupt.

This is useful as while multi-modal AT-PT models were shown to largely under perform

against multi-modal PT-PT models, they still offer utility over this baseline.

For PT-PT, Figure 5.8a shows the performance of the baseline. Comparing with the

multi-modal PT-PT models (Figure 5.4b, and shown again in Figure 5.8b for a side-by-

side comparison), a general trend is that the baseline has much less stability between

user performances for all labels and use states. This alone presents a favourable

consideration in the use of the multi-modals, as this reduces the variability between

different definitions of interruptibility (likewise to the comparison to AT-PT models
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(a) Volume state baseline performance (PT-PT).
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(b) Multi-modal model performance (same as Figure 5.4b).

Figure 5.8: A comparison of the volume state baseline against the multi-modal
models for personalised models (PT-PT). Rv* refers to receptivity when the device
is in use. Y-axes represent prediction performance. Figures from [124].

discussed in Section 5.3.2). From this, it could said that users likely manage the volume

state differently, and that there may be cases where users unintentionally forget to

change the volume state at the exact moment their interruptibility changes, which other
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contextual data can help to improve upon.

Additionally, the multi-modal model matches or outperforms the baseline in terms of the

median performance for most metrics, interruptibility labels, and use states. With the

exceptions being: sensitivity for reachability and engageability (shown on the left side of

Figures 5.8a and 5.8b) and NPV for receptivity (shown on the right side of Figures 5.8a

and 5.8b) when the device is not in use. Coupling these results with the sole reliance on

the human effort required to manage the volume state, the results suggest that the use

of a multi-modal trained interruptibility system is more worthwhile, particularly if the

objective is to find opportune moments to interrupt; regardless of whether reachability,

engageability, or receptivity is used.

Summary: Aggregate and personalised models are useful for differ-

ent use cases

The primary findings from exploring the use of aggregate and personalised training data

can be defined as:

• The relative differences in predictive performance across DOIG labels is larger

in comparison to the typical user model (AT-AT, Section 5.2), suggesting that

individual differences in interruption habits likely exist between users;

• If a hypothetical application is seeking to predict opportune moments to interrupt,

by prioritising true-positive classifications and minimising false-negative clas-

sifications, the results showed that personalised models typically outperformed

models trained from the data of other users;

• Whereas if an application is seeking to avoid issuing notifications that will not

likely produce their desired response behaviour (e.g., being at least reachable)

by prioritising true-negative classifications and minimising false-positive classi-

fications, the results showed that models trained from aggregate data typically
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outperformed personalised models (but with greater variability between users);

• For applications wishing to perform well at both, personalised models produced

the smallest variance between users and across reachability, engageability, and

receptivity labels;

• Additionally, a multi-modal provides similar or higher performance when con-

sidering all metrics in comparison to having no predictive model in place. While

merely relying on the volume state can also over improvement, the use of other

contextual features typically reduces the variance between between users.

Collectively, these results provide insight into how different training strategies can

impact the performance of models predicting different interruptibility labels. However,

while personalised models are often the most suitable choice, a challenge remains in

not having personalised data available when a user uses a hypothetical application for

the first time. A potential method to overcome this is to adopt the use of online learning,

where models can be periodically retrained and used in these early stages of application

usage (e.g., [111]), which is examined in the next section.

5.4 Predictive models in an online environment

The evaluation of predictive models in an offline environment (Sections 5.2 and 5.3) has

provided a useful indication of the overall predictability, showing particular benefits of

building personalised predictive models. However, a hypothetical application will not

have the necessary training data when a user first installs it. Online learning, whereby

the predictive models are retrained repeatedly with new data, provides a solution to this

problem conceptually.

To investigate the predictive performance of this, users in the dataset with at least 21

days worth of data were used. Starting from the second day, the predictive models were

retrained daily, using all data from the previous day(s) as the training data (before the
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random undersampling pre-processing step) and all the data for that day as the test data

(number of users: reachability (N=27), engageability(N=27), receptivity (not in use:

N=27, in use: N=18)). This approach has been used in similar studies (e.g., [76]) and

allows the examination of how many days of participation a predictive model is likely

to need in order to reach peak daily performance.

As the performance across the metrics was similar in an offline environment Figure 5.9

shows the general performance of the models in an online environment, using the mean

weighted precision (PPV and NPV) and recall (sensitivity and specificity) across users.

The results indicate that for receptivity, the models perform reasonably well initially,

with minor fluctuation between days. This is not reflective of similar works, for example

Mehrotra et al [76], found that it took up to 9 days of training, however this could be

influenced by the use of different contextual features in the datasets.

For reachability and engageability models, this is much longer (~1 week). This suggests

that these response behaviours may be more sensitive to differences within similar

contexts, where several days worth of behaviour is needed to better distinguish between

reachable and unreachable, and engageable and non-engageable contexts. This is

surprising given that reachability and engageability performed better than receptivity in

an offline setting for some models (Section 5.3).

However, examining the unweighted metrics individually, the performance of PPV and

sensitivity performed much worse than the weighted values, but with similar consistency

across the labels. While this may be influenced by the random-under-sampling pre-

processing step, this suggests that it may take several weeks using these features to

perform well at correctly identifying reachable, engageable, or receptive moments to

delivery notifications.

Overall, the results support the general predictability of labels produced by the DOIG

further, and that using features from implicitly sampled contextual data can perform well

initially (i.e., when the number of data points will be small). However, as with offline

learning, different priorities in the evaluation metrics produce different performance.
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Figure 5.9: Online learning visualisation for the first 21 days, using the mean
value of users with >21 days participation. Y-axes represent prediction perform-
ance. Figures from [124].

Considering these results with the offline learning environment (Section 5.3), this could

be improved upon in future work by supplementing personalised data in an online

learning environment with aggregate data as well (if only for a short period until
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sufficient personal data has been collected). This concept has been recently investigated

[128] and shown to be a suitable technique.

Summary: Online learning can offer similar performance to offline

learning

From the above analysis, the primary findings can be described as:

• Personalised models in an online learning environment produced similar typical

performance to an offline environment for weighted metrics after 1 day for

receptivity and after ~1 week for reachability and engageability.

• However, online learning performed much worse for the finer grained PPV and

sensitivity metrics, suggesting that longitudinal data is needed to perform well at

predicting opportune moments in an online environment.

Building predictive models in an online learning environment extends the observations

of offline learning (Section 5.3) in finding that different training environments also

produce variability in the predictability of reachability, engageability, and receptivity.

Overall, hypothetical applications can use these findings to inform the design of their

own machine learning strategies, based on their definition of interruptibility (i.e., DOIG

label) and priorities in evaluation criteria.

5.5 Conclusions

This chapter examined the predictive performance of the labels produced using the DOIG

model for the ImprompDo dataset (i.e., reachability, engageability, and receptivity). In

doing so, different machine learning strategies for training and evaluation were explored,

including training data selection, training environments, and evaluation metrics. Overall,

for future research and the design of intelligent interruption systems using Android
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notifications, these results further support the use of the DOIG model, with some

models producing >80% precision performance for the majority of users. However the

results also highlight the dangers of assuming wider applicability beyond the confines

of a single set of labelling, training, and evaluation choices. Producing the following

contribution:

C4 Analysis into the predictability of response behaviour using past behaviour that

is labelled using the DOIG model, including examining the effect of various

machine learning strategies on predictive performance.

This contribution has focused on several common limitations of previous empirical

studies (as described in Section 5.1). Sections 5.2 through 5.4 improve upon L5.1 by

training and testing predictive models for different interruptibility labels produced by

the DOIG model. L5.2 and L5.3 are improved upon by exploring the use of different

types of training data in an offline setting in Section 5.3, and the exploration of an

online setting in Section 5.4, with different metrics used throughout for evaluating the

prediction performance, which correspond to different application priorities.

However, this analysis has some limitations in itself. For example, the dataset and

analysis was designed to be as representative of as many different real-world application

use cases as possible within a single case study. In doing so, the contextual features

used for prediction were limited to those that any Android application could adopt

without a fundamental change to their permissions or design (as discussed in Chapter 3,

Section 3.3.4). However, other features could also be feasible to use on a per-application

basis, with previous works showing predictive power for features such: the time since

the last device activity (e.g., [97]), current task data (e.g., [88, 86, 53]), and location (e.g.,

[92]). Discussed further in Chapter 8, future work could explore the maximisation of

predictive performance of the DOIG model labels with these additional features, rather

than the primary focus here of examining the relative differences in the performance

across the labels.

Additionally, Chapters 3, 4, and 5 have examined each stage of the typical interruptibility
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research process (as identified in Chapter 2 and [121]). However, while this is in line

with similar studies (e.g., [76, 92, 99, 72]), collectively this has two primary limitations

in a) being based on a single dataset with a generic notification design and b) only

considering notifications in isolation, rather than as part of a wider process where they

can coexist together, and whether decision making can also be seen beyond individual

responses to notifications. The following chapters address these using a second dataset

containing in-the-wild notifications from multiple applications.
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Chapter 6

Model robustness to variability

The decision-on-information-gain model has been shown to assist in the capture, la-

belling, and prediction of different interruptibility behaviour (Chapters 3, 4 and 5).

However, the contributions thus far are based on a single dataset that does not show

the extent to which custom notification designs and device variability effects what the

model can capture. The purpose of this chapter is to examine the flexibility of the

model (which is discussed conceptually in Chapter 3, Sections 3.2.1 and 3.2.2), through

analysing a second, larger dataset of notification designs and preferences, collected

in-the-wild.

Firstly, the rationale behind this focus is discussed further in Section 6.1, along with the

process of collecting further empirical data using a new Android application, Boomerang

Notifications. The resulting dataset is then used to examine how the DOIG model can be

flexible to different notification design properties that differ from the default properties

used in ImprompDo (Chapter 3, Section 3.3) and device preferences in Section 6.2.

6.1 Boomerang Notifications Android application

The intention of this chapter is to support the contributions of Chapters 3 through 5 by

exploring the flexibility of the DOIG model using additional in-the-wild empirical data.

So far, although the practical usability of the DOIG model has been demonstrated using

the ImprompDo dataset, the following limitations have been noted:
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Figure 6.1: An example of the Boomerang Notifications main user interface

L6.1 The ImprompDo dataset contains response behaviour towards notifications with

generic properties in order to be as broadly representative as possible. While

using a confined set of interruption design properties is a conventional across

interruptibility studies [121], in practice, notifications can deviate from this.

Subsequently, while the DOIG model has been formally defined as flexible to

customised notifications (Chapter 3, Sections 3.2.1 and 3.2.2), the ImprompDo

dataset cannot offer empirical evidence of this.

L6.2 Recent advancements in the Android operating system have allowed for user

customisation in when and how notifications are displayed. This is not captured

in the ImprompDo dataset due to the study being conducted before these were

introduced.

Both customised notification properties and device preferences can affect the number of

observable decisions in a response that the DOIG model can capture, and subsequently

the distinction between reachability, engageability, and receptivity. To determine the

extent to which this customisation occurs, a bespoke Android application, Boomerang
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(a) An example (email) notification.

(b) The save prompt shown after
the notification in Figure 6.2a is re-
moved (assuming that the applica-
tion is in the user’s list of applica-
tions to show save prompts for).

Figure 6.2: User feature: the process for saving a notification

Notifications, was developed and released in-the-wild (shown in Figure 6.1). The

application harvests characteristics of all notifications that naturally occur on the device,

enabling analysis of the variability that can occur (addressing limitation L6.1). It also

collects individual user preferences in how and where notifications are made known to

the user (addressing L6.2), when notifications are added and removed, and contextual

data; discussed further in Section 6.1.2. The application was developed in accordance

with the ethical research requirements and processes of Cardiff University.

The application was distributed through the Google Play Store (shown in Figure 6.3)

for the public to download and use for free. The application is compatible with Android

devices running version 5.0 and higher, which covered ~45% of the market distribution

at the time of the study in June - September 20161. To encourage participation, the

application enables users them to save and set reminders to review notifications at

1 As per Google’s “Dashboards” at the time of the study - https://developer.android.
com/about/dashboards/index.html

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
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Figure 6.3: The Boomerang Notifications app listing on the Google Play Store.

a later time (shown in Figure 6.2 and discussed further in Sections 6.1.1 and 6.1.2),

enabling more natural behaviour to be captured in comparison to the use of monetary

compensation [109].

The application received generally positive reviews from online media outlets (e.g.,

[28, 127]) and users2, but some users did not like that the app was part of a research

study. Additionally, some users suffered similar technical issues to that of ImprompDo

that were difficult to capture in testing; for example, device specific bugs that prevented

some of the application’s features from functioning. However, these issues are only

indicative of the challenges of developing research applications that participants wish to

use, rather than the ability for a given application to implement the DOIG model (as

shown in Chapter 4).

2 Boomerang Notifications received an average Google Play Store rating of 3.71/5 by the end of the
study
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(a) An interface in the application setup
showing the user how to activate the ap-
plication.

(b) A help interface that shows
the user how to save notifica-
tions. This screen is shown in
the setup and accessed from the
main menu thereafter).

Figure 6.4: Screenshots from Boomerang Notification’s setup process.

6.1.1 Installation and setup

Self-selecting participants were able to install the application through the Google Play

Store in the same manner as other applications. After installation, the application

remains dormant until the user opens it and completes a setup process, which must

be completed for the application to become functional (as with ImprompDo). The

initial screens of this setup describe the application and how it works (e.g., shown in

Figure 6.4), along with its research purpose and links to a disclaimer, EULA, and privacy

policy. Users are then asked to provide consent to the anonymised data collection before

progressing further.

If consent is granted, the user can then progress to activating the application (shown in

Figure 6.4a) and setting their preferences of which applications they want save prompts

(shown in Figure 6.5a) to occur for, when those application’s notifications are removed.
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(a) The application rule inter-
face that allows users to se-
lect which applications to receive
save prompts for after notifica-
tions are removed. This screen is
shown in the setup and accessed
from the main menu thereafter).

(b) Boomerang Notifications’ settings
interface that is accessible from the
main menu. Settings include allow-
ing users to activate/deactivate the
application and set additional pref-
erences regarding saving notifications
and reminders (outlined in Appendix B,
Table B.2).

Figure 6.5: Screenshots of Boomerang Notification’s customisation options for the
user facing features.

After completing the setup, the user is presented with the home screen of the app, shown

in Figure 6.1. From here, the user is shown the most recent notifications saved and those

with upcoming reminders that day. A menu is available at the top left of the screen that

allows the user to access:

• Details about the study and participation;

• The complete list of saved notifications and reminders;

• App settings for controlling how and when notifications generated by the applica-

tion occur (shown in Figure 6.5b and outlined in Appendix B, Table B.2);
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• A help guide (shown in Figure 6.4b).

6.1.2 Data collection process

The application runs as a continuous background operation in order to enable the passive

collection of anonymised research data and for the user facing features to function;

with the data periodically sent to a server anonymously at the end of each day. As

with ImprompDo, passive background collection from machine sources on the device is

used to enable data collection at scale, rather than using experience sampling through

surveys. Primarily, the application relies on the NotificationListener API [4] introduced

in Android 5.0, which enables third party applications limited access the notifications

that occur on the device after the user gives explicit permission. In summary, application

implicitly collects details of:

• The properties of all notifications that occurred on the device, such as the origin-

ating application, and how many buttons it has. For privacy reasons, the content

of the notifications was not collected;

• When notifications were posted, updated, and removed;

• User interactions with the device (e.g., screen on/off, shutdown, boot, etc.);

• Contextual data when the notification and user interaction events occurred, from

data sources that did not require invasive permissions, as with ImprompDo (e.g.,

volume state, battery state, etc.);

• User behaviour with the app’s useful features (e.g., notification reminders);

• Device preferences set by the user (e.g., whether pop-up notifications are allowed).

As a result, the dataset produced from the Boomerang Notifications application is

considerably richer than that of ImprompDo, as it captures the scale and variety of

notifications that naturally occur on the device. The dataset can be examined for a
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variety of research hypotheses, however the focus of this chapter and the remainder of

this thesis is on improving upon the limitations of the ImprompDo dataset discussed in

Section 6.1. Firstly, the flexibility of the DOIG model is explored through examining the

variety of notification properties and device preferences that exist in the dataset, as these

could affect what decision behaviour can be observed. This forms the scope for the

remainder of this chapter, with the user behaviour towards the device and notifications

examined in Chapter 7.

Study Limitations

The use of the NotificationListener API presents several challenges and limitations.

Firstly, in order for the API to function, the user must explicitly grant Boomerang

Notifications access to notifications after install. As participants were self-selecting,

the application needed to provide some utility to install and grant this permission. In

order to facilitate this, additional notifications are introduced by the application itself

(outlined in Appendix B, Table B.2). However the occurrence of these will change

based on a user’s settings in the application and the natural use of the app’s features.

Therefore this still offers a natural viewpoint of notification behaviour on the device,

and remains arguably more representative than previous studies that issue notifications

for experience sampling interruptibility (e.g., [99, 92, 76]).

Secondly, the NotificationListener API provides limited detail in how a notification is

removed. The sand-boxed nature of Android results in all interactions with a notification

being handled by the application that generated it, which goes beyond the scope of

the NotificationListener API. As a result, Boomerang Notifications is aware of what

notification were removed and when, but not how (e.g., if the user tapped upon it, or

dismissed it, etc.). This is a byproduct of re-purposing Android APIs for purposes

they were not originally designed for. However, this limitation is outweighed by the

opportunity to retrieve the design properties of notifications across all applications,

enabling the primary rationale of this analysis in investigating the flexibility of the
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Application n

Google Maps 3,927,318
Android System UI 2,804,729
Android 1,891,615
Android Downloads Application 1,146,690
Internet Speed Meter Lite 977,378
Light Flow Pro - LED Control 863,592
GPS Status & Toolbox 742,121
WhatsApp Messenger 705,251
Ampere 674,369
Google Play Services 625,902

Table 6.1: The top 10 applications that produced notifications.

DOIG model.

6.1.3 Dataset

The collected dataset contains 32,933,211 notifications (including updates) posted from

7,156 applications, with each application producing an average of 4,602.2 notifications

(SD = 70, 292.6, Med = 14). The 10 applications that produced the most notifications

is shown in Table 6.1. Notifications occurred from 25 Google Play Store categories

(considering games as a single category), with those not present on the store placed

in an additional “other” category. Examples of these include system notifications and

those that are prohibited on the Google Play Store, such as gambling applications.

Each category had an average of 1,266,662 notifications, but with wide variation

(SD = 2, 542, 582.2, Med = 90, 662). Table 6.2 shows the apps that produced the

most notifications for a subset of categories as an example.

These notifications occurred across 3,106 users over a 67-day period, with each user

using the application for an average of 5.4 days (SD = 7.8, Med = 3). Each user

received notifications from an average of 28.3 applications (SD = 16.3, Med = 27),

with each application issuing an average of 275.2 notifications (per user) (SD =

553.4, Med = 125.6).
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Category Application n

Travel and local

Google Maps 3,927,318
GPS Status & Toolbox 742,121
Blitzer.de PLUS 29,149
Waze - GPS, Maps, Traffic Alerts & Sat Nav 9,158

Communication

WhatsApp Messenger 705,251
Newton Mail - Email & Calendar 259,366
Gmail 253,790
Viber Messenger 189,683

Music and audio

Google Play Music 444,667
Spotify 155,112
TuneIn Radio Pro - Live Radio 135,858
TuneIn Radio 30,065

Productivity

DIESEL : App Switcher 300,384
Inputting Plus: Ctrl + Z/F/C/V 162,780
MEGA 72,547
Inbox by Gmail 70,350

Media and video

YouTube 146,352
Flud - Torrent Downloader 79,813
Flud (Ad free) 39,745
tTorrent Lite - Torrent Client 38,292

Lifestyle

Timely Alarm Clock 129,332
Assistant (by Speaktoit) 21,669
Morning Routine - Alarm Clock 21,067
Family Locator - GPS Tracker 14,811

Health and fitness

Strava Running and Cycling GPS 107,269
Google Fit - Fitness Tracking 88,833
UP - Smart Coach for Health 86,214
Twilight 77,419

Social

Glympse - Share GPS location 99,719
Facebook 45,982
Instagram 30,129
Glympse Express 27,189

Weather

YoWindow Weather 59,438
Weather Timeline - Forecast 53,884
MyRadar Weather Rada 27,681
Weather Live 26,956

Game

Integrated Timer For Ingress 24,656
Real Racing 3 13,890
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Category Application n

SimCity BuildIt 5,796
Asphalt 8: Airborne 4,859

Business

Nine Mail - Best Biz Email App 17,517
Slack 11,101
BZ Reminderp 9,518
OfficeSuite Pro + PDF 5,904

Entertainment

Netflix 15,916
BBC iPlayer 6,901
9GAG 6,239
DIRECTV Remote for Samsung 4,624

Shopping

Slickdeals: Coupons & Shopping 8,080
eBay 1,225
TrackChecker Mobile 1,175
Dealabs: Bon plan & Code promo 919

Table 6.2: Applications that produced the most notifications for 13 example
Google Play Store categories.

6.2 Flexibility of the DOIG model

The first analysis of the Boomerang Notifications dataset will focus on further justifying,

through empirical data, the need for a flexible labelling methodology for mobile notific-

ations, and how the DOIG model can accommodate this. A principle rule of the DOIG

model is that a decision is made after the user gains an additional piece of information

about the interruption. Both the notification design and the user’s device preferences

can impact on when information is made known to the user (e.g., the identity of the

application), which subsequently affects what decisions are made when and the ability

to capture and separate the spectrum of interruptibility (i.e., from reachability through

to receptivity). The intention of this analysis is not to show a complete mapping of

combinations (as the Boomerang Notifications dataset is not exhaustive), but to show

how (conceptually) decisions can be observable or restricted as a result of the variability.
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6.2.1 Variability in notification properties

In addition to content, Android notifications have a number of properties that can impact

(to varying degrees) how they are displayed individually and can be interacted with.

These can be grouped together into the following:

• Grouping and ranking;

• Actions and dismissability;

• Interruptive nature.

For each of these, the frequency distributions within the Boomerang Notifications

dataset are discussed, before reflecting on their impact on the usability of the DOIG

model.

6.2.1.1 Grouping and priority

An Android design practice is to display the content of similar notifications from an

individual application together in a summary notification. However, we find that a small

proportion of notifications adopt this behaviour explicitly (n = 1, 777, 923, 5.4%), with

the majority shown as standalone notifications (n = 31, 155, 288, 94.6%), however, note

that applications can instead update existing notifications with additional information to

replicate this grouping.

Applications can also set a priority for the notification [3] that indicates the importance

for it to be seen by the user: Maximum (Max), High, Normal (the default priority

assigned), Low, and Minimum (Min). This effects where the notification is displayed,

with those below-normal priority only shown at the bottom of the notification drawer

(Figure 6.6). Normal or higher priority notifications also have an icon shown along

the top-left of the screen (Figure 6.6) and can also be shown immediately on the lock-

screen (if user preferences and the version of Android allow for it). The distribution in

the dataset is: Max (n = 7, 998, 188, 24.3%), High (n = 3, 363, 928, 10.2%), Normal
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(a) An example of a Normal priority
notification’s icon appearing along
the top bar.

(b) An example of the notification
drawer containing other notifica-
tions with below Normal priority
that are not shown along the top
bar.

Figure 6.6: Icons for notifications with Normal or higher priority are shown along
the top (left) of the screen as well as in the notification drawer. Low priority
notifications are only shown in the notification drawer.

(n = 12, 761, 871, 38.8%), Low (n = 1, 613, 201, 4.9%), Min (n = 7, 168, 457, 21.8%),

with a small proportion reporting an unknown priority (n = 27, 566, 0.1%). Table 6.3

shows the 5 apps with the most notifications for each priority.

6.2.1.2 Actions and remove-ability

Actions can be defined as ways in which a user can interact with the notification

(e.g., by tapping on it, dismissing it, or through a button). Actions are performed by

the application and could involve opening the application (e.g., after tapping on an

email notification) or not (e.g., tapping the delete button on an email notification). For

the majority of notifications (n = 28, 867, 293, 87.7%), at least one action could be

performed, with explicit action buttons being uncommon by only occurring in a subset

of these (n = 6, 787, 008, 23.5%).

Additionally, a large proportion of the notifications could not be individually removed

through the conventional swipe (n = 27, 037, 362, 82.1%). This is surprising, but in
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Priority Application n

Max

Google Maps 3,890,897
Internet Speed Meter 498,885
Android System UI 273,462
Android Phone Call UI 261,659
DU Battery Saver 246,489

High

Internet Speed Meter Lite 946,811
Internet Speed Meter 439,964
WhatsApp 273,024
Advanced Download Manager 205,769
Android System UI 193,568

Normal

Android Downloads Application 1,132,322
Android 1,058,465
GPS Status & Toolbox 742,121
Pocket Casts 609,647
DoggCatcher Podcast Player 525,423

Low

Light Flow Pro - LED Control 705,380
Light Flow - LED Control 160,727
Google Play Store 145,056
Tasker 88,907
Avast Battery Saver 73,624

Min

Android System UI 2,218,164
Android 788,055
Google Play Services 616,436
VPN by Private Internet Access 425,597
Google 402,007

Table 6.3: The top 5 applications that produced notifications per notification pri-
ority.

some cases these style of notifications can be removed by other means. For example, a

media player (which may also produce many updates to the notification) may disable a

swipe removal to prevent accidentally stopping playback, and instead offer an action

button to remove the notification.
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Figure 6.7: Interruptive design across interrupting notifications.

6.2.1.3 Interruptive nature

Notifications can also attempt to interrupt the user in order to draw their attention. To

do this, notifications can use a combination of explicit cues, including: an audible

tone, haptic vibrate pattern, and visual cues (e.g., flashing LED), or none of these.

Surprisingly, 29,835,465 notifications (90.6%) were not designed to be interrupting

in any way beyond appearing as a notification. With the remaining 3,097,746 (9.4%)

designed to be interrupting in some way (assuming user settings allowed for it to occur).

However, this is arguably reflective of the other design distributions shown, such as

those with low priority, those unable to be individually dismissed (e.g., media controls),

or those which are updates to notifications showing progress towards some goal (e.g.,

downloads), which are less likely to be interruptive. Additionally, new notifications

can produce a visual cue when using the device by simply appearing (as shown in

Figure 6.6).

Figure 6.7 shows the distributions for each type of intrruptive cue, for notifications

that adopt at least one of these types. The results show that notifications do not
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always use all mediums of interruption, with audio and haptic cues the least used

(n = 2, 205, 959, 71.2%, and n = 2, 149, 275, 69.4% respectively) in comparison to

visual cues (n = 406, 066, 13.1%). Additionally, custom visual cues (e.g., flashing

LED patterns) are more prevalent (n = 2, 054, 520, 66.3%) than custom haptic patterns

(n = 497, 882, 16.1%) or custom audio cues (n = 759, 265, 24.5%), but custom

cues in general are used more than the device’s default (n = 637, 160, 20.6%; n =

450, 589, 14.5%; n = 132, 522, 4.3 %, respectively). Overall, this shows that different

notifications use explicit interruptive cues differently, and that applications using the

DOIG model should assess this before determining what decisions in the response are

observable (discussed further in Section 6.2.1.4).

6.2.1.4 Impact on observable decisions in the DOIG Model

The above frequency statistics illustrate that despite notifications being a standardised

convention, several degrees of freedom exist in their design. However, only a subset of

these have a notable impact on the response process. The largest impact will arguably

be if an application sets distinctly recognisable interruptive cues. This will merge the

first two decisions (D1, and D2, shown in Chapter 3, Figure 3.2) that correspond to

reachability and engageability, as the information gained that a notification occurred

and that it was from a particular application, will occur at the same moment.

However, this assumes that the user is able to remember and distinguish between

these and that no other app is also using the same or very similar design (especially

for LED pattern and vibration pattern). Determining this will be challenging for an

application that does not use an API (e.g., NotificationListener [4]) that allows access

to the interruptive properties of notifications from other apps. This will be true for

most applications due to the invasive permissions and background monitoring that this

entails. In this case, an application will have to determine this from calculating the

likely probability that their interruptive properties are unique and distinctly memorable,

considering if they use a custom tone, LED pattern, or vibration pattern (Figure 6.7).
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Other design properties, such as priority and grouping have small to negligible effects

on the model itself, but could impact the need for it at all. For example, the frequency

statistics show that a number of notifications operate more passively, such as to merely

display the status of something (e.g., system notifications, such as whether the device

is plugged in via USB) or progress (e.g., download notifications), using different

combinations of design properties, such as: low priorities, the inability to be dismissed,

and lack of interruptive cues. A reflection can be made that these notifications may not

need to consider interruptibility at all, regardless of definition. Finally, the number of

actions that can be performed on a notification will affect the ability to observe of the

final decision representing receptivity (D3), as if the notification is not actionable and

removable, the user’s sentiment towards the content cannot be seen.

6.2.2 Variability in device preferences

The Android operating system also offers users a number of preferences that can impact

the way in which they receive and manage notifications. These can be grouped into two

areas:

• Notification display preferences;

• Interruption policies.

Likewise to the variability of notification properties (Section 6.2.1) these can change

where notifications are displayed on the device and subsequently when information

is gained and decisions made. They can also impact whether the design properties of

notifications actually occur in practice (e.g., if explicit interruptive cues are suppressed).

As for notification properties, the frequency statistics among these areas are firstly

discussed, before reflecting on the impact on the DOIG model.
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Figure 6.8: Notification display preferences across users.

6.2.2.1 Notification display preferences

Android enables some customisation of when and where notifications are presented

to the user through a number of device-wide settings: a) whether the LED patterns

on notifications are performed; b) whether notifications are shown on the lock-screen;

c) whether private content of notifications is concealed if they are shown on the lock-

screen; and d) whether notifications with high priorities that use explicit audible or

vibrate cues appear as pop-ups when the device is in use (“heads-up” notifications [1]).

Figure 6.8 shows the proportion of users that have these values set to either true or false.

The results indicate that users do make conscious decisions to control the presentation

of notifications, with some (n = 726, 23.4%) disallowing notifications to be shown

on the lock-screen (with 5 users allowing this but with limited private content, which

is dictated by the application). Additionally, some users (n = 683, 22%) were also

conscious about the use of the LED lights and had this feature disabled. Finally, a

small number of users (n = 69, 2.2%) disallowed pop-up notifications explicitly on a

system-wide level. However, this setting cannot be changed through the user interface

of most Android devices, instead this can only be performed on a per-application basis.
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Per-application data is not available in the dataset due to API restrictions, but the small

number of users that did turn this off from a system-wide point of view suggests that

this is a setting that some individuals consciously manage.

Overall, these statistics suggest that the DOIG model also needs to be flexible for the

settings of individual users as these can change what decisions the user makes in a

response and where; this is discussed further in Section 6.2.2.3.

6.2.2.2 Interruption policies

Interruption policies enable “do-not-disturb” capability for notifications during a set

time period, extending the historical device-wide silent mode by providing application-

level policies. While notifications still arrive as usual, the associated audio, and haptic

cues are suppressed. Policies can either silence all notifications or be more selective

towards specific applications. Figure 6.9 shows the distribution of users who set an

interruption policy at least once.

The results show that the majority of users (n = 2345, 75.5%) did not use an interruption

policy at all, suggesting that manually managing these may be undesirable. In these

cases, users only suppressed interruptions by setting the device to a global vibrate rule

(if at all), where the audio cues of all notifications are silenced but vibrate and visual

cues still occur. For those that did adopt interruption policies (n = 761, 24.5%), the

majority of these (n = 627, 82.4%) only applied selective policies that only allow the

audio and haptic cues from specific notifications (e.g., only alarms). A small number of

users (n = 100, 13.1%) only used policies that silence all notifications, and a few users

used both types (n = 34, 4.5%). API restrictions and privacy permissions prevent the

exploration of individual rules, however, the results indicate that users are generally not

using Android’s built in interruption policies.

Going forward, this also raises the question as to what other cognitive mechanisms

are being used to manage notifications. This forms a key focus in the analysis of
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Figure 6.9: Use of interruption policies across users.

notification behaviour in general in Chapter 7. In particular, whether other conscious

or subconscious mechanisms can be exposed from behavioural patterns across the

independent responses to individual notifications.

6.2.2.3 Impact on observable decisions in the DOIG Model

The variability in device preferences surrounding notifications and interruption policies

illustrate that the DOIG model needs to be flexible to these, in addition to the notification

design choices of applications. Firstly, the largest potential impact on the DOIG response

process comes from users being able to display information about notifications on the

lock-screen (Figure 6.8). The ability for this to occur was introduced in Android 5.0

and therefore only needs to be considered for this Android version and above. In this

case, the second and third decisions representing engageability and receptivity when

the device is not in use (D2 and D3, shown in Chapter 3, Figure 3.2) will need to be

merged if the notification priority is normal or higher (otherwise they are not shown

immediately on the lock screen). This is because the user no longer needs to unlock the

device to view the notification summary. However, if notifications are not shown on the
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lock-screen, or if they contain private content that is concealed by the application, then

this does not have an effect on the observable decisions (i.e., the response process is

similar to Android versions < 5.0).

The other settings have more minor effects on the observable decisions of the DOIG

model. Applications that use LED patterns as part of their explicit interruptive cues

would need to consider whether the LED is available when determining whether reach-

ability and engageabilty is likely to be distinguishable (as discussed in Section 6.2.1.4).

Finally, the ability for high priority notifications to popup on the screen while it is in use

has little effect. This is because the decision process is already challenging to observe

while the device is in use (as discussed in Chapter 3, Section 3.2.2).

Notification policies can also impact the DOIG model for notifications that have audible

or haptic cues. If a policy is in effect that suppresses these cues then this affects whether

a response may occur. While it does not change the response process to the same extent

as notification display preferences, it does impact whether the user is in a position to

be reachable. However, including this consideration is challenging for two reasons.

Firstly, even if an interruption policy is not in effect, an application cannot know if a

user is simply not reachable or that they were not interrupted (as discussed in Chapter 3,

Section 3.2.2.1). Secondly, a typical application will likely not have access to whether a

policy is in effect. Notification policy access is an additional permission that is unlikely

to fit with the design of most applications, likewise to the notification access through

the NotificationListener API.

Summary: Notification characteristics and user preferences are highly

variable

Overall, the analysis has highlighted how the DOIG model can be flexible to the vari-

ability that can exist in notification design and display preferences, supporting the

discussions of the conceptual flexibility in Chapter 3, Section 3.2.2.1. However, in in-
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vestigating this, a secondary but independent set of primary findings can be summarised

as:

• Notifications are diverse in their design, in addition to their individual content

and purpose;

• Notifications are not synonymous with interruptions;

• The use of different on-board notification related preferences suggest that user’s

wish to control the visibility of notifications;

• The absence of interruption policies for most users suggests that other conscious

or sub-conscious management mechanisms may be in effect.

Collectively, these findings highlight the extent to which mobile notifications have

evolved from telephonic and alarm based interruptions, and that they now form an

integral part of mobile device usage. However, these findings do not highlight the extent

to which notifications punctuate our daily lives or the processes used to manage the

volume and diversity.

6.3 Conclusions

Android’s flexibility in the way notifications operate and can be managed provides

degrees of freedom to both application developers issuing notifications and to users

receiving them. The strategy adopted in this thesis is to embrace this by creating a

flexible labelling framework that is capable of considering this variability and then

able maximise, as far as possible, the ability to capture decision making in interruption

response behaviour. Chapter 3 has discussed this theoretically, and the analysis of the

empirical Boomerang Notifications data set in this chapter supports this further, forming

the following thesis contribution:

C5 A demonstration of the flexibility of DOIG the model for different notification
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designs and device preferences, using additional in-the-wild data.

Going forward, the findings of variability in the use of interruption policies and noti-

fication display settings (Section 6.2.2) suggests that other, wider (conscious or sub-

conscious) management processes for notifications may exist. This forms the primary

focus of the next chapter, in exploring the existence of decision making behaviour in

how notifications are managed from the wider viewpoint of the notification stack, in

order to further support the DOIG model.
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Chapter 7

Coexisting Notifications

While individual mobile notifications occur independently of one another, they can

coexist and subsequently build up into a “stack” where they compete for attention (shown

in Figure 7.1). Using the Boomerang Notification dataset introduced in Chapter 6, the

purpose of this chapter is to explore further design considerations for the DOIG model,

through analysing the extent to which notifications coexist together, whether decision

behaviour in notification responses can be seen from this wider viewpoint, and how this

coexistence can impact the decision processes surrounding notification consumption.

The rationale for examining interaction behaviour with notifications that coexist together

(as opposed to the viewpoint of individual notifications in isolation) is discussed further

in Section 7.1, leading to the introduction of the concept of the notification stack in

Section 7.2. Following this, response behaviour towards notifications from the viewpoint

of the notification stack is examined in Section 7.3, with the impact of the presence of

other notifications on individual responses explored in Section 7.4. Finally, the impact

on the DOIG model is discussed in Section 7.5, towards the final conclusions of this

thesis.

7.1 Notification Stacks

Although considerable research exists on understanding response behaviour to notifica-

tions (e.g., [99, 96, 92]), a common scope in previous studies (e.g., [29, 76]), and the
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Figure 7.1: A typical Android notification drawer showing an example stack of
notifications. Priority notifications refer to those with a priority (set by the applic-
ation) of at least “Normal” [3], discussed further in Section 7.2.

previous chapters of this thesis, is that while users can receive multiple notifications

(e.g., [85]), they interpret and respond to notifications in isolation of one another. This

highlights the following limitation in the existing literature:

L7.1 An implicit assumption is made in that the response behaviour (or lack there of)

towards a notification is not influenced by the arrival or presence of others.

In an environment where notifications are frequent, users may find it challenging to

repeatedly task switch to respond [33, 50, 13, 118] or they may naturally have fewer

opportune moments than notifications. As a result, notifications can build up into a

stack until they are removed by some means, shown in Figure 7.1. The notification

stack can be viewed at any time, contain zero or more notifications, and the user can

interact with each notification individually in any order.

In reviewing the notification stack, the user undertakes a more burdensome task than has

been represented in interruptibility works, with the user (consciously or sub-consciously)

needing to make choices on what to prioritise; in a similar manner to information
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consumption in other areas, such as social media feeds (e.g., [22]) and email inboxes

(e.g., [38, 70]). Whether this changes the perception of notification management in

these cases to be a single task, rather than a set of individual tasks treated equally (as has

commonly been assumed) has not been widely explored. The intention of this chapter

is to examine this through addressing the following questions:

• How often do notifications coexist together?

• Can decision making behaviour in notification consumption be seen at stack level?

(e.g., are people often reachable but not receptive?)

• Do aspects from this wider perspective, such as the presence of other notifications,

impact individual responses?

These investigations aim to support the DOIG model further through identifying the

presence of decision making in responses from the viewpoint of the notification stack,

and offer further insight to potentially influential factors on individual responses from

other notifications.

7.2 Notifications and usage sessions

Firstly, to determine how often notifications coexist together rather than individually,

the following questions are used to frame the analysis:

• How frequently do notifications arrive?

• How frequently do usage sessions occur?

• What are the resulting characteristics of notification stacks? i.e., are users often

faced with multiple notifications?

Firstly, analysis of the dataset shows that an average of 2,014.9 new notifications or

updates to existing notifications were issued per day (SD = 3, 698.3, Med = 963),

84.0 per hour (SD = 154.1, Med = 40.1). However, users are likely to not consciously
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perceive this rate as this includes notifications that: have no interruptive cues (which

is true for most notifications as found in Chapter 6, Section 6.2.1.3), have too low

of a priority to appear beyond the notification drawer (e.g., the LastPass Fill Helper

notification shown in Figure 7.1), may be presented in groups (e.g., emails), or be

relatively minor (e.g., changes in current music track playing). Additionally, the

standard deviation and medians for these statistics suggests wide discrepancies across

users. Nevertheless, these results highlight the extent to which notifications frequently

arrive and compete for our attention.

Users review and address notifications as part of device usage; a usage session can

be defined as the period between a screen on/boot event and screen off/shut down

event (as used in similar works, e.g., [90, 110, 72]), when a user can be assumed to be

using their device. Across users, there were 1,097,825 usage sessions after discarding

cases of mismatching pairs of screen on/off events (e.g., as a result of the device

losing power) and where there were data gaps in the notification meta-data at the start

of the session (e.g., as a result of notifications existing before the application was

activated), n = 331, 959. This corresponds to an average of 79.8 usage sessions per

user per day (SD = 110.0, Med = 63), 3.3 per hour (SD = 4.6, Med = 2.6). As

with the frequency of notification arrivals, the standard deviation and median of these

distributions indicate wide variability across individuals.

7.2.1 Notification stacks

Analysis of notification stacks at the start of the usage sessions reveals that the notifica-

tion stacks typically contain an average of 6.4 notifications (SD = 6.2, Med = 5), with

90.2% containing 2 or more notifications (n = 990, 354), 8% only a single notification

(n = 87, 266, 8%), and 1.8% containing no notifications at all (n = 20, 205). This

shows that users often face multiple notifications to review (or review again), even if

they were only interrupted by one of these.
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Chapter 6, Section 6.2.1 highlighted that notifications have highly diverse design prop-

erties. This is reflected in the diversity of the notification stack at the start of usage

sessions, with these containing notifications generated by an average of 5.1 applications

(SD = 3.6, Med = 4) from 3.4 Google Play Store categories (SD = 1.9, Med = 3).

An average of 1.2 notifications were part of a group (SD = 2.9, Med = 0), with an

average of 2.7 not able to be individually dismissed by swiping (SD = 2.3, Med = 2).

Additionally, each notification in the stack has an average of 1.8 actions that could

be performed (SD = 0.7, Med = 1.7). This shows that as well as being faced with

multiple notifications at the start of usage, these notifications will look and function

differently.

Priority notifications in the stack

The perceived number of notifications in the stack and their diversity may be lessened by

lower priority notifications [3] only being shown in the notification drawer, rather than

in icon form along the top bar (discussed in Chapter 6, Section 6.2.1), or immediately

on the lock-screen if user preferences allow for it (discussed in Chapter 6, Section 6.2.2).

Therefore users may not actively be aware of their presence. To examine the impact of

this, the characteristics of stacks are explored when considering only notifications with a

priority set to “Normal” or higher, with these types of notifications referred to from this

point as being the priority notifications of a stack. Some sessions (n = 160, 189, 14.6%)

did not contain any priority notifications in the stack, leaving 937,636 for analysis.

Overall, the characteristics of priority notifications supports the general observation of

the entire stack, in that users are often faced with many diverse notifications to review.

The notification stack contains multiple priority notifications 78.6% of the time (n =

736, 736), with an average of 4.2 priority notifications (SD = 5.7, Med = 3) across

3.6 applications (SD = 2.9, Med = 3) spanning 2.7 Google Play Store categories

(SD = 1.8, Med = 2). However these notifications are more likely to be actionable in

comparison to considering all notifications, with an average of 2.1 possible actions being
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able to be performed (SD = 1.0, Med = 2), and more likely to be able to dismissed,

with typically only 1 notification preventing this (M = 1.1, SD = 1.4, Med = 1).

Summary: Notifications arrive frequently and often coexist

Exploring the frequency and diversity of notifications in Boomerang Notifications

dataset highlights the extent to which notifications impinge on our daily lives. From the

analysis, the primary findings are:

• New and updated notifications arrive frequently, creating a stream of content to

assess regularly;

• While notifications are individual and responded to as such, they often coexist at

a given time in a diverse stack.

Going forward, this motivates exploring how and when the notification stack as a whole

is managed (i.e., notifications are removed), particularly whether selective decision

making behaviour (as seen in response to individual notifications in Chapter 3), can be

seen from the viewpoint of the wider notification stack as well.

7.3 Selectivity when managing the notification stack

To determine whether decision making can be seen in when notifications are removed

from the notification stack, the following questions are used to frame the analysis:

• How frequent are usage sessions with notification removal events?

• How much of the notification stack at the start of a session is typically removed

by the end?

• To what extent are notifications kept beyond a session until a later time?
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• When do removals occur within sessions? Are there differences in behaviour

between notifications present at the start of usage and those that arrive during?

These particular questions are used to show further support for the DOIG model and are

not intended to provide a complete representation of user behaviour at stack level, with

further pattern analysis extending beyond the scope of this thesis.

7.3.1 Frequency of notification removals

To examine how often sessions with notification removals typically occurred, those

sessions with at least 1 removal event are considered, which accounts for just under

half of sessions (N = 487, 891, 44.4%). These sessions occurred frequently, with an

average of 33.7 minutes between the end of a session and the start of a new session.

(SD = 145.6, Med = 6.4), with each session typically lasting 5.4 minutes (SD =

26.4, Med = 1.2). This suggests that users typically adopt an approach of managing

the notification stack often, in short bursts.

An average of 4.9 removals occurred in each of these sessions (SD = 13.8, Med = 2),

which suggests that notification management extends beyond individual notifications

during usage. However, this does not indicate when this occurs, and whether this

typically includes the removal of all of the notifications in the stack or whether some

were kept in the notification drawer until a later time; which forms the focus of remaining

analysis in this section.

7.3.2 Stack removals and deferment

Figure 7.2 examines the extent to which notifications that were present in the notification

stack at the start of usage sessions were removed by the end, by counting the number

of sessions where no notifications, some, or all were removed. This is achieved by

comparing the sets of unique notification keys at the start and end of sessions, however
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Figure 7.2: Distribution of the number of sessions in which none, some, or all
of the notifications present in the starting stack are removed by the end of the
session. Considering both: all notifications regardless of their properties (shown
on the left, number of sessions = 1,077,518) and only priority notifications that are
individually dismissable (shown on the right, number of sessions = 798,358).

in order to consider this, 20,307 additional sessions were removed for either having no

notifications in the stack at the start of the session, or where the notification meta-data

at the end of the sessions was incomplete.

Figure 7.2 also shows the distribution if only priority notifications that could be dis-

missed are considered; as these notifications are designed to be the most visible and

intended to be removed. In order to consider this, an additional 279,160 sessions were

removed as the notifications stacks at the start of these sessions did not contain any

of this type of notification. Overall, the results show that while sessions with removal

events occur frequently (Section 7.3.1), typically only a subset of notifications present

at the start of the session are removed.

Closer inspection of the distributions reveals further insight. Firstly, the distribution

of usage sessions where all notifications in the stack were removed in comparison to

some is different depending on whether all notifications are considered or only priority

notifications. The small amount of cases where all notifications in the stack are removed
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Figure 7.3: The number of usage sessions unique notifications existed within.

is expected due to the notification stacks likely containing low-priority notifications that

cannot be individually dismissed (as shown in Section 7.2). Secondly, when considering

either all notifications or only priority notifications, there are considerably more cases

where no notifications are removed in comparison to those where at least one notification

is removed, suggesting that users often use their devices for other reasons than removing

notifications (e.g., checking the time, or other app usage).

This can be supported further by examining the notification stack at the end of sessions,

irrespective of the starting stack (as notifications can also occur during usage). The

results show that 67.5% of sessions (n = 731, 102) ended with at least 1 dismissable

priority notification remaining in the stack (M = 4.1, SD = 5.2, Med = 2); counted

over those sessions which either had notifications present at the start (the same number

of sessions as the left side of Figure 7.2) or had at least one arrive during (adding an

additional 6133 sessions), N = 1, 083, 651.

Overall, this suggests that users selectively leave notifications in the stack until a later

time. To examine this from an individual notification’s perspective, Figure 7.3 shows

the number of sessions each notification was present in before being removed, for those

that were present at some point in at least 1 session (N = 2, 653, 139).The results show
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that the majority of notifications were removed in the first session they appeared in,

however, 20.2% of notifications (n = 536, 748) persisted across multiple sessions before

being removed ((M = 3 sessions, SD = 22.3, Med = 1), reflecting Figure 7.2), either

due to a conscious choice, or because the user did not notice them. The existence of

notifications being deferred until later usage sessions reflects the findings in the earlier

chapters of this thesis, in that users can be reachable and engageable to notifications,

but not receptive, supporting the DOIG model further.

However, this analysis does not examine selectivity in when the notification removals

take place during usage sessions, and how it is prioritised over other tasks.

7.3.3 When stack management occurs inside sessions

Responding to notifications is only a portion of wider smartphone usage and a user

has to prioritise this task against other usage. Figure 7.4 shows the distribution of

consumption times of individual notifications, split between those notifications present

in the stack at the start of the usage session (N = 764, 788) and new notifications that

were added during a session (N = 1, 649, 416). Overall, the results show that while

notifications are removed throughout usage sessions, there is a clear pattern that this

occurs at the start and end.

Closer inspection reveals differences in behaviour between notifications present at the

start of the session, and those that arrived during. Overall, those present at the start are

often removed towards the start of the session; this is unsurprising as interruptions can

prompt the user to begin interacting with the device and for most users in the dataset,

notifications were shown on the lock screen (as seen in Chapter 6, Section 6.2.2).

However, the long-tail distribution suggests that removals of notifications can still occur

at any point.

For notifications that arrived during usage, there is also a slight skew towards the start

of session. This suggests that despite the user interacting with the device for another
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(a) Notifications removed in a session that were present in the
stack at the start of the session.
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(b) Notifications removed in a session that arrived during the
session.

Figure 7.4: When notifications are removed within usage sessions, split between
whether the notification was present in the notification stack at the start of the
session, or arrived during, using 20 bins with each representing 5% of the usage
session.

reason (i.e., other notifications or some other usage), notifications posted soon after

usage can direct attention. However, there is also a large proportion of removals at the

end of sessions. This is more surprisingly and suggests that users likely manage their

notifications after other tasks have been completed on the device. This can also be seen
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to an extent for notifications present at the start of a usage session.

This provides insight into the heuristics that users are adopting to manage the notification

stack, in avoiding keeping notifications in the stack beyond the current session that

no longer serve a purpose. This further supports the premise that decision processes

are being used to manage notification responses. However, as this analysis considers

the relative point in the session the notification was removed, these distributions could

be impacted by long sessions, although most sessions lasted only a few minutes (as

discussed in Section 7.3.1).

Summary: Users are selective in removing notifications in the stack

Overall, the results suggest that while notification removals happen frequently, there is

high selectivity in what notifications in the stack are removed, and when. The primary

findings of this section are:

• The notification stack is managed frequently, often in short bursts;

• Notification stacks are removed to varying extents within usage sessions, but

often not completely, with at least a subset of the stack persisting across multiple

sessions;

• Within usage sessions, the stack is managed throughout but more so at the start

and end; with in situ changes to the stack during usage likely to be reviewed

quickly.

Overall, the results show support for the consideration of decision making in response

to notifications that underpins the DOIG model introduced in Chapter 3, with selective

behaviour also being observed from the viewpoint of the notification stack. However,

this leads to the question of whether aspects of wider device usage have an impact on

notification response behaviour.
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7.4 Influence of wider usage on individual responses

To determine whether the selectivity seen in Section 7.3 may be influenced by wider

device behaviour (in addition to the various contextual data (and content) seen in

previous interruptibility studies), the following questions are used to frame the analysis:

• Do notification arrivals result in the notification stack being reviewed as a whole?

• Do usage sessions with notification removals occur during interruption policies?

• What impact do the characteristics of the notification stack have on removal

behaviour?

7.4.1 Notifications prompt responses to other notifications

To look at the behaviour triggered by individual notifications, sessions that started up

to 30 seconds1 after a notification arrived, and 30 seconds since the previous session,

are considered (N = 291, 908, 26.6%). Analysis of notification removal events in

these sessions reveals that other notifications are often removed in addition to (or in

lieu of) recent notifications. Firstly, only 9.3% of sessions (n = 27, 151) had removal

events that were limited to only those recent notifications, with 18.7% (n = 54, 691)

also including removals of other notifications that were also present before the usage

session. Additionally, in 29% of sessions (n = 84, 856) involved the user only removing

the other notifications. Finally, 21% (n = 61, 230) had no removal events and 21.9%

(n = 63, 980) only included removals for notifications that occurred after the usage

session had started.

Individual notifications can have interruptive cues that prompt the user to review them (as

discussed in Chapter 6, Section 6.2.1.3). However as notifications typically exist as part

of a stack, this leads to the question of whether interruptive cues have an effect on how

the overall stack is managed, in addition to whether the notification it is associated with

1 Following the conclusions of suitability in Chapter 3, Section 3.4.1
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is removed. To examine this, 47% of the sessions (n = 137, 237) had notifications with

explicit interruptive cues within the 30s before it started, with similar a distribution in

notification behaviour (sessions: 12, 570 removed only recent interruptive notifications,

39, 048 others as well, 35, 490 only other notifications, 22, 549 only notifications after

the usage session had started, and 27, 580 no notifications).

Overall, the results show that the presence of other notifications can be beneficial for

individual notifications by drawing the user into a process of reviewing the notification

stack as a whole. Additionally, while the user may have chosen to interact with the device

for another task (e.g., to check the time or use an app), this suggests that notifications

may influence the user’s decisions to use their device, even if not to consume the

notifications that have accumulated prior to usage, but this speculative.

7.4.2 Interruption policies are not representative

Interruption policies provide a means to limit notifications from grabbing the user’s

attention through audio and haptic cues. An interruption policy was in effect throughout

13.2% of usage sessions (N = 144, 406), which is reflective of the small number of

users that used interruption policies, as shown in Chapter 6, Section 6.2.2.

Notifications were removed in 36.8% of these sessions (n = 53, 120), with an average

of 5.1 notifications removed (SD = 16.9, Med = 2), suggesting that some degree

of notification management still takes place. Note that some policies only suppress a

subset of applications (as discussed in Chapter 6, Section 6.2.2), however 52.3% of

these sessions had notifications removed that were covered by the notification policy in

effect (n = 27, 771).

Overall this shows that notification management (and device usage in general) still

occurs during periods of suppressed interruptions. As part of this, the results show that

the policies set by users do not always reflect actual behaviour, with notification stack

interactions still taking place for suppressed applications. This reflects other findings in
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Figure 7.5: The proportion (percentage) of removed priority notifications,
grouped by the number of dismissable priority notifications.

the literature, such as users still responding to individual notifications in silent mode

(e.g., [77]) and that user’s consciously prefer different interruptive cues (e.g., LED, or

a vibrate) depending on where the device is in the environment in relation to the user,

rather than suppressing them as a measure of self-declared uninterruptibility (e.g., [67]).

7.4.3 Impact from notification stack characteristics

In this section, characteristics of the notification stack itself are examined to determine

whether these may influence the perception of the notifications and by extension the

response process and DOIG model. To consider this, Figure 7.5 shows (using box-plots)

the extent that priority notifications (that are individually dismissable) at the start of a

usage session are consumed by the end; using the same sessions as Figure 7.2.

The results show that the proportion of the notification stack consumed does not scale

linearly with its size, with typically only a small number of notifications being removed.

However there are outliers to this general trend, particularly for large notifications stacks

(e.g., 11+ notifications). This suggests that even if the notification stack is very large,

users may still review and consume more of the stack, however this is limited to a small



148 7.4 Influence of wider usage on individual responses

1 5 10 15 20+
Absolute position in stack

0

200000

400000

600000

800000

1000000

N
um

be
r o

f n
ot

ifi
ca

tio
ns

Figure 7.6: The absolute position of notifications that were removed during usage
sessions.

proportion of usage sessions in the dataset. Interestingly, this also suggests that users do

not often dismiss all notifications and start over when the size gets too big, but rather

chip away at it over multiple sessions. From a broader viewpoint, these results provide

further indication that the frequency and variety of notifications we receive on a daily

basis is challenging to manage and that limited time and cognitive resources are devoted

in a given period of usage.

Given that individuals often respond to a small number of notifications irrespective

of the size of the notification stack, this leads to the question of whether the ordering

of the notifications in the stack influences response behaviour. Figure 7.6 shows

the distribution of those removed notifications where the position in the stack was

known (N = 2, 412, 330). This shows a long-tail distribution, suggesting that users

typically adopt a top-down approach to managing the notification stack. Furthermore,

as notifications could have other non-dismissable notifications or a grouped set of

notifications above it in the stack, this may explain why the second and third positions

are also common (e.g., the user may be removing the highest notification possible).

As notification stacks can vary in size, the distribution using the relative position of the

notification in the stack is also explored. The results show a low average position of
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21.6% in the stack, (SD = 24.1%, Med = 14.3%). Overall, this supports Figure 7.6 in

suggesting that notifications at the top of the stack are more likely to be removed than

those towards the bottom.

Summary: Other interruptions and stack characteristics can effect

individual responses

This analysis suggests that aspects of wider notification behaviour can have positive and

negative effects on individual notification responses, with the primary findings being:

• Interruptions often result in management of the wider notification stack;

• Users do not strictly adhere to their own interruption policies, even those that are

selective to individual application rules;

• The size of the notification stack at the start of a usage session has little effect on

the number of those notifications removed at some point in the session, which is

typically limited to one or two;

• The notification stack is likely reviewed in a top-down manner, with those towards

the top of the stack more likely to be removed.

The impact of these on the use of the DOIG model is discussed in Section 7.5.

7.5 Implications and impact on the DOIG model

Overall, the analysis has found that notifications often coexist together and build up

as stacks. As a result, users are highly selective in what notifications are removed,

reflecting the decision-making processes observed with individual notification responses

in Chapter 3, in that users are often reachable (indicated by device usage) but not
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receptive. Observing this from the viewpoint of notification stacks further supports that

the DOIG model is suitable beyond the findings of the ImprompDo case study.

Additionally, the results show that the current “ready-now-so-push-now” approach to

notification delivery creates a means for notifications to inadvertently affect one another.

The results show the effects of this can be positive, such as notifications also prompting

responses processes for other notifications (Section 7.4.1). However, these can also

be negative, particularly in respect to large notification stack sizes and lower positions

in the stack amongst other notifications (Section 7.4.3). While this does not effect the

application of the DOIG model, it suggests that observing this wider process could

provide useful indicators for inferring why a user was receptive, or only reachable or

engageable.

However, current Android restrictions limit the practical observation of these for most

applications, due to the permissions necessary to access this information, as well as

the overhead from needing to actively monitor notification activity. Additionally, the

NotificationListener API [4] cannot currently offer insight into why a notification

was removed (e.g., dismissal), which may offer further value. Therefore, likewise to

other contextual data, the usefulness of these as predictive indicators of interruptibility

remains a potential focus of future work (discussed further in Chapter 8, Section 8.2);

with the conclusions of this chapter being that the decision making behaviour seen for

notifications at stack level further supports the premise and suitability of the DOIG

model.

7.6 Conclusions

The study of notification management has typically focused on exploring the individual

response processes to a set of individual notifications and building design considerations

from aggregated findings. However, this does not take into consideration that notifica-

tions frequently coexist in a notification stack and the potential decision making that
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takes place in choosing what to respond to and when. This analysis of the Boomerang

Notifications dataset (introduced in Chapter 6) addresses this limitation directly (L7.1),

and finds that decision making behaviour in notification responses can also be seen from

this wider viewpoint, supporting the premise of the DOIG model further. This produces

the following contribution towards the wider thesis:

C6 An exploration of where the DOIG model sits amongst wider notification beha-

viour on the device.

The remainder of this thesis outlines and reflects upon the research conclusions made

across Chapters 2-7, and discusses potential future directions.
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Chapter 8

Conclusions and future work

The study of interruption behaviour focuses on determining when to deliver information

so that the interrupter and interruptee enjoy maximum utility. This includes avoiding

disruptions at inconvenient moments [52, 18, 76] and making delivery harmonious and

relevant to the user’s current context [97, 84, 24]. To achieve this, empirical studies

have sought to capture, label, and predict the response behaviour towards individual

interruptions (such as mobile notifications, [92, 72, 76]). These insights have helped to

inform the design of intelligent interruption components in various scenarios, such as

mobile application notifications (e.g., [92, 99, 122]).

However, Chapter 2 (and [121]) identified several broad conventions across the research

area in need of further direct attention. One particular area is the need for improved

mechanisms for capturing and labelling interruptibility from response behaviour (with

the limitations in the existing convention outlined in Chapter 3, Section 3.1). This has

formed the central focus of this thesis, with the ubiquitous nature of mobile notifications

motivating the use of Android apps as a platform for conducting in-the-wild studies. In

this chapter, a summary of this thesis and the research contributions made is presented,

with a discussion of potential directions for future work.
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8.1 Thesis summary

Mobile notifications punctuate our daily lives for a variety of reasons. Each notifica-

tion can bring varying utility depending on when it is delivered, ranging from highly

positive effects to highly negative effects. Assessing the appropriateness of delivering

information, which can be highly interruptive for the recipient, is a task that is generally

easily handled by the human brain [34, 16, 126, 69]. However, the current convention of

mobile notifications is to push content to a user freely, which often results in a backlog

of notifications. The management of this, as well as any suppression of their interruptive

nature is offloaded from applications and made to be responsibility of the user (e.g.,

through mechanisms on the device such as silent mode).

The investigation of response behaviour towards notifications and the proposal of

intelligent delivery systems that learn from past behaviour has been a popular research

area, however several key challenges and limitations exist in the common conventions

used (as discussed in Chapter 2). In particular, responses to notifications have largely

been considered to be a single large decision, which has led to the use of a black-box

approach [122, 124] to labelling interruptibility, whereby a specific labelling task is

typically performed after a notification has been consumed (such as filling in a survey).

In reality the response process (particularly towards Android mobile notifications) can

involve multiple sequential decisions as the content of the notification is pursued through

interactions with the device; where a notification could be considered successful and

a user interruptible (on a per-application basis) if a user at least partially responds,

even if the notification is not tapped on. Additionally, research studies typically only

adopt a single definition of interruptibility and conduct research with additional data

collection and labelling mechanisms (such as surveys) that are not practical for real

world applications. This creates challenges and uncertainty when translating systems

from research studies into the real world when the experiment environment does not

match a particular application’s operation.

The central thesis of this research is the proposal of a framework that decomposes the
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natural response behaviour towards notifications into the decisions that can be observed

passively; in turn this enables a flexible basis for labelling interruptibility, addressing

the limitations of the existing convention. Different applications can use the framework

to collect, label, and predict interruptibility using their own thresholds of what makes

a notification delivery successful. This is supported through analysis surrounding two

empirical datasets collected in-the-wild - ImprompDo, introduced in Chapter 3, and

Boomerang Notifications, introduced in Chapter 6, with the datasets containing more

users than typical interruptibility studies (as discussed in Chapter 2, Section 2.4.3),

providing a rich basis for investigation.

8.1.1 Contributions, key observations, and limitations

The research undertaken forms 6 contributions that can be grouped under three primary

areas. Together these provide support for the central thesis that decomposing mobile no-

tification response behaviour is more worthwhile than the existing black-box convention

for learning and predicting interruptibility.

8.1.1.1 Current conventions in interruption research

The study of interruption has taken place with many different types of interruptions

and environments. A survey of the research area (Chapter 2 and [121]) reveals wide

fragmentation in a number of areas: the scenarios explored and definitions of interrupt-

ibility; data collection environments; and prediction practices. Despite this however, a

number of conventions used across studies in each of these areas have been highlighted.

From this, 10 open research questions are proposed that range from improving upon

the limitations found in the conventions (such as for labelling), through to areas that

have not been extensively explored (such as comparing different machine learning

environments). Collectively this produces the first contribution of this thesis:

C1 A survey of the fragmented research area, developing open research questions by
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highlighting limitations and gaps in existing methodologies and conventions for

collecting, labelling, and predicting interruptibility.

From this, a subset of the proposed research questions help shape the focus of the

remainder of this thesis (outlined in Section 8.2), which primarily surrounds improv-

ing upon the limitations exposed in the conventions for labelling interruptibility, and

ramifications of this in prediction.

8.1.1.2 The decision-on-information-gain model

This thesis proposed a flexible framework for labelling interruptibility, the decision-

on-information-gain (DOIG) model (Chapter 3), implemented and validated within

the context of Android mobile notifications. The DOIG model extends the existing

black-box convention [122, 124] for implicitly capturing and representing interruption

response behaviour, enabling per-application flexibility of what it means for someone to

be interruptible and a notification successful. This creates the second contribution of

this thesis:

C2 A flexible model for labelling interruptibility for different definitions, the Decision-

On-Information-Gain (DOIG) model, that deconstructs the observable behavioural

trace in a response to a notification.

Despite being limited to observable decisions, support for the model can be seen through

an in-the-wild study; with evidence that different response behaviour can be captured,

reducing the potential for false-negative labelling of interruptibility in comparison to

the existing black-box convention (Chapter 3, Section 3.4). This leads to the following

additional contribution:

C3 Analysis into the natural decision behaviour underpinning interactions with noti-

fications, using data collected in-the-wild.

The results demonstrate that the worse case usability of the DOIG model is the same

as the best case of the current convention of passively observing response behaviour
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(Chapter 3, Section 3.4). It should also be noted that while the use of experience

sampling of receptivity was avoided in favour of passive observation, the two practices

are not mutually exclusive and both could be hypothetically implemented into future

studies, or applications where appropriate. Additionally, the practical feasibility of

passively implementing the DOIG model with typical Android hardware was also

demonstrated, supporting C2 (Chapters 3 and 4).

In regards to prediction, the analysis in Chapter 4 found that different passively collect-

able contextual features were statistically correlated to different DOIG labels, suggesting

predictability. From this, Chapter 5 adds further support for the DOIG model through

finding that the predictive performance of models built with these features for each label

were inline with existing works that predict using a single label of interruptibility, and

that the models tested with personal data outperform baselines representing the current

built-in conventions on Android devices. Additionally, the analysis also presents addi-

tional findings in the relative performance differences of using various machine learning

strategies and evaluation criteria. Together this produces the following contribution:

C4 Analysis into the predictability of response behaviour using past behaviour that

is labelled using the DOIG model, including examining the effect of various

machine learning strategies on predictive performance.

These contributions, surrounding data collection, labelling, and the prediction of in-

terruptibility show the usability and performance of the DOIG model with a typical

use case. This is made possible by the DOIG model not changing how notifications

operate or are responded to in any way, it is a wrapper that is flexible to what behaviour

can be observed passively. Additionally, the passive collection of the data creates a

representative outlook on the feasibility of interruptibility prediction for real world

applications without a fundamental change to application design; this is in contrast

to the typical convention of aiming to maximise prediction performance regardless of

technical feasibility or changes required to a real world application’s operation (as seen

in Chapter 2).
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8.1.1.3 Robustness: DOIG model flexibility and position among wider behaviour

Chapter 6 presents the Boomerang Notifications dataset, to firstly show how the design

of notifications and user preferences vary across the Android application ecosystem. The

results support the design choice of creating the DOIG model to be a flexible labelling

mechanism (Chapter 3, Section 3.2.1), with the empirical data highlighting the extent

that the variability occurs. Within this, the results also show that a large proportion

of notifications are not interruptive in nature beyond the visual cue of appearing on

the device’s user interface. Therefore, not all applications need to adopt an intelligent

interruption system, but those that are interruptive can use the DOIG model to label

how interruptible the user was, based on the information that is known to the user at

each decision point in the response.

The results also show that individuals typically do not adopt the mechanisms built into

Android to suppress notifications (Chapter 6, Section 6.2.2). However, individuals do

adopt a variety of preferences in where notifications are made known to them (e.g.,

on the lock-screen). This builds upon the findings of variability in notification design,

showing that any labelling methodology needs to be flexible (as the DOIG is) to these

preferences. This chapter creates the following contribution from this analysis:

C5 A demonstration of the flexibility of DOIG the model for different notification

designs and device preferences, using additional in-the-wild data.

Chapter 7 examines notification behaviour from the wider viewpoint of the notification

stack (where notifications can coexist together) using the Boomerang Notifications

dataset, and finds that decision making behaviour in notification responses can also

be seen from this viewpoint. Additionally, the previous chapters of this thesis have

assumed, like other works in the area, that notifications occur in isolation without any

cross-notification behavioural affects. However exploration of the dataset reveals that

that not only do notifications punctuate our daily lives frequently, behavioural patterns

amongst device usage suggest that the notification stack has some degree of influence
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on the response behaviour towards individual notifications. For example, the analysis

found that users typically respond to notifications at the top of the notification stack,

are highly selective in the number of notifications responded to each time, and that

notification arrivals can start response processes for other notifications. While this does

not directly affect the operation of the DOIG model, the results offer considerations for

applications that wish to infer why a user may have responded in a certain way, i.e., they

were reachable but not receptive, which may be the result of other notifications being

present on the device. The effect on prediction performance is not explored, due to the

majority of real world applications not having access to this data, however this does

present an option for future work if this limitation changes. These findings produce the

final contribution towards this thesis:

C6 An exploration of where the DOIG model sits amongst wider notification beha-

viour on the device.

While the DOIG model and the other contributions of this thesis have focused on

improving upon the limitations found in various common conventions in the wider

research space, some limitations remain as discussed above. These form part of the

future directions of this work, alongside further directions that remain unexplored (such

as the wider research questions proposed in Chapter 2 that were beyond the scope of

this thesis).

8.2 Future directions

The contributions made towards this thesis can also be used as a foundation for fu-

ture work, both in terms of further research investigations into human behaviour, and

in the creation and application of intelligent interruptive components into Android

applications.
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8.2.1 Maximisation of predictive indicators with the DOIG model

Firstly, a key design choice made in the development, implementation, and validation of

the DOIG model has been to remain applicable to as many applications as possible. As

such, the collection of response behaviour and contextual features used for prediction

were limited to components that did not require a fundamental change to either the oper-

ation or privacy implications of an application. However, other studies of interruptibility

have found other features not considered here, such as location (e.g., [92]) and content

(e.g., [76]) to be useful predictive features. While the viability of implementation in real

world applications should be retained, an opportunity exists to explore maximising the

performance of the predictive models built for the labels produced by the DOIG model

using these features.

Building upon this, Chapter 7 found behavioural effects from the characteristics of the

notification stack, therefore this exploration of maximising performance could also

explore the effect of this behaviour encoded as features on prediction performance.

This could also include investigations into personal differences in this behaviour (e.g.,

analogous to that seen in email management [38]) and prompts for further investigations

into behavioural patterns beyond this thesis; such as the effect of application usage on

notification management and vice versa.

8.2.2 Real world application and evolutionary learning

A secondary theme of future directions surrounds the development of further real world

applications that integrate the DOIG model for labelling, and by extension, prediction.

For example, the scope of this thesis has focused on simulating performance of the

predictive models through splitting the dataset into training and test cases, likewise to the

majority of research studies in this area. Whether the performance is truly reflective of a

real world scenario would help to scope the training requirements of labelled notification

responses further. This could also include investigating the acceptability and adoption
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of an interruptibility-driven notification system into applications, including specific

domains such as delivering interventions, as well as general consumer applications.

Building upon this, parts of this thesis, as well as some other studies (e.g., [92]) have

investigated the role of online learning to observe the predictive performance from

adding new behaviour over time. However the relevance of interruption behaviour

over time has not been widely explored, and whether the relevancy of training data

can diminish. This may apply for two reasons, firstly the notifications received on a

device will likely change over time as applications are added and removed from the

device, and secondly, if an individual (or another application) is aware that a predictive

model is being used by a given application, they may consciously or subconsciously

become aware of a particular pattern and adjust their behaviour. Therefore the role of

evolutionary learning of interruption behaviour remains an additional area to explore.

8.2.3 Wider research questions

In addition to these areas, the analysis conducted in Chapters 3 through 7 are relevant to

5 of research questions surrounding the wider interruptibility research space (proposed

in Chapter 2 and in [121]). Firstly, investigations into the applicability of the DOIG

model and wider behaviour go some way towards addressing the following research

questions:

(RQ2) Given the diversity of potential scenarios, when are generalised and interoper-

able solutions for interruptibility sufficient, and when are domain specific solutions

necessary?

(RQ3) Can including the extent of a response to an interruption provide additional

semantic value for inferring the user’s attentiveness towards it?

RQ2 is somewhat addressed within the context of Android notifications through finding

that a flexible labelling model is necessary, because individuals respond to notifications

differently (Chapter 3), and that notification designs and device preferences can vary



162 8.2 Future directions

(Chapter 6), which can effect the response process. Additionally, findings of varying

predictive performance for different interruptibility labels across different machine

learning training and evaluation strategies (Chapter 5) suggests that a one-size-fits-all

predictive model would not be appropriate for all application use cases. However, as

discussed in Section 8.2.2, this could be investigated further through additional real

world application case studies, and this may not be representative of other types of

interruptions.

In regards to RQ3, the finding that individuals are often reachable but not receptive to

notifications to consume them (Chapters 3 and 7) suggests that decomposing response

behaviour into the decision steps that take place is worthwhile. With Chapter 3, Sec-

tion 3.4 showing that this can reduce the potential for mislabelling in comparison to

relying on complete responses towards notifications. Additionally, the ability to observe

this passively on Android devices further supports that this is worthwhile to consider

(Chapters 3 and 4). However, across both of these research questions, these conclusions

are only suggestive of the wider research space and remain limited within the context of

Android smartphone applications.

In addition to this, the analysis into correlating contextual features with DOIG labels

(Chapter 4) and predictive performance (Chapter 5) are relevant to some degree towards

addressing the following three research questions:

(RQ8) How do training dataset characteristics affect the diminishing returns of predic-

tion performance?

(RQ9) When should intelligent interruption systems adopt online and offline learning,

and what factors in the scenario and data collection influence this choice?

(RQ10) Do personalised models mean better performance and how does this balance

with increased complexity? Could a hybrid approach using personal and aggregated

data reduce the training requirements for new users?

For RQ8, analysis of the ImprompDo dataset suggests the benefits of multi-modal
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predictive models over just using the volume state of the device (Chapter 5, Sec-

tion 5.3.3), along with analysis into the prediction performance over time in online

learning (Chapter 5, Section 5.4). Comparisons between offline learning (Chapter 5,

Sections 5.2 and 5.3) and online (Chapter 5, Section 5.4) contribute to RQ9 when

combining the reported results with the technical considerations in either performing the

learning on mobile devices or incorporating a client/server architecture. For RQ10, per-

formance differences between using aggregated versus personal training data (Chapter 5,

Section 5.3) are relevant to the first part of this question. This also compliments other

recent works that have addressed this question (e.g., [128]). However, whether these

findings are reflective of other types of interruptions remains an area to explore further.

Lastly, Chapter 2 proposes 5 other research questions that were not addressed in this

thesis, RQ’s 1, 4, 5, 6, and 7. These continue to be active areas to explore further, both

within the domain of mobile notifications and the wider research space.

8.3 Final remarks

The contributions of this research primarily surround improving upon the limitations of

the existing conventions in conducting interruptibility research, particularly surrounding

limitations in the conventions for labelling interruptibility and the prediction of these

labels. Therefore the intention of the contributions made is to be relevant not only

to interruptibility surrounding mobile notifications, but also conceptually for other

types of interruptions. Additionally, for real world Android applications wishing to

implement interruption components into their notifications, the analysis is undertaken

with a broad variety of use cases in mind, from a labelling framework that is flexible to

different definitions of interruptibility to performance examinations of different machine

learning conventions; supported by the data used being collected by other in-the-wild

applications.

For mobile operating systems (e.g., Android), the results suggest that interruptibility
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mechanisms would benefit greatly from dedicated APIs for observing interactions with

the device and interruptive mechanisms (e.g., notifications), rather than re-purposing

mechanisms (where possible) that are intended for other functions on the device. This

has been seen to some extent with recent developments in Android creating dedicated

APIs for accessing some areas of smartphone usage (e.g., Notification Listener API

[4]), however this remains limited to a few areas of usage with limited granularity (e.g.,

Usage Stats Manager API [7] and Network Stats Manager API [2]).
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Appendix A

ImprompDo App Design & Dataset

Complete response
behaviour

Exit early behaviour Information gained after the
continue behaviour

The user is interrup-
ted and chooses to be-
gin responding.

The user is not phys-
ically interrupted or
is not interruptible
enough to switch fo-
cus towards the noti-
fication.

By default, knowledge that a no-
tification has arrived from an un-
known source. Specific applica-
tions may use a potentially recog-
nisable audible tone, vibration pat-
tern, or LED pattern.

The user turns the
screen on.

The user does not in-
teract with the device
and continues with
their current activity.

The source application that caused
the notification (e.g. an email has
arrived).

The user unlocks the
device.

The user turns the
screen off and re-
sumes their previous
activity.

The notification summary from ac-
cessing the Notification Drawer
once unlocked (e.g. the email
sender and subject).

The user taps on the
notification.

The user dismisses the
notification or ignores
it resumes their previ-
ous activity.

The full notification content (e.g.
the email application opens and
shows the full email).

Table A.1: The observable interruption and response process to Android notific-
ations for versions up to and including v4.4, when the device is not-in-use at the
time the notification is delivered.
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Complete response
behaviour

Exit early behaviour Information gained after the
continue behaviour

The user is interrup-
ted and chooses to be-
gin responding.

The user is not phys-
ically interrupted or
is not interruptible
enough to switch fo-
cus towards the noti-
fication.

By default, knowledge that a noti-
fication from a specific application
(e.g. an email has arrived). Then
the notification summary from ac-
cessing the Notification Drawer
(e.g. the email sender and sub-
ject). Specific applications may
also use a potentially recognisable
audible tone, vibration pattern, or
LED pattern.

The user taps on the
notification.

The user dismisses the
notification or ignores
it resumes their previ-
ous activity.

The full notification content (e.g.
the email application opens and
shows the full email).

Table A.2: The observable interruption and response process to Android notifica-
tions for versions up and including v4.4, when the device is in-use at the time the
notification is delivered.



181

Trigger Description

Random (RND) A random interval at millisecond granularity between now
and the next time block. Used as a control group.

End of Acceleration
(EOA)

Check for acceleration above a noise threshold every minute
until acceleration is detected, then trigger at the point of
deceleration under that threshold. The threshold begins as .1
m/s/s, increments by .01 if the user responds and decrements
by .01 if no acceleration was detected within an hour.

Temporal Hourly
Learning Model
(THL)

Each hour has a probability value between 0..1, initially .5.
If a notification expires this decrements by .1, consuming
increments by .1. The value then determines if the prompt
will occur at a random time

Multi-modal Online
Learning Model
(MML)

A trained Binary Logistic Regression model from data in
the past week retrained daily. At minute intervals, a feature
vector is created from the first readings and tested against the
model. It included: orientation (the axes in which gravity
is acting on the most); if the device is accelerating; if the
screen is covered; luminescence (raw lux); lock state (screen
off, locked or unlocked); volume preference (silent, vibrate
or audible); battery charge state and level; current hour, and
the weekday. This is then labelled depending on whether the
user ignored the interaction (0) or consumed the notification
(1); if dismissed, the vector was not included for training.

Table A.3: The randomly chosen triggers used.
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Description Number of notifications (n)

Notifications with a complete data trace 10,059
Notifications with missing data 1287

Reason: unknown if device was in-use 1267
Reason: unknown response behaviour 20

Table A.4: Data completeness in notification responses. This is discussed further
in analysis comparing the DOIG model vs typical black-box approaches to la-
belling in Chapter 3, Section 3.4.

Expired Dismissed Consumed
Not-in-use 6741 324a 672b n=7737

In-use 1747 191c 384d n=2322

n=8488 n=515 n=1056

Table A.5: Frequency statistics of whether notifications were consumed (tapped
on), dismissed, or expired, split between whether the device was in-use or not at
the time the notification was delivered. Superscript characters are used for cross-
referencing values within the table and with Tables A.6, A.7 and A.8.

Description Calculation Result

Notifications removed by user sum(a,b,c,d) 1571
Notifications removed by user not-in-use sum(a,b) 996
Notifications removed by user in-use sum(c,d) 575

Table A.6: Frequency statistics on the number of notifications removed by the user
by various means. This is used in the analysis of user response time to notifications
in Chapter 3, Section 3.4.1. Superscript characters are used for cross-referencing
values within the table and with Tables A.5, A.7 and A.8.
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(At least) Reachable Not Reachable
Not-in-use 1798e 5939 n=7737

(At least) Engageable Not Engageable
Not-in-use 1469f 329 n=1798e

Receptive Not Receptive
Not-in-use 672b 797 n=1469f

In-use 384d 1938 n=2322

Table A.7: Frequency statistics of user response behaviour. Only responses that
were at least reachable are analysed for engage-ability, likewise only responses
where the user was engageable are considered for receptivity. Dismissals are con-
sidered “Not Receptive” in this representation. Superscript characters are used
for cross-referencing values within the table and with Tables A.5, A.6 and A.8.

Description Calculation Result

Interactions considered by a typical black-box model sum(b,d) 1056

Additional interactions considered by the DOIG model
(responses where the user started to respond (reachable)
but did not consume the notification by tapping on it)

e - sum(b,c) 1317

Interactions considered by a typical black-box model (in-
cluding notification dismissals)

sum(a,b,c,d) 1571

Additional interactions considered by the DOIG model
(responses where the user started to respond (reachable)
but did not consume or dismiss the notification)

e - sum(a,b) 802

Table A.8: Calculations used to compare how many additional responses the
DOIG model captures in comparison to typical black-box approaches for labelling
interruptibility. This is discussed in Chapter 3, Section 3.4. Superscript charac-
ters are used for cross-referencing values within the table and with Tables A.5, A.6
and A.7.
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Android n grv prx prs lin rtv gyr mag lgt

4.1.x 2 False False False False False False False False
4.2.x 3 False True False False False False False False
4.3.x 8 False True False False False False False False
4.4.x 79 False False False False False False False False

Table A.9: For each version of Android, whether the data vectors were consist-
ent in either always, sometimes, or never containing sensor data. grv=Gravity,
prx=Proxmity, prs=Pressure, lin=Linear Acceleration, rtv=Rotation Vector,
gyr=Gyroscope, mag=Magnetic Field, lgt=Light.

Android Sensor Always present Sometimes present Never present

4.2.x prx False True False
4.3.x prx False True False

Table A.10: For those versions of Android that were consistent in some way
in Table A.9, whether they were either always, sometimes, or never consistent.
prx=Proximity.

Device n grv prx prs lin rtv gyr mag lgt

GT-I9505 5 False False False False False False False False
Nexus 4 4 False True False False False True False True
Nexus 5 19 False False False False False False False False
GT-N7100 4 True True True True True False False False
SM-G900F 2 False False False False False False False False
SM-N9005 5 False False False False False False False False
HTC One 4 True True True True False True True True
HTC One_M8 2 True False True True True True True False
XT1032 3 True False True True True True True True
Nexus 7 3 True True True True False True True True
GT-I9300 8 True True True True True True True True
Nexus 10 3 True True True False False True False True
MI 3W 2 False True True False False True False False

Table A.11: For devices that were used by at least 2 users, whether the data vec-
tors were consistent in either always, sometimes, or never containing sensor data.
grv=Gravity, prx=Proxmity, prs=Pressure, lin=Linear Acceleration, rtv=Rotation
Vector, gyr=Gyroscope, mag=Magnetic Field, lgt=Light.
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Android Sensor Always present Sometimes present Never present

Nexus 4 prx False True False
Nexus 4 gyr False True False
Nexus 4 lgt False True False
GT-N7100 grv False True False
GT-N7100 prx False True False
GT-N7100 prs False True False
GT-N7100 lin False True False
GT-N7100 rtv False True False
HTC One grv True False False
HTC One prx False True False
HTC One prs False False True
HTC One lin True False False
HTC One gyr True False False
HTC One mag True False False
HTC One lgt True False False
HTC One_M8 grv False True False
HTC One_M8 prs True False False
HTC One_M8 lin False True False
HTC One_M8 rtv False True False
HTC One_M8 gyr True False False
HTC One_M8 mag True False False
XT1032 grv False False True
XT1032 prs False False True
XT1032 lin False False True
XT1032 rtv False False True
XT1032 gyr False False True
XT1032 mag True False False
XT1032 lgt True False False
Nexus 7 grv False True False
Nexus 7 prx False False True
Nexus 7 prs False False True
Nexus 7 lin False True False
Nexus 7 gyr True False False
Nexus 7 mag False True False
Nexus 7 lgt True False False
GT-I9300 grv False True False
GT-I9300 prx False True False
GT-I9300 prs False True False
GT-I9300 lin False True False
GT-I9300 rtv False True False
GT-I9300 gyr False True False
GT-I9300 mag False True False
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Android Sensor Always present Sometimes present Never present

GT-I9300 lgt False True False
Nexus 10 grv True False False
Nexus 10 prx False False True
Nexus 10 prs True False False
Nexus 10 gyr True False False
Nexus 10 lgt True False False
MI 3W prx False True False
MI 3W prs True False False
MI 3W gyr True False False

Table A.12: For those devices that were consistent in some way in Table A.11,
whether they were either always, sometimes, or never consistent. grv=Gravity,
prx=Proxmity, prs=Pressure, lin=Linear Acceleration, rtv=Rotation Vector,
gyr=Gyroscope, mag=Magnetic Field, lgt=Light.
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Feature Values Calculated
Volume State Silent, Vibrate, Audible Raw data

Screen
Covered

False, True Whether the proximity sensor reading
v is within 5cm*, v < 5. *Some hard-
ware only reports binary near/far using
a typical 5cm threshold [5].

Ambient Light Dark, Dim, Light, Bright Transforming the raw lux value v using:
v < 5 = Dark, v < 50 = Dim, v < 500
= Light, v >= 500 = Bright

Charging State False, True Raw data

Orientation Flat, Upright, Other Transforming the raw gravity (m∕s2)
value v to it’s absolute and using the
axis with the highest value if the next
highest u < (v − .5). Otherwise mul-
tiple axes are considered together. For
orientation o, if the z-axis is solely the
highest, o = Flat, if y-axis, o = Upright,
otherwise o = Other.

Accelerating False, True If the raw linear acceleration (m∕s2)
value v for at least 1 axis is beyond a
noise threshold v > .1 or v < −.1

Time of Day Morning, Afternoon,
Evening, Night

Transforming the timestamp as: Morn-
ing = 06-11, Afternoon = 12-16, Even-
ing = 17-20, Night = 21-05

Day of the
Week

Mon, Tues, Wed, Thur,
Fri, Sat, Sun

From timestamp

Weekday or
Weekend

Weekday, Weekend From timestamp

Table A.13: Features extracted from the sensor/software API data traces.
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Appendix B

Boomerang Notifications App Design

Setting Description

Turn Boomerang Off Directs the user to Android’s Notification Access screen
where the permission to receive notification events can be
revoked (this is granted during the setup process of the applic-
ation)

Show persistent notifica-
tion summary?

If checked, shows a summary notification of how many noti-
fications have been saved. This is only seen when the notific-
ation drawer is open. This is set to true by default.

Receive prompts to review
saved notifications at the
end of the day

If checked, a notification is posted by the application at the
end of each day where at least one notification is saved. This
is set to true by default.

Allow app removal from
notifications

If checked, notifications which prompt the user to save noti-
fications have a third button, if pressed, this removes the ap-
plication from the user’s application list to show save prompts
for. This is set to false by default.

Applications to Boomer-
ang

This directs the user to the interface where the user can se-
lect which applications to show save prompts for (shown in
Chapter 6, Figure 6.5a).

Save notification active
time

This setting produces a pop-up window where the user can set
how many seconds the save prompt notifications are displayed
for until they are removed by the application. This is set to
10 seconds by default.

Table B.1: Boomerang Notifications’ user modifiable settings.
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Setting Description

Summary notification A summary notification of how many notifications have been
saved, which is only seen when the notification drawer is
open. This notification is persistent as a result of Google’s
guidelines that applications running in the background should
provide a notification indicating this.

Notification reminders Notifications that remind the user about a previous notification
they have saved. These occur at a time set by the user and
contain a single button to remind the user again at a random
time later that day (or tomorrow if close to midnight). These
notifications use the device’s default audible tone, vibrate
pattern, and LED pattern.

Prompts to save notifi-
ations

Notifications that are shown for a short period (default 10
seconds) after a notification has been removed (shown in
Figure 6.2b), but only if that removed notification originated
from an application in the user’s list of applications to show
prompts for (shown in Chapter 6, Figure 6.5a. These notifica-
tions have no explicit interruptive properties and have no icon
so are only visible inside the notrification drawer (or on the
lock-screen if the users device preferences allow notifications
to be shown on the lock screen).

End of day review notific-
ation

A notification with static text that prompts the user to review
the notifications they have saved that day. This notification
is pushed at a random time in the evening for days where at
least 1 notification was saved.

Table B.2: Notifications produced by Boomerang Notifications.
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