
RICE UNIVERSITY

Exploiting Instruction-Level Parallelism for
Memory System Performance

by

Vijay S. Pai

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Sarita Adve, Chair
Associate Professor in Electrical and
Computer Engineering

Keith D. Cooper
Professor of Computer Science

Kenneth W. Kennedy, Jr.
Ann and John Doerr Professor in
Computational Engineering

Willy E. Zwaenepoel
Noah Harding Professor of Computer
Science and Electrical and Computer
Engineering

Houston, Texas

August, 2000



Exploiting Instruction-Level Parallelism for
Memory System Performance

Vijay S. Pai

Abstract

Current microprocessors improve performance by exploiting instruction-level parallelism

(ILP). ILP hardware techniques such as multiple instruction issue, out-of-order (dynamic)

issue, and non-blocking reads can accelerate both computation and data memory refer-

ences. Since computation speeds have been improving faster than data memory access

times, memory system performance is quickly becoming the primary obstacle to achiev-

ing high performance. This dissertation focuses on exploiting ILP techniques to improve

memory system performance. This dissertation includes both an analysis of ILP memory

system performance and optimizations developed using the insights of this analysis.

First, this dissertation shows that ILP hardware techniques, used in isolation, are of-

ten unsuccessful at improving memory system performance because they fail to extract

parallelism among data reads that miss in the processor’s caches. The previously-studied

latency-tolerance technique of software prefetching provides some improvement by initi-

ating data read misses earlier, but also suffers from limitations caused by exposed startup

latencies, excessive fetch-ahead distances, and references that are hard to prefetch.

This dissertation then uses the above insights to develop compile-time software trans-

formations that improve memory system parallelism and performance. These transforma-

tions improve the effectiveness of ILP hardware, reducing exposed latency by over 80%

for a latency-detection microbenchmark and reducing execution time an average of 25%

across 14 multiprocessor and uniprocessor cases studied in simulation and an average of

21% across 12 cases on a real system. These transformations also combine with software



prefetching to address key limitations in either latency-tolerance technique alone, provid-

ing the best performance when both techniques are combined for most of the uniprocessor

and multiprocessor codes that we study.

Finally, this dissertation also explores appropriate evaluation methodologies for ILP

shared-memory multiprocessors. Memory system parallelism is a key feature determining

ILP performance, but is neglected in previous-generation fast simulators. This dissertation

highlights the errors possible in such simulators and presents new evaluation methodologies

to improve the tradeoff between accuracy and evaluation speed.



Acknowledgments

I would like to thank my advisor, Sarita Adve, for research direction, challenges, and a real

commitment to my professional growth. I also thank my officemate, co-author, and friend,

Parthasarathy Ranganathan, for many interesting discussions and adventures (technical and

otherwise) since we started working together. It has been a great pleasure to work with these

two people for the past six years.

My Ph.D. thesis committee of Keith Cooper, Ken Kennedy, and Willy Zwaenepoel

have given me excellent feedback on this work since the time of my proposal, and this

feedback has been instrumental in shaping both the technical content of this work and my

presentation of it. Some of this work draws from my M.S. thesis, for which I also profited

from the suggestions of my committee of Alan Cox and Bob Jump.

I would also like to thank all the others with whom I have had a chance to interact over

the years, with whom I have been a co-author, and who have given me feedback on the

research leading to this dissertation and on my presentations of this research. In particular,

this dissertation draws heavily from joint work that I pursued with Murthy Durbhakula,

Dan Sorin, Mary Vernon, and David Wood. I thank all those who read my paper drafts and

attended my practice talks over the years, and I feel that their comments have greatly helped

refine both the content and presentation of this work. Vikram Adve, Chen Ding, John

Mellor-Crummey, and Shubu Mukherjee particularly went far beyond the call of duty here.

Credit also goes to all the RSIM team members over the years, including Hazim Abdel-

Shafi, Dennis Geels, Jon Hall, Tracy Harton, Chris Hughes, and Praful Kaul. Doug Moore’s

Hilbert-curve library helped make Mp3d an interesting and tractable application for the

course of this study. Donald Yeung provided the source code for the Em3d application

used in this study.



v

I cannot thank my family enough for everything they have given me over the years.

I owe a tremendous debt to my parents, Sadananda and Sharda Pai, for very practical

contributions of guidance, support, and encouragement over the past twenty-six years. I

also thank my grandmother, Janabai Kamath, for support and many nutritious meals. My

brother Vinay and my sister-in-law Aarti have also given their support, and his kids have

provided a great source of amusement and amazement on their visits. Finally, my brother

Vivek and I shared most of the years of our graduate school experience. I have prof-

ited tremendously from his suggestions, discussions, and feedback on technical and non-

technical matters, and I am very glad that we now have an opportunity to be colleagues as

well.

My graduate career was supported by a Fannie and John Hertz Foundation Fellow-

ship from September 1994 through May 1999. The research presented in this dissertation

was also supported by IBM Corporation, Intel Corporation, the National Science Foun-

dation under Grant No.CCR-9410457, CCR-9502500, CDA-9502791, CDA-9617383,

CCR-0096126, the Texas Advanced Technology Program under Grants No. 003604-016

and 003604-025, and the Alfred Sloan Research Foundation. This dissertation was initi-

ated to Early Underground by Moby and concluded to Fight Club by the Dust Brothers.



Contents

Abstract ii

Acknowledgments iv

List of Illustrations xi

List of Tables xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Analyzing the Impact of ILP Techniques on Memory System

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 ILP-Specific Code Transformations to Improve Multiprocessor

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Analyzing and Addressing the Impact of ILP on Multiprocessor

Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The Impact of ILP on Memory System Performance 8

2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Simulated Architectures . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Evaluation Workload . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Experimental results on multiprocessor system . . . . . . . . . . . . . . . 14

2.2.1 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Factors Contributing to ILP Speedup . . . . . . . . . . . . . . . . . 14



vii

2.3 Experimental results on uniprocessor system . . . . . . . . . . . . . . . . . 22

2.4 Sensitivity to system latencies . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Summary and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Interaction of Software Data Prefetching with Instruction-Level

Parallelism 25

3.1 Software prefetching algorithm . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Algorithm for Adding and Scheduling Software Prefetches . . . . . 26

3.1.2 Prefetching Algorithms for Irregular Memory References . . . . . . 27

3.2 Measuring prefetching effectiveness . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Simulated systems . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Applications and Prefetching . . . . . . . . . . . . . . . . . . . . . 29

3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Factors Contributing to the Effectiveness of Software Prefetching . 32

3.3.3 Application-Specific Details . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Impact of Software Prefetching on Execution Time . . . . . . . . . 36

3.4 Sensitivity to System Latencies . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Summary and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Code Transformations to Improve Memory Parallelism 39

4.1 Improving Read Miss Clustering in ILP Processors . . . . . . . . . . . . . 40

4.2 Analysis and Transformation Framework . . . . . . . . . . . . . . . . . . 42

4.2.1 Dependences that Limit Memory Parallelism . . . . . . . . . . . . 42

4.2.2 Background on Floating-point Pipelining . . . . . . . . . . . . . . 46

4.2.3 Resolving Memory Parallelism Recurrences . . . . . . . . . . . . 47

4.2.4 Resolving Window Constraints . . . . . . . . . . . . . . . . . . . . 51



viii

4.3 Measuring the Impact of Optimizations . . . . . . . . . . . . . . . . . . . 52

4.3.1 Evaluation environments . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 Evaluation Workload . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Performance of Latbench Microbenchmark . . . . . . . . . . . . . . . . . 57

4.5 Simulated Application Performance . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 Impact of clustering on execution time . . . . . . . . . . . . . . . . 58

4.5.2 Memory Parallelism and Contention . . . . . . . . . . . . . . . . . 60

4.5.3 Sensitivity to system parameters . . . . . . . . . . . . . . . . . . . 61

4.6 Exemplar Application Performance . . . . . . . . . . . . . . . . . . . . . 62

4.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Comparing and Combining Read Miss Clustering and Software

Prefetching 65

5.1 Limitations of Read Miss Clustering and Software Prefetching . . . . . . . 66

5.1.1 Limitations of Read Miss Clustering . . . . . . . . . . . . . . . . . 66

5.1.2 Limitations of Software Prefetching . . . . . . . . . . . . . . . . . 67

5.1.3 Limitations Shared by Clustering and Prefetching . . . . . . . . . . 67

5.2 Combining Clustering and Prefetching . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Potential Benefits of Combining Clustering and Prefetching . . . . 68

5.2.2 Addressing a Limitation of Clustered Prefetching . . . . . . . . . . 70

5.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 Comparing Clustering and Prefetching . . . . . . . . . . . . . . . . 75

5.4.2 Combination of Clustering and Prefetching . . . . . . . . . . . . . 76

5.5 Results on Real Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



ix

6 Analyzing and Improving the Accuracy vs. Speed Tradeoff for

Simulating Shared-Memory Multiprocessors with ILP Proces-

sors 85

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.1 Direct execution with simple processors . . . . . . . . . . . . . . . 87

6.1.2 Simulators for ILP shared-memory systems . . . . . . . . . . . . . 88

6.2 Direct execution with ILP shared-memory multiprocessors . . . . . . . . . 88

6.2.1 Values for non-blocking reads . . . . . . . . . . . . . . . . . . . . 89

6.2.2 Timing simulation of ILP features . . . . . . . . . . . . . . . . . . 90

6.3 Implementation of DirectRSIM . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Application code instrumentation . . . . . . . . . . . . . . . . . . 91

6.3.2 Timing simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.1 Simulated architectures . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4.3 Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Results on simulator accuracy . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5.1 Base system configuration . . . . . . . . . . . . . . . . . . . . . . 99

6.5.2 Other system configurations . . . . . . . . . . . . . . . . . . . . . 100

6.6 Results on simulator speed . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6.1 Comparing Simple with Wisconsin Wind Tunnel-II . . . . . . . . . 103

6.6.2 Comparing RSIM, DirectRSIM, and Simple . . . . . . . . . . . . . 104

6.6.3 Detailed analysis of DirectRSIM speed . . . . . . . . . . . . . . . 105

6.7 Summary and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Fast Characterization of ILP Memory System Parameters 113

7.1 Fundamental ILP Memory System Parameters . . . . . . . . . . . . . . . . 113



x

7.2 Fast High-Level Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Validation of FastILP Parameters . . . . . . . . . . . . . . . . . . . . . . . 116

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Related Work 119

8.1 Work related to ILP memory system performance . . . . . . . . . . . . . . 119

8.2 Work related to software prefetching . . . . . . . . . . . . . . . . . . . . . 122

8.3 Work related to ILP multiprocessor simulation . . . . . . . . . . . . . . . . 123

9 Conclusions and Future Directions 126

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 130



Illustrations

2.1 Layout of CC-NUMA multiprocessor used in simulatioon studies, along

with detailed diagram of individual processing node. . . . . . . . . . . . . 11

2.2 Impact of ILP on multiprocessor execution time and its components. . . . . 14

2.3 ILP speedup of total execution time and components as seen in

multiprocessor system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The instruction window (reorder buffer) of an out-of-order issue processor.

Older instructions are shown at the right, and cache misses are shaded. . . . 16

2.5 Factors shaping data read miss ILP speedup. The latency figures indicate

overall overlap and contention, while the MSHR graphs show specific

sources of overlap (read MSHRs) and contention (total MSHRs). . . . . . . 19

2.6 Pseudocode and representation of cache-behavior for a matrix traversal

optimized for cache locality. The pseudocode is shown with row-major

notation, and the graphic shows the matrix in row-major order. Crosses in

the graphic represent matrix elements, and shaded blocks represent cache

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Impact of ILP on uniprocessor execution time and its components. . . . . . 22

2.8 ILP speedup of total execution time and components as seen in

uniprocessor system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Impact of ILP on execution time for systems with faster processors. . . . . 23

3.1 Pseudocode of a 2-D matrix traversal, before and after applying software

prefetching. All pseudocode uses row-major notation. . . . . . . . . . . . 27



xii

3.2 Interaction of ILP with software prefetching in Simple and ILP systems

with base configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Comparing greedy prefetching and prefetch arrays for MST on simulated

Simple and ILP uniprocessors. Execution times are normalized to the

Simple system without prefetching. . . . . . . . . . . . . . . . . . . . . . 36

3.4 Interaction of ILP with software prefetching in Simple and ILP systems

with faster processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Impact of matrix traversal order on miss clustering. Crosses represent

matrix elements, and shaded blocks represent cache lines. The matrix is

shown in row-major order. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Pseudocode for Figure 4.1 matrix traversals (row-major notation). . . . . . 41

4.3 Impact of clustering transformations on application execution time. . . . . . 58

4.4 Factors shaping memory parallelism (read L2 MSHR utilization) and

contention (total L2 MSHR utilization). . . . . . . . . . . . . . . . . . . . 60

4.5 Execution times on simulated system with faster processors. . . . . . . . . 61

4.6 Impact of read miss clustering on Convex Exemplar execution time. . . . . 63

5.1 Pseudocode of a 2-D matrix traversal, (a) as originally generated, and (b)

after read miss clustering with unroll-and-jam (postlude not shown). All

pseudocode uses row-major notation. Figure 5.2 shows the corresponding

codes after the addition of prefetching. . . . . . . . . . . . . . . . . . . . 68

5.2 Pseudocode of the 2-D matrix traversals of Figure 5.1 after adding

software prefetching. Figure 5.1(a) tolerates latencies with software

prefetching alone, while Figure 5.1(b) uses the combination of clustering

and prefetching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Applying both software prefetching and loop interchange to provide

clustered prefetching in the postlude left by unroll-and-jam. . . . . . . . . . 73



xiii

5.4 Execution times on base simulated system with software prefetching,

clustering, and their combination. All times are shown normalized to the

execution time with neither prefetching nor clustering. . . . . . . . . . . . 74

5.5 Comparing greedy prefetching and prefetch arrays for MST on base

simulated uniprocessor system. Execution times are normalized to the

unclustered code without prefetching. . . . . . . . . . . . . . . . . . . . . 75

5.6 Number of late prefetch stalls after clustered prefetching represented as a

percentage of the late prefetch stalls seen with prefetching alone. . . . . . . 76

5.7 Execution times of Em3d on base system when less clustering is used in

combination with prefetching. . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 Execution times on simulated system with faster processors. . . . . . . . . 80

5.9 Execution times on Convex Exemplar with software prefetching,

clustering, and their combination. All times are shown normalized to the

execution time with the same number of processors and neither

prefetching nor clustering. (Darker bars represent degradations beyond the

size of the charts.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Simulator accuracy for the base system. . . . . . . . . . . . . . . . . . . . 99

6.2 Simulator speed for the base system. DR=DirectRSIM, 4x=Simple-4x,

Simp=Simple. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Components of elapsed time for various simulators. . . . . . . . . . . . . . 106



Tables

2.1 Base system configuration used in evaluating impact of ILP techniques on

multiprocessor performance. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Evaluation workload for simulated system. . . . . . . . . . . . . . . . . . . 13

3.1 Classification of prefetches . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Detailed data on effectiveness of software prefetching in multiprocessor

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Functional unit latencies for the base system configuration used in

simulating impact of memory clustering transformations. All other system

parameters are identical to the ILP system of Chapters 2 and 3, as given in

Table 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Data set sizes and number of processors for experiments on simulated and

real systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Key features of read miss clustering and software prefetching. . . . . . . . 66

6.1 Base system parameters. The number of processors varies by application,

as described in Section 6.4.2 and Table 6.2. . . . . . . . . . . . . . . . . . 96

6.2 Application input sizes and number of simulated processors. . . . . . . . . 97

6.3 Variations on base configuration. . . . . . . . . . . . . . . . . . . . . . . . 101



xv

6.4 Simulator accuracy for all configurations. (Averages are over absolute

values of the errors.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Simulator errors due to the memory component. (Averages are over

absolute values of the errors.) . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Simulator errors due to the CPU component. (Averages are over absolute

values of the errors.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7 Simulation time for Simple and WWT-2. . . . . . . . . . . . . . . . . . . . 110

6.8 Simulator speed for all configurations. . . . . . . . . . . . . . . . . . . . . 111

6.9 Absolute speed of the simulators in thousands of instructions simulated

per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1 ILP workload parameters as measured by RSIM . . . . . . . . . . . . . . . 117

7.2 ILP workload parameters as generated by FastILP . . . . . . . . . . . . . . 117



1

Chapter 1

Introduction

1.1 Motivation

Current commodity microprocessors improve performance by using aggressive techniques

to exploit high levels of instruction-level parallelism (ILP). These techniques include multi-

ple instruction issue, out-of-order (dynamic) scheduling, non-blocking reads, and specula-

tive execution. We refer to these techniques collectively as ILP techniques and to processors

that exploit these techniques as ILP processors. ILP processors are being used not only for

uniprocessor systems, but also for high-performance shared-memory multiprocessors that

focus on data-intensive scientific and commercial applications.

Most previous studies of shared-memory multiprocessors, however, have assumed a

simple processor with single-issue, in-order scheduling, blocking reads, and no specu-

lation. This assumption allows the use of direct-execution simulation, which is signif-

icantly faster than the detailed simulation currently required to model an ILP processor

pipeline. A few multiprocessor architecture studies model state-of-the-art ILP proces-

sors [Gor95, NHO96, ONH
�

96, PRAH96], but do not analyze the impact of ILP tech-

niques. Further, many uniprocessor studies focus on instruction-level parallelism without

specifically targeting optimizations toward memory system performance. Memory system

performance is quickly becoming the primary factor determining overall system perfor-

mance, so optimization approaches that target this subsystem are becoming more impor-

tant.

To fully exploit recent advances in ILP technology for memory system performance, a

detailed analysis is required to indicate how ILP techniques affect memory system perfor-

mance in high-performance uniprocessor and multiprocessor systems and how they interact



2

with memory system optimizations that are not specific to ILP. Such an analysis is also re-

quired to assess the validity of the continued use of direct-execution simulation with simple

processor models to study next-generation shared-memory architectures. This dissertation

performs such an analysis and uses the insights of this analysis to address the limitations

of aggressive ILP-based systems, both in memory system performance and in evaluation

methodology.

1.2 Contributions

This dissertation makes three key contributions to the state-of-the-art. First, we analyze

the impact of ILP hardware techniques on data memory system performance. Second, we

use the insights of that analysis to propose and evaluate new ILP-specific optimizations

to improve data memory system performance. Third, we also analyze and improve the

tradeoff between accuracy and speed in evaluating ILP-based systems. This work was

enabled by the development of RSIM (the Rice Simulator for ILP Multiprocessors) as a

part of this thesis. RSIM was the first publicly-available shared-memory multiprocessor

simulator to model processors that aggressively exploit instruction-level parallelism.

The following discusses each of these topics more thoroughly.

1.2.1 Analyzing the Impact of ILP Techniques on Memory System Performance

This work characterizes the effectiveness of state-of-the-art ILP processors in shared-

memory multiprocessor and uniprocessor systems, using a detailed ILP multiprocessor and

uniprocessor simulator (RSIM) driven by full scientific applications [PRA97b, PRA96,

PRAA99]. We show that all of our applications see performance improvements from the

use of current ILP techniques in multiprocessors. However, the improvements achieved

vary widely. In particular, ILP techniques successfully and consistently reduce the CPU

component of execution time, but their impact on the memory (read) stall component is

lower than their impact on CPU time and is also more application-dependent. As a re-

sult, data read stall time becomes a larger bottleneck than in previous-generation systems.



3

These deficiencies in the impact of ILP techniques on memory stall time arise primarily

because of insufficient potential in our applications to overlap multiple read misses, as well

as system contention from more frequent memory accesses. This portion of the dissertation

(Chapter 2) draws from joint work with Parthasarathy Ranganathan.

This work also analyzes the interaction between software prefetching and ILP tech-

niques in shared-memory multiprocessors [RPAA97, PRAA99]. Software-controlled non-

binding prefetching has been shown to be an effective technique for hiding memory latency

in simple processor-based shared memory systems [Mow94]. We show several important

factors that can limit the effectiveness of prefetching and relate these to the ILP techniques

in general and our applications in particular. On the whole, we find prefetching to be less

effective in reducing memory stall time in ILP-based systems than in systems with sim-

ple processors. This portion of the dissertation (Chapter 3) draws from joint work with

Parthasarathy Ranganathan and Hazim Abdel-Shafi.

Overall, our results suggest that, despite the inherent latency-tolerating mechanisms in

ILP processors, multiprocessors built from ILP processors actually exhibit a greater po-

tential need for additional latency reducing or hiding techniques than previous-generation

multiprocessors. We identify clustering of read misses together within the ILP processor’s

instruction window as a potentially effective optimization for better exploiting the ILP fea-

tures of current processors.

1.2.2 ILP-Specific Code Transformations to Improve Multiprocessor Performance

The second contribution of this dissertation is to propose software code transformations

to improve read miss clustering for systems with out-of-order processors, while preserv-

ing cache locality [PA99, PA00]. We exploit code transformations already known and

implemented in compilers for other purposes, providing the analysis needed to relate

them to read miss clustering. The key transformation we use is unroll-and-jam, which

was originally proposed for improving floating-point pipelining and for scalar replace-

ment [AC72, CCK88, CK94, Nic87]. We develop an analysis and transformation frame-



4

work that maps the read miss clustering problem to floating-point pipelining.

We evaluate the clustering transformations applied by hand to a latency-detection mi-

crobenchmark and seven scientific applications running on simulated and real uniprocessor

and multiprocessor systems. These transformations reduce data memory latency stall time

by over 80% for the latency-detection microbenchmark. For the scientific applications, the

transformations reduce execution time by 5–39% (averaging 20%) in the simulated multi-

processor and 11–49% (averaging 30%) in the simulated uniprocessor. A substantial part

of these execution-time reductions arise from improving memory parallelism, particularly

as memory stall time becomes more significant. We confirm the benefits of our transforma-

tions on a real system (Convex Exemplar), where they reduce application execution time

by 9–38% for 6 out of 7 applications.

We then show that the techniques of read miss clustering and software prefetching

are actually mutually beneficial, each helping to overcome the performance limitations of

the other. Thus, the combination can expose opportunities for latency tolerance missed

by either technique alone. We evaluate read miss clustering, software prefetching, and

their combination both with a detailed simulator (RSIM) and on a real system (Convex

Exemplar). We apply miss clustering by hand in both cases and apply prefetching by

hand for the simulation. We consider prefetching for both regular and irregular applica-

tions [KDS00, LM96, Mow94, RS99]. Experimental results show that clustering alone

outperforms prefetching alone for most of the applications and systems that we study, and

that the combination of read miss clustering and prefetching yields better execution time

benefits than either technique alone in most cases. The combination of clustering and

prefetching yields a significant improvement in latency tolerance over prefetching alone

(the state-of-the-art implemented in systems today), with an average of 21% reduction in

execution time across all cases studied in simulation and an average of 16% reduction in

execution time for 5 out of 10 cases on the Exemplar. The experimental results also show

reductions in execution time relative to clustering alone averaging 15% for 6 out of 11 cases

in simulation and 20% for 6 out of 10 cases on the Exemplar.



5

1.2.3 Analyzing and Addressing the Impact of ILP on Multiprocessor Evaluation

Methodology

The third contribution of this thesis focuses on evaluation methodologies for shared-

memory multiprocessors built from ILP processors. We first study the validity of cur-

rent simple-processor direct-execution simulation based models to model ILP multiproces-

sors [PRA97b]. For applications where our ILP multiprocessor fails to significantly overlap

read miss latency, a simulation using a simple previous-generation processor model with a

higher clock speed for the processor and the L1 cache provides a reasonable approximation

to the results achieved with a more detailed simulation system. However, when ILP tech-

niques effectively overlap read miss latency, all of our simple-processor-based simulation

models can show significant errors for important metrics. Overall, for total simulated exe-

cution time, the most commonly used simulation technique gave an average error of 137%

(ranging 9%–438%), while even the best approximate model saw an average execution

time discrepancy of 46% (ranging 0%–128%). These errors depend on both the application

and the ILP characteristics of the system; thus, models that do not properly capture these

effects may not be able to effectively characterize an ILP-based multiprocessor system.

Nevertheless, direct-execution simulations appear attractive since they are as much as an

order of magnitude faster than the detailed simulator RSIM [DPA99]. This portion of the

study draws from joint works with Murthy Durbhakula and Parthasarathy Ranganathan.

This dissertation then presents two evaluation methodologies to speed up the charac-

terization of ILP multiprocessors. The first is a novel adaptation of direct-execution simu-

lation that substantially speeds up simulation of shared-memory multiprocessors with ILP

processors, without much loss of accuracy [DPA99, DPA98]. We have developed a new

simulator, DirectRSIM, based on this new technique. This thesis evaluates the accuracy

and speed of DirectRSIM by comparing it with RSIM and with two representative simple-

processor based direct-execution simulators. For a variety of system configurations and

applications, we find that DirectRSIM, on average, is 3.6X faster than RSIM with an error

in reported execution time relative to RSIM of only 1.3% (range of -3.9% to 2.2%). Simple-



6

processor based simulators remain an average of 2.7X faster than DirectRSIM. However,

this additional speed comes at the cost of their much larger and more unpredictable er-

rors. This result suggests a reconsideration of the appropriate simulation methodology for

shared-memory systems. Earlier, the order-of-magnitude performance advantage of the

simple-processor based simulators over detailed simulators like RSIM made a compelling

argument for their use in spite of their potential for large errors. It is not clear that those

errors are still justifiable given only a 2.7X performance advantage relative to DirectRSIM.

This portion of the dissertation draws from joint work with Murthy Durbhakula.

The second new evaluation methodology presented in this dissertation is a high-level

simulation methodology called FastILP [SPA
�

98]. FastILP interacts with a new analyti-

cal model of ILP-based multiprocessors. Analytical modeling is an attractive alternative

to simulation because of its high speed. However, most analytical models are driven by

synthetic parameters that may not represent any real workload. FastILP generates the pa-

rameters needed to allow this new analytical model to capture relevant information about

the workload. Specifically, FastILP characterizes an application in terms of fundamental

ILP parameters, rather than attempting to measure the time required for the application.

The parameters measured are the distribution of read misses outstanding at the time that

processor action stalls (an indicator of overlap) and the rate and variance by which exter-

nal memory requests are sent from the active processor (indicators of contention). Since

FastILP does not need to measure the exact cycle count for an execution, it can achieve

very high performance by abstracting both the ILP processor and the memory system, and

modeling only enough state to generate the required ILP parameters. The combination

of FastILP and the new analytical model can be used to compute performance estimates

very quickly while still accounting for important workload characteristics. FastILP and the

analytical model for ILP multiprocessors were developed jointly with Daniel Sorin, Mary

Vernon, and David Wood.



7

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 analyzes the impact of cur-

rent techniques that exploit instruction-level parallelism and their effectiveness in targeting

memory system performance. Chapter 3 shows the interaction between software prefetch-

ing and ILP. Chapter 4 proposes software code transformations that aim to improve the

interaction of ILP with memory system performance by increasing memory parallelism.

We also evaluate these transformations on both a simulator and a real machine. Chapter 5

compares and combines the software latency tolerance techniques discussed in the previous

chapters (software prefetching and read miss clustering), and explains how each of these

techniques can address limitations in the other. Chapter 6 analyzes the accuracy and perfor-

mance of simulators for ILP multiprocessor systems and presents a new simulation method-

ology to improve the tradeoff between accuracy and simulation speed. Chapter 7 discusses

our fast high-level evaluation methodology that characterizes applications in terms of fun-

damental ILP parameters instead of specific timings. Chapter 8 discusses related work, and

Chapter 9 describes the conclusions of this study and planned future work.



8

Chapter 2

The Impact of ILP on Memory System Performance

Most multiprocessor architectural studies have used simple-processor-based models for the

evaluation of their benefits. Some studies have modeled the effects of ILP, but have not

detailed the benefits of techniques to exploit ILP in multiprocessors [NHO96, ONH
�

96,

GGH92, PRAH96, ZB92]. Many other works study the impact of ILP on uniprocessor

systems without specifically analyzing its interaction with memory system performance.

Our work seeks to provide a detailed analysis of the impact of ILP on data memory sys-

tem performance, both to assess the efficacy of techniques to exploit ILP and to identify

limitations to high performance.

This chapter evaluates the impact of instruction-level parallelism on memory system

performance. Section 2.1 describes the architectural models and applications studied, as

well as the quantitative metrics used. Section 2.2 focuses on multiprocessor systems, com-

paring the performance of systems based on simple and ILP processors and characterizing

the effectiveness of current techniques to exploit ILP. Section 2.3 shows the impact of ILP

on uniprocessor systems. Section 2.4 describes the sensitivity of our experimental results

to system latencies as the processor-memory speed gap continues to grow. Finally, Sec-

tion 2.5 summarizes the key findings of these studies and describes additional issues in the

impact of ILP on shared-memory multiprocessor performance.

2.1 Methodology

This section describes the ILP and simple processor based systems that we investigate in

our study, our simulation infrastructure, and the evaluation workload we use to characterize

our systems.



9

2.1.1 Simulated Architectures

To determine the impact of ILP techniques on multiprocessor performance, we compare

two CC-NUMA multiprocessor systems – ILP and Simple – equivalent in every respect

except the processor used. The ILP system uses state-of-the-art ILP processors while the

Simple system uses simple processors, as described below. We compare the ILP and Sim-

ple systems not to suggest any architectural tradeoffs, but rather, to understand how aggres-

sive ILP techniques impact multiprocessor performance. Therefore, the two systems have

identical clock rates, and include identical aggressive memory and network configurations

suitable for the ILP system. Table 2.1 summarizes all the system parameters.

Processor models. The ILP system uses state-of-the-art processors that include mul-

tiple issue, out-of-order (dynamic) scheduling, non-blocking reads, and speculative exe-

cution. The Simple system uses previous-generation simple processors with single issue,

in-order (static) scheduling, and blocking reads, and represents commonly studied shared-

memory systems. Since we did not have access to a compiler that schedules instructions

for our in-order Simple processor, we assume single-cycle functional unit latencies (as also

assumed by most previous simple-processor based shared-memory studies). Both proces-

sor models include support for software-controlled non-binding prefetching to the L1 cache

(discussed in Chapter 3).

Memory Hierarchy and Multiprocessor Configuration. We simulate a hardware

cache-coherent, non-uniform memory access (CC-NUMA) shared-memory multiproces-

sor using an invalidation-based, three-state MSI directory coherence protocol. We extend

our MSI protocol to issue reads in exclusive-mode when a write instruction to the same

cache line appears later in the processor’s instruction window. We model the release con-

sistency memory model because previous studies have shown that it achieves the best per-

formance [PRAH96].

Figure 2.1 shows the topology and features of our CC-NUMA system. The processing

nodes are connected using a two-dimensional mesh network. Each node includes a proces-

sor, a primary instruction cache, a primary data cache, a unified secondary cache, a portion



10

Processor parameters
Clock rate 500 MHz
Fetch/decode/retire rate 4 per cycle
Instruction window 64 instructions in-flight
Memory queue size 32
Outstanding branches 16
Number of functional units 2 ALUs, 2 FPUs, 2 address generation units
Functional unit latencies 1 cycle

Memory hierarchy and network parameters
L1 D-cache 16 KB, direct-mapped, 2 ports, 10 MSHRs,

64-byte line
L1 I-cache 16 KB, direct-mapped, 64-byte line
L2 cache 64 KB (for Erlebacher, FFT, LU, and Mp3d)

or 1 MB (for Em3d, MST, and Ocean),
4-way associative, 1 port, 10 MSHRs, 64-byte line,
pipelined

Memory banks 4-way, permutation-based interleaving
Bus 167 MHz, 256 bits, split transaction
Network 2D mesh, 250MHz, 64 bits, flit delay of 2 network

cycles per hop
System latencies in absence of contention

L1 hit 1 processor cycle
L2 hit 10 processor cycles
Local memory 85 processor cycles
Remote memory 180-260 processor cycles
Cache-to-cache transfer 210-310 processor cycles

Table 2.1 : Base system configuration used in evaluating impact of ILP techniques on
multiprocessor performance.

of the global shared-memory and directory, and a network interface. A split-transaction bus

connects the network interface, directory controller, and the rest of the system node. Both

data caches are non-blocking, cache with a write-allocate write-back policy, and use miss

status holding registers (MSHRs) [Kro81] to store information on outstanding misses and

to coalesce multiple requests to the same cache line. The cache sizes are scaled based on

application input sizes according to the methodology of Woo et al. [WOT
�

95]. Realistic

application inputs would typically require an impractical amount of simulation time. How-



11

Mem

DirL2 Cache

Processor

Bus

Interface

L1−DL1−I

Figure 2.1 : Layout of CC-NUMA multiprocessor used in simulatioon studies, along with
detailed diagram of individual processing node.

ever, smaller input sizes may lead to overly optimistic views of cache performance. Thus,

this methodology suggests scaling the cache sizes down according to the simulated working

sets, and is widely used in multiprocessor architectural studies. The primary working sets

for our applications typically fit in the L1 cache, while the secondary working sets do not

fit in the L2 cache. The memory banks use permutation-based interleaving on a cache-line

granularity to support a variety of strides [Soh93].

Simulation environment. We use RSIM, the Rice Simulator for ILP Multiproces-

sors, to model the systems studied [PRA97a]. RSIM is an execution-driven simulator that

models the out-of-order processor, memory system, and interconnection network in detail,

including contention at all resources. It takes SPARC application executables as input.



12

2.1.2 Performance Metrics

Our primary metric for determining the impact of ILP is the total execution time. To char-

acterize the performance bottlenecks in our system, we also categorize simulated execution

time as follows: data read miss stall (for stalls caused by data references to main memory),

data read hit or write stall (usually exposed only in the event of high resource contention),

CPU (busy time and functional-unit stalls), synchronization, and instruction memory stall

times. We account for stall cycles in the ILP processor as follows, similar to previous work

(e.g., [LM96]). For each cycle, we calculate the ratio of the instructions retired from the in-

struction window to the maximum retire rate and attribute this fraction of that cycle to busy

time. The rest of the cycle is attributed as stall time to the first instruction that could not

retire that cycle, or as instruction memory stall if no instruction is available in the window

because of an I-cache stall.

We also define a derivative metric to characterize the impact of ILP, which we call the

ILP speedup. This is the ratio of the execution time with the Simple system relative to that

achieved by the ILP system. For detailed analysis, we analogously define an ILP speedup

for each component of execution time.

2.1.3 Evaluation Workload

Table 2.2 summarizes the evaluation workload for the simulated system. The number of

processors used for the multiprocessor experiments is based on application scalability, with

a limit of 16. The input sizes were chosen to ensure reasonable simulation times. Since

a SPARC compiler for our ILP system does not exist, we compiled our applications with

the commercial Sun SC 4.2 or the gcc 2.7.2 compiler (whichever gave better simulated

ILP system performance) with full optimization turned on. The compilers’ deficiencies in

addressing the specific instruction grouping rules of our ILP system are partly hidden by

the out-of-order scheduling in the ILP processor.

FFT, LU, Ocean, and Radix are array-based codes from the SPLASH-2 suite consisting

primarily of loops and loop nests [WOT
�

95]. FFT, LU, and Ocean are regular codes:



13

Application Input Size Processors
Em3d 32K nodes, deg. 20, 20% rem. 1,16
Erlebacher 64x64x64 cube, block 8 1,16
FFT 65536 points 1,16
LU 256x256 matrix, block 16 1,8
Mp3d 100000 particles 1,8
MST 1024 nodes 1
Ocean 258x258 grid 1,8
Radix 1024 radix, 512K keys, max 512K 1,8
Water 512 molecules 1,16

Table 2.2 : Evaluation workload for simulated system.

the array indices used in these codes are affine functions of the controlling loop variables.

Radix has one important phase with irregular references formed by indirection. For better

load balance, LU is modified slightly to use flags instead of barriers.

Mp3d and Water are from the SPLASH suite [SWG92]. To eliminate false-sharing

in the irregular, asynchronous, and communication-intensive Mp3d application, key data

structures were padded to a multiple of the cache line size. To reduce true-sharing and im-

prove locality in Mp3d, the data elements were sorted by position in the modeled physical

world [MWK99].

Erlebacher is a shared-memory port of a code by Thomas Eidson at the Institute for

Computer Applications in Science and Engineering (ICASE). Like FFT, LU, and Ocean,

Erlebacher is also a regular array-based code dominated by loop nests.

Em3d is a shared-memory adaptation of a Split-C application [CDG
�

93]. This code

spends most of its time in loop nests and includes both regular and indirect references.

MST is the minimal-spanning tree algorithm from the Olden benchmarks [RCRH95].

MST is dominated by linked-list traversals for lookups in a hash-table. This is an example

of a linked data structure application, as opposed to the other codes which are based on

arrays. MST has an irregular access pattern. We do not run a multiprocessor version of

MST because of excessive synchronization overhead.



14

||0

|20

|40

|60

|80

|100
 N

or
m

ali
ze

d 
ex

ec
ut

ion
 tim

e

Simple

100.0

Em3d
ILP

35.9

Simple

100.0

Erlebacher
ILP

55.1

Simple

100.0

FFT
ILP

47.9

Simple

100.0

LU
ILP

37.6

Simple

100.0

Mp3d
ILP

66.7

Simple

100.0

Ocean
ILP

33.2

Simple

100.0

Radix
ILP

80.1

Simple

100.0

Water
ILP

41.5

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

Figure 2.2 : Impact of ILP on multiprocessor execution time and its components.

2.2 Experimental results on multiprocessor system

This section analyzes the impact of ILP techniques on multiprocessor performance by com-

paring the Simple and ILP multiprocessor systems.

2.2.1 Overall Results

Figure 2.2 illustrates our key overall results for multiprocessor systems. For each applica-

tion, Figure 2.2 shows the total execution time and its three components for the Simple and

ILP systems (normalized to the total time on the Simple system).

This figure show two key trends:

� ILP techniques improve the execution time of all our applications. However, the

impact of ILP is variable, ranging from 20% to 67% reduction in execution time.

The average reduction in execution time is only 50%.

� The data memory stall component is generally a larger part of the overall execution

time in the ILP system than in the Simple system.

We next investigate the reasons for the above trends.

2.2.2 Factors Contributing to ILP Speedup

Figure 2.2 shows that the most important components of execution time are CPU time and

data memory stalls. Thus, ILP speedup will be shaped primarily by CPU ILP speedup and



15

||0

|1

|2

|3

|4

 IL
P

 S
pe

ed
up

2.78

3.92

2.41

4.59

Em3d

1.82

3.62

1.41
1.26

Erlebacher

2.09

2.93

1.38
1.64

FFT

2.66

3.77

1.92

2.60

LU

1.50

2.73

1.06
1.25

Mp3d

3.01

3.50

3.10

1.14

Ocean

1.25

3.18

0.77

1.57

Radix

2.41

3.13

1.34

1.97

Water

Overall ILP Speedup
CPU ILP Speedup

Memory ILP Speedup
Synch ILP Speedup

Figure 2.3 : ILP speedup of total execution time and components as seen in multiprocessor
system.

data memory ILP speedup. Figure 2.3 summarizes these speedups (along with the total

ILP speedup). The figure shows that the low and variable ILP speedup for our applications

can be attributed largely to insufficient and variable data memory ILP speedup; the CPU

ILP speedup is similar and significant across all applications (ranging from 2.73 to 3.92).

Figure 2.2 particularly shows that for most of our applications, data memory stall time is

dominated by stalls due to reads that miss in the L2 cache. We therefore focus on the impact

of ILP on L2 read misses below.

The data read miss ILP speedup is the ratio of the stall time due to data read misses

in the Simple and ILP systems, and is determined by three factors, described below. The

first factor tends to increase the speedup, the second tends to decrease it, and the third may

either increase or decrease it.

Memory parallelism. Since the Simple system has blocking reads, the entire read miss

latency is exposed as stall time. In the ILP system, read misses can be overlapped with other

useful work, reducing stall time and increasing the ILP read miss speedup. Figures 2.4(a)

and 2.4(b) show instructions being processed in the instruction window (reorder buffer) of

an out-of-order issue processor. Instructions in the window can issue and complete out-

of-order. However, to maintain precise interrupts, instructions must commit their results

and retire from the window in program order after completion [SP88]. (Stores may retire

before completing at the memory hierarchy in systems that support write-buffering.)

As described in Section 2.1, an external cache miss may require hundreds of proces-



16

LoadAddAdd LoadAddLoadfetch retire

(a) Miss latency exposed

LoadAddAdd LoadAddLoadfetch retire

(b) Later miss latencies hidden

Figure 2.4 : The instruction window (reorder buffer) of an out-of-order issue processor.
Older instructions are shown at the right, and cache misses are shaded.

sor cycles. However, current out-of-order processors typically have only 32–80 element

instruction windows [Hun95, Kel96, MIP96]. Figure 2.4(a) shows an instruction window

in which an outstanding read miss has reached the head of the window and the other in-

structions in the window are all low latency (such as typical computation and read hits).

Then, the other instructions in the window will not be sufficient to completely overlap the

oldest read’s miss latency. Since the instructions retire in program order, the instruction

window fills up and blocks the processor. Thus, ILP features such as out-of-order issue and

non-blocking reads are insufficient to hide the read’s miss latency.

Figure 2.4(b) shows an otherwise identical instruction window where other independent

read misses are scheduled into the window behind the oldest outstanding miss. Here, the

later misses issue in parallel with the first miss, and their latencies are overlapped with

the stall time of the first miss. Thus, read miss latencies are typically only effectively

overlapped in parallel with other read misses. Achieving such memory parallelism requires

read misses to multiple cache lines to cluster together within the same instruction window.

We call this phenomenon read miss clustering, or simply clustering.

Contention. Compared to the Simple system, the ILP system typically sees longer la-

tencies from increased contention due to the higher frequency of misses, thereby negatively

affecting data read miss ILP speedup.

Change in the number of misses. The ILP system may see fewer or more misses



17

than the Simple system because of reordering of memory accesses or speculation, thereby

positively or negatively affecting read miss ILP speedup.

We define the following equations to mathematically express the relations of these fac-

tors to read miss ILP speedup.

���������
	��
����������������� ��������� �"!$#&%'���(�)�*�"!
�,+.-0/,#1%2+.-3/�4 !65.� 7986!6: (2.1)

Equation 2.1 expresses the read miss speedup of these applications in terms of the miss

counts and average exposed miss latencies seen in the system.
�;���(�)�*�"!

and
�,+.-0/

represent

the count of L2 data read misses in the Simple and ILP systems, respectively. The term
%2���(�)� �<!

represents the average data read miss latency in Simple system, which is entirely

exposed because of the single-issue, static scheduling and blocking reads of the system.

The term
%2+.-3/�4 !65.� 798=!>:

represents the average exposed data read miss latency in ILP system.

�������?�
	9���$���@��������� � ��������� �"!
�,+.-0/ # %'���(�)�*�"!

%2+.-3/�4 !65.� 798=!>: (2.2)

�
	�����AB��CEDGF
H � ��������� �"!
�,+.-0/ (2.3)

Equations 2.2 and 2.3 split off the portion of read miss speedup caused by a change in

miss count from the portion caused by a change in the exposed latencies. Equation 2.3

defines the miss factor, which represents the ratio of the miss count in the Simple and ILP

systems. A miss factor greater than 1 contributes positively to read miss speedup, while a

lower miss factor hinders read miss speedup.

All of our applications except Radix see a similar number of cache misses in both the

Simple and ILP systems. Radix sees 15% fewer misses in ILP because of a reordering

of accesses that otherwise conflict in the L2 cache. When the number of misses does not

change, the ILP system sees ( IKJ ) read miss ILP speedup if the exposed ILP latency is less

than the Simple latency. This occurs when the benefits of memory parallelism in the ILP

system outweigh any additional latency from contention.

LNM��@F0������AB��CEDGF
H�� %2+.-3/�4 !65.� 798=!>:
%'���(��� �"! (2.4)



18

Equation 2.4 defines the exposed factor, which represents the ratio of the average ex-

posed latency in the ILP system to the average Simple system latency. Since the read miss

speedup varies inversely with this factor, an exposed factor less than 1 contributes to higher

read miss speedup, while a greater exposed factor leads to lower read miss speedup.

LNM���F3�����?AN��C DGF�H � %2+.-0/ � %2+.-3/�4 7 � ! � � � �.� !>:%'������� �"! (2.5)

LNM���F3�����?AN��C DGF�H � %'���(�)� �<!��;%2+.-3/�4 !65�� ��� � %2+.-3/�4 7 � ! � � � �.�*!6:%'���(��� �"! (2.6)

LNM���F3�����?AN��C DGF�H � J � 	 %2+.-3/�4 7 � ! � � � �.�*!6:%'������� �"! � %2+.-3/�4 !65�� ���%'���(�)�*�"!�
 (2.7)

Equations 2.5–2.7 then expand the exposed factor to express it in terms of
%>���(�)� �<!

,
%2+.-3/

(the average data read miss latency in the ILP system),
% +.-3/�4 7 � ! � � � �.�*!6: (the average data read

miss latency overlapped by the ILP system; equivalent to
% +G-0/ � % +G-0/�4 !=5.� 7986!6:

), and
%2+.-3/�4 !65�� ���

(the average data read miss latency increase caused by the ILP system; equivalent to
%=+.-3/ �

%2���(�)� �<!
). Since a low exposed factor leads to higher read miss ILP speedup, Equation 2.7

indicates that the exposed factor will be beneficial whenever the latency overlapped by the

ILP system exceeds any increase in latency.
�� � H3% � � �@��� AB��CEDGF
H � %2+.-3/�4 7 � ! � � � �.� !>:%'���(�)� �<! (2.8)

L M�D.H3� AB��CEDGF
H � %2+.-3/�4 !65�� ���%'���(�)�*�"! (2.9)

Equations 2.8 and 2.9 extract two new terms from the Equation 2.7: the overlapped

factor and the extra factor. These represent the ratio of the overlapped latency and extra

latency in the ILP configuration, respectively, relative to the total Simple latency.

����� �?�
	9���$���@����������� �
	9����AN��C DGF�H
J ��� 
�� � H3% � � �@��� AB��CEDGF
H � LNM�D.H0��AB��CEDGF
H�� (2.10)

Equation 2.10 summarizes the above equations by expressing the L2 data read miss ILP

speedup in terms of three key parameters that we can directly gauge from our simulation

results: the miss factor (Equation 2.3), the overlapped factor (Equation 2.8), and the extra

factor (Equation 2.9). The miss factor expresses the impact of ILP on L2 read miss count



19

||0

|20

|40

|60

|80

|100

|120

|140
 N

o
rm

a
liz

e
d

 m
is

s 
la

te
n

cy

Simple ILP

Em3d

100.0
114.6

Simple ILP

Erlebacher

100.0

122.5

Simple ILP

FFT

100.0
118.3

Simple ILP

LU

100.0
108.4

Simple ILP

Mp3d

100.0

124.3

Simple ILP

Ocean

100.0

132.8

Simple ILP

Radix

100.0

133.8

Simple ILP

Water

100.0
110.3 overlapped

exposed

(a) Impact of ILP on average data read miss latency.
�

 Em3d
�

 Erle.
�

 FFT
�

 Water

|

0
|

2
|

4
|

6
|

8
|

10

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 U
til

iz
at

io
n

Number of L1 read MSHRsNumber of L1 read MSHRsNumber of L1 read MSHRsNumber of L1 read MSHRs

�
�

�

�

�
� � � � ���

�

�

�
�
�
��� �������

�

�

�

���������������

�

�

�
���������������

�
 LU

�
 Mp3d

�
 Ocean

	
 Radix

|

0
|

2
|

4
|

6
|

8
|

10

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 U
til

iz
at

io
n

Number of L1 read MSHRsNumber of L1 read MSHRsNumber of L1 read MSHRsNumber of L1 read MSHRs

�

�

�

� �������������

�

�

�
���������������

�

�

�

�
� � � � �����

	

	

	 	�	�	�	�	�	�	�	



 Em3d

�
 Erle.

�
 FFT



 Water

|

0
|

2
|

4
|

6
|

8
|

10

|0.0

|0.2

|0.4

|0.6

|0.8
|1.0

 U
til

iz
at

io
n

Number of L1 MSHRsNumber of L1 MSHRsNumber of L1 MSHRsNumber of L1 MSHRs


















 
 
 
 


�

�

�

�
� � ������� �

�

�

�

� � � � � � � �










�
�
�
�
�
�
�


�
 LU

�
 Mp3d

�
 Ocean

�
 Radix

|

0
|

2
|

4
|

6
|

8
|

10

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 U
til

iz
at

io
n

Number of L1 MSHRsNumber of L1 MSHRsNumber of L1 MSHRsNumber of L1 MSHRs

�

�

�

� �������������

�
�

�

�
� � ���������

�

�

�

�

�
� � � ��� �

�

�

� � ����� � � �
�

(b) MSHR occupancy due to reads (c) Total MSHR occupancy

Figure 2.5 : Factors shaping data read miss ILP speedup. The latency figures indicate
overall overlap and contention, while the MSHR graphs show specific sources of overlap
(read MSHRs) and contention (total MSHRs).

through speculation and reordering, the overlapped factor quantifies the benefits of memory

parallelism, and the extra factor indicates contention.

Figure 2.5(a) provides the average L2 read miss latencies for the applications in the

Simple and ILP systems, normalized to the Simple system latency. The latency shown

is the total miss latency, measured from address generation to data arrival, including the

overlapped part (in ILP) and the exposed part that contributes to stall time. The difference

in the bar lengths of Simple and ILP indicates the additional latency due to contention in

ILP. When normalized to the length of the Simple bar, the exposed part of the ILP bar is

the exposed factor of Equation 2.4, the overlapped part of the bar is the overlapped factor

of Equation 2.8, and the difference in bar lengths is the extra factor of Equation 2.9.

All of the applications see some latency increase from resource contention in ILP. How-

ever, some of the applications (such as Em3d and Ocean) can overlap all of their additional

latencies, as well as a large portion of their base (Simple) latencies. Such applications see a

high memory ILP speedup. On the other hand, Radix cannot overlap its additional latency.



20

Radix sees a slight ILP read miss speedup only because of its miss factor; overall, it sees

a data memory slowdown because of its increase in contention (explained in more detail

below).

We use the data in Figures 2.5(b) and 2.5(c) to further investigate the causes for the

memory parallelism and contention-related latencies in these applications. (As described

above, all applications studied except for Radix have a miss factor near 1; thus, memory

parallelism and contention are the primary factors shaping data read miss ILP speedup.)

Sources of memory parallelism. Figure 2.5(b) shows the ILP system’s L1 MSHR

occupancy due to read misses for the applications. Each curve shows the fraction of total

time for which at least
�

MSHRs are occupied by read misses, for each possible
�

(on the

X axis). This figure shows that Em3d achieves significant overlap of read misses, with up to

7 read miss requests outstanding simultaneously at various times. In contrast, Radix almost

never has more than 1 outstanding read miss at any time. This difference arises because read

misses are clustered together in the instruction window in Em3d, but typically separated by

too many instructions in Radix. Among the other applications, Erlebacher, FFT, Mp3d, and

Ocean have moderate overlap, while LU and Water have poor overlap.

To understand the sources of poor read miss clustering in typical code, we consider

a loop nest traversing a 2-D matrix. Figures 2.6(a) and 2.6(b) show a matrix traversal

optimized for spatial locality, following much compiler research. The pseudocode is shown

in row-major notation, while the graphic shows the matrix in row-major order, with crosses

for data elements and shaded blocks for cache lines. In this row-wise traversal, � successive

loop iterations access each cache line, where � is the number of data elements per cache

line. While this traversal maximizes spatial locality, it minimizes clustering. For example,

an instruction window that holds � or fewer iterations never holds read misses to multiple

cache lines, preventing clustering. This problem is exacerbated by larger cache lines or

larger loop bodies.

Sources of contention. Figure 2.5(c) extends the data of Figure 2.5(b) by displaying

the total MSHR occupancy for both read and write misses. Write miss overlap in the system



21

for( �����j++)
for( �����i++)

����� A[j,i]
x

x
x

x
x

x
x

x
x

x

xxx
x

x
x

x
x

x
x

x
x

x

x
x

x
x

x

xxx
x

x
x

x
x

(a) Pseudocode (b) Cache behavior

Figure 2.6 : Pseudocode and representation of cache-behavior for a matrix traversal op-
timized for cache locality. The pseudocode is shown with row-major notation, and the
graphic shows the matrix in row-major order. Crosses in the graphic represent matrix ele-
ments, and shaded blocks represent cache lines.

is illustrated by the difference between the read MSHR occupancy and the total MSHR

occupancy in Figures 2.5(b) and (c). The figure indicates that Radix has high write miss

overlap. This overlap does not contribute to an increase in memory ILP speedup since write

latencies are already hidden in both the Simple and ILP systems due to release consistency.

The write miss overlap, however, increases contention in the memory hierarchy, causing

cache hits to see exposed stalls and resulting in a 29% ILP memory slowdown in Radix.

Contention-related latencies in most of the other applications come primarily from read

misses, but these effects are offset by the resulting benefits in memory stall time.

ILP features can also reduce or hide synchronization time by reducing computation

time, overlapping data read misses, and overlapping synchronization with other operations.

ILP features can increase synchronization stall time because of additional contention in the

memory system. These factors lead to synchronization ILP speedups ranging from 1.07 to

4.59 for our applications; however, synchronization has a small impact on total execution

time and thus also contributes little to overall ILP speedup.



22

||0

|20

|40

|60

|80

|100
 N

or
m

al
iz

ed
 e

xe
cu

tio
n 

tim
e

Simple

100.0

Em3d
ILP

30.3

Simple

100.0

Erlebacher
ILP

53.4

Simple

100.0

FFT
ILP

44.7

Simple

100.0

LU
ILP

30.1

Simple

100.0

Mp3d
ILP

61.1

Simple

100.0

MST
ILP

70.4

Simple

100.0

Ocean
ILP

39.5

Simple

100.0

Radix
ILP

60.7

Simple

100.0

Water
ILP

34.9

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

Figure 2.7 : Impact of ILP on uniprocessor execution time and its components.

||0

|1

|2

|3

|4

 IL
P

 S
pe

ed
up

3.30

3.92

3.22

Em3d

1.87

3.66

1.31

Erlebacher

2.24

2.95

1.34

FFT

3.32

3.80

2.67

LU

1.64

2.65

1.08

Mp3d

1.42

4.15

1.18

MST

2.53

3.44

2.07

Ocean

1.65

3.11

0.93

Radix

2.87
3.16

1.41

Water

Overall ILP Speedup
CPU ILP Speedup

Memory ILP Speedup

Figure 2.8 : ILP speedup of total execution time and components as seen in uniprocessor
system.

2.3 Experimental results on uniprocessor system

Figure 2.7 shows the impact of ILP on uniprocessor execution time. As in the multiproces-

sor, this impact is highly variable, providing 30–70% reduction in execution time. However,

the average execution time reduction is somewhat higher (56% for the codes which have

both uniprocessor and multiprocessor versions, 53% across all codes), as are the individ-

ual execution time reductions in all applications with comparable multiprocessor versions

except for Ocean.

Figure 2.8 provides the ILP speedups for the uniprocessor configuration for reference.

The uniprocessor also generally sees lower memory ILP speedups than CPU ILP speedups.

However, the impact of the lower memory ILP speedup is greater in the multiprocessor

because the longer latencies of remote misses and increased contention result in a larger

relative memory component in the execution time (relative to the uniprocessor). Second,

the dichotomy between local and remote miss latencies in a multiprocessor causes some



23

||0

|20

|40

|60

|80

|100
 N

or
m

ali
ze

d 
ex

ec
ut

ion
 tim

e

Simple

100.0

Em3d
ILP

38.0

Simple

100.0

Erlebacher
ILP

52.4

Simple

100.0

FFT
ILP

39.6

Simple

100.0

LU
ILP

32.4

Simple

100.0

Mp3d
ILP

64.0

Simple

100.0

Ocean
ILP

33.9

Simple

100.0

Radix
ILP

79.0

Simple

100.0

Water
ILP

43.4

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(a) Multiprocessor

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Simple

100.0

Em3d
ILP

30.1

Simple

100.0

Erlebacher
ILP

51.1

Simple

100.0

FFT
ILP

36.0

Simple

100.0

LU
ILP

23.9

Simple

100.0

Mp3d
ILP

58.9

Simple

100.0

MST
ILP

77.4

Simple

100.0

Ocean
ILP

36.4

Simple

100.0

Radix
ILP

58.6

Simple

100.0

Water
ILP

35.9

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(b) Uniprocessor

Figure 2.9 : Impact of ILP on execution time for systems with faster processors.

applications (most notably, Em3d and LU) to see substantially lower memory ILP speedup

in the multiprocessor than in the uniprocessor. For effective latency tolerance, read misses

must be overlapped with other read misses that have similar latencies; this is trivial in the

uniprocessor, but not always true in a CC-NUMA multiprocessor system
�

.

2.4 Sensitivity to system latencies

Processor speeds and external memory latencies diverge further for processors in the giga-

hertz frequency range. To model this trend, we also performed experiments that modified

our base configuration to include 1 GHz processors without changing any absolute mem-

ory hierarchy times (in ns or MHz). The results in Figure 2.9 show behavior qualitatively

similar to Figures 2.2 and 2.7, with ILP having a greater impact on CPU time than data

�

This would also not necessarily be true in an SMP system, since cache-to-cache transfers have different

characteristics from ordinary data transfers.



24

memory time and data memory time making up a much larger fraction of total execution

time in the ILP system than the Simple system.

2.5 Summary and Implications

This study finds that for the applications and systems that we investigate, ILP techniques

effectively address the CPU component of execution time, but are less effective in reducing

the data memory component of execution time, which is dominated by read misses. This

disparity arises in our applications primarily because of insufficient opportunities to over-

lap multiple read misses and to a lesser extent because of system contention from more

frequent accesses in the ILP system. As a result, data read miss latency actually appears

as a greater relative performance bottleneck in ILP systems than in previous-generation

systems, despite the latency-tolerating techniques incorporated in ILP processors.

These observations suggest that ILP systems have a greater need for both conven-

tional and novel additional techniques to tolerate or reduce memory latency. A commonly

used technique for better latency tolerance is software-controlled non-binding prefetch-

ing [CKP91, MG91, MLG92, Mow94, TE95, LM96]. Chapter 3 evaluates the interaction

of this technique with instruction-level parallelism. Our results also motivate a specific

technique novel to ILP processors: application-level clustering of read misses. Chapter 4

proposes and evaluates code transformations that improve miss clustering and also shows

that these techniques can facilitate improved software prefetching.

Hardware enhancements can also increase read miss overlap; for example, through

a larger instruction window. However, such hardware may be increasingly insufficient

or infeasible as the processor-memory speed-gap continues to grow. Targeting con-

tention requires increased system hardware resources or other latency reduction techniques

(e.g. [AHAA97]).



25

Chapter 3

Interaction of Software Data Prefetching with
Instruction-Level Parallelism

Chapter 2 shows that the ILP system sees a greater bottleneck from memory latency

than the Simple system. To reduce memory stall time, many current processors support

software-controlled non-binding prefetching [ERB
�

95, Hun95, MIP96, Sun97]. With this

technique, the compiler or programmer schedules an explicit prefetch instruction for a lo-

cation that will be accessed by the processor at a later time, with the goal of bringing the

location into the processor’s cache before it issues a demand memory access for that loca-

tion [CKP91]. Previous studies have shown that software-controlled non-binding prefetch-

ing can eliminate a large fraction of memory stall time in shared-memory multiprocessors

and uniprocessors [MG91, MLG92, Mow94, TE95, LM96]. However, the multiprocessor

studies used previous-generation processors with single-issue, static scheduling, and block-

ing reads. Some of the uniprocessor studies modeled ILP processors, but did not specifi-

cally relate their benefits or limitations to ILP features. Consequently, such studies do not

account for the interactions between software prefetching and the other latency-tolerating

techniques already incorporated in ILP-based systems. An analysis of these interactions is

required to assess the effectiveness of current software prefetching strategies for state-of-

the-art systems.

This chapter seeks to understand how software prefetching interacts with ILP, and to

identify its limitations. Section 3.1 gives detailed information on the prefetching algorithms

used in this study. Section 3.2 describes the systems, applications, and metrics used in

this study. Section 3.3 gives the experimental results of the study. Section 3.4 describes

the sensitivity of the results in this study to our simulated system latencies. Section 3.5



26

summarizes the results of the study and discusses possible solutions to the limitations of

prefetching.

3.1 Software prefetching algorithm

The following discusses the best known and implemented software prefetching algorithm

for regular memory references, as well as prefetching algorithms that support irregular

references.

3.1.1 Algorithm for Adding and Scheduling Software Prefetches

The best known software prefetching algorithm implemented in a compiler is the loop-

based algorithm of Mowry et al. [Mow94, MG91, MLG92]. The analysis phase of the

algorithm identifies the static references which can miss (leading references). Then, the

scheduling phase uses loop peeling, unrolling, and strip-mining to insert prefetches only

for the dynamic instances of leading references that are expected to miss. The innermost

loop for a miss reference is software pipelined to schedule a prefetch ahead of the demand

access by a certain number of iterations, called the prefetch distance. The prefetch distance

(
�
) is computed as:

� � ����� � � #����	
�

���
 � �

(3.1)

The terms in Equation 3.1 are defined as follows:

� expected miss latency in cycles	
estimates the shortest possible path through an iteration (in cycles)

� number of successive inner-loop iterations that share a cache line
 �
total number of inner-loop iterations (the upper limit on inner-loop
software pipelining)

The term � #����� - 
 represents the distance needed to completely overlap the prefetch la-

tency.

The software pipelining applied produces a prologue, steady-state, and epilogue from

the original inner loop. The prologue consists only of prefetches to cover the data of the

first
�

iterations of the original loop. The steady-state includes both prefetches (scheduled



27

for(j=0;j<

 7
;j++) for(j=0;j<


 7
;j++)

for(i=0;i<

 �
;i++) for(i=0;i<

�
;i+= � )

����� A[j,i] PF(&A[j,i])
for(i=0;i<


 � � �
;i++)

if(i � ��� ����� ) PF(&A[j,i+
�
])

����� A[j,i]
for(;i<


 �
;i++)

����� A[j,i]
(a) Original code (b) After prefetching

Figure 3.1 : Pseudocode of a 2-D matrix traversal, before and after applying software
prefetching. All pseudocode uses row-major notation.

according to the prefetch distance) and computation for

 � � �

iterations of the original

loop. Either strip-mining, unrolling, or a conditional test is used to insure that a prefetch is

issued for a reference only once for every � iterations of the original loop. The epilogue

includes only computation for the last
�

iterations of the original inner loop; no prefetches

are issued since all the inner-loop iterations have already been prefetched in the prologue

and steady-state. Figures 3.1(a) and 3.1(b) illustrate a matrix traversal before and after

applying software prefetching, respectively.

3.1.2 Prefetching Algorithms for Irregular Memory References

The above algorithm handles only affine references, but newer prefetching algorithms have

been developed to support two classes of irregular references. The first class supports

references formed by indirection through an affine reference [Mow94]. Such references

require two prefetches: one for the affine reference (which gives the address of the indirect

reference), and one for the indirect reference itself. Since the second prefetch uses the data

of the first, the first prefetch must be scheduled before the second according to the prefetch

distance. This effectively doubles the prefetch distance and further decreases steady-state

length.

More recent research has focused on linked data structures based on pointer-chasing



28

(for example, linked lists). These structures hinder the above prefetching algorithm because

their future addresses are more difficult to calculate. Instead, recent software prefetching

techniques for linked data structures use jump pointers, naturally-occurring or artificially-

created pointers to later elements expected in the traversal [LM96, RS99]. A recent study

also adds a prefetch array containing pointers to the first elements of a linked data structure,

thus allowing a prefetching prologue [KDS00]. However, the prefetch arrays themselves

can increase the needed working set and cause new cache misses. Prefetch arrays were

actually seen in that study to degrade performance on some bandwidth-limited systems.

Each of the various prefetching schemes for linked data structures can be limited by the

nature of the structures and the available types of jump pointers. For example, each node

of a singly-linked list has a single naturally-occurring jump pointer to the next element in

the traversal. Consequently, prefetching techniques will be limited to a prefetch distance

of 1 iteration if they only use naturally-occurring jump pointers within the singly-linked

list (e.g., greedy prefetching [LM96]). Further, even artificial jump pointers may not help

in such cases as hash-tables, as these are typically dominated by traversals of very short

singly-linked lists and see little work per iteration. The length of the list itself limits the

prefetching distances in these cases. We consider two prefetching schemes for linked data

structures: greedy prefetching (which uses only naturally-occurring jump pointers) [LM96]

and prefetch arrays [KDS00]. Since the application we study for linked data structures is

dominated by accesses to hash tables with short lists, schemes based on longer artificial

jump pointers are not applicable.

3.2 Measuring prefetching effectiveness

This section describes the systems, metrics, and prefetching algorithms we use to evaluate

the effectiveness of software prefetching for the codes that we investigate.



29

3.2.1 Simulated systems

The systems simulated in this chapter are identical to the ILP and Simple systems simu-

lated in Chapter 2. Again, the goal of the comparison between Simple and ILP systems

is to understand how ILP techniques interact with software prefetching. Both systems are

simulated using RSIM, a detailed execution-driven simulator for ILP multiprocessors.

Both systems support software-controlled non-binding prefetching, with both

exclusive-mode and shared-mode prefetches. Prefetch instructions retire as soon as they

reach the top of the instruction window, but occupy a slot in the processor’s memory queue

until they are issued. Prefetches are not dropped even if resource constraints block their

issue, and prefetched lines are brought into the highest level of the memory hierarchy.

3.2.2 Performance Metrics

In addition to execution time and its components, measured as in Chapter 2, we also con-

sider statistics specifically related to prefetching here. For detailed analysis, we divide

prefetches into various categories, as summarized in Table 3.1. These categories are useful,

in which a prefetched line arrives on time and is used by a demand access; late, in which

a prefetched line arrives after the demand access; early, in which the prefetched line is

replaced or invalidated before use, or is never used; and unnecessary, in which the line

being prefetched is already present in either the cache or the MSHRs. We also discuss

the component of execution time caused by late prefetch stalls – references which were

prefetched late and have come to the head of the instruction window before their prefetches

have responded with data.

3.2.3 Applications and Prefetching

This chapter studies the nine applications studied in Chapter 2, with identical input sizes

and system configurations. Since we do not have a SPARC compiler that implements

software-prefetching for C programs, we insert prefetches by hand, conservatively follow-

ing the algorithms in Section 3.1, with one exception: we assume that locality is preserved



30

Category Description

Useful Arrives on time; used by demand access
Late Arrives after demand access (i.e. latency only partially hidden)
Early Replaced or invalidated before use (or unused)
Unnecessary Hits in cache or MSHR

Table 3.1 : Classification of prefetches

across synchronization when this is beneficial.

We assume a default prefetch distance of 400 instructions to model the representative la-

tency seen in the ILP system. Since write latency is already hidden in our release-consistent

systems, we do not issue prefetches for cache lines that are only written in a given loop nest;

however, we use exclusive prefetches for reads of lines that will also be written.

Erlebacher, FFT, LU, Ocean, Radix, and Water use only prefetching for array references

formed through affine functions on the controlling loop variables. (The only significant set

of read miss references in these codes of a non-affine form is in the bit-reverse phase of

FFT, and is not analyzable for prefetching.) Em3d and Mp3d include references formed

by indirection through an affine reference. MST is based on linked data structures (short

linked lists for hash table lookups), and is prefetched with each of greedy prefetching and

prefetch arrays.

3.3 Experimental results

3.3.1 Overall Results

Figure 3.2 graphically presents the key results from our experiments. The figure shows the

execution time (and its components) for each multiprocessor and uniprocessor application

on Simple and ILP, both without software prefetching (noPF) and with software prefetch-

ing (+PF). Execution times are normalized to the time for the application on Simple with-

out prefetching. (For MST, this chart only shows prefetch arrays. Greedy prefetching is

described in Section 3.3.3.)



31

||0

|20

|40

|60

|80

|100

 N
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t
im

e

noPF

100.0

Simple ILP

Em3d

+PF

63.9

noPF

35.9

+PF

36.4

noPF

100.0

Simple ILP

Erlebacher

+PF

70.6

noPF

55.1

+PF

37.3

noPF

100.0

Simple ILP

FFT

+PF

83.2

noPF

47.9

+PF

43.9

noPF

100.0

Simple ILP

LU

+PF

88.8

noPF

37.6

+PF

33.9

noPF

100.0

Simple ILP

Mp3d

+PF

73.7

noPF

66.7

+PF

46.5

noPF

100.0

Simple ILP

Ocean

+PF

108.9

noPF

33.2

+PF

35.2

noPF

100.0

Simple ILP

Radix

+PF

98.8

noPF

80.1

+PF

74.1

noPF

100.0

Simple ILP

Water

+PF

85.7

noPF

41.5

+PF

35.1

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(a) Multiprocessor

||0

|20

|40

|60

|80

|100

 N
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t
im

e

noPF

100.0

Simple ILP

Em3d

+PF

48.5

noPF

30.3

+PF

29.8

noPF

100.0

Simple ILP

Erlebacher

+PF

74.7

noPF

53.4

+PF

33.5

noPF

100.0

Simple ILP

FFT

+PF

87.3

noPF

44.7

+PF

39.2

noPF

100.0

Simple ILP

LU

+PF

96.6

noPF

30.1

+PF

28.9

noPF

100.0

Simple ILP

MST

+PF

88.4

noPF

70.4

+PF

51.9

noPF

100.0

Simple ILP

Mp3d

+PF

62.8

noPF

61.1

+PF

28.8

noPF

100.0

Simple ILP

Ocean

+PF

91.1

noPF

39.5

+PF

27.7

noPF

100.0

Simple ILP

Radix

+PF

72.7

noPF

60.7

+PF

40.8

noPF

100.0

Simple ILP

Water

+PF

99.1

noPF

34.9

+PF

33.0

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(b) Uniprocessor

Figure 3.2 : Interaction of ILP with software prefetching in Simple and ILP systems with
base configuration.

Software prefetching achieves significant reductions in execution time on the ILP sys-

tem for six multiprocessor applications (ranging 7% to 32%) and seven uniprocessor ap-

plications (ranging 5% to 53%). In most of the cases, these execution time reductions

are similar to or greater than those in the Simple system for these applications. However,

software prefetching is typically less effective at reducing memory stalls on ILP than on

Simple. In the ILP multiprocessor, the data memory stall time is reduced an average of 40%

(ranging 16%–63%), compared to an average 56% for the Simple multiprocessor (ranging

21%-85%). In the uniprocessor, prefetching reduces the ILP data memory stall time an

average of 49% (ranging 28–81%) compared to an average of 61% in the Simple system

(ranging 24–88%). The net effect is that even after prefetching is applied, the percentage

of time spent on data memory stalls is still greater on the ILP system than on the Simple

system for most of the applications that we study. The ILP multiprocessor still sees an av-

erage of 39% data memory stall time, compared to only 16% in the Simple multiprocessor.



32

Application % exec. time
reduction

% data stall
reduction

% remaining
in data stall

% late pref.
stall time

Simp. ILP Simp. ILP Simp. ILP Simp. ILP
Em3d 36 -1 80 37 21 49 4 33
Erlebacher 29 32 85 63 12 38 9 29
FFT 17 8 60 24 16 43 8 23
LU 11 10 40 26 24 40 6 21
Mp3d 26 30 68 60 19 36 0 0
Ocean -9 -6 21 34 28 23 0 3
Radix 1 7 28 16 34 69 0 0
Water 14 15 68 58 6 13 0 4
Average 19 (for 17 (for 56 40 16 39 4 13

7 of 8) 6 of 8)

Table 3.2 : Detailed data on effectiveness of software prefetching in multiprocessor system.

Similarly, the ILP uniprocessor sees 40% data memory stall time on the average, com-

pared to a Simple uniprocessor average of 20%. (The uniprocessor numbers are slightly

higher than the multiprocessor numbers primarily because of MST, which spends 59% of

its Simple time and 86% of its ILP time in data memory stalls after prefetching.) For refer-

ence, Table 3.2 provides application-by-application details on the effectiveness of software

prefetching in the multiprocessor.

3.3.2 Factors Contributing to the Effectiveness of Software Prefetching

We next identify several factors that affect software prefetching for ILP systems. Effec-

tive software prefetching depends on issuing each prefetch sufficiently in advance of its

demand access and on the benefits of latency tolerance exceeding any overheads from this

technique. The prefetching algorithms of Section 3.1 often suffer from the following limi-

tations:

Prologue late prefetches. The prefetching algorithm of Mowry et al. generates a

prologue to cover the references of the first few steady-state iterations [Mow94, MG91,

MLG92]. However, the prologue is unlikely to completely overlap their prefetch latencies



33

since it contains no computation. Thus, the data requested by some of these prefetches

arrives after their demand references, leading to late prefetches. The first steady-state it-

eration will typically see such prologue late prefetches, with at least one full reference

latency exposed. Since the prologue is invoked each time the inner loop starts, prologue

late prefetches arise on each outer-loop iteration of a loop nest
�

. (Prefetching schemes that

do not include a prologue would also see such exposed latencies at the beginning of each

steady-state.) This problem can affect both Simple and ILP systems, but deficiencies in

addressing data memory stalls have a greater relative impact on the ILP system than on the

Simple system because of the greater percentage of execution time spent on data memory

stalls in the ILP system.

Short steady-states. Because of the deficiencies in the prologue, only the prefetches

in the steady-state are expected to be scheduled the correct distance ahead of their demand

references. Thus, the effectiveness of the prefetching algorithm depends on most inner-loop

iterations fitting in the steady-state. Using the calculation of the prefetch distance
�

given in

Equation 3.1, we see that the steady state has � ��� � � ��
 � � � # ���� - 
 � iterations. The steady

state is even shorter for prefetching of indirect references, since they effectively double the

needed prefetch distance. Additionally, any technique that aims to address late prefetches

in the prologue or steady-state by statically or dynamically increasing the prefetch distance

further shrinks the steady state.

The above shows that a large steady-state requires an inner loop with a large number

of iterations or a large amount of computation per iteration. Many loops do not meet these

requirements. First, loops blocked for cache locality or fine-grained communication tend

to have few iterations. Second, each loop iteration often includes little actual computation.

Inner-loop unrolling also cannot help, since increases in
	

are offset by decreases in

 �

.

Modern ILP processors further exacerbate these problems by aggressively executing mul-

�

Previous work by Saavedra et al. attempted to reduce the number of separate prologue invocations by

merging prologues into earlier epilogues, but found no performance benefits because of an increase in cache

conflicts [SMP
�

96].



34

tiple instructions per cycle, reducing
	

. Further, processor clock speeds tend to improve

faster than memory latencies, increasing � .

Hard-to-prefetch references. Some references have addresses that are difficult to cal-

culate sufficiently in advance, making these references hard to prefetch. Examples include

greedy prefetching of linked lists (which limits the available prefetch distance to one it-

eration) and references left unprefetched because their address generation sequences are

unanalyzable. ILP systems may be able to tolerate these latencies through the use of non-

blocking read misses, if the applications can support the needed memory parallelism.

Instruction overhead. Prefetch instructions and their required address generation over-

head increase dynamic instruction count, increasing the amount of time spent on CPU in-

structions. As a result, the latency-tolerance benefits of prefetching do not always translate

directly to overall execution time benefits. Multiple issue and multiple functional units tend

to reduce the negative impact of instruction overhead for ILP systems.

Other factors. Early prefetches can hinder demand accesses by invalidating or replac-

ing needed data from the same or other caches without providing any benefits in latency

reduction. An ILP system allows less time between a prefetch and its subsequent demand

access, potentially decreasing the likelihood of an intervening invalidation or replacement.

Some of our applications see such a reduction in early prefetches.

In ILP, prefetch instructions can be speculatively issued past a mispredicted branch.

Speculative prefetches can potentially hurt performance by bringing unnecessary lines into

the cache, or by bringing needed lines into the cache too early. Speculative prefetches can

also help performance by initiating a prefetch for a needed line early enough to hide its

latency. Some prefetching schemes (such as prefetch arrays) can also introduce additional

data fetches, increasing resource contention.

3.3.3 Application-Specific Details

Em3d sees short steady states because of its short traversals of its from nodes structures

and its indirect prefetching. Erlebacher, FFT, and LU all have important phases blocked



35

for cache locality and/or load balance: the fine-grained wavefront pipeline in Erlebacher,

the transpose in FFT, and the entire code of LU. None of these blocked portions achieves

a steady-state. Thus, all of these codes see a disproportionately large fraction of their

prefetches in the prologue. Consequently, they spend a large fraction of their time stalling

on late prefetches.

Mp3d sees an increase in total prefetches in ILP because of misspeculations. However,

most of the misspeculated prefetches are to lines also accessed on the correct path; thus,

the later reference on the correct path will merely coalesce with the earlier prefetch or use

its data. These mispredicted prefetches thus increase the number of unnecessary prefetches

and cause some contention for cache ports, but do not have a substantially negative impact

on performance here.

In MST, prefetch arrays provide substantial benefits but also increase the needed work-

ing set and cause new misses. These new misses cannot be prefetched well because the

index into the array is calculated through a hash function just before the traversal, and

the arrays are too short to allow prefetching of the remaining elements. Additionally, the

prefetch arrays always fetch several items of the list being traversed, even though a hash

match might arise within the first 1 or 2 list entries. Thus, the remaining prefetches are

useless, increasing contention, early prefetches, damaging prefetches, and CPU overhead

without tolerating any latency. Other linked data structure prefetching schemes such as

greedy prefetching do not increase the needed working set. Figure 3.3 includes results with

greedy prefetching as well, with GPF and PFA denoting greedy prefetching and prefetch

arrays, respectively. Greedy prefetching suffers from hard-to-prefetch references, since the

prefetch distance for its linked-list traversals is limited to 1 iteration, and each iteration

has very little computation. (Schemes that use longer artificial jump pointers would be

inapplicable, since the linked-lists in MST are very short.)

Ocean sees a large number of unnecessary prefetches because of its inter-nest local-

ity and stencil computations with variable-length inner loops. Our conservative locality

analysis does not detect either of these types of locality, and thus schedules unnecessary



36

||0

|20

|40

|60

|80

|100

 N
or

m
al

ize
d 

ex
ec

ut
io

n 
tim

e

noPF

100.0

Simple ILP

MST

GPF

98.3

PFA

88.4

noPF

70.4

GPF

70.0

PFA

51.9

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

Figure 3.3 : Comparing greedy prefetching and prefetch arrays for MST on simulated Sim-
ple and ILP uniprocessors. Execution times are normalized to the Simple system without
prefetching.

prefetches. These add a significant instruction overhead for both the prefetch instructions

and their address-generation overhead.

In Radix, the deficiencies in prefetching are exposed as cache hit stalls. These ul-

timately result from write MSHR saturation (as described in Chapter 2) and subsequent

write miss blockage. Blocked write misses can eventually cause read hits to stall as well

for resources such as memory queue entries and cache ports.

In Water, the data memory overhead of the base code is not sufficient to justify the

instruction overhead of prefetching.

3.3.4 Impact of Software Prefetching on Execution Time

Despite its reduced effectiveness in addressing memory stall time, software prefetching

achieves significant execution time reductions with ILP in most of our applications for

two main reasons. First, memory stall time contributes a larger portion of total execution

time in ILP. Thus, even a reduction of a small fraction of memory stall time can imply a

reduction in overall execution time similar to or greater than that seen in Simple. Second,

ILP systems see less instruction overhead from prefetching compared to Simple systems,

because ILP techniques allow the overlap of these instructions with other computation.



37

||0

|20

|40

|60

|80

|100

 N
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t
im

e

noPF

100.0

Simple ILP

Em3d

+PF

69.4

noPF

38.0

+PF

37.7

noPF

100.0

Simple ILP

Erlebacher

+PF

70.1

noPF

52.4

+PF

33.6

noPF

100.0

Simple ILP

FFT

+PF

83.0

noPF

39.6

+PF

35.0

noPF

100.0

Simple ILP

LU

+PF

88.5

noPF

32.4

+PF

27.7

noPF

100.0

Simple ILP

Mp3d

+PF

73.9

noPF

64.0

+PF

43.6

noPF

100.0

Simple ILP

Ocean

+PF

102.2

noPF

33.9

+PF

33.6

noPF

100.0

Simple ILP

Radix

+PF

97.9

noPF

79.0

+PF

71.3

noPF

100.0

Simple ILP

Water

+PF

110.5

noPF

43.4

+PF

37.8

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(a) Multiprocessor

||0

|20

|40

|60

|80

|100

|120

|140

 N
o
rm

a
li
z
e
d
 e

x
e
c
u
ti
o
n
 t
im

e

noPF

100.0

Simple ILP

Em3d

+PF

48.6

noPF

30.1

+PF

29.4

noPF

100.0

Simple ILP

Erlebacher

+PF

74.4

noPF

51.1

+PF

29.5

noPF

100.0

Simple ILP

FFT

+PF

87.3

noPF

36.0

+PF

29.4

noPF

100.0

Simple ILP

LU

+PF

96.6

noPF

23.9

+PF

21.8

noPF

100.0

Simple ILP

MST

+PF

85.6

noPF

77.4

+PF

57.0

noPF

100.0

Simple ILP

Mp3d

+PF

61.8

noPF

58.9

+PF

20.1

noPF

100.0

Simple ILP

Ocean

+PF

69.5

noPF

36.4

+PF

23.4

noPF

100.0

Simple ILP

Radix

+PF

71.8

noPF

58.6

+PF

36.2

noPF

100.0

Simple ILP

Water

+PF

137.9

noPF

35.9

+PF

33.3

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(b) Uniprocessor

Figure 3.4 : Interaction of ILP with software prefetching in Simple and ILP systems with
faster processors.

3.4 Sensitivity to System Latencies

Figure 3.4 show the effectiveness of prefetching for Simple and ILP processors in a system

configuration with 1 GHz processors and all other absolute memory hierarchy times (in ns

or MHz) unchanged from the base. The problems of late prefetches and short steady states

are now further exacerbated because of the increase in the number of cycles required to

overlap the prefetch latencies.

3.5 Summary and Implications

While software prefetching improves memory system performance with ILP processors,

it does not change the memory-bound nature of these systems for most of the applications

studied primarily because of late prefetches in the prologue, short prefetching steady-states,

and references that are hard to prefetch. Additionally, the instruction overhead of prefetch-



38

ing offsets some of its benefits in latency tolerance (although this overhead is less pro-

nounced on the ILP system than on the Simple system). As described in Section 3.3.2, ILP

systems have the potential to tolerate latencies left behind by prefetching if the applications

provide memory parallelism. Thus, we expect that ILP-specific techniques to increase read

miss parallelism will allow software prefetching to take advantage of overlapped accesses.

Chapter 5 shows how transformations to improve memory parallelism can help to address

some of the limitations of prefetching.



39

Chapter 4

Code Transformations to Improve Memory Parallelism

Chapter 2 established that applications often have insufficient potential to overlap multi-

ple read misses, thus limiting the system’s ability to hide read miss latency. Chapter 3

examined software prefetching as a potentially beneficial latency-tolerance technique, but

found some important limitations to its effectiveness. This chapter discusses an alternative

latency-tolerance technique that specifically seeks to take advantage of ILP through code

transformations that increase an application’s potential for read miss overlap. In particu-

lar, read misses that are to be overlapped must appear together within the same instruction

window. We continue to refer to this phenomenon as read miss clustering or simply as

clustering.

Section 4.1 explains in detail why applications currently see a low degree of read

miss clustering, and then illustrates how read miss clustering can be improved through

code transformation. Section 4.2 presents a formal analysis and transformation frame-

work for miss clustering suitable for implementation in a compiler. Section 4.3 describes

the methodology and metrics used in the experimental analysis of these techniques. Sec-

tion 4.4 evaluates the benefits of these transformations on a latency-detection microbench-

mark. Section 4.5 presents and analyzes experimental performance results for these trans-

formations on applications running in a simulated environment, and Section 4.6 confirms

the benefits of these transformations on a real system. Section 4.7 summarizes these trans-

formations and discusses the implications and insights of this study.



40

x
x

x
x

x

x
x

x
x

x

xxx
x

x
x

x
x

x
x

x
x

x

x
x

x
x

x

xxx
x

x
x

x
x

(a) Exploits locality

x
x

x
x

x

x
x

x
x

x

x x x
x

x
x

x
x

x
x

x
x

x

x
x

x
x

x

x x x
x

x
x

x
x

(b) Exploits clustering

x
x

x
x

x

x
x

x
x

x

x x x
x

x
x

x
x

x
x

x
x

x

x
x

x
x

x

x x x
x

x
x

x
x

(c) Exploits both

Figure 4.1 : Impact of matrix traversal order on miss clustering. Crosses represent matrix
elements, and shaded blocks represent cache lines. The matrix is shown in row-major order.

4.1 Improving Read Miss Clustering in ILP Processors

Section 2.2.2 showed that long-latency data read misses should appear clustered together

within the instruction window of an out-of-order processor in order to effectively exploit

latency tolerance through memory parallelism. This section uses an illustrative example to

demonstrate how code transformations can improve read miss clustering by reordering the

cache misses in an application and scheduling them closer together.

To understand the sources of poor read miss clustering in typical code, we consider a

loop nest traversing a 2-D matrix. Figure 4.1 graphically represents three different matrix

traversals. The matrix is shown in row-major order, with crosses for data elements and

shaded blocks for cache lines. Figure 4.2 relates these matrix traversals to code generation,

with pseudocode shown in row-major notation.

Figures 4.1(a) and 4.2(a) show a matrix traversal optimized for spatial locality, follow-

ing much compiler research. In this row-wise traversal, � successive loop iterations access

each cache line, where � is the number of data elements per cache line. While this traver-

sal maximizes spatial locality, it minimizes clustering. For example, an instruction window

that holds � or fewer iterations never holds read misses to multiple cache lines, preventing

clustering. This problem is exacerbated by larger cache lines or larger loop bodies.

Read miss clustering can be maximized by a column-wise traversal, since



41

for( �����j++) for( �����i++)
for( ����� i++) for( �����j++)
����� A[j,i] ����� A[j,i]

(a) Base code (b) Interchange

for( �����jj+=N) for( �����j+=N)
for( ����� i++) for( �����i++)

�

for(j=jj;j<jj+N;j++)
����� A[j,i] ����� A[j,i]

����� A[j+1,i]
����� �����

����� A[j+N-1,i]
(c) Strip-mine and interchange (d) Unroll-and-jam

Figure 4.2 : Pseudocode for Figure 4.1 matrix traversals (row-major notation).

successive iterations held in the instruction window access different cache lines.

Figures 4.1(b) and 4.2(b) show such a column-wise traversal, obtained by applying loop

interchange to the code in Figure 4.2(a). Each cache line is now accessed on multiple

successive outer-loop iterations. However, the traversal passes through every row before

revisiting an older cache line. If there are more rows than cache lines, this traversal could

lose all cache locality, potentially overwhelming any performance benefits from clustering.

The above example suggests a tradeoff between spatial locality (favored by current

code-generation schemes) and miss clustering. We seek a solution that achieves the bene-

fits of clustering while preserving spatial locality. A column-wise traversal can maximize

clustering; however, it must stop before losing locality. In particular, the column-wise

traversal can stop as soon as the miss clustering resources are fully utilized. For exam-

ple, a processor that allows ten simultaneous cache misses sees the maximum memory

parallelism when ten independent miss references are clustered. The traversal could then

continue in a row-wise fashion to preserve locality. Figure 4.1(c) shows a matrix traversal

that exploits clustering and locality in this way. Figure 4.2(c) expresses this traversal by

applying strip-mine and interchange to Figure 4.2(a).



42

Since the column-wise traversal length (
�

) of Figure 4.2(c) is based on the hardware

resources for overlap (typically 3–12 today), the strip size is small, and the innermost loop

can be fully unrolled. Figure 4.2(d) shows the result of that unrolling. Now, the code re-

flects the transformation of unroll-and-jam applied to Figure 4.2(a). This transformation

unrolls an outer loop and fuses (jams) the resulting inner loop copies into a single in-

ner loop. Previous work has used unroll-and-jam for scalar replacement (replacing array

memory operations with register accesses), better floating-point pipelining, or cache local-

ity [AC72, CCK88, CK94, Nic87, Car96]. Using unroll-and-jam for read miss clustering

requires different heuristics, and may help even when the previously studied benefits are

unavailable.

We prefer to use unroll-and-jam instead of strip-mine and interchange for two reasons.

First, unroll-and-jam allows us to exploit additional benefits from scalar replacement. Sec-

ond, unroll-and-jam does not change the inner-loop iteration count. The shorter inner loops

of strip-mining can negatively impact techniques that target inner loops, such as dynamic

branch prediction. By increasing inner-loop computation without changing the iteration

count, unroll-and-jam can also help software prefetching (to be discussed in Chapter 5).

Unroll-and-jam creates an
�

-way unrolled steady-state, followed by an untransformed

postlude of leftover iterations. To enable clustering in the postlude, we simply interchange

the postlude when possible. This should not degrade locality, since the postlude originally

has fewer outer-loop iterations than the unroll-and-jam degree.

4.2 Analysis and Transformation Framework

This section provides a formal framework to apply memory parallelism transformations in

a compiler.

4.2.1 Dependences that Limit Memory Parallelism

We first describe a dependence framework to represent limitations to memory parallelism.

As in other domains, dependences here indicate reasons why one operation will not issue



43

in parallel with another. However, these dependences are not ordinary data dependences,

since memory operations can be serialized for different reasons. We build this framework to

gauge performance potential, not to specify legality. Thus, we optimistically estimate mem-

ory parallelism and specify dependences only when their presence is known. The transfor-

mation stages must then use more conventional (and conservative) dependence analysis for

legality. For simplicity, we only consider memory parallelism dependences that are either

loop-independent or carried on the innermost loop. We can then exploit previous work with

the same simplification [CCK88].

Since we focus on parallelism among read misses, we first require locality analysis to

determine which static references can miss in the external cache (leading references), and

which leading references are known to exhibit spatial locality across successive iterations

of the innermost loop (inner-loop self-spatial locality). Known locality analysis techniques

can provide the needed information [WL91]. Currently, we do not consider cache conflicts

in our analysis and transformations.

We use the above information to identify limitations to read miss parallelism. We focus

on three kinds of limitations, which we call cache-line dependences, address dependences,

and window constraints.

Cache-line dependences. If a read miss is outstanding, then another reference to the

same cache line simply coalesces with the outstanding miss, adding no read miss paral-

lelism. Thus, we say that there is a cache-line dependence from memory operation A to

B if A is a leading reference and a miss on A brings in the data of B. The cache-line

dependence is a new resource dependence class, extending input dependences to support

multi-word cache lines.

The following code illustrates cache-line dependences. In all examples, leading refer-

ences known to have inner-loop self-spatial locality will be italicized, while other leading

references will be boldfaced. The accompanying graph shows static memory references

as nodes and dependences as edges. Each edge is marked with the inner-loop dependence

distance, the minimum number of inner-loop iterations separating the dependent operations



44

specified.

for( �����j++)
for( ����� i++)
b[j,2*i] = b[j,2*i] + a[j,i] + a[j,i-1]

a[j,i] 0

1

1

b[j,2i]

a[j,i−1]

Note that there are no cache-line dependences from one leading reference to another;

such a dependence would make the second node a non-leading reference. Additionally,

any leading reference with inner-loop self-spatial locality has a cache-line dependence onto

itself. That dependence has distance 1 for any stride, since the address of the miss reference

will be closer to the instance 1 iteration later than to an instance farther away.

Address dependences. There is an address dependence from memory operation A to

B if the result of A is used in computing the address of B, serializing B behind A. Address

dependences typically arise for irregular accesses, such as indirect addressing or pointer-

chasing. The following code segments show address dependences. The graphs show ad-

dress dependences as solid lines and cache-line dependences as dotted lines. The first

example shows the indirect addressing typical of sparse-matrix applications.

for( �����j++)
for( ����� i++)

�

ind = a[j,i]
sum[j] = sum[j] + b[ind]

b[ind]0

1

a[j,i]

The above shows one leading reference that exhibits cache-line dependences, connected

through an address dependence to another leading reference. The following code shows

address dependences from pointer dereferencing.

for( �����i++)
�

l = list[i]
for( ����� l=l � next)
sum[i] += l � data

1
1

0
l  data l  next

The above assumes that the data and next fields always lie on the same cache line and



45

that separate instances of l are not known to share cache lines. Even though l � next

is a non-leading reference, it is important since a dependence flows from this node to the

leading reference.

Window constraints. Even without other dependences, read miss parallelism is limited

to the number of independent read misses in the loop iterations simultaneously held in the

instruction window. We do not include these resource limitations in our dependence graphs,

since they can change at each stage of transformation. We will, however, consider these

constraints in our transformations.

Control-flow and memory consistency requirements may also restrict read miss par-

allelism. We do not consider these constraints, since their performance impact can be

mitigated through well-known static or dynamic techniques such as speculation. However,

these dependences may still affect the legality of any code transformations.

Of the three dependence classes that we consider (cache-line, address, and window),

only address dependences are true data-flow dependences. Window constraints can be elim-

inated through careful loop-body scheduling, possibly enhanced by inner-loop unrolling.

Such scheduling would aim to cluster together misses spread over a long loop body. Loop-

carried cache line dependences can be made loop-invariant through inner-loop unrolling by

a multiple of � , where � iterations share each cache line. Then, no cache line is shared

across unrolled loop iterations. However, the inner-loop unrolling degree may need to go

as high as
� # � to provide clustered misses to

�
separate cache lines. This can be exces-

sive, particularly with long cache lines. We therefore leave these loop-carried cache-line

dependences in place and seek to extract read miss parallelism with less code expansion

through outer-loop unroll-and-jam.

We will address memory parallelism limitations in loop nests by first resolving recur-

rences (cycles in the dependence graph), and then handling window constraints. A loop

nest may suffer from one or both problems, and recurrence resolution may create new win-

dow constraints.



46

4.2.2 Background on Floating-point Pipelining

Section 4.1 showed in an informal way that unroll-and-jam could be used to increase miss

clustering without degrading locality. Unroll-and-jam has previously been used to improve

floating-point pipelining in the presence of inner-loop floating-point recurrences [CCK88,

Nic87]. This section explains how unroll-and-jam has been used in this context.

Consider an inner loop that carries a floating-point recurrence (a cycle of true depen-

dences). The operations of later iterations can stall for the results of earlier iterations,

preventing maximum pipeline throughput. Further, inner-loop unrolling and scheduling

cannot help, as later inner-loop iterations are also in the cycle. The following pseudocode

has an inner-loop recurrence between statements � and
�

. The graph shows floating-point

true dependences and dependence distances.

for( �����j++)
for( ����� i++)

�

��� b[j,i] = a[j,i-1] + c[i]� � a[j,i] = b[j,i] + d[i]

α

β
0 1

The above recurrence has two floating-point operations, and needs 1 iteration for a complete

cycle (the sum of the dependence distances). Thus, the system must serialize 2 floating-

point operations (the number in the recurrence) to complete 1 iteration (the length of the

cycle), regardless of the pipelining supported. Callahan et al. described floating-point re-

currences as follows [CCK88]
�

:

�
%��

: number of stages in the floating-point pipeline

��� : ratio of the number of nodes (static floating-point operations) in the inner-loop

recurrence (
�

) to the number of iterations to traverse the cycle ( � )

��� : static count of floating-point operations in an innermost loop iteration

�

Their notation was slightly different, with 	�
 , ��
�
�� , ��
�
�� , and ��� instead of 
 , � , � , and � , respectively.



47

Since
�

floating point operations must be serialized in � iterations, the recurrence re-

quires at least � pipeline latencies (
� %(� # � pipeline stages) per iteration. Without depen-

dences, each iteration would require only the time of � pipeline stages. Thus, the recurrence

limits pipeline utilization to
�� ����� . Unroll-and-jam introduces independent copies of the re-

currence from separate outer loop iterations, increasing � without affecting � [CCK88].

To fill the pipeline, unroll-and-jam must be applied until ��� % ��# � . (The maximum �

should be used for a loop with multiple recurrences, since each recurrence limits pipeline

utilization.)

Certain dependences can prevent unroll-and-jam, but they are not directly related to the

recurrences targeted. Previous work more thoroughly discusses legality and the choice of

outer loops to unroll for deeper nests [CCK88, CK94, Nic87].

4.2.3 Resolving Memory Parallelism Recurrences

We seek to use unroll-and-jam to target loop nests with memory-parallelism recurrences,

which arise for such common access patterns as self-spatial or pointer-chasing leading ref-

erences. We map memory parallelism to floating-point pipelining, exposing several key

similarities and differences between these problems. This section thus shows how to au-

tomate the process described in Section 4.1, which used unroll-and-jam to increase miss

clustering without degrading locality.

In Section 4.2.2, unroll-and-jam used only the number of pipeline stages, not the la-

tency. The number of pipeline stages simply represents the number of floating-point op-

erations that can be processed in parallel. Thus, we can map this algorithm to memory

parallelism: the goal is to fully utilize the miss clustering resources, not to schedule for

some specific miss latencies. Here,
%(�

corresponds to the maximum number of simulta-

neous outstanding misses supported by the processor. The rest of the mapping is more

difficult, as not all memory operations utilize the resources for miss parallelism — only

those instances of leading references that miss at run-time do. This difference affects � and
� .



48

Characterizing recurrences ( � ). We refer to recurrences with only cache-line depen-

dences as cache-line recurrences and recurrences with at least one address dependence as

address recurrences. Recurrences with no leading miss references are irrelevant here and

can be ignored, since they do not impact read miss parallelism.

As discussed in Section 4.2.2, � is computed from two values:
�

and � . We count only

leading references in
�

, as only these nodes can lead to serialization for a miss. We count

� as in Section 4.2.2, since this paramter specifies the number of iterations over which all

the miss instances in a recurrence are serialized. Our discussion has focused on tolerating

only read miss latencies, since write latencies are typically hidden through write buffering.

However, our algorithm must count both read and write miss references in
�

and � . This

is because cache resources that determine the maximum number of outstanding misses

(such as the miss status holding registers) are typically shared between reads and writes
�
.

Nevertheless, we will not apply unroll-and-jam on an outer loop if it only adds write misses,

since write-buffering is typically sufficient to hide their latencies.

Counting memory parallelism candidates ( � ). For floating-point pipelines, the �

parameter counts the static instructions in an innermost loop iteration. We cannot use this

same definition here for two key reasons, described below.

Dynamic inner-loop unrolling. An out-of-order instruction window of � instructions

dynamically unrolls a loop body of
	

instructions by
��� � 
 . (For simplicity, we assume

no outer-loop unrolling, although this could arise if the inner loop had fewer than
��� � 


iterations.) Such unrolling exposes no additional steady-state parallelism for loops with

address recurrences, since these are analogous to the recurrences of floating-point pipelin-

ing. However, this unrolling can actually break cache-line recurrences. In particular, if

� �
successive iterations share a cache line for leading reference � , dynamic inner-loop

unrolling creates
���� -�� 
 independent misses from the original recurrence. Leading refer-

ences outside recurrences can also contribute multiple outstanding misses ( � �K� J , since

	
This is not true of no-write-allocate caches. However, we are most concerned with lower levels of the

cache hierarchy that incur long latency misses. Such caches are usually write-allocate.



49

no cache-line sharing is known). Thus, we define
	 �

, the number of copies of � that can

contribute overlapped misses:

	 �;�
��� �� � �� -�� 
 loop with no address recurrences

J otherwise
(4.1)

Miss patterns. A simple count of leading references can overestimate memory paral-

lelism, since not all leading reference instances miss in the cache. To determine which

leading reference instances miss together, we must know the miss patterns (sequences of

hits and misses) for the different leading references and their correlation with each other.

Such measures can be difficult to determine in general. In this work, we make some simple

assumptions, described below.

We split the leading references into two types: regular (arrays indexed with affine func-

tions of the loop indices) and irregular (all others). For regular references, we assume that

at least some passes through the inner loop experience misses on each cache line accessed,

and that different regular leading references experience misses together. These assumptions

lead to maximum estimated parallelism for regular leading references.

For irregular accesses, the miss pattern is not typically analyzable. We assume no

correlation, either among instances of the same reference or across multiple references.

Thus, we only need to know the overall miss rate, � �
, for each reference � . � � can be

measured through cache simulation or profiling. These assumptions allow more aggressive

transformation than the more common assumption of no locality for irregulars.

We can now estimate the � parameter, accounting for both dynamic inner-loop unrolling

and miss patterns:

� � � � !�� � � � ��� !�� (4.2)

� � !�� � ��	��
 -�
 	 �
(4.3)

� � ��� !�� � � ��	� +.-

 � � # 	 � 

(4.4)

We split � into regular and irregular components, with
� � �

and



� �
the sets of regular

and irregular leading references respectively. The terms
	 �

in Equation 4.3 and � � # 	 �



50

in Equation 4.4 give the maximum expected number of overlapped misses to separate cache

lines contributed by leading reference � . We round up � � ��� ! � to insure that some resources

are held for irregular references when they are present.

The floating-point pipelining algorithm applied unroll-and-jam until � � % � # � . We

should be more conservative for memory parallelism, as the cache can see extra contention

when the resources for outstanding misses (MSHRs) fill up. Thus, we aim to apply unroll-

and-jam as much as possible while maintaining � � % � # � (using the maximum � for the

loop).

After applying unroll-and-jam, we must recompute � for two reasons. First, unroll-

and-jam can introduce new leading references and increase the iteration size. On the other

hand, some leading reference copies may become non-leading references because of scalar

replacement or group locality. For similar reasons, we must repeat the locality and depen-

dence analysis passes.

Since � varies as described above, we may need to attempt unroll-and-jam multiple

times with different unrolling degrees to reach our desired � . We can limit the number

of invocations by choosing a maximum unrolling degree � based on the resources for

memory parallelism, code expansion, register pressure, and potential for cache conflicts. If

we unroll only one outer loop, we can choose the unrolling degree by binary search, using

at most
��� ����� � 
 passes [CK94]. Generalized searching for unrolling multiple outer loops

can follow the strategies described in previous work [CK94]. We also refer to previous

work for legality issues [CCK88, CK94, Nic87]. We add only that we prefer not to unroll-

and-jam loops that only expose additional write miss references, since buffering can hide

write latencies.

To revisit the motivating example of Section 4.1, note that the matrix traversal of

Figure 4.2(a) has a cache-line recurrence with � � J . Since modern caches typically have

lines of length 32 to 128 bytes, � �
typically ranges from 4 to 16 for stride-1 double-word

accesses. With current instruction window sizes ranging from 32 to 80,
� �� - � 
 is thus most

likely to be 1 for a loop body with a moderate amount of computation. Thus, � � � � !��$� J



51

for the initial version of this loop. This example has no scalar replacement opportunities,

so each recurrence copy created by unroll-and-jam contributes a leading reference to the

calculation of � . Assuming � is chosen to be at least
% �

, the search algorithm will find that

unroll-and-jam by
%(�

leads to � � %�� # � . Since � � J in this example, the final version of

this loop will see
%(�

static leading references in an iteration.

4.2.4 Resolving Window Constraints

We now address memory parallelism limitations from window constraints. These can arise

for loops with or without recurrences. Further, recurrence resolution can actually create

new window constraints, since unroll-and-jam can spread its candidates for read miss par-

allelism over a span of instructions larger than a single instruction window. We proceed

in two stages: first using loop unrolling to resolve any inter-iteration window constraints,

then using local instruction scheduling to resolve intra-iteration constraints.

As discussed in Section 4.2.3, an instruction window of � instructions dynamically un-

rolls an inner-loop body of
	

instructions by
��� � 
 . Inter-iteration window constraints arise

when the independent read misses in
� � � 
 iterations do not fill the resources for memory

parallelism (typically because of large loop bodies). Since any recurrences have already

been resolved, we can now use inner-loop unrolling to better expose independent misses

to the instruction scheduler. We can directly count the maximum expected number of in-

dependent misses in
� � � 
 iterations, using the miss rate � � to weight the irregular leading

references. We then unroll until the resources for memory parallelism are filled, recomput-

ing the exposed independent miss count after each invocation of unrolling.

Now we resolve any intra-iteration window constraints stemming from loop bodies

larger than a single instruction window (possibly because of unroll-and-jam or inner-loop

unrolling). In such cases, the instruction scheduler should pack independent miss refer-

ences in the loop body close to each other. The technique of balanced scheduling can

provide some of these benefits [KE93, LE95], but may also miss some opportunities since

it does not explicitly consider window size. Nevertheless, this heuristic worked well for the



52

code sequences we examined. More appropriate local scheduling algorithms remain the

subject of future research.

4.3 Measuring the Impact of Optimizations

This chapter focuses only on ILP-based systems, since memory parallelism transformations

rely on the non-blocking reads and out-of-order scheduling features of ILP processors. This

section discusses the architectures, applications, and metrics used for evaluation of these

transformations.

4.3.1 Evaluation environments

Since we now focus only on ILP multiprocessors, we have the option of performing our

experiments both in simulation and on current state-of-the-art hardware. We focus primar-

ily on simulation results both for the purposes of detailed analysis and to show the benefits

that these transformations can provide for future-generation systems. The only difference

between the base simulated configuration used in this chapter and the ILP configuration of

Chapters 2 and 3 is the use of realistic functional unit latencies. Since the comparisons in

this chapter only deal with out-of-order scheduled ILP processors, the configuration can

model realistic functional unit latencies without excessive dependence on the compilers.

The functional unit latencies are chosen based on reasonable current system parameters

and are summarized in Table 4.1. This modification did not significantly impact the results.

We also confirm the benefits of our transformations on a Convex Exemplar SPP-2000

system with 180 MHz HP PA-8000 processors [Hew97, Hun95]. Each processor has 4-way

issue, a 56-entry out-of-order instruction window, and a 1 MB single-level data cache with

32-byte lines and up to 10 simultaneous misses outstanding. The system’s memory banks

support skewed interleaving with a cache-line granularity [HJ87]. The system supports

the sequential consistency model with latency tolerance via speculative read execution,

write prefetching, and write buffering [Lam79, GGH91, RPAA97]. Although the Exemplar

supports a CC-NUMA configuration with SMP hypernodes, we perform our tests within



53

Functional Unit Latencies
Operation type Latency

Address generation 1 cycle
Most integer 1 cycle
Integer multiply/divide 7 cycles
Most floating-point 3 cycles
Floating-point divide 16 cycles
Floating-point square root 33 cycles

Table 4.1 : Functional unit latencies for the base system configuration used in simulating
impact of memory clustering transformations. All other system parameters are identical to
the ILP system of Chapters 2 and 3, as given in Table 2.1.

a hypernode. Thus, we use the Exemplar as an SMP and do not consider data placement

issues. We use the pthreads library for our explicitly parallel applications.

4.3.2 Evaluation Workload

We evaluate our clustering transformations using a latency-detection microbenchmark and

five scientific applications. Table 4.2 summarizes the evaluation workload for the simulated

and real systems. The number of processors used for the multiprocessor experiments is

based on application scalability, with a limit of 16 on the simulated system and 8 on the real

machine. Each code is compiled with the Sun SPARC SC4.2 compiler for the simulation

and the Exemplar C compiler for the real machine, using the -xO4 optimization level

for the Sun compiler and +O3 optimization level for the Exemplar compiler. We do not

consider prefetching in this chapter; the interaction of clustering and software prefetching is

described in Chapter 5. We incorporate miss clustering transformations by hand, following

the algorithms presented in this chapter.

Latbench is based on the lat mem rd kernel of lmbench [MS96]. lat mem rd

sees inner-loop address recurrences from pointer-chasing. Latbench wraps this loop in an

outer loop that iterates over different pointer chains, with no locality in or across chains.

The pseudocode, given below, shows code added for Latbench in sans-serif.



54

for (j=0;j � N;j++)
�

// j-loop added for latbench
p = A[j]; // j-index added for latbench
for(i=0;i

�
I;i++)

p = p � next // serialized misses
USE(p) // keeps p live

Latbench is clustered with unroll-and-jam. As in lat mem rd, looping overhead is mini-

mized by unrolling the innermost loops to include 1000 pointer dereferences in each loop

body, for both the base and clustered versions.

Each of our regular codes (Erlebacher, FFT, LU, and Ocean) has only cache-line sharing

dependences. These codes are clustered with unroll-and-jam and postlude interchanging.

Em3d has both cache-line and address dependences, but only cache-line recurrences.

MST has address recurrences from its hash-table lookups. Both codes are clustered using

unroll-and-jam. The dominant loop nests in both applications have variable inner-loop

lengths, so only the minimum length seen in the unrolled copies is fused (jammed). Each

copy completes its remaining length separately. We assumed that the outer loops were

explicitly identified as parallel to enable transformation despite the pointer references.

Mp3d has no recurrences, but sees poor miss clustering because of large loop bodies.

Thus, inner-loop unrolling and aggressive scheduling can provide clustering here, as dis-

cussed in Section 4.2.4. We assumed that the dominant move loop was explicitly marked

parallel. Despite having been transformed to reduce true and false sharing (Section 2.1),

Mp3d does not see substantial multiprocessor speedup on the Convex Exemplar. As a

result, it is only run as a uniprocessor code on the real machine.

The other applications studied in Chapter 2 (Radix and Water) are not included in this

study. The execution time of Radix is dominated by its key permutation phase, in which

the MSHRs are quickly filled up by write accesses (Section 2.2.2). As a result, there are

no MSHRs or system bandwidth available for read miss clustering. Water is dominated by

a single loop that iterates over individual molecules being simulated. However, this loop

cannot be unrolled and rescheduled in the fashion of Mp3d because each molecule access in

Water is surrounded by a lock. Our transformations are not currently suited for the possible



55

Microbenchmark Input Size Processors
Latbench 6.4M data size 1

Application Input Size Processors
Em3d 32K nodes, deg. 20, 20% rem. 1,16
Erlebacher 64x64x64 cube, block 8 1,16
FFT 65536 points 1,16
LU 256x256 matrix, block 16 1,8
Mp3d 100K particles 1,8
MST 1024 nodes 1
Ocean 258x258 grid 1,8

(a) Simulated system

Microbenchmark Input Size Processors
Latbench 40M data size 1

Application Input Size Processors
Em3d 100K nodes, deg. 20, 20% rem. 1,8
Erlebacher 128x128x128 cube, block 8 1,8
FFT 4M points 1,8
LU 4224x4224 matrix, block 128 1,8
Mp3d 2M particles 1
MST 1024 nodes 1
Ocean 1026x1026 grid 1,8

(b) Convex Exemplar

Table 4.2 : Data set sizes and number of processors for experiments on simulated and real
systems.

problems presented by synchronization.

For all of the applications, all the clustering transformations only target expected read

misses. However, leading references for lines that were only written were also counted in

order to account for their MSHR usage.



56

4.3.3 Evaluation metrics

The most important metric for the effectiveness of these techniques is their impact on over-

all execution time. Additionally, since we focus on memory parallelism, we will also con-

sider the impact of read miss clustering on the data memory component, which is dom-

inated by read miss time. The equations of Chapter 2 are not directly applicable to de-

termining the read miss speedup of a specific optimization in an ILP based configuration

because those equations assume that the entire read miss latency of the base configuration

is exposed.

To adapt the equations of Chapter 2 to properly handle an ILP base system, we first

replace the references to Simple and ILP systems with the more general base (
� � ���

) and

optimized (
FE� D

) systems, respectively. We then add in new terms such as
%�� � 8=!G4 7 � ! � � � �.�*!6: to

represent the latency overlapped by ILP techniques in the base system. In this way the

equations change as follows:

����� �?�
	9���$���@��������� � ��� � 86! #&%�� � 86!.4 !65.� 798=!>:� 7'��� #&%272� �'4 !=5.� 7986!6: (4.5)

����� �?�
	9���$���@��������� � ��� � 86!�,72� � # %�� � 86!.4 !65.� 798=!>:% 7'���'4 !65.� 7986!6: (4.6)

� 	9����AN� CEDGF�H � ��� � 86!�,72� � (4.7)

LNM��@F0�����?AN� CEDGF�H � %272� �'4 !=5.� 7986!6:
%�� � 86!.4 !65.� 7986!6: (4.8)

LNM��@F0�����?AN� CEDGF�H � % 7'��� � %272� �'4 7 � ! � � � �.� !>:%�� � 86! � %�� � 86!.4 7 � ! � � � �G� !6: (4.9)

LNM��@F0�����?AN� CEDGF�H � %�� � 86! �;%27'���'4 !65�� ��� � %27'���'4 7 � ! � � � �.�*!6:%�� � 86! � %�� � 8=!G4 7 � ! � � � �.�*!6: (4.10)

LNM��@F0�����?AN� CEDGF�H � J ��� �	� ��
�� ��
������ � � � ������������ � � � ��
�� ��� 
 ��������������
J � ��������� � ��
 ����� � � � ���� ������� (4.11)


 � � H3% � � �@��� AN� CEDGF�H � %27'���'4 7 � ! � � � �.� !>:%�� � 86! (4.12)

LNM�D.H0��AN� CEDGF�H � %27'���'4 !=5�� ���%�� � 86! (4.13)

� ��% � - F � � H0%=� � �����?AN� CEDGF�H � %�� � 86!.4 7 � ! � � � �.� !>:%�� � 86! (4.14)



57

This set of equations continues to define the overlapped factor and extra factor in terms

of the total base latency. Additionally, Equation 4.14 defines a self-overlapped factor,

which accounts for the overlapping seen in the base. The self-overlapped factor has a value

from 0 to 1 inclusive, with 0 representing no effective overlap and 1 representing complete

latency hiding. The following equation summarizes the impact of each factor on overall

read miss speedup.

����� �?�
	9���$���@����������� �
	��
� AB��CEDGF
H # � J � � ��% � - F � � H3% � � �@��� AB��CEDGF
H��
J ��� 
�� � H3% � � �@��� AB��CEDGF
H � LNM�D.H0��AB��CEDGF
H�� (4.15)

A higher self-overlapped factor increases the exposed factor, thereby decreasing the

possible read miss speedup achieved by clustering. This suggests that applications with

substantial overlap in the base ILP system (as judged from the overlapped factor of Chap-

ter 2) will have more difficulty seeing benefits from an additional latency-tolerating opti-

mization.

As in the equations of Chapter 2, these equations show that read miss speedup can

be achieved either by reducing the number of misses or by decreasing the exposed latency.

The code transformations that we consider can lead to a reduction in the miss count through

scalar replacement of misses or by causing the hardware to reorder accesses and change

cache behavior. Either way, a miss factor close to 1 implies that read miss speedup comes

primarily from a decrease in exposed latency.

4.4 Performance of Latbench Microbenchmark

The base Latbench of Section 4.3.2 indicates an average read miss stall time of 171 ns on

the simulated system (identical to lat mem rd). Clustering drops the average stall time

caused by each read miss to 32 ns, a speedup of 5.34X. On the Convex Exemplar, clustering

reduces the average stall time for each miss from 502 ns to 87 ns, providing a speedup of

5.77X.

These results indicate the potential gains from memory parallelism transformations, but

also show some bottlenecks, since the speedups are less than 10 (the number of simulta-



58

||0

|20

|40

|60

|80

|100
 N

orm
ali

ze
d e

xe
cu

tio
n t

im
e

Base

100.0

Em3d
Clust

90.6

Base

100.0

Erlebacher
Clust

69.8

Base

100.0

FFT
Clust

78.3

Base

100.0

LU
Clust

60.7

Base

100.0

Mp3d
Clust

86.6

Base

100.0

Ocean
Clust

95.4 Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(a) Multiprocessor execution time

||0

|20

|40

|60

|80

|100

 N
or

ma
liz

ed
 ex

ec
uti

on
 tim

e

Base

100.0

Em3d
Clust

88.6

Base

100.0

Erlebacher
Clust

55.5

Base

100.0

FFT
Clust

73.7

Base

100.0

LU
Clust

51.6

Base

100.0

Mp3d
Clust

81.5

Base

100.0

MST
Clust

51.1

Base

100.0

Ocean
Clust

85.9

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(b) Uniprocessor execution time

Figure 4.3 : Impact of clustering transformations on application execution time.

neous misses supported by each processor). Our more detailed statistics for the simulated

system show that clustering increases contention, increasing average total latency from

171 ns to 316 ns (with total latencies measured from address generation to completion).

Further, bus and memory bank utilization for the simulated system both exceed 85% after

clustering. Thus, a further increase in speedup would require greater bandwidth at both the

bus and the memory. (Total latencies and utilizations are not directly measurable for the

real machine.)

4.5 Simulated Application Performance

4.5.1 Impact of clustering on execution time

Figure 4.3 shows the impact of the clustering transformations on application execution

time for the base simulated system. Figure 4.3(a) shows multiprocessor experiments, while

Figure 4.3(b) shows uniprocessor experiments. The execution time of each application is



59

shown both before and after clustering (Base/Clust), normalized to the given application

and system size without clustering.

Overall, the clustering transformations studied provide from 5–39% reduction in mul-

tiprocessor execution time for these applications, averaging 20%. The multiprocessor ben-

efits in Erlebacher and Mp3d come almost entirely from reducing the memory stall time.

(Mp3d sees some degradation in CPU time because of no scalar replacement or pipeline im-

provement and slightly worse return-address prediction.) Em3d, FFT, and LU see benefits

split between memory stall time and CPU time; unroll-and-jam helps the CPU component

through better functional unit utilization (in all three) and through scalar replacement (in

FFT and LU). By speeding up the data producers in LU, the clustering transformations also

reduce the synchronization time for data consumers. Our more detailed statistics show that

the L2 miss count is nearly unchanged in all applications, indicating that locality is pre-

served and that scalar replacement primarily affects cache hits. The multiprocessor version

of Ocean sees the smallest overall benefits from the clustering transformations, and those

benefits are almost entirely the result of scalar replacement on CPU time. The potential

benefits of clustering transformations on Ocean are limited because the base version of

this application already sees some memory parallelism. Additionally, clustering increases

conflict misses in this application. All applications except Ocean see more multiprocessor

execution time reduction from the newly exposed benefits in read miss clustering than the

previously studied benefits in CPU time.

The uniprocessor sees slightly larger overall benefits from the clustering transforma-

tions, ranging from 11–49% (average 30%). The speedup of data memory stalls is greater

in the uniprocessor than in the multiprocessor, as the uniform latency and bandwidth char-

acteristics of the uniprocessor better facilitate overlap. (For perfect overlap, misses of the

same latency must be clustered together. Our algorithms do not consider this issue.) How-

ever, since the uniprocessor spends a substantially smaller fraction of time in data memory

stalls than the multiprocessor for FFT and LU, the clustering transformations’ benefits for

these codes are predominantly in the CPU component. The only uniprocessor-specific



60

�
 Ocean

�
 Ocean(clust)

�
 LU

�
 LU(clust)

|

0
|

2
|

4
|

6
|

8
|

10

|0.0

|0.2

|0.4

|0.6

|0.8

|1.0
 U

til
iz

at
io

n

Number of L2 read MSHRsNumber of L2 read MSHRsNumber of L2 read MSHRsNumber of L2 read MSHRs

�

�

�
� � � � �������

�

�

�
� � � ��� �����

�

�

�
���������������

�

�

� � � � � � �
� �

(a) Read miss parallelism

�
 Ocean

�
 Ocean(clust)

�
 LU

	
 LU(clust)

|

0
|

2
|

4
|

6
|

8
|

10

|0.0
|0.2

|0.4

|0.6

|0.8

|1.0

 U
til

iz
at

io
n

Number of L2 MSHRsNumber of L2 MSHRsNumber of L2 MSHRsNumber of L2 MSHRs

�

�

�

�
� � � � � � �

�

�

�

�
� � � � � � �

�

�

�
���������������

	

	

	 	 	 	 	 	 	 	 	

(b) Contention

Figure 4.4 : Factors shaping memory parallelism (read L2 MSHR utilization) and con-
tention (total L2 MSHR utilization).

application, MST, sees nearly all of its improvement in its dominant data memory stall

component. The other applications respond to the clustering transformations qualitatively

in the same way as in the multiprocessor system.

All simulation experiments show few instruction memory stalls. Thus, the code

added by our transformations does not significantly impact I-cache locality for these loop-

intensive codes.

4.5.2 Memory Parallelism and Contention

The MSHR utilization graphs of Figure 4.4 depict the sources of memory parallelism and

contention for the simulated multiprocessor runs of Ocean and LU, the two extreme appli-

cations with regard to improvement from the transformations. (The corresponding data is

not directly measurable on the real system.) Figure 4.4(a) indicates read miss parallelism,

showing the fraction of total time for which at least
�

L2 MSHRs are occupied by read

misses for each possible
�

on the X axis. The clustering transformations only slightly im-

prove read miss parallelism for Ocean, since the stencil-type computations in Ocean give

even the base version some clustering. In contrast, the transformations convert LU from



61

||0

|20

|40

|60

|80

|100
 N

orm
ali

ze
d e

xe
cu

tio
n t

im
e

Base

100.0

Em3d
Clust

89.8

Base

100.0

Erlebacher
Clust

68.5

Base

100.0

FFT
Clust

81.4

Base

100.0

LU
Clust

63.9

Base

100.0

Mp3d
Clust

76.7

Base

100.0

Ocean
Clust

95.4 Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(a) Multiprocessor execution time

||0

|20

|40

|60

|80

|100

 N
or

ma
liz

ed
 ex

ec
uti

on
 tim

e

Base

100.0

Em3d
Clust

87.9

Base

100.0

Erlebacher
Clust

53.1

Base

100.0

FFT
Clust

76.0

Base

100.0

LU
Clust

53.0

Base

100.0

Mp3d
Clust

60.7

Base

100.0

MST
Clust

50.2

Base

100.0

Ocean
Clust

85.8

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(b) Uniprocessor execution time

Figure 4.5 : Execution times on simulated system with faster processors.

a code that almost never had more than 1 outstanding read miss to one with 2 or more

outstanding read misses 20% of the time and up to 9 outstanding read misses at times.

Figure 4.4(b) shows the total L2 MSHR utilization, including both reads and writes.

This indicates contention, measuring how many requests use the memory system at once.

In the unclustered version of the code, LU sees little additional contention from writes,

while Ocean sees some write contention. By only targeting read misses, the clustering

transformations do not further increase contention caused by writes. Any negative effects

from increased read contention are largely offset by the performance benefits of read miss

parallelism.

4.5.3 Sensitivity to system parameters

Processor speeds and external memory latencies diverge further for processors in the giga-

hertz frequency range. To model this trend, we also performed experiments that modified



62

our base configuration to include 1 GHz processors without changing any absolute memory

hierarchy times (in ns or MHz). These results, shown in Figure 4.5, are similar in overall

execution time reduction to the base configuration. In particular, this configuration sees

execution time reductions averaging 21% in the multiprocessor (ranging 5–36%) and aver-

aging 33% in the uniprocessor (ranging 12–50%). However, the larger fraction of memory

stall time in these systems allows memory parallelism to provide more of the total ben-

efits than in the base. Thus, targeting memory parallelism becomes more important for

configurations with gigahertz processors.

4.6 Exemplar Application Performance

This section repeats our experiments on a Convex Exemplar to confirm the benefits of

clustering on a current system. There are numerous differences between the simulated

system and the real machine, as described in Section 4.3.1. Figure 4.6 shows that clustering

also provides significant benefits in the real system. The multiprocessor and uniprocessor

execution time reductions from clustering range from 9–38% for all but the multiprocessor

version of Ocean, which sees a 3% degradation. (More detailed execution time breakdowns

are not available on the real system.)

As in the simulation, the uniprocessor sees larger benefits than the multiprocessor. Al-

though the SMP hypernode does not distinguish local and remote misses, there are still

latency and bandwidth differences between ordinary and cache-to-cache misses. The mul-

tiprocessor configuration, however, sees lower benefits in the real machine than in sim-

ulation. This discrepancy could arise for two reasons. First, the memory banks and ad-

dress busses of an SMP are shared by all the processors, potentially increasing multipro-

cessor contention relative to the simulated CC-NUMA system. Second, as discussed in

Section 4.5.1, clustering adds new conflict misses to the multiprocessor version of Ocean.

Such conflict misses would further increase the multiprocessor contention, causing a slight

performance degradation. The clustering transformations provide similar uniprocessor ex-

ecution time benefits in both the simulation and the real machine for all applications except



63

||0

|20

|40

|60

|80

|100
 N

orm
ali

ze
d e

xe
cu

tio
n t

im
e

Base

100.0

Em3d
Clust

90.8

Base

100.0

Erlebacher
Clust

78.6

Base

100.0

FFT
Clust

83.4

Base

100.0

LU
Clust

77.3

Base

100.0

Ocean
Clust

102.9

(a) Multiprocessor

||0

|20

|40

|60

|80

|100

 N
or

ma
liz

ed
 ex

ec
uti

on
 tim

e

Base

100.0

Em3d
Clust

87.0

Base

100.0

Erlebacher
Clust

65.7

Base

100.0

FFT
Clust

71.1

Base

100.0

LU
Clust

76.2

Base

100.0

Mp3d
Clust

78.3

Base

100.0

MST
Clust

61.9

Base

100.0

Ocean
Clust

78.4

(b) Uniprocessor

Figure 4.6 : Impact of read miss clustering on Convex Exemplar execution time.

LU. The difference in LU may stem from the different interleaving policies of the simulated

and real machines [Soh93, HJ87].

4.7 Summary and Discussion

This chapter shows that miss clustering can provide benefits in execution time on both

the real and simulated machine. Chapter 5 extends this study by showing the interaction

between clustering and software prefetching. Other promising avenues for miss cluster-

ing include a thorough compiler implementation based on the algorithms presented here,

investigation of other application domains, and analysis of lower bandwidth systems to

determine how a clustering algorithm should account for their resource constraints. Al-

ternative approaches to clustering besides unroll-and-jam should also be considered in the

future. For example, clustering can also take advantage of loop fusion to increase memory



64

parallelism even for unnested loops.

At the most fundamental level, this study shows that previously-known compiler trans-

formations can be targeted to improve data read miss parallelism and thus better exploit

non-blocking cache hierarchies. In addition to the implications for compiler design, the

benefits shown here also have implications for hardware design. The use of appropriate

loop transformations can expose more data parallelism within an instruction window for a

single thread. This potential for data parallelism to be exploited at the single-thread level by

the compiler suggests that plans to greatly increase effective hardware instruction window

size or to seek parallelism from multiple threads can be considered less pressing. Further,

this work motivates hardware that supports large numbers of outstanding read misses, and

shows that applications can be tailored to use a large number of MSHRs.

Other recent studies of locality-enhancing algorithms also have interesting implications

for clustering. For example, dynamic data packing and memory forwarding can improve

execution time by increasing cache locality and reducing bandwidth needs for irregular

code [DK99, LM99]. At the same time, such transformations can reduce memory paral-

lelism by bringing originally disparate memory locations together into a common cache

line. Just as we have shown that miss clustering can improve performance by exploit-

ing multiple instances of naturally self-spatial references, it seems plausible that cluster-

ing techniques could also be applied to references made to exhibit spatial locality through

transformation. Alternatively, the locality transformations could themselves be extended to

incorporate support for miss clustering; data that are likely to be accessed together can first

be aggregated and then mutually spread over multiple cache lines.



65

Chapter 5

Comparing and Combining Read Miss Clustering and
Software Prefetching

Chapters 3 and 4 consider two latency-tolerance techniques, software-prefetching and read

miss clustering. Both read miss clustering and software prefetching can hide a significant

fraction of miss latency in multiprocessor and uniprocessor systems. However, it is un-

clear which technique is superior or if these techniques can be combined profitably, since

each targets the same type of latencies and uses the same system resources. This chapter

shows that these techniques are actually mutually beneficial, each helping to overcome the

performance limitations of the other.

Experimental results show that clustering alone outperforms prefetching alone for most

of the applications and systems that we study, and that the combination of read miss clus-

tering and prefetching yields better execution time benefits than either technique alone in

most cases. The combination of clustering and prefetching yields a significant improve-

ment in latency tolerance over prefetching alone (the state-of-the-art implemented in sys-

tems today), with an average of 21% reduction in execution time across all cases studied

in simulation and an average of 16% reduction in execution time for 5 out of 10 cases on

the Exemplar. The experimental results also show reductions in execution time relative to

clustering alone averaging 15% for 6 out of 11 cases in simulation and 20% for 6 out of 10

cases on the Exemplar.

Section 5.1 describes limitations in each of read miss clustering and software prefetch-

ing, and Section 5.2 explains why these two techniques can combine in a mutually benefi-

cial way. Section 5.3 describes the methodology used in this study. Section 5.4 compares

and combines clustering and prefetching in simulation, and Section 5.5 confirms the bene-



66

Read Miss Clustering Prefetching
Reorders references? Yes No
Loop-level Outer loop Inner loop
Maximum latency hidden Factor of

�����
� with

�
simul-

taneous outstanding misses
All in steady-state

Legality issues? Limited by dependences None
Dynamic instruction over-
head

Minimal Address computation,
prefetch instructions

Extraneous fetches None Possible for some
schemes

Instruction cache
footprint

Increased Increased

Resources consumed Miss buffers, bandwidth Miss buffers, bandwidth

Table 5.1 : Key features of read miss clustering and software prefetching.

fits of these techniques on a real system. This chapter focuses on a comparison of the two

techniques and their combination; the previous chapters have already covered each scheme

in isolation.

5.1 Limitations of Read Miss Clustering and Software Prefetching

Table 5.1 lists the key features of read miss clustering and software prefetching that deter-

mine performance. This section discusses problems that limit the effectiveness of each of

these latency-tolerance techniques, as well as limitations shared by both schemes.

5.1.1 Limitations of Read Miss Clustering

Read miss clustering achieves latency tolerance by restructuring the code to encourage

parallelism among demand read misses. The following concerns can limit the applicability

and effectiveness of clustering.

Incomplete latency hiding. A demand read miss that has not completed by the time it

reaches the head of the instruction window will block retirement, incurring data memory



67

stall time. Read miss clustering alone usually leaves some latencies exposed, since later

misses are hidden behind the stall time of earlier misses.

Legality issues. Certain dependences can prevent the inner-loop fusion step required

by unroll-and-jam [CCK88, CK94]. These constraints can limit the applicability of read

miss clustering.

5.1.2 Limitations of Software Prefetching

Section 3.3.2 discussed several important limitations of current software prefetching algo-

rithms. This chapter particularly focuses on the impact of prologue late prefetches, short

steady-states, hard-to-prefetch references, and the instruction overhead of prefetching.

5.1.3 Limitations Shared by Clustering and Prefetching

Both read miss clustering and software prefetching can increase resource contention, in-

creasing total system latencies. Both techniques can also introduce new conflict misses

by increasing the number of active lines in the cache. Additionally, both techniques can

increase the static code size and instruction-cache footprint of an application. These per-

formance limitations may impede these latency-tolerance techniques in environments with

low bandwidth or poor instruction memory.

5.2 Combining Clustering and Prefetching

Software prefetching and read miss clustering seem to target the same types of latencies,

and both techniques require the same system resources (specifically, cache miss buffers and

memory system bandwidth). However, their latency-tolerance methods are quite distinct,

since prefetching pipelines inner loops to add new fetches ahead of their demand accesses

and clustering restructures loop nests at an outer-loop level to extract parallelism among

demand read misses (Table 5.1). This section qualitatively discusses how the two tech-

niques can actually improve performance further when combined. Section 5.2.1 describes



68

for(j=0;j<

 7
;j++) for(j=0;j<


 7
;j+=

�
)

for(i=0;i<

 �
;i++) for(i=0;i<


 �
;i++)

����� A[j,i] ����� A[j,i]
����� A[j+1,i]
����� �����

����� A[j+N-1,i]
(a) Original code (b) After clustering alone

Figure 5.1 : Pseudocode of a 2-D matrix traversal, (a) as originally generated, and (b) after
read miss clustering with unroll-and-jam (postlude not shown). All pseudocode uses row-
major notation. Figure 5.2 shows the corresponding codes after the addition of prefetching.

the potential for combining these latency-tolerance techniques. Section 5.2.2 presents a

limitation of the combined technique and a way to resolve it.

5.2.1 Potential Benefits of Combining Clustering and Prefetching

This section discusses how applying read miss clustering before software prefetching can

address some of the specific limitations described in Chapter 3. Figure 5.1(a) gives pseu-

docode for a 2-D matrix traversal, with all pseudocode specified in row-major notation. For

reference, Figures 5.1(b) and 5.2(a) show the matrix traversal after clustering alone and af-

ter prefetching alone, respectively. Figure 5.2(b) shows the matrix traversal after applying

the combination of clustering followed by prefetching.

Incomplete latency hiding. Effective prefetching can tolerate all steady-state laten-

cies, while read miss clustering alone leaves at least some miss latencies exposed. Thus,

prefetching can potentially tolerate the latencies left behind after clustering (for references

in the steady-state prefetching loop).

Prologue late prefetches. Read miss clustering can reduce the effect of prologue late

prefetches by reducing the number of times an inner-loop is started. Consider a 2-level

loop nest with

 7

outer loop iterations, such as the code in Figure 5.1(a). With prefetching

alone, the inner loop would be started

 7

times, with late prefetches on the first steady-state

iteration each time. If unroll-and-jam with a degree of
�

is applied before prefetching, the



69

for(j=0;j<

 7
;j++) for(j=0;j<


 7
;j+=

�
)

for(i=0;i<
�
;i+= � ) for(i=0;i<

� �

;i+= � )
PF(&A[j,i]) PF(&A[j,i])

PF(&A[j+1,i])
����� �����

PF(&A[j+N-1,i])
for(i=0;i<


 � � �
;i++) for(i=0;i<


 � � � �

;i++)
if(i � ��� � � � ) PF(&A[j,i+

�
]) if(i � � � � � � )PF(&A[j,i+

� �

])
PF(&A[j+1,i+

� �

])
����� �����

PF(&A[j+N-1,i+
� �

])
����� A[j,i] ����� A[j,i]

����� A[j+1,i]
����� �����

����� A[j+N-1,i]
for(;i<


 �
;i++) for(;i<


 �
;i++)

����� A[j,i] ����� A[j,i]
����� A[j+1,i]
����� �����

����� A[j+N-1,i]
(a) After prefetching alone (b) After clustering and prefetching

Figure 5.2 : Pseudocode of the 2-D matrix traversals of Figure 5.1 after adding soft-
ware prefetching. Figure 5.1(a) tolerates latencies with software prefetching alone, while
Figure 5.1(b) uses the combination of clustering and prefetching.

outer loop will only have
+ �
� iterations, and the inner loop only starts

+ �
� times. This reduces

the number of separate instances of prologue late prefetches (or other exposed latencies at

the beginning of each steady-state) by a factor of
�

.

Short steady-states. Read miss clustering increases the computation in an inner-loop

iteration (the
	

term of Equation 3.1) without changing the number of inner-loop iterations

(

 �

), as is evident by comparing Figures 5.1(a) and 5.1(b). Since the prefetch distance (in

iterations) is inversely proportional to
	

, the clustering technique can reduce the prefetch

distance to fewer iterations and can increase the length of the steady-state, increasing the

effectiveness of prefetching. (This implies that
� �

, the prefetch distance of Figure 5.2(b), is

smaller than
�
, the prefetch distance of Figure 5.2(a).)



70

Hard-to-prefetch references. The memory parallelism benefits of read miss clustering

also apply to references prefetched with a prefetch distance insufficient to overlap their

latency fully. Read miss clustering restructures the code to improve parallelism of demand

read misses, and this is reflected after applying prefetching through increased parallelism

among both prefetches and unprefetched misses.

Instruction overhead. Read miss clustering through unroll-and-jam can exploit scalar

replacement, by which redundant memory references are replaced with register operations

and the total number of instructions is reduced [AC72, Car96, CK94]. If the redundant ref-

erences tended to hit in the cache (as seen in Chapter 4), scalar replacement can reduce both

the unnecessary prefetches resulting from these references and their address-generation

overhead.

Other limitations. The memory parallelism provided by read miss clustering can help

to tolerate any latencies exposed by early or damaging prefetches. (However, in some cases,

clustering may also increase early or damaging prefetches by keeping more lines active in

the cache at once.)

Trends. We expect � (the miss latency in cycles) to increase with successive gener-

ations of systems, as processor clock speeds improve faster than memory latencies. The

number of cycles per iteration,
	

, is likely to decrease with more aggressive processor ar-

chitectures. Both hardware trends increase the prefetch distance. Additionally, software

that more aggressively uses locality transformations such as tiling sees shorter inner loops

with each inner loop initiated more times [AKL81, Por89, WL91]. These hardware and

software trends increase the impact of prologue late prefetches, short steady-states, and

hard-to-prefetch references, all of which can be addressed by read miss clustering.

5.2.2 Addressing a Limitation of Clustered Prefetching

Unroll-and-jam produces a postlude of leftover iterations if the outer loop’s iteration count

is not divisible by the unrolling degree. Chapter 4 noted that clustering could be improved

in the postlude through loop interchange. This interchange should not degrade locality,



71

since the original number of outer-loop iterations in the postlude is less than the degree of

unroll-and-jam. However, the new inner loop has few iterations, increasing the likelihood

of late prefetches. Thus, applying the standard inner-loop prefetching algorithm may only

add instruction overhead without actually tolerating any latencies.

The small number of inner-loop iterations in the interchanged postlude suggests the

use of outer-loop prefetching: applying software pipelining at an outer-loop and schedul-

ing prefetches ahead by a certain number of outer-loop iterations [McI98]. In general,

outer-loop prefetching algorithms can be ineffective because of increased conflict and ca-

pacity misses, requiring code reorganization through strip-mining to facilitate a reasonable

prefetch distance and reduce the likelihood of early prefetches. However, the short inner

loops in the interchanged postlude make such potential negative effects less likely and such

strip-mining unnecessary. Even though we may not know the exact inner-loop iteration

count, we can consider this value to be as low as 1 iteration when calculating the outer-

loop prefetch distance. Any resulting early prefetches will only affect the postlude, and

read miss clustering will help overlap their latencies.

We thus propose the following outer-loop prefetching algorithm for the postlude when-

ever possible. This algorithm, illustrated with an example in Figure 5.3, starts with the

postlude produced by unroll-and-jam (before interchanging), and combines inner-loop

prefetching and loop interchange. If certain dependences prevent this algorithm, then the

potential for negative interactions (e.g., short or nonexistent steady-states because of the

short loops) suggests that the interchanged postlude is best left unprefetched.

1. Figure 5.3(a) represents the postlude resulting from applying unroll-and-jam of de-

gree
�

on the 2-D matrix traversal of Figure 5.1(a). Perform the prefetching

algorithm of Mowry et al. only on the innermost loop of such a postlude loop

nest [MLG92]. In the prefetching steady-state, do not strip-mine or unroll for se-

lective prefetching. Instead, use an if conditional at the beginning of each loop

iteration to ensure that prefetches are sent only at the correct iterations. (Mowry et

al. suggest this technique where code expansion due to strip-mining or unrolling is



72

unacceptable [MLG92].)

This stage produces a prefetching prologue, steady-state, and epilogue, each at the

innermost level only, as illustrated in Figure 5.3(b).

2. Separate the loop nest into a prologue nest, a steady-state nest, and an epilogue nest,

as shown in Figure 5.3(c). Such separation is not acceptable in general, since the

prologue prefetches could move too far from the demand references for an outer

loop with many iterations. However, the postlude has few outer-loop iterations.

3. Separately interchange each of the three loop nests by moving the outermost loop to

the innermost position (Figure 5.3(d)). The steady-state and epilogue interchanges

increase the clustering of unprefetched misses and late prefetches and decrease the

likelihood of early prefetches for those references that can be prefetched sufficiently

in advance. The prologue is interchanged so that prefetches follow the same order as

the demand references.

4. Invoke loop-invariant code motion for data and prefetches found to be invariant to the

new inner loop. Note that references that were invariant with respect to the original

innermost loop remain unprefetched. However, these should account for less data

than the prefetched references, and clustering will help to hide their miss latencies.

After these steps, the postlude has prefetches scheduled according to future iterations

of the new outer loop, while the inner loop clusters prefetches and demand references to

increase memory parallelism.

5.3 Experimental Methodology

Our evaluation environments in this chapter are identical to those used in Chapter 4, for

both the simulated and real systems. Our evaluation workload consists of all the same

applications and data sets except for Mp3d. Mp3d is dominated by a single-level loop

nest and thus would provide no opportunity to improve prefetching through techniques that



73

for(j=
� # � + �

��� ;j< 
 7 ;j++) for(j=
� # � + �

��� ;j< 
 7 ;j++)
for(i=0;i<


 �
;i++) for(i=0;i<

�
;i+= � )

����� A[j,i] PF(&A[j,i])
for(i=0;i<


 � � �
;i++)

if(i � ��� � � � ) PF(&A[j,i+
�
])

����� A[j,i]
for(;i<


 �
;i++)

����� A[j,i]
(a) Original postlude (b) After prefetching

for(j=
� # � + �

��� ;j< 
 7 ;j++) for(i=0;i<
�
;i+= � )

for(i=0;i<
�
;i+= � ) for(j=

� # � + �
� � ;j< 
 7 ;j++)

PF(&A[j,i]) PF(&A[j,i])
for(j=

� # � + �
��� ;j< 
 7 ;j++) for(i=0;i<


 � � �
;i++)

for(i=0;i<

 � � �

;i++) for(j=
� # � + �

� � ;j< 
 7 ;j++)
if(i � ��� � � � ) PF(&A[j,i+

�
]) if(i � � � � � � ) PF(&A[j,i+

�
])

����� A[j,i] ����� A[j,i]
for(j=

� # � + �
��� ;j< 
 7 ;j++) for(;i<


 �
;i++)

for(I=

 � � �

;i<

 �
;i++) for(j=

� # � + �
��� ;j< 
 7 ;j++)

����� A[j,i] ����� A[j,i]
(c) After loop-nest separation (d) After interchange

Figure 5.3 : Applying both software prefetching and loop interchange to provide clustered
prefetching in the postlude left by unroll-and-jam.

extract memory parallelism at an outer-loop scope. We have also omitted the Latbench

microbenchmark, since it does not provide additional insights into clustered prefetching.

As in Chapter 4, we apply clustering by hand to our codes, following the algorithms

of Section 4.2. For the simulated system, we apply prefetching by hand following the

algorithms described in Chapter 3. Since the Exemplar C compiler supports prefetching, we

use compiler-generated prefetching for the real machine [SGH97]. The Exemplar compiler

could prefetch all test programs except MST.

Our key metrics used in this study are total execution time and its components. We also

gain insights by counting those late prefetches for which a demand reference exposes data

read miss stall time.



74

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

noPF

100.0

Base Clust

Em3d

+PF

100.5

noPF

90.6

+PF

91.5

noPF

100.0

Base Clust

Erlebacher

+PF

69.6

noPF

69.8

+PF

57.1

noPF

100.0

Base Clust

FFT

+PF

90.8

noPF

78.3

+PF

70.4

noPF

100.0

Base Clust

LU

+PF

89.0

noPF

60.7

+PF

56.6

noPF

100.0

Base Clust

Ocean

+PF

104.6

noPF

95.4

+PF

95.4
Instr

Sync
CPU

Rd. hit/Wt.
Rd. miss

(a) Multiprocessor execution time

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

noPF

100.0

Base Clust

Em3d

+PF

98.6

noPF

88.6

+PF

91.9

noPF

100.0

Base Clust

Erlebacher

+PF

65.3

noPF

55.5

+PF

44.1

noPF

100.0

Base Clust

FFT

+PF

87.9

noPF

73.7

+PF

62.6

noPF

100.0

Base Clust

LU

+PF

95.4

noPF

51.6

+PF

52.0

noPF

100.0

Base Clust

MST

+PF

74.7

noPF

51.1

+PF

58.0

noPF

100.0

Base Clust

Ocean

+PF

73.8

noPF

85.9

+PF

69.1

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(b) Uniprocessor execution time

Figure 5.4 : Execution times on base simulated system with software prefetching, clus-
tering, and their combination. All times are shown normalized to the execution time with
neither prefetching nor clustering.

5.4 Simulation Results

Figure 5.4(a) shows the multiprocessor execution times of the applications running on the

base simulated system, while Figure 5.4(b) shows simulated uniprocessor execution times.

The execution time bars show the original code (Base/noPF), the code after prefetching

alone (Base/+PF), after clustering alone (Clust/noPF), and after the combination of the

two (Clust/+PF). All execution-time bars are split as described in Section 4.3.3 and nor-

malized to the execution time with neither prefetching nor clustering. (For MST, this chart

only shows prefetch arrays. Greedy prefetching is described later.)



75

||0

|20

|40

|60

|80

|100

 N
or

m
al

ize
d 

ex
ec

ut
io

n 
tim

e

noPF

100.0

Base Clust

MST

GPF

100.0

PFA

74.7

noPF

51.1

GPF

51.1

PFA

58.0

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

Figure 5.5 : Comparing greedy prefetching and prefetch arrays for MST on base simu-
lated uniprocessor system. Execution times are normalized to the unclustered code without
prefetching.

5.4.1 Comparing Clustering and Prefetching

We focus here on the first three bars of Figure 5.4 for each application and system configu-

ration (i.e., base code, prefetching alone, and clustering alone). Section 5.4.2 discusses the

fourth bar, which combines clustering and prefetching.

Comparing clustering alone to prefetching alone, we see that clustering gives com-

parable or better overall execution times than prefetching for all applications except the

uniprocessor Ocean. In the multiprocessor, clustering reduces execution time an average of

20% (ranging 5–39%), while prefetching reduces execution time an average of 17% for 3

out of 5 applications (ranging 9–30%, with less than 5% degradation on the other 2 codes).

In the uniprocessor, clustering reduces execution time an average of 30% (ranging 5–39%),

while prefetching reduces execution time an average of 17% (ranging 1–35%).

To understand the differences between clustering and prefetching, we consider the in-

dividual components of execution time. Prefetching alone actually has a greater impact

on data memory stall time for all applications except LU and MST. However, the instruc-

tion overhead of prefetching (discussed in Section 5.1) increases CPU time and offsets the

greater memory stall time benefits relative to the clustered code for all cases except the

uniprocessor Ocean. This CPU overhead actually leads to slight performance degradations

relative to the base code in the multiprocessor Em3d and Ocean. Additionally, cluster-



76

||0

|20

|40

|60

|80

|100

 N
o
rm

a
liz

e
d
 la

te
 p

re
fe

tc
h
 s

ta
lls

Em3d

47.8

Erle.

53.9

FFT

15.4

LU

45.5

Ocean

94.9

(a) Multiprocessor

||0
|20

|40

|60

|80

|100

 N
o
rm

a
liz

e
d
 la

te
 p

re
fe

tc
h
 s

ta
lls

Em3d

45.8

Erle.

59.6

FFT

61.6

LU

56.5

MST

6.9

Ocean

104.3

(b) Uniprocessor

Figure 5.6 : Number of late prefetch stalls after clustered prefetching represented as a
percentage of the late prefetch stalls seen with prefetching alone.

ing alone actually sees reductions in the CPU component of execution time for many of

the applications because of the scalar replacement benefits of unroll-and-jam (discussed

in Section 5). Both latency tolerance techniques have little negative impact on instruction

memory stalls, since these loop-based applications still tend to hit in the I-cache.

Figure 5.5 includes results for MST with both greedy prefetching (GPF) and prefetch

arrays (PFA). As discussed in Chapter 3, prefetch arrays increase the needed working set

and cause new misses and extraneous prefetches, while greedy prefetching suffers from

hard-to-prefetch references and prefetch distances limited to 1 iteration. Schemes that use

longer artificial jump pointers would be inapplicable, since the linked-lists in MST are

very short. On the other hand, clustering alone tolerates latencies more effectively by

restructuring the demand references at an outer-loop level so that multiple lists are traversed

in parallel.

5.4.2 Combination of Clustering and Prefetching

Overall results. The fourth bar of each application and system configuration in Figure 5.4

represents the combination of clustering and prefetching. Even though each scheme in

isolation realizes substantial opportunities for tolerating latencies, the combination allows

additional opportunities in many cases. Except for the uniprocessor Em3d and MST, this

combination either performs the best or sees less than 1% degradation from the best. Com-



77

pared to clustering alone, the combination reduces execution time an average of 12% for

3 out of 5 applications in the multiprocessor (ranging 7–18%, with a 1% degradation in 1

code and no impact on another) and 18% for 3 of 6 uniprocessor codes (ranging 15–21%,

with less than 5% degradation in 2 codes and 14% degradation in MST). Compared to

prefetching alone, the combination reduces execution time an average of 18% in the mul-

tiprocessor (ranging 9–36%) and 24% in the uniprocessor (ranging 6–49%). We compute

these averages conservatively by comparing clustered prefetching against the best of either

the base code or the code with one optimization alone. Specifically, for the multiprocessor

Em3d and Ocean, we compare clustered prefetching here against the unprefetched code

instead of the actual degraded performance seen with prefetching alone.

To specifically show how the benefits of clustered prefetching derive from more effec-

tive prefetching, Figure 5.6 shows the impact of clustering on the number of late prefetches

that lead to stalls. All bars show the number of late prefetch stalls for clustered prefetch-

ing as a percentage of the number for prefetching alone. Figures 5.6(a) and 5.6(b) show

multiprocessor and uniprocessor systems, respectively. Read miss clustering reduces the

number of late prefetch stalls by an average of 49% on the multiprocessor and 44% on the

uniprocessor, with dramatic improvements in all cases except Ocean. The scalar replace-

ment benefits of clustering also reduce the CPU overhead of prefetching and the number of

unnecessary prefetches for some applications.

Compared to clustering alone, some of the improvements in read miss latency tolerance

seen with clustered prefetching are negated by an increase in CPU overhead from prefetch-

ing. Additionally, an increase in read hit and write time (from increased contention) also

degrades the performance of some applications. Clustered prefetching sees less benefits

compared with clustering alone than with prefetching alone simply because prefetching

alone is not as effective as clustering alone for most of these codes.

Application-specific details. In Em3d, clustering improves the impact of prefetching

on miss stall time by overlapping prologue late prefetches and by increasing the otherwise

small steady-state sizes (from the short traversals of the from nodes structures and the



78

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

noPF

100.0

Base Clust

Em3d(MP)

+PF

100.5

noPF

90.6

+PF

87.4

noPF

100.0

Base Clust

Em3d(UP)

+PF

98.6

noPF

88.6

+PF

89.1
Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

Figure 5.7 : Execution times of Em3d on base system when less clustering is used in
combination with prefetching.

indirect prefetching), reducing late prefetch stalls over 50%. Prefetching helps to tolerate

read miss latencies remaining after clustering alone. However, clustered prefetching sees

stalls from exposed read hits. A closer examination shows register spilling when clus-

tering and prefetching are applied together, though neither transformation alone causes

spills. These spills tend to hit in the cache, but increase contention for cache ports. Previ-

ous work on unroll-and-jam suggests limiting the unrolling degree based on register pres-

sure [CK94]. An unroll-and-jam algorithm suitable for combining with prefetching may

profit from register pressure heuristics extended to estimate the additional register pressure

caused by prefetching. To demonstrate the potential effectiveness of using less clustering in

combination with prefetching, Figure 5.7 shows the normalized execution times for Em3d

with a smaller degree of unroll-and-jam in the Clust/+PF run (4, instead of the 6 used in

Clust/noPF). The resulting reduction in register spills and read hit stall time improves total

execution time and allows benefits for clustered prefetching in the multiprocessor.

Erlebacher, FFT, and LU all have important phases blocked for cache locality and/or

load balance: the fine-grained wavefront pipeline in Erlebacher, the transpose in FFT, and

the entire code of LU. As discussed in Chapter 3, none of these blocked portions achieves a

steady-state with prefetching alone. Clustering actually enables a steady state for the trans-

pose of FFT, reducing the number of late prefetch stalls by 85% for the multiprocessor.

Clustering also benefits all three applications through overlapped prologue late prefetches.

Erlebacher also sees some benefits from scalar replacement of references that tend to cause



79

unnecessary prefetches, while scalar replacement in LU substantially reduces the total in-

struction count. In Erlebacher and FFT, prefetching helps to tolerate steady-state latencies

left behind by clustering in other phases of the application. These three applications bene-

fit significantly from clustered prefetching, with substantial benefits relative to prefetching

alone in all cases and relative to clustering alone in all but the uniprocessor LU. (Clustering

alone has the greatest impact on latency tolerance in LU; the incremental latency tolerance

provided by prefetching is not sufficient to offset its CPU overhead, leading to a slight

degradation.)

For MST, prefetch arrays were seen to improve the unclustered version, but actually

degrade the performance of the clustered code. In particular, clustering leaves less available

bandwidth for the extra fetches added by the prefetch array scheme. As a result, clustering

exposes the negative effects of this scheme’s increased working set and new misses. (This

is analogous to the degradations previously seen with prefetch arrays in low-bandwidth

systems [KDS00].) Greedy prefetching avoids such degradations, but also provides no

benefits over clustering alone since its prefetch distance is too limited to provide the needed

latency tolerance. Thus, clustering alone provides the best performance in MST.

Ocean sees an increase in conflict misses from clustering. Combined with prefetching,

this causes additional contention-related stalls and early prefetches. Additionally, these

conflicts also turn some unnecessary prefetches into necessary ones, increasing the number

of late prefetch stalls in the uniprocessor and causing clustered prefetching to see more

data memory stall time than prefetching alone. However, scalar replacement provides some

benefits in Ocean by reducing unnecessary prefetches and the CPU overhead of prefetching.

The net effect is that clustered prefetching provides the best overall execution time.

Sensitivity to system parameters. Processor speeds and external memory latencies

diverge further for processors in the gigahertz frequency range. To model this trend, we also

performed experiments that modified our base configuration to include 1 GHz processors

without changing any absolute memory hierarchy times (in ns or MHz). The results in

Figure 5.8 show behavior qualitatively similar to Figure 5.4. (Em3d is shown with reduced



80

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

noPF

100.0

Base Clust

Em3d

+PF

97.2

noPF

89.8

+PF

81.5

noPF

100.0

Base Clust

Erlebacher

+PF

64.0

noPF

68.5

+PF

54.4

noPF

100.0

Base Clust

FFT

+PF

87.2

noPF

81.4

+PF

74.8

noPF

100.0

Base Clust

LU

+PF

85.5

noPF

63.9

+PF

53.7

noPF

100.0

Base Clust

Ocean

+PF

98.6

noPF

95.4

+PF

90.0
Instr

Sync
CPU

Rd. hit/Wt.
Rd. miss

(a) Multiprocessor execution time

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

noPF

100.0

Base Clust

Em3d

+PF

98.0

noPF

87.9

+PF

85.9

noPF

100.0

Base Clust

Erlebacher

+PF

57.9

noPF

53.1

+PF

41.6

noPF

100.0

Base Clust

FFT

+PF

82.2

noPF

76.0

+PF

63.8

noPF

100.0

Base Clust

LU

+PF

90.0

noPF

53.0

+PF

49.8

noPF

100.0

Base Clust

MST

+PF

74.0

noPF

50.2

+PF

57.3

noPF

100.0

Base Clust

Ocean

+PF

66.8

noPF

85.8

+PF

63.2

Instr
Sync
CPU

Rd. hit/Wt.
Rd. miss

(b) Uniprocessor execution time

Figure 5.8 : Execution times on simulated system with faster processors.

clustering in combination with prefetching. MST is still shown with prefetch arrays; our

detailed statistics show that greedy prefetching still has negligible impact on performance.)

The only performance difference of consequence relative to the base system is that CPU

overhead becomes less important in this configuration. This improves the effectiveness

of prefetching in both the base and clustered versions. Prefetching alone now outperforms

clustering alone in the multiprocessor Erlebacher and the uniprocessor Ocean, and clustered

prefetching is better than or equal to either scheme in isolation for all but the uniprocessor

MST.



81

5.5 Results on Real Machine

Figure 5.9 gives the impact of prefetching, clustering, and their combination for applica-

tions run on the Convex Exemplar. Only total execution times are shown, since detailed

splitups are not available on the real machine. Both multiprocessor and uniprocessor runs

are shown, and execution times are normalized to the code with the same number of proces-

sors with neither prefetching nor clustering. Here, clustering alone outperforms prefetching

alone for 6 out of 10 applications and systems shown. Clustered prefetching performs better

than both clustering alone and prefetching alone for 5 out of 10 cases (multiprocessor and

uniprocessor Erlebacher, multiprocessor and uniprocessor FFT, and uniprocessor Ocean).

Compared to prefetching alone, clustered prefetching reduces execution time an average

of 14% for 2 out of 5 multiprocessor codes (ranging 11–16%) and 19% for 3 out of 5

uniprocessor codes (ranging 3–29%). Compared to clustering alone, clustered prefetching

reduces execution time an average of 21% for 3 out of 5 multiprocessor codes (ranging 11–

40%) in the multiprocessor and 20% for 3 out of 5 uniprocessor codes (ranging 4–40%).

As in Section 5.4.2, these averages are computed conservatively by comparing against the

base code when a code is degraded by its sole optimization. Additionally, we do not count

LU since both prefetching and clustered prefetching are greatly degraded here. All the

observed degradations are discussed below.

The multiprocessor version of Ocean sees the best performance with prefetching alone,

with 8% degradation from clustered prefetching. The simulation results of Section 5.4

had suggested an increase in conflicts with clustering or clustered prefetching. These may

be further exacerbated with the HP PA-8000 processor, as its cache is direct-mapped and

requires serialization of conflicting references [SGH97].

Em3d sees only minor performance differences between prefetching alone, clustering

alone, and clustered prefetching. Prefetching alone gives the best performance in the mul-

tiprocessor, while clustering alone performs best in the uniprocessor. Em3d sees an anoma-

lous benefit from prefetching in the unclustered version due to a specific implementation

choice in the Exemplar compiler. Although not explicitly specified in the technical paper



82

||0

|20

|40

|60

|80

|100

 N
or

m
al

ize
d 

ex
ec

ut
io

n 
tim

e

noPF

100.0 

Base Clust
Em3d

+PF

89.5 

noPF

90.8 

+PF

92.8 

noPF

100.0 

Base Clust
Erlebacher

+PF

76.9 

noPF

78.5 

+PF

68.2 

noPF

100.0 

Base Clust
FFT

+PF

88.3 

noPF

83.4 

+PF

74.3 

noPF

100.0 

Base Clust
LU

+PF

241.5

noPF

77.3 

+PF

118.6 

noPF

100.0 

Base Clust
Ocean

+PF

56.2 

noPF

102.9 

+PF

60.9 

(a) Multiprocessor execution time

||0

|20

|40

|60

|80

|100

 N
or

m
al

ize
d 

ex
ec

ut
io

n 
tim

e

noPF

100.0 

Base Clust
Em3d

+PF

88.5 

noPF

87.1 

+PF

90.2 

noPF

100.0 

Base Clust
Erlebacher

+PF

77.5 

noPF

65.7 

+PF

54.8 

noPF

100.0 

Base Clust
FFT

+PF

90.5 

noPF

71.1 

+PF

68.5 

noPF

100.0 

Base Clust
LU

+PF

219.8 

noPF

76.3 

+PF

100.4 

noPF

100.0 

Base Clust
Ocean

+PF

49.3 

noPF

78.5 

+PF

47.7 

(b) Uniprocessor execution time

Figure 5.9 : Execution times on Convex Exemplar with software prefetching, clustering,
and their combination. All times are shown normalized to the execution time with the
same number of processors and neither prefetching nor clustering. (Darker bars represent
degradations beyond the size of the charts.)

on the algorithm used [SGH97], we observe from assembly-code analysis that the Exem-

plar C compiler does not generate a prologue or epilogue for prefetched loops. The lack

of a prologue may not affect performance, since the prologue prefetches are likely to be

late (Section 5.2.1). Without an epilogue, however, the algorithm always fetches extra data

beyond the end of the inner loop. In Em3d, these items are actually used in later outer-loop

iterations. With clustered prefetching, most of these prefetches become unnecessary and

simply add instruction overhead, since misses from later iterations of the original outer-

loop would have already been executed by the time the code reaches the last iterations of

the inner loop.

Prefetching algorithms in general cannot rely on such benefits by omitting the epilogue,



83

since transformations such as array padding can prevent extra fetches from touching useful

data [RT98]. Worse yet, such extraneous fetches could increase conflict and capacity misses

(especially for tiled codes), as well as coherence traffic and apparent data sharing for fine-

grained shared-memory multiprocessor codes. Such problems arise in LU, where prefetch-

ing dramatically degrades performance with or without clustering. Clustered prefetching

can mitigate these negative effects by reducing the prefetch distance, which limits the ex-

traneous data fetched, and by overlapping the resulting capacity or communication misses

(reducing the prefetching degradation from 142% to 54% on the multiprocessor and from

120% to 32% on the uniprocessor). Nevertheless, clustering alone significantly outper-

forms clustered prefetching and prefetching alone for LU. We consider the Em3d and LU

results more indicative of specific implementation issues in the Exemplar compiler rather

than underlying problems in clustered prefetching.

5.6 Summary and Discussion

This chapter compares and combines two latency-hiding techniques, read miss clustering

and software prefetching. We show that the two techniques can combine to overcome

performance limitations in either technique alone. Prefetching can tolerate latencies left

behind after read miss clustering alone, while read miss clustering can reduce the impact

of prologue late prefetches, excessive prefetch distances, hard-to-prefetch references, and

prefetch instruction overhead.

Experimental results show that clustering alone outperforms prefetching alone for most

of the applications and systems that we study, but that their combination most often gives

the best performance. Clustered prefetching reduces execution time relative to prefetching

alone (the currently implemented state-of-the-art) by an average of 21% across all cases

studied in simulation and an average of 16% for 5 out of 10 cases on the Exemplar. Com-

pared to miss clustering alone, the combination sees reductions in execution time averaging

15% for 6 out of 11 cases in simulation and 20% for 6 out of 10 cases on a real machine.

Further, those cases where clustered prefetching falls short can be attributed to a small



84

number of causes that are not fundamental limitations of the technique itself: cache con-

flicts (Ocean), register pressure (Em3d), compiler anomalies (lack of epilogue in Exemplar

versions of Em3d and LU), or insufficient bandwidth (MST with prefetch arrays). Com-

piler and hardware solutions for these problems can further improve the performance of

clustered prefetching.



85

Chapter 6

Analyzing and Improving the Accuracy vs. Speed Tradeoff
for Simulating Shared-Memory Multiprocessors with ILP

Processors

The previous chapters have performed their simulation experiments with the Rice Sim-

ulator for ILP Multiprocessors (RSIM). RSIM simulates the individual processors of a

multiprocessor system in detail, including the processor pipelines and the functionality of

each instruction. In contrast, most other shared-memory multiprocessor simulation studies

use a much simpler model of the processor, assuming single-issue, in-order issue, block-

ing reads, and no speculative execution. Unfortunately, the more detailed ILP-processor

based simulators are much slower: we find an average slowdown of 9.7X compared to

simple-processor based simulators.

The higher speed of simple-processor based simulators comes from the inherent bene-

fits of simulating a less complex processor, as well as from several speed enhancing tech-

niques developed for such simulators. Direct execution is one such widely used technique

that has previously relied on simple-processor features such as blocking reads, in-order

issue, and no speculation [CDJ
�

91, DGH91, MRF
�

97]. This chapter presents a novel

adaptation of direct execution to substantially speed up simulation of shared-memory mul-

tiprocessors with ILP processors, without much loss of accuracy. We have developed a new

simulator, DirectRSIM, based on our new technique. We evaluate the accuracy and speed

of DirectRSIM by comparing it with RSIM, a state-of-the-art detailed ILP-processor based

shared-memory simulator, as well as two representative simple-processor based direct exe-

cution simulators. For a variety of system configurations and applications, and using RSIM

as the baseline for accuracy, we find:



86

� DirectRSIM, on average, is 3.6X faster than RSIM with an error in simulated execu-

tion time of only 1.3% (range of -3.9% to 2.2%).

� Simple-processor based simulators remain an average of 2.7X faster than Direct-

RSIM. However, this additional speed comes at a high cost, with average error in

execution time of 46% (range of 0% to 128%) with the best simple-processor model,

and average error of 137% (range of 9% to 438%) with the most common model.

Our results suggest a reconsideration of the appropriate simulation methodology for

shared-memory systems. Earlier, the order-of-magnitude speed advantage of the simple-

processor based simulators over RSIM made a compelling argument for their use in spite

of their potential for large errors. It is not clear that those errors are still justifiable given

only a 2.7X speed advantage relative to DirectRSIM.

The remainder of this chapter proceeds as follows. Section 6.1 gives background infor-

mation on the previous state-of-the-art in simulation methodologies. Section 6.2 describes

the difficulties in integrating direct-execution simulation with ILP processor simulation and

how these are resolved for the DirectRSIM simulator. Section 6.3 describes in detail the im-

plementation of our direct-execution simulation methodology in DirectRSIM. Section 6.4

describes how we evaluate the simulators used in this study. Sections 6.5 and 6.6 analyze

the accuracy and speed of the simulators studied and show how DirectRSIM improves the

tradeoff between accuracy and speed in ILP multiprocessor simulation. Section 6.7 sum-

marizes the results of this study.

6.1 Background

This section explains the high-speed direct execution technique used for simple-processor

simulators, as well as the methodologies used for simulating ILP-based systems.



87

6.1.1 Direct execution with simple processors

Direct execution is a widely used form of execution-driven simulation, and has been

shown to be accurate and fast for modeling shared-memory systems with simple proces-

sors [CDJ
�

91, DGH91, MRF
�

97].

Direct execution decouples functional and timing simulation. Functional simulation

generates values (for registers and memory) and control flow, while timing simulation de-

termines the number of cycles taken by the simulated execution. Direct execution achieves

high speed in two ways. First, for functional simulation, it directly executes the applica-

tion on the host. Second, timing for non-memory instructions is determined mostly by

static analysis. The application is instrumented to convey this analysis to the memory

timing simulator. Previous direct execution shared-memory simulators assume in-order is-

sue and no speculation since they cannot model the effects of out-of-order issue statically

and they view only one basic block at a time. With the exception of the Wisconsin Wind

Tunnel-II [MRF
�

97], these simulators also assume single-issue processors. Timing for

memory references is modeled in detail, and is the most expensive part of the simulation.

For memory simulation, the application is usually instrumented to invoke the timing

simulator on each memory reference, as these are the only points of interaction between

the processors. When an application process invokes the timing simulator on a read, its

functional simulation is suspended until the timing simulator completes the entire simula-

tion of the read, thereby modeling only blocking reads. Stores are either modeled as block-

ing or non-blocking. For non-blocking writes, direct execution of the write’s process may

be resumed as soon as the appropriate simulation events for the write are scheduled (but

not necessarily completed). The timing simulator can process these events asynchronously

with respect to the write’s process because, unlike a read, later instructions of the process

do not depend on the completion of the write.



88

6.1.2 Simulators for ILP shared-memory systems

RSIM [PRA97a], SimOS with the MXS processor simulator [RBDH97], and Ar-

madillo [GC98] are shared-memory simulators that model ILP processors explicitly and

in detail. They use detailed execution-driven simulation, interpreting every instruction and

simulating its effects on the complete processor pipeline and memory system in software.

Neither MXS nor Armadillo are currently publicly distributed.

Researchers have also used simple-processor based simulators to model ILP-processor

based shared-memory systems using certain approximations. The most common approx-

imation is to simply simulate a system with a simple processor to approximate a system

with an ILP processor with the same clock speed. We refer to this sort of simulation model

as Simple. Other studies have sped up the clock rate of the simulated simple processor

and the primary cache access time to model the benefits of ILP [HKO
�

94, HSH96]. We

call such variants Simple-
�

x, where
�

is the multiple by which the simulated clock rate

is increased. However, such simulators still do not model the processor’s ability to tolerate

read miss latency by overlapping multiple read misses with each other. As a result, they

are not likely to accurately model data memory system performance for applications with

high read miss clustering.

6.2 Direct execution with ILP shared-memory multiprocessors

There are two problems with using previous direct execution techniques for ILP-processor

based shared-memory systems:

Values for non-blocking reads. After a non-blocking read invokes the timing simu-

lator, its direct execution process must be allowed to proceed before its timing simulation

completes. This is required so that the direct execution process can generate later instruc-

tions for the timing simulator to execute in parallel with the read. However, the value that

the read will return in the simulated architecture is unknown until the read’s timing simu-

lation is complete; this value depends on writes to the same location by other processors



89

before the read reaches memory in the simulated architecture. Thus, the first problem is

that the simulator must decide what value to return when a read occurs in the direct execu-

tion while it is incomplete in the timing simulation, and what action to take when the direct

execution reaches a later instruction dependent on such a read.

Timing simulation of ILP features. The second problem is that a simple static analysis

is insufficient to determine the impact of ILP features (such as out-of-order issue, specu-

lative execution, and non-blocking reads) on the execution time of CPU instructions and

on the time at which a memory instruction can be issued (or when it stalls the processor).

Previous direct execution techniques do not directly provide a way to account for these

features.

Sections 6.2.1 and 6.2.2 discuss our solutions to the above problems.

6.2.1 Values for non-blocking reads

We focus on a release-consistent architecture [GLL
�

90]. For ease of explanation, we as-

sume that synchronization accesses are identified to the simulator.

When a synchronization read invokes the timing simulator, it is treated as a blocking

read as in previous direct execution simulators. When invoked by a data read, the timing

simulator starts processing all instructions executed since its last invocation as described in

Section 6.2.2. The timing simulator may return control to the direct execution before the

read completes at (or even issues to) the memory hierarchy. The read returns the current

value for the accessed memory location at the time of the direct execution, based on the

following insight.

If the read does not form a data race with a write from another process in the simulated

execution, the read and write will be executed in the same order in the direct execution as

in the simulated execution. A read that is not part of a data race (a non-race read) must be

separated from any conflicting write by a chain of synchronization releases and acquires;

these synchronization accesses are ordered as in previous direct execution simulators and

enforce the necessary orderings among non-race accesses. Thus, for a non-race read, the



90

value at the time of the direct execution can be safely returned and used by dependent

instructions.

For a race read, the value returned may be different from the one that would be returned

in the simulated architecture. This value would be legal for release consistency, but may

not be possible on the simulated architecture. Since data races are generally rare in parallel

programs, we expect this issue to not have a significant impact. Further, a system that obeys

the data-race-free consistency model [AH90] (which requires identifying data races for a

guarantee of sequential consistency) and blocks on race reads can naturally be simulated

with our technique without any error (by simply blocking on the race reads).

6.2.2 Timing simulation of ILP features

Like previous direct execution simulators, our technique performs the functional simulation

directly on the host machine and invokes the timing simulator only on memory references.

Unlike previous uses of direct execution, the application is instrumented to record the path

taken by the direct execution since the previous invocation of the timing simulator by the

same process. The timing simulator simulates the timing for this path with the goal of

providing the best accuracy and speed possible.

A naive timing simulator would simply replicate the features of detailed simulators

such as RSIM, modeling the register state, pipeline stages, and all instruction effects in

detail. Instead, our timing simulator improves speed relative to RSIM in three ways. First,

direct execution allows the timing simulator not only to avoid instruction emulation, but

also to make use of the values determined in direct execution to speed up several parts of

simulation (for example, register renaming and memory disambiguation).

Second, we approximate some parts of the processor simulation, motivated by the re-

sults in Chapter 2 that show that the key characteristic in determining shared-memory mul-

tiprocessor performance is the behavior of the memory system and its interaction with

the processor. Our most significant approximation is that we do not simulate speculated

execution paths that are mispredicted. This approximation does not preclude modeling



91

other effects of speculation; for example, we keep track of branch prediction tables and

stall instruction fetch on a mispredicted branch as the processor waits for the branch to

be resolved. The simulation speed benefits of this approximation cannot be exploited by

detailed simulators such as RSIM since RSIM does not know if a prediction is correct un-

til the prediction is actually resolved in the simulated execution. The timing simulator of

DirectRSIM has this information at the time the prediction is made, based on the values

generated by the direction execution.

Third, with direct execution, the different application processes execute asynchronously

in the simulation. In contrast, RSIM’s processor and cache simulation, due to its detailed

nature, is inherently a cycle-by-cycle simulation in which all processors and caches proceed

in lockstep (Section 6.4.3). We improve the speed of our timing simulation by further

increasing the asynchrony in our system, partly by exploiting the features described above.

The next section provides further details.

6.3 Implementation of DirectRSIM

DirectRSIM implements the direct execution methodology described in Section 6.2. It con-

sists of an application instrumentation mechanism (Section 6.3.1) and a timing simulator

(Section 6.3.2).

6.3.1 Application code instrumentation

The instrumentation code calls the timing simulator on each memory reference and pro-

vides it with the execution path to be processed. The path is represented as ranges of

contiguous program-counter values traversed by the direct execution since the last invo-

cation of the timing simulator. For this purpose, the instrumentation code marks each

unconditional branch or taken path of a conditional branch as ending a program-counter

range and starting a new range. Each contiguous program-counter range can span multiple

basic blocks, and multiple ranges can be passed to the timing simulator on each call. We

currently instrument the application assembly code, but could also use the more general



92

methods of executable-editing or dynamic binary translation.

6.3.2 Timing simulator

The timing simulator consists of three main parts: the event-driven simulation engine, the

multiprocessor memory system simulator, and the processor simulator. The event-driven

simulation engine and multiprocessor memory system simulator are common to all our

simulators, and are described in more detail in Section 6.4. The processor simulator is the

key feature that sets DirectRSIM apart. Upon entry, the DirectRSIM processor simulator

processes the execution path provided by the instrumentation code, attempting to bring

each instruction from the path into its instruction window.

Key functionality, data structures, and simulation clocks. The key work done by

the processor simulator is: (1) keeping track of true dependences and structural hazards,

and determining when instructions complete or when reads and writes can be issued based

on these dependences, (2) retiring instructions from the instruction window at appropriate

times based on the above completion times, (3) maintaining branch prediction tables, and

(4) memory forwarding (i.e., if a read is ready to issue while a previous write to the same

location is pending, then the write’s value is forwarded to the read). Of these, the key

motivation for the DirectRSIM processor model is the need to maintain data dependences

properly; we cannot simply use the processor model of Simple-
	
x (Section 6.1.2) because

it has no mechanism to prevent multiple non-blocking reads from being issued even if there

were a dependence from one to the next.

The key data structures in the processor simulator are (1) a structure analogous to the

reorder buffer or instruction window of an ILP processor, (2) a read queue and a write

queue to track memory accesses that need to be issued, (3) a structure to track outstanding

writes, hashed on their addresses for efficient forwarding (4) the branch prediction table,

and (5) a structure for tracking structural hazards for functional units.

The memory system and event-driven simulation engine of DirectRSIM provide a

global view of time in the system. However, unlike RSIM, the processors are not required



93

to be in lockstep with the global clock when performing internal actions. Each processor is

allowed to maintain local views of the clock that run ahead of the global clock, as long as

it synchronizes with the global clock before issuing any instruction to the memory system.

The completion timestamps of individual instructions are one type of localized clock. Ad-

ditionally, each processor simulator has two other views of time: a fetch time and a retire

time. Instructions are marked with the value of the fetch time when they are fetched into

the window, and the processor retires instructions from the head of its instruction window

according to the value of the retire time (as further explained below).

Instruction issue and completion. As the processor simulator brings instructions into

its simulated instruction window, it tags non-memory instructions with their completion

times, if known. The completion time for an instruction is known as long as it is not di-

rectly or indirectly data dependent on any incomplete reads. For such an instruction, the

completion timestamp depends on its latency and the availability of a functional unit. The

latter is approximated by tracking the future use of functional units by instructions whose

completion times are already known; it is possible that some instructions with unknown

completion times may interfere with the current instruction, but this effect is not modeled.

If an instruction’s completion time is not immediately known, it is attached to the instruc-

tions on which it is dependent; its completion timestamp will be set upon completion of

these instructions.

For a read instruction, the processor simulator calculates a timestamp for the time when

the read is ready to issue (if known), and inserts it in the read queue in issue time order.

If the issue time is not known (due to dependencies on incomplete reads), then the read

is attached to the instructions on which it is dependent and inserted into the read queue

on completion of these instructions. When the global simulation time catches up with the

issue time of a read, the processor simulator checks to see if the read can be forwarded

from a previous write. This check is efficient since addresses for all previous writes are

immediately known through direct execution, and can be matched through a hash table. If

there is no forwarding, an event is scheduled for issuing the read to the memory system.



94

On forwarding, a completion time is marked for the read.

As with most current processor simulators, to ensure precise interrupts, a write instruc-

tion is marked ready for issue only when it reaches the top of the instruction window. At

this time, the write will be inserted in the write queue with an issue timestamp equal to the

current retire time. When the global time catches up with the issue time, an event for the

issue of the write is scheduled.

Instruction fetch and retirement. Instruction fetching continues until either the in-

struction window or the read queue or the write queue fills up, or all instructions executed

by the functional simulator since the last timing simulator invocation are processed, or

there is a misspeculation. On a misspeculation, instruction fetching continues once the

misspeculation penalty is determined. When the instruction window is full, the processor

simulator tries to retire the first set of instructions. Retirement is an entirely local action;

the head of the instruction window can always be retired unless it is an incomplete read.

The processor’s retire clock is possibly updated based on the completion time of the retir-

ing instruction and the number of instructions that have already retired at that time relative

to the processor’s peak retire rate.

Suspending and resuming processor simulation. A processor’s simulation (and its

corresponding direct execution process) is suspended when its instruction window is full,

it cannot retire any further instructions, and no other reads or writes can be issued (either

because they are dependent on other reads, or because the cache ports are full, or because

the global time has not caught up with their issue time yet). At this point, the processor

stalls in a state waiting for an action that will allow progress on any of the above situations.

A processor’s direct execution may be resumed once all of its directly executed instructions

so far have been entered in its instruction window.

The timing simulator of DirectRSIM effectively acts as a trace-driven simulator op-

erating on the trace of instructions executed since its last invocation by the same pro-

cess. DirectRSIM, however, is still execution-driven because the simulated application’s

execution path is affected by the dynamic ordering of synchronization accesses and con-



95

tention. For uniprocessor simulation, however, DirectRSIM would effectively become a

trace-driven simulator.

6.4 Evaluation Methodology

We compare the accuracy and speed of four shared-memory simulators. The following

sections describe the systems modeled, the applications studied, the simulators evaluated,

and the metrics for evaluation.

6.4.1 Simulated architectures

The base system architectures simulated in this chapter are very similar to the base sys-

tems simulated in the other chapters. However, there are a few important differences: this

chapter uses a MESI cache-coherence protocol instead of MSI, a SPARC v8 architecture

instead of SPARC v9, 4 functional units of each kind instead of 2, 8 MSHRs per cache

instead of 10, round-robin instead of permutation-based memory interleaving, single-cycle

functional units, and a perfect instruction cache model. These changes are not expected

to have much relative impact on either accuracy or simulation speed among the various

simulators. Table 6.1 summarizes the key system parameters for our base system. Results

for five variations of the base system are also reported, as described in Section 6.5.

The L1 and L2 cache sizes follow the methodology of Woo et al. [WOT
�

95] for our

application input sizes (described in Section 6.4.2). All primary working sets in these

applications fit in the L1 cache, while the secondary working sets do not fit in the L2 cache.

Currently, a perfect instruction cache and TLB are modeled since the application suite is

known to have a small instruction cache and TLB miss ratio.

6.4.2 Applications

We study 5 applications – Erlebacher, FFT, LU, MP3D, and Radix. The LU and FFT

versions studied are clustered using uncontrolled interchange (as discussed in Section 4.1):

these are different from the base and clustered versions studied in previous chapters. No



96

ILP processor parameters
Processor speed 500MHz
Fetch/decode/retire rate 4 per cycle
Instruction window 64 instructions in-flight
Memory queue size 32
Outstanding branches 8
Number of functional units 4 ALUs, 4 FPUs, 4 address generation units
Functional unit latencies 1 cycle

Memory hierarchy and network parameters
L1 cache 16 KB, direct-mapped, 2 ports, 8 MSHRs,

64-byte line
L2 cache 64 KB, 4-way associative, 1 port, 10 MSHRs,

64-byte line, pipelined
Memory banks 4-way, round-robin interleaving
Bus 167 MHz, 256 bits, split transaction
Network 2D mesh, 250MHz, 64 bits, flit delay of 2 network

cycles per hop
System latencies in absence of contention

L1 hit 1 processor cycle
L2 hit 10 processor cycles
Local memory 85 processor cycles
Remote memory 180-260 processor cycles
Cache-to-cache transfer 210-310 processor cycles

Table 6.1 : Base system parameters. The number of processors varies by application, as
described in Section 6.4.2 and Table 6.2.

read miss clustering transformations have been applied to the other codes. (The use of

read miss clustering would most likely cause even larger errors in the Simple simulators,

since these transformations increase the amount of memory parallelism and the Simple

simulators do not model this ILP performance feature.) Additionally, Mp3d has not been

optimized for locality as in the previous chapters.

Table 6.2 lists the input data sizes (chosen so that the simulations complete in reasonable

time) and the number of processors simulated for each application (based on the scalability

of the application for the input size used).



97

Application Input Size Processors
Erlebacher 64x64x64 cube, block 8 16
FFT 65536 points 16
LU 256x256 matrix, block 8 8
Radix 512K keys, max: 512K, 1024 8
Mp3d 50000 particles 8

Table 6.2 : Application input sizes and number of simulated processors.

6.4.3 Simulators

We compare DirectRSIM with RSIM (the only publicly available detailed ILP-processor

based shared-memory simulator), and Simple and Simple-ix (two representative simple-

processor based direct execution simulators). RSIM and DirectRSIM directly model the

ILP processor described in Section 6.4.1. Simple and Simple-ix use a simple-processor

model to approximate the ILP processor, using previous direct execution methodology

(Section 6.1.1). We chose these two simple-processor approximations since they are the

most widely used and the best reported such approximations respectively. Recall that to

model the 500 MHz 4-way base ILP processor, Simple-4x models a 2 GHz single-issue

processor. To ensure that the speed of our simple-processor based simulators is represen-

tative of the state-of-the-art, we also compared Simple to the recently released Wisconsin

Wind Tunnel-II (a simple-processor based direct execution simulator) and found the speed

of the two simulators to be comparable (Section 6.6.1).

The differences between our four simulators are limited to the processor model and its

interaction with the cache hierarchy. The memory system simulation in all simulators uses

nearly identical code. It is based on an event-driven simulation engine [CDJ
�

91], where

events for the simulated system modules are scheduled by inserting them on a central event

queue, and are triggered by a central driver routine.

A few differences between RSIM and the other simulators arise because of the inher-

ent differences between detailed and direct execution based simulation. The direct execu-

tion simulators use user-level lightweight processes to provide the register and stack state



98

needed by each simulated processor for direct execution. Each activation of a process

incurs the overhead of a lightweight context-switch. RSIM does not use lightweight pro-

cesses, as it simulates all register and stack state in software. Instead, it uses a special event

that occurs every cycle and examines the state of each processor, L1 cache, and L2 cache,

scheduling any external events triggered by these parts of the system in the event queue.

Effectively, RSIM simulates the processors and caches on a cycle-by-cycle basis, since in

a detailed ILP processor simulation it can be expected that some processor or cache will

have some event scheduled every cycle.

Additionally, the direct execution simulators optimize L1 cache hits whenever the cache

is guaranteed to have ports available and not be stalled for resources such as MSHRs. In

these cases, the processor simulator itself accounts for the impact of the hit on execution

time without forwarding the request to the L1 cache module. The processor may, however,

still have to stall to allow the global simulation clock to catch up with the issue time of such

an access. RSIM issues all hits to the caches, consistent with its cycle-by-cycle detailed

simulation policy.

6.4.4 Metrics

The accuracy of a direct execution simulator is evaluated based on the execution time it re-

ports for the simulated application (excluding initialization), relative to the time reported by

RSIM. Since all simulators use nearly identical code for the memory system, the discrep-

ancy in simulated execution times occurs solely due to the level of detail in the processor

models. To gain further insight, we also report three components of the execution time –

CPU time, memory stall time, and synchronization stall time – calculated as described in

Chapter 2.

To determine simulator speed, the elapsed (wall-clock) time is measured for each sim-

ulation when run on an unloaded single 250MHz UltraSPARC-II processor of a Sun Ultra

Enterprise 4000 server with 1GB memory and 1MB L2 cache. The simulators were all

compiled using the Sun C 4.2 compiler with the highest practical level of optimization.



99

||0

|50

|100

|150

|200

 N
or

m
al

iz
ed

 s
im

ul
at

ed
 ti

m
e

Erlebacher

RSIM DirRSIM

-0.9
-0.4

-0.9

-2.2

Simple-4x

0.9

25.6

-1.3

25.2

Simple

2.8

23.4

90.0

116.3
Synch

Mem
CPU

||0

|50

|100

|150

|200

|250

 N
or

m
al

iz
ed

 s
im

ul
at

ed
 ti

m
e

FFT

RSIM DirRSIM

-0.8

1.7

-0.8

0.0

Simple-4x

-1.7

36.3

-2.4

32.2

Simple

-1.7

31.9

119.8

150.0
Synch

Mem
CPU

||0

|50

|100

|150

|200

|250

|300

|350

 N
or

m
al

iz
ed

 s
im

ul
at

ed
 ti

m
e

LU

RSIM DirRSIM

-1.0
0.4
-0.8

-1.5

Simple-4x

6.0

81.7

-0.6

87.1

Simple

20.8

82.1

167.9

270.8
Synch

Mem
CPU

||0
|20

|40

|60

|80

|100

|120

|140

 N
or

m
al

iz
ed

 s
im

ul
at

ed
 ti

m
e

Mp3d

RSIM DirRSIM

0.6

-1.8

-0.3

-1.4

Simple-4x

2.0

30.9

-0.2

32.8

Simple

2.9

26.9

17.4

47.2
Synch

Mem
CPU

||0

|20
|40

|60

|80

|100

|120

|140

 N
or

m
al

iz
ed

 s
im

ul
at

ed
 ti

m
e

Radix

RSIM DirRSIM

-0.0

-0.2

-0.5

-0.7

Simple-4x

3.6

-2.6

-1.0

0.0

Simple

2.2

-25.4

74.4

51.3
Synch

Mem
CPU

Figure 6.1 : Simulator accuracy for the base system.

The time spent in the initialization phase of the application is not included, since this time

is not reported in the simulated execution time and can be sped up in various ways orthog-

onal to the rest of the simulation methodology.

6.5 Results on simulator accuracy

6.5.1 Base system configuration

Figure 6.1 shows the simulated execution time and its components reported by each simu-

lator for each application on the base system configuration, normalized to that for RSIM.

The number above each bar in the figure gives the percentage error in total execution time

relative to RSIM. Numbers shown at the side of a bar represent the breakup of the total

error among the three components of execution time.



100

Figure 6.1 shows that DirectRSIM reports overall simulated execution time very close

to RSIM on all our applications, with a maximum error of 2.2%. This is a striking im-

provement over the best previous approximation of Simple-4x, which sees an execution

time error of 87% for LU and 25% to 33% on three other applications studied. The Simple

simulator sees much larger errors, ranging from 47% to 271%.

The differences between the four simulators arise from their abilities to capture the

benefits that ILP provides to the various components of execution time. As discussed in

Chapter 2, ILP reduces the CPU component of execution time by issuing multiple instruc-

tions at a time and by issuing instructions out of order. ILP can sometimes reduces the

memory component primarily by overlapping multiple long latency memory operations

with each other, or also by overlapping memory latency with CPU instructions. ILP can

also increase the memory component by increasing contention for resources or by chang-

ing an access pattern. Synchronization time is negligible for all our applications, and is not

discussed further.

The Simple model cannot capture the effects of ILP on either the CPU or memory

stall component of execution time. Simple-4x models much of the benefit for the CPU

component (because its clock speed is increased by a factor equal to the issue width of

the processor). Most of the errors seen by Simple-4x are in the memory stall component,

primarily because Simple-4x does not allow multiple read misses to overlap with each

other. Thus, this method cannot properly capture ILP-specific improvements in the memory

stall component of execution time.

DirectRSIM models the impact of ILP in both CPU and memory stall components of

execution time, and provides a closer and more consistent approximation to the functional-

ity of detailed execution-driven simulators.

6.5.2 Other system configurations

Table 6.3 summarizes the variations on the base system configuration studied in this sec-

tion. These configurations are intended to capture trends towards higher processor clock



101

Configuration Difference from the base configuration
Lat. x2 Roughly twice the local and remote memory latencies.
Lat. x3 Three times the local memory latency, and a minimum con-

tentionless remote-to-local latency ratio of 3:1.
ILP+ Processor is twice as aggressive, with double the instruc-

tion issue width, instruction window size, processor mem-
ory unit size, functional units, branch-prediction hardware,
cache ports, and MSHRs.

ILP++ Same as ILP+, but with four times the instruction window
size, memory unit size, and MSHRs as the base.

C. net Constant-latency 50-cycle network instead of a 2-D mesh
network.

Table 6.3 : Variations on base configuration.

speeds, larger remote to local memory latency ratios, aggressive processor microarchi-

tectures, and aggressive network configurations. In the ILP+ and ILP++ configurations,

Simple-8x is used rather than Simple-4x.

Tables 6.4(a), (b), and (c) show the percentage errors in total execution time relative to

RSIM as seen by DirectRSIM, Simple-
	
x, and Simple respectively for the various system

configurations (the first row in the tables repeats the data of the base configuration shown

in Figure 6.1). DirectRSIM continues to see very low errors, with an average of 1.3% and

a maximum of 3.9%. In contrast, the errors with Simple-
	
x remain high for most of the ap-

plications, and continue to vary widely, ranging from 0% to 128%, with an average of 46%.

The errors seen with Simple are even higher, ranging from 9% to 438%, averaging 137%.

As with the base configuration, most of the error with Simple-
	
x comes from the memory

component, while the error with Simple comes from both the CPU and the memory com-

ponent; these component discrepancies are shown in Tables 6.5 and 6.6. As expected, the

errors are greatest in the applications with the most read miss overlap. This application

characteristic becomes even more important for systems with future aggressive processors

(e.g., ILP+ and ILP++), as seen by the increase in error with Simple and Simple-
	
x for

these configurations.



102

Erle. FFT LU Mp3d Radix Avg.

Base -2.2 0.0 -1.5 -1.4 -0.7 1.2
Lat. x2 -1.6 -1.5 -2.0 -0.7 0.0 1.2
Lat. x3 -0.7 2.2 -0.7 0.0 -0.3 0.8
ILP+ -2.8 0.2 -3.5 -3.9 -0.8 2.2
ILP++ 0.7 -1.2 -2.4 -0.9 -0.8 1.2
C. net -1.5 -0.8 -1.6 -0.5 -0.5 1.0
Avg. 1.6 1.0 1.9 1.2 0.5 1.3

(a) % error in execution time for DirectRSIM relative to RSIM

Erle. FFT LU Mp3d Radix Avg.
Base 25.2 32.2 87.1 32.8 0.0 35.5
Lat. x2 27.5 35.0 109.0 31.9 3.6 41.4
Lat. x3 27.6 38.4 90.5 23.3 2.0 36.4
ILP+ 31.4 50.0 122.4 58.6 4.0 53.3
ILP++ 69.8 58.8 127.8 98.2 10.1 72.9
C. net 23.1 29.7 84.7 28.1 3.6 33.8
Avg. 34.1 40.7 103.6 45.5 3.9 45.5

(b) % error in execution time for Simple-
	
x relative to RSIM

Erle. FFT LU Mp3d Radix Avg.
Base 116.3 150.0 270.8 47.2 51.3 127.1
Lat. x2 77.7 99.5 232.4 38.8 22.7 94.2
Lat. x3 54.5 73.4 147.6 25.8 9.1 62.1
ILP+ 156.3 227.8 425.1 78.2 68.0 191.1
ILP++ 231.2 247.1 437.8 122.8 77.8 223.3
C. net 110.6 145.8 264.9 38.3 55.9 123.1
Avg. 124.4 157.3 296.4 58.5 47.5 136.8

(c) % error in execution time for Simple relative to RSIM

Table 6.4 : Simulator accuracy for all configurations. (Averages are over absolute values of
the errors.)



103

In conclusion, DirectRSIM achieves significantly greater and more reliable accuracy

than Simple-
	
x or Simple in a variety of current and future multiprocessor configurations.

6.6 Results on simulator speed

6.6.1 Comparing Simple with Wisconsin Wind Tunnel-II

Before we compare the speed of our simulators, we seek to insure that our baseline Simple

simulator has speed representative of the state-of-the-art. We compare our Simple simu-

lator with the Wisconsin Wind Tunnel-II (WWT-2). (We could not perform an analogous

experiment for RSIM, since it is the only publicly available detailed ILP-processor based

shared-memory simulator.)

We choose WWT-2 for comparison since it has been used in many architectural studies

and represents the state-of-the-art, it is publicly available, and it simulates SPARC executa-

bles similar to Simple. WWT-2 supports parallel simulation, but we use it in sequential

mode (similar to Simple) since parallel performance is an orthogonal issue. Parallel sim-

ulation technology could be applied to all our simulators but is beyond the scope of this

work.

The comparison is based on three applications – LU, FFT, and Radix. These are the only

common applications among those used in this study and in the application suite distributed

with WWT-2. The application input sizes and the hardware used to run the simulators in

this comparison are the same as in the rest of this chapter. For the simulated system, similar

parameters were used for both simulators to the extent possible. For example, a constant

latency network configuration (100 cycle latency) and direct mapped caches were used in

both simulators as these are the only options supported by the released version of WWT-2.

Similarly, since WWT-2 only supports a single level cache, both cache levels in Simple

were set to be the same size; all caches in both simulators are the L2 cache size used in the

rest of this chapter.

Nevertheless, a completely fair comparison among the two simulators is difficult be-



104

cause of differences in the modeled architectures. The most important difference for our

purposes is that the released version of WWT-2 does not support a CC-NUMA proto-

col. The closest protocol to CC-NUMA in WWT-2 is S-COMA. We used this protocol in

WWT-2 with a hardware stache size of 320K based on a WWT-2 based study of coher-

ence protocols [FW97]. That study showed that S-COMA is comparable to CC-NUMA

for FFT, CC-NUMA performs worse than S-COMA for LU, and S-COMA performs worse

than CC-NUMA for Radix.

Our simulator speed measurements, summarized in Table 6.7, closely follow the above

trend – WWT-2 and Simple show similar speed for FFT, Simple is significantly slower

for LU, and WWT-2 is significantly slower for Radix. There is less than 15% difference

between the simulators when comparing the sum of the simulation times for the three ap-

plications.

Undoubtedly, there are many factors that contribute to the above results. Our goal is

simply to show that the Simple simulator is in the same class as other widely used simu-

lators. We believe the results in this section provide such evidence, and confirm that the

experimental infrastructure of this study is representative of the state-of-the-art.

6.6.2 Comparing RSIM, DirectRSIM, and Simple

Figure 6.2 graphically depicts the elapsed times for the four simulators in the base config-

uration for each application, normalized to the time for RSIM. The number above the bars

for DirectRSIM, Simple-
	
x, and Simple are the speedups achieved by those simulators over

RSIM. Since the elapsed times for Simple and Simple-
	
x are always similar and since Sim-

ple gives much larger errors, we do not discuss the speed of Simple any further. Table 6.8

tabulates speedup for each pair of simulators, for all configurations in Table 6.3. As a ref-

erence for absolute speed, RSIM simulates an average of roughly 20,000 instructions per

second for the base configuration (more data on absolute speed is provided in Table 6.9).

Simple-
	
x gives the best elapsed time, with an average speedup of 9.7 over RSIM.

DirectRSIM has some additional overheads from processor simulation, but still sees an



105

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

Erlebacher
RSIM DR

2.8

4x

10.2

Simp

9.4
||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

FFT
RSIM DR

3.2

4x

9.1

Simp

8.7
||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

LU
RSIM DR

2.8

4x

8.3

Simp

8.8

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

Mp3d
RSIM DR

3.3

4x

5.6

Simp

5.6

||0

|20

|40

|60

|80

|100

 N
or

m
al

iz
ed

 e
la

ps
ed

 ti
m

e

Radix
RSIM DR

2.7

4x

6.0

Simp

6.4

Figure 6.2 : Simulator speed for the base system. DR=DirectRSIM, 4x=Simple-4x,
Simp=Simple.

average speedup of 3.6 over RSIM. Of particular interest are the increases in DirectRSIM

speedup for the longer-latency configurations, which represent configurations with faster

processor speeds. DirectRSIM profits by switching from a largely cycle-driven simula-

tor to a purely event-driven simulator, and so will be less sensitive to future increases in

system latencies than RSIM. DirectRSIM also sees higher speedups in ILP+ and ILP++

by effectively targeting the more expensive processor simulation component seen by these

aggressive microarchitectures.

Most notably, the speed advantage of Simple-
	
x is reduced to an average of 2.7X com-

pared to DirectRSIM. The competitive speed of DirectRSIM indicates that the speed ben-

efits of simple-processor based simulators may no longer be enough to justify their large

inaccuracies in modeling current and future multiprocessor systems.

6.6.3 Detailed analysis of DirectRSIM speed

To further understand the reasons for the speed differences among the simulators, Fig-

ure 6.3 depicts their execution profiles for LU on the base configuration as reported by

prof (with monitoring turned on only during the parallel phase of the application). The



106

Figure 6.3 : Components of elapsed time for various simulators.

other applications show similar profiles. The function calls of the simulators are divided

according to the logical tasks they perform. From the bottom to the top of each bar, these

tasks are instruction fetch and decode (including dependence checking), instruction retire-

ment, processor memory unit simulation, functional unit management, cache simulation,

cycle-driven simulation management, instruction emulation, direct-execution, event-driven

simulation management, context switching among lightweight processes, and other tasks

(e.g., memory and network simulation, and branch speculation). Not all tasks are present

in all simulators.

DirectRSIM vs. RSIM. DirectRSIM improves speed relative to RSIM primarily by

reducing the time spent simulating instruction fetch and decode, instruction retirement,

the processor memory unit, and functional unit management. DirectRSIM’s knowledge

of values and addresses through direct execution enables more efficient register renaming

and management of write-to-read forwarding, respectively. The provision to allow internal

processor actions to proceed ahead of the global clock enables more efficient instruction

fetching and retirement. The instruction dependence checking for issue is sped by the use

of timestamps. Functional unit management is sped by the structure to approximately track

future functional unit utilizations.



107

DirectRSIM also spends less time than RSIM in cache simulation by not simulating ac-

cesses that are known to hit in the L1 cache without contention. Among the remaining com-

ponents of elapsed time (accounting for less than 20% of RSIM’s total time), DirectRSIM

eliminates the cycle-driven controller, but adds a component to handle context-switching

and also increases event-driven simulation overhead. DirectRSIM avoids the overhead of

instruction emulation (about 4% of RSIM time) and replaces it with a smaller component in

direct execution. In the “other” category, DirectRSIM also uses values computed in direct

execution to reduce the cost of mispredicted branches.

DirectRSIM vs. Simple-4x. As expected, most of DirectRSIM’s overhead relative to

Simple-4x stems from its processor simulation features. It also sees slightly more overhead

in memory hierarchy simulation (due to increased resource contention from non-blocking

reads).

6.7 Summary and Implications

This section presents a new simulation technique for shared-memory multiprocessors with

ILP processors that combines the speed advantages of simple-processor based simulators

with the accuracy of detailed ILP-processor based simulators. Our technique is based on

a novel adaptation of direct execution. First, it allows a data read to proceed in direct

execution even before its simulation has completed at the memory system. Second, it

provides an efficient timing simulator that accounts for aggressive ILP features such as

multiple issue, out-of-order issue, and non-blocking reads.

DirectRSIM, our implementation of the new technique, sees an average of 1.3% er-

ror (maximum of only 3.9%) in simulated execution time relative to RSIM for all studied

applications and configurations. At the same time, DirectRSIM sees a speedup of 3.6

over RSIM. In contrast, the best current simple-processor based simulation methodology

sees large and variable errors in execution time, ranging from 0% to 128%, and averag-

ing 46%. The most commonly used simple-processor based simulation methodology sees

errors ranging from 9% to 438%, averaging 137%. Despite its superior accuracy, Direct-



108

RSIM sees only a factor of 2.7X slowdown compared to current simple-processor based

simulators. Although the speed advantage of simple-processor based simulators is still sig-

nificant, it may no longer be enough to justify their high errors or their inapplicability to

important classes of ILP-specific architectural studies. Our results, therefore, suggest a

reconsideration of simulation methodology for evaluating shared-memory systems.

In the future, several features supported in other simulators can be added to DirectRSIM

to further improve its speed and/or functionality. Examples include parallelization, sam-

pling, instrumentation through executable editing or binary translation, instruction cache,

TLB, and full simulation of system calls. We are not aware of any fundamental problems

in incorporating such support for DirectRSIM. Finally, if desired, we believe that support

for simulating mispredicted paths could also be incorporated.



109

Erle. FFT LU Mp3d Radix Avg.

Base -0.4 1.7 0.4 -1.8 -0.2 0.9
Lat. x2 -0.7 0.6 -0.4 -1.7 0.3 0.7
Lat. x3 -1.2 1.4 0.3 -1.8 0.2 1.0
ILP+ -0.3 1.0 1.2 -5.4 -0.2 1.6
ILP++ -5.5 0.8 1.8 -5.2 0.2 2.7
C.net -0.8 1.2 0.2 -0.8 -0.0 0.6
Avg. 1.5 1.1 0.7 2.8 0.2 1.3

(a) % error due to the memory component for DirectRSIM

Erle. FFT LU Mp3d Radix Avg.
Base 25.6 36.3 81.7 30.9 -2.6 35.4
Lat. x2 26.3 36.7 100.7 29.5 2.5 39.1
Lat. x3 23.9 41.3 83.9 21.5 1.0 34.3
ILP+ 33.1 56.7 117.1 55.1 3.8 53.2
ILP++ 73.0 66.5 122.7 94.1 16.1 74.5
C.net 24.2 34.3 79.8 26.3 3.4 33.6
Avg. 34.4 45.3 97.6 42.9 4.9 45.0

(b) % error due to the memory component for Simple-
	
x

Erle. FFT LU Mp3d Radix Avg.
Base 23.4 31.9 82.1 26.9 -25.4 37.9
Lat. x2 24.3 30.8 102.1 27.0 -18.2 40.5
Lat. x3 23.1 36.9 82.7 20.2 -6.8 33.9
ILP+ 29.8 47.8 117.4 49.1 -28.7 54.6
ILP++ 68.7 57.1 123.0 86.6 -18.3 70.7
C.net 21.8 28.5 80.6 21.1 -23.7 35.1
Avg. 31.9 38.8 98.0 38.5 20.2 45.5

(c) % error due to the memory component for Simple

Table 6.5 : Simulator errors due to the memory component. (Averages are over absolute
values of the errors.)



110

Erle. FFT LU Mp3d Radix Avg.

Base -0.9 -0.8 -0.8 -0.3 -0.5 0.7
Lat. x2 -0.4 -0.6 -0.7 -0.1 -0.3 0.4
Lat. x3 -0.2 -0.3 -0.3 -0.1 -0.2 0.2
ILP+ -2.3 0.3 -3.2 -0.6 -0.6 1.4
ILP++ 1.2 0.4 -2.1 -0.5 -0.8 1.0
C.net -0.6 -1.2 -0.8 -0.3 -0.5 0.7
Avg. 0.9 0.6 1.3 0.3 0.5 0.7

(a) % error due to the CPU component for DirectRSIM

Erle. FFT LU Mp3d Radix Avg.
Base -1.3 -2.4 -0.6 -0.2 -1.0 1.1
Lat. x2 -0.6 -1.3 -0.7 -0.1 -0.6 0.7
Lat. x3 -0.4 -0.7 -0.3 -0.0 -0.3 0.3
ILP+ -3.8 -5.4 -2.7 -0.7 -1.7 2.9
ILP++ -4.6 -5.6 -2.7 -0.7 -1.8 3.1
C.net -1.3 -2.1 -0.6 -0.2 -1.1 1.1
Avg. 2.0 2.9 1.3 0.3 1.1 1.5

(b) % error due to the CPU component for Simple-
	
x

Erle. FFT LU Mp3d Radix Avg.
Base 90.0 119.8 167.9 17.4 74.4 93.9
Lat. x2 50.7 69.7 112.9 9.0 39.1 56.3
Lat. x3 28.6 38.7 54.8 3.7 14.5 28.1
ILP+ 122.4 181.2 275.8 24.2 96.2 140.0
ILP++ 158.5 192.0 282.5 30.5 101.8 153.1
C.net 87.9 119.8 164.5 15.0 77.9 93.0
Avg. 89.7 120.2 176.4 16.6 67.3 94.0

(c) % error due to the CPU component for Simple

Table 6.6 : Simulator errors due to the CPU component. (Averages are over absolute values
of the errors.)

Application Simple WWT-2
FFT 248 sec 263 sec
LU 394 sec 112 sec
Radix 395 sec 797 sec

Total 1037 sec 1172 sec

Table 6.7 : Simulation time for Simple and WWT-2.



111

Erle. FFT LU Mp3d Radix Avg.

Base 2.8 3.2 2.8 3.3 2.7 3.0
Lat. x2 3.3 3.9 3.0 4.8 3.2 3.6
Lat. x3 3.7 3.8 3.5 5.9 4.8 4.3
ILP+ 3.8 4.4 3.1 3.7 3.2 3.6
ILP++ 2.9 4.2 3.2 5.0 3.7 3.8
C. net 3.1 3.3 3.0 4.4 2.7 3.3
Avg. 3.3 3.8 3.1 4.5 3.4 3.6

(a) Speedup of DirectRSIM over RSIM

Erle. FFT LU Mp3d Radix Avg.

Base 3.6 2.8 3.0 1.7 2.2 2.7
Lat. x2 3.3 2.8 2.8 1.6 2.5 2.6
Lat. x3 3.0 3.8 2.6 2.1 2.7 2.8
ILP+ 3.2 2.7 2.9 1.6 2.2 2.5
ILP++ 4.0 2.8 3.0 1.6 2.9 2.9
C. net 3.6 3.1 3.3 2.0 3.0 3.0
Avg. 3.4 3.0 2.9 1.8 2.6 2.7

(b) Speedup of Simple-
	
x over DirectRSIM

Erle. FFT LU Mp3d Radix Avg.

Base 10.2 9.1 8.3 5.6 6.0 7.8
Lat. x2 10.9 10.9 8.3 7.8 8.0 9.2
Lat. x3 11.2 14.5 9.2 12.6 12.8 12.1
ILP+ 12.1 11.6 9.1 6.0 7.3 9.2
ILP++ 11.7 11.7 9.5 8.2 10.8 10.4
C. net 11.0 10.1 9.8 8.9 8.0 9.6
Avg. 11.2 11.3 9.0 8.2 8.8 9.7

(c) Speedup of Simple-
	
x over RSIM

Table 6.8 : Simulator speed for all configurations.



112

Erle. FFT LU Mp3d Radix Avg.

Base 23.8 23.5 27.6 10.4 15.7 20.2
Lat. x2 20.7 20.4 25.5 8.2 13.9 17.7
Lat. x3 18.3 18.1 23.4 8.4 10.0 15.6
ILP+ 18.6 18.6 23.2 9.0 13.3 16.5
ILP++ 16.0 16.1 18.9 7.2 11.5 13.9
C.net 23.5 24.9 27.0 10.2 17.6 20.6
Avg. 20.1 20.3 24.3 8.9 13.7 17.4

(a) RSIM - Simulated kilo-instructions per second

Erle. FFT LU Mp3d Radix Avg.

Base 66.4 75.6 70.0 32.8 42.4 57.5
Lat. x2 68.7 76.7 68.7 38.8 45.2 59.6
Lat. x3 76.2 76.5 74.5 50.3 50.5 65.6
ILP+ 74.1 83.0 70.4 33.5 48.6 61.9
ILP++ 71.3 79.0 69.4 29.6 47.0 59.2
C.net 72.8 80.9 73.4 42.4 48.0 63.5
Avg. 71.6 78.6 71.1 37.9 46.9 61.2

(b) DirectRSIM - Simulated kilo-instructions per second

Erle. FFT LU Mp3d Radix Avg.

Base 247.5 183.8 240.1 48.1 97.7 163.4
Lat. x2 263.8 190.2 245.9 56.8 99.0 171.1
Lat. x3 276.1 218.2 255.4 74.7 101.8 185.2
ILP+ 200.7 224.1 190.8 56.9 131.2 160.7
ILP++ 213.3 213.3 244.2 50.3 115.8 167.3
C.net 291.6 236.1 259.9 69.2 136.6 198.7
Avg. 248.8 210.9 239.38 59.3 113.7 174.4

(c) Simple-
	
x - Simulated kilo-instructions per second

Table 6.9 : Absolute speed of the simulators in thousands of instructions simulated per
second.



113

Chapter 7

Fast Characterization of ILP Memory System Parameters

The previous chapter focused on improving evaluation methodology through fast and ac-

curate simulation. Simulation is an essential part of the architectural design process, but is

encumbered by its slow speed. Analytical modeling, on the other hand, is a much faster

alternative for system performance evaluation. However, analytical system models often

fail to represent real system performance accurately because they are driven by synthetic

parameters rather than real workloads. This chapter presents FastILP, a fast high-level sim-

ulator that focuses on characterizing the fundamental ILP data memory system parameters

of an application rather than directly trying to measure the timing of an application running

on a specific simulated system. These parameters are then used to drive a fast an accurate

analytical model of ILP multiprocessor system performance [SPA
�

98]. The parameters to

be measured are largely independent of underlying system latencies, and thus apply across

a broad range of systems to be studied.

This chapter only focuses on the parameters of the analytical model and how FastILP

generates the ILP-specific parameters. More detailed information on the analytical model

is available in the paper in which this methodology was presented [SPA
�

98].

7.1 Fundamental ILP Memory System Parameters

The key parameters required for characterizing the memory system behavior of a given

application are as follows:



114

� Average time between read, write, or upgrade requests to main mem-
ory, not counting the time when the processor is completely stalled
or is spin-waiting on a synchronization event	 ���
Coefficient of Variation of �

� 8������
	 ��� � � � ! Fraction of write requests that are generated by atomic read-modify-
write instructions or that coalesce with at least one later read

��
 Fraction of processor stalls that find
�

MSHRs with outstanding
read requests (

� ���
�
���������������

)
� 5 Probability that a memory request is of type

M
(
M �

�! �"
� � ��#� �%$ " �'&�( �  � � " ��#� �%$ "*) �,+.-0/ )� � � Probability that a read or write request causes a writeback of a cache

block� -21 5 Probability that directory is local for a type
M

transaction (
M3�

�! �"
� � ��#� �%$ " �'&�( �  � � " ��#� �%$ "*) �,+.-0/ )� 
 1 5 4 � Probability that home memory can supply the data for a type

M ��4
request (

M5� �! �"
� � ��#� �%$ " / , 4 � � � �6+ � �%7 � � " �' 8" � � $ " 7 � � " / )

�:9 	 7'�!1 5�;�� 7 � � � !6�
Probability that a request of type

M
to a remote home is forwarded to

a cache at a third node (
M<� �! �"

� � ��#� �=$ " / )>
Average number of network switches traversed by a packet?
Average number of invalidates caused by a write or upgrade to a
clean line

Application parameters other than � ,
	 �@�

, ��
 , and the part of � 8
�8�A��	 ��� � � � ! that is due to

writes coalescing with later memory read requests do not depend directly on ILP features

and can thus be measured using current fast simulators for multiprocessors with simple

single-issue processors (e.g., [CDJ
�

91, WR96]).

7.2 Fast High-Level Simulation

The remainder of this section provides an overview of FastILP, a fast high-level simulator

for quickly estimating the key ILP parameters � ,
	 �B�

, ��
 , and � 8������
	 ��� � � � ! . Since FastILP

does not need to measure the exact cycle count for an execution, it can achieve very high

performance by abstracting out the details of both the ILP processor and the memory sys-

tem, and modeling only enough state to generate the required ILP parameters. FastILP

differs from conventional cycle by cycle ILP-based multiprocessor simulators in three key

ways.



115

First, FastILP speeds up processor simulation using techniques from DirectRSIM. Each

instruction in FastILP sets the timestamp of its destination register based on the completion

time for that instruction. For non-memory instructions, the completion time is determined

by the timestamps of the source registers of the instruction, and the availability of the

appropriate functional unit. For memory instructions, the processor keeps enough state

information to simulate memory disambiguation. The completion timestamp calculation

for a memory instruction is unique to FastILP, as described below.

Second, FastILP speeds up memory system simulation by taking advantage of two ob-

servations: the ILP parameters do not depend on the exact latencies or configuration of

the memory system, and L2 cache misses have high latencies that can be overlapped ef-

fectively only with other memory misses (as shown in the previous chapters). Using these

observations, FastILP does not explicitly simulate any part of the memory system beyond

the cache hierarchy. FastILP divides simulated time into distinct “eras,” which start when

one or more memory replies unblock the processor and end when the processor blocks

again waiting for a memory reply. No memory replies return during an era. One or more

replies return together at the beginning of each era, depending on whether the processor

has enough work to completely overlap the time between incoming replies. For our results

in Section 7.3, we assume that a 64-element instruction window does not provide enough

computation to overlap this time between multiple replies, while a 128-element instruction

window does. The use of eras allows FastILP to extend the concept of timestamps into

the cache hierarchy as well, with each timestamp including both the era in which the data

was ready, along with the cycle within the era. The parameters � and
	 � �

are calculated

according to the points within each era at which misses occur; � 
 is measured by counting

the read requests outstanding at the end of each era. In this fashion, FastILP can process

all instructions in-order, while still simulating an out-of-order processor.

Third, FastILP further speeds up simulation time by using trace-driven (as opposed

to execution-driven) simulation, and by simulating the trace of only one processor. The

use of trace-driven simulation is possible because FastILP does not need to account for



116

synchronization spin time as this time is not measured in � . Further, FastILP makes an ap-

proximation that mispredicted execution paths do not have a significant impact on the ILP

parameters; this assumption is valid for the applications validated in Section 7.3. FastILP

assumes homogeneous applications, allowing it to use the trace of only a single proces-

sor, if the trace provides information about memory accesses known to be communication

misses. As communication misses generally stem from application and data set characteris-

tics rather than processor microarchitecture or system latencies, such traces can be quickly

generated by an appropriately instrumented fast simulator for multiprocessors with simple

processors or a multiprocessor trace-generation utility.

Using the above optimizations, FastILP achieves two orders of magnitude speedup over

RSIM, and over an order of magnitude speedup over DirectRSIM.

7.3 Validation of FastILP Parameters

The system architectures simulated in this chapter differ slightly from those in the previous

chapter; the main differences are the use of an MSI cache coherence protocol (instead of

MESI) and a slightly longer L2 cache access time (13 cycles instead of 10). All other rep-

resentative contentionless system latencies are within 2% of those reported in the previous

chapter, and the cache size, associativity, and MSHR parameters are all the same.

Table 7.1 gives the values of the ILP workload parameters as measured using RSIM,

and Table 7.2 gives the values as generated by FastILP. The parameter � 8������
	 ��� � � � ! is omit-

ted from the table since it is very small for most applications. The � column specifies

the number of instructions in the instruction window in each case. The final column of

Table 7.2, labeled % err, indicates the amount of difference seen in the throughput values

reported by the analytical model using the RSIM and FastILP parameters. The differences

are small for all the applications studied except for Water. FastILP underpredicts � for

Water because it does not yet model rollbacks of mispredicted reads triggered by write

disambiguation. However, this problem is typically low in most applications. Additional

experiments also indicate that FastILP can generate accurate parameters for codes that have



117

app.
� � ��� � �

�
� � � 9 ��� �	� �	
 ��� �	
 ��� ����


Erle. 64 39.0 10.9 .65 .17 .09 .08 0 .01 0 0 0
128 26.9 5.0 .64 .11 .10 .10 .02 .01 .01 .01 .01

FFT 64 63.9 12.8 .53 .47 0 0 0 0 0 0 0
128 37.0 12.0 .12 .48 .39 0 0 0 0 0 0

LU 64 109.1 8.1 .51 .49 0 0 0 0 0 0 0
128 74.0 3.6 .10 .19 .70 .01 0 0 0 0 0

Water 64 593.2 2.5 .73 .25 .01 0 0 0 0 0 0
128 487.7 2.5 .49 .48 .01 .01 0 0 0 0 0

Table 7.1 : ILP workload parameters as measured by RSIM

app.
� � ��� � �

�
� � � 9 � � � � � 
 � � � 
 ��� ����


% err
Erle. 64 42.1 10.7 .61 .18 .11 .08 0 .01 0 0 0 -1.1

128 23.2 9.6 .82 .02 0 .13 .02 0 0 .01 0 -0.5
FFT 64 56.6 12.5 .50 .50 0 0 0 0 0 0 0 9.1

128 30.8 12.6 .14 .44 .43 0 0 0 0 0 0 -11.9
LU 64 104.6 3.8 .53 .47 0 0 0 0 0 0 0 -0.1

128 78.6 3.4 .20 .06 .74 0 0 0 0 0 0 -8.6
Water 64 418.8 3.1 .71 .26 .01 0 0 0 0 0 0 20.0

128 270.4 3.8 .05 .93 0 .01 0 0 0 0 0 59.5

Table 7.2 : ILP workload parameters as generated by FastILP

been clustered with loop interchange [SPA
�

98].

Additionally, the resulting analytical model was found to match the performance re-

ported by RSIM within 12% across a variety of applications and configurations [SPA
�

98].

Thse configurations included systems with different bus speeds, directory access times, and

memory access times. The same workload parameters can be used across many different

simulated configurations because of the largely latency-independent definition of � : this

parameter explicitly excludes stall times.



118

7.4 Summary

The combination of fast high-level simulation and analytical modeling allow this evalu-

ation methodology to provide fast and accurate timing estimates for ILP multiprocessor

applications and configurations. FastILP addresses the workload characterization problem

faced by many analytical models, while the analytical model provides the speed necessary

to enable study of many independent configurations. FastILP may also be useful for high-

level application characterization even without the analytical model, since the parameters

it generates directly relate to memory parallelism ( � 
 ) and contention ( � ,
	 �@�

). These

two types of concerns have been shown in the previous chapters to be important factors in

determining ILP data memory system performance.

Because of the approximations and assumptions inherent to both FastILP and the an-

alytical model, this combination cannot simply replace detailed simulation. Rather, this

process can guide simulation by quickly narrowing the architectural design space to only

those systems that seem most promising. The slower process of detailed simulation would

then need to consider only a small subset of the architectural choices.



119

Chapter 8

Related Work

8.1 Work related to ILP memory system performance

There have been very few multiprocessor studies that model the effects of ILP. Albonesi

and Koren provide a mean-value analysis model of bus-based ILP multiprocessors that of-

fers a high degree of parametric flexibility [AK95]. However, the ILP parameters for their

experiments (e.g., overlapped latency and percentage of requests coalesced) are not derived

from any specific workload or system. Our simulation study shows that these parameters

vary significantly with the application and hardware factors, and provides insight into the

impact and behavior of the parameters. Furthermore, their model assumes a uniform distri-

bution of misses and does not properly account for read clustering, which we have shown

to be a key factor in providing read miss overlap and exploiting ILP features.

Nayfeh et al. considered design choices for a single-package multiprocessor [NHO96],

with a few simulation results that used an ILP multiprocessor. Olukotun et al. compared a

complex ILP uniprocessor with a one-chip multiprocessor composed of less complex ILP

processors [ONH
�

96]. There have also been a few studies of memory consistency models

using ILP multiprocessors [GGH92, PRAH96, ZB92]. However, none of the above work

details the benefits achieved by ILP in the multiprocessor.

There exists a large body of work on the impact of ILP on uniprocessor systems. Sev-

eral of these studies also identify and/or investigate one or more of the factors we study

to determine read miss ILP speedup, such as read clustering, coalescing, and contention.

Oner and Dubois evaluate several applications on a uniprocessor system with non-blocking

caches [OD93]. This work identifies a critical latency for each program, defined as the

maximum cache miss latency that the system can perfectly tolerate. They find that for



120

greater cache miss latencies, some latency tolerance is still possible if the program can

overlap multiple misses together. Farkas and Jouppi found that numerical codes were able

to see benefits in CPI from multiple outstanding read misses if the hardware provided the

needed resources [FJ94]. Seznec and Lloansi consider effective cache miss penalties for

out-of-order superscalar processors with non-blocking caches [SL95]. They briefly discuss

the possibility of multiple outstanding cache misses, but do not give any information about

which applications or to what extent this technique (as opposed to merely overlapping

cache misses with other computation) actually provides benefits. Our work finds that read

clustering is a key optimization that enables multiprocessors to exploit the features of ILP

processors. We additionally find that the read misses clustered must have similar latency

in order to achieve effective overlap, due to the dichotomy between local and remote miss

latencies in a multiprocessor configuration. Our work is also the first to provide specific

code transformations to improve clustering.

Butler and Patt investigate the impact of data cache misses on ILP processors [BP91].

Their study mentions the effect of coalesced requests in a non-blocking cache, but compares

performance only among ILP configurations, rather than with a base processor.

Bacon et al. identified a problem they call cache miss jamming: if an architecture allows

non-blocking reads but holds a critical resource on a memory system reply, two subsequent

misses can take more than twice a single miss [BCJ
�

94]. This problem would seem to

make read miss clustering ineffective and potentially harmful. However, the architecture

they studied had a latency of only 8 cycles for the critical word of a cache miss, followed by

7 cycles in which the data response exclusively held the cache data port. Modern systems

see much greater initial memory latency (in cycles) for an external cache miss [LL97],

and also hold critical resources for fewer cycles on a reply [MIP96]. As a result, modern

systems provide opportunities for memory parallelism, as confirmed by our results on the

Convex Exemplar.

Burger and Goodman evaluate several ILP processor configurations, finding that tech-

niques used in such systems to tolerate latency can lead to increased contention for system



121

bandwidth [BGK96]. Their study shows that this contention can contribute significantly to

execution time in some SPEC95 applications. Our study finds that although bandwidth is an

important factor in the performance of ILP-based multiprocessors, even systems with high

bandwidth are limited in their ability to exploit ILP if applications do not allow sufficient

clustering of read misses.

We have described previous applications of unroll-and-jam primarily in terms of their

benefits for scalar replacement. Unroll-and-jam can also be used to increase floating-point

unit parallelism in certain loops with recurrences carried on the inner loop but not on an

outer loop [CCK88]. Such use of unroll-and-jam can also improve the interaction of unroll-

and-jam with software-pipelining in the presence of inner-loop recurrences [CDS96]. More

recent work has extended the heuristics used in unroll-and-jam by incorporating the effects

of cache misses and prefetching into the balance calculation used to determine the degree

of unrolling [Car96]. However, previous work has not sought to exploit unroll-and-jam

either to encourage memory parallelism or to improve the effectiveness of prefetching.

In a sense, the clustering transformations of Chapter 4 improve performance for cache-

line sharing recurrences by disrupting spatial locality just enough to increase memory par-

allelism. Although the use of single-word cache lines would naturally eliminate cache-line

sharing, this approach seems unlikely for general-purpose processors. In particular, many

important codes can effectively exploit the benefits of spatial locality, and a variety of static

and dynamic transformations can improve spatial locality further [Tha82, DK99, LM99].

Where spatial locality is beneficial, the use of multi-word cache lines helps to amortize

the fixed overhead costs of memory transfer, such as bus and interconnect arbitration, re-

quest and reply control messages, initial DRAM access latency, and request pin bandwidth.

Eliminating spatial locality would also have no impact on address dependences, which are

important in many codes.



122

8.2 Work related to software prefetching

Chapters 3 and 5 discusses the previous software prefetching material that our study uses

most directly.

Gornish evaluated prefetching for both single-issue and multiple-issue statically-

scheduled multiprocessors with non-blocking reads [Gor95]. The prefetches rely on soft-

ware cache-coherence and require complete cache flushes before and after each paral-

lel loop. Processor pipelines and functional-unit contention are not modeled. Gornish’s

study integrates hardware and software prefetching support, dynamically adapting hard-

ware prefetching distance according to the latency of each reference. The study finds that

software prefetching provides execution time improvements on their multiple-issue system

similar to or greater than those seen with their single-issue system, but does not analyze the

interaction of ILP features with prefetching.

Tullsen and Eggers evaluated software-controlled non-binding prefetching on a bus-

based multiprocessor with simple processors [TE95]. They characterized bandwidth needs

of their applications, and found that the benefits of prefetching degrade as bandwidth needs

increase. They additionally found that increasing the prefetch distance can reduce late

prefetches but can also increase early prefetches, and thus does not significantly improve

performance. We discuss this same behavior in terms of short steady-states; techniques to

increase the prefetch distance can negatively impact the length of the steady-state and the

effectiveness of steady-state prefetching.

Previous prefetching techniques have also provided some memory parallelism among

prefetches, but their main focus has been on fetching sufficiently in advance. Roth and Sohi

discuss memory parallelism among prefetches, but they use parallelism largely to facilitate

fetching ahead and make no attempt to fully utilize the resources for parallelism [RS99]. In

contrast, read miss clustering restructures the code aiming to fully utilize the outstanding

miss buffers of the nonblocking cache, increasing the parallelism achieved by the subse-

quent application of prefetching.

Saavedra et al. also observed that tiled codes were more difficult to prefetch [SMP
�

96].



123

They suggest optimizations to improve cache performance for tiled codes, but do not target

the fundamental problem of short steady-states. As a result, their analysis generally fa-

vors prefetching alone over the combination of prefetching and tiling. We show that using

unroll-and-jam for read miss clustering can help to address short steady-states by decreas-

ing the needed prefetch distance. The use of read miss clustering thus allows us to maintain

the bandwidth conservation of tiling while also improving the effectiveness of prefetching.

Just as prefetching can be seen as the general-purpose processor analogy to vector com-

puting, clustered prefetching relates closely to the Multi Streaming Processor model of the

more recent Cray SV series of vector architectures [BBC
�

00]. In particular, both models

seek to extract parallelism at outer-loop levels in order to avoid performance degradation

from short inner loops.

This work has also focused on software latency tolerance techniques. Hardware

techniques such as hardware prefetching or multithreading also provide latency toler-

ance [CB94, GHG
�

91, Jou90, TEE
�

96]. The interaction of clustered prefetching with

such hardware latency tolerance techniques in ILP systems remains an open question.

8.3 Work related to ILP multiprocessor simulation

Chapter 6 reviewed the previous shared-memory simulation techniques most relevant to

this work.

Like RSIM, SimOS with the MXS processor simulator and Armadillo also model ILP

multiprocessors explicitly and in detail [GC98, RBDH97]. They use detailed execution-

driven simulation, interpreting every instruction and simulating its effects on the complete

processor pipeline and memory system in software. SimOS with MXS was developed con-

currently with RSIM, while Armadillo was developed after RSIM. Unlike RSIM, neither is

currently released for public distribution.

Simulation models based on direct-execution have been widely used for fast and ac-

curate modeling of shared-memory systems with simple processors [CDJ
�

91, DGH91,

MRF
�

97]. The use of variants of simple-processor-based models to approximate ILP mul-



124

tiprocessor system performance draws from publications by Heinrich et al. [HKO
�

94] and

Holt et al. [HSH96]. Both studies aim to model ILP processor behavior with faster simple

processors, but neither work validates these approximations.

The Wisconsin Wind Tunnel-II uses a more detailed analysis at the basic-block level

that accounts for pipeline latencies and functional unit resource constraints to model a

superscalar HyperSPARC processor [FW97, MRF
�

97, RPW96]. However, this model does

not account for memory overlap, which, as our results show, is an important factor in

determining the behavior of more aggressive ILP processors.

Brooks et al. describe the Cerberus Multiprocessor Simulator, a parallelized instruction-

driven simulator for single-issue statically-scheduled processors with non-blocking reads

in a cacheless “dance-hall” memory system [BAD89]. This is the earliest execution-driven

multiprocessor simulator of which we know that modeled some degree of ILP. It was also

used in a study of relaxed consistency models [ZB92].

Dynamic binary translation is sometimes used to speed up simulation [RBDH97] (as

an alternative to direct execution). For our purposes, this technique can also be seen as a

form of direct execution as it also decouples functional and timing simulation and executes

most of the translated application directly on the host. Hence, the techniques presented in

Chapter 6 can also be applied to dynamic binary translation.

In addition to direct-execution, sampling [RBDH97] and parallelization [MRF
�

97] are

used to speed up shared-memory simulation. Both techniques are orthogonal to ours and

can be used in conjunction with DirectRSIM.

Concurrently, Krishnan and Torrellas have proposed a method similar to ours for direct-

execution for ILP multiprocessors [KT98]. They do not discuss the potential for error (or

solutions) when using values of non-blocking reads in direct execution. They also do not

assess the accuracy of their simulator or compare performance with detailed simulation.

Their performance comparison with a previous simple-processor simulator is done without

memory system simulation, and shows slowdowns of 24–29X.

Schnarr and Larus concurrently developed a direct execution simulator for uniproces-



125

sors with ILP processors [SL98]. They simulate mispredicted paths and also propose

instruction-window memoization. The applicability and/or benefits of some of their tech-

niques for shared-memory multiprocessors are currently unclear (e.g., speculative stores

and memoization). Further, their approach focuses on accurate microarchitectural simula-

tion. DirectRSIM allows approximations, since we focus on accurate memory simulation

in a multiprocessor with only as much emphasis on microarchitectural simulation as needed

for correct memory simulation. It would be promising to consider the combination of fast

multiprocessor simulation and speculative memoized simulation for future work.



126

Chapter 9

Conclusions and Future Directions

This chapter summarizes the analysis and insights of this dissertation and discusses future

directions for research motivated by the results of this dissertation.

9.1 Conclusions

This study finds that for the applications and systems that we study, ILP hardware tech-

niques effectively address the CPU component of execution time, but are less effective

in reducing the data memory component of execution time, which is dominated by read

misses to main memory. As a result, data read stall time becomes a larger bottleneck

than in previous-generation systems. These deficiencies in the impact of ILP techniques

on memory stall time arise primarily because of insufficient potential in our applications

to overlap multiple read misses, as well as system contention from more frequent mem-

ory accesses. While software prefetching improves memory system performance with ILP

processors, it does not change the memory-bound nature of these systems for most of the

applications. We particularly show some of the factors that can limit prefetching and show

that ILP systems can exacerbate these limitations.

The above observations motivate novel techniques to tolerate or reduce memory latency.

We specifically propose ILP-specific code transformations to improve memory system par-

allelism by clustering multiple read misses together within the same instruction window

(read miss clustering). We also show that read miss clustering and software prefetching

can be profitably combined to address limitations in either technique alone. These new

software latency-tolerance techniques substantially reduce application execution time by

exploiting memory parallelism.



127

The performance benefits of memory parallelism also impact evaluation methodologies

for ILP-based systems. In particular, simulators that model non-ILP processors can see

large and highly application-dependent errors when used to approximate the performance

of ILP processors running applications that can exploit memory parallelism. However, we

found that these non-ILP simulators were as much as an order of magnitude faster than

the detailed ILP simulator RSIM, making them attractive despite their shortcomings. We

then presented a new simulation methodology that extends the fast direct-execution simula-

tion methodology to support ILP. The resulting simulator, DirectRSIM, maintains accuracy

close to RSIM while significantly narrowing the performance gap between the Simple and

ILP simulation models. We also present a new high-level simulator called FastILP, which

exploits analytical modeling in order to improve evaluation speed. In particular, FastILP

simply generates the ILP-specific workload parameters needed for use by an underlying

analytical model of ILP multiprocessor performance. As a result, FastILP can abstract out

most processor and memory system details and achieve a simulation speed up to 100X that

of RSIM.

9.2 Future directions

This dissertation prompts several new directions for achieving high performance by ex-

ploiting instruction-level and memory system parallelism. At a high level, our insights

show that current and future aggressive hardware provides high peak performance, but

current software tools do not take full advantage of many of the performance-enhancing

features of aggressive architectures.

Chapter 4 focuses primarily on transformations at the loop-nest level, but also dis-

cusses the possible interaction between clustering and basic-block scheduling. We

have not yet dealt with clustered codes that are limited by basic-block size and not

amenable to previously-understood local scheduling techniques such as balanced schedul-

ing [KE93, LE95]. In such situations, all of the independent misses exposed by the transfor-

mation will not actually issue to the memory system together, limiting the system’s latency-



128

tolerance ability. To improve latency tolerance, the instruction scheduler can reschedule

independent misses to insure that they are indeed grouped together in a single out-of-order

execution window. Typed fusion seems to be an appropriate candidate for these sorts of

transformation, as that technique essentially allows a dependence graph to be partitioned

and restructured according to relevant characteristics of the nodes [KM93].

Looking more broadly, compiler optimizations that extract knowledge dynamically also

seem attractive for modern and future microarchitectures that extract performance through

various dynamic mechanisms. Current compiler optimizations depend on knowing the

amount of computational and storage resources provided by their targeted architectures.

For example, instruction scheduling packs instructions together based on the number of

functional units in the processor, while cache tiling chooses loop bounds for tiled code

based on cache sizes. However, several problems limit static knowledge of resource avail-

ability. First, architecture-neutral formats such as Java bytecodes or heterogeneous environ-

ments such as grid computing cannot statically provide any reliable resource information

about the eventual target. Second, microarchitectures that share resources among separate

threads may dynamically vary the resources available to any thread. Examples include

the functional-unit and cache sharing of multithreaded architectures and the second-level

cache sharing of single-chip multiprocessors. Additionally, unpredictable cache conflicts

or coherence activity can reduce the effective cache size available to a program.

Each of the above problems can be addressed by conservatively assuming a low amount

of resources, but such assumptions lead to underutilization of system features when more

resources are available. A potentially more attractive solution would be the use of code

parametrization, allowing the parameters to change dynamically to make better use of

the available resources. For example, hardware performance counters can provide fine-

grained feedback on resource availability, guiding the code to change its resource utilization

accordingly. Such use of parametrized static code allows resource sensitivity without the

overhead of dynamic recompilation, but requires identifying code structures that benefit

from resource sensitivity and determining how much flexibility can be provided without



129

excessive overhead.

The new optimizations presented in this work have addressed some specific ways in

which code can more effectively exploit the performance features of modern microarchi-

tectures. As microarchitectures continue to progress, targeted code transformations should

continue to provide opportunities for real codes to exploit the ever increasing and ever more

complicated resources provided by the underlying system for high performance.



130

Bibliography

[AC72] Frances E. Allen and John Cocke. A Catalogue of Optimizing Transforma-
tions. In Randall Rustin, editor, Design and Optimization of Compilers, pages
1–30. Prentice-Hall, 1972.

[AH90] Sarita V. Adve and Mark D. Hill. Weak Ordering - A New Definition. In
Proceedings of the 17th Annual International Symposium on Computer Archi-
tecture, pages 2–14, May 1990.

[AHAA97] Hazim Abdel-Shafi, Jonathan Hall, Sarita V. Adve, and Vikram S. Adve.
An Evaluation of Fine-Grain Producer-Initiated Communication in Cache-
Coherent Multiprocessors. In Proceedings of the 3rd International Symposium
on High Performance Computer Architecture, pages 204–215, February 1997.

[AK95] David H. Albonesi and Israel Koren. An Analytical Model of High-
Performance Superscalar-Based Multiprocessors. In Proceedings of the IFIP
WG 10.3 Working Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’95, pages 194–203, June 1995.

[AKL81] Walid Abu-Sufah, David J. Kuck, and Duncan H. Lawrie. On the Performance
Enhancement of Paging Systems Through Program Analysis and Transforma-
tions. IEEE Transactions on Computers, C-30(5):341–356, May 1981.

[BAD89] Eugene D. Brooks III, Timothy S. Axelrod, and Gregory A. Darmohray. The
Cerberus Multiprocessor Simulator. In Garry Rodrigue, editor, Parallel Pro-
cessing for Scientific Computing: Proceedings of the 3rd SIAM Conference
on Parallel Processing for Scientific Computing (December 1987), chapter 58,
pages 384–390. SIAM, 1989.

[BBC
�

00] Maynard Brandt, Jeff Brooks, Margaret Cahir, Tom Hewitt, Enrique Lopez-
Pineda, and Dick Sandness. The Benchmarker’s Guide for CRAY SV1 Systems.
Cray Inc., July 2000.

[BCJ
�

94] David F. Bacon, Jyh-Herng Chow, Dz-ching R. Ju, Kalyan Muthukumar, and
Vivek Sarkar. A Compiler Framework for Restructuring Data Declarations
to Enhance Cache and TLB Effectiveness. In Proceedings of CASCON ’94,
pages 270–282, October 1994.



131

[BGK96] Doug Burger, James R. Goodman, and Alain Kägi. Quantifying Memory
Bandwidth Limitations of Current and Future Microprocessors. In Proceed-
ings of the 23rd Annual International Symposium on Computer Architecture,
pages 78–89, May 1996.

[BP91] Michael Butler and Yale Patt. The Effect of Real Data Cache Behavior on
the Performance of a Microarchitecture that Supports Dynamic Scheduling. In
Proceedings of the 24th Annual International Symposium on Microarchitec-
ture, pages 34–41, November 1991.

[Car96] Steve Carr. Combining Optimization for Cache and Instruction-Level Paral-
lelism. In Proceedings of the IFIP WG 10.3 Working Conference on Parallel
Architectures and Compilation Techniques, PACT ’96, pages 238–247, Octo-
ber 1996.

[CB94] T.-F. Chen and J.-L. Baer. A Performance Study of Hardware and Software
Data Prefetching Schemes. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 223–232, April 1994.

[CCK88] D. Callahan, J. Cocke, and K. Kennedy. Estimating Interlock and Improving
Balance for Pipelined Machines. Journal of Parallel and Distributed Comput-
ing, 5(4):334–358, August 1988.

[CDG
�

93] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishna-
murthy, Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel
Programming in Split-C. In Proceedings of Supercomputing ’93, pages 262–
273, November 1993.

[CDJ
�

91] R. G. Covington, S. Dwarkadas, J. R. Jump, S. Madala, and J. B. Sinclair. The
Efficient Simulation of Parallel Computer Systems. International Journal of
Computer Simulation, 1:31–58, January 1991.

[CDS96] Steve Carr, Chen Ding, and Philip Sweany. Improving Software Pipelining
with Unroll-and-Jam. In Proceedings of 29th Hawaii International Conference
on System Sciences, January 1996.

[CK94] Steve Carr and Ken Kennedy. Improving the Ratio of Memory Operations
to Floating-Point Operations in Loops. ACM Transactions on Programming
Languages and Systems, 16(6):1768–1810, November 1994.

[CKP91] David Callahan, Ken Kennedy, and Allan Porterfield. Software Prefetching.
In Proceedings of the Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 40–52, April
1991.



132

[DGH91] Helen Davis, Stephen R. Goldschmidt, and John Hennessy. Multiprocessor
Simulation and Tracing Using Tango. In Proceedings of the International
Conference on Parallel Processing, pages II–99–II107, August 1991.

[DK99] Chen Ding and Ken Kennedy. Improving Cache Performance in Dynamic Ap-
plications through Data and Computation Reorganization at Run Time. In Pro-
ceedings of the ACM SIGPLAN ’99 Conference on Programming Language
Design and Implementation, May 1999.

[DPA98] Murthy Durbhakula, Vijay S. Pai, and Sarita Adve. Improving the Speed vs.
Accuracy Tradeoff for Simulating Shared-Memory Multiprocessors with ILP
Processors. Technical Report 9802, Department of Electrical and Computer
Engineering, Rice University, 1998.

[DPA99] Murthy Durbhakula, Vijay S. Pai, and Sarita Adve. Improving the Speed vs.
Accuracy Tradeoff for Simulating Shared-Memory Multiprocessors with ILP
Processors. In Proceedings of the 5th International Symposium on High Per-
formance Computer Architecture, pages 23–32, January 1999.

[ERB
�

95] John H. Edmondson, Paul I. Rubinfeld, Peter J. Bannon, Bradley J. Benschnei-
der, Debra Bernstein, Ruben W. Castelino, Elizabeth M. Cooper, Daniel E.
Dever, Dale R. Donchin, Timothy C. Fischer, Anil K. Jain, Shekhar Mehta,
Jeanne E. Meyer, Ronald P. Preston, Vidya Rajagopalan, Chandrasekhara So-
manathan, Scott A. Taylor, and Gilbert M. Wolrich. Internal Organization of
the Alpha 21164, a 300-MHz 64-bit Quad-issue CMOS RISC Microprocessor.
Digital Technical Journal, 7(1):119–132, 1995.

[FJ94] K.I. Farkas and Norman P. Jouppi. Complexity/Performance Tradeoffs with
Non-Blocking Loads. In Proceedings of the 21st Annual International Sympo-
sium on Computer Architecture, pages 211–222, April 1994.

[FW97] Babak Falsafi and David A. Wood. Reactive NUMA: A Design for Unifying
S-COMA and CC-NUMA. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, June 1997.

[GC98] Brian Grayson and Craig Chase. Characterizing Instruction Latency for Spec-
ulative Issue SMPs: A Case Study of Varying Memory System Performance on
the SPLASH-2 Benchmarks. Workshop on Workload Characterization, held
with MICRO-31, November 1998.

[GGH91] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two Techniques to
Enhance the Performance of Memory Consistency Models. In Proceedings of
the International Conference on Parallel Processing, pages I355–I364, August
1991.



133

[GGH92] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Hiding Memory
Latency Using Dynamic Scheduling in Shared-Memory Multiprocessors. In
Proceedings of the 19th Annual International Symposium on Computer Archi-
tecture, pages 22–33, May 1992.

[GHG
�

91] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, and
Wolf-Dietrich Weber. Comparative Evaluation of Latency Reducing and Toler-
ating Techniques. In Proceedings of the 18th Annual International Symposium
on Computer Architecture, pages 254–263, May 1991.

[GLL
�

90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John Hennessy. Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors. In Proceedings of the 17th An-
nual International Symposium on Computer Architecture, pages 15–26, May
1990.

[Gor95] Edward H. Gornish. Adaptive and Integrated Data Cache Prefetching for
Shared-Memory Multiprocessors. PhD thesis, University of Illinois at Urbana-
Champaign, 1995.

[Hew97] Hewlett-Packard Company. Exemplar Architecture (S and X-Class Servers),
January 1997.

[HJ87] David T. Harper III and J. Robert Jump. Vector access performance in parallel
memories using a skewed storage scheme. IEEE Transactions on Computers,
C-36(12):1440–1449, December 1987.

[HKO
�

94] Mark Heinrich, Jeffrey Kuskin, David Ofelt, John Heinlein, Joel Bax-
ter, Jaswinder Pal Singh, Richard Simoni, Kourosh Gharachorloo, David
Nakahira, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hen-
nessy. The Performance Impact of Flexibility in the Stanford FLASH Mul-
tiprocessor. In Proceedings of the Sixth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages
274–285, October 1994.

[HSH96] Chris Holt, Jaswinder Pal Singh, and John Hennessy. Application and Archi-
tectural Bottlenecks in Large Scale Distributed Shared Memory Machines. In
Proceedings of the 23rd Annual International Symposium on Computer Archi-
tecture, pages 134–145, May 1996.

[Hun95] Doug Hunt. Advanced Features of the 64-bit PA-8000. In Proceedings of
IEEE Compcon, pages 123–128, March 1995.

[Jou90] Norman P. Jouppi. Improving direct-mapped cache performance by the addi-
tion of a small fully-associative cache and prefetch buffers. In Proceedings



134

of the 17th Annual International Symposium on Computer Architecture, pages
364–373, May 1990.

[KDS00] Magnus Karlsson, Fredrik Dahlgren, and Per Stenström. A Prefetching Tech-
nique for Irregular Accesses to Linked Data Structures. In Proceedings of the
6th International Symposium on High Performance Computer Architecture,
pages 206–217, January 2000.

[KE93] Daniel R. Kerns and Susan J. Eggers. Balanced Scheduling: Instruction
Scheduling When Memory Latency is Uncertain. In Proceedings of the ACM
SIGPLAN ’93 Conference on Programming Language Design and Implemen-
tation, pages 278–289, June 1993.

[Kel96] Jim Keller. The 21264: A Superscalar Alpha Processor with Out-of-Order
Execution. 9th Annual Microprocessor Forum, October 1996.

[KM93] Ken Kennedy and Kathryn S. McKinley. Maximizing Loop Parallelism and
Improving Data Locality via Loop Fusion and Distribution. In U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Compilers for
Parallel Computing, pages 301–321. Springer-Verlag Lecture Notes in Com-
puter Science, Portland, August 1993.

[Kro81] David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. In
Proceedings of the 8th Annual International Symposium on Computer Archi-
tecture, pages 81–87, May 1981.

[KT98] Venkata Krishnan and Josep Torrellas. A Direct-Execution Framework for
Fast and Accurate Simulation of Superscalar Processors. In Proceedings of the
IFIP WG 10.3 Working Conference on Parallel Architectures and Compilation
Techniques, PACT ’98, October 1998.

[Lam79] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Transactions on Computers, C-
28(9):690–691, September 1979.

[LE95] Jack L. Lo and Susan J. Eggers. Improving Balanced Scheduling with Com-
piler Optimizations that Increase Instruction-Level Parallelism. In Proceed-
ings of the ACM SIGPLAN ’95 Conference on Programming Language Design
and Implementation, pages 151–162, July 1995.

[LL97] James Laudon and Daniel Lenoski. The SGI Origin 2000: A ccNUMA Highly
Scalable Server. In Proceedings of the 24th Annual International Symposium
on Computer Architecture, pages 241–251, June 1997.



135

[LM96] Chi-Keung Luk and Todd C. Mowry. Compiler-Based Prefetching for Recur-
sive Data Structures. In Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 222–233, October 1996.

[LM99] Chi-Keung Luk and Todd C. Mowry. Memory Forwarding: Enabling Aggres-
sive Layout Optimizations by Guaranteeing the Safety of Data Relocation. In
Proceedings of the 26th Annual International Symposium on Computer Archi-
tecture, May 1999.

[McI98] Nathaniel McIntosh. Compiler Support for Software Prefetching. PhD thesis,
Rice University, May 1998.

[MG91] Todd Mowry and Anoop Gupta. Tolerating Latency Through Software-
Controlled Prefetching. Journal on Parallel and Distributed Computing, pages
87–106, June 1991.

[MIP96] MIPS Technologies, Inc. R10000 Microprocessor User’s Manual, Version 2.0,
December 1996.

[MLG92] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and Evaluation
of a Compiler Algorithm for Prefetching. In Proceedings of the Fifth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pages 62–73, October 1992.

[Mow94] Todd Mowry. Tolerating Latency through Software-controlled Data Prefetch-
ing. PhD thesis, Stanford University, 1994.

[MRF
�

97] Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike Litzkow,
Steve Huss-Lederman, Mark D. Hill, James R. Larus, and David A. Wood.
Wisconsin Wind Tunnel II: A Fast and Portable Parallel Architecture Simu-
lator. In Workshop on Performance Analysis and Its Impact on Design, June
1997. Held in conjunction with ISCA.

[MS96] Larry McVoy and Carl Staelin. lmbench: Portable Tools for Performance
Analysis. In Proceedings of the 1996 USENIX Technical Conference, pages
279–295, January 1996.

[MWK99] John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving Mem-
ory Hierarchy Performance for Irregular Applications. In Proceedings of
the 13th ACM-SIGARCH International Conference on Supercomputing, pages
425–433, June 1999.

[NHO96] Basem A. Nayfeh, Lance Hammond, and Kunle Olukotun. Evaluation of De-
sign Alternatives for a Multiprocessor Microprocessor. In Proceedings of the



136

23rd Annual International Symposium on Computer Architecture, pages 67–
77, May 1996.

[Nic87] Alexandru Nicolau. Loop Quantization or Unwinding Done Right. In Pro-
ceedings of the 1st International Conference on Supercomputing, pages 294–
308, June 1987.

[OD93] K. Oner and M. Dubois. Effects of Memory Latencies on Non-Blocking Pro-
cessor/Cache Architectures. In Proceedings of the International Conference
on Supercomputing, 1993.

[ONH
�

96] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kun-
yung Chang. The Case for a Single-Chip Multiprocessor. In Proceedings of the
Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 2–11, October 1996.

[PA99] Vijay S. Pai and Sarita Adve. Code Transformations to Improve Memory Par-
allelism. In Proceedings of the 32nd Annual International Symposium on Mi-
croarchitecture, pages 147–155, November 1999.

[PA00] Vijay S. Pai and Sarita Adve. Code Transformations to Improve Memory Par-
allelism. Journal of Instruction Level Parallelism, 2, May 2000.

[Por89] Allan K. Porterfield. Software Methods for Improvement of Cache Perfor-
mance on Supercomputer Applications. PhD thesis, Rice University, April
1989.

[PRA96] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. The Impact of
Instruction-Level Parallelism on Multiprocessor Performance and Simulation
Methodolgy. Technical Report 9606, Electrical and Computer Engineering
Department, Rice University, July 1996.

[PRA97a] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. RSIM Reference
Manual, Version 1.0. Electrical and Computer Engineering Department, Rice
University, August 1997. Technical Report 9705.

[PRA97b] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. The Impact of
Instruction Level Parallelism on Multiprocessor Performance and Simulation
Methodology. In Proceedings of the 3rd International Symposium on High
Performance Computer Architecture, pages 72–83, February 1997.

[PRAA99] Vijay S. Pai, Parthasarathy Ranganathan, Hazim Abdel-Shafi, and Sarita Adve.
The Impact of Exploiting Instruction-Level Parallelism on Shared-Memory
Multiprocessors. IEEE Transactions on Computers, 48(2):218–226, February
1999.



137

[PRAH96] Vijay S. Pai, Parthasarathy Ranganathan, Sarita V. Adve, and Tracy Harton.
An Evaluation of Memory Consistency Models for Shared-Memory Systems
with ILP Processors. In Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 12–23, October 1996.

[RBDH97] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen Herrod.
Using the SimOS Machine Simulator to Study Complex Computer Systems.
ACM Transactions on Modeling and Computer Simulation, 1997. Special issue
on Computer Simulation.

[RCRH95] Anne Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren.
Supporting dynamic data structures on distributed-memory machines. ACM
Transactions on Programming Languages and Systems, 17(2):233–263, March
1995.

[RPAA97] Parthasarathy Ranganathan, Vijay S. Pai, Hazim Abdel-Shafi, and Sarita V.
Adve. The Interaction of Software Prefetching with ILP Processors in Shared-
Memory Systems. In Proceedings of the 24th Annual International Symposium
on Computer Architecture, pages 144–156, June 1997.

[RPW96] Steven K. Reinhardt, Robert W. Pfile, and David A. Wood. Decoupled Hard-
ware Support for Distributed Shared Memory. In Proceedings of the 23rd An-
nual International Symposium on Computer Architecture, pages 34–43, May
1996.

[RS99] Amir Roth and Gurindar S. Sohi. Effective Jump-Pointer Prefetching for
Linked Data Structures. In Proceedings of the 26th Annual International Sym-
posium on Computer Architecture, pages 111–121, May 1999.

[RT98] Gabriel Rivera and Chau-Wen Tseng. Eliminating Conflict Misses for High-
Performance Architectures. In Proceedings of the International Conference on
Supercomputing, pages 353–360, July 1998.

[SGH97] Vatsa Santhanam, Edward H. Gornish, and Wei-Chung Hsu. Data Prefetching
on the HP PA-8000. In Proceedings of the 24th Annual International Sympo-
sium on Computer Architecture, pages 264–273, June 1997.

[SL95] André Seznec and Fabien Lloansi. About effective cache miss penalty on out-
of-order superscalar processors. Technical Report PI-970, IRISA, November
1995.

[SL98] Eric Schnarr and Jim Larus. Fast Out-Of-Order Processor Simulation Us-
ing Memoization. In Proceedings of the Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems,
pages 283–294, October 1998.



138

[SMP
�

96] Rafael H. Saavedra, Weihua Mao, Daeyeon Park, Jacqueline Chame, and
Sungdo Moon. The Combined Effectiveness of Unimodular Transformations,
Tiling, and Software Prefetching. In Proceedings of the 10th International
Parallel Processing Symposium, pages 39–45, April 1996.

[Soh93] G. S. Sohi. High-Bandwidth Interleaved Memories for Vector Processors –
A Simulation Study. IEEE Transactions on Computers, 42(1):34–44, January
1993.

[SP88] J. E. Smith and A. R. Pleszkun. Implementing precise interrupts in pipelined
processors. IEEE Transactions on Computers, C-37(5):562–573, May 1988.

[SPA
�

98] Daniel J. Sorin, Vijay S. Pai, Sarita V. Adve, Mary K. Vernon, and David A.
Wood. Analytic Evaluation of Shared-Memory Systems with ILP processors.
In Proceedings of the 25th Annual International Symposium on Computer Ar-
chitecture, pages 380–391, June 1998.

[Sun97] Sun Microelectronics. UltraSPARC-II: Second Generation SPARC v9 64-Bit
Microprocessor With VIS, July 1997.

[SWG92] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stan-
ford Parallel Applications for Shared-Memory. Computer Architecture News,
20(1):5–44, March 1992.

[TE95] D.M. Tullsen and S.J. Eggers. Effective Cache Prefetching on Bus-Based Mul-
tiprocessors. ACM Transactions on Computer Systems, 13(1):57–88, February
1995.

[TEE
�

96] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo,
and Rebecca L. Stamm. Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor. In Proceedings of
the 23rd Annual International Symposium on Computer Architecture, pages
191–202, May 1996.

[Tha82] Khalid O. Thabit. Cache Management by the Compiler. PhD thesis, Rice
University, 1982.

[WL91] Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algorithm.
In Proceedings of the ACM SIGPLAN ’91 Conference on Programming Lan-
guage Design and Implementation, pages 30–44, June 1991.

[WOT
�

95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,
and Anoop Gupta. The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 24–36, June 1995.



139

[WR96] Emmett Witchel and Mendel Rosenblum. Embra: Fast and Flexible Machine
Simulation. In Proceedings of the ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, pages 68–79, May 1996.

[ZB92] Richard N. Zucker and Jean-Loup Baer. A Performance Study of Memory
Consistency Models. In Proceedings of the 19th Annual International Sympo-
sium on Computer Architecture, pages 2–12, May 1992.


