
Metaheuristics for Designing Efficient
Routes & Schedules For Urban

Transportation Networks

A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Matthew P. John

August 2016

Cardiff University
School of Computer Science & Informatics

School of Mathematics

iii

Declaration

This work has not been submitted in substance for any other degree or award at this

or any other university or place of learning, nor is being submitted concurrently in

candidature for any degree or other award.

Signed . (candidate) Date .

Statement 1

This thesis is being submitted in partial fulfilment of the requirements for the degree of

PhD.

Signed . (candidate) Date .

Statement 2

This thesis is the result of my own independent work/investigation, except where

otherwise stated, and the thesis has not been edited by a third party beyond what is

permitted by Cardiff University’s Policy on the Use of Third Party Editors by Research

Degree Students. Other sources are acknowledged by explicit references. The views

expressed are my own.

Signed . (candidate) Date .

Statement 3

I hereby give consent for my thesis, if accepted, to be available online in the University’s

Open Access repository and for inter-library loan, and for the title and summary to be

made available to outside organisations.

Signed . (candidate) Date .

iv

Dedication v

To Mum, Dad & Alisha
for their patience and support.

vi

vii

Abstract

This thesis tackles the Urban Transit Network Design Problem (UTNDP) which involves

determining an efficient set of routes and schedules for public transit networks. The

UTNDP can be divided into five subproblems as identified by Ceder and Wilson [24]: i)

network design, ii) frequency setting, iii) timetable development, iv) bus scheduling,

and v) driver scheduling, with each problem requiring the output of the previous. In

this thesis we focus on the first two stages, network design and frequency setting.

We identify that evaluation is a major bottleneck for the network design problem and

propose alternative approaches with the aim of decreasing the computation time. A

multi-objective evolutionary algorithm (MOEA) for the network design problem is

then presented that trades-off the passenger and operator costs. A passenger wishes to

travel from their origin to destination in the shortest possible time, whereas the network

operator must provide an adequate level of service whilst balancing the operational

costs i.e. number of drivers and vehicles. The proposed MOEA combines a heuristically

seeded population, using a novel construction algorithm, with several genetic operators

to produce improved results compared with the state of the art from the literature.

We provide an evaluation of the effectiveness of the genetic operators showing that

improved performance, in terms of the number of dominating and nondominating

solutions, is achieved as the size of the problem instance increases. Four surrogate

models are proposed and an empirical evaluation is performed to assess the solution

quality versus run trade-off in each case. It is found that surrogate models perform well

on large problem instances producing improved Pareto sets compared with the original

viii Abstract

algorithm due to the increased amount of evolution that is allowed to occur under fixed

time limits. Finally we empirically evaluate three multi-objective approaches for the

frequency setting problem utilising the route networks produced during our network

design procedure. It is shown that a MOEA based on the NSGAII framework provides

the best quality solutions due to the cost of evaluation when using a neighbourhood

based approach such as multi-objective tabu search. Constraints on vehicle capacity and

fleet size are then introduced. It is shown that such constraints vastly reduce the number

of solutions from network design that can successfully undergo frequency setting. A

discussion is then presented highlighting the limitations of conducting network design

and frequency setting separately along with alternative approaches that could be used in

the future. We conclude this thesis by summarising our findings and presenting topics

for future works.

ix

Acknowledgements

I would like to express my sincere gratitude to my supervisors Dr Christine Mumford

and Dr Rhyd Lewis, for their continued support, guidance and endless encourage-

ment throughout my PhD research. Without their constructive comments, insightful

discussion and challenging questioning the results of this thesis would have differed

greatly.

I would also like to thank my fellow PhD students for their support, feedback and

company at the bar. For their continued support, endless feedback and being a sounding

board for my sometimes wild ideas an explicit mention must be made for: Liam, Will,

Chris, Lowri and Jonny.

For providing friendship and support I would like to thank Andrew, Matthew and Emlyn.

From putting up with my antics on a night out to providing encouragement to complete

this thesis, your friendship and support has been invaluable for more years than I care to

remember.

Finally I would like to thank my parents and sister who have provided continued support

throughout my studies. If it was not for their belief and determination to push me to

achieve all that I can my path through life may have been vastly different.

x Acknowledgements

xi

Contents

Abstract vii

Acknowledgements ix

Contents xi

List of Publications xvii

List of Figures xix

List of Tables xxiii

List of Algorithms xxvii

Acronyms xxix

1 Introduction 1

1.1 Background . 1

1.2 The Urban Transit Network Design Problem 5

1.3 Main Contributions . 7

xii Contents

1.4 Thesis Structure . 8

1.5 Summary . 10

2 Problem Definition and Formulation 11

2.1 Optimisation . 11

2.1.1 Multi-objective Performance Metrics 13

2.1.2 Combinatorial Optimisation 15

2.2 Graph Theory . 16

2.3 Network Design Problem . 18

2.4 Frequency Setting Problem . 24

2.5 Problem Instances . 28

2.6 Network Evaluation . 30

2.6.1 Evaluation using the Transit Network 31

2.6.2 Evaluation using the Route Network 33

2.6.3 Mandl’s Evaluation Method 36

2.6.4 Evaluation Removing Overlapping Transfer Vertices 38

2.6.5 Evaluation Using the GPU 40

2.7 Complexities of the Urban Transit Network Design Problem 42

2.8 NP-Completeness of the Network Design Problem 43

2.9 Summary . 46

Contents xiii

3 Literature Review 49

3.1 Vehicle Routing Problems . 49

3.2 Practical Guidelines for the UTNDP 52

3.3 Methods for tackling the UTNDP . 54

3.3.1 Mathematical Approaches 54

3.3.2 Heuristics . 56

3.3.3 Metaheuristics . 60

3.4 Frequency Setting . 72

3.5 Limitations of Published Research 74

3.6 Commercial Software . 76

3.7 Summary . 77

4 An Improved Approach to Network Design 79

4.1 Heuristic Construction . 80

4.2 NSGAII . 84

4.3 Genetic Operators . 85

4.3.1 Crossover . 85

4.3.2 Mutation . 86

4.4 Measuring Population Diversity . 90

4.5 Experimental Method . 91

4.6 Experimental Results . 93

4.7 Genetic Operator Analysis . 98

xiv Contents

4.8 Comparative Results . 107

4.9 Summary . 110

5 Surrogate Models for Network Design 113

5.1 Overview of Surrogate-assisted Optimisation 114

5.2 Proposed Management Strategies . 115

5.3 Proposed Surrogate Models . 116

5.4 Experimental Method for Surrogate Models 119

5.5 Experimental Results for Surrogate Models 120

5.6 Summary . 132

6 Frequency Setting 135

6.1 Preliminary Investigation . 136

6.2 Evaluation with Frequencies Considered 140

6.3 Problem Instance Demand Scaling 144

6.4 Variable Fleet Size . 146

6.4.1 NSGAII . 147

6.4.2 Multi-objective First Descent 149

6.4.3 Multi-objective Tabu Search 150

6.4.4 Neighbourhood Operators 152

6.4.5 Candidate Solution Selection 153

6.4.6 Population Generation . 155

6.4.7 Experimental Method . 156

Contents xv

6.4.8 Experimental Results . 156

6.5 Constrained Capacity . 159

6.5.1 Experimental Method . 160

6.5.2 Experimental Results . 160

6.6 Constrained Capacity & Fleet Size 162

6.7 Discussion: Alternative Approaches to Frequency Setting 163

6.8 Summary . 166

7 Conclusions & Future Work 169

7.1 Conclusions . 169

7.2 Future Work . 173

Bibliography 177

xvi Contents

xvii

List of Publications

Some of the work introduced in this thesis is based on the following publications.

• John, M. P., Mumford, C. L. and Lewis, R. An improved multi-objective algorithm

for the urban transit routing problem. 14th European conference on Evolutionary

Computation in Combinatorial Optimization. EvoCOP’14, Berlin, Heidelberg,

Springer.

• Cooper, I. M., John, M. P., Lewis, R., Mumford, C. L and Olden, A. Optimising

large scale public transport network design problems using mixed-mode parallel

multi-objective evolutionary algorithms. 2014 IEEE Congress on Evolutionary

Computation (CEC), Beijing, China. Evolutionary Computation (CEC), 2014

IEEE Congress on.

xviii List of Publications

xix

List of Figures

2.1 Illustration of the S metric for a bi-objective minimisation problem. . 15

2.2 Undirected graph G . 16

2.3 A connected (a) and unconnected graph (b) 17

2.4 A directed weighted graph. 18

2.5 A sample representation of a transport network (a) with examples of an

invalid (b) and valid (c) route network 20

2.6 (a) Route network – road network with three routes overlaid (b) Transit

network – network used for evaluation 23

2.7 An example transport network (a), route set (b) and resultant route

network (c) . 31

2.8 An example route set with corresponding route label, (a), expanded into

its transit network (b) with transfer edges given in red 32

2.9 Route network extract with two routes. 36

2.10 An example transit network with three routes, each with three identical

transfer vertices . 38

2.11 Removal of the intermediate overlapping transfer vertices in the transit

network . 39

xx List of Figures

4.1 Combined Pareto fronts extracted from twenty runs for the smallest and

largest benchmark instances using Algorithms A-D 96

4.2 Plot of effect on S metric as the population size is increased. 100

4.3 Comparison between population diversity using Algorithm D and Al-

gorithm E . 101

4.4 S metric, Pareto set size and diversity for Mandl and Edinburgh200. . 102

5.1 Relationship between the obtained objective value using the transit

network and route network evaluation schemes for Mandl’s benchmark

instance using Algorithm E . 117

5.2 Relationship between the obtained objective value using the transit net-

work and route network evaluation schemes for the Mumford3 bench-

mark instance using Algorithm E . 117

5.3 Comparison between the number of generations executed under the

different models and management strategies using SEAMO2 under

fixed time limits . 122

5.4 S metric comparison over time for our proposed mathematical models

using Strategy A and SEAMO2. Averaged over 20 runs per generation 125

5.5 Pareto sets for Surr1 and Surr3 using Strategy A with SEAMO2 . . . 126

5.6 Comparison between Pareto sets for Surr4 under Strategy A and the

original algorithm using NSGAII . 127

5.7 S metric comparison over time for our proposed mathematical models

using Strategy A and NSGAII. Averaged over 20 runs per generation . 128

5.8 Comparison between Pareto sets for Edinburgh200 under Strategy A

using NSGAII for the four surrogate models 129

List of Figures xxi

6.1 (a) Original route network (b) Generalised transit network required for

Optimal Strategies evaluation . 142

6.2 Comparison between the decision variables for network design (left)

and frequency setting (right) together with the representation used . . 148

6.3 Pareto set for Edinburgh200 showing network solutions selected for

frequency setting in red . 154

6.4 Pareto fronts for five selected solutions using the Mandl and Edin-

burgh200 problem instances . 157

6.5 Pareto fronts obtained for the network design solutions when apply-

ing frequency setting for the Mumford0F instance with and without a

capcity constraint . 161

6.6 Pareto fronts obtained for the network design solutions when applying

frequency setting for the Edinburgh200 instance with and without a

capcity constraint . 162

xxii List of Figures

xxiii

List of Tables

2.1 Problem Instances. 28

2.2 Mean, minimum and maximum number of vertices in a transit network

for a Pareto set, P , compared with the number of vertices in the original

transport network . 33

2.3 Evaluation time (milliseconds) using the route and transit networks. As-

terisks indicate statistical significance according to a Related-Samples

Wilcoxon Signed Rank test at the p < 0.01 level 35

2.4 Comparison between evaluation time (milliseconds) using the transit

network and Mandl’s [105] proposed evaluation method. Asterisks in-

dicate statistical significance according to a Related-Samples Wilcoxon

Signed Rank test at the p < 0.01 level 37

2.5 Runtime comparison (milliseconds) using the CPU and GPU for eval-

uating the all pairs shortest path upon the transit network. Asterisks

indicate statistical significance according to a Related-Samples Wil-

coxon Signed Rank test at the p < 0.01 level 41

2.6 Runtime comparison (seconds) for the all pairs shortest path on ran-

domly generated graphs using the CPU and GPU 42

xxiv List of Tables

4.1 Best objective values extracted using heuristic seeding for the initial

population (Algorithm B). Mumford’s [114] results are given in brackets.

Passenger demand satisfied in zero transfers, one transfer, two transfer

or unsatisfied (i.e. more than two transfers) is given by d0, d1, d2 and

dun respectively . 94

4.2 S metric comparison over the five benchmark problems for our proposed

modifications . 95

4.3 S metric comparison between SEAMO2 when making a single attempt

at mutation, Algorithm C, and r attempts at mutation, Algorithm C’ . 96

4.4 S metric comparison over the five benchmark with duplicates allowed

and duplicates prevented from entering the population 97

4.5 Percentage of applications of the genetic operators that were successful.

Best performing operator per instance is highlighted in bold 103

4.6 Percentage of dominating solutions produced from a successful applica-

tion of the genetic operator. The percentage of mutually nondominating

solutions is given in brackets. Best performing operator per instance, in

terms of dominating solutions produced, is highlighted in bold 104

4.7 S metric achieved with and without crossover using our proposed al-

gorithm. Asterisks indicate statistical significance according to a Paired

samples t-test at the ** p < 0.01 level 105

4.8 Best objective values obtained across all runs from the passenger per-

spective. CPU time given in seconds. 109

4.9 Best objective values obtained across all runs from the operator per-

spective. Note, results for Nayeem et al. [115] and Kılıç and Gök [92]

are not available in this case. CPU time for each instance is the same at

that given in Table 4.8 . 110

List of Tables xxv

5.1 S metric comparison between the proposed management strategies and

surrogate models using SEAMO2 under fixed time limits. Asterisks in-

dicate statistical significance according to a Related-Samples Wilcoxon

Signed Rank test at the p < 0.01 level 121

5.2 Comparison between the number of generations executed under the

different models and management strategies using SEAMO2 under

fixed time limits . 121

5.3 S metric comparison between SEAMO2 and NSGAII using manage-

ment Strategy A with the four proposed mathematical models 123

5.4 S metric comparison between the original NSGAII algorithm and NS-

GAII using Strategy A and Surr4 using under fixed time limits. As-

terisks indicate statistical significance according to a Related-Samples

Wilcoxon Signed Rank test at the p < 0.01 level 124

5.5 Best objective values extracted using NSGAII under Strategy A with

Surr4 compared with those produced under the original algorithm given

in brackets . 130

5.6 S metric comparison between NSGAII and NSGAII using Strategy A

with Surr4. Both algorithms used GPU based evaluation. Asterisks in-

dicate statistical significance according to a Related-Samples Wilcoxon

Signed Rank test at the * p < 0.05 and ** p < 0.01 level 131

5.7 Runtime comparison (seconds) for the all pairs shortest path on ran-

domly generated graphs using the CPU and GPU 132

6.1 Comparison between all pairs shortest path (APSP) and delta evaluation 139

6.2 Comparison between the demand values for the Mumford problem

instances when scaled . 146

6.3 S metric values for NSGAII and MOFD. 158

xxvi List of Tables

6.4 S metric values for Tabu search compared with NSGAII. 158

6.5 S metric comparison using NSGAII under an unconstrained and con-

strained capacity . 161

xxvii

List of Algorithms

2.1 Floyd’s [60] algorithm for the all pairs shortest path. 33

2.2 Dijkstra’s [48] algorithm for the single source shortest path. 35

3.1 A basic genetic algorithm. 61

3.2 A simulated annealing algorithm. 67

3.3 A basic tabu search algorithm. 69

4.1 Heuristic construction procedure for a route set, R, given a weighted

graph Gi . 83

4.2 Route generation approach of Shih and Mahmassani [133] given a route

set,R, and graph G . 84

4.3 NSGAII. 85

4.4 Merge operator for mutating a routesetR. 88

4.5 Replace operator for mutating a routesetR. 89

4.6 Remove-overlapping operator for mutating a routesetR. 89

4.7 Invert-exchange operator for mutating a routesetR. 90

5.1 Moraglio and Kattan [112] surrogate model based optimisation procedure115

xxviii List of Algorithms

6.1 Frequency Setting Ratio Heuristic to distribute a fleet of vehicles (avail-

able_fleet) over a given route set . 138

6.2 Optimal Strategies calculation of expected travel time from a single

destination vertex, d, to all other vertices 143

6.3 Optimal Strategies assignment of demand for a single destination vertex 144

6.4 Multi-objective first descent with a nondominated archive. 150

6.5 Multi-objective tabu search [77] adapted for minimisation. 151

xxix

Acronyms

ACO Ant Colony Optimisation

APSP All Pairs Shortest Path

BCO Bee Colony Optimisation

CVRP Capacitated Vehicle Routing Problem

DARP Dial-a-Ride Problem

EA Evolutionary Algorithm

FSLC Fixed String Length Coding

GA Genetic Algorithm

GPU Graphics Processing Unit

GPU Graphics Processing Unit

MOEA Multi-objective Evolutionary Algorithm

MOFD Multi-objective First Descent

MOTS Multi-objective Tabu Search

NDP Network Design Problem

NSGAII Nondominated Sorting Genetic Algorithm II

xxx Acronyms

PGA Parallel Genetic Algorithm

PLS Pareto Local Search

SA Simulated Annealing

SEAMO Simple Evolutionary Algorithm for Multi-objective Optimisation

TS Tabu Search

TSP Travelling Salesman Problem

TSP Travelling Salesman Problem

UTNDP Urban Transit Network Design Problem

VRP Vehicle Routing Problem

VRPB Vehicle Routing Problem with Backhauls

VRPPD Vehicle Routing Problem with Pick-up and Delivery

VRPTW Vehicle Routing Problem with Time Windows

VSLC Variable String Length Coding

1

Chapter 1

Introduction

1.1 Background

Public transportation is a key aspect of urban transport infrastructure providing eco-

nomic, social and environmental benefits. In the UK five billion bus journeys are made

each year, with one billion constituting travel to and from work, making up over two

thirds of all public transport usage1. This compares well with the US where a total

of ten billion journeys are made each year on public transport with 5 billion by bus2.

Ridership in the US has increased by over a billion trips in each of the last two decades

highlighting the importance of public transportation. With the increasing pressure upon

global carbon dioxide emissions the role of public transport has been given a renewed

focus. Five percent of CO2 is produced by bus compared with sixty percent from

passenger car trips for the UK road transport sector1. The design of efficient public

transport systems is a matter of urgency to encourage commuters away from the private

car and onto public transport.

An urban transportation system comprises several components ranging from private

transport such as cars, motorcycles and bicycles, to commercial logistics that arrange for

the collection and delivery of goods to council vehicles that maintain the infrastructure

of our towns and cities.

1http://www.greenerjourneys.com/2012/06/did-you-know/
2http://www.apta.com/resources/statistics/Documents/FactBook/2015-APTA-Fact-Book.pdf

2 1.1 Background

In most urban transportation systems the private car has become the dominant means of

transportation for several reasons:

• It is difficult to predict the exact journey time when using public transport due to

unforeseen delays (i.e. buses running late). [136]

• Journey time via car is generally shorter than a similar journey by public transport.

[67]

• Ability to have increased control over the journey (i.e. departure and arrival

times), physical and social environments. [67]

• Safety concerns when waiting for and using public transport (i.e. waiting at bus

stops, travelling at night, transferring in unfamiliar places). [136, 67, 13]

• The need to make transfers when using public transport resulting in extra waiting

time and a less comfortable journey. [13]

• A relatively small number of access points to public transport (e.g. bus stops)

results in passengers having to walk a greater distance than their private car

counterparts. [13]

Despite these obstacles the importance of public transportation cannot be overlooked.

The use of public transportation could reduce many of the issues faced by the modern

urban transport system. An increase in public transport patronage would reduce the

number of vehicles on congested roads, reduce pollution and possibly lead to shorter

travel times due to the reduction in congestion.

Public transportation in an urban area can be composed of several different modes

including train, tram, bus and underground services. A co-ordinated approach using the

different modes available can result in a reduction in many of the negative effects posed

by the use of the private car. Well designed and co-ordinated operations could reduce

the waiting time incurred when transferring, reducing the overall transportation time.

1.1 Background 3

The usage of public transport can clearly result in a number of benefits. However, a

reduction of funding for public transport in the UK has reduced patronage with many

preferring to have a comfortable more convenient journey in their car.

Some modes of public transport are more flexible than others, and can adapt more easily

to changes in the community they serve. For example, a set of bus routes are far easier

to adapt or change compared with the fixed infrastructure of an underground system.

As such, buses should form a core part of the urban transport system that must provide

frequent services, minimise the waiting and in-vehicle travel time for passengers and

avoid the need to transfer between vehicles. This must be balanced with the cost of

operation for the network operator. In practice many passengers face infrequent or

unreliable services that make no attempt at minimising the number of transfers required.

In the UK, public transport was deregulated by the 1985 Transport Act resulting in the

vast majority of bus routes and schedules now being designed by bus companies (an

exception being London where Transport for London decides the routes). Under this

approach the bus companies will want to maximise their profits whilst maintaining an

adequate service to the public.

This is not a consistent approach all over the world with local authorities deciding the

routes and associated schedules in some areas. The local authority will place emphasis

on the passenger requirements. Nevertheless, local transport policies and regulations

must be observed [150] to ensure a satisfactory service is provided, otherwise it will not

be used.

In the UK local authorities are held accountable by the local community who subsidise

the operation of the routes and may therefore find it hard to justify under-utilised

services. In some areas local authorities may subsidise a low demand service to maintain

a minimum level of service on a non-profit route, such those in rural areas. On the other

hand routes that do not receive public subsidies must be operated to provide a service

that is commercially viable, meaning that some services may be limited in terms of

route length or number of buses operating.

4 1.1 Background

In the UK central government cuts due to the recession of 2008 have resulted in many

local authorities cutting local bus routes, this is being felt especially in rural areas

such as Wales. Recent BBC News articles have highlighted that from 2011 to 2014

nearly 100 subsidised bus routes have been discontinued by local authorities in Wales.

Accounting for nearly one in seven bus routes across nineteen councils3,4. Effective bus

service planning has been given an increased focus in the public domain in part to the

cuts to bus services. The Welsh government has set aside £100,000 to analyse how bus

companies and councils can work together to cut costs, plan routes and co-ordinate their

timetables to meet passenger demand5.

It is our belief that a software tool to help in the design of transport networks is warranted.

Given the economic climate the need for cost efficient services is paramount. Further-

more, with the discontinuation of services by some bus companies, a software tool to

help with the incorporation of these routes into other networks may be advantageous.

Compared with road and rail investment bus services are particularly undervalued.

In June 2013 the UK Treasury announced that it would be investing £15.1 billion

in the UK’s strategic roads by 2021 to counter the effects of past under investment

[47]. A further £12 billion has been set aside for maintaining the current network.

Similar investment has also been earmarked for Britain’s rail network with Network

Rail, the body for maintaining the network, investing £38 billion in tracks and stations6.

Investment on this scale is not seen for bus transportation with bus companies themselves

having to provide the funds for new vehicles in most cases. An exception to this is the

Green Bus Fund worth £87 million to provide 1200 low carbon buses in England7.

Greener Journeys8 is a national campaign with the backing from several major bus

companies in the UK. Their aim is to encourage a shift from the private car to bus

3http://www.bbc.co.uk/news/uk-wales-26276565
4http://www.bbc.co.uk/news/uk-wales-26262972
5http://www.bbc.co.uk/news/uk-wales-27102732
6http://www.bbc.co.uk/news/business-26810369
7https://www.gov.uk/government/news/12-million-boost-for-greener-bus-journeys
8http://www.greenerjourneys.com

1.2 The Urban Transit Network Design Problem 5

and coach travel. In 2012 Greener Journeys commissioned a report and found that

bus commuters generate £45 billion of economic output with retail spend by bus users

estimated at £21 billion [103]. Nearly a third of businesses would like to see improved

transport links with other cities, with a quarter wishing to see improvements in public

transport [147].

1.2 The Urban Transit Network Design Problem

The problem of designing an urban transportation network is commonly referred to as

the Urban Transit Network Design Problem (UTNDP). The UTNDP can be divided into

five main stages identified by Ceder and Wilson [24], these are: 1) network design, 2)

frequency setting, 3) timetable development, 4) bus scheduling and 5) driver scheduling.

These stages were grouped by Chakroborty [25] to produce the Urban Transit Routing

Problem, consisting of solely network design, and the Urban Transit Scheduling Problem

containing the remaining four stages.

The aim of the UTNDP is to construct an efficient set of routes and associated schedules

that balance the cost to the operator whilst providing an adequate level service to the

public. Passengers would like frequent services that provide direct travel between

their origin and destination in an acceptable time. However, the network operator has

constrained resources (i.e. vehicles, drivers) that must be used to provide services for

the entire public transit network. Any attempt to design a public transport network must

trade-off the cost to the operator with the service level provided to passengers.

Historically, route planners have used a combination of local knowledge and simple

guidelines to produce route sets [114]. Several major studies (see [118, 154]) have

identified the need for automated computer based tools for the design and evaluation of

public transport networks. Automation is, however, highly complex and computationally

expensive due to the large search space and multiple constraints involved in public

transportation planning. To allow for the (re)design of transit networks there is a need

6 1.2 The Urban Transit Network Design Problem

for alternative approaches that may only evaluate solutions approximately (referred to

as surrogate models) but provide significant reductions in computation time.

The increase in congestion, pollution, greenhouse gas emissions and dwindling oil

resources have placed emphasis on the use of public transport in recent years in an

attempt to reduce the reliance of the private car. Achieving an increase in public

transportation usage is clearly desirable but is also an extremely complex issue. However

frequent and reliable cost-effective services are clearly key attributes.

Bagloee and Ceder [7] have recently pointed out that many public transit networks have

not been reappraised from anywhere between 20 to 50 years. Land use patterns have

changed considerably in this time period with the migration away from town centres

into surrounding suburban areas; however public transport has been relatively slow to

respond. It is our view that the development of automated tools to aid public transport

networks is timely.

As mentioned previously the UTNDP concerns the design of a set of routes with a

corresponding schedule to meet the demands of an urban transit system – this can be rail

or bus, for example. The routes themselves must not be created independently, as they

function as a collective allowing passengers to reach their destinations by using more

than a single route via transfers. The design of routes must balance several conflicting

objectives such as a minimum operating cost and a minimum passenger cost.

Network design attempts to determine an efficient set of routes (assume bus routes for

simplicity) on an underlying transport network with a set of pre-determined pickup and

drop off locations (e.g. bus stops). Note that determining the location of stops might

also be part of the UTNDP although we assume that these have already been selected.

The aim of this thesis is to redesign existing bus networks, to improve the efficiency

for both operator and passenger. To achieve this, we must obey the problem constraints

that are introduced in Chapter 2. In this thesis, we are concerned with redesigning the

route network, whilst maintaining the existing infrastructure, in terms of of the physical

location of bus stops and roads used.

1.3 Main Contributions 7

Frequency setting sets the number of buses that will then operate on each of the routes

created in the previous process while obeying constraints such as the fleet size and the

capacity of buses operating the routes.

Timetable development assigns the departure and arrival times of buses at the stops

specified by the routes and frequencies set earlier. Bus and driver schedules are then

created to assign buses to the routes and the drivers to buses.

Clearly the optimum goal would be to optimise all aspects of the UTNDP simultaneously

as they are heavily dependent upon one another. However, as stated by Chakroborty [25,

p. 185], “given the complexity of the transit routing and scheduling problems, this is not

felt to be possible, especially when the routing and scheduling problems are formulated

realistically”.

1.3 Main Contributions

The main contributions of this thesis are:

• A novel heuristic construction algorithm for creating route sets to be used during

network design.

• A multi-objective approach to network design combining several mutation operat-

ors and crossover operators from the literature with an evolutionary framework

that is able to outperform the state of the art.

• Three mutation operators for the network design problem.

• An assessment of alternative evaluation methods and graph topologies highlight-

ing their suitability and issues for calculating the passenger travel time in the

network design problem.

• An analysis of the effectiveness of the genetic operators used for network design.

8 1.4 Thesis Structure

• The presentation of four surrogate models for use with the network design problem

and provide an empirical evaluation demonstrating their effectiveness and ability

to produce improved approximate Pareto sets under constrained running times.

• The empirical evaluation of the effectiveness of three metaheuristic approaches to

frequency setting.

• A discussion of the difficulties integrating network design and frequency setting

together with alternative strategies for tackling the two problems.

1.4 Thesis Structure

Problem definition and formulation: this chapter first introduces concepts from op-

timisation and graph theory that are fundamental for the UTNDP. The subproblems

of network design and frequency setting are then formulated and covered in greater

detail. Problem instances used for the experimental work in this thesis are then defined

and their methods of generation are described. Methods for evaluating the passenger

cost are then discussed and empirically evaluated. It is found that a specialised graph,

referred to as the transit network, is the least computationally expensive method for

the identification of passenger transfers and the calculation of the passenger objective.

Finally we cover the underlying concepts of computational complexity before providing

a proof that the network design problem is NP-Complete.

Literature review: a brief overview of vehicle routing problems is first presented and

similarities with the UTNDP are highlighted. Approaches for tackling the network

design problem are then discussed in three stages: 1) mathematical approaches, 2) heur-

istic approaches, and 3) metaheuristic approaches. Methods for solving the frequency

setting problem are then reviewed before discussing the limitations of previous research

for the network design and frequency setting problems. Commercial software for the

design of public transportation networks is then presented.

1.4 Thesis Structure 9

An improved approach to network design: this chapter introduces our proposed

approach to network design based upon our work in [88]. Firstly a novel heuristic

procedure for generating initial solutions is detailed followed by an overview of the

nondominated sorting genetic algorithm II (NSGAII) framework. The genetic operators

used in this thesis are then introduced and described in detail. Our experimental approach

and results are then presented. It is shown that the incorporation of our heuristic seeding

and the combination of several mutation operators leads to improved results. An analysis

of the performance of our genetic operators is then undertaken showing that improved

performance, in terms of the number of dominating and nondominating solutions

produced, is achieved as the problem size increases. A comparison is then made

between our proposed method and the state of the art from the literature. Our proposed

approach is able to achieve the best objective value from the passenger perspective in

six out of the seven instances and for all the instances from the operator perspective.

Surrogate models for network design: to reduce the computation time of our network

design algorithms we present several approximations for evaluating the passenger

objective. These approximations, more formally defined as surrogate models, are

empirically evaluated with each other and also with an alternative approach that uses

a GPU (GPU)). We demonstrate that removing the reliance on the original objective

function allows for improved results in terms of metric value. It is also shown that

by incorporating more information into the mathematical model improved results are

achieved.

Frequency setting: this chapter presents our approach to frequency setting. A heuristic

approach is first described that is used to show that route sets from network design can be

improved, from the passenger perspective, by augmenting the frequency on each route.

An assignment model from the literature is then presented for calculating passenger

travel paths and assigning passengers to routes. Three metaheuristic approaches are

then discussed and evaluated empirically for optimising the frequencies on a route set.

Constraints are then introduced upon the available fleet size and capacity of vehicles

10 1.5 Summary

where it is shown that route sets produced during network design are generally unsuitable

for frequency setting. Finally the limitations of our approach to frequency setting and

network design are summarised together with alternative strategies for tackling the two

problems.

Conclusions & future work: provides a summary of our findings and several op-

portunities for future work on network design, frequency setting and UTNDP as a

whole.

1.5 Summary

This chapter has introduced the background to the UTNDP and the need for algorithms

to aid in the designing of public transportation networks. The five stages of the UTNDP

were summarised with a focus on the network design and frequency setting stages –

the focus of this thesis. Finally the main contributions of this thesis were listed before

providing an overview of the structure of this thesis. In the next chapter we introduce

the terminology used throughout this thesis and the formulations we use for the network

design and frequency setting problems.

11

Chapter 2

Problem Definition and Formulation

In the previous chapter we noted that there are many stages involved in solving the

UTNDP. In this chapter we define the two stages that are the focus of this thesis, the

network design and frequency setting problems. We first provide background into

the optimisation and graph theory that is used to provide the problem formulations

used throughout this thesis. Network evaluation is then presented from the passenger

perspective and shown to be a time consuming task that must be conducted on a

specially constructed graph. A number of alternative approaches for the evaluation of

the passenger objective are presented and shown to be unsuitable due to the need to

include passenger transfers. This is followed by a discussion of the complexities of the

UTNDP in general. Finally we introduce the theory of computational complexity and a

proof that the network design problem is NP-Complete.

2.1 Optimisation

In mathematics and computer science optimisation is the selection of the best element

from a set of alternatives given some criteria on which to base the decision. Generally

the determination of the best element will be made via a function that takes a feasible

solution from the search space and maps it to the set of real numbers. More formally

we can state an optimisation problem as follows, given a function f : S → R from

some set S to the set of real numbers, the aim is to determine an element x̄ ∈ S

12 2.1 Optimisation

such that f(x̄) ≤ f(x) ∀x ∈ S in the case of a minimisation problem, or such that

f(x̄) ≥ f(x) ∀x ∈ S for a maximisation problem.

The domain S of f is called the solution space, the elements of S are referred to as

candidate solutions and f is called the objective function. A solution that optimises

the objective function subject to any problem specific constraints is called a globally

optimal solution. [22, 33]

Problems that have a structure such as that described above are referred to as single-

objective optimisation problems. Many problems can have several conflicting criteria

that need to be optimised simultaneously such as the UTNDP where the cost to the

network operator must be balanced with the level of service offered to passengers. Prob-

lems that share such a structure are referred to as multi-objective optimisation problems

and can require the minimisation or maximisation of a set of objective functions or a

combination of both. Without loss of generality a multi-objective minimisation problem

can be formally defined as:

minimise {f1(x), f2(x), . . . , fk(x)} subject to x ∈ S (2.1)

with k ≥ 2 objective functions fi : S → R. Members of S are no longer solu-

tions but decision vectors with the vector of objective values denoted by f(x) =

{f1(x), f2(x), . . . , fk(x)}T . The decision vector x = {x1, x2, . . . , xk}T belongs to S.

In multi-objective optimisation there is no longer the distinction of a globally optimal

solution. The goal is to produce good compromises, often referred to as trade-offs,

rather than a single solution.

Pareto optimality was put forward by Vilfredo Pareto [123] and refers to the situation

where it is impossible to make an improvement to the value of one of the objectives

in a solution without simultaneously degrading the value of one or more of the other

objectives. Formally, a solution x ∈ S is said to be Pareto optimal with respect to S if

2.1 Optimisation 13

and only if there is no x′ ∈ S for which f(x′) = {f1(x′), f2(x′), . . . , fk(x′)} dominates

f(x) = {f1(x), f2(x), . . . , fk(x)}. [33]

A vector u = {u1, u2, . . . , uk}T is said to dominate another vector v = {v1, v2, . . . , vk}T ,

denoted by u ≺ v, if and only if ∀ i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃ i ∈ {1, . . . , k} : ui < vi,

in the case of a minimisation problem. Given a set of decision vectors P , the nondomin-

ated set or approximate Pareto set of decision vectors P ′ are those that are not dominated

by any member of P . When P is the entire search space the resulting nondominated set

P ′ is referred to as the Pareto optimal set. [43]

Evolutionary algorithms use the concept of Pareto optimality to find a set of solutions

in a single optimisation run [33]. This is in contrast to classical approaches to multi-

objective optimisation, such as weighted sum and ε-constraint, that produce a single

optimised solution by modifying a single solution in each iteration [43]. The weighted

sum approach optimises a weighted sum of objective functions allowing any single

objective optimisation algorithm to be used. Each objective function fi(x) is assigned a

weight wi > 0 determined by the user and the goal is to minimise
∑k

i=1wifi. Although

the weighted sum method is simple to implement it is highly sensitive to the assigned

weights.

The ε-constraint method minimises one objective whilst assigning constraints to the

worst value the remaining objectives are allowed to take. We therefore optimise fi(x)

subject to the constraint that fj(x) ≤ εj for all i 6= j where εj is the worst value fj(x) is

allowed to take. A difficulty with this approach is the need to preselect which objective

function will be optimised and the value of εj .

2.1.1 Multi-objective Performance Metrics

Evaluating the performance of multi-objective algorithms is key for enabling accurate

comparisons of different algorithms. However, Deb and Jain [45] state that “the com-

parison of two nondominated set of solutions is not a straightforward matter, because of

14 2.1 Optimisation

the dimensionality involved in the sets” [45, p. 3] [94]. In multi-objective optimisation

there are two distinct goals: 1) to find solutions as close as possible to the Pareto optimal

set, and 2) discover solutions as diverse as possible in the nondominated set [43]. For

measuring the achievement of these goals Deb [43] classified performance metrics into

three categories: 1) metrics for convergence, 2) metrics for diversity, and 3) metrics for

both convergence and diversity.

Metrics for convergence compute a measure of the closeness of a set of solutions from

a known set of Pareto optimal solutions or equation where the relationship between

decision variables is known. If no Pareto optimal set exists then a set of solutions

that offer a good approximation are often used. As there are no published Pareto

sets for any publicly available benchmark instances for the UTNDP we refrain from

using convergence metrics. Metrics for diversity measure the range of solutions in a

nondominated set and under Deb’s categorisation also analyse the spread of solutions.

Metrics for both convergence and diversity “can only provide a qualitative measure

of convergence and the diversity, nevertheless they can be used along with one of the

above metrics to get a better overall evaluation” [43, p. 332].

Schott [131] introduced a spacing metric, classified by Deb as a measure for diversity,

to determine how evenly solutions in the Pareto set, P , are distributed in the objective

space. The Schott spacing metric, D, is calculated as given by:

D =
1

|P| − 1

|P|∑
i=1

(d̄− di)2 (2.2)

where di = minj(|f1(xi) − f1(xj)| + |f2(xi) − f2(xj)|) ∀ j ∈ {1, . . . , |P|} and d̄ is

the average of all di. A value of zero for this metric would indicate a perfect spacing of

solutions i.e. all solutions in the Pareto set are equally spaced from one another.

A metric for convergence and diversity is the S metric or “hypervolume indicator”

proposed by Zitzler and Thiele [156] and later improved in [155]. The S metric

measures how much of the objective space is dominated by a given nondominated set,

2.1 Optimisation 15

P . In the case of a minimisation problem we define a reference point r = (r1, . . . , rk)

where k is the number of objectives. The reference point selected should be “worse”

than the “good” solutions i.e. the reference point should be greater than the maximum

objective value for each dimension. We can now formally define the S metric for a

Pareto set P as:

S(P) = Vol(
⋃
u∈P

E(u, r)) (2.3)

where E(u, r) = {v | ui ≤ vi ≤ ri, i = 1, . . . ,m} [157].

The S metric gives the volume of the union of the polytopes p1, p2, . . . , pt where each

pi is formed by the hyperplane perpendicular to the reference point and passing through

the point (f1(x), f2(x), . . . , fk(x)). Figure 2.1 shows the hypervolume denoted by the

hatched area between a reference point r and set of nondominated solutions.

f1

f2

r

Figure 2.1: Illustration of the S metric for a bi-objective minimisation problem.

2.1.2 Combinatorial Optimisation

Combinatorial optimisation is a special type of optimisation that attempts to find an

optimum solution from a finite set of solutions. The set of finite solutions usually has a

16 2.2 Graph Theory

concise representation such as a graph or a permutation, but the number of solutions in

the set can be very large. In fact the number of solutions grows exponentially as the

size of the problem increases. This makes methods based around exhaustive search

impractical resulting in the need for more efficient methods. [132]

2.2 Graph Theory

A graph G = (V,E) consists of a finite nonempty set V of vertices and a set E, disjoint

from V , of edges. An incidence function, ψG, is also associated with a graph G that

associates each edge in G with an unordered pair of vertices in G. If e is an edge and u

and v are vertices such that ψG(e) = {u, v} then e is said to join u and v. The vertices

u and v are said to be incident to the edge e and are known as the end points. A graph

such as this is known as an undirected graph as shown in Figure 2.2.

G = (V,E)
V = {v0, v1, v2, v3}
E = {e0, e1, e2, e3, e4, e5}
ψ(e0) = {v0, v1} ψ(e1) = {v0, v2}
ψ(e2) = {v0, v3} ψ(e3) = {v1, v2}
ψ(e4) = {v1, v3} ψ(e5) = {v2, v3}

v0

v1 v2

v3

Figure 2.2: Undirected graph G

A pair of vertices u and v are adjacent if and only if there exists an edge whose ends

are {u, v}. The set of all adjacent vertices to vi ∈ V is known as its neighbourhood,

ΓG(vi) = vj ∈ V : {vi, vj} ∈ E. The degree of a vertex v in a graph G, denoted by

degG(v), is the number of edges incident with v. The minimum and maximum degrees

of a graph G are denoted by δ(G) and ∆(G) respectively.

An edge with two identical ends is called a loop and an edge with distinct ends is called

a link. A graph is “simple” if it is undirected, unweighted and there are no loops or

2.2 Graph Theory 17

parallel edges. A graph is “complete” if every pair of vertices are adjacent. Removal of

one or more vertices V ′ ⊆ V and/or edges E ′ ⊆ E from a graph G results in a subgraph

G′(V ′, E ′). We refer to a spanning subgraph as a graph G′ = (V,E ′), in other words a

graph that contains all the vertices in G but a subset of its edges.

A walk in a graph G is a sequence W = v0e1v1e2 . . . envn, whose terms are alternating

vertices and edges of G, such that vi−1 and vi are the end of ei, 1 ≤ i ≤ n. If a walk

contains no repeated edges it is called a trail. A trail with no repeated vertices is called

a path. A path that has identical vertices at each end (v0 = vn) is called a cycle.

A graph that contains a walk between every pair of vertices is said to be connected. A

graph without a walk between every pair of vertices is said to be unconnected with a

vertex having degree zero termed as “isolated”, see Figure 2.3.

1

2

3 4

5

6

(a)

1

2

3 4

5

6

(b)

Figure 2.3: A connected (a) and unconnected graph (b)

In some situations a simple graph does not suffice. Consider modelling a road network.

Here, not all streets are bi-directional; therefore we need to indicate in which way traffic

is allowed to flow. To accomplish this each link must be assigned an orientation. A

graph with such a structure is called a directed graph. A directed graph D consists of a

finite non-empty set of vertices V and a set E, disjoint from V of arcs, together with an

incidence function ψD that associates each arc of D to an ordered pair of vertices i.e.

(u, v) 6= (v, u). Let a be an arc and ψD(a) = (u, v), the vertex u is said to be the tail of

a and vertex v is its head. The vertices which dominate a vertex v are its in-neighbours,

those which are dominated by the vertex its out-neighbours, denoted N−D (v) and N+
D (v)

respectively.

18 2.3 Network Design Problem

When modelling practical problems there is often the need to associate a cost with an

edge. Consider again a road network, if we want to find the shortest path between

two vertices each edge must have an associated cost to indicate the length of the road

or travel time required to traverse the edge. With each edge e ∈ E we associate a

real number w(e) called the weight. The graph G, together with these edge weights,

is called a “weighted graph”. A weight can be assigned to an edge or arc resulting

in a weighted undirected graph or weighted directed graph respectively. An example

weighted directed graph is given in Figure 2.4.

1

2 3

4

106

4

1

9

14

2 11

Figure 2.4: A directed weighted graph.

2.3 Network Design Problem

As mentioned previously network design is concerned with the determination of an

efficient set of routes that balance the cost to both passenger and network operator. In a

transport network adjacent vertices (e.g. bus stops) are connected with an edge. A route

is the concatenation of a series of adjacent vertices that when combined together form a

path. A route set is formed by collating a number of routes together.

In our problem formulation a route set should contain all the vertices present in the

transport network but may not contain all of the edges i.e. the union of all the routes in

the route set should form a spanning subgraph of the transport network. However, if

several bus companies are servicing an area, the transport network may contain a subset

2.3 Network Design Problem 19

of vertices i.e. vertices may be removed from the transport network if they are already

serviced by another network operator. The routes should also be connected (each route

should share at least one vertex in common with at least one other route) allowing all

vertices in the network to be reached by means of transfers if necessary.

Demand is the volume of passengers who wish to travel from one point in the network

to another. Accurate demand figures are inherently hard to obtain and also vary over the

time of day. It can be estimated in one of several ways: examining ticket sales, a survey

of the local population, or undertaking a public and private vehicle analysis [9]. It is

also difficult to estimate due to its variability and reliability on the current configuration

of routes. It is important to note that demand is point to point and does not give a flow

of passengers between an origin and destination. By this we mean the demand should

not be assigned such that it shows the path through the network passengers take.

Point to point demand is an important criterion for the network design problem. If

instead demand gave the passenger flow, i.e. the paths passengers take through the

network, then the effects of a redesign would be limited. Network design requires the

ability to change the path a passenger takes through the network dependent upon the

current route set configuration.

Passenger flows have a greater importance when considering vehicle capacity. Given

the path(s) passengers take through the network, passenger volume can be assigned

to each leg of a route. Each route also has an associated frequency. We can therefore

determine if the volume of passengers can be accommodated on the route given the

capacity of vehicles operating upon it. As such, it is key that passenger flows are only

assigned to the network after a redesign has taken place.

We adopt the convention of Chakroborty [25] and Yu et al. [152] similar to Fan [53] in

his doctoral thesis to define an “efficient route set” as follows:

1. The entire demand is served, as such, all passengers can reach their destinations

within an allowed number of transfers. It is assumed that a passenger will not use

20 2.3 Network Design Problem

public transport it they are required to make more than two transfers to reach their

destination.

2. The majority of demand is served directly – passengers do not need to make a

transfer to reach their destination.

3. The average travel time per passenger is low.

4. High network efficiency, i.e. prioritising the layout of those transit routes with the

highest demand.

1

2

3

4

5

6

7

(a)

1

2

3

4

5

6

7

(b)

1

2

3

4

5

6

7

(c)

Figure 2.5: A sample representation of a transport network (a) with examples of
an invalid (b) and valid (c) route network.

Our formulation of the network design problem which forms part of the UTNDP

can be formally stated as follows. We are given a graph G = (V,E,W) where

V = {v1, . . . , vn} is a set of vertices, E = {e1, . . . , em} is a set of edges and

W = {w1, . . . , wm} a set of weights that define the cost to traverse edge ei. We

are also given a matrix Dn×n where Dvi,vj gives the passenger demand between a pair

of vertices vi and vj .

A route Ri is defined as a simple path (i.e. no loops/repeated vertices) through the graph

G. Let GRi
= (VRi

, ERi
) be the subgraph induced by a route Ri. A solution is defined

as a set of overlapping routes R = {R1, . . . , Rr} where the number of routes, r, and

2.3 Network Design Problem 21

the minimum, m1, and maximum, m2, number of vertices in a route are specified by the

user. In order forR to be valid the following conditions must hold:

|R|⋃
i=1

VRi
= V (2.4)

m1 ≤ |VRi
| ≤ m2 ∀Ri ∈ R (2.5)

∀Ri ∈ R ∃Rj ∈ R s.t. Ri ∩Rj 6= ∅ (2.6)

GR = (

|R|⋃
i=1

VRi
,

|R|⋃
i=1

ERi
) is connected (2.7)

|R| = r (2.8)

Constraint (2.4) ensures that all vertices in V are covered by at least one route in

R, while Constraint (2.5) specifies that each route should contain between m1 and

m2 vertices (these values are based on considerations such as driver fatigue and the

difficulty of maintaining the schedule [154]). Constraint (2.6) ensures that each route

shares at least one vertex in common with another route, therefore allowing passenger

transfers. Next, Constraint (2.7) specifies that at least one path should exist between

each pair of vertices in GR. If Constraint (2.4) is satisfied then GR = (V,
|R|⋃
i=1

ERi
).

Finally, Constraint (2.8) ensures that the solution contains the correct number of routes

r.

For this problem formulation, the following assumptions are made:

1. A vehicle travels back and forth along the same route, reversing its direction each

time it reaches its terminal vertices. The physical road segments that are traversed

22 2.3 Network Design Problem

may differ between the outbound and inbound journeys. For example, a vehicle

may travel a one-way street on the outbound journey requiring an alternative for

the inbound journey. It is important to note that although physical road segments

may differ, the stops visited on outbound and inbound journeys are identical.

2. A passenger’s choice of routes between any two vertices is based only on shortest

travel time (which includes transfer penalties) – see below.

When designing route sets in this way, the frequency of services is not yet determined.

Thus two further assumptions also need to be made:

3. There will always be sufficient vehicles on each route Ri ∈ R to ensure that the

demand between every pair of vertices on the route is satisfied.

4. The transfer penalty (representing the inconvenience of moving from one vehicle

to another) is set as a fixed constant. In this study a fixed value of 5 minutes is

used in line with previous works [26, 133, 55, 114, 88].

For our problem formulation both the passenger cost and operator cost are considered.

In general, passengers would like to travel to their destination in the shortest possible

time, whilst avoiding the inconvenience of making too many transfers. We denote

the shortest time to travel between two vertices in the route set R as αvi,vj(R). A

path may include both transport edges and transfer edges (a transfer edge facilitates

the changing from one vehicle to another with the associated time penalty). This is

shown in Figure 2.6 with an example network expanded to include transfer vertices and

transfer edges. The shortest path evaluation is thus completed on the transit network in

Figure 2.6(b). The minimum journey time, αvi,vj(R), from any given pair of vertices is

thus made up of the sum of two components: in vehicle travel time and transfer penalty.

We define the passenger cost for a route set R to be the mean journey time over all

2.3 Network Design Problem 23

passengers:

F1(R) =

∑n
i,j=1Dvi,vjαvi,vj(R)∑n

i,j=1Dvi,vj

(2.9)

1

2 3

4 5

6

(a)

1

1

2

2

3

4

4

5

5

5

6

(b)

Route 1
Route 2
Route 3
Transfer Edge

Figure 2.6: (a) Route network – road network with three routes overlaid (b)
Transit network – network used for evaluation.

Operator costs, on the other hand, depend on many factors, such as the number of

vehicles needed to maintain the required level of service, the daily distance travelled

by the vehicles and the costs of employing sufficient drivers. Operators tend to favour

shorter routes due to the ease of timetabling and scheduling, whereas passengers favour

longer routes. It is obvious that longer routes include more vertices, providing an

increase in the number of passengers who can reach their destination without making a

transfer, thus resulting in a lower average passenger travel time. We use a simple proxy

for operator costs: the sum of the costs (in time) for traversing all the routes in one

direction, as suggested by Mumford [114]:

F2(R) =
∑
∀Ri∈R

∑
∀ej∈ERi

wj (2.10)

Although F2 may seem overly simplistic to accurately reflect the operator cost it, in

fact, provides a good model. The sum of the route lengths can be used to determine

24 2.4 Frequency Setting Problem

the number of vehicles required to maintain a given level of service, providing that

we assume a constant frequency on all routes. In our case we assume a frequency of

one vehicle every ten minutes giving an average waiting time of five minutes (i.e. the

transfer penalty).

2.4 Frequency Setting Problem

As discussed previously frequency setting determines the number of vehicles required

to operate the routes. The number of vehicles is determined by the vehicle headway,

defined as the separation between two vehicles operating the same route. The frequency

of the route is given by one over the headway. Frequency setting directly impacts the

schedule to which vehicles operate on the route network. The schedule defines the

arrival and departure times of vehicles (buses) at predefined pick-up and drop off points

(e.g. bus stops). Frequency setting aims to minimise the passenger waiting time at each

stop whilst ensuring that the operational cost is not excessive. The time that a passenger

has to wait is composed of two components:

• Initial waiting time – this is the time from arrival at the point of origin to boarding

the first vehicle.

• Transfer waiting time – the time a passenger must wait for a successful transfer

to occur.

The passenger waiting time has to be balanced against the cost of operation and any

operational constraints:

• Limited bus capacity – capacity on buses is limited and a fleet may contain buses

of varying capacity.

• Limited fleet size – the operator has a finite number of vehicles available to

operate the routes.

2.4 Frequency Setting Problem 25

• Minimum level of service – given a route, a minimum frequency should be

maintained at all times.

• Minimum and maximum stopping times – vehicles should not stop at predefined

locations for a very short or very long period of time.

• Minimum and maximum transfer time – transfer times should not be excessively

long.

The creation of effective frequencies is complex due to the non-deterministic nature of

the real world. People arrive at bus stops stochastically and buses themselves can arrive

early or late due to traffic conditions or the time required for boarding and embarking

of passengers. When setting frequencies these issues need to be incorporated such

that excessive queues do not form, thereby disadvantaging passengers (although some

queues are expected at stops otherwise the service would not be cost effective). On the

other hand, buses should not be empty whilst on their route as this is uneconomical to

the operator. Well defined frequencies should minimise if not prevent these situations

from occurring.

Transfers play a crucial role in any public transport system with research conducted into

coordinated and uncoordinated operations (see [133]). In the coordinated transit system

the frequency of vehicles and the time for which they remain at a stop is carefully

controlled. Controlling the frequencies in this manner allows for vehicles to arrive at a

transfer hub and passengers to board a waiting vehicle for the next leg of their journey,

without incurring a significant waiting time.

Transport for London [61] guidelines for bus service planning suggest that where there

is adequate demand, frequencies should allow for “turn-up-and-go” services. Services

that run reliably every twelve minutes or less are considered to be “turn-up-and-go”,

with passengers consulting a timetable for services with a frequency less than this.

The frequency of a route dictates the number of vehicles and hence its capacity – the

number of passengers that can be transported. A frequent service will produce a higher

26 2.4 Frequency Setting Problem

capacity as more vehicles are traversing the route. Route frequency should be set to

provide an adequate capacity at the busiest times and places [61]. Transport for London

highlight general guidelines for service frequency. When the headway between vehicles

is ten minutes or more passengers should be able to board the first vehicle that arrives

at their stop. When the headway between vehicles is less than ten minutes passengers

should not wait longer than ten minutes before being able to board a vehicle.

Operation of a reliable service in terms of maintaining a constant frequency is challen-

ging due to delays faced when passengers embark and disembark a vehicle together with

congestion and other road related issues. The impact of such delays can be minimised

by allocating recovery time to routes at terminal vertices. The recovery time required is

dependent upon the route length – longer routes may encounter more delays requiring a

greater recovery time.

To allow passengers to easily remember timetables the headways of vehicles should be

constant allowing for the construction of clock-face timetables. Clock-face timetables

are timetables where a vehicle departs when the minute hand is at the same place every

hour (i.e. 7:30, 8:30 etc.). [61]

In our definition of the frequency setting problem we are given a graph G = (V,E)

where V = {v1, . . . , vn} is a set of vertices and E = {e1, . . . , em} is a set of edges. We

are given:

• A weight for each edge, Wei , which defines the time it takes to traverse edge ei;

• A matrix Dn×n where Di,j gives the passenger demand between a pair of vertices

vi and vj .

We are also given a route setR containing r routes. A frequency, fi, must be defined

for each Ri ∈ R and a solution is a set of frequencies F = {f1, . . . , fr} such that

the average travel time for passengers is minimised along with the number of vehicles

required to operate the routes.

2.4 Frequency Setting Problem 27

For this problem formulation, the following assumption is made:

1. There will always be sufficient vehicles on each route Ri ∈ R to ensure that the

demand between every pair of vertices on the route is satisfied

For this problem both the passenger cost and operator cost are considered. Passengers

do not travel from their origin to destination on a single path but may use several

paths depending upon the frequency of service. The optimal strategies assignment

model proposed by Spiess and Florian [135] is used to obtain the expected travel time,

with frequencies considered, between an origin vertex, vi, and a destination vertex, vj ,

denoted ui,j . We define the passenger cost for a route setR with frequencies F to be

the mean journey time over all passengers:

F3(R,F) =

∑n
i,j=1Dvi,vjui,j∑n

i,j=1Dvi,vj

(2.11)

For the operator cost we use the required fleet size. We assume that the network is

operated by a homogeneous fleet of vehicles each with a maximum capacity Cmax. The

operator cost is given by the number of vehicles that will be required to operate the

network given the set of frequencies F :

F4(R,F) =
∑
∀fi∈F

2fi
∑
∀ej∈Ri

Wej (2.12)

To reduce the size of the search space we discretise the set of allowed frequencies

similar to Martínez et al. [107]. For our case we use the following set of frequencies

θ = {1
5
, 1
6
, 1
7
, 1
8
, 1
9
, 1
10
, 1
12
, 1
14
, 1
16
, 1
18
, 1
20
, 1
20
, 1
25
, 1
30
} corresponding to twelve buses an

hour to two buses an hour.

28 2.5 Problem Instances

2.5 Problem Instances

For this work we use seven problem instances: Mandl’s Swiss road network [105],

four instances produced by Mumford [114] with two based upon real world cities and

finally two instances based loosely upon the cities of Edinburgh and Nottingham in the

UK. Table 2.1 provides an overview of the instances used along with their respective

parameters for network design.

Instance Number of Number of Vertices Reference
Vertices and Edges Routes /Route Point

Mandl 15 & 21 4 - 8 2 - 8 (60, 400)
Mumford0 30 & 90 12 2 - 15 (100, 2000)
Mumford1 70 & 210 15 10 - 30 (150, 6000)
Mumford2 110 & 385 56 10 - 22 (300, 20000)
Mumford3 127 & 425 60 12 - 25 (600, 30000)

Nottingham100 100 & 187 40 10 - 25 (100, 10000)
Edinburgh200 200 & 362 90 5 - 25 (600,20000)

Table 2.1: Problem Instances.

Each problem instance has two associated matrices: 1) a travel times matrix that defines

the travel time in minutes between each pair of vertices, and 2) a demand matrix that

gives the passenger demand between each pair of vertices over a twenty four hour

period. All instances used in this thesis have symmetrical travel times and demand

matrices. Furthermore all the networks are connected ensuring that any vertex can be

reached from any other vertex. This is an important feature of all the instances used for

the UTNDP enabling passengers to travel from an origin to any destination with the aid

of transfers if necessary.

The instances used in this thesis are symmetrical due to their creation methods. The

algorithms presented in later chapters are designed to work with both symmetrical and

asymmetrical travel time matrices. In the real world we would expect travel times to not

be symmetrical. For example, a bus may traverse a one-way street on part of its route.

On the reverse leg an alternative path must be taken producing different travel times

2.5 Problem Instances 29

between the stops depending on the direction of travel.

Mandl’s instance has become the defacto benchmark instance for the UTNDP yet it

contains only 15 vertices, which is very small given that real world public transport

systems may have hundreds if not thousands of vertices (i.e. bus stops). Recently,

Mumford [114] produced four benchmark instances making them publicly available

to researchers. These instances have since been utilised in several other works [115,

92, 88, 37]. The Mumford instances are generated based upon user defined parameters

governing the number of vertices, edges and an upper and lower bound on demand.

The coordinates of vertices are generated from a uniform random distribution within

an enclosing square region with a side length proportional to the square root of the

number of vertices. Travel time between vertices is taken as the Euclidean distance.

Demand between vertex pairs is generated at random between an upper and lower bound

specified by the user. The selection of edges in the transit network is carefully controlled

to ensure connectivity resembles a real road network. A minimum spanning tree (MST)

is first constructed using Kruskal’s algorithm [96]. Remaining edges are then selected

by taking a vertex at random and adding the shortest unused edge out of this vertex to

the network. This process is repeated until the required number of edges are obtained.

The Nottingham100 and Edinburgh200 instances were generated in a similar fashion to

the Mumford instances. Vertices are selected at random from the location of physical

bus stops identified by their latitude and longitude from the National Public Transport

Data Repository [3]. Travel times between vertices are then obtained using the Google

distance matrix API [2] taking the average of the travel time in both directions. Edges

in the network are selected in a similar manner to the Mumford instances. Demand

information was computed by relating the number of passengers to the population

density in a 1× 1Km square surrounding each bus stop (i.e. vertex).

The Nottingham100 and Edinburgh200 instances have a number advantages and disad-

vantages over the Mumford instances. The location of bus stops is based on the actual

longitude and latitude of physical bus stops. However, the number of bus stops selected

30 2.6 Network Evaluation

is set by the designer and randomly taken from the total number available. This may

result in a spatial layout of stops that is not reflective of the real city. The distance

between stops is based on actual travel time using the Google distance matrix API but

averaged in both directions resulting in a symmetric distance matrix. An asymmetric

travel times matrix could have been produced given the availability of the data. The

roads traversed are not limited so may include low bridges that may prevent bus travel.

Demand information is related to population density whereas demand for the Mumford

instances is randomly generated between upper and lower bounds. While this means

demand may more closely relate to real world travel demands it is still an estimation

made on the assumptions of the designer.

2.6 Network Evaluation

As outlined in Section 2.3, our formulation of the network design problem evaluates

the performance of a route set from both the passenger and operator perspective. The

calculation of the passenger objective involves performing an all pairs shortest path

(APSP) algorithm on the transit network. This determines the passengers’ paths through

the network and any transfers that may have taken place. Accurate evaluation of a

route set is an important component of any algorithm to solve the UTNDP as it has

a direct impact on the quality of solutions produced. The evaluation metric should

provide a good approximation of the operational cost for the network operator, and

a measure of service from the passenger’s perspective. In this section we first detail

our method for obtaining the passenger objective upon the transit network. We then

introduce network evaluation using the route network and compare this to the evaluation

upon the transit network in terms of runtime performance. An alternative method

suggested by Mandl [105] is also presented and is compared to the transit network

evaluation. Modifications to the transit network are then proposed to reduce the size of

the graph to improve the efficiency. Finally we use a graphics processing unit (GPU)

[91] implementation of Floyd’s [60] all pairs shortest path algorithm and analyse the

2.6 Network Evaluation 31

speed-up that can be achieved over the serial implementation when using the transit

network.

2.6.1 Evaluation using the Transit Network

In Section 2.3 we introduced the transport network which defines the public transport

infrastructure i.e. the bus stops and roads used. A route network can be created by taking

the vertices (i.e. bus stops) in the transport network and the edges used in a route set, as

shown in Figure 2.7. Our method for determining the passenger cost (Equation (2.9))

requires the calculation of the cost of the shortest path between each pair of vertices

in the transport network, given a set of available routes. As such, we must identify

any transfers between routes that are necessary, and then penalise them to reflect the

inconvenience caused to the passenger. To do this, the route network is expanded to

include transfer points as shown in Figure 2.8(b).

1

2

3

4

5

6

7

(a)

R = {〈2, 3, 4〉,
〈1, 2, 3〉,
〈3, 4, 7, 6〉,
〈1, 5, 6, 7〉}
(b)

1

2

3

4

5

6

7

(c)

Figure 2.7: An example transport network (a), route set (b) and resultant route
network (c).

Recall from earlier that in the expanded network, referred to as the transit network,

duplicated vertices in a route set become transfer points. For example, the route set

given in Figure 2.8(a) shows that vertex three is serviced by three routes labelled a,

b, and c. This results in three vertices, 3a, 3b and 3c, being inserted into the transit

network to represent the routes. A cycle is then formed between the transfer vertices

with each edge having a cost equal to the transfer penalty.

32 2.6 Network Evaluation

R = {〈2, 3, 4〉, a
〈1, 2, 3〉, b
〈3, 4, 7, 6〉, c
〈1, 5, 6, 7〉} d

(a)

1b1d

2b

2a

3b

3a

3c

4a

4c

5d

6c

6d

7c

7d

(b)

Figure 2.8: An example route set with corresponding route label, (a), expanded
into its transit network (b) with transfer edges given in red.

Calculation of the shortest path between all vertices is commonly referred to as the

all pairs shortest path (APSP) problem. We use Floyd’s [60] algorithm given in Al-

gorithm 2.1 to calculate the APSP upon the transit network. As the APSP calculation is

conducted on the transit network we must then ’collapse’ the result i.e. removing the

transfer vertices. This reflects the transport network, allowing passenger travel times to

be extracted.

A vertex u in the transport network may map to one or many vertices, {u1, . . . , ui}, in

the transit network. This depends upon how many routes are incident to the vertex. To

calculate the shortest path between any two vertices, u and v, in the transport network

each occurrence uj of u and vk of v in the transit network are taken. The path with the

lowest cost is selected as per our assumption given in Section 2.3. If more than one path

shares the same cost then the path with the least number of transfers is taken, as we

assume a passenger will always select the path that minimises their inconvenience.

The APSP is an expensive operation with computational complexity O(n3) using Floyd’s

[60] algorithm. This is a significant drawback as the evaluation procedure is applied

frequently during an optimisation. Although the complexity of Floyd’s [60] algorithm

is polynomial, the evaluation becomes expensive, even for relatively small problem

instances following the creation of the larger transit network. This is shown in Table 2.2

2.6 Network Evaluation 33

where the average, minimum and maximum transit network sizes for a Pareto set

of solutions is given for each instance. The duplication of vertices can lead to the

production of a transit network considerably larger than the underlying transport network.

Intuitively, reducing the number of duplicate vertices would reduce the size of the graph

used for evaluation resulting in a reduction in computation time.

Alternative methods for calculating the APSP include applying Dijkstra’s [48] algorithm

to each vertex. Although Dijkstra’s algorithm has a computational complexity of

O(|E| + |V |log|V |) when using Fibonacci heaps [62]. We found empirically that

Floyd’s algorithm outperformed Dijkstra’s for calculating the APSP. As such Floyd’s

APSP algorithm was used for calculating the passenger cost on the transit network.

Instance |P| |V | µ min max

Mandl 97 15 29 20 41
Mumford0 99 30 86 41 179
Mumford1 93 70 231 150 450
Mumford2 101 110 715 560 1199
Mumford3 103 127 930 720 1500
Nottingham100 72 100 539 400 888
Edinburgh200 97 200 799 450 1744

Table 2.2: Mean, minimum and maximum number of vertices in a transit network
for a Pareto set, P , compared with the number of vertices in the original transport
network.

1: for ∀ k ∈ V do
2: for ∀ u ∈ V do
3: for ∀ v ∈ V do
4: c = m[u,k] + m[k,v]
5: if c < m[u,v] then
6: m[u, v] = c

Algorithm 2.1: Floyd’s [60] algorithm for the all pairs shortest path.

34 2.6 Network Evaluation

2.6.2 Evaluation using the Route Network

As mentioned previously, reducing the size of the graph required for evaluation will

offer a reduction in computation time. In this section we achieve this by using the

smaller route network, as opposed to the larger transit network. The removal of transfer

vertices, i.e. those vertices common to more than one route, from the transit network

requires an alternative approach for calculating the shortest path through the network, in

order to check for and penalise any transfers made. Our proposed approach is to check

the vertices traversed along each path and map each to a given route. This mapping will

enable any changes of routes (i.e. transfers) to be penalised and added to the cost of the

path.

Using this approach the running time required to evaluate a set of route sets was

compared to evaluation using the transit network. Table 2.3 shows the average time

required for an evaluation is always greater using the route network. This can be

attributed to the requirement of maintaining a list of vertices traversed by a path to allow

for transfers to be identified and penalised. A further disadvantage to this method is that

it does not always produce the correct shortest path. For example, the route network

given in Figure 2.9 shows two routes and the associated cost of traversing each edge.

We wish to find the shortest path from vertex five to eleven and will assume a transfer

penalty of five minutes. There are two possible paths that can be taken, 〈5, 2, 1, 3, 11〉

with a cost of 18, or 〈5, 3, 11〉 with a cost of 19, with the second path incurring a transfer

penalty. Using Dijkstra’s [48] algorithm, the path 〈5, 3, 11〉 will be selected as the

shortest path. However, this is the incorrect shortest path when transfer penalties are

taken into account. The reason for this error is that Dijkstra’s [48] algorithm and other

shortest path algorithms, do not consider vertex costs i.e. vertex three from the path

〈5, 3, 11〉 has an additional cost of five, as a transfer is required.

This issue becomes clearer when we reflect upon how Dijkstra’s [48] algorithm works,

shown in Algorithm 2.2. At each iteration we explore the lowest cost unvisited vertex.

If the algorithm is attempting to find a path between vertices five and eleven, it will

2.6 Network Evaluation 35

1: for ∀ v ∈ V do
2: dist[v] =∞
3: dist[source] = 0
4: Q = V
5: while Q 6= ∅ do
6: u = min(Q)
7: Q = Q− u
8: for ∀ v ∈ N+

D (u) do
9: t = dist[u] + dist(u, v)

10: if t < dist[v] then
11: dist[v] = t

Algorithm 2.2: Dijkstra’s [48] algorithm for the single source shortest path.

Transit Network Route Network

Instance Mean Std. Deviation Mean Std. Deviation

Mandl 0.09** 0.07 1.63 0.27
Mumford0 2.13** 3.45 13.50 4.30
Mumford1 30.00** 36.12 192.15 26.53
Mumford2 651.93** 542.23 1395.25 93.74
Mumford3 1466.87** 1274.47 2298.70 101.68
Nottingham100 286.79** 242.80 839.00 68.89
Edinburgh200 1340.92** 2041.10 9962.23 1529.57

Table 2.3: Evaluation time (milliseconds) using the route and transit networks. As-
terisks indicate statistical significance according to a Related-Samples Wilcoxon
Signed Rank test at the p < 0.01 level.

start from vertex five and visit vertex seven, two and then three – assuming that vertices

are added to a priority queue that utilises a stable sorting algorithm. As the algorithm

has now reached vertex three with a cost of four, no other path will be considered

resulting in the ‘true’ shortest path never being found. A possible resolution to this

problem would be to explore the adjacent vertices of the current vertex to determine

if any transfers are required. In our example, this would mean examining vertices

one, four and eleven when we reach vertex three. This approach introduces a further

complication as a vertex could have multiple costs, depending upon whether or not a

transfer is required. Alternatively every path between the origin and destination could

be extracted and the cost of each path calculated. For large networks this approach

36 2.6 Network Evaluation

would incur a significant overhead. As such it is not given any more consideration here.

1 2

34 5

7

9

11

14

10

3

2

3

2 8

4 4

2

Figure 2.9: Route network extract with two routes.

2.6.3 Mandl’s Evaluation Method

Mandl [105] proposed splitting the transit network into two different components: the

transfer vertices and the remaining vertices. More formally, given an undirected graph

G = (V , E) the transfer vertices, I ⊂ V , are extracted from the network. The remaining

vertices Q = V − I are those that do not enable transfers i.e. they are contained in only

one route. The closest transfer vertices ∀ v ∈ Q are then found using the following

procedure: 1) if the vertex is a terminal of a route then there will only be one transfer

vertex to find, 2) find a transfer vertex in each direction.

Floyd’s [60] algorithm is suggested to find the shortest path costs between all pairs of

vertices in I . All that remains is to calculate the distance between the vertices in Q

and their closest transfer vertex. The distance between vertices on the same route must

be computed independently as they do not require transfers. Once all the necessary

pre-processing has been completed the shortest path cost between two vertices, u and

2.6 Network Evaluation 37

v, can be found by looking at the distance between u’s closest transfer vertices and v’s

closest transfer vertices. For example, say u and v have the following transfer vertices:

u: a′ c′ v: b′.

The paths that must be considered to determine the shortest path, include those given

below and the distance from u to v directly if there exists a route that contains both u

and v.

u - a′ - b′ - v

u - c′ - b′ - v

The execution time of Mandl’s proposed method was compared with that using the

transit network. In our experiments a set of route sets were evaluated for each benchmark

problem instance with the mean and standard deviation of the execution time computed

for each set. This is given in Table 2.4.

Transit Network Mandl’s Method

Instance Mean Std. Deviation Mean Std. Deviation

Mandl 0.24 0.18 0.19** 0.176
Mumford0 2.39** 3.74 2.44 4.15
Mumford1 30.75 36.56 31.96 42.40
Mumford2 659.12** 544.44 666.21 551.56
Mumford3 1467.35** 1274.26 1480.69 1288.15
Nottingham100 288.12 241.84 289.47 250.42
Edinburgh200 1352.05 2049.63 1320.62 2064.99

Table 2.4: Comparison between evaluation time (milliseconds) using the transit
network and Mandl’s [105] proposed evaluation method. Asterisks indicate stat-
istical significance according to a Related-Samples Wilcoxon Signed Rank test at
the p < 0.01 level.

Table 2.4 shows that Mandl’s evaluation method compares well with our method of

evaluation using the transit network. Both methods are reasonably close in terms of

mean runtime. However, evaluation using the transit network is able to achieve a lower

38 2.6 Network Evaluation

mean runtime in five out of the seven instances. Further investigation is required to

determine if there are specific route set structures that provide more efficient evaluation

using the transit network or Mandl’s method. For example, if a route set contains a very

small number of transfer vertices Mandl’s method may have a far larger running time

compared with evaluation on the transit network. This is due to the need to compute the

APSP on the transfer vertices, then separate calculations on the non-transfer vertices

to produce the travel times between all pairs of vertices i.e. shortest path calculations

between vertices on the same route.

2.6.4 Evaluation Removing Overlapping Transfer Vertices

The previous sections have demonstrated the need to conduct the evaluation using the

transit network, to allow for transfers to be identified accurately. In some situations

it may occur that several routes share a set of adjacent transfer vertices. Figure 2.10

considers a city with a central boulevard that is served by many routes. The figure

shows three routes, with each route containing the vertices four, five and six, leading to

the duplication of these vertices in the transit network. In situations such as this, the

routes share a large proportion of the stops on the boulevard. In terms of the shortest

path calculation the passenger can choose to transfer to a different vehicle at any one of

these vertices. In this case only the terminal transfer vertices of the overlapping section

need be duplicated in the transit network, as shown in Figure 2.11.

Removal of the overlapping transfer vertices reduces the size of the transit network that

is required for evaluation. However, there exists an issue with the representation. When

considering a passenger whose path originates at vertex nine, but must terminate at

vertex one, the representation in Figure 2.11 shows that the cost of the transfers will

be disregarded when using current shortest path algorithms, even though one transfer

penalty is incurred. This occurs because the passenger travels from vertex nine to six,

where a transfer can be made, or can continue to vertex five remaining on the same route.

At vertex five the passenger can transfer to any route with no associated transfer cost.

2.6 Network Evaluation 39

1

2

3

4

4

4

5

5

5

6

6

6

7

8

9

Figure 2.10: An example transit network with three routes, each with three
identical transfer vertices.

1

2

3

4

4

4

5

6

6

6

7

8

9

Figure 2.11: Removal of the intermediate overlapping transfer vertices in the
transit network.

In this scenario the shortest path algorithm will select the least cost path, allowing the

passenger to travel directly with no transfers between vertices nine and one. However,

visually we can see that this cannot be achieved.

To resolve this problem, the passenger’s path would need to be extracted each time a

transfer vertex is encountered. The path can then be examined and a transfer penalty

applied if necessary. In our example, we would extract the path 〈9, 6, 5, 4〉 revealing

that vertices nine and four are not on the same route, allowing a transfer penalty to be

imposed.

Similarities can be drawn between this representation and when using the route network.

It was shown that the extraction of paths is expensive compared with the calculation

of the shortest paths using Floyd’s [60] algorithm on the transit network. As such, this

40 2.6 Network Evaluation

method is not given further consideration.

2.6.5 Evaluation Using the GPU

The previous sections have emphasised the need to conduct the APSP evaluation using

the transit network. We have also shown that the use of alternative graph structures

is not appropriate for the problem, given current shortest path algorithms. To reduce

the running time required for evaluation when using the transit network, we have

therefore implemented a GPU [91] version of Floyd’s [60] algorithm. The algorithm

was implemented using CUDA and the C standard library.

Katz and Kider’s [91] method seeks to enable the processing of large adjacency matrices

beyond the size of the GPU, as well as addressing the inherent dependency problems

present in parallel implementation. The algorithm is comprised of a three phase process.

However, before this can begin, the adjacency matrix must be decomposed into smaller

blocks which fit on the GPU, and map optimally to the underlying block architecture of

the hardware.

In phase one, doubly dependent blocks are identified. These run in a diagonal direction,

from top left to bottom right, through the adjacency matrix, and each of these blocks

has the APSP algorithm performed on them by the GPU. Moving into phase two, each

of these blocks is passed back to the GPU in turn, but this time with its associated singly

dependent blocks; the blocks in the same row and the blocks in the same column. Again,

all of these have the APSP calculation performed on them. Finally, in phase three, all

dependencies are now satisfied. This allows all blocks of the adjacency matrix to be

passed back to the GPU, as space on the device allows, for a final third computation of

the APSP algorithm.

Once this has been completed, the three phase process has the effect of calculating the

APSP for the original adjacency matrix. Whilst it may appear that far more calculation

is required than in a serial CPU implementation, clock cycles are cheap on the GPU.

2.6 Network Evaluation 41

Therefore, although additional computation needs to occur, due to the highly parallel

nature of the GPU, it is still likely to execute considerably faster. This is more concisely

described graphically and, as such, readers are referred to the original publication [91].

Table 2.5 provides a comparison between the time taken to evaluate a set of route sets

using both the CPU and the GPU. It is shown that the GPU offers a seven-time speed

up for the larger problem instances. We note that similar speed-ups are achieved for

Mumford2, Mumford3 and Edinburgh, although they vary in the size of the transport

network. This reflects that it is not the underlying transport network size that influences

the running time, but the amount of route overlap in a route set.

CPU GPU

Instance Mean Std. Deviation Mean Std. Deviation Speed-up

Mandl 0.26** 1.37 1.37 10.59 0.71
Mumford0 3.28 5.49 1.77** 8.81 2.19
Mumford1 35.14 42.50 7.62** 13.24 4.41
Mumford2 794.28 668.29 107.83** 87.91 7.22
Mumford3 1802.77 1579.52 230.85** 192.20 7.59
Nottingham100 348.13 303.05 51.18** 45.29 6.60
Edinburgh200 1655.94 2.53 211.16** 0.31 7.16

Table 2.5: Runtime comparison (milliseconds) using the CPU and GPU for evalu-
ating the all pairs shortest path upon the transit network. Asterisks indicate stat-
istical significance according to a Related-Samples Wilcoxon Signed Rank test at
the p < 0.01 level.

For Mandl’s instance, evaluation using the GPU causes an increase in running time.

This is due to the small size of the instance and the extra overhead incurred when using

a GPU i.e. copying memory to and from the device. Table 2.6 provides average running

times for varying randomly generated graph sizes. It is shown that the GPU does not

provide benefit until graph sizes reach approximately 200 vertices.

42 2.7 Complexities of the Urban Transit Network Design Problem

Vertices CPU GPU Speed-up

100 0.002 0.005 0.40
200 0.014 0.008 1.75
300 0.049 0.013 3.77
400 0.115 0.023 5.00
500 0.226 0.041 5.51
1000 1.919 0.243 7.90
2000 19.741 1.766 11.18
3000 54.411 5.935 9.17
4000 125.663 14.077 8.93
5000 244.407 26.902 9.09

Table 2.6: Runtime comparison (seconds) for the all pairs shortest path on ran-
domly generated graphs using the CPU and GPU.

2.7 Complexities of the Urban Transit Network Design

Problem

We have shown that the UTNDP is a heavily constrained and difficult problem to solve.

Several researchers have identified the complexities of the UTNDP with the majority of

these being identified by Fan [53] in his PhD thesis:

1. The problem is NP-Hard.

2. Accurate data for the design of route sets is difficult to obtain. In a real world

situation the demand varies over an entire day and is based upon the current

configuration of the route set, making the problem extremely complex [49].

Furthermore many services record only the entry point to the network, i.e. bus

passes record where a person boarded a vehicle but not where they disembarked.

This data is also commercially sensitive if the network is run for profit.

3. Modelling the arrival time of passengers at bus stops is challenging. Passengers

arrival stochastically making accurate evaluation computationally expensive.

4. There is a high level of dependency between routes. Therefore routes cannot be

2.8 NP-Completeness of the Network Design Problem 43

evaluated in isolation as the performance of one route is dependent upon the other

routes in the set.

5. The UTNDP is inherently a multi-objective optimisation problem that must

consider the minimisation of the operator costs, minimisation of the number of

transfers and minimisation of the average passenger travel time. These objectives

conflict as reducing the number of transfers for passengers will result in an

increase in the operator cost.

2.8 NP-Completeness of the Network Design Problem

Before introducing our proof that the network design problem is NP-Complete we

provide a summary of the theory of computational complexity defining the necessary

terms. The foundations for computational complexity theory were laid down by Cook

[35] and Karp [90] who put forward a framework for measuring the complexity of a

problem. To define computational complexity theory in more detail we must first define

some common terms.

A decision problem is a question or task that can have either a “yes” or “no” answer [36].

We shall define a problem more formally to be a question with a common structure that

consists of a series of input variables requiring the output of an answer. An example of a

question would be “Given an undirected graph G, does G have a Hamiltonian circuit?”.

A problem instance or instance is a specific question of a given problem. Each instance

consists of an exact specification of the input variables e.g. the number of vertices and a

list of edges with the associated costs for finding a Hamiltonian circuit in a given graph.

An algorithm is a set of step by step instructions for solving a problem. An algorithm is

said to solve a problem if it can be applied to any instance of the problem and prove or

disprove the required question i.e. an algorithm does not solve the Hamiltonian circuit

44 2.8 NP-Completeness of the Network Design Problem

problem unless it always proves the existence or otherwise of a Hamiltonian circuit.

[68]

Measuring the computational complexity of an algorithm could be achieved using the

running time on a given computer. The main issue with this approach is that computers

are built upon varying architectures, processors and amounts of memory. Comparing

the running time of an identical problem instance on several different platforms does not

allow us to make a standardised comparison. Furthermore, some problem instances may

be solved easily whilst others require significantly more steps to produce a solution.

Computational complexity theory overcomes these problems by utilising a framework

that calculates complexity based upon how the time requirements for a problem increase

as the size of the underlying problem instance increases. More accurately, an algorithm

is expressed by a time complexity function that expresses its time requirements for each

possible input length. It is generally the case that for each possible input length the

worst case time required by the algorithm to solve the problem instance is given. This is

referred to as Big O notation. [68]

To state the running time of an algorithm we use O(.) notation that provides the number

of elementary operations that must be performed for a given input length n. O notation

provides an upper bound bounding function f(n) = O(g(n)), if a constant c > 0 exists,

such that f(n) ≤ cg(n) for all n > 0. As the size of a problem increases we are mostly

concerned with the increase in steps that must be performed to produce a solution.

A polynomial time algorithm is defined to be one whose time complexity function

is O(p(n)) where p is a polynomial function. An algorithm whose time complexity

cannot be bounded by a polynomial function is called an exponential-time algorithm. A

problem is termed hard if there does not exist any polynomial algorithm that can solve

it. Conversely a problem is termed easy if there exists a polynomial algorithm that can

solve it. A problem is referred to as intractable if it is so hard that no polynomial time

algorithm can possibly solve it [68].

The class P contains the set of decision problems which can be solved in polyno-

2.8 NP-Completeness of the Network Design Problem 45

mial time. NP (nondeterministic polynomial) denotes the class of problems that can

be solved by polynomial time nondeterministic algorithms. A polynomial time non-

deterministic algorithm is a theoretical construct capturing the notion of polynomial

time verifiability. In essence it is an algorithm that can take all possible solutions and

check them in parallel. Given a “yes” answer to a decision problem it can be easily

verified in polynomial time. If the answer to a decision problem is “no” rather than “yes”

and can be checked by a polynomial time nondeterministic algorithm then the problem

is said to belong to the class coNP . There are very few problems that have been proved

to belong to both NP and coNP [36].

The class NP is much larger than the class P , indeed P ⊆ NP . There might not be

much difference between the problems in NP and P but as yet nobody has been able

to prove that they are the same or different. The question of whether P = NP remains

one of the most infamous unanswered questions in computer science. If P = NP

can be shown the proof might unveil a new algorithm. On the other hand if it can be

shown that P 6= NP , differences in the problems may highlight the reasons behind

why problems in NP are harder to solve than others and provide an indication of how

these problems can be solved more easily [36].

A problem is termed NP-Hard if a polynomial time algorithm for that problem can

be translated into a polynomial time algorithm for solving every problem in NP .

A problem that is both NP-Hard and in the class NP is said to be NP-Complete.

Problems in the class NP-Complete are among the hardest problems in the class NP .

Consequently if one could find a polynomial time algorithm for any NP-Complete

problem then there are polynomial time algorithms for all problems inNP proving that

P = NP .

Magnanti and Wong [104] have shown that the network design problem is NP-Hard.

However, as far as we are aware no attempt has been made to determine if the problem

is NP-Complete. We believe that in the general case the network design problem is

a generalised form of the travelling salesman problem (TSP). The TSP is one of the

46 2.9 Summary

NP-Complete problems identified by Gary and Johnson [68] and is a transformation of

the Hamiltonian circuit problem. Stated formally the TSP attempts to find the minimum

cost Hamiltonian tour of a given set of cities that visits each city exactly once.

Theorem 1. The network design problem is NP-Complete.

Proof. It is straightforward to prove that the network design problem (NDP) is NP-

Complete by showing that the TSP is a special case, giving TSP ∝ NDP.

To show this, consider an instance of the UTNDP where r = 1 and di,j = 0 ∀ i, j ∈

V . In this case a valid route according to the constraints given in Section 2.3 is a

Hamiltonian path. In addition, the operator cost is now defined
∑
∀ej∈ER1

wj which is

the sum of all the edge weights in the path, which is equivalent to the cost function of

the TSP.

If we relax the constraints on the number of routes and minimum and maximum vertices

per route then the network design problem is a generalisation of the problem put forward

by Johnson et al. [89]. Johnson et al. [89] provide a NP-Complete proof for a slightly

different network design problem where we are given a weighted directed graph and

wish to find a subgraph which connects all vertices and minimises the sum of the shortest

path weights between all vertex pairs. This can result in a spanning tree which violates

the problem constraints we have defined. For example, a route that is a tree would have

repeated vertices. If we relax our problem constraints and allow the tree to be created

from M routes where M 6= r then it is clear that the problem described in this thesis is

a generalisation of that given by Johnson et al. [89].

2.9 Summary

This chapter has formulated both the network design and frequency setting problems.

We have shown that both are heavily constrained multi-objective optimisation problems

2.9 Summary 47

that must balance the cost for the passenger and network operator. Problem instances

used for the experimental work in this thesis were also introduced and a summary of

their construction was presented.

An empirical analysis was then performed on four alternative graph structures for

obtaining the passenger objective value for the network design problem. Alternate

graph structures were explored and found to be unsuitable as they result in transfer

penalties not being applied. As such the evaluation of the passenger objective requires

a specialised graph to be created which we refer to as the transit network. A GPU

algorithm for the APSP was then compared to the CPU algorithm on the transit network

and found to offer a significant speed-up for larger problem instances.

Complexities of the UTNDP as a whole were then summarised followed by a proof

that under our problem formulation the network design problem is NP-Complete. In

the next chapter we survey the relevant literature for the network design and frequency

setting problems along with available commercial software to aid in the design and

planning of public transport systems.

48 2.9 Summary

49

Chapter 3

Literature Review

This chapter first introduces the broad class of vehicle routing problems and puts the

UTNDP into context. We then examine the manual approaches to the UTNDP, with a

focus on the common guidelines that have been adopted by the public transport industry.

Mathematical and heuristic approaches are then surveyed followed by a review of

the metaheuristic techniques that have been applied to the UTNDP. Frequency setting

approaches are then examined moving onto a discussion of the problems and limitations

of the current research. Finally, commercial software packages used for public transport

planning are discussed.

3.1 Vehicle Routing Problems

A Vehicle Routing Problem (VRP) requires the definition of an optimal set of routes for

a fleet of vehicles in order to best serve a set of customers [142]. The VRP was first

introduced by Dantzig and Ramser [41] who describe the real world problem regarding

the delivery of gasoline between a terminal and a large number of service stations via

a fleet of vehicles. The objective is to minimise the mileage of the vehicles whilst

ensuring the demands of the service stations are met.

The VRP can be considered a generalisation of the Travelling Salesman Problem (TSP)

[41]. The TSP, first posed by Whitney in 1934, obtained its name from the problem

description whereby a salesman wishes to travel by the shortest distance between n

50 3.1 Vehicle Routing Problems

given cities before returning to his starting point [59]. Generalisations can then be made

for the TSP by introducing additional constraints, such as a maximum capacity, adding

to the complexity of an NP-Hard problem.

Since the original formulation of the problem many variants of the VRP have emerged

some of which are summarised below:

• Capacitated VRP (CVRP): deliveries must be made to a set of customers where

the demands are deterministic and may not be split. Each of the vehicles is

identical and based at a central depot with a capacity constraint defined for the

vehicles. Each of the vehicles must visit the depot and each customer is only

visited by one vehicle. The objective is to minimise the cost required to serve

all the customers. If a distance constraint is added to the vehicles along with the

capacity constraint the problem is then referred to as the Distance-Capacitated

VRP.

• VRP with Time Windows (VRPTW): an extension to the CVRP in which each

customer must be served in a given time window. Given a customer i a time

window is defined as [ai, bi] inside of which the vehicle must arrive to service

the customer. A time period, si, defines the time period for which the vehicle

must service the customer for. Once the time period si has expired the vehicle

can progress on to the next customer.

• VRP with Backhauls (VRPB): another extension to the CVRP. Given a partition

of the set of customers, where, subset A contains those customers who require

a delivery and subset B contains those customers who require a product to be

picked up. If a vehicle route contains customers from both subsets then all of A

must be served before B and the vehicle capacity constraint must not be exceeded.

• VRP with Pick-up and Delivery (VRPPD): each customer is associated with both

a delivery and pick-up. Given a customer i, the customer whose pickup is the

delivery for i when different from the depot must be served before i.

3.1 Vehicle Routing Problems 51

• Dial-a-Ride problem (DARP): consists of determining a set of routes and sched-

ules for a given number of customers who each specify a pick-up and drop

off location. The DARP can be seen to generalise several VRPs including the

VRPTW and VRPPD. A significant difference between the DARP and other

VRPs is the need to consider the human perspective. A service must be provided

that balances the inconvenience to passengers whilst ensuring that the cost to the

operator is minimised. [38]

VRPs can be divided into two further categories: 1) static, and, 2) dynamic. In the static

case the transportation requirements are known beforehand whereas in the dynamic case

the requests are revealed throughout the day and the routes of the vehicles are adjusted

in real time or periodically to the meet the demand.

The VRP has been extensively studied resulting in a varied range of approaches being

proposed for its solution. For example, exact algorithms which Laporte and Nobert

[98] subdivided into three classifications; 1) direct tree search methods 2) dynamic pro-

gramming 3) integer linear programming (examples of which can be seen in Gendreau

et al. [69], Toth and Vigo [141], Baldacci et al. [10], Kok et al. [95] and Baldacci et al.

[11]), heuristic approaches (e.g. Gillett and Miller [70], Clarke and Wright [32], and

Renaud et al. [127]), meta-heuristic approaches such as genetic algorithms, simulated

annealing and tabu search (examples of which can be seen in Bell and McMullen [14],

Toth and Vigo [143], Baker and Ayechew [8], Tan et al. [139], and Czech and Czarnas

[40]). Multi-objective algorithms have been acquiring an increasing amount of attention

over recent years due to their ability to trade-off multiple objectives for a given problem.

As such, a number of multi-objective formulations for the VRP have been proposed

(these can be seen in Tan et al. [138], Ombuki et al. [121], and Baños et al. [12]).

Similarities can be drawn between the DARP and the UTNDP as both require the

transportation of passengers from an origin to a destination. The DARP operates on a

daily basis fulfilling the needs of the passengers on the given day, that is, the demand

from day-to-day is not fixed. In comparison, the UTNDP assumes the demand per

52 3.2 Practical Guidelines for the UTNDP

day is invariant. Furthermore, each customer must supply their pick-up and drop-off

location in the DARP. This leads to a smaller size of problem compared to the UTNDP

due to the complexity of having to record possibly tens of thousands of individual trips

for the latter problem. The DARP is a demand responsive application, aimed at short

term planning whereas the UTNDP is very much a longer term planning tool given the

investment needed from the network operator to change the route configuration and also

the difficulties passengers would face having to remember constantly changing routes

and schedules. It can be concluded that the UTNDP is a unique VRP that requires the

design of bespoke algorithms to solve it. [53]

3.2 Practical Guidelines for the UTNDP

Despite recent advances in technology and research into the UTNDP the vast majority

of transit planners still make use of past experience and practical guidelines to design

or redesign bus routes and their accompanying schedules [114]. Suggested guidelines

include service area, route coverage, route structure, route spacing, route length, route

duplication and directness. Some of these guidelines are summarised below:

• The service area of a transit network is defined by the local operating authority

and should cover major employment concentrations, schools and hospitals [116].

The service provided should enable potential passengers to reach their destination

via public transport [102].

• Routes should make use of major street and land use patterns. For example,

provide a grid system where the underlying street structure forms a grid [116].

• Only one route per arterial link should be utilised apart from approaches to the

central business district or major transit stations – a desired maximum of two

routes per street [116].

3.2 Practical Guidelines for the UTNDP 53

• Transit routes should be direct and try to avoid any circuitous paths. The route

distance should not be more than the comparative distance by car. [116]

• Routes should be as short as possible whilst ensuring the required level of service,

with overly long routes being avoided [116].

• Service frequency should not be below 30 minutes for peak periods and off-peak

periods should not exceed 60 minutes. It is also common place to have clock-

face headways where the headways on routes evenly divide 60 as these make it

easier for passengers to predict bus arrival times and eliminate complex schedules.

[111, 61]

• Load factor is the primary variable used to assess how effectively buses are

allocated among different routes. The load factor is expressed as a percentage

of the seating capacity of a vehicle at the maximum load (busiest) point of a

particular route. The load factor is tied directly with the service frequency. A high

load factor may mean an increase in service frequency is required or the use of

larger vehicles. Loading factor guidelines vary however it seems that average load

factors of 100 to 140 seem acceptable for off-peak and peak periods respectively.

[111]

• For the service period different countries have different criteria. For example in

the USA buses operate between the hours of 6am and 12am on weekdays and

between 7am and 7pm at weekend. [116]

• In the European Union there are restrictions on driving hours for drivers of

public transport vehicles. Daily driving hours should not exceed 9 hours with an

exemption twice a week when it can be extended to 10 hours. Drivers must also

take a break of at least 45 minutes after every 41
2

hours. [52]

Transit planners have been able to produce relatively good route sets over past years

utilising the above guidelines and their local knowledge. However, with the increasing

54 3.3 Methods for tackling the UTNDP

world population and continued migration from urban to sub-urban areas a redesign of

the public transport networks of most major cities may soon be warranted. Given the

NP-hard nature of the UTNDP [104] it is extremely unlikely, if not impossible, for a

transit planner to produce a redesign for a transport network based upon guidelines and

experience alone. [5]

3.3 Methods for tackling the UTNDP

3.3.1 Mathematical Approaches

Mathematical approaches for the UTNDP have tended to focus on specific aspects of

the problem perhaps due to the NP-hard nature of each sub-component, prohibiting

exact solutions as the problem size grows.

In 1976, Byrne [21] modelled a radial transit system, due to its similarity with most

cities transport systems, using polar coordinates in order to determine the routes and

frequencies. The objective was the minimisation of both user and operating costs under

both a constrained and unconstrained fleet size.

Schéele [130] proposed a non-linear model with the intention of determining the travel

pattern and frequencies to be used on a given transit network. The objective of the

problem was to minimise the total passenger travel time under a constrained fleet size.

The frequencies and associated optimal transit trip pattern were solved simultaneously.

Another approach by Constantin and Florian [34] formulated a non-linear non-convex

mixed integer programming problem, which was then reformulated as a bi-level Min-

Min problem to find the optimum route frequencies. The objective was to find fre-

quencies that minimise the total travel time including waiting time using a projected

sub-gradient approach whilst adhering to fleet size constraints.

Bussieck [20] in his doctoral thesis concentrated mainly on rail transport; however,

3.3 Methods for tackling the UTNDP 55

his ideas can easily be adapted for use with other public transportation modes. The

author proposed cost optimal planning, to determine routes, maximising the number of

direct travellers whilst minimising the cost to the operator formulating this originally

as a non-linear integer program. This problem was then solved using relaxation and

branch-and-bound.

Wan and Lo [148] in 2003 presented a mixed integer formulation for solving the

network design and frequency setting components of the UTNDP with the objective

of minimising the sum of the operating costs, modifying an existing transit network.

The mixed integer formulation was transformed into a mixed integer linear formulation

to enable instances, of small size, to be solved on standard commercial solvers. The

approach taken was only suitable for small problem instances (the authors illustrate

an example with 10 vertices producing three routes that requires 363 binary variables,

30 integer variables and 303 continuous variables) with the authors stating “devising

efficient solution heuristics and algorithms is crucial for applying the approach for

practical size networks” [148, p. 308].

Lee and Vuchic [99] used an iterative procedure that minimised the passenger travel time

under variable demand. The approach consisted of generating an initial network using

the shortest path algorithm between all pairs of vertices then undesirable paths were

eliminated such as those that are a subset of another. A transit assignment procedure

was then used to assign the demand concentrating it on certain routes allowing less

efficient routes to be eliminated. Finally an improvement procedure was applied aimed

towards decreasing the passengers’ travel time. The authors considered fixed total travel

demand and variable demand whereby the choice of travel i.e. car or public transport

was made using a logit formulation.

Guan et al. [75] attempted to design a set of routes and assign the passengers to routes.

They combined the operator objective in terms of the sum of the length of all routes

and the passenger objective consisting of the sum of in-vehicle travel time and total

number of passenger transfers. The two subproblems, route configuration and passenger

56 3.3 Methods for tackling the UTNDP

assignment, were solved simultaneously using a convex combination of the operator and

passenger objectives. The authors applied their approach to several generated minimum

spanning tree networks and a very simplified model of the Hong Kong Mass Transit

Railway where the number of stations is reduced from 49 to 9 to allow the problem

to be solved. The authors acknowledged the need to reduce the size of the network to

enable the problem to be solved on a normal desktop computer due to the enormous

number of variables and constraints. Finally the authors noted the need to consider

metaheuristic methods for solving large network problems.

Mathematical programming formulations can provide benefit only when an optimal

solution can be obtained, given the combinatorial nature of the network design problem

mathematical approaches do not scale well to practical sized instances [25]. This

stance is echoed by Israeli and Ceder [81] who argue that conventional mathematical

approaches that contain a significant simplification of the UTNDP are still unable to

solve the problem. As such mathematical approaches have fallen out of favour for the

UTNDP but work on similar problems still highlights their inability to solve practical

sized instances. For example, Wu et al. [151] focus their attention on bus lane selection

on existing transport networks for rapid transport. This problem clearly has parallels

with the network design problem. The authors found that CPLEX can only solve

instances with 110 nodes and 12 bus lines.

3.3.2 Heuristics

The adoption of heuristic methods for solving the UTNDP has been relatively wide

spread due to their ability to approximately solve large problem instances. Heuristics are

optimisation methods that exploit domain specific knowledge to produce a reasonable

solution to the problem. However, compared with mathematical methods they do not

guarantee to find the optimal solution [129]. Generally heuristic approaches to the

UTNDP have concentrated on the individual subproblems with an emphasis on network

design and frequency setting, few have solved the entire UTNDP.

3.3 Methods for tackling the UTNDP 57

In 1967 Lampkin and Saalmans [97] proposed a complete solution to the UTNDP

through a four stage procedure. Firstly, a set of routes was generated using a heuristic

procedure to maximise the number of journeys that could be satisfied directly whilst

ensuring that the routes were reasonably direct, not excessively long and enabled

transfers. In subsequent stages the frequencies of the routes were found, timetables

were constructed and scheduling was undertaken respectively.

By far the most detailed description of the UTNDP is due to Mandl [105], 1979. Mandl

highlighted some of the major difficulties of the problem along with a network instance

that has become the defacto benchmark for researchers. Mandl paid particular attention

to the network design problem and developed a two stage procedure, whereby an initial

set of routes were generated and then improved upon using heuristics. A shortest

path algorithm was utilised to first find a feasible set of routes using a set of terminals

designated by the designer, attempting to find the path that included as many vertices as

possible to avoid transfers. An analysis procedure then calculates the total transportation

time which is to be minimised under a constrained fleet size. On completion of the

analysis the feasible set of routes were improved using an iterative procedure that makes

one of four changes to the routes. If the resultant route set is an improvement it is kept

and the improvement operators are applied to this set until no more improvements can

be made.

Mandl [106] also developed a route improvement heuristic such that, given a feasible

set of routes, new feasible route sets are developed via a sophisticated technique of trial

and error. Mandl proposed three route improvement heuristics which are summarised

below:

• Creation of new routes by exchanging parts of a route at a point of intersection.

• Including a vertex in a route if there is a high travel demand between that vertex

and the vertices already present in the route.

58 3.3 Methods for tackling the UTNDP

• Removing a vertex from a route if the travel demand between the vertex and the

other vertices in the route is low, and the vertex is present within another route.

A search procedure was utilised to find the best possible improvement for each of the

above improvement heuristics. The average transportation cost was computed for the

improved route set and replaces the current best solution if the average transportation

cost is lower than the current best. This procedure iterates until no more improvements

can be made to the route set that result in a lower average transportation cost.

As mentioned previously, Ceder and Wilson [24] identified five different activities for

the UTNDP consisting of network design, frequency setting, timetable development,

bus scheduling and driver scheduling. A two-level approach was formulated: level I

considered the passengers point of view and attempted to minimise the total travel time.

In level II both passenger and operator viewpoints were then taken into account by

balancing the passenger travel time and waiting time against the number of vehicles

required. Frequency setting, timetable development and vehicle scheduling were also

calculated at level II.

An alternative approach by Israeli and Ceder [81] proposed a seven step approach to the

UTNDP, creating the routes, identifying transfers and then setting frequencies. In the

final stage of the procedure two objectives were used in a multi-objective optimisation

procedure allowing a human decision maker to choose a trade-off between a set of

solutions. The first objective consists of the weighted sum of the passenger waiting

hours, empty space hours, and the deviation of passenger hours from the minimum

possible. The second objective considers the operator perspective only reflected in the

fleet size required to operate the routes.

Baaj and Mahmassani [5, 6] constructed a three stage approach composed of a route

generation algorithm, an analysis procedure and a route improvement algorithm. In

the route generation algorithm the designer’s knowledge and experience are utilised

as well as the demand matrix to generate a set of routes. The generation procedure

3.3 Methods for tackling the UTNDP 59

is heavily dependent upon the demand matrix generating a user prescribed number of

skeleton routes for the highest origin-destination demand pairs. These skeleton routes

are generated using the shortest path or next-shortest path subject to constraints that

can be imposed by the designer. Skeleton routes are then expanded using one of three

heuristic procedures:

• Maximum demand insertion

• Maximum demand per minimum time insertion

• Maximum demand per minimum route length insertion

Once the number of skeletons specified by the user have been generated the route

generation algorithm proceeds to check the demand satisfied directly. If the demand

satisfied directly is below a user specified value then the highest as yet unsatisfied

directly origin-demand pair is taken and expanded, this process continues until the

required level is met. The demand satisfied directly and in one transfer is next analysed

and if below a user prescribed level a similar approach to that described previously is

taken.

On completion of the route generation algorithm the analysis procedure, TRUST (Transit

Route Analyst), is used to determine a range of performance measures including the

total travel time for passengers, number of passenger trips satisfied in zero, one or

two transfers or unsatisfied, links flows, frequencies and number of buses required

to keep the load factor on the network under a specified maximum (see [4] for a

detailed discussion of TRUST). The computed measures are then utilised by the route

improvement algorithm to improve and produce a feasible route set using a variety of

approaches such as merging routes with a low rider-ship to form a route with a medium

to high ridership.

In [133, 134], Baaj and Mahmassani’s work was extended to include the concept of

transit centres and coordinated operations. Transit centres operate as hubs with bus

60 3.3 Methods for tackling the UTNDP

routes ‘feeding’ these hubs. As such they are commonly referred to as feeder routes.

Shih and Mahmassani [133] identify that the major disadvantage of the transit centre

concept is the requirement for passengers to transfer in order to complete their journey.

Therefore coordinated operations are proposed whereby the bus schedules are timed

such that a very short waiting time at a transit centre is required before a passenger can

continue their journey.

The approach proposed in [133, 134] progresses by firstly applying a route generation

procedure. If the transit centre concept is utilised then n skeletons are generated with

the remainder of the skeletons generated using high demand vertices pairs – assuming

that n is less than the number of routes specified by the designer. An analysis procedure

then computes an array of network, route and vertex level descriptors, determines the

frequencies and finally computes performance measures. Finally, a route improvement

procedure is applied in an attempt to improve the generated route set using a selection

of methods.

Fusco et al. [64] combined the approaches put forward by Baaj and Mahmassani [6] and

Pattnaik et al. [124] to put forward a three stage approach to network design. In the first

stage a three phase approach to route generation was used. Firstly, the shortest paths

between vertices with a demand higher than a given minimum value were generated,

secondly a process based on link flow analysis was used to generate main routes and

feeder routes using a set of constraints which are relaxed for the latter. Finally, the

existing transit network routes are included into the pool. The second stage then applied

a GA to select a configuration of routes that minimised the operator and passenger costs,

setting the frequencies simultaneously. Lastly route improvement was applied to the set

of routes selected by the GA.

3.3 Methods for tackling the UTNDP 61

3.3.3 Metaheuristics

Metaheuristics are a general framework that can be adapted to solve specific problems,

utilising heuristics and search algorithms to find solutions in large and complex solution

spaces. Originally metaheuristics were defined as a method able to escape a local

optimum using a combination of local search improvements and a higher level strategy

[72]. However, it is now generally accepted that metaheuristics are any technique,

especially those exploiting neighbourhood operators to identify admissible solution

moves, that enable the escape of local optimum in complex solution spaces [72].

Evolutionary Algorithms

Evolutionary algorithms (EAs) are a broad class of population based algorithms using

mechanisms such as selection, crossover and mutation inspired by the concepts of

natural selection and natural genetics [74]. A genetic algorithm (GA) is an example

of an EA utilising a population of chromosomes (candidate solutions) each with an

associated fitness (cost).

A GA is usually first initialised with a random or heuristically generated population

of candidate solutions that are evolved over a series of iterations called generations. A

generation proceeds by selecting parent solutions from the population, crossover can

then be applied with a certain probability creating offspring solutions by exchanging

parts of the parent solutions. The offspring can then be mutated again with a certain

probability in the hope of producing fitter individuals (solutions that improve upon the

objectives being optimised). A replacement procedure can then be used to determine

whether the solution should enter the population for the next generation. The basic

structure of a generic GA is given in Algorithm 3.1.

In 1998 Pattnaik et al. [124] proposed a system to attempt to minimise the overall cost

composed of the operator and passenger cost as with Baaj and Mahmassani [5]. A route

set generation phase was then utilised and guided by the demand matrix, the designers

62 3.3 Methods for tackling the UTNDP

1: P0 = Generate N random candidate solutions
2: Evaluate(x) ∀x ∈ P0

3: t = 0
4: repeat
5: for i = 1 to N /2 do
6: Select parents at random from Pt

7: if random < pc then
8: Apply crossover to create offspring
9: else

10: Create a copy of each parent to become the offspring
11: Mutate each variable in the offspring with probability pm
12: Evaluate offspring solutions
13: Pt+1 = Pt+1∪ offspring
14: t = t+ 1
15: until stopping condition satisfied

Algorithm 3.1: A basic genetic algorithm.

knowledge and route constraints to generate a set of candidate solutions. In the first

instance terminal vertices are identified by the designer and the shortest path between

them found. In subsequent stages each link in the shortest path is clamped successively

and a new shortest path between the terminal vertices found. All the routes that obey

the problem constraints are then added to a candidate route set. The authors introduce

fixed string length coding (FSLC) and variable string length coding (VSLC) whereby

the number of routes is fixed and allowed to vary in the coding itself respectively. It

was determined that FSLC provided the better performance measure however these

improvements were marginal to VSLC given the extra computation time required.

In 2002 Chakroborty and Wivedi [26] proposed a three stage strategy to the network

design problem, consisting of initial generation, evaluation and modification. During

the initial generation heuristic methods were utilised to produce route sets that were

generated from simple logic rather than an arbitrary process. The fitness function

weighted three separate components namely the average in-vehicle travel time including

transfer time of all the passengers on the network, the percentage of passengers who

can reach their destination in zero, one or two transfers and finally the percentage of

passengers who are unable to reach their destination in two transfers.

3.3 Methods for tackling the UTNDP 63

The GA used was provided with two crossover operators termed inter-string and intra-

string crossover. Inter-string crossover exchanged routes from the parent route sets,

however intra-string crossover exchanged parts of a route in a parent if two routes shared

a common vertex. Mutation was then applied to the offspring by selecting a random

vertex and changing it to any of its acceptable vicinity vertices [26].

In 2003 Tom and Mohan [140] created a two phase approach whereby a large set of

potential solutions were first generated and a GA was used to select a solution route

set along with their associated frequencies from this pool of solutions. The objective

was to minimise the total system cost, the sum of the operating cost and passenger cost

according to that of Baaj and Mahmassani [5].

Fan and Machemehl [57] in 2006 proposed an approach with the aim of minimising

the sum of the user cost, operator cost and unsatisfied demand using a weighting

factor for each. Initial routes were generated using shortest path and k-shortest path

algorithms with slight modifications such that all feasible paths between a vertex pair

were produced – any path with a route length between the minimum and maximum

allowable number of vertices. A GA was then used to select a set of routes from the

set of routes generated. The frequencies were also set for each route using an iterative

process. Fan and Machemehl [57] stated that they found GAs outperformed local search

with multiple start points and provided no worse solution quality when compared with

simulated annealing and tabu search with similar running times.

In 2009 Fan et al. [55] proposed a simple multi-objective algorithm to the network

design problem trading off the passenger cost, defined as the total travel time over all

passengers, and operator cost defined as the sum of the route lengths. The Make-Small-

Change procedure was applied as the mutation operator where a vertex can be either

added to the end of a route or removed from the start of a route. The EA used was based

upon the simple evolutionary algorithm for multi-objective optimisation (SEAMO)

[146, 113] however lacked a crossover operator with only a mutation operator utilised.

Bagloee and Ceder [7], 2011, tackled real size road networks using a combination of

64 3.3 Methods for tackling the UTNDP

heuristics and a genetic algorithm equipped with an ant-system [7]. Their algorithm

firstly determined the location of stops based upon the distance to high concentrations

of travel demand and then used a system inspired by Newton gravity theory to produce

a set of candidate routes. Finally a GA was used to search through the candidate routes

to find a good solution. The authors proposed mutation operator randomly selected a

route to remove and replaced it with a candidate route. The frequency of routes was

computed simultaneously.

Szeto and Wu [137] solved a real world instance for a suburban residential area in

Hong Kong, although their formulation differs to that found in the majority of the

literature. Both network design and frequency setting were tackled simultaneously

using a weighted sum approach composed of the number of transfers and total passenger

travel time (in-vehicle travel time and waiting time). The underlying transport network

had 23 bus stops and seven terminals and all the bus routes originate from these terminals

and terminate at one of five destination vertices. The authors solution approach used a

GA to solve the network design problem and incorporate a frequency setting heuristic

based upon neighbourhood search into the GA to solve the frequency setting problem.

Two crossover operators were proposed, the first exchanged entire routes between

solutions and the second exchanged sequences of intermediate stops between routes that

shared the same destination in both parent. Four mutation operators were also proposed

that could either add or delete a vertex from a route, exchange a vertex between two

routes or move a vertex from a route into another route. An improvement heuristic

was also used to improve the solution quality of the GA by improving the sequence of

stops for each route in terms of minimising the trip time. A method for maintaining the

population diversity was also proposed where the probability of selecting an individual

for the next generation is based on its hamming distance from the best individual.

Cipriani et al. [29] tackled redesigning Rome’s public transport network with a focus on

the bus network. The approach utilised a weighted sum of the operator’s costs, defined

as total bus travel distance and travel time, the passenger’s cost, defined as the sum of

3.3 Methods for tackling the UTNDP 65

in-vehicle travel time, access time, waiting time and transfer penalties, and a penalty

related to the level of unsatisfied demand. A heuristic generation procedure was used to

generate a large set of candidate feasible routes then a GA applied to find the optimal set

of routes and associated frequencies. The authors split routes into three separate classes:

1) A-type – these are direct routes connecting the highest demand node pairs not served

by the rail system. Generated by applying a shortest path algorithm. 2) B-type – routes

that connect main transit centers and links carrying the highest passengers’ volumes

levels. These are generated using the flow concentration procedure presented in [23].

3) C-type – existing routes in the transit network. The heuristic generation procedure

first generated all the types of routes and stored them in a set of feasible routes. A

check was then made against the problem constraints and any routes that violate the

constraints were removed, the routes that satisfy the constraints were then used as input

to a parallel genetic algorithm (PGA). An initial population was formed for the PGA by

randomly selecting a given number of routes from the set of feasible routes, forming a

single individual. Crossover randomly selected half of the routes from one parent and

the other half from the second. Mutation was then applied by replacing each route with

a randomly selected route from the set of feasible routes with a given probability. The

authors went on to show that their approach was able to offer a more efficient service

using a smaller number of routes.

In 2012 Miandoabchi et al. [110] considered both road network design and transit

network design consisting of constructing new streets, adding new lanes to existing

streets, determining the direction and location of one way streets, lane allocations in

two way streets and the topology of the bus networks. Important differences between

the problem formulated in the paper and the remainder of the literature are that the

effects of private car flows on bus flows or vice versa are taken into consideration and

that bus routes may not pass the same sequence of stops on their forth and back routes.

To solve the mathematical problem formulation the authors proposed a hybrid of a GA

and simulated annealing and a clonal selection algorithm hybridised with simulated

annealing.

66 3.3 Methods for tackling the UTNDP

Mumford [114] built upon the work of [57] and [55] proposing new genetic operators

and an efficient heuristic method for seeding the population. In their work the network

design problem was formulated as a multi-objective problem attempting to minimise

both the average passenger travel time, composed of both the in-vehicle travel time and

a transfer penalty, and the sum of all the transit route lengths. A new crossover operator

that alternates the selection of routes between two parents favouring routes with as yet

unused vertices whilst ensuring route connectivity has been designed as well as two

new mutation operators that adds or deletes a bounded random number of vertices from

a route set. A repair procedure was also given to ensure that route sets produced from

initial generation and crossover are valid. Similar to Fan et al. [55] SEAMO [146, 113]

was used as the evolutionary algorithm for the multi-objective optimisation. Four new

benchmark instances were introduced and made available for other researchers.

Chew et al. [27] attempted to minimise the passenger and operator costs similar to

Mumford and used the same problem formulation and objective functions. An initial

population was generated by randomly selecting two nodes, these become the origin

and destination of the route, Floyd’s algorithm was then used to find the shortest path

between the two nodes if they are not adjacent. It should be noted that the authors

made the assumption that the minimum number of nodes is permissible in a route is

fixed at 2 and the user will only set a maximum limit. A crossover operator inspired

by Chakroborty and Wivedi [26] where a random route is selected from each parent.

Substrings between the chosen routes swap their position between the two parents,

producing two offspring. If the offspring violate the problem constraints then the

crossover process is repeated until two valid offspring are produced. If none of the

possibilities yield valid offspring then two new parents are selected and crossover is run

again. Mutation is then applied using a modified version of the identical-point mutation

operator proposed by Ngamchai and Lovell [117]. The operator selects a random node

that is contained in at least two routes and then swaps the nodes before the selected

node in two routes contained in the route set. Mandl’s benchmark instance is used for

comparison between Fan et al. [55] and Mumford [114] with the authors able to make

3.3 Methods for tackling the UTNDP 67

improvements over the majority of test cases.

Simulated Annealing

Simulated annealing (SA) was first posed by Kirkpatrick et al. [93] in 1983 and is

an extension to random descent and utilises the Metropolis algorithm proposed by

Metropolis et al. [109]. In random descent a move to a random neighbour is made at

each iteration this can result in becoming trapped in a local optimum. SA attempts to

escape local optima by making a move to a “worse” solution with a given probability

in an attempt to explore more of the search space. SA is analogous to the process

of physical annealing with solids, where a solid is heated and then allowed to cool

very slowly until it reaches the most stable lattice configuration possible [72]. If the

cooling schedule is slow the resulting configuration will usually be superior to that of

the original [72].

In each iteration of SA a new solution is produced by making a small neighbourhood

move to the current solution, this change is usually small to allow for a gradual change in

solution such that the search does not jump to vastly different areas of the search space

at each iteration. The two solutions are evaluated and compared, if the new solution

improves upon the current solution then the current solution is replaced with the new

solution else it is probabilistically decided whether to replace the current solution or

not. At high temperatures (usually at the beginning of the SA algorithm) the probability

of accepting worsening moves will be relatively high enabling the algorithm to escape

local optima, as the temperature decreases the probability of acceptance also decreases

allowing the algorithm to converge. A basic SA is given in Algorithm 3.2.

In 2006 Fan and Machemehl [56] used a SA algorithm to select the best set of routes

from a pool of candidate routes. The process was similar to that of Pattnaik et al. [124],

a set of initial solutions were created using Dijkstra’s shortest path algorithm and Yen’s

k-shortest path algorithm. Route frequencies were determined simultaneously via a

network analysis procedure to enable the computation of the required performance

68 3.3 Methods for tackling the UTNDP

1: scurrent = generate initial solution
2: Evaluate(scurrent)
3: sbest = scurrent
4: t = initial temp
5: repeat
6: for i = 1 to MAX_ITERATIONS do
7: si = get random neighbour of scurrent
8: Evaluate(si)
9: if si < scurrent then

10: scurrent = si
11: if scurrent < sbest then
12: sbest = scurrent
13: else
14: if e

scurrent−si
t > random then

15: scurrent = si
16: decrease t
17: until stopping temperature reached

Algorithm 3.2: A simulated annealing algorithm.

measures. The objective was to minimise the sum of the user costs, operator cost and

unsatisfied demand. The user cost is composed of walking cost, waiting cost, transfer

cost and in-vehicle travel cost. The operator cost consisted of the cost of operating the

buses on the routes. Headway, load factor, fleet size, route length and maximum number

of routes constraints were imposed and required to be satisfied making the final solution

quite realistic.

Fan and Mumford [54], 2010, proposed a SA algorithm using the Make-Small-Change

procedure as the neighbourhood operator. A route set was generated at random according

to a series of constraints then the Make-Small-Change procedure applied. The Make-

Small-Change procedure could apply three moves to a randomly selected route: 1)

Adding a vertex to the last position in a route 2) Deleting the first vertex in a route 3)

Inverting the order of vertices in a route. The SA method was compared with a basic

hill climbing algorithm for Mandl’s benchmark instance and was found to obtain better

results although did not improve over those of the GA proposed by Chakroborty and

Wivedi [26].

3.3 Methods for tackling the UTNDP 69

Tabu Search

Tabu search (TS) was introduced by Glover [71] in 1986 however some elements were

introduced by Glover previously in 1977 [72]. TS is an extension to steepest descent

where a move to a neighbour solution is decided based upon the “best” neighbour, the

solution that improves most upon the objectives. TS improves upon steepest descent by

imposing restrictions on the search via a set of memory structures commonly referred to

as tabu lists, these can be short term or long term memory. A neighbourhood move that is

contained within one of these lists are termed tabu and forbidden [73]. A neighbourhood

is a user defined operator that identifies solutions that are adjacent to the current solution

in the solution space. A tabu move can be accepted under certain criteria, called

aspiration criteria, if the evaluation of the solution provides an improvement of the best

so far objective value. The basic TS algorithm is given in Algorithm 3.3.

1: s = generate initial solution
2: t = 0
3: repeat
4: N(s) generate the neighbours of s
5: T (s, k) get the tabu set for s
6: A(s, k) get the aspirant set for s
7: st = choose best solution from {N(s)− T (s, k)}+ A(s, k)
8: if st < s then
9: s = st

10: update memory lists
11: t = t+ 1
12: until stopping condition is satisfied

Algorithm 3.3: A basic tabu search algorithm.

Fan and Machemehl [58], 2008, made use of TS attempting to minimise a weighted

sum of passenger cost, operator cost and unsatisfied demand. A route set generation

procedure generated all candidate routes constrained by user input on minimum and

maximum length. An analysis procedure and TS were then used iteratively to generate

a good set of routes simultaneously producing the route frequencies.

In 2007 Lei and Yan [100] formulated an approach generating an initial route set then

70 3.3 Methods for tackling the UTNDP

applying three neighbourhood operators to gradually improve the solution by applying

TS. The objective was the minimisation of the total cost composed of the in-vehicle

travel time, waiting time and operator cost. The neighbourhood operators used were:

• Route-merge – attempt to combine two routes with common vertices.

• Route-break – split a route into two separate routes only if the number of routes

in the current route set is lower than a predetermined minimum value.

• Add-link – attempts to add vertices to a route that is of a small length.

Ant Colony Optimisation

Dorigo [50] proposed the ant colony optimisation (ACO) metaheuristic in his PhD

thesis for finding solutions to combinatorial optimisation problems that can be reduced

to finding paths through a graph. The process is analogous to the real-world process

ants use to find food from their nest. As an ant moves it lays down a pheromone trail,

if another ant comes across this trail it will decide whether to follow the trail based

upon the strength of the pheromone. The pheromone evaporates over time meaning that

shorter paths through the graph to the food are more heavily utilised containing a strong

pheromone trail.

ACO has received relatively little attention in the literature for solving the UTNDP.

Yu et al. [152], 2005, proposed a parallel ACO algorithm using the passenger flow on

each link as the pheromone. Their approach utilised parallel hardware due to their

statement that the enumeration method used required a large amount of computation for

large-scale practical instances.

A similar method is proposed by Jiang et al. [82] however solution stagnation is taken

into account by reinitialising a pheromone trail after a certain threshold is reached. A

penalty mechanism was also introduced to place constraints on a route such as a suitable

length and the inability to contain cycles.

3.3 Methods for tackling the UTNDP 71

Other Metaheuristic Approaches

In 2009 Mauttone and Urquhart [108] based their approach on the GRASP [128]

metaheuristic. The authors approach used a shortest path algorithm to generate a set of

routes that conformed to a given number of constraints. An initial set of frequencies

were determined for the routes and local search was then applied using a random vector

of weights for the conflicting objectives. The objectives used were the passenger costs,

in-vehicle travel time, waiting time and transfer time and the operator cost is given as

the required fleet size needed to operate the routes with the required frequencies.

Blum and Mathew [16] proposed an agent based approach incorporating creation,

deletion, modification and scheduling agents. A route generation approach using

shortest path calculations and a link modification weight every time a link is used

were utilised to produce all routes present in the transport network. Creation agents

select routes from this pool to create route sets with several types of creation agents

given. Modification agents were then used to improve the solutions using a variety of

approaches ranging from route splitting to route deletion.

Blum and Mathew [17] tackled redesigning the bus network in Mumbai under the

constraint that existing routes must remain in the network although the stops on the

existing routes could be serviced less frequently to enable new routes to be created.

Similar to their previous work ([16]) an agent based optimisation was used consisting

of six modification agents. Their approach first created potential routes which were

used to seed a solution pool with a set of initial solutions that were evaluated to ensure

that they did not violate any of the problem constraints and models the passenger route

choice. Multiple iterations of modification agents were then used to take solutions

from the pool and create a new solution based upon the given solutions. The solution

pool size was kept within predefined bounds via the use of a delete agent that removes

poor solutions. The authors found that despite having to keep the existing routes

significant improvements could still be found with a decrease in operator cost of 18.1%

whilst maintaining the same level of performance for passengers. On the other hand an

72 3.4 Frequency Setting

improvement of 5.5% could be made from the passenger objective under the current

operator cost.

Nikolić and Teodorović [119] put forward the use of bee colony optimisation (BCO)

utilising a simple greedy algorithm to generate an initial solution then applying the BCO

algorithm to improve the given solution. The authors concentrated on the passenger

objective defined as the sum of the total travel time spent by passengers on a service,

a weighted penalty for the number of transfers and a weighted penalty for the number

of unsatisfied passengers. No thought was given to the operator point of view in

the optimisation making the algorithm extremely biased in terms of the solutions

produced. The greedy construction algorithm took the vertex pairs that have the highest

demand values and generated the shortest path between them in turn generating a route.

Heterogeneous bees were used where the first type takes a given route with a certain

probability then destroys the route replacing it with the shortest path between one of

the original terminal vertices and a new terminal selected with a given probability. The

second type of bee selected a route in the same manner as the first type but this time

decides to remove one of the terminal vertices with a certain probability. If the vertex

is not removed then a new vertex is added to the route by randomly selecting from the

adjacent vertices. The approach was compared using Mandl’s instance and another

instance although the majority of comparison was done using Mandl’s instance.

3.4 Frequency Setting

In the previous section we looked at network design which is the first component on the

UTNDP. We now look at the frequency setting problem, which is applied to a particular

network design.

Schéele [130] formulated the frequency setting problem as a non-linear programming

problem taking into account capacity constraints on buses attempting to minimise the

total generalised travel time – walking time, in-vehicle travel time and waiting time.

3.4 Frequency Setting 73

The distribution of passengers was based upon the demand with the demand divided

between the routes according to an entropy and the capacity constraints. Not all bus

stops were included only the most relevant vertices were included reducing the size

of the problem. The round trip time of a route was assumed to be independent of the

loading of the bus. The proposed model was tested on the town of Linöping with 6

routes.

Han and Wilson [76] adopted the objective of minimising the occupancy level at the

most heavily loaded point on any route in the network due to the complexity involved

in specifying accurate waiting times and crowding level functions. A constraint was

imposed upon the maximum number of buses; however fractional buses were allowed

due to the possibility of interlining. The passenger assignment problem was tackled

using the following approach: if a unique route for an origin-destination pair was

available then this route was used, if a set of routes were available the demand was

shared between them using frequency sharing [28]. The solution methodology first

calculated a lower bound by iteratively assigning passenger flows and route frequencies

until convergence was achieved. Secondly a much simpler surplus allocation problem

was formulated defined only by linear constraints. The proposed model was tested on a

small instance with 6 vertices and 3 routes.

Constantin and Florian [34] formulated a non-linear mixed integer formulation with the

objective of minimising the total expected travel time and waiting time whilst satisfying

both constraints on the fleet size and lower bounds. This problem was then reformulated

as a Min-Min non-linear bi-level program. The upper level represents the planner’s

viewpoint and minimises the overall travel time subject to a fleet size constraint. The

lower level represents the passenger viewpoint with the objective of minimising the

overall travel time assigning passengers to routes based upon optimal strategies proposed

by Spiess and Florian [135]. The model was tested using instances related to the cities

of Stockholm (38 routes), Winnipeg (67 routes) and Portland (115 routes).

74 3.4 Frequency Setting

Gao et al. [65] proposed a bi-level model with the upper level attempting to minimise

the total deterrence of the system, composed of the average in-vehicle travel time on the

link and waiting time at the origin vertex of the link, and the lower level was a transit

equilibrium model. The passenger assignment proposed in [42] was used which assigns

the demand based upon the frequencies on the routes. The solution approach firstly

selected an initial set of frequencies which were then iteratively improved upon using a

sensitivity analysis until convergence. A numerical analysis was carried out on a very

small example containing 4 vertices and 4 routes.

Yu et al. [153] formulated a bi-level problem with the upper level optimising the

frequencies of the routes based upon the passengers on each route and the lower level

assigning passengers to each route based upon the optimal strategy by [135]. A GA was

used with an integer encoding of the frequencies and genetic operators that reassigned

the vehicles among the different routes iterating on the passenger assignment until the

frequencies converged. The proposed solution methodology was tested on two instances,

the first with 6 vertices and 4 routes, the second with 3,004 vertices and 89 routes.

Huang et al. [79] proposed a bi-level formulation for frequency setting. In the lower

level the proportional flow eigenvalues were calculated using the optimal strategy transit

assignment model. The upper level was concerned with two factors: 1) the network

cost composed of the passengers’ expected travel time and operating costs, and 2) the

network robustness indicated by the variance in passenger travel time. Constraints were

placed upon the maximum fleet size available. A GA was proposed using a real-coded

scheme to represent the frequencies.

Similar to Yu et al. [153], Martínez et al. [107] used the optimal strategy proposed by

[135] to assign the demand to the network. Two approaches were put forward, the

first a mathematical approach based upon the approach by [34] that was used to solve

small real-world sized instances with 84 vertices. The authors identified the need for an

approximate method to allow for larger instances to be solved and put forward a tabu

search approach. Tabu search was applied under a constrained fleet size with infeasible

3.5 Limitations of Published Research 75

solutions penalised. To prevent a large number of neighbours being explored due to the

high cost of assigning the demand to the network the number of neighbours that are

explored are limited. The authors also discretise the set of allowed frequencies further

reducing the size of the search space. It was further assumed that there is sufficient

capacity on every route to carry the assigned passengers.

3.5 Limitations of Published Research

The current literature tends to concentrate on highly specific problem instances or use

Mandl’s problem instance to perform comparisons. Furthermore there is relatively little

discussion regarding the heuristics or genetic operators applied. The lack of detail along

with the vast number of objective functions means a comparison between methods can

be challenging. A range of metrics are utilised in the literature due to the range of

beliefs as to what constitutes a good solution in terms of both the passenger and operator

perspective.

A further issue faced in the literature is the lack of benchmark instances available with

the majority of researchers tailoring their methods to specific instances of the UTNDP

for which they have acquired data. This makes comparison almost impossible if the

instance is not placed in a publicly accessible location. Mumford [114] has made a

step towards resolving the problem with the publication of a set of instances that are

publicly available. The lack of benchmark instances previously available has led to

researchers comparing methods using Mandl’s benchmark instance which is extremely

small compared with real-world scenarios, and as such, methods that may perform more

favourably on large instances (heuristic methods for example) are penalised.

Benchmark instances created based upon real world cities such as those given in [114]

have gone some way in addressing the issue with a lack of problem instances. However,

there is still a need for a set or real world instances, of ranging sizes, to enable methods

to be compared on practical networks. When real world instances are used in the

76 3.6 Commercial Software

literature they tend to be highly specific and are not made available to other researchers.

The computation time involved for even relatively small instances (100 vertices) is a

serious limitation with running times measured in days rather than hours. For real world

instances the computation time is a limiting factor in terms of the problem size that

can be tackled in a reasonable amount of time. Progress must therefore be made in

terms of improving the efficiency of developed algorithms or the exploitation of high

performance computing resources to enable these larger instances to be solved.

Computation time must however be balanced against the time frame for decision making

for the UTNDP. A network redesign may only take place once every decade or more.

A computation time of weeks or even months may therefore be tolerable given that

the majority of network planning will be for the long term. Engagement from industry

is key to develop approaches that provide insight in time frames that are synced to

commercial processes.

Industry have adopted very few methods published in the literature, a notable exception

is Hasselström’s [78] method although this was adopted a significant number of years

ago. If industry participation could be improved the research could benefit by producing

standard performance metrics that industry are concerned with rather than the theoretical

metrics used in the literature.

3.6 Commercial Software

A large number of commercial transportation software applications are available with

integration of geographical information systems (GIS) enabling the overlay of routes

on to maps. The majority of applications provide a graphical user interface allowing

for easy use for transit planners who may not have significant information technology

experience.

VISUM is the world’s leading demand-driven and service-oriented public transport

3.6 Commercial Software 77

planning tool [125]. VISUM supports both public transport, bus and rail for example,

and private transport such as a private car. The system is designed to be very easy to

use with the planner being able to click two terminals for a transit line and VISUM

generating a route between these [63]. Modelling is inbuilt allowing for new transit

networks to be evaluated using a series of performance metrics for both the passenger

and operator perspective.

Emme is a complete transportation forecasting package that can model travel demand

for rural, urban and national transportation networks [80]. Planning and modelling

facilities are provided along with an API allowing the framework to be extended by the

planner to provide their own user interfaces and access to the underlying demand data

[80].

SATURN is a suite of tools developed at the University of Leeds, providing network

analysis with six basic functions. These functions include traffic simulation and as-

signment, network editor, matrix manipulation package and simulation of individual

junctions. [1]

Cube Voyager allows for the forecasting of personal travel via a selection of models

providing an open and user friendly framework solution for modelling planning policies

and improvements at the urban, regional and national level [31]. Modelling functions

are provided for networks, highways, public transport and travel demand [30].

Trapeze are a commercial enterprise that specialise in software designed specifically for

supporting, building, managing and measuring transportation services [144]. Services

are provided for several types of transport ranging from public to healthcare with a

particular focus on scheduling and the storage of complex data associated with large

transport systems [145].

In general the commercial software mentioned above is well utilised in industry and

mainly used for visualisation, simulation and decision support. None are able to

automate the process of designing a new route network from scratch. However, given the

78 3.7 Summary

significant disruption to passengers that a total redesign would cause it is questionable

whether such capability is needed. For example, the ability to add stops to a route

currently in operation or add a single new route may provide more benefit to the

industry. This reflects more closely processes that happen in the real world, where new

housing developments for example are incorporated into existing routes.

3.7 Summary

This chapter has provided a brief introduction into the broad class of vehicle routing

problems and shown how the UTNDP relates to the DARP. Guidelines used by transit

network designers were presented before surveying the mathematical approaches to the

network design problem. It is evident that exact approaches have fallen out of favour

due to their inability to tackle problems of a practical size.

Heuristic approaches relevant to the network design problem were then covered before

moving onto the metaheuristic approaches. The majority of approaches lack detail in

terms of the local search or genetic operators used. There is wide ranging formulations

for the network design problem with some authors only considering a single objective

formulation. Furthermore, empirical comparisons are made using Mandl’s Swiss road

network which is very small in comparison to real world networks. Where real world

instances are used the data is not made publicly available for other researchers to

compare.

Methods for tackling the frequency setting problem were then described before moving

onto a discussion regarding the limitations of current research for the UTNDP. Finally

a brief overview of commercially available software to aid in the design of public

transport networks was given.

79

Chapter 4

An Improved Approach to Network

Design

In this chapter we present a new heuristic construction method for the network design

problem that is used to seed a multi-objective evolutionary algorithm (MOEA). Several

problem specific mutation operators are proposed and combined with an NSGAII

framework, producing improved Pareto approximate sets compared to state of the art

methods from the literature. We have opted for an evolutionary algorithm (EA) due its

ability to cope with large structural changes in solutions compared with local search

algorithms. Using an EA means that it is possible to make large changes, such as

removing or adding an entire route to a solution, by applying a crossover and one or

more mutation operators i.e. the offspring is substantially different from both parents

before an evaluation takes place. An EA allows for these larger changes in structure,

that may be required to remove an undesirable characteristic, that do not fit well with

local search methods that utilise a small neighbourhood move. It has been shown by

Chakroborty [25] that genetic algorithms (GAs) are “extremely well suited” for the

network design problem.

Creation of feasible solutions for the network design problem is in itself complex

with multiple constraints that need to be satisfied. Heuristics have been popular in the

literature for the creation of solutions, although many opt for generating a large pool of

routes. The pool of routes is then used in a pick and mix selection procedure to select

a good combination of routes. However, for larger instances, the computation time

80 4.1 Heuristic Construction

involved to generate the pool may be prohibitive.

In our methods we attempt to trade off the passenger and operators cost as defined in

Section 2.3. We show that the use of a heuristically generated initial population can

provide an improved Pareto set compared with a randomly generated population.

4.1 Heuristic Construction

Before the adoption of metaheuristic methods, heuristic construction was widely used in

the literature for this problem. The majority of approaches used heuristic construction

to generate one or more candidate solutions using shortest path and/or k-shortest path

algorithms. Improvement heuristics were then applied in an effort to improve the quality

of these. We use the same approach here to generate an initial population for the MOEA.

As noted, an alternative approach [124, 64, 29] is to generate a pool of routes and then

select a good combination from this pool; however this is less suitable for large instances

where the time required to generate the pool can be infeasible.

Shih and Mahmassani [133] have proposed a heuristic procedure for route set generation

where routes are continually added until (a) the number of passengers who can reach

their destination directly, and (b) the number of vertices serviced by the route set, reach

user defined levels. This violates our problem formulation as the number of routes

is fixed. We base our approach upon this to produce route sets that obey Constraints

(2.4-2.8) whilst balancing the cost to the operator and passenger.

Recall that we are given a graph G = (V,E,W) where V = {v1, . . . , vn} is a set of

vertices, E = {e1, . . . , em} is a set of edges and W = {w1, . . . , wm} is a set of weights

that define the cost to traverse edge ei. We are also given a demand matrix Dn×n where

Dvi,vj gives the passenger demand between a pair of vertices vi and vj .

In our approach W and D are first normalised such that their values are in the range

[0, . . . , 1] producing W ′ and D′ respectively. A set of edge weighted graphs G =

4.1 Heuristic Construction 81

{G1, . . . , Gl} is then created where Gi = (V,E,Wi). Let w(i)
j be the weight of the jth

edge of the set Wi. Similarly, let w′j be the jth edge of the set W ′. We set

w
(i)
j = w

′

jλ1 + (1−D′u,v)λ2

where the jth edge joins vertices u, v ∈ V . λ1 and λ2 are weights specified in advance

by the user. In our case we use weights varying from 0 to 1 with an interval of 0.05,

giving 441 combinations in total.

For each Gi ∈ G we first create a spanning subgraph to ensure that Constraint (2.4)

is satisfied. The spanning subgraph is created a route at a time with the intention of

minimising the sum of the edge costs using an iterative procedure. In the first iteration

the vertex pair (seed pair) with the lowest edge cost is selected. In subsequent iterations

the vertex pair with the lowest edge cost is selected such that one vertex is already

contained in the spanning subgraph ensuring Constraint (2.7) is satisfied. The remainder

of the route is formed from this seed pair using an expansion process that adds the

minimum weighted edge incident to one of the two terminal vertices. We prioritise

the insertion of edges that result in vertices not present in the spanning subgraph being

included. The expansion process continues until the inclusion of a further vertex would

cause a constraint to be violated. If all vertices are not contained in the spanning

subgraph the procedure is repeated providing |R| < r. In some situations the creation

of a spanning subgraph is unsuccessful, i.e. more than r routes are required, in these

cases Gi is abandoned and we repeat the process for Gi+1 ∈ G. The process for creating

the spanning subgraph is given in Algorithm 4.1.

Once a spanning subgraph has been created, if the number of routes in the solution

is less than r then an additional procedure is applied. During this stage we utilise the

approach of Shih and Mahmassani [133] given in Algorithm 4.2. Vertex pairs (vi, vj)

that are not yet satisfied directly (i.e. it is not possible to travel from vi to vj without

having to make a transfer) are extracted from the network and sorted in descending

82 4.1 Heuristic Construction

order based upon the demand Dvi,vj . Each vertex pair is then taken in order and a

k-shortest path algorithm is applied, using the weighted edge costs, to determine if a

valid route, originating at vi and terminating at vj , can be constructed that obeys the

problem constraints. We limit the number of ‘shortest’ paths that are to be explored

to ten following the recommendations of Shih and Mahmassani [133]. If a valid route

R can be constructed and the cost of the calculated route is less than αvi,vj(R) before

R’s insertion, then R is added toR. This process is applied iteratively until |R| = r as

required by Constraint (2.8).

4.1 Heuristic Construction 83

1: { Valid(R) = checks ifR obeys problem constraints excluding number of routes,
GenerateRoute(R, G) = returns a route generated using Algorithm 4.2 }

2: R = ∅

3: while
|R|⋃
i=1

VRi
6= V do

4: R = ∅
5: if |R| is 0 then
6: select lowest cost edge in Gi and insert into R
7: else
8: select lowest cost edge in Gi that shares a vertex withR and insert into R
9: while |R| < m2 do

10: EDGES_AV AILABLE = edges incident to terminal vertices in R
11: sort EDGES_AV AILABLE based upon edge weight ascending
12: EDGE_INSERTED = false

13: if EDGES_AV AILABLE contains a vertex not in
|R|⋃
i=1

VRi
then

14: while EDGE_INSERTED is false and EDGES_AV AILABLE con-

tains a vertex not in
|R|⋃
i=1

VRi
do

15: insert lowest cost edge that contains an unseen vertex into R
16: if Valid(R) then
17: EDGE_INSERTED = true
18: else
19: remove inserted edge from R
20: remove edge from EDGES_AV AILABLE
21: if EDGE_INSERTED is false then
22: while EDGES_AV AILABLE 6= ∅ and EDGE_INSERTED is false

do
23: insert lowest cost edge into R
24: if Valid(R) then
25: EDGE_INSERTED = true
26: else
27: remove inserted edge from R
28: remove edge from EDGES_AV AILABLE
29: if EDGE_INSERTED is false then
30: break
31: R = R∪R
32: if not Valid(R) then
33: return no valid route set found
34: while |R| 6= R do
35: R =R ∪ GenerateRoute(R, Gi)
36: return R

Algorithm 4.1: Heuristic construction procedure for a route set, R, given a
weighted graph Gi.

84 4.2 NSGAII

1: V P = extract vertex pairs not satisfied directly byR
2: sort pairs (vi, vj) based upon demand descending
3: for (vi, vj) ∈ V P do
4: ROUTES = apply k-shortest path algorithm to vertex pair p using G
5: for Ri ∈ ROUTES do
6: if Ri is valid and

∑
∀ej∈ERi

wj < α(vi,vj)(R) then
7: return Ri

8: return no route found

Algorithm 4.2: Route generation approach of Shih and Mahmassani [133] given
a route set,R, and graph G.

4.2 NSGAII

Having used the method discussed in the previous section to generate an initial popu-

lation, we use NSGAII to evolve the population. NSGAII is an elitist non-dominated

sorting MOEA, widely used to solve multi-objective optimisation problems. It has been

shown to often find an improved spread of solutions and while converging nearer to the

true Pareto-optimal front compared with other Pareto based methods [46] . We have

chosen to use NSGAII over NSGAIII as we are dealing with two objective functions in

our problem. NSGAIII is designed for any objective optimisation problems which have

four or more objectives [44].

The basic form of an NSGAII generation, shown in Algorithm 4.3, proceeds by creating

an offspring population of size N. This is combined with the parent population of size

N to produce a population, P = {R1,R2, . . . ,R2N}. We define two attributes of a

route set Ri: 1) Rirank the non-dominated front that Ri belongs to, and 2) Ridist the

crowding distance associated withRi as defined by Deb et al. [46]. P is sorted such that

∀ Ri,Rj ∈ P Rirank ≤ Rjrank andRidist ≥ Rjdist for i < j. The successor population

is formed by taking the first N solutions in P .

In our case, similarly to Deb et al. [46], a new population is generated using binary

tournament selection with a crossover probability of 0.9. For each offspring the number

4.3 Genetic Operators 85

of mutations is distributed by a binomial random variable with r trials and a success

probability of 1
r
.Our proposed mutation operators operate on a route set, as opposed to

individual routes.

1: P0 = generate initial population
2: Evaluate(p) ∀ p ∈ P0

3: t = 0
4: repeat
5: Q = generate new population
6: Pt = Pt ∪Q
7: F = NonDominatedSort(Pt)
8: Pt+1 = ∅ and i = 0
9: while | Pt+1 | + | Fi |≤ N do

10: CalculateCrowdingDistance(Fi)
11: Pt+1 = Pt+1 ∪ Fi

12: i = i+ 1
13: Sort(Fi)
14: Pt+1 = Pt+1 ∪ Fi[1 : (N− | Pt+1 |)]
15: t = t+ 1
16: until the stopping condition is satisfied
17: print all non-dominated solutions in the final population.

Algorithm 4.3: NSGAII.

4.3 Genetic Operators

NSGAII generates a new population by applying a series of crossover and mutation

operators, collectively referred to as genetic operators. A crossover operator usually

combines information from two parents to form an offspring, which is then mutated

through one or more mutation operators. In the following two sections we introduce our

crossover and mutation operators used for the network design problem.

4.3.1 Crossover

We use the crossover operator proposed by Mumford [114], to ensure that the produced

offspring solutions obey Constraints (2.4-2.8). Given two parents, the operator con-

86 4.3 Genetic Operators

structs an offspring,R′, from scratch by alternatively selecting a route from each parent

such that the proportion of unseen vertices is maximised, until |R′| = r. First a route

is selected at random from one of the parents to seed the offspring. Next a route is

selected from the second parent. However, to ensure connectivity the routes eligible for

insertion into the offspring are extracted. Eligible routes are defined as those that share

one or more vertices in common with those already in the offspring (i.e. a route Ri is

only eligible for insertion intoR′ if and only if Ri ∪
|R′|⋃
j=1

VRj
6= ∅). For each eligible

route we then calculate the proportion of unseen vertices defined as Vunseen = V − VR′ .

Consider a route Ri = 〈1, 7, 8, 9, 12, 14〉 that is contained in one of the parents and is

being considered for insertion intoR′. IfR′ = {R1} where R1 = 〈12, 15, 0, 5, 3〉 then

Vunseen = Ri − R1 = {1, 7, 8, 9, 14}. Therefore the proportion of unseen vertices is
|Vunseen|
|Ri| = 5

6
in this case. The route that maximises the proportion of unseen vertices

is selected for insertion into the offspring. In the case of one or more routes sharing

the same proportion a uniform random choice is made as to which will be inserted into

R′. Focus then moves back to the first parent and the above process is repeated until

|R′| = r.

After crossover has been applied it is certain that the offspring will be connected although

not all the vertices in V may be present, which is a violation of Constraint (2.4). In

these cases a repair operator is applied which takes each route in the offspring at random

and attempts to add the missing vertices to the terminal vertices of the route, providing

valid adjacency relationships exist. If the repair process is unable to add the missing

vertices, crossover is abandoned and the next two parents are selected.

4.3.2 Mutation

In our approach eight mutation operators are used. Some of these apply heuristics to

mutate the route set in a way that encourages an improvement in quality in at least

one of the objectives, while others are intended more as perturbation operators. For

each newly created offspring the number of mutations is distributed by a binomial

4.3 Genetic Operators 87

random variable with r trials and a success probability of 1
r
. Each attempt at mutation

selects an operator at random. Mutation must be carefully controlled for this problem to

prevent violations of the problem constraints. The names of these mutation operators

are add-nodes, del-nodes, exchange, merge, replace, remove-overlapping, two-opt and

invert-exchange, which we now consider in turn.

add-nodes and del-nodes were both proposed in [114]. At the start an integer 0 < I ≤
m2

2
is generated at random denoting the number of vertices to be added or removed

fromR. Each route Ri ∈ R is considered in turn (in a random order) and, in the case

of add-nodes, i < I vertices are added to the terminal vertices of the route until the

addition of a vertex would cause Constraint (2.5) to be violated or result in Ri no longer

being a simple path. This process is repeated for each route until I vertices have been

added toR or all routes have been exhausted. The case is the same for del-nodes, except

I vertices are removed from the ends of routes inR whilst maintaining feasibility.

The exchange operator, as proposed by Mandl [105], selects a single route Ri ∈

R at random. Routes that intersect with Ri are then extracted from the route set

(Constraint (2.7) ensures that there will be at least one route). One of the extracted

routes is then taken at random, together with the initially selected route, and split at the

common vertex to produce four paths. The paths are then exchanged to produce two

new routes. The two new routes are checked to ensure that R is feasible and, if not,

the routes are disregarded. In this case we take the next route that shares a common

vertex and continue with the originally selected route until a valid mutation is produced

or until all routes sharing a common vertex are exhausted.

Similar to exchange, the merge operator, given in Algorithm 4.4 selects a random route

and searches the remaining routes to find a route that shares a common terminal vertex.

The two routes are then merged to create one continuous route, disregarding one of

the common terminal vertices – providing that Constraint (2.5) is not violated and the

merged route is a simple path. If successful, the route generation procedure of Shih and

Mahmassani [133] described in Section 4.1 is used to generate a new route for insertion.

88 4.3 Genetic Operators

1: { Valid(R) = checks ifR obeys problem constraints, GenerateRoute(R) = returns a
route generated using Algorithm 4.2 }

2: MUTATED = false
3: repeat
4: R = Choose a route fromR at random without replacement
5: for Ri ∈ R do
6: if R and Ri share a common terminal vertex then
7: if |R ∩Ri| = 1 then
8: remove R and Ri fromR
9: Rmerged = merge R and Ri at the common terminal vertex

10: R = R∪Rmerged

11: R =R ∪ GenerateRoute(R)
12: MUTATED = true
13: break
14: until routes exhausted or MUTATED = true
15: if Valid(R) then
16: return R
17: else
18: return incumbent solution

Algorithm 4.4: Merge operator for mutating a routesetR.

The replace operator, Algorithm 4.5 removes a route Ri ∈ R that satisfies the least

passenger demand inR. A replacement route is then generated using the route genera-

tion procedure of Shih and Mahmassani [133] as before. The purpose of the replace

mutation is to replace routes that serve a relatively low demand with a hopefully high

demand route. Note that replace can create infeasible solutions if the removed route acts

as a transfer hub for other routes, i.e. the route set is only connected when the removed

route is present. If this situation occurs the repair procedure used during crossover

is applied and, if successful, the mutated solution is returned, else the incumbent is

returned.

The remove-overlapping operator replaces a route Ri that is a subsequence of another

route Rj . If such a route is discovered it is removed and the route generation procedure

of Shih and Mahmassani [133] described previously is used to produce a replacement.

Replacing the route provides the operator with the ability to remove duplicate services

and use these resources to serve other passenger demands.

4.3 Genetic Operators 89

1: { Valid(R) = checks ifR obeys problem constraints, GenerateRoute(R) = returns a
route generated using Algorithm 4.2 }

2: Calculate passenger demand served directly by each route
3: Remove the route that serves the lowest demand fromR
4: R =R ∪ GenerateRoute(R)
5: if not Valid(R) then
6: Repair(R)
7: if not Valid(R) then
8: return incumbent solution
9: return R

Algorithm 4.5: Replace operator for mutating a routesetR.

1: { Valid(R) = checks ifR obeys problem constraints, GenerateRoute(R) = returns a
route generated using Algorithm 4.2 }

2: MUTATED = false
3: repeat
4: R = choose a route fromR at random without replacement
5: for Ri ∈ R do
6: if R is a subsequence of Ri then
7: remove R fromR
8: R =R ∪ GenerateRoute(R)
9: MUTATED = true

10: break
11: until routes exhausted or MUTATED = true
12: if Valid(R) then
13: return R
14: else
15: return incumbent solution

Algorithm 4.6: Remove-overlapping operator for mutating a routesetR.

two-opt, proposed in 1958 by Croes [39] for use with the travelling salesman problem,

selects two vertices at random in a route and inverts the order of the vertices between

them. Here, a route is selected at random without replacement until a feasible mutation

is produced or the routes are exhausted. As we do not have complete graphs the

inversion of the vertices can lead to the production of infeasible solutions. By inverting

a sequence of vertices we seek to reduce travel time between vertices on the same route.

Finally the invert-exchange mutation operator, given in Algorithm 4.7, selects two routes

at random and two random index locations valid for both routes. The vertices between

90 4.4 Measuring Population Diversity

the two random index locations are then inverted and exchanged between the two routes.

For example, given two routesR1 = 〈3, 5, 8, 10, 12, 15〉 andR2 = 〈1, 6, 9, 8, 11, 7〉with

the selected indices of 3 and 5. We invert everything in R1 between the indices giving

〈3, 5, 12, 10, 8, 15〉 then replace the vertices in R2 between the indices with the inverted

section from R1. In this case the resultant two routes would be R3 = 〈3, 5, 11, 8, 9, 15〉

and R4 = 〈1, 6, 12, 10, 8, 7〉. Invert-exchange attempts to decrease the travel time

between vertices and prevent passengers having to make transfers. Similarly to two-opt

there is a high possibility that the majority of routes created using this approach will

be infeasible. As such, two routes are continually chosen at random until a feasible

solution has been found or the routes have been exhausted.

1: { Valid(R) = checks ifR obeys problem constraints }
2: MUTATED = false
3: repeat
4: R1 = choose a route fromR at random without replacement
5: R2 = choose a route fromR at random without replacement
6: INDEX_START = generate random index location
7: INDEX_END = generate random index location > INDEX_START
8: Rinvert

1 = invert vertices in R1 between INDEX_START and INDEX_END
9: Rinvert

2 = invert vertices in R2 between INDEX_START and INDEX_END
10: R1[INDEX_START : INDEX_END] = Rinvert

2

11: R2[INDEX_START : INDEX_END] = Rinvert
1

12: if Valid(R) then
13: MUTATED = true
14: else
15: revert changes made toR
16: until routes exhausted or MUTATED = true
17: return R

Algorithm 4.7: Invert-exchange operator for mutating a routesetR.

4.4 Measuring Population Diversity

Population diversity defines how different the individuals in a population are. Many

evolutionary algorithms lose diversity through premature convergence and thus get

4.5 Experimental Method 91

trapped in a local optima. Measuring the similarity between solutions requires a differ-

ent distance measurement based upon the solution representation used [66]. Several,

alternative, methods exist for measuring the similarity between two solutions based

upon their representation e.g. Hamming distance, Sorensen coefficient, Jaccard coeffi-

cient and Cosine coefficient. We propose a similarity measure between two route sets

expressed as real-coded variables as follows.

Given two solutions, for example,R1 = {〈1, 2, 3, 4〉, 〈5, 2, 6〉} andR2 = {〈1, 2, 3, 4〉,

〈5, 2, 3, 6〉} we define two multisets that contain the edges present in each solution. In

our example this will produce the multisetsER1 = {{1, 2}, {2, 3}, {3, 4}, {5, 2}, {2, 6}}

and ER2 = {{1, 2}, {2, 3}, {3, 4}, {5, 2}, {2, 3}, {3, 6}}. ER2 contains the edge {2, 3}

twice. This is an important feature of the solution and should be present due to the use

of multisets.

The distance between ER1 and ER2 is calculated as 1 − S(ER1 , ER2) where S(ER1 ,

ER2) is the Sorensen/Dice measure, calculated:

S(ER1 , ER2) =
2|ER1 ∩ ER2|
|ER1|+ |ER2 |

(4.1)

In our example this gives us a similarity measure of 3
11

as the solutions are very similar.

To calculate the diversity of a population, P , we consider the average distance between

each pair of solutions, calculated:

∑
∀R1,R2∈P S(ER1 , ER2)(

|P |
2

) (4.2)

4.5 Experimental Method

Our first experiment will show how the algorithm of Mumford [114] (Algorithm A),

based on the SEAMO2 [146] framework, can be improved, by seeding the MOEA with

92 4.5 Experimental Method

our heuristically generated population (Algorithm B). Using our heuristic construction

procedure, a subset of unique solutions are randomly selected for insertion into the

initial population. Randomly generated solutions are then used to top-up the initial

population if there are too few heuristic solutions. These were created using the same

approach as Mumford [114] to seed the MOEA which we now summarise.

A route set, R, is generated by selecting a vertex, v ∈ V , at random to seed the first

route. For the remaining routes a seed vertex is selected at random from those already

inR. A desired route length is then generated between m1 and m2. The route terminals

of the current route under construction are augmented by adding a random adjacent

vertex until the desired route length is achieved. If the desired route length cannot be

achieved, i.e. adding another vertex would cause a constraint to be violated, the attempt

is abandoned and a new seed vertex selected.

In our second experiment we look at the effects of adding our proposed mutation

operators (Algorithm C) to Mumford’s original add-nodes and del-nodes operators

together with heuristic seeding. A comparison is then made between SEAMO2 and

NSGAII (Algorithm D).

The effect of population size is investigated in our third experiment by varying the

initial population from 100 to 500 solutions while keeping the number of generations

fixed. We look into population diversity and the effect this has on the final S metric, by

preventing duplicate solutions from entering the population (Algorithm E).

Finally, we perform convergence testing using a population size of two hundred evolved

for a thousand generations examining the population diversity, Pareto set size and S

metric conversion as the population is evolved.

Unless stated otherwise, all experiments use a population of two hundred solutions

evolved for two hundred generations. Final Pareto sets are achieved by combining the

results from twenty independent runs. Each algorithm is now summarised below:

• Algorithm A – SEAMO2 framework using the crossover and mutation operators

4.6 Experimental Results 93

put forward by Mumford [114]. The initial population is randomly generated.

• Algorithm B – SEAMO2 framework using the crossover and mutation operators

put forward by Mumford [114]. The initial population is seeded using our

heuristic construction procedure.

• Algorithm C – SEAMO2 framework using Mumford’s [114] crossover operator

and our proposed mutation operators. The initial population is seeded using our

heuristic construction procedure.

• Algorithm D – NSGAII framework using Mumford’s [114] crossover operator

and our proposed mutation operators. The initial population is seeded using our

heuristic construction procedure.

• Algorithm E – NSGAII framework using Mumford’s [114] crossover operator

and our proposed mutation operators. The initial population is seeded using our

heuristic construction procedure. The population contains only unique solutions.

4.6 Experimental Results

Firstly, we augment Mumford’s algorithm with our heuristic method for generating the

initial population (Algorithm B). Table 4.1 presents the best solutions from the passenger

and operator perspective compared to the findings of Mumford [114]. We see that our

heuristic is clearly beneficial, producing an improvement over all the instances. A small

improvement in passenger objective can result in a substantial number of passengers

requiring less transfers. For example, an improvement of almost two minutes in the

passenger objective for Mumford3 results in 96% of passengers requiring at most one

transfer to reach their destination compared with only 78% using Mumford’s method.

We also note that where an improvement is made in the objective value, either from the

passenger or operator perspective, we can see that an improvement is made to the other

objective on all but the Mandl and Mumford0 instances from the operator perspective.

94 4.6 Experimental Results

Note that an improvement from the operator perspective on Mandl’s instance is not

possible, as 63 is the lower bound calculated by Mumford [114] for this instance.

However, a decrease in the passenger objective is still made compared with Mumford’s

findings.

Mandl Mumford0 Mumford1 Mumford2 Mumford3

Best for F1 10.25 (10.33) 15.47 (16.05) 23.65 (24.79) 26.82 (28.65) 29.23 (31.44)
passenger F2 213 (224) 718 (759) 1928 (2038) 5379 (5632) 6554 (6665)

d0 95.83 (94.54) 69.94 (63.20) 43.37 (36.60) 36.47 (30.92) 37.21 (27.46)
d1 4.17 (5.14) 30.06 (35.82) 52.81 (52.42) 60.00 (51.29) 58.34 (50.97)
d2 0.00 (0.32) 0.00 (0.98) 3.81 (10.71) 5.53 (16.36) 4.45 (18.76)
dun 0.00 (0.00) 0.00 (0.00) 0.00 (0.26) 0.00 (1.44) 0.00 (2.81)

Best for F1 13.48 (15.13) 33.19 (32.40) 33.84 (34.69) 32.68 (36.54) 36.66 (36.92)
operator F2 63 (63) 97 (111) 458 (568) 1837 (2244) 2276 (2830)

d0 70.91 (59.34) 20.82 (18.42) 19.04 (16.35) 18.58 (13.76) 18.17 (16.71)
d1 25.50 (30.57) 17.86 (23.40) 44.10 (29.06) 48.11 (27.69) 42.47 (33.69)
d2 2.95 (9.06) 26.93 (20.78) 30.53 (29.93) 27.91 (29.53) 32.55 (29.18)
dun 0.64 (1.03) 34.38 (37.40) 6.33 (24.66) 5.40 (29.02) 6.82 (20.42)

Table 4.1: Best objective values extracted using heuristic seeding for the initial
population (Algorithm B). Mumford’s [114] results are given in brackets. Passen-
ger demand satisfied in zero transfers, one transfer, two transfer or unsatisfied
(i.e. more than two transfers) is given by d0, d1, d2 and dun respectively.

Using Algorithm B, we now examine the effect of further augmenting the algorithm

using our proposed mutation operators. Comparing S metric values for Algorithms B

and C (Table 4.2), we can see that an improvement is achieved for the Mandl, Mumford0,

Nottingham100 and Edinburgh200 instances, with small decreases in S metric values

for the remaining instances. If the Pareto sets are plotted for the larger instances,

(Figure 4.1), it can be seen that there is an improvement in the passenger objective for

the majority of solutions. However, we struggle to make improvements in the extremes

of the operator objective. By exploring the extremes of the operator objective it is

unlikely that these solutions would be chosen by a human decision maker due to their

poor quality in respect to the passenger objective. We note that when introducing our

mutation operators there is an increased rate of failed mutations compared with using

add-nodes and del-nodes alone – this will be covered in a greater depth in Section 4.7.

If we modify SEAMO2 to apply a maximum of r attempts at mutation where each

4.6 Experimental Results 95

attempt selects a mutation operator at random, we note an improvement in S metric

over five of the seven instances. This is shown in Table 4.3 where our modified version

of SEAMO2 is named Algorithm C’.

Given the popularity of NSGAII and its stated ability to produce a Pareto set closer to the

true Pareto-optimal front compared with other Pareto based methods [46], it was used in

place of SEAMO2 in our third set of experiments. We use our mutation operators with

heuristic seeding and Mumford’s crossover operator. As mentioned earlier, a probability

of crossover and mutation of 0.9 and 1
r

respectively are used. A comparison of S metric

values, (Table 4.2), shows NSGAII gives an improvement over all the problem instances.

This is displayed graphically in Figure 4.1. These improvements can be attributed to

the following: 1) a higher selection pressure compared with SEAMO2 due to the use

of Pareto ranking and crowding distance, and 2) increased rate of mutation, SEAMO2

attempts to apply a single mutation to an offspring whereas NSGAII will attempt to

apply r mutations with a probability of 1
r
, leading to a greater exploration of the search

space.

Instance Algorithm A Algorithm B Algorithm C Algorithm D

Mandl 16679441 16676 16684 16696∗∗2

Mumford0 15968844 159589 159891 160717∗∗
Mumford1 689832 69802844 696732 704270∗∗
Mumford2 4878053 495842644†3 4943131 5007652∗∗
Mumford3 15571117 1582012344†† 15781607 15977073∗∗
Nottingham100 691080 69307244 695255† 703263∗∗
Edinburgh200 10910282 1091672744 10928707†† 10956064∗∗

Table 4.2: S metric comparison over the five benchmark problems for our pro-
posed modifications.

We now examine the effect of varying the population size on the S metric value. Fig-

ure 4.2 shows the change in the S metric as the population size is increased. For Mandl,
144 indicates statistical significance between Algorithm A and B according to a Related-Samples

Wilcoxon Signed Rank test at the p < 0.01 level.
2** indicates statistical significance between Algorithm C and D according to a Related-Samples

Wilcoxon Signed Rank test at the p < 0.01 level.
3Indicates statistical significance between Algorithm B and C according to a Related-Samples

Wilcoxon Signed Rank test at the † p < 0.05 and †† p < 0.01 level.

96 4.6 Experimental Results

Instance Algorithm C Algorithm C’

Mandl 16684 16685
Mumford0 159891 159892
Mumford1 696732 698557
Mumford2 4943131 4935725
Mumford3 15781607 15782044
Nottingham100 695255 695944
Edinburgh200 10928707 10928356

Table 4.3: S metric comparison between SEAMO2 when making a single attempt
at mutation, Algorithm C, and r attempts at mutation, Algorithm C’.

10 11 12 13
50

100

150

200

Passenger Cost F1 (minutes)

O
pe

ra
to

rC
os

tF
2

(m
in

ut
es

)

Mandl

Algorithm A
Algorithm B
Algorithm C
Algorithm D

30 40 50 60 70

1,000

2,000

3,000

4,000

5,000

Passenger Cost F1 (minutes)

O
pe

ra
to

rC
os

tF
2

(m
in

ut
es

)
Edinburgh200

Algorithm A
Algorithm B
Algorithm C
Algorithm D

Figure 4.1: Combined Pareto fronts extracted from twenty runs for the smallest
and largest benchmark instances using Algorithms A-D.

Mumford0, Mumford1, Nottingham100 and Edinburgh200, the plots demonstrate that

an increase in metric can be achieved by increasing the population size whilst keeping

the number of generations executed constant. Mumford2 and Mumford3 are more

variable with increases in S metric for population sizes of 300 and 400, but a decrease

once the population size reaches 500.

Population diversity is now investigated by preventing duplicate solutions from entering

the population. We define a duplicate solution to be that which shares the same routes

as that of another solution in the population i.e. the distance between the two solutions

is zero. In this case we allow solutions that share the same objective values but

have a different route set configuration to remain in the population. Table 4.4 shows

4.6 Experimental Results 97

that preventing duplicates from entering the population produces an increase in the

combined S metric for all the instances apart from Mumford3 and Edinburgh200. If we

consider the twenty replicate runs there is no evidence to suggest that the differences

between Algorithms D and E are statistically significant in terms of the S and Schott

spacing metrics. However, when examining the diversity of the population, as shown in

Figure 4.3, it is clear that preventing duplicate solutions helps to increase the diversity.

For this reason, Algorithm E is selected over Algorithm D in the remainder of the

experiments.

Instance Algorithm D Algorithm E
S Metric Schott Metric S Metric Schott Metric

Mandl 16698 1.1500 16701 0.8011
Mumford0 160800 19.1716 160913 9.3842
Mumford1 703350 83.9315 703880 114.0468
Mumford2 5002556 340.9535 5013202 315.3071
Mumford3 16011824 524.8114 15999158 404.7256
Nottingham100 703263 75.4259 705353 50.5586
Edinburgh200 10956064 361.8055 10952858 337.8293

Table 4.4: S metric comparison over the five benchmark with duplicates allowed
and duplicates prevented from entering the population.

Figure 4.4 shows the variation in S metric, Pareto set size and diversity over a thousand

generations for the Mandl and Edinburgh instances. From the Mandl instance, we can

see that the algorithm has almost converged after two hundred generations and the

diversity of the population has dropped significantly. Although we do not achieve a

continual increase in S metric over the generations, the size of the Pareto set continually

increases, suggesting that we are still exploring the search space effectively. As the S

metric does not significantly change over this period, it is suggestive that more solutions

are being found along the Pareto front rather than making significant gains in terms of

objective values. Similar trends are noted for the Mumford0 and Mumford1 instances.

Different conclusions are drawn from the Edinburgh instance, which is significantly

larger than Mandl’s instance. There are relatively large gains made in terms of S metric

after two hundred generations. Although, the Pareto set size reaches its maximum size

98 4.7 Genetic Operator Analysis

after approximately four hundred generations. Reaching the ceiling of the population

size indicates that more significant gains may still be able to be made if the population

size was increased. Albeit small gains in the metric are still realised when the ceiling is

reached. However, the diversity of the population plateaus upon reaching the population

ceiling. When compared with the results from the population size experiment, it seems

that, for larger instances, an increase in both population size and number of generations

executed is warranted.

Given the increase in S metric that is achieved by extending the number of generations

used, it seems beneficial to run the algorithm for longer. However, the running times

for the algorithm are long and require the use of a high performance cluster to obtain

acceptable running times. For example, the average CPU time needed for Edinburgh200

to complete a thousand generations was twenty four days. It therefore seems sensible

in this work to limit the number of generations to the originally used two hundred and

realising that gains can still be made on larger problem instances. Although, the largest

increase in metric value is achieved in the first two hundred generations after which the

rate of increase decelerates.

4.7 Genetic Operator Analysis

This section details the performance of our genetic operators. To analyse their effective-

ness we performed 20 independent runs for each problem instance using a population

size of 200 evolved for 200 generations. Two criteria for assessment are applied for an

operator: 1) feasibility, and 2) improvement. We deem a ‘successful’ application of an

operator to mean that the parents (crossover) or parent (mutation) produce an offspring

that complies with all the constraints listed in Section 2.3, i.e., a feasible solution is

produced. An ‘improved’ solution refers to a feasible offspring that dominates its parent

(mutation) or parents (crossover).

Tables 4.5 and 4.6 show the percentage of successful applications of each operator and

4.7 Genetic Operator Analysis 99

the percentage of ‘improved’ or dominating solutions produced respectively. Table

4.6 also shows the percentage of offspring that are produced that possess a mutually

non-dominating status with respect to their parent or parents. All results are averaged

over the 20 runs.

100 4.7 Genetic Operator Analysis

100 200 300 400 500

1.669

1.670

1.670

1.670

·104

Population Size

S
m

et
ri

c

Mandl

100 200 300 400 500

1.606

1.608

1.610

1.612
·105

Population Size

S
m

et
ri

c

Mumford0

100 200 300 400 500
7.025

7.030

7.035

7.040

7.045

7.050

·105

Population Size

S
m

et
ri

c

Mumford1

100 200 300 400 500

5.005

5.010

5.015

·106

Population Size

S
m

et
ri

c

Mumford2

100 200 300 400 500

1.601

1.602

1.603

1.604

1.605

·107

Population Size

S
m

et
ri

c

Mumford3

100 200 300 400 500
7.030

7.040

7.050

7.060

7.070

·105

Population Size

S
m

et
ri

c

Nottingham100

100 200 300 400 500

1.095

1.096

1.097

1.098

·107

Population Size

S
m

et
ri

c

Edinburgh200

Figure 4.2: Plot of effect on S metric as the population size is increased.

4.7 Genetic Operator Analysis 101

0 50 100 150 200

0.20

0.25

0.30

0.35

Generation

D
iv

er
si

ty

Mandl

0 50 100 150 200

0.35

0.40

0.45

0.50

Generation

D
iv

er
si

ty

Mumford0

0 50 100 150 200

0.34

0.36

0.38

0.40

0.42

Generation

D
iv

er
si

ty

Mumford1

0 50 100 150 200

0.32

0.33

0.34

0.35

0.36

Generation

D
iv

er
si

ty

Mumford2

0 50 100 150 200

0.31

0.32

0.33

0.34

Generation

D
iv

er
si

ty

Mumford3

0 50 100 150 200

0.24

0.25

0.26

0.27

0.28

Generation

D
iv

er
si

ty

Nottingham100

0 50 100 150 200
0.25

0.30

0.35

0.40

Generation

D
iv

er
si

ty

Edinburgh200

Algorithm D
Algorithm E

Figure 4.3: Comparison between population diversity using Algorithm D and Al-
gorithm E.

102 4.7 Genetic Operator Analysis

0 200 400 600 800 1,000

1.62

1.64

1.66

·104

Generation

S
m

et
ri

c

Mandl

0 200 400 600 800 1,000

1.08

1.09

1.09

1.1

·107

Generation

S
m

et
ri

c

Edinburgh200

0 200 400 600 800 1,000

20

40

60

80

100

Generation

Pa
re

to
se

ts
iz

e

Mandl

0 200 400 600 800 1,000

50

100

150

200

Generation

Pa
re

to
se

ts
iz

e

Edinburgh200

0 200 400 600 800 1,000

0.2

0.25

0.3

0.35

Generation

D
iv

er
si

ty

Mandl

0 200 400 600 800 1,000

3.6

3.7

3.8

3.9

·10−3

Generation

D
iv

er
si

ty

Edinburgh200

Figure 4.4: S metric, Pareto set size and diversity for Mandl and Edinburgh200.

4.7
G

enetic
O

peratorA
nalysis

103

Operator Mandl Mumford0 Mumford1 Mumford2 Mumford3 Nottingham100 Edinburgh200

crossover 89 92 100 100 100 100 87
add-nodes 97 99 99 98 98 98 98
del-nodes 94 96 86 84 82 91 96
replace 80 99 95 100 100 85 90
remove-overlapping 71 93 70 96 97 97 100
exchange 92 99 100 100 100 100 100
merge 40 78 50 91 91 79 94
two-opt 0 18 25 71 76 14 33
invert-exchange 4 8 10 76 82 48 69

Table 4.5: Percentage of applications of the genetic operators that were successful. Best performing operator per instance is
highlighted in bold.

104
4.7

G
enetic

O
peratorA

nalysis

Operator Mandl Mumford0 Mumford1 Mumford2 Mumford3 Nottingham100 Edinburgh200

crossover 0 (48) 0 (70) 0 (65) 0 (65) 0 (68) 0 (66) 0 (77)
add-nodes 0 (96) 0 (100) 0 (100) 0 (100) 0 (100) 0 (100) 0 (100)
del-nodes 3 (97) 1 (99) 0 (100) 0 (100) 0 (100) 0 (100) 0 (100)
replace 16 (80) 2 (88) 21 (59) 19 (67) 25 (60) 31 (57) 30 (63)
remove-overlapping 38 (61) 17 (80) 48 (51) 38 (61) 34 (65) 55 (43) 25 (73)
exchange 17 (44) 33 (12) 32 (12) 40 (15) 41 (15) 39 (22) 34 (28)
merge 0 (100) 0 (100) 0 (100) 0 (100) 0 (100) 0 (100) 0 (100)
two-opt 0 (0) 13 (27) 12 (34) 21 (43) 16 (51) 18 (32) 27 (26)
invert-exchange 2 (50) 7 (50) 7 (52) 15 (60) 14 (64) 9 (81) 6 (86)

Table 4.6: Percentage of dominating solutions produced from a successful application of the genetic operator. The percentage
of mutually nondominating solutions is given in brackets. Best performing operator per instance, in terms of dominating
solutions produced, is highlighted in bold.

4.7 Genetic Operator Analysis 105

As we saw earlier, the crossover operator is deemed to have failed if one or more of

the vertices is not contained in a route following repair. However, this is rare with the

larger problem instances, with success rates of 100% recorded. When repair is required

(i.e. when crossover produces an infeasible offspring) we found the procedure was

able to produce a feasible solution in 24% of the cases. With regards to the creation of

dominating offspring, crossover performs poorly, producing no dominating offspring,

though the majority of offspring produced are non-dominating with respect to both

parents, as detailed in Table 4.6. Despite this, crossover is beneficial to the algorithm

overall as improved S metrics are achieved for six out of the seven instances. This is

shown in Table 4.7 where we compare the performance of our MOEA with and without

the crossover operator.

Instance Without With

Mandl 16697 16703 *4

Mumford0 160981 161067 *
Mumford1 694780 703141 **
Mumford2 4900654 5006569 **
Mumford3 15583717 16056110 **
Nottingham100 695126 705353 **
Edinburgh200 10920957 10952858 **

Table 4.7: S metric achieved with and without crossover using our proposed al-
gorithm. Asterisks indicate statistical significance according to a Paired samples
t-test at the ** p < 0.01 level.

With regards to mutation, add-nodes and del-nodes show similar behaviour to crossover

with high success rates. add-nodes has a higher success rate compared to del-nodes

as there is no risk of removing vertices that are required for route set connectivity.

A success rate of 98% is seen across the majority of instances for add-nodes, while

del-nodes is more variable with success rates in the range 82-96%. However we find

that both add-nodes and del-nodes are unable to produce dominating solutions here.

This is due to their design, with the operators tending to improve one objective while

simultaneously degrading the other. For example, del-nodes will improve F2 as we are

4Related-Samples Wilcoxon Signed Rank Test where * = p < 0.05

106 4.7 Genetic Operator Analysis

reducing the length of the routes; in turn this will degrade F1 as passengers may now

have to make vehicle transfers to reach their destination thereby incurring a penalty. As

such, the percentage of non-dominating solutions produced for both operators is almost

identical to the success rates. However, the success rates of add-nodes and del-nodes

diverge as the evolutionary process progresses and the population as a whole improves.

add-nodes has a relatively constant success rate whereas the success rate for del-nodes

tends to decrease over time. This is reflective of the improvement in solution quality as

the population is evolved.

Table 4.6 shows that the exchange operator is able to produce dominating solutions in 32-

41% of the successful mutations applied for the Mumford problem instances, achieving

more dominating solutions than mutually non-dominating solutions. The number of

dominating solutions produced implies that exchange is able to reduce the passenger

cost by reducing the number of transfers that are required whilst incurring a decrease

in the operator cost. Merge, however, displays similar behaviour to add-nodes and del-

nodes where a successful mutation is generally unable to create a dominating solution.

Success rates of 40%, 70%, 50%, 91% and 91% are recorded over the Mumford problem

instances and 79% and 94% for Nottingham100 and Edinburgh200 respectively. In the

case of a successful merge, a non-dominating solution is expected because joining two

routes will benefit passengers by reducing travel times. The generation of a replacement

route satisfying the highest as yet unsatisfied demand vertex pair is also of further

benefit to the passenger. This degrades the operator objective as the new route will incur

extra distance that the operator must traverse.

remove-overlapping also shows interesting behaviour on the larger problem instances.

In the first ten generations the operator is able to produce more dominating solutions

than mutually non-dominating solutions. Success rates are also quite variable across the

three smaller instances, although on the larger instances they are similar. We believe

that this is due to the higher number of routes coupled with the increase in allowed

route length that creates a suitable environment for duplication of vertices in multiple

4.8 Comparative Results 107

routes. Creation of dominating solutions is relatively high compared with the other

operators with averages of 38%, 17%, 48%, 38% and 34% over Mandl to Mumford3

with non-dominating solutions produced at rates of 61%, 80%, 51%, 61% and 65%.

Finally two-opt and invert-exchange both perform very poorly for the smaller instances

although they do show some improvement for the larger instances. This is due to the

constraints that need to be satisfied to allow either to be applied successfully. As the

number of routes present in a solution increases so does the number of possible mutations

that can be applied to the route set thus a greater likelihood of a feasible mutation.

With respect to dominating solutions invert-exchange shows a better performance with

50%-86% of mutually non-dominating solutions produced compared with 0%-51% for

two-opt.

Overall we can see from Tables 4.5 and 4.6 that as the problem size increases so does

the performance of the proposed operators. The creation of dominating solutions is

challenging given the multi-objective nature of the problem and design of the operators

since each operator tends to focus on improving one particular objective while degrading

the other. As such we believe that using all the operators together is the best approach

due to the aforementioned design choice and the percentage of both dominating and

non-dominating solutions produced. Further investigation into the effectiveness of each

operator when combined would be an interesting topic for future work.

4.8 Comparative Results

In this section we now compare our proposed algorithm, Algorithm E, against the state

of the art [114, 27, 115, 92]. It should be noted that we have only considered those

methods that use a similar problem formulation to allow a direct comparison. We use an

initial population of 200 solutions generated using our heuristic construction algorithm

and evolve the population for 200 generations. 20 independent runs are combined to

form an approximate Pareto set.

108 4.8 Comparative Results

Tables 4.8 and 4.9 detail the best solutions found for each method for the passenger and

operator viewpoints, respectively. As demonstrated a direct comparison is difficult as

many authors only use Mandl’s instance, or their problem formulations only consider

one objective function. However, our proposed approach is able to achieve the lowest

objective values observed from the passenger and operator perspective for all but

Mandl’s instance. Nayeem et al. [115] are able to achieve a lower passenger objective

for Mandl’s instance, though they have formulated their problem to focus solely on the

passenger objective.

Tables 4.8 and 4.9 show that comparisons are generally made using the best per-

forming solution from the passenger and operator perspectives. Given the inherent

multi-objective nature of the network design problem, this method of comparison is

inadequate. However, as far as we are aware, published Pareto sets from any of the

publicly available instances used in this thesis do not exist. Clearly, the development

of methods to tackle the network design problem will benefit greatly from the public-

ation of reference Pareto sets allowing alternative methods to be compared on their

multi-objective performance, rather than the current single-objective scenario.

4.8
C

om
parative

R
esults

109

Instance Mumford [114] Chew et al. [27] Nayeem et al. [115] Kılıç and Gök [92] Our Method
Mandl F1 10.33 10.21 10.10 10.29 10.19

F2 224 224 - 216 217
CPU Time - 70 - - 15

Mumford0 F1 16.05 - - 14.99 14.96
F2 759 - - 707 668
CPU Time - - - - 329

Mumford1 F1 24.79 - 23.96 23.33 23.04
F2 2038 - - 1944 1897
CPU Time - - - - 6538

Mumford2 F1 28.65 - 26.63 26.82 26.20
F2 5632 - - 5027 5360
CPU Time - - - - 174370

Mumford3 F1 31.44 - 29.65 30.41 28.79
F2 6665 - - 5834 6519
CPU Time - - - - 315282

Nottingham100 F1 - - - - 22.62
F2 - - - - 2761
CPU Time - - - - 73847

Edinburgh200 F1 - - - - 25.71
F2 - - - - 5727
CPU Time - - - - 351676

Table 4.8: Best objective values obtained across all runs from the passenger perspective. CPU time given in seconds.

110 4.9 Summary

Instance Mumford [114] Chew et al. [27] Our method
Mandl F1 15.13 13.48 13.48

F2 63 63 63
Mumford0 F1 32.40 - 30.33

F2 111 - 94
Mumford1 F1 34.69 - 47.53

F2 568 - 445
Mumford2 F1 36.54 - 39.14

F2 2244 - 1699
Mumford3 F1 36.92 - 47.38

F2 2830 - 1879
Nottingham100 F1 - - 35.79

F2 - - 856
Edinburgh200 F1 - - 51.00

F2 - - 911

Table 4.9: Best objective values obtained across all runs from the operator per-
spective. Note, results for Nayeem et al. [115] and Kılıç and Gök [92] are not
available in this case. CPU time for each instance is the same at that given in
Table 4.8.

4.9 Summary

This chapter has presented our approach to network design. We have shown that an

improvement in solution quality can be achieved by seeding a population with solutions

constructed using a novel heuristic construction algorithm. The approach combines

information from the travel times and demand matrices to create route sets that balance

the cost to the passenger and operator. Furthermore, the incorporation of several

mutation operators from the literature combined with three mutation operators proposed

in this thesis provide further benefit for the majority of problem instances. Using

NSGAII can provide additional benefit when compared with SEAMO2. A method for

comparing two route sets using the Sorensen/Dice measure was also presented followed

by a population diversity metric.

An in-depth analysis of the performance of the genetic operators was performed and

showed that as the problem size increases, so does the performance of our operators in

4.9 Summary 111

terms of the number of dominating and mutually nondominating solutions produced.

However, it was evident that our operators usually fail to produce dominating solutions.

This is due to their operation of improving performance from one perspective whilst

simultaneously degrading the other.

Finally a comparison was made between our method and the state of the art from the

literature where it was shown that our algorithm is able to achieve the best objective

value from the passenger and operator perspectives for all but one instance. From this

comparison, it was evident that a major obstacle to progress on the network design

problem, is a lack of benchmark instances for researchers to compare their methods to.

The variation in problem formulation also makes direct comparisons difficult. It was

further identified that the current method used in the literature for comparing alternative

approaches is unsuitable given the multi-objective nature of the network design problem.

However, the publication of reference Pareto sets is needed to enable a comparison of

the multi-objective aspect of algorithms to be compared5.

5Pareto sets produced under Algorithm E are available at http://users.cs.cf.ac.uk/M.P.
John/pareto_sets/

http://users.cs.cf.ac.uk/M.P.John/pareto_sets/
http://users.cs.cf.ac.uk/M.P.John/pareto_sets/

112 4.9 Summary

113

Chapter 5

Surrogate Models for Network Design

As discussed in Chapters 2 and 4, network evaluation for the passenger objective is an

expensive computational task that we have found severely constrains the size of problem

that can be tackled in a reasonable amount of time. On the other hand the operator

objective is very quick to calculate and, as such, surrogate models are not needed for

this. The use of high performance computing resources can, to some extent, increase

the problem size that can be tackled, although, alternative evaluation strategies that can

be quickly computed are desirable. Using an approximation to an objective value is

referred to as surrogate-assisted optimisation, sometimes referred to as approximation

evaluation, meta-modelling, response surface method or model emulation [149, 15, 120].

It was originally motivated from the need to reduce the computation time of expensive

evolutionary optimisations [84].

In this chapter, we take Algorithm E, from the previous chapter which combined

an NSGAII framework with our proposed mutation and crossover operators using a

population of unique individuals. We augment the algorithm by replacing the procedure

used for evaluating the passenger objective with our proposed surrogate models. For

clarity, we shall refer to Algorithm E as the ‘Original algorithm’ throughout this chapter.

In the following section, we provide an overview of surrogate-assisted optimisation

in the field of evolutionary computation. We also discuss several different models

for approximating the passenger objective in the network design problem. Finally we

provide a comparison and discussion of the performance of the proposed models.

114 5.1 Overview of Surrogate-assisted Optimisation

5.1 Overview of Surrogate-assisted Optimisation

Originally, surrogate-assisted evolutionary computation was motivated out of the need to

reduce the computation time of expensive-to-calculate objective functions such as those

encountered in drug [51] and aerodynamic design [85], where complex simulations

are often required. A surrogate model can be described as a mathematical model

that approximates the original objective function and that is also computationally less

expensive to evaluate.

Early work on surrogate-assisted optimisation substituted the original objective function

for the surrogate model assuming that the model could provide a sufficiently accurate

evaluation [84]. This approach can lead to a number of issues, especially if the model

introduces optima that do not exist in the original problem. Jin et al. [86] stressed the

importance of model management in surrogate-assisted evaluation by making use of the

approximate objective functions together with the original objective function.

Surrogate models can be divided into three general categories based upon their man-

agement technique: 1) individual based, 2) generation based, and 3) population based

[83]. Individual-based model management utilises the original objective function to

evaluate just some of the individuals per generation [18, 86, 87]. This is in contrast

to generation-based methods where the surrogate model is used for evaluating some

of the generations, with the original objective function being used in the remainder

[19, 87, 101, 126]. Population-based strategies, on the other hand, co-evolve multiple

populations each using its own surrogate model, with migration between the populations

then taking place [84].

Moraglio and Kattan [112] define the traditional surrogate model based optimisation

procedure as given in Algorithm 5.1. This approach first creates a surrogate model

by evaluating a small sample set of randomly selected solutions using the original

objective function to fit a mathematical model. A limit is placed on the number of

original objective functions evaluations allowed and, until this limit is reached, an

5.2 Proposed Management Strategies 115

iterative process of search and model creation is executed. At each iteration the search

space defined by the surrogate model is explored using a search algorithm (such as

an evolutionary algorithm) to find or approximate the optimum. The solution is then

evaluated using the original objective function and the model is updated. The process is

repeated until the limit on original objective function evaluations is reached.

1: Sample at random a small set of candidate solutions
2: Evaluate the solutions using the original objective function
3: while number of expensive evaluations not reached do
4: Generate new surrogate model from the current set of solutions
5: Determine the optimum of the surrogate model
6: Evaluate optimum solution using original objective function
7: Add solution to the set of solutions
8: return best solution found

Algorithm 5.1: Moraglio and Kattan [112] surrogate model based optimisation
procedure.

5.2 Proposed Management Strategies

In our case we use two distinct management strategies for our MOEA which we will refer

to as Strategies A and B. The proposed strategies do not fit into any of the categories

defined previously. We have opted for this approach to remove the reliance on the

original objective function. This is due to the time consuming nature of evaluation

using the transit network as discussed previously. By removing the reliance of the

original objective function it is hoped that the MOEA is able to execute significantly

more generations, provide a greater exploration of the search space and in turn find

improved solutions for both the passenger and operator perspectives.

Each strategy uses the surrogate model in all of the generations to evaluate each indi-

vidual. Strategy A uses the surrogate model instead of the original objective function.

Hence, in each generation the surrogate model is used to evaluate the passenger ob-

jective. After a set number of generations the model is then updated. At this stage all

116 5.3 Proposed Surrogate Models

the solutions currently in the population are re-evaluated with the original objective

function. These original objective values are used together with the surrogate objective

values to update the underlying mathematical model – introduced in the next section. It

should be noted that the original objective function is never used to accept or reject a

solution under this strategy.

For Strategy B, in each generation a solution is first evaluated using the surrogate

model. If the solution shows promise, i.e. it would be inserted in to the population

under the surrogate objective values, it is re-evaluated using the original objective

function. The criteria for insertion are then rechecked using the original objective values

and, if met, the solution is inserted into the population. Similarly to Strategy A, the

underlying mathematical model is updated at a set number of generations using the

process described below.

5.3 Proposed Surrogate Models

In this section we introduce the surrogate models that are used in conjunction with the

above management strategies. Underpinning all of our models is the evaluation of the

route network rather than the larger transit network as detailed in Section 2.3. Of course,

this approach reduces the size of the graph used for evaluation but results in transfer

penalties not being considered.

The relationship between the passenger objective value obtained when using the transit

and route networks for evaluation is shown in Figures 5.1 and 5.2. These experiments

used a population of 200 solutions generated using our heuristic construction procedure

evolved for 200 generations. The figure demonstrates that there is a strong correlation

between the objective values obtained even though the route network does not penalise

transfers. In our first model a linear regression is carried out between these two

variables every 10 generations (using the current population of two hundred individuals)

to determine an intercept a and gradient b. For the next ten generations we then use

5.3 Proposed Surrogate Models 117

the surrogate model, Surr1, where F (1)
1 is the passenger objective value gained on the

smaller route network.

10 15 20 25 30 35

10

15

20

25

Transit Network (minutes)

R
ou

te
N

et
w

or
k

(m
in

ut
es

First Generation

10 15 20 25 30 35

10

15

20

25

Transit Network (minutes)
R

ou
te

N
et

w
or

k
(m

in
ut

es
)

Last Generation

Figure 5.1: Relationship between the obtained objective value using the transit
network and route network evaluation schemes for Mandl’s benchmark instance
using Algorithm E.

28 30 32 34 36 38
24

25

26

27

28

29

Transit Network (minutes)

R
ou

te
N

et
w

or
k

(m
in

ut
es

)

First Generation

28 30 32 34 36 38
24

25

26

27

28

29

Transit Network (minutes)

R
ou

te
N

et
w

or
k

(m
in

ut
es

)

Last Generation

Figure 5.2: Relationship between the obtained objective value using the transit
network and route network evaluation schemes for the Mumford3 benchmark
instance using Algorithm E.

Surr1(R) = a+ b(F
(1)
1 (R)) (5.1)

Our second model, Surr2, uses a multi-variable regression upon the passenger objective

118 5.3 Proposed Surrogate Models

gained on the smaller route network and also the average route length to estimate the

passenger objective on the transit network. The model is updated in the same fashion as

the first model.

Surr2(R) = a+ b1(F
(1)
1 (R)) + b2(

∑
∀Ri∈R |Ri|
r

) (5.2)

In our surrogate models, because of the use of the route network, we neglect to consider

the waiting time incurred by passengers making a transfer. Without the introduction

of transfer vertices (as with the transit network) or an analysis of the paths passengers

take, this cannot be accurately determined. However, to provide an approximation of

the number of passengers requiring at least one transfer we propose the use of a binary

transfer matrix Bn×n, where Bi,j is set to 0 if vi and vj are on the same route and 1

otherwise. It should be noted that the shortest path between vi and vj may involve a

transfer even if i and j are on the same route. However, in practise people may choose to

stay on a vehicle resulting in a longer travel time to avoid the inconvenience of making a

transfer. Indeed, the surrogate model might even be a better reflection of the real world

in this particular case.

Using route network evaluation together with the binary transfer matrix we can now

provide a more accurate estimation of the average passenger travel time using Equa-

tion (5.3), where βvi,vj(R) is the shortest path between vertices vi and vj using the route

network on route setR and τ is the transfer penalty.

F
(2)
1 (R) =

∑n
i,j=1Dvi,vjβvi,vj(R) +Dvi,vjBvi,vjτ∑n

i,j=1Dvi,vj

(5.3)

Our previous models can now be amended to use F (2)
1 producing the models Surr3 and

Surr4.

Surr3(R) = a+ b(F
(2)
1 (R)) (5.4)

5.4 Experimental Method for Surrogate Models 119

Surr4(R) = a+ b1(F
(2)
1 (R)) + b2(

∑
∀Ri∈R |Ri|
r

) (5.5)

We can now define each of the four proposed surrogate models that are used with both

management strategies giving eight different experimental scenarios. The models below

are listed in increasing order of computational effort i.e. time taken to determine the

passenger objective.

• Surr1 – linear regression

• Surr3 – linear regression with binary transfer matrix

• Surr2 – multi-variable regression

• Surr4 – multi-variable regression with binary transfer matrix

5.4 Experimental Method for Surrogate Models

To compare the proposed management strategies we choose to use both the NSGAII and

SEAMO2 [146] methodologies as our evolutionary frameworks, as used in previous

works [88, 114]. SEAMO2 allows a comparison between both strategies due to its

population replacement rules [113]. SEAMO2 applies crossover and then mutation to

the offspring, and the offspring is then directly compared to both parents to determine

whether it should replace either. NSGAII only allows for Strategy A due to its use

of Pareto ranking and crowding distance for determining the population for the next

generation. During an NSGAII generation the size of the population is expanded from

P to 2P and only at the end of generation is the population for the next generation

produced.

For our experiments a population of 200 solutions generated using our heuristic genera-

tion procedure were evolved for a fixed running time, which was set to half the running

120 5.5 Experimental Results for Surrogate Models

time of the original algorithm due to the large computation times involved. Final S

metric values are produced by combining the Pareto sets from 20 independent runs.

Statistical tests are performed over the 20 independent runs.

We first examine the effect that the management strategy has over the quality of solutions

produced. For this we use SEAMO2 under both management strategies with each of

the four surrogate models. Taking the best performing management strategy under

SEAMO2 we then compare this to NSGAII using Strategy A and the four surrogate

models. A comparison is then made between the best performing model and strategy

to the original algorithm. Finally we combine the best performing surrogate model

with GPU based evaluation introduced previously. We compare this against the original

NSGAII algorithm using the original objective function with GPU based evaluation. It

should be noted that all experiments were evolved for a fixed running time, as previously

mentioned.

5.5 Experimental Results for Surrogate Models

Table 5.1 shows the S metric value for SEAMO2 under both Management strategies. In

five out of the seven cases, Strategy A is able to achieve a higher S metric (reference

points are given in Table 2.1). Comparing the number of generations executed for

the surrogate models under fixed time limits, shown in Table 5.2 and graphically in

Figure 5.3, we see that, as the problem size increases, substantially more generations

are executed. This can be attributed to the difference in sizes of the route and transit

networks. As the problem size increases so does the difference between the route and

transit network sizes, as shown in Table 2.1, resulting in a vast reduction in the evaluation

time and an increase in the number of generations executed. Furthermore, Strategy A

executes significantly more generations than Strategy B per time period reflecting the

fact that when using surrogate models under Strategy B we are still required to use the

original objective function extensively. Table 5.1 also shows that as the problem size

5.5 Experimental Results for Surrogate Models 121

increases the use of the original objective function becomes less crucial. Strategy A is

able to evolve the population for more generations resulting in an improved Pareto set.

Instance Original Strategy Surr1 Surr3 Surr2 Surr4
Mandl 16688 A 16436 16603 16572 16579

B 16665** 16665** 16665** 16668**
Mumford0 160019 A 154696 159256** 158051** 154833

B 158112** 157272 157795 157409**
Mumford1 696512 A 683028 699525** 685546 683712

B 686656** 687448 688053** 687025**
Mumford2 4935593 A 5052562** 5096439** 4994117** 4953464**

B 4897611 4902388 4905577 4899709
Mumford3 15727910 A 16131847** 16122259** 15919207** 15725916**

B 15659658 15645749 15667155 15668556
Nottingham100 6911423 A 676937 676151 675333 677677

B 678132** 678808** 680873** 681077**
Edinburgh200 10893021 A 10968130** 10956145 10874199** 10931269**

B 10658425 10702250 10645850 10665799

Table 5.1: S metric comparison between the proposed management strategies
and surrogate models using SEAMO2 under fixed time limits. Asterisks indicate
statistical significance according to a Related-Samples Wilcoxon Signed Rank test
at the p < 0.01 level.

Instance Original Strategy Surr1 Surr3 Surr2 Surr4
Mandl 162 A 373 256 283 300

B 159 169 239 382
Mumford0 94 A 1736 586 609 588

B 118 101 432 382
Mumford1 114 A 181 245 203 246

B 138 130 201 216
Mumford2 101 A 5200 3293 5176 4370

B 159 127 1858 1944
Mumford3 101 A 3714 1382 1509 1524

B 152 116 760 849
Nottingham100 73 A 1550 1771 1290 1129

B 105 104 427 486
Edinburgh200 56 A 8662 7692 1688 2215

B 85 79 633 594

Table 5.2: Comparison between the number of generations executed under the dif-
ferent models and management strategies using SEAMO2 under fixed time limits.

Figure 5.4 shows the average elapsed running time versus the average S metric over

the 20 independent runs for all the problem instances. Once problem sizes similar

122 5.5 Experimental Results for Surrogate Models

Original Surr1 Surr3 Surr2 Surr4

0

2,000

4,000

6,000

8,000

Surrogate Model

N
um

be
ro

fG
en

er
at

io
ns

Strategy A

Original Surr1 Surr3 Surr2 Surr4

0

500

1,000

1,500

2,000

Surrogate Model

N
um

be
ro

fG
en

er
at

io
ns

Strategy B

Mandl
Mumford0
Mumford1
Mumford2
Mumford3

Nottingham100
Edinburgh200

Figure 5.3: Comparison between the number of generations executed under the
different models and management strategies using SEAMO2 under fixed time lim-
its.

to Mumford3 are reached the surrogate models perform well in terms of S metric

with Surr3 and Surr2 able to achieve higher average metric values in shorter amounts

of time for Mumford3 and Surr4 for Edinburgh200. We also note the decrease in

metric value for Surr1 on Mumford3 although this achieves the best combined metric

value. This is due to Surr1 exploring the extremes of the passenger objective. It can be

seen from Figure 5.5 that Surr3 is preferable to Surr1 with regards to solution spread.

Nottingham100 and Edinburgh200 show a degradation of S metric over time for Surr1

and Surr3; however when the final populations are combined from the 20 runs to form

the combined final Pareto set Surr1 achieves the best S metric. This can be attributed to

a loss of diversity in the individual run populations but, when combined, they achieve

a greater exploration of the extremes of the passenger objective resulting in a higher

metric as shown in Figure 5.5. In terms of solution spread it is clear from the figure that

the original algorithm is still preferred.

Taking Strategy A forward and using it for both SEAMO2 and NSGAII we found that

NSGAII demonstrated improved performance over SEAMO2 for six out of the seven

problem instances. Table 5.3 gives the S metrics for both algorithms. NSGAII using

Surr4 provides the best metric value in five out of the seven instances and, as shown

5.5 Experimental Results for Surrogate Models 123

in Figure 5.6, achieves a similar solution spread. Surr4 contains the most information

about a route set in terms of the variables used with average route length and passenger

objective value on the route network combined with the binary transfer matrix. This is

indicative of the need for more variables that are quick to compute but reflective to help

provide an indication of the route set’s potential.

Instance Algorithm Original Alg. Surr1 Surr3 Surr2 Surr4

Mandl SEAMO2 16688 16436 16603 16572 16579
NSGAII 16700 16492 16603 16514 16661

Mumford0 SEAMO2 160019 154696 159256 158051 154833
NSGAII 160085 157670 159230 159257 159421

Mumford1 SEAMO2 696512 683028 699525 685546 683712
NSGAII 701872 700076 700057 699952 696306

Mumford2 SEAMO2 4935593 5052562 5096439 4994117 4953464
NSGAII 4954543 5047514 5057453 5055099 5070217

Mumford3 SEAMO2 15727910 16131847 16122259 15919207 15725916
NSGAII 15800513 16133804 16121723 16117145 16153183

Nottingham100 SEAMO2 6911423 676936 676151 675333 677677
NSGAII 696652 687042 700225 695289 701663

Edinburgh200 SEAMO2 10893021 10968130 10956145 10874199 10931269
NSGAII 10909888 10930904 10964942 10930874 10978840

Table 5.3: S metric comparison between SEAMO2 and NSGAII using manage-
ment Strategy A with the four proposed mathematical models.

If we compare the S metric over time for NSGAII under Strategy A, shown in Figure 5.7,

to SEMAO2 under Strategy A, shown in Figure 5.4, we note that when using NSGAII,

all the surrogate models are able to achieve higher metrics for the Mumford2, Mumford3

and Edinburgh200 instances compared with the original algorithm. This is also reflected

in Table 5.3 where the combined S metric value is higher for all surrogate models for

the mentioned instances. Figure 5.8 displays the Pareto sets for Edinburgh200 under

Strategy A for the four surrogate models. From the figure it can be seen that Surr1 and

Surr2 do not provide a greater exploration for the extremes of the passenger objective but

do improve the operator objective associated with solutions whose passenger objective

is above 30 minutes. On the other hand, Surr3 and Surr4 offer an improvement over the

entire Pareto front, extending the extremes of the objective values also. This may be

due to NSGAII being able to maintain diversity in the populations, through the use of

124 5.5 Experimental Results for Surrogate Models

nondominated sorting and crowding distance, whereas SEAMO2 loses this, resulting in

poor performance under the surrogate models.

If we take Surr4 under Strategy A using NSGAII and compare it to the original algorithm,

shown in Table 5.4, we see that for the smaller three instances the original algorithm is

able to achieve the best combined S metric. For the larger four instances the surrogate

model at worst performs just as well as the original, and in Mumford2, Mumford3 and

Edinburgh200 performs significantly better. It would appear that for instances larger

than 100 vertices it is advantageous to use surrogate models in place of the original

algorithm due to the improvement in solution quality produced when operating under

constrained running times.

Comparing the best achieved objective values for Surr4 under Strategy A using NSGAII

to the original algorithm, shown in Table 5.5, we can see that the surrogate model

provides improvement from the operator viewpoint only. This is in-keeping with what

we have seen throughout this chapter with the surrogate model exploring the extremes

of the operator objective.

Instance Algorithm S Metric
Mandl Original 16700**

Surr4 16661
Mumford0 Original 160085**

Surr4 159421
Mumford1 Original 701872**

Surr4 696306
Mumford2 Original 4954543

Surr4 5070217**
Mumford3 Original 15800513

Surr4 16153183**
Nottingham100 Original 696652

Surr4 701663
Edinburgh200 Original 10909888

Surr4 10978840**

Table 5.4: S metric comparison between the original NSGAII algorithm and NS-
GAII using Strategy A and Surr4 using under fixed time limits. Asterisks indicate
statistical significance according to a Related-Samples Wilcoxon Signed Rank test
at the p < 0.01 level.

5.5 Experimental Results for Surrogate Models 125

0 1 2 3 4

1.55

1.6

1.65

·104

Running time (seconds)

S
m

et
ri

c

Mandl

0 10 20 30 40

1.35

1.4

1.45

1.5

1.55

1.6

·105

Running time (seconds)

S
m

et
ri

c

Mumford0

0 200 400 600 800 1,000 1,200

6.5

6.6

6.7

6.8

6.9

·105

Running time (seconds)

S
m

et
ri

c

Mumford1

0 0.5 1 1.5

·104

4.5

4.6

4.7

4.8

4.9

5

·106

Running time (seconds)

S
m

et
ri

c

Mumford2

0 0.5 1 1.5 2 2.5 3

·104

1.54

1.56

1.58

1.6

·107

Running time (seconds)

S
m

et
ri

c

Mumford3

0 2,000 4,000 6,000

5.8

6

6.2

6.4

6.6

6.8

·105

Running time (seconds)

S
m

et
ri

c

Nottingham100

0 0.5 1 1.5 2 2.5 3

·104

1.04

1.06

1.08

·107

Running time (seconds)

S
m

et
ri

c

Edinburgh200

Original
Surr1
Surr3
Surr2
Surr4

Figure 5.4: S metric comparison over time for our proposed mathematical models
using Strategy A and SEAMO2. Averaged over 20 runs per generation.

126 5.5 Experimental Results for Surrogate Models

10 11 12 13 14 15
50

100

150

200

F1 (minutes)

F
2

(m
in

ut
es

)

Mandl

Original
Surr1
Surr3

15 20 25 30

200

400

600

F1 (minutes)

F
2

(m
in

ut
es

)

Mumford0

Original
Surr1
Surr3

30 40 50

500

1,000

1,500

2,000

F1 (minutes)

F
2

(m
in

ut
es

)

Mumford1

Original
Surr1
Surr3

30 40 50 60 70 80
1,000

2,000

3,000

4,000

5,000

F1 (minutes)

F
2

(m
in

ut
es

)

Mumford2

Original
Surr1
Surr3

40 60 80 100

2,000

3,000

4,000

5,000

6,000

F1 (minutes)

F
2

(m
in

ut
es

)

Mumford3

Original
Surr1
Surr3

25 30 35 40 45

1,000

1,500

2,000

2,500

F1 (minutes)

F
2

(m
in

ut
es

)

Nottingham100

Original
Surr1
Surr3

20 40 60 80 100

1,000

2,000

3,000

4,000

5,000

F1 (minutes)

F
2

(m
in

ut
es

)

Edinburgh200

Original
Surr1
Surr3

Figure 5.5: Pareto sets for Surr1 and Surr3 using Strategy A with SEAMO2

5.5 Experimental Results for Surrogate Models 127

10 11 12 13
50

100

150

200

F1 (minutes)

F
2

(m
in

ut
es

)

Mandl

Original
Surr4

15 20 25 30

200

400

600

F1 (minutes)

F
2

(m
in

ut
es

)

Mumford0

Original
Surr4

25 30 35 40 45 50

500

1,000

1,500

2,000

F1 (minutes)

F
2

(m
in

ut
es

)

Mumford1

Original
Surr4

25 30 35 40 45

2,000

3,000

4,000

5,000

F1 (minutes)

F
2

(m
in

ut
es

)

Mumford2

Original
Surr4

30 35 40 45 50 55

2,000

3,000

4,000

5,000

6,000

7,000

F1 (minutes)

F
2

(m
in

ut
es

)

Mumford3

Original
Surr4

25 30 35 40

1,000

1,500

2,000

2,500

3,000

F1 (minutes)

F
2

(m
in

ut
es

)

Nottingham100

Original
Surr4

25 30 35 40 45 50 55

1,000

2,000

3,000

4,000

5,000

F1 (minutes)

F
2

(m
in

ut
es

)

Edinburgh200

Original
Surr4

Figure 5.6: Comparison between Pareto sets for Surr4 under Strategy A and the
original algorithm using NSGAII.

128 5.5 Experimental Results for Surrogate Models

0 1 2 3 4

1.62

1.64

1.66

·104

Running time (seconds)

S
m

et
ri

c

Mandl

0 10 20 30 40

1.54

1.56

1.58

·105

Running time (seconds)

S
m

et
ri

c

Mumford0

0 200 400 600 800 1,000 1,200

6.7

6.8

6.9

7
·105

Running time (seconds)

S
m

et
ri

c

Mumford1

0 0.5 1 1.5

·104

4.85

4.9

4.95

5

5.05
·106

Running time (seconds)

S
m

et
ri

c

Mumford2

0 0.5 1 1.5 2 2.5 3

·104

1.56

1.58

1.6

·107

Running time (seconds)

S
m

et
ri

c

Mumford3

0 2,000 4,000 6,000

6.7

6.8

6.9

·105

Running time (seconds)

S
m

et
ri

c

Nottingham100

0 0.5 1 1.5 2 2.5 3

·104

1.08

1.09

1.09

1.1
·107

Running time (seconds)

S
m

et
ri

c

Edinburgh200

Original
Surr1
Surr3
Surr2
Surr4

Figure 5.7: S metric comparison over time for our proposed mathematical models
using Strategy A and NSGAII. Averaged over 20 runs per generation.

5.5 Experimental Results for Surrogate Models 129

25 30 35 40 45 50 55

1,000

2,000

3,000

4,000

5,000

F1 (minutes)

F
2

(m
in

ut
es

)

Surr1

Original
Surr1

25 30 35 40 45 50 55 60

1,000

2,000

3,000

4,000

5,000

F1 (minutes)

F
2

(m
in

ut
es

)

Surr3

Original
Surr3

25 30 35 40 45 50 55

1,000

2,000

3,000

4,000

5,000

F1 (minutes)

F
2

(m
in

ut
es

)

Surr2

Original
Surr2

25 30 35 40 45 50 55

1,000

2,000

3,000

4,000

5,000

F1 (minutes)

F
2

(m
in

ut
es

)

Surr4

Original
Surr4

Figure 5.8: Comparison between Pareto sets for Edinburgh200 under Strategy A
using NSGAII for the four surrogate models.

130
5.5

E
xperim

entalR
esults

forSurrogate
M

odels

Mandl Mumford0 Mumford1 Mumford2 Mumford3 Nottingham100 Edinburgh200

Best for F1 10.30(10.19) 15.8(14.96) 24.64(23.04) 26.85(26.20) 29.5(28.79) 23.31(22.62) 26.18(25.71)
passenger F2 199(217) 697(668) 1154(1897) 4397(5360) 5957(6519) 2951(2761) 5376(5727)

Best for F1 13.60(13.48) 30.52(30.33) 50.93(47.53) 46.20(39.14) 54.71(47.38) 32.82(35.81) 51.66(51.00)
operator F2 63(63) 94(94) 435(445) 1422(1699) 1674(1879) 818(856) 847(911)

Table 5.5: Best objective values extracted using NSGAII under Strategy A with Surr4 compared with those produced under
the original algorithm given in brackets.

5.5 Experimental Results for Surrogate Models 131

Finally, using NSGAII under Strategy A with Surr4 and the GPU-based evaluation of the

all pairs shortest path algorithm, we found that surrogate models were unable to provide

benefit over NSGAII with GPU based evaluation when comparing the achieved S metric

from Table 5.6 for our instances. This can be explained by the increase in generations

executed by the original algorithm when using GPU evaluation with percentage increases

of -44%, 231%, 152%, 1016%, 805%, 1428% and 2425% recorded across the problem

instances respectively. If this is compared with the percentage increases for generations

executed using NSGAII under Strategy A with Surr4 of 87%, 93%, 46%, 100%, 67%,

94% and 165% we can see that GPU based evaluation does not provide a significant

increase in the number of generations executed. Further investigation has shown that

the all pairs shortest path algorithm using the GPU does not produce a speed-up over

100% until a graph size of approximately 200 vertices or greater is reached, as shown in

Table 5.7. As our surrogate models use the smaller route network rather than the larger

transit network evaluated for the original objective function the GPU does not provide

a benefit on our instances (our largest instance has 200 vertices). However, as shown

in Table 5.7, once the route network grows to realistic size – a few thousand vertices –

combining surrogate models and GPU based evaluation will almost certainly provide

additional benefit.

Instance NSGAII NSGAII Surr4
Mandl 16693** 16643
Mumford0 161182** 159913
Mumford1 703527** 699538
Mumford2 5054988 5086349**
Mumford3 16169859* 16158094
Nottingham100 710696** 702273
Edinburgh200 10986251** 10978313

Table 5.6: S metric comparison between NSGAII and NSGAII using Strategy
A with Surr4. Both algorithms used GPU based evaluation. Asterisks indicate
statistical significance according to a Related-Samples Wilcoxon Signed Rank test
at the * p < 0.05 and ** p < 0.01 level.

132 5.6 Summary

Vertices CPU GPU Speed-up %

100 0.002 0.005 -60
200 0.014 0.008 75
300 0.049 0.013 277
400 0.115 0.023 400
500 0.226 0.041 451
1000 1.919 0.243 690
2000 19.741 1.766 1018
3000 54.411 5.935 817
4000 125.663 14.077 793
5000 244.407 26.902 809

Table 5.7: Runtime comparison (seconds) for the all pairs shortest path on ran-
domly generated graphs using the CPU and GPU.

5.6 Summary

This chapter has introduced the general topic of surrogate-assisted optimisation. Two

management strategies were proposed and empirically evaluated. The strategy that

removed the reliance on the original evaluation function produced the best S metric

executing significantly more evaluations. Four mathematical models were also discussed

and empirically evaluated against the original algorithm (Algorithm E) described in

Chapter 4. It was shown, that surrogate models are able to offer an improved Pareto sets

compared with the original algorithm under a runtime constraint. We have demonstrated

that incorporating more knowledge into the model provides an improvement in the

resultant Pareto set with Surr4 achieving the best metric values. As such the identification

of variables that are quick to compute but also reflective of the route network, are key

to the success of surrogate models for network design. This a topic for future work to

aid in the development of techniques that are able to tackle real world instances in a

reasonable time-frame.

Finally, we have shown that when combined with surrogate models, GPU based eval-

uation is unable to provide additional benefit on our current set of problem instances.

This is due to the use of the smaller route network for evaluation under the surrogate

5.6 Summary 133

models. However, for real world instances, with a few thousand vertices, surrogate

models combined with GPU based evaluation will almost certainly provide benefit.

In the next chapter, we empirically evaluate a number of algorithms for setting the

frequency on routes designed using our approach to network design.

134 5.6 Summary

135

Chapter 6

Frequency Setting

In this chapter we now move on from network design and on to frequency setting.

Frequency setting is the task of assigning a frequency to each route in a route set with

the aim of minimising the travel time for passengers whilst balancing the operational

costs for the network operator. The frequency determines the number of vehicles

operating on a route, and thus the separation time between the arrival of vehicles at a

given stop on the same route. It is obvious that routes that serve high demand areas

should have a relatively high frequency. Similarly, routes that have a high number

of passengers transferring on to them should also have a relatively high frequency, to

avoid excessive waiting time for passengers when making a transfer. Compared with a

redesign of the transit network, route frequencies are more easily configured due to the

extensive disruption that an entire network redesign would cause to passengers. This

chapter introduces work to first examine whether route sets that have been produced

during network design can be improved by setting alternate frequencies on the routes

under a constrained fleet size. We then compare two metaheuristics and a local search

algorithm under an unconstrained optimisation scenario. Both vehicle capacity and fleet

size are then constrained under a multi-objective optimisation algorithm to produce a

set of approximate Pareto-optimal solutions, allowing a network operator to choose the

desired configuration. Finally we consider alternative approaches to the UTNDP to

overcome the issues identified.

136 6.1 Preliminary Investigation

6.1 Preliminary Investigation

Our first area of exploration is to determine whether a route set produced during network

design can be improved, in terms of the average passenger travel time, by adjusting the

frequencies of the individual routes. To start, we are given an existing route set with a

default frequency of one vehicle every ten minutes and a corresponding fleet size needed

to service these routes i.e. the fleet size is fixed and extra vehicles cannot be used. Is it

possible to improve the average passenger travel time by adjusting these frequencies

within a bounded range? A frequency of 1
10

is used as it corresponds to the frequency

used during the network design stage; that is, a frequency of 1
10

corresponds to an

average waiting time for passengers of five minutes. This frequency allows passengers

to treat the service as “turn-up-and-go” [61]. Furthermore, for now we also assume that

the capacity of each bus is infinite and fractional buses can operate on each route as per

our assumptions during the network design stage. The allowed frequency is therefore

a real number in the range of 1
5

to 1
30

minutes inclusive where 1
5

−1 gives the headway

between vehicles operating on the same route i.e. the separation time between vehicles.

In this section we propose a heuristic approach for the assignment of frequencies that

utilises a ratio to assign the frequencies based upon the number of passengers that

require a transfer on to the given route. It is assumed that a passenger will travel

from their origin to destination using the shortest path as detailed in the evaluation

scheme discussed in Section 2.6.1. Under the current simplified models, the capacity

of vehicles is assumed to be infinite and we ignore the initial waiting time incurred.

As such the average travel time for passengers can be decreased by increasing the

frequency of vehicles on routes that have a high volume of passengers transferring on to

them, compensated for by a decrease in service on less busy routes. It should be noted

that if we consider the initial waiting time in the average travel time, then increasing

the frequency on any route would result in a decrease in the average passenger travel

time. This increase in frequency reduces the waiting time required for passengers when

transferring to reach their destination therefore reducing the overall average passenger

6.1 Preliminary Investigation 137

travel time. We do not take account of the initial waiting time of passengers before they

board the first vehicle, this is consistent with the calculation of the passenger objective

used in the network design stage.

Using a ratio that splits the available fleet over all routes based upon the number of

transfers made on to each route means that the assignment must be conducted in a

controlled manner to prevent routes with very low transfer volumes from not receiving

enough vehicles. As we are calculating the number of vehicles based on the number of

transfers onto the route, a route with no transfers onto it would receive no vehicles. This

obviously cannot be allowed to happen as the route must be operated at the minimum

allowed frequency in this case. Hence if a route does not have enough vehicles to

maintain the minimum allowed frequency of 1
30

then the solution is deemed infeasible.

Conversely if a route contains an excessive number of vehicles, that would result in

a frequency exceeding 1
5

the solution is also deemed infeasible. To prevent this from

occurring, routes that have no passengers transferring onto them (i.e. passengers travel

to from their origin to destination on a single route) or routes that have a proportion of

transfer demand that means their required frequency is greater than 1
5

are assigned to

the lower and upper bound respectively. Vehicles are then assigned to routes based upon

the proportion of the transfers they serve. An algorithmic description of our proposed

algorithm can be seen in Algorithm 6.1. Algorithm 6.1 first assigns the lower or upper

bound of the frequencies to those routes that have a transfer volume that would exceed

a frequency of 1
5

or be below 1
30

. The remaining routes that are yet to have a frequency

assigned are then processed by taking a proportion of the remaining vehicles. We use

this approach to ensure that we do not exceed the number of vehicles available, as our

aim is to improve the passenger objective by augmenting the route frequencies, whilst

keeping the fleet size constant. A frequency is assigned and checked to ensure that it

does not exceed the upper bound, and if this value is exceeded the frequency is set to

the upper bound. We use this process to ensure that the constraint on fleet size is not

breached.

138 6.1 Preliminary Investigation

1: let T [Ri] be the number of transfers made to Ri

2: for Ri ∈ R do
3: if T [Ri] = 0 OR required frequency for Ri <

1
30

then
4: set frequency of Ri to 1

30

5: decrease available_fleet
6: else if required frequency for Ri >

1
5

then
7: set frequency of Ri to 1

5

8: decrease available_fleet
9: for Ri ∈ R do

10: if frequency not set then
11: vehiclesRequired = available_fleet×T [Ri]∑r

i=1 T [Ri]
× 1

2

12: frequency = [length_route(Ri)
vehiclesRequired

]−1

13: if frequency > 1
5

then
14: frequency = 1

5

Algorithm 6.1: Frequency Setting Ratio Heuristic to distribute a fleet of vehicles
(available_fleet) over a given route set.

We used the above heuristic under two different evaluation schemes. In the first the

original passenger paths through the network were kept unchanged and the change in

frequency was evaluated. Evaluating the frequency change in this manner significantly

reduces the computation time because the need to re-perform the All Pairs Shortest Path

(APSP) algorithm through the network is removed. We will call this Delta Evaluation.

The second form of evaluation was made by re-calculating the APSP through the

network. The transfer penalty for a given route is set to half the vehicle headway.

Using delta evaluation, the route set is initially evaluated with each route using a default

frequency of 1
10

as per the network design stage. This results in a transfer penalty of

five minutes for each route. During the initial evaluation the path a passenger takes

from their origin to destination is recorded. When a change in frequency is then applied

to a route one must apply the new transfer penalty to any path that utilises the route,

allowing the average passenger travel time to be calculated without recomputing the

APSP.

Table 6.1 shows the average improvement and gap to the lower bound calculated by

setting the frequency on each route to 1
5
. These results were taken by applying frequency

6.1 Preliminary Investigation 139

setting to a Pareto set produced from network design for each benchmark instance. We

see that an improvement to the passenger objective has been achieved across all of the

benchmark instances whilst ensuring that the cost to the operator, in terms of fleet size,

is never increased. Although solutions with a smaller fleet size are accepted.

Average Gap Lower Bound (%) Average Improvement (%)

Instance APSP Delta Evaluation APSP Delta Evaluation

Mandl 2.1091 3.5022 1.4765 0.1345
Mumford0 6.8883 8.2770 2.3459 1.0634
Mumford1 7.4754 9.0663 2.5536 1.1032
Mumford2 4.2517 7.8736 4.9176 1.6112
Mumford3 3.2769 6.8810 4.7995 1.4722

Table 6.1: Comparison between all pairs shortest path (APSP) and delta evalu-
ation.

The comparison between using delta evaluation and the APSP, shown in Table 6.1,

indicates that using the APSP to evaluate the frequency changes at each iteration is

beneficial. This is justified because, when using delta evaluation, the paths passengers

take through the network do not change. When re-evaluating using the APSP on the

other hand the path a passenger may take from their origin to destination may change at

each iteration because a change in frequency on a single route may result in a reduction

or increase to the travel time the passenger encountered using the previous set of

frequencies. A possible explanation for this is that the number of passengers journeys

that can be satisfied directly is relatively low. As such frequency changes can result in

shorter transfer times for passengers.

The APSP evaluation scheme has a number disadvantages associated with it. The initial

waiting time is not taken into account, this means that if a high proportion of the demand

is satisfied directly then the frequencies on routes can be set at the lower bound with no

effect on the passenger objective. The computation time required to perform the APSP

is also a significant factor. As shown in Chapter 2 the APSP on the transit network is an

expensive operation. Using delta evaluation we remove the need to perform the APSP

providing a reduction in computation time. However, given the improved results gained

140 6.2 Evaluation with Frequencies Considered

by utilising the APSP it is preferred over delta evaluation.

6.2 Evaluation with Frequencies Considered

As previously mentioned, evaluating the frequencies of routes under the APSP makes

simplifying assumptions such as the average waiting time being equal to half the

headway. The initial waiting time is also not considered. In a more realistic evaluation

scheme, a passenger may choose to travel on an alternative route given a certain

probability if this is seen to go to their destination. That is, they may take the next

vehicle that arrives at the current stop which services their destination. To provide a

more accurate evaluation of average passenger travel time inclusive of initial waiting

time and transfer time, the idea of Optimal Strategies, proposed by Spiess and Florian

[135], is used.

Spiess and Florian’s approach assumes that a passenger enters the network with no prior

knowledge. The only information available to a passenger is that which he or she finds

out whilst waiting at a vertex, i.e. bus stop, in terms of which route will be next served

by a vehicle. Or in other words on which route will the next vehicle arrive on. Optimal

Strategies takes into account the arrival time of buses at a bus stop and assumes that a

passenger will choose to board the first vehicle that services a route currently part of the

optimal strategy.

The Optimal Strategies algorithm can be broken down into two distinct stages: i)

calculate the expected travel time from each vertex to a destination vertex along a set

of edges (referred to as the optimal strategy), and ii) assign the demand to the edges

contained in the optimal strategy. For consistency with Spiess and Florian’s work we

shall refer to the travel time between two vertices as the “expected travel time” denoted

ui, where i is the source vertex to a destination vertex d.

Similar to the evaluation methods discussed in Chapter 2.6, Spiess and Florian’s ap-

proach requires that a specialised graph be constructed upon which evaluation is per-

6.2 Evaluation with Frequencies Considered 141

formed. We have a graph G = (I, A) where I is a set of vertices and A a set of

arcs. The topology of G is similar to that given in Figure 6.1(b), we shall refer to this

as the generalised transit network in keeping with Spiess and Florian. Figure 6.1(b)

differentiates between two types of vertices. The square vertices are the entry points

for passengers into the network and act as the physical bus stops. The arcs incident to

these vertices are the boarding and alighting arcs allowing passengers to board a vehicle

whose route services that particular stop or disembark the vehicle if they have reached

their destination or require a transfer. The remaining vertices act as the routes with

traversal costs between the edges indicated by the underlying transport graph.

For example, if we have a route setR = {〈1, 3, 6〉, 〈2, 3, 4, 5〉} with the route network

given in Figure 6.1(a) the generalised transit network used for evaluation will be that

given in Figure 6.1(b). Associated with each arc in the generalised transit network is a

tuple (a, b) where a is the time required to traverse the given arc and b is the frequency

operating on the arc. It should be noted that infinite frequencies are assigned to every

arc apart from boarding arcs (arcs from square to circular vertices). Boarding arcs are

assigned the frequency of the route to which they are incident to. The remaining arcs

are assigned infinite frequencies as there is assumed to be no waiting time required

to alight from a vehicle and, when on the vehicle, there is no waiting time incurred.

Taking Figure 6.1(b), the arc 1 to 1a would be assigned the tuple (0, 1
10

) assuming that

the frequency on the route is 1
10

. The arc 1a to 1 would be assigned the tuple (0,∞)

and the arc 1a to 3a would be assigned the tuple (7,∞) assuming that the travel time

between vertices 1 and 3 in the underlying transport network is 7 minutes.

The calculation of expected travel time is completed for each destination vertex and

is proportional to the number of arcs in the underlying graph with a computational

complexity of O(log m) per destination vertex where m is the number of arcs in the

graph. The algorithm for calculating the expected travel time, Algorithm 6.2, first

initialises the cost to reach all vertices to infinity apart from the destination vertex, d,

which has a cost of zero. Each vertex also has an associated sum of frequencies, fi,

142 6.2 Evaluation with Frequencies Considered

1 2 3 4 5 6

(a)

1

1a

2

2b

3

3a

3b

4

4b

5

5b

6

6a

(0, 1
10) (0,∞)

(7,∞)

(b)

Figure 6.1: (a) Original route network (b) Generalised transit network required
for Optimal Strategies evaluation.

which is the sum of all the frequencies of the arcs that intersect that vertex in the optimal

strategy, initialised to zero. As the algorithm backtracks from the destination vertex we

set the expected travel time to zero for ud. Each arc in the generalised transit network

is then added to the set S which details the arcs that still need to be explored. In each

iteration the lowest cost unexplored arc, a = (i, j) ∈ S, with cost ca and frequency

fa, (where j has already been visited) is selected. If the cost of traversing the edge,

a, and the cost to reach j, uj , is less than or equal to the current cost of reaching i,

then a is added to the optimal strategy, Ā. Upon adding an arc to the optimal strategy,

ui and fi are updated using Equations (6.1) and (6.2) respectively. It should be noted

that the first time a vertex is explored we allow a modification fiui = 0 · ∞ = α

following the convention used by Spiess and Florian. In our case we assume a constant

inter-arrival rate of vehicles as such α = 1
2
. Once the expected travel time has been

calculated for each of the destination vertices it can be used in place of the shortest path

in Equation (2.9).

6.2 Evaluation with Frequencies Considered 143

1: ui =∞ ∀ i ∈ I − d
2: fi = 0 ∀ i ∈ I
3: ud = 0
4: S = A
5: while S 6= ∅ do
6: find a = (i, j) ∈ S which satisfies uj + ca ≤ uj′ + ca′ , a

′ = (i′, j′) ∈ S
7: S = S − {a}
8: if ui ≥ uj + ca then
9: ui =

fiui+fa(uj+ca)

fi+fa
10: fi = fi + fa
11: Ā = Ā ∪ {a}

Algorithm 6.2: Optimal Strategies calculation of expected travel time from a
single destination vertex, d, to all other vertices.

ui =
fiui + fa(uj + ca)

fi + fa
(6.1)

fi = fi + fa (6.2)

On completion of Algorithm 6.2, for each vertex we will have an optimal strategy that

details the arcs that will be used to reach the destination vertex from all other vertices.

The second part of the Optimal Strategies algorithm makes use of this information to

assign the passenger demand to the network. Each vertex has an associated demand

volume Vi that gives the demand from the given vertex to the destination vertex. The

demand from a vertex i to the destination vertex, gi, is assigned according to the arcs

contained in the optimal strategy, Ā. Each arc a ∈ Ā is assigned a proportion of the

volume at a vertex based upon the frequencies at that vertex. Each arc therefore has

an associated volume va. Algorithm 6.3 details how the demand from all vertices to a

single destination vertex is assigned.

Algorithm 6.3 proceeds by firstly assigning the demand from vertex i to the destination,

gi, to each of the vertices. Each edge a ∈ Ā is then taken in decreasing order of uj + ca

(i.e. in the reverse order as to which each edge was added to the optimal strategy) and

144 6.3 Problem Instance Demand Scaling

the proportion of the vertex volume Vi that corresponds to its frequency is assigned.

Spiess and Florian [135] propose a modification to the demand assignment portion of

Algorithm 6.3 allowing for memory to be used more efficiently. In this implementation

the variable va, a ∈ A is used directly to store the accumulated arc volumes for all the

destination vertices: i.e. va = va + fa
fi
Vi. Their modification simply initialises all of the

arc volumes to zero then accumulates the arc volumes, adding the proportion of demand

directly to the arc volume.

1: Vi = gi ∀ i ∈ I
2: for ∀ a ∈ A do
3: if a ∈ Ā then
4: va = fa

fi
Vi

5: Vj = Vj + va
6: else
7: va = 0

Algorithm 6.3: Optimal Strategies assignment of demand for a single destination
vertex.

6.3 Problem Instance Demand Scaling

From the definition of the Optimal Strategies algorithm introduced in the preceding

section it can be seen that demand plays a vital role. Problem instances created by

Mumford [114] were designed specifically with the network design problem in mind and

were thought to involve sensible numbers for the passenger demand between vertices.

If the demand is analysed more closely, however, it is seen to be excessive and cannot

be satisfied given physical bus sizes that operate in the real world. For the majority of

the previous work the demand was not an important factor as the capacity of vehicles

was assumed to be infinite. However, when imposing a capacity constraint the demand

obviously becomes much more important.

Looking at the generated demand more closely, taking the Mumford1 problem instance,

we can sum the demand to give 1,926,170 trips per day. As the Mumford instances are

6.3 Problem Instance Demand Scaling 145

symmetrical we can halve this to give 963,085 trips in each direction per day and further

share this over the fifteen routes that are available, meaning a demand per route of

approximately 64,206 in each direction. If we then take the demand per hour assuming

a uniform demand pattern throughout the day we can calculate that 38 buses per hour

in each direction will be required to satisfy all the demand assuming a bus capacity of

seventy passengers1. Many simplifying assumptions have been made here such as the

demand will be uniformly distributed between routes and that this will equal the peak

volume on a link on the route. It does however demonstrate that the demand values need

to be scaled down to become realistic.

Using an approach similar to that above we can reverse the process and determine more

sensible demand values if we use the following assumptions: 1) the average bus capacity

is thirty five persons, 2) average bus frequency is one bus every fifteen minutes, and 3)

demand is spread evenly throughout the day. A capacity of 35 persons has been used as

it equates to half the capacity of the smallest single deck bus specification released by

the UK Government1. As bus ridership varies throughout the day, i.e. during morning

and evening rush hours we assume that vehicles will be operating at or close to their

capacity, an average ridership of 50% is used. Using these assumptions and the number

of routes given for each of Mumford’s problem instances we can use the following

technique to rescale the demand values.

First we calculate the number of buses that will operate per day i.e. given one bus

every fifteen minutes and fifteen routes this will equate to sixty buses per hour in each

direction and 2880 buses per day. If each bus carries thirty five passengers, average

ridership over the twenty four hour period, this will give an overall demand of 100,800.

The demand value for each vertex pair can then be recalculated by multiplying the

original demand value by the ratio of original demand to our calculated maximum

demand per day. Table 6.2 gives the original and scaled demand values for each of the

Mumford instances.

1Smallest single deck bus capacity is seventy persons available from ht-
tps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/4260/buslength.xls

146 6.4 Variable Fleet Size

As the demand values for the instances have now changed we have produced four

new benchmark instances with respect to frequency setting. As the instances have

a rescaled demand they cannot be directly compared to their original unmodified

instance for network design. Demand is an integer number and therefore during scaling

rounding errors will have been introduced. This will result in different objective values

being produced between the modified and unmodified instances. The modified problem

instances are denoted Mumford0F, Mumford1F, Mumford2F and Mumford3F to indicate

they are to be used for frequency setting optimisation.

It should be noted that the Mandl, Nottingham100 and Edinburgh200 instances did not

require any scaling of demand. The demand figures were able to be adequately catered

for given physical bus capacity. This is due to the way in which demand was created

for the Nottingham100 and Edinburgh200 instances. Unlike the Mumford problem

instances demand was not assigned at random between a bounded range set by the user.

Demand was assigned based upon the population density surrounding each bus stop.

Instance Original Demand Perfectly Scaled Demand Actual Demand

Mumford0 342160 80640 80640
Mumford1 1926170 100800 100846
Mumford2 4847900 376320 376406
Mumford3 6394950 403200 403292

Table 6.2: Comparison between the demand values for the Mumford problem
instances when scaled.

6.4 Variable Fleet Size

We have shown in Section 6.1 that, given a constrained fleet size, the frequency of routes

can be augmented in such a way as to offer an improved service to passengers whilst not

increasing the operational cost to the operator in terms of vehicles required (for five out

of the seven problem instances). Constraining the fleet size removes the possibility of

exploring solutions, that for a slight increase in operator cost, could produce a significant

6.4 Variable Fleet Size 147

reduction in the passenger objective. Optimising using an unconstrained fleet size would

also enable a network operator to plan for the future by providing the means to evaluate

alternate frequencies with larger fleet sizes. Similar to the previous section it is assumed

that vehicles operating on routes will have an infinite capacity.

The approach discussed previously allowed a frequency to be any real number in the

range [1
30

, 1
5
]. However, this is not a realistic real world scenario. As discussed in

Section 3.2 the frequency for peak periods should not drop below 30 minutes and the

vehicle headways should be a divisor of 60 to enable passengers to easily remember the

timetable. The number of available frequencies between 5 and 30 that evenly divide 60

are few in number. We have chosen to discretise the frequencies into the following set

{1
5
, 1
6
, 1
7
, 1
8
, 1
9
, 1
10

, 1
12

, 1
14

, 1
16

, 1
18

, 1
20

, 1
25

, 1
30

}. Although the majority of these frequencies

do not divide 60 exactly they provide a good starting point. In reality the frequency

discretisation would be conducted by the network operator and may be based upon

the frequencies that are currently in use on the existing network or may be dictated by

central and/or local government.

In the following three sections we introduce the multi-objective algorithms used for

frequency setting: 1) NSGAII, 2) multi-objective first descent, and 3) multi-objective

tabu search. The genetic operators used for NSGAII are introduced along with two

neighbourhood operators that can be used with multi-objective first descent and multi-

objective tabu search.

6.4.1 NSGAII

NSGAII, first described in Section 4.2, was selected for use as the evolutionary frame-

work. NSGAII was used to give reference approximate Pareto sets for each of the

benchmark instances using a naïve multi-objective evolutionary algorithm. As the

benchmark instances have not yet been used for frequency setting there does not exist

any reference Pareto sets to compare against. The production of reference approximate

148 6.4 Variable Fleet Size

Pareto sets will allow for the comparison with other algorithms. Similarly to the network

design stage, probabilities of crossover and mutation of 0.9 and 1
|R| are used respectively,

as defined in Section 4.2.

Genetic Operators

For frequency setting we use a vector of real coded variables to define the headway

on each route. Figure 6.2 shows the difference between the decision variables for

network design and frequency setting and the representation used. It should be stressed

that during frequency setting we do not modify the route structure, only the route

frequency is changed. We propose the use of uniform crossover to produce a single

offspring. The offspring is then mutated with a probability of 1
r
. Mutation randomly

selects to increase or decrease the frequency of a given route in the offspring with equal

probability. Consider a route with a frequency of 1
10

, if the mutation operator selects at

random that the frequency should be increased the next highest discretised frequency

value will be selected, in our case this would be 1
9
. Similarly, if a decrease in frequency

is randomly selected the new frequency would be 1
12

.

6.4.2 Multi-objective First Descent

First descent is a type of local search algorithm. Local search is a method of finding a

solution to a problem from a number of candidate solutions. A search progresses by

moving from solution to solution in the search space by applying neighbourhood moves

that modify the current solution until an optimal solution is found or the termination

criteria is reached.

First descent is a method of optimisation that makes a move to the first observed

neighbour of the current solution that offers an improvement. In the worst case when

no neighbour improves upon the current solution all of the neighbours will have been

evaluated and the search terminates at a local optimum. Here we use a modified version

6.4 Variable Fleet Size 149

4 3 1

13 12

8 14

9 10 12

9 6 14 7 5 2 1 0

10 11

5

30

14

18

5

12

Figure 6.2: Comparison between the decision variables for network design (left)
and frequency setting (right) together with the representation used.

of the first descent algorithm given in Algorithm 6.4 to allow for the multi-objective

nature of the problem and to prevent the search from terminating when no improving

neighbour solution is found. We shall refer to this approach as multi-objective first

descent (MOFD).

As shown, Algorithm 6.4 maintains a nondominated set of solutions, which we call the

archive or archive set. An initial solution is first generated and added to the archive.

Until the stopping condition is reached (a given number of iterations or a maximum

running time) the neighbours of the current solution are generated and evaluated in turn.

If the solution currently being evaluated dominates the current solution then a move

is made to that solution. The archive set is then updated to remove any solutions that

are dominated by the incumbent solution. If the neighbour solution and the current

solution are mutually nondominating then the neighbour is added to the archive set.

When a dominating neighbour solution is not found, a random solution is chosen from

the archive to become the current solution allowing the search to progress.

150 6.4 Variable Fleet Size

1: scurrent = generate initial solution
2: archive = {scurrent}
3: repeat
4: N = get neighbours of scurrent
5: for s ∈ N do
6: evaluate(s)
7: if s ≺ scurrent then
8: scurrent = s
9: UPDATEARCHIVE(s)

10: break
11: else if s and scurrent are mutually nondominating then
12: UPDATEARCHIVE(s)
13: if no dominating solution found then
14: scurrent = archive[random()]
15: until stopping condition is satisfied
16: return archive

Algorithm 6.4: Multi-objective first descent with a nondominated archive.

MOFD is similar to Pareto local search (PLS) [122] which accepts a move to a neigh-

bouring solution if it is not dominated by all nondominated solutions found so far in the

search. The major differences between MOFD and PLS are: 1) MOFD moves to the

first neighbour solution that dominates the incumbent, and 2) The archive set is only

used to select a solution if the current solution has no dominating neighbours allowing

the search to continue.

6.4.3 Multi-objective Tabu Search

As mentioned previously, tabu search imposes restrictions on the search via a set of

memory structures referred to as tabu lists preventing the search from revisiting areas of

the search space that have been recently explored. These restrictions can of course be

overridden if for example moving to a tabu neighbour produces the best seen objective

value so far (sometimes referred to as aspiration criteria). We could convert the first

descent algorithm introduced previously into a tabu search, however we choose to adopt

the well established multi-objective tabu search (MOTS) algorithm put forward by

6.4 Variable Fleet Size 151

Hansen [77]. The general algorithmic framework for MOTS is given in Algorithm 6.5

adapted for minimisation.

1: for si ∈ X do
2: si = random feasible solution
3: TLi = ∅
4: archive = ∅, count = 1 and πk = 1/k for all k objectives
5: repeat
6: for si ∈ X do
7: λ = 0
8: for sj ∈ X : sj is nondominated by si and f(si) 6= f(sj) do
9: w = g(d(f(si), f(sj), π))

10: for all objectives k do
11: if fk(si) < fk(sj) then
12: λk = λk + πkw
13: if λ = 0 then
14: λ = randomly chosen vector
15: normalise(λ)
16: find solution yi that minimises λ · f(yi) ∀yi ∈ N(xi) and yi /∈ TLi

17: if TLi is full then
18: remove oldest element from TLi

19: add move from si to yi to TLi

20: si = yi
21: if yi is nondominated by all points in ND then
22: UPDATEARCHIVE(yi)
23: update π
24: if DRIFT-criterion reached then
25: randomly select one solution from X and set it equal to another randomly

selected solution in X
26: count = count + 1
27: until stopping condition reached

Algorithm 6.5: Multi-objective tabu search [77] adapted for minimisation.

Hansen’s method first initialises each of the solutions, si ∈ X , to a random feasible

solution in the search space and associates with each an empty tabu list. A nondominated

set, the archive set, is initialised and the range equalisation factors, π, are set to 1/k for

each of the k objectives. The range equalisation factors are used to equalise the ranges

152 6.4 Variable Fleet Size

of the objectives and are calculated as:

πk =
1

Rangek

[
n∑

i=1

1

Rangei

]−1
(6.3)

where Rangek is the range width of objective k given a set of points. The last factor

normalises the factors to ensure that π ∈ ∆ and can be omitted. The λ-vector space Λ

is used by Hansen defined as Λ = {λ ∈ Rn|λk ∈ [0, 1] ∧
∑n

i=1 λ
i = 1}.

Each of the current solutions are then taken in turn and a move to a neighbouring

solution is applied. The weight vector is determined such that the search moves away

from other solutions. The closeness of a solution in terms of objective value determines

the extent to which it influences the weight. We use the proximity function g(d) = 1
d

where d is defined as the Manhattan distance norm used on the objectives scaled by

the range equalisation factors i.e. d(xi, xj, π) =
∑
πk|xki − xkj | [77]. After determining

the weights vector the standard tabu search procedure is applied to move to a non-tabu

neighbour. In our case we define a neighbour to be tabu if a route has been assigned

the same frequency in the last six iterations. If the neighbour is nondominated by all of

the points in the current nondominated set it is added and the range equalisation factors

recalculated. We permit a move to a tabu neighbour if it dominates any solution that is

currently contained in the nondominated set. The DRIFT-criterion is used to insure a

drift in movement over the Pareto front, helping to explore the entire length of the front

and also helping to locate non-dominated solutions [77].

6.4.4 Neighbourhood Operators

First descent and tabu search both require the generation of neighbouring solutions for

the search to progress. These are generated by a neighbourhood operator. We propose

two neighbourhood operators. The first changes the frequency on a single route and the

second operator simultaneously changes the frequency on two routes. It should be noted

6.4 Variable Fleet Size 153

that the change in frequency must be to an adjacent frequency in the set of discretised

frequencies.

6.4.5 Candidate Solution Selection

As mentioned earlier, our problem formulation for frequency setting is conducted on

an already established route network. In the case of optimising the frequencies on a

network currently being used by the public, the initial route network is already decided.

When redesigning a network the selection of route networks for use during frequency

optimisation must be carefully considered. The structure of the network will have a

direct impact on the quality of solutions produced from frequency setting. If a selected

route network favours the operator then the passenger objective will be limited due to

the underlying route construction. Conversely, if a route network favours the passenger

then the resultant operator objective will be higher.

We saw in Chapter 4 that our approach to network design produces an approximate

Pareto set of solutions. The best approach would be to take each individual solution

produced and optimise the frequencies on it. The result from each individual solution

could then be combined to produce a three dimensional Pareto set allowing a human

decision maker to choose the solution that best fits their requirements. For small

problem instances such as Mandl’s, this approach works well and would produce the

best approximation to the true Pareto set. For larger instances, however, the running time

required is prohibitive. As all the solutions from network design cannot be optimised

for frequency setting a subset of the solutions is therefore taken that provide a good

representation of the Pareto front.

The selection of solutions from network design can have a direct impact on the quality

of the solutions produced. If the solutions share similar objective values (i.e. clustered

along the Pareto front) then it is likely that they will also share similar routes. An

intelligent selection strategy is therefore required to select a “good” range of solutions

154 6.4 Variable Fleet Size

that does not show any bias towards the operator or passenger viewpoint. Under real

world constraints it is expected that the network operator would be able to provide

guidance with regards to selection criteria based upon their experience of the local area.

We define a “good” selection of solutions to be one that results in solutions having a low

similarity i.e. their route structure differs greatly. To achieve this we propose to use the

objective values to determine which solutions should be selected for frequency setting.

In our case we propose a selection strategy, that is used with each of our three approaches

to frequency setting, which selects five solutions from the approximate Pareto set

produced during the network design stage. We concentrate on the passenger objective

for selection as a high passenger cost equates to a low passenger cost and vice versa.

Solution selection takes the best and worst solution i.e. the solution associated with the

minimum and maximum passenger objective objectives. Three remaining solutions are

then taken by selecting the solutions closest to the first, second and third quartile of the

passenger objective values. For brevity we shall refer to the solutions as FP ,F1,F2,F3

and FO to denote the minimum passenger objective, first, second and third quartile

and maximum passenger objective respectively. This is shown in Figure 6.3 for the

Edinburgh200 problem instance where the selected route network solutions are given in

red.

6.4.6 Population Generation

The selection of network design solutions provides a basis upon which frequency setting

can be applied. Given a network solution, a number of initial frequency setting solutions

must be generated if using a population based approach, such as NSGAII or MOTS,

whereas a single solution should be produced for MOFD. We use a vector of real coded

variables equivalent in length to the number of routes in the underlying network where

each element represents the frequency on a given route. Furthermore the variables

contain the headway between vehicles on the same route to prevent issues with the

representation of floating point numbers (recalling that frequency is the reciprocal of

6.4 Variable Fleet Size 155

25 30 35 40 45 50

1,000

2,000

3,000

4,000

5,000

6,000

FO

FP

F2

Passenger Cost F1 (minutes)

O
pe

ra
to

rC
os

tF
2

(m
in

ut
es

)

Figure 6.3: Pareto set for Edinburgh200 showing network solutions selected for
frequency setting in red.

the headway).

Under an unconstrained scenario, the generation of initial solutions is trivial as there are

no constraints that need to be met. In the latter sections of this chapter we will look at

constrained scenarios where the choice of frequencies have a direct impact on the fleet

size and therefore the capacity available on each route. For now we opt for a random

generation scheme where the frequency for each route is selected at random from the

set of discretised frequencies.

One of the major pitfalls in the creation of solutions is the need to assign a frequency

to all the routes before it can be determined if the solution is feasible. To assign the

demand to the network, and hence determine if there is sufficient capacity on each link,

the Optimal Strategies algorithm must be run, resulting in the need for each route to have

an assigned frequency. Similarities can be drawn here to the evaluation for the network

design stage. A route set is a collection of interdependent routes that must be evaluated

as a whole and not individually. As frequency setting involves assigning passenger

flows through the network, (i.e. assigning demand to individual route segments), the

frequency of each route must be known otherwise the frequency share rule cannot be

applied correctly. In this situation the creation of an initial population is more time

156 6.4 Variable Fleet Size

consuming. There are no procedures that can be quickly applied to validate if the

solution is feasible under real world conditions.

6.4.7 Experimental Method

In this section we first demonstrate the effect that the choice of solution from the network

design stage has on the produced Pareto set using NSGAII. We then examine the use

of MOFD using two different neighbourhood operators and compare the quality of

solutions produced. Finally, MOTS is compared with NSGAII and MOFD. NSGAII

was run for 200 generations using a population of 200 unique solutions with twenty

replicate runs for each of the five solutions taken from network design. The twenty runs

for each network solution are combined into an approximate Pareto set for the instance.

MOFD and MOTS were each executed for the average running time of the twenty

replicate runs for each solution using NSGAII – twenty replicate runs are used for each

solution. It should be noted that the average running time over the five solutions is not

consistent due to the difference in evaluation time required. In general FP requires a

greater running time due to a greater average route length compared with FO, leading to

more vertices in the generalised transit network, and hence more arcs to be processed.

All experiments were run for each of the benchmark instances used for network design.

Pareto sets from Algorithm E were used to extract the five solutions discussed above.

Initial frequency solutions were generated by randomly selecting frequencies for each

route from the set of allowed frequencies as discussed in the previous section.

6.4.8 Experimental Results

Figure 6.4 shows the Pareto sets achieved for each of the five solutions for the Mandl

and Edinburgh200 benchmark instances. From the Mandl plot it can be seen that FP

is able to achieve the lowest average expected travel time and FO achieves the lowest

operator cost. This is more evident in the Edinburgh200 plot where there is a clear

6.4 Variable Fleet Size 157

differentiation between the five solutions with a clear increase in passenger cost and

decrease in operator cost as we progress from FP through to FO. This variation in

approximate Pareto sets by network solution can be explained by the underlying route

structure. Consider FO, the best solution from the operator perspective, the routes in

this solution compared with FP are significantly shorter, therefore a passenger will most

likely have to transfer to reach their destination, resulting in a longer travel time. As the

routes are shorter the number of duplicate vertices (i.e. transfer points) in the solution

are reduced meaning that a passenger will generally have to travel further to reach a

transfer point compared with FP . These factors result in the separation of the Pareto

sets for the five selected solutions.

10 15 20 25 30

0

20

40

60

80

Passenger Cost F3 (minutes)

O
pe

ra
to

rC
os

tF
4

(m
in

ut
es

)

Mandl

FP

F1

F2

F3

FO

30 40 50 60 70
0

500

1,000

Passenger Cost F3 (minutes)

O
pe

ra
to

rC
os

tF
4

(m
in

ut
es

)
Edinburgh200

FP

F1

F2

F3

FO

Figure 6.4: Pareto fronts for five selected solutions using the Mandl and Edin-
burgh200 problem instances.

MOFD was run using the parameters given above and compared with the combined

approximate Pareto sets produced using NSGAII. Table 6.3 gives the S metric values for

the combined Pareto sets. If we first examine the effect of the neighbourhood operator,

we can see that changing the frequency on two routes causes a deterioration in S metric

in six out of the seven instances, when compared to a frequency change on a single

route. Changing the frequency on two routes means that larger neighbourhood moves

are being explored which may be too disruptive to the search process. If we compare

the S metric values for MOFD and NSGAII it is clear that NSGAII is able to provide

158 6.4 Variable Fleet Size

the best metric over all the instances.

Instance MOEA MOFD A MOFD B

Mandl 18938 18932 18841
Mumford0F 166295 164783 165408
Mumford1F 752960 743756 739633
Mumford2F 5414941 5388060 5366840
Mumford3F 17020405 16962438 16933758
Nottingham100 760768 745637 744474
Edinburgh200 11424005 11378258 11366198

Table 6.3: S metric values for NSGAII and MOFD.

Given the nature of MOTS in that all neighbours must be evaluated in each iteration,

the first neighbourhood operator was used generating a maximum of twelve neighbour

solutions for Mandl’s problem instance and one hundred and eighty for Edinburgh200.

This is a reflection upon the computation time required to evaluate a single solution.

Similarly to MOFD, MOTS was run for a running time not exceeding that of the average

for the twenty replicate runs for each solution of the MOEA. A tabu list size of 6 was

used and a population size of 10. Table 6.4 gives the S metric for MOTS using the

given parameters compared with the MOEA.

Instance MOEA MOTS

Mandl 18938 18938
Mumford0F 166295 166583
Mumford1F 752960 754580
Mumford2F 5414941 5387978
Mumford3F 17020405 16946253
Nottingham100 760768 760107
Edinburgh200 11424005 11378031

Table 6.4: S metric values for Tabu search compared with NSGAII.

From Table 6.4 it can be seen that MOTS is able to achieve an improved S metric for

the Mandl and Mumford1F instances, with NSGAII obtaining the best metric value for

the remainder. If the number of iterations are compared for the two approaches there

is a stark difference. For Mandl’s instance MOTS executes 411 iterations; however,

6.5 Constrained Capacity 159

for Edinburgh200 only 25 iterations are completed. This highlights the problem of

examining neighbourhoods where, as the problem size increases, so does the number

of neighbours that must be evaluated. If this is coupled with the increase in evaluation

as the problem instance scales, then algorithms that rely on neighbourhood operators

clearly become less suitable.

6.5 Constrained Capacity

In the previous section we assumed that the capacity of vehicles operating the routes

was infinite or that the operator would ensure adequate capacity on routes. This is

an unrealistic assumption as vehicles have restrictions imposed on the number of

passengers that can be safely carried. Furthermore there are both physical and financial

limitations to the number of vehicles that can operate a route. Restricting the capacity

of vehicles available may mean that the number of vehicles needed to operate a route

has to be increased to allow for the volume of passengers travelling. Many public

transport systems allow for passengers to be seated or standing during their journey.

We will ignore this detail and simply consider the maximum capacity i.e. the number

of passengers allowed to be seated and standing. We also assume that the network is

operated by a homogeneous fleet with each vehicle having identical capacity. As the

demand information available from the benchmark instances is aggregated over a 24

hour period we assume that the load factor cannot exceed 100% of the available capacity

as discussed in the Section 3.2 for off-peak periods.

To choose a sensible capacity for vehicles we use bus specifications published by the UK

Government for single deck, double deck and bendy buses2. We have chosen to set our

vehicle capacity as the smallest available single deck vehicle which has a total capacity

of 70 passengers. This capacity relates to the demand scaling conducted previously

where we assumed buses would maintain an average ridership of 35 persons over a

2https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/4260/buslength.xls

160 6.5 Constrained Capacity

24-hour period.

To allow for the assignment of passengers to routes we now use the full Optimal

Strategies algorithm defined in Section 6.2 to enable the passenger demand to be

assigned to the network. Given that the demand information for the problem instance

is aggregated over a 24-hour period, we assume that demand is uniform throughout

the day. As such we can obtain an hour demand for each route by dividing the total

passenger volumes, assigned using the Optimal Strategies algorithm, by 24.

Before progressing we first define the criteria for a feasible solution under this constraint.

Given a solution we examine each route in turn and take the route segment with the

highest hourly demand volume. If the demand on any route exceeds that which can be

carried given the route’s frequency and vehicle capacity then the solution is deemed

infeasible. On the other hand, if the demand requirements are satisfied for each route in

the solution, then it is feasible.

6.5.1 Experimental Method

We now examine the change in solution quality when introducing a capacity constraint

to our proposed MOEA. NSGAII was executed for 200 generations using a population

of 200 unique solutions generated at random using the approach described previously.

Similarly to the unconstrained scenario, each network design solution has twenty

independent runs with a final approximate Pareto set combined from the five solutions

selected from the network design stage.

6.5.2 Experimental Results

From Table 6.5 we can see that, when constraining the capacity of the vehicles, a

decrease in the S metric is recorded. For the Mumford1F, Mumford2F, Mumford3F

and Edinburgh200 instances we were unable to generate any initial solutions for FO.

6.5 Constrained Capacity 161

For FO (the solution with the lowest operator cost) it was found that certain routes

had extremely high passenger volumes. These routes played a central role in allowing

passengers to transfer between vehicles, i.e. they became transfer hubs, resulting in

demand volumes that could not be satisfied.

Instance Unconstrained Constrained

Mandl 18938 18938
Mumford0F 166295 165127
Mumford1F 752960 751344
Mumford2F 5414941 5387985
Mumford3F 17020405 16923982
Nottingham100 760768 760213
Edinburgh200 11424005 11394427

Table 6.5: S metric comparison using NSGAII under an unconstrained and con-
strained capacity.

If we look at the approximate Pareto sets produced for each of the five network solutions

there is a clear trend as the size of the problem instance increases. From Figure 6.5 it

can be seen that for Mumford0F, when applying the capacity constraint, the exploration

of the higher ends of the passenger objective is reduced. This is shown to a greater

extent in Figure 6.6 for the Edinburgh200 instance. No feasible solutions could be found

for FO and the spread of solutions for F3 is also reduced.

Reflecting upon the reduction in the higher ends of the passenger objective we note that

this mainly affects the solutions that tend toward favouring the operator i.e. those with

shorter route lengths. As the route lengths decrease more passengers will be forced

to transfer to reach their destination. A number of routes will act as “transfer routes”

allowing passengers to transfer, but their popularity results in demand that cannot be

satisfied. The route networks that favour the network operator are clearly unsuitable

and reflect the need for careful consideration when selecting the networks upon which

frequency setting is applied.

162 6.6 Constrained Capacity & Fleet Size

20 30 40 50 60
0

50

100

150

200

250

Passenger Cost F3 (minutes)

O
pe

ra
to

rC
os

tF
4

Unconstrained

FP

F1

F2

F3

FO

20 30 40 50 60
0

50

100

150

200

250

Passenger Cost F3 (minutes)

O
pe

ra
to

rC
os

tF
4

Constrained Capacity

FP

F1

F2

F3

FO

Figure 6.5: Pareto fronts obtained for the network design solutions when apply-
ing frequency setting for the Mumford0F instance with and without a capcity
constraint.

20 30 40 50 60 70
0

200

400

600

800

1,000

1,200

Passenger Cost F3 (minutes)

O
pe

ra
to

rC
os

tF
4

Unconstrained

FP

F1

F2

F3

FO

20 30 40 50 60 70
0

200

400

600

800

1,000

1,200

Passenger Cost F3 (minutes)

O
pe

ra
to

rC
os

tF
4

Constrained Capacity

FP

F1

F2

F3

Figure 6.6: Pareto fronts obtained for the network design solutions when apply-
ing frequency setting for the Edinburgh200 instance with and without a capcity
constraint.

6.6 Constrained Capacity & Fleet Size

Constraining the capacity of vehicles enables the network operator to obtain sensible

solutions that are able to be implemented providing there is an adequate fleet available.

However, even for long term planning there may be fleet sizes that cannot be achieved

given the operators available capital. Introducing a constraint on the maximum fleet

6.7 Discussion: Alternative Approaches to Frequency Setting 163

size therefore seems a necessary step to ensure the optimisation algorithm does not

spend time exploring areas of the search space that are not feasible from the operator

viewpoint.

If a maximum fleet size constraint is introduced given our current route network solution

selection strategy, the result is intuitive. From Figures 6.5 and 6.6 we can see that

if a fleet size constraint is imposed, the effect will be to reduce the exploration of

the solutions that favour the passenger objective i.e. FP . Combining this with the

observations made from the constrained capacity experiments, it is evident that our

strategy for selecting network design solution is therefore unsuitable.

The selection of network design solutions at the extremes of the passenger objective

results in solutions that are infeasible for frequency setting. If capacity and fleet size

were to be severely constrained then it is possible that F1 and F3 may also become

unsuitable. This reflects the fact that network design was conducted without considering

the available fleet size or capacity available. It therefore seems that an alternative

approach to both frequency setting and network design are required to ensure feasible

solutions are produced. In the next section we provide a discussion of these alternative

approaches.

6.7 Discussion: Alternative Approaches to Frequency

Setting

As we have seen, the selection of a route network has a direct impact on not only the

quality of solutions produced from the operator and passenger viewpoints but also

whether frequency setting can even be applied – given constraints on vehicle capacity

and available fleet size. Designing a route network without taking into account the

available capacity or fleet size may, therefore, not always be suitable, and alternative

methods should be considered. However, evaluation of solutions for both the network

164 6.7 Discussion: Alternative Approaches to Frequency Setting

design and frequency setting stages simultaneously is time consuming and must be

conducted on a network as a whole rather than on a single route. As such we now

discuss a number of alternative approaches that may provide an improved approach to

both network design and frequency setting.

One of the assumptions our problem formulation has made is that we are designing

a public transport network to be implemented. However the UTNDP can take two

differing approaches:

1. To design an operational public transport system that will be implemented by the

network operator.

2. To provide long term planning support by producing a number of alternative

networks that will allow an operator to plan for future investment.

Depending upon the aim of the network operator it may be prudent to combine or split

the network design and frequency setting stages. It is therefore questionable whether a

single approach will be able to tackle the UTNDP from both viewpoints. A network

operator, for example, may wish for a network to be designed that causes minimal

disruption. This may mean producing a network that does not make large route changes

to that currently in use, allowing the operator to quickly implement the change.

The separation of network design and frequency setting is a significant reason for the

production of infeasible solutions during the frequency setting stage. When considering

both capacity and fleet size constraints, feasible solutions from the network design

stage cannot be used (i.e. solutions at the extremes of the passenger and operator

objectives). This impacts our initial problem formulation and indicates that constraints

need to be added during the network design stage to ensure the solutions that are

produced will be able to undergo frequency setting. Our network design stage produces

infeasible solutions (from the frequency setting point of view) as they require an

unrealistic frequency and/or capacity to ensure sufficient capacity on a route. An option

6.7 Discussion: Alternative Approaches to Frequency Setting 165

is to modify our initial network design formulation to assign passengers to routes, i.e.

attribute to each route edge a passenger volume similar to Optimal Strategies, but then

to continue to use the APSP for calculating the passenger paths. Solutions could now

be checked to ensure that given the default frequency of ten minutes whether a sensible

capacity is required on each route. The setting of a sensible capacity is difficult to

judge and could become a parameter to the algorithm based upon the network operators

current fleet size.

Alternatively one might set both the route network and frequency upon each route

simultaneously. As previously mentioned, both the network design stage and frequency

setting stage are NP-hard. Combining both stages together will remove the issue of

generating infeasible solutions as they could be prevented from entering the population.

But this would result in a significant increase in running time. Evaluation would need

to be conducted using the Optimal Strategies algorithm or similar method that assigns

passenger demand to the network. Using this approach it may be difficult to maintain

population diversity in terms of route networks when setting frequencies simultaneously.

We have seen that a single route network can produce a range of frequency solutions

and this could affect the route network diversity. To tackle this issue it may be possible

to add a third objective that compares the structure of designed route networks to that

currently in operation using a diversity measure similar to that introduced in Chapter 4.

Adding the objective would aid in maintaining diversity in the population providing

that a network redesign is being conducted rather than the design of a completely new

public transport network.

If the running time of the algorithm is not of critical importance, then a more realistic

evaluation of the route network along with the associated frequencies could be modelled

via a public transport simulation package. Using a modelling package rather than the

APSP or Optimal Strategies algorithm would allow for the consideration of a number of

factors such as the stochastic nature at which passengers arrive at bus stops, other traffic

on the roads that may cause congestion, and the walking time of passengers between bus

166 6.7 Discussion: Alternative Approaches to Frequency Setting

stops. Obviously this would be a very expensive optimisation procedure, but surrogate

models may help to reduce the computational burden.

An alternative approach would be to run network design and frequency setting in an

iterative procedure. This approach would allow network design to run for a set number

of generations and then feed all or a subset of the solutions into frequency setting. Once

frequency setting has completed, the average frequency could then be computed and fed

back into network design as the transfer penalty. It may also be possible to use the route

frequencies rather than computing an updated transfer penalty. The effects of applying

crossover and mutation would have to be carefully examined to investigate if using the

frequencies on routes from differing route sets would cause a degradation in solution

quality.

If the operator does not consider longer term planning to be a priority and requires a

public transport system that can be implemented in a short time frame, then it may be

more appropriate to use a single objective optimisation for frequency setting. Sensible

constraints regrading fleet size could be imposed during the network design stage. The

network operator could then select a solution or solutions from the produced Pareto set.

Using both capacity and maximum allowed fleet size constraints the passenger objective

could be optimised in an attempt to improve the travel time whilst not incurring extra

cost to the operator. This approach would reduce the size of the search space allowing

for the optimisation to be performed in a shorter time frame.

Finally, one of the major issues with research in to the UTNDP is the lack of real world

data available. Current research, including our own, focuses on artificially created

instances that make it almost impossible to trial the produced networks in the real world

i.e. using some form of simulation to accurately model the local population. With

active industry collaboration to provide details on the route networks currently used

and accurate demand figures it should be possible to progress the research and provide

optimisation algorithms that are able to produce sensible public transport networks.

6.8 Summary 167

6.8 Summary

This chapter has described three multi-objective algorithms for the frequency setting

stage of the UTNDP. NSGAII, multi-objective first descent and multi-objective tabu

search were compared empirically. NSGAII was shown to consistently outperform the

other two methods producing improved S metrics for all the available problem instances.

The effects of constraining the capacity upon vehicles was then investigated and found

to reduce the number of solutions with high passenger objective values. A discussion

was then made regarding the introduction of a maximum fleet size constraint and the

effect this would have.

Our study on the introduction of capacity and fleet size constraints highlighted that the

selection of solutions from network design must be carefully considered. The effect of

introducing a capacity constraint was to remove the network that favoured the operators.

Introducing a fleet size constraint removed the network that favoured the passenger.

Alternative approaches to network design and frequency setting were then discussed

that would ensure solutions produced during network design are feasible with respect to

frequency setting.

168 6.8 Summary

169

Chapter 7

Conclusions & Future Work

7.1 Conclusions

This thesis has examined the first two stages of the UTNDP, namely the network design

and frequency setting problems. Problem definitions for both have been presented

along with seven problem instances that are publicly available for other researchers.

We then presented a proof that the network design problem is NP-Complete. A

discussion around the use of the transit network for the evaluation of the passenger

objective was then made. The need to identify and penalise transfers is a key aspect

of any public transport system. Passengers wish to avoid having to make a transfer

and will ultimately not use a service if excessive transfers are necessary. To identify

transfers we use the transit network, which is significantly larger than the route network,

leading to large running times. Alternative approaches were presented that used the

smaller route network but were found to be unsuitable in either being unable to identify

transfers correctly or resulting in larger running times. The bottleneck when using the

transit network is the application of an all pairs shortest path algorithm. To reduce the

computation time we parallelised the Floyd-Washall algorithm on the GPU and found

that it offered significant time savings.

Given the NP-Hard nature of the network design and frequency setting problems we

chose to approach each separately, despite them being highly coupled. We described a

multi-objective evolutionary algorithm (MOEA) that is able to outperform the state of

170 7.1 Conclusions

the art from the literature. A heuristic construction algorithm was proposed to seed the

MOEA with a high quality initial population. By seeding the initial population using

the heuristic construction algorithm improved approximate Pareto sets were produced

over five of the seven problem instances. Improvements were also achieved across all

instances when comparing the best objectives values from the passenger and operator

perspectives.

The approach was further improved by adding several mutation operators and replacing

SEAMO2 with the NSGAII evolutionary framework. An extensive analysis of the

performance of the proposed genetic operators was also conducted. It was found

that as the underlying problem size increases, then so does the performance of the

operators. Given the multi-objective nature of the network design problem the creation

of dominating solutions is challenging. Furthermore, our operators tend to focus on

improving one objective whilst simultaneously degrading the other. We therefore

concluded that using all the operators together produces the best quality approximate

Pareto sets for the majority of instances.

A comparison was then made between our proposed algorithm and the state of the art

from the literature. Over the available problem instances our method was able to achieve

the best result from the passenger perspective in six out of seven cases and all of the

instances from the operator perspective. This comparison, however, highlighted a major

issue with the UTNDP currently: a lack of problem instances that are publicly available

along with multiple problem formulations make direct comparisons difficult. Although

the lack of problem instances has been improved recently by Mumford [114] with the

publication of four benchmark instances, there is still a long way to go before a library

of instances are available ranging from small to real-world sizes.

A further complication is the range of problem formulations in the literature with some

authors only considering a single objective optimisation. However, the appropriateness

of tackling the network design problem using single or multi-objective optimisation

depends upon the context. If the optimisation is for long term planning a multi-objective

7.1 Conclusions 171

optimisation may be more appropriate. It would allow for the operator to compare

the improvement in the level of service provided to passengers versus the additional

operating cost required i.e. extra vehicles. A single objective optimisation, focusing

on the passenger objective, may therefore be used for short term planning where the

operator wishes to maintain their current infrastructure and operating costs.

The comparison also highlighted issues with the publication of results for the network

design problem. Given it’s multi-objective nature, comparing the best route sets from

the passenger and operator perspectives is unsuitable. Publication of the achieved

approximate Pareto sets would allow for a multi-objective comparison reflecting the

true performance of alternative approaches.

While deploying our approach to the network design problem, we saw that the vast

increase in running time as the problem size grew was a significant drawback. High

performance computing resources were used but this requires a network operator to

have access to similar resources. An alternative approach was explored that provided

an approximation to the actual objective values for the passenger objective in a signi-

ficantly reduced time frame. This is know as a surrogate model or surrogate assisted

optimisation.

Four surrogate models were presented and compared empirically. We found that

surrogate models perform well compared with the original algorithm using evaluation

on the transit network. Under constrained running times the surrogate models were

able to outperform the original algorithm producing improved approximate Pareto sets.

To provide a greater speedup, surrogate models were then combined with GPU based

evaluation. It was found that given the small size of the route networks the GPU was

unable to provide a speedup for our problem instances. However, for larger instances

with a few thousand vertices GPU based evaluation coupled with surrogate models will

almost certainly provide benefit.

Surrogate models provide a speedup by reducing the size of the graph needed for evalu-

ation i.e. using the route network rather than transit network. It may be more beneficial

172 7.1 Conclusions

to provide a highly detailed evaluation that models all aspects of urban transport systems

(i.e congestion, rail, subway, walking time). A more detailed evaluation will of course

result in longer running times but also produce a route set that is better suited to the

intended environment. A balance must therefore be made between the complexity of the

model and what is considered as a reasonable running time. Without the engagement of

industrial partners this will be difficult to achieve.

We then moved onto the frequency setting problem highlighting some of the issues

involved when separating the network design and frequency setting stages. During

frequency setting we assign passengers to routes using the Optimal Strategies algorithm

of Spiess and Florian [135]. Here we must select route sets to have frequency setting

applied. Also, all route sets produced during the network design stage cannot be

evaluated due to the extensive running time involved as the problem size scales. A

route network selection strategy was proposed that selected five solutions from the

approximate Pareto sets output from the network design stage. Each of these route sets

then independently undergoes frequency setting, producing five approximate Pareto

sets that are combined to give a final approximate Pareto set. Three multi-objective

algorithms were described and empirically evaluated under an unconstrained scenario.

It was found that NSGAII performed well in comparison to multi-objective tabu search

(MOTS) and multi-objective first descent (MOFD). The poor performance of MOTS and

MOFD can be attributed to the expensive evaluation function that must be performed

on each neighbour. It was noted that MOTS and MOFD completed far fewer iterations

compared with NSGAII under the same running time.

A capacity constraint was then introduced limiting the number of passengers that can be

carried on each vehicle. For the smaller problem instances the capacity constraint had

little effect due to the small route lengths and low demand across the networks. However,

as the problem size increases capacity plays a more pivotal role. Some solutions from

the network design stage, that heavily favoured the network operator, were found to be

infeasible when applying frequency setting with a capacity constraint.

7.2 Future Work 173

The inability to create frequency solutions based upon a given route network config-

uration can be linked directly to the separation of the network design and frequency

setting problems. Creation of route sets ignoring capacity is unsuitable and needs to be

reconsidered to prevent time being wasted exploring infeasible areas of the search space.

By assuming an infinite capacity during network design route sets are constructed that

place the highest demand node pairs on the same route with minimal route overlap

(when the route set favours the network operator). This has a two-fold effect: 1) the

high demand cannot be served as it is now less likely to be distributed over multiple

routes, and 2) higher transfer volumes on to already highly utilised routes. To overcome

this issue several alternative approaches were discussed as a topic for future work.

7.2 Future Work

As previously mentioned there, is a lack of problem instances that can be used to

compare methods. As such there is a strong need for a set of problem instances that

allow researchers to compare their approaches over a range of scenarios, both artificial

and real world. The production of instances is, however, challenging. For artificial

instances the spatial layout and connectivity of the network should reflect that seen in

the real world, otherwise methods may become over-fitted to these artificial instances

and perform poorly on real world examples. Demand over the network must also be

calculated carefully to ensure it is sensible and reflective of a town/city of the same

spatial layout. Nevertheless the creation of a library of instances would greatly benefit

future research.

Artificial instances can provide a means for comparing approaches, but real world in-

stances must also play a far greater role. Industrial collaboration to obtain the necessary

demand data and network requirements will be invaluable for future research. The

acquisition of real world data will allow for route networks produced to be compared

with those currently in use. This may be undertaken through simulation or limited trials

174 7.2 Future Work

on the transit network itself. The more industrial collaboration that can be sought the

greater the benefit for researchers and the UTNDP as a whole.

The commercial sensitivity of passenger demand for current services is a major obstacle

to the creation of real world benchmark instances. Development of methods that are able

to accurately predict passenger demand, for example based upon population density,

will provide a far easier and cost effective means compared with direct passenger travel

surveys. This will also overcome the issue of researchers developing approaches on

a specific problem instance that has industry collaboration with a condition that the

underlying data cannot be released.

While industrial collaboration may provide the means for creating more problem in-

stances it can also enable more accurate problem formulations to be produced. Network

operators can share their perspectives which can be pooled to look for similarities.

Given the large range of formulations for the UTNDP this may have the added benefit of

producing an agreed formulation resulting in an easier method for comparing alternative

approaches for the UTNDP.

An in-depth analysis of transport networks currently in use may also be able to shed

light on similarities in terms of route structure. The identification of similarities will

help to constrain the problem reducing the size of the search space. Given the large

number of public transit networks, it seems unlikely that there is not a level of similarity

between them. For example degree of route overlap, distance covered by a single route

and stops per route. If similarities can be found they can be fed into the creation of

artificial instances to ensure that they are reflective of the real world.

Although the UTNDP is inherently multi-objective, compromises must be made to

achieve a method that has a reasonable running time. If effective constraints can be

introduced from either the passenger or operator perspective – whether that be through

industry collaboration or analysis of existing networks – a single objective formulation

may be achievable. This would have the advantage of being less computationally

expensive. By utilising industry collaboration it may be found that operators would

7.2 Future Work 175

rather improve upon a given solution rather than producing a Pareto set of solutions.

To provide solutions that can be deployed on existing networks both the network design

and frequency setting stages need to be tackled simultaneously. Creating route sets

without considering capacity and/or frequency is acceptable if the problem is academic

with the focus on creating improved algorithms. However, for applications to real

world networks it is questionable whether a multi-objective algorithm approach is

truly warranted. Furthermore the extensive disruption a total redesign of a transit

network would cause may lead to network operators favouring small improvements on

their current network configuration. It is therefore prudent to consider two alternative

approaches. One could take the current route network and make small improvements,

whether this be through the use of heuristics or the application of an optimisation

algorithm. Tied to this could be a function that measures the disruption caused to

passengers, which could then be traded off against improvements from the passenger

viewpoint. In this scenario we could assume that the resources available to the network

operator are fixed.

A theme throughout this thesis has been the computational expense of evaluating

solutions. From the network design perspective, this is due to the all pairs shortest path.

Development of a shortest path algorithm that is able to efficiently deal with vertices

that have conditional costs of traversal (i.e. a transfer penalty) without the need to

introduce extra vertices could provide a significant time saving. However, more research

is needed into the objective formulation and whether the approach used in this thesis is

truly reflective of passenger travel patterns.

The UTNDP is complex with conflicting viewpoints and a stochastic nature that must

be accounted for in an accurate formulation of the problem. It is therefore questionable

whether a completely accurate formulation will ever be possible for the UTNDP without

the need for expensive modelling to evaluate route sets that, in turn, may prove too

costly. It is therefore our belief that the identification of similarities and discussion with

network operators is key for the UTNDP to progress.

176 7.2 Future Work

177

Bibliography

[1] SATURN Manual, 11.2 edition. URL http://www.saturnsoftware.co.uk/

saturnmanual/.

[2] Google distance matrix API. URL https://developers.google.com/maps/

documentation/distancematrix/intro.

[3] National public transport data repository (nptdr). URL http://data.gov.uk/

dataset/nptdr.

[4] M Hadi Baaj and Hani S Mahmassani. Trust: A lisp program for the analysis of
transit route configurations. Transportation Research Record, (1283), 1990.

[5] M Hadi Baaj and Hani S Mahmassani. An ai-based approach for transit route
system planning and design. Journal of advanced transportation, 25(2):187–209,
1991.

[6] M Hadi Baaj and Hani S Mahmassani. Hybrid route generation heuristic al-
gorithm for the design of transit networks. Transportation Research Part C:
Emerging Technologies, 3(1):31–50, 1995.

[7] Saeed Asadi Bagloee and Avishai Avi Ceder. Transit-network design methodo-
logy for actual-size road networks. Transportation Research Part B: Methodolo-
gical, 45(10):1787–1804, 2011.

[8] Barrie M Baker and MA Ayechew. A genetic algorithm for the vehicle routing
problem. Computers & Operations Research, 30(5):787–800, 2003.

[9] Richard Balcombe, Roger Mackett, Neil Paulley, John Preston, Jeremy Shires,
Helena Titheridge, Mark Wardman, and Peter White. The demand for public
transport: a practical guide. 2004.

[10] Roberto Baldacci, Eleni Hadjiconstantinou, and Aristide Mingozzi. An exact
algorithm for the capacitated vehicle routing problem based on a two-commodity
network flow formulation. Operations research, 52(5):723–738, 2004.

[11] Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi. An exact algorithm
for the vehicle routing problem based on the set partitioning formulation with
additional cuts. Mathematical Programming, 115(2):351–385, 2008.

http://www.saturnsoftware.co.uk/saturnmanual/
http://www.saturnsoftware.co.uk/saturnmanual/
https://developers.google.com/maps/documentation/distancematrix/intro
https://developers.google.com/maps/documentation/distancematrix/intro
http://data.gov.uk/dataset/nptdr
http://data.gov.uk/dataset/nptdr

178 Bibliography

[12] Raúl Baños, Julio Ortega, Consolación Gil, Antonio Fernández, and Francisco
De Toro. A simulated annealing-based parallel multi-objective approach to
vehicle routing problems with time windows. Expert Systems with Applications,
40(5):1696–1707, 2013.

[13] Gabriela Beirão and JA Sarsfield Cabral. Understanding attitudes towards public
transport and private car: A qualitative study. Transport policy, 14(6):478–489,
2007.

[14] John E Bell and Patrick R McMullen. Ant colony optimization techniques for the
vehicle routing problem. Advanced Engineering Informatics, 18(1):41–48, 2004.

[15] Robert W Blanning. The construction and implementation of metamodels. simu-
lation, 24(6):177–184, 1975.

[16] Jeremy J Blum and Tom V Mathew. Intelligent agent optimization of urban
bus transit system design. Journal of Computing in Civil Engineering, 25(5):
357–369, 2010.

[17] JJ Blum and TV Mathew. Implications of the computational complexity of transit
route network redesign for metaheuristic optimisation systems. IET Intelligent
Transport Systems, 6(2):124–131, 2012.

[18] Jürgen Branke and Christian Schmidt. Faster convergence by means of fitness
estimation. Soft Computing, 9(1):13–20, 2005.

[19] Larry Bull. On model-based evolutionary computation. Soft Computing, 3(2):
76–82, 1999.

[20] Michael Bussieck. Optimal lines in public rail transport. Citeseer, 1998.

[21] Bernard F Byrne. Public transportation line positions and headways for minimum
user and system cost in a radial case. Transportation Research, 9(2-3):97–102,
1975.

[22] Massimiliano Caramia and Paolo Dell’Olmo. Multi-objective management in
freight logistics: Increasing capacity, service level and safety with optimization
algorithms. Springer Science & Business Media, 2008.

[23] S Carrese and S Gori. An urban bus network design procedure. In Transportation
planning, pages 177–195. Springer, 2002.

[24] Avishai Ceder and Nigel HM Wilson. Bus network design. Transportation
Research Part B: Methodological, 20(4):331–344, 1986.

[25] Partha Chakroborty. Genetic algorithms for optimal urban transit network design.
Computer-Aided Civil and Infrastructure Engineering, 18(3):184–200, 2003.

Bibliography 179

[26] Partha Chakroborty and Tathagat Wivedi. Optimal route network design for
transit systems using genetic algorithms. Engineering optimization, 34(1):83–
100, 2002.

[27] Joanne Suk Chun Chew, Lai Soon Lee, and Hsin Vonn Seow. Genetic algorithm
for biobjective urban transit routing problem. Journal of Applied Mathematics,
2013, 2013.

[28] Claude Chriqui and Pierre Robillard. Common bus lines. Transportation science,
9(2):115–121, 1975.

[29] Ernesto Cipriani, Stefano Gori, and Marco Petrelli. Transit network design: A
procedure and an application to a large urban area. Transportation Research Part
C: Emerging Technologies, 20(1):3–14, 2012.

[30] Citilabs. Cube Voyager - Modelling Functions, . URL http://www.citilabs.

com/products/cube/cube-voyager/cube-voyager-modeling-functions.

[31] Citilabs. Cube Voyager, . URL http://www.citilabs.com/products/cube/

cube-voyager.

[32] GU Clarke and John W Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Operations research, 12(4):568–581, 1964.

[33] Carlos Coello Coello, Gary B Lamont, and David A Van Veldhuizen. Evolu-
tionary algorithms for solving multi-objective problems. Springer Science &
Business Media, 2007.

[34] Isabelle Constantin and Michael Florian. Optimizing frequencies in a transit
network: a nonlinear bi-level programming approach. International Transactions
in Operational Research, 2(2):149–164, 1995.

[35] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151–158.
ACM, 1971.

[36] William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexan-
der Schrijver. Combinatorial Optimization. Wiley-Blackwell, 1997.

[37] Ian M Cooper, Matthew P John, Rhydian Lewis, Christine L Mumford, and
Andrew Olden. Optimising large scale public transport network design problems
using mixed-mode parallel multi-objective evolutionary algorithms. In 2014
IEEE Congress on Evolutionary Computation (CEC), pages 2841–2848. IEEE,
2014.

[38] Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem (darp):
Variants, modeling issues and algorithms. Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, 1(2):89–101, 2003.

http://www.citilabs.com/products/cube/cube-voyager/cube-voyager-modeling-functions
http://www.citilabs.com/products/cube/cube-voyager/cube-voyager-modeling-functions
http://www.citilabs.com/products/cube/cube-voyager
http://www.citilabs.com/products/cube/cube-voyager

180 Bibliography

[39] Georges A Croes. A method for solving traveling-salesman problems. Operations
research, 6(6):791–812, 1958.

[40] Z.J. Czech and P. Czarnas. Parallel simulated annealing for the vehicle routing
problem with time windows. In Proceedings 10th Euromicro Workshop on
Parallel, Distributed and Network-based Processing. Institute of Electrical &
Electronics Engineers (IEEE), 2002.

[41] George B Dantzig and John H Ramser. The truck dispatching problem. Manage-
ment science, 6(1):80–91, 1959.

[42] Joaquin De Cea and Enrique Fernández. Transit assignment for congested public
transport systems: an equilibrium model. Transportation science, 27(2):133–147,
1993.

[43] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms,
volume 16. John Wiley & Sons, 2001.

[44] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting approach, part
i: Solving problems with box constraints. IEEE Transactions on Evolutionary
Computation, 18(4):577–601, 2014.

[45] Kalyanmoy Deb and Sachin Jain. Running performance metrics for Evolution-
ary multiobjective optmization. Technical Report 2002004, Kanpur Genetic
Algorithms Laboratory, Indian Institute of Technology, Kanpur, India, 2002.

[46] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on
evolutionary computation, 6(2):182–197, 2002.

[47] Department for Transport. Action for Roads: A network for the 21st century.
Technical report, 2013.

[48] Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[49] Thomas A Domencich and Daniel McFadden. Urban travel demand-a behavioral
analysis. Technical report, 1975.

[50] Marco Dorigo. Optimization, learning and natural algorithms. Ph. D. Thesis,
Politecnico di Milano, Italy, 1992.

[51] Dominique Douguet. e-lea3d: a computational-aided drug design web server.
Nucleic acids research, page gkq322, 2010.

[52] European Commission. Driving time and rest periods. URL
http://ec.europa.eu/transport/modes/road/social_provisions/

driving_time/index_en.htm.

http://ec.europa.eu/transport/modes/road/social_provisions/driving_time/index_en.htm
http://ec.europa.eu/transport/modes/road/social_provisions/driving_time/index_en.htm

Bibliography 181

[53] Lang Fan. Metaheuristic Methods for the Urban Transit Routing Problem. PhD
thesis, Cardiff University, January 2009.

[54] Lang Fan and Christine L Mumford. A metaheuristic approach to the urban
transit routing problem. Journal of Heuristics, 16(3):353–372, 2010.

[55] Lang Fan, Christine L Mumford, and Dafydd Evans. A simple multi-objective
optimization algorithm for the urban transit routing problem. In 2009 IEEE
Congress on Evolutionary Computation, pages 1–7. IEEE, 2009.

[56] Wei Fan and Randy B Machemehl. Using a simulated annealing algorithm
to solve the transit route network design problem. Journal of transportation
engineering, 132(2):122–132, 2006.

[57] Wei Fan and Randy B Machemehl. Optimal transit route network design problem
with variable transit demand: genetic algorithm approach. Journal of transporta-
tion engineering, 132(1):40–51, 2006.

[58] Wei Fan and Randy B Machemehl. A tabu search based heuristic method for
the transit route network design problem. In Computer-aided Systems in Public
Transport, pages 387–408. Springer, 2008.

[59] Merrill M Flood. The traveling-salesman problem. Operations Research, 4(1):
61–75, 1956.

[60] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5
(6):345, 1962.

[61] Transport for London. Guidelines for Planning Bus Services. 2012. URL
http://content.tfl.gov.uk/bus-service-planning-guidelines.pdf.

[62] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM (JACM), 34(3):
596–615, 1987.

[63] Markus Friedrich, Ptv Ag, Thomas Haupt, and Klaus Nökel. Planning and
analyzing transit networks-an integrated approach regarding requirements of
passengers and operators. In Journal of Public Transportation. Citeseer, 1999.

[64] Gaetano Fusco, Stefano Gori, and Marco Petrelli. A heuristic transit network
design algorithm for medium size towns. In Proceedings of the 13th Mini-EURO
Conference, Bari, 2002.

[65] Ziyou Gao, Huijun Sun, and Lian Long Shan. A continuous equilibrium network
design model and algorithm for transit systems. Transportation Research Part B:
Methodological, 38(3):235–250, 2004.

http://content.tfl.gov.uk/bus-service-planning-guidelines.pdf

182 Bibliography

[66] Abel Garcia-Najera and John A Bullinaria. Bi-objective optimization for the
vehicle routing problem with time windows: Using route similarity to enhance
performance. In International Conference on Evolutionary Multi-Criterion
Optimization, pages 275–289. Springer, 2009.

[67] Benjamin Gardner and Charles Abraham. What drives car use? a grounded
theory analysis of commuters’ reasons for driving. Transportation Research Part
F: Traffic Psychology and Behaviour, 10(3):187–200, 2007.

[68] Michael R Gary and David S Johnson. Computers and Intractability: A Guide to
the Theory of NP-completeness. WH Freeman and Company, New York, 1979.

[69] Michel Gendreau, Gilbert Laporte, and René Séguin. An exact algorithm for the
vehicle routing problem with stochastic demands and customers. Transportation
science, 29(2):143–155, 1995.

[70] Billy E Gillett and Leland R Miller. A heuristic algorithm for the vehicle-dispatch
problem. Operations research, 22(2):340–349, 1974.

[71] Fred Glover. Future paths for integer programming and links to artificial intelli-
gence. Computers & operations research, 13(5):533–549, 1986.

[72] Fred Glover and Gary A. Kochenberger, editors. Handbook of Metaheuristics.
Kluwer Academic Publishers, 2003.

[73] Fred Glover and Manuel Laguna. Tabu Search. Springer Science Business
Media, 1997.

[74] David E Golberg. Genetic algorithms in search, optimization, and machine
learning. 1989.

[75] JF Guan, Hai Yang, and SC Wirasinghe. Simultaneous optimization of transit
line configuration and passenger line assignment. Transportation Research Part
B: Methodological, 40(10):885–902, 2006.

[76] Anthony F Han and Nigel HM Wilson. The allocation of buses in heavily
utilized networks with overlapping routes. Transportation Research Part B:
Methodological, 16(3):221–232, 1982.

[77] Michael Pilegaard Hansen. Tabu search for multiobjective optimization: Mots. In
Proceedings of the 13th International Conference on Multiple Criteria Decision
Making, pages 574–586, 1997.

[78] Dick Hasselström. Public Transportation Planning, 1981.

[79] Zhengfeng Huang, Gang Ren, and Haixu Liu. Optimizing bus frequencies
under uncertain demand: Case study of the transit network in a developing city.
Mathematical problems in Engineering, 2013, 2013.

Bibliography 183

[80] INRO. Emme. URL http://www.inrosoftware.com/en/products/emme/

index.php.

[81] Yechezkel Israeli and Avishai Ceder. Designing transit routes at the network level.
In Vehicle Navigation and Information Systems Conference, 1989. Conference
Record, pages 310–316. IEEE, 1989.

[82] Hong Jiang, Qingsong Yu, and Yong Huang. An improved ant colony algorithm
for urban transit network optimization. In 2010 Sixth International Conference
on Natural Computation, volume 5, pages 2739–2743. IEEE, 2010.

[83] Yaochu Jin. A comprehensive survey of fitness approximation in evolutionary
computation. Soft computing, 9(1):3–12, 2005.

[84] Yaochu Jin. Surrogate-assisted evolutionary computation: Recent advances and
future challenges. Swarm and Evolutionary Computation, 1(2):61–70, 2011.

[85] Yaochu Jin and Bernhard Sendhoff. A systems approach to evolutionary mul-
tiobjective structural optimization and beyond. IEEE Computational Intelligence
Magazine, 4(3):62–76, 2009.

[86] Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. On evolutionary optim-
ization with approximate fitness functions. In Proceedings of the 2nd Annual
Conference on Genetic and Evolutionary Computation, pages 786–793. Morgan
Kaufmann Publishers Inc., 2000.

[87] Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. A framework for evolu-
tionary optimization with approximate fitness functions. IEEE Transactions on
evolutionary computation, 6(5):481–494, 2002.

[88] Matthew P John, Christine L Mumford, and Rhyd Lewis. An improved multi-
objective algorithm for the urban transit routing problem. In European Confer-
ence on Evolutionary Computation in Combinatorial Optimization, pages 49–60.
Springer, 2014.

[89] David S Johnson, Jan Karel Lenstra, and AHG Kan. The complexity of the
network design problem. Networks, 8(4):279–285, 1978.

[90] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[91] Gary J Katz and Joseph T Kider Jr. All-pairs shortest-paths for large graphs on the
gpu. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, pages 47–55. Eurographics Association, 2008.

[92] Fatih Kılıç and Mustafa Gök. A demand based route generation algorithm for
public transit network design. Computers & Operations Research, 51:21–29,
2014.

http://www.inrosoftware.com/en/products/emme/index.php
http://www.inrosoftware.com/en/products/emme/index.php

184 Bibliography

[93] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[94] Joshua Knowles and David Corne. On metrics for comparing nondominated sets.
In Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress
on, volume 1, pages 711–716. IEEE, 2002.

[95] A. L. Kok, C. M. Meyer, H. Kopfer, and J. M. J. Schutten. A dynamic program-
ming heuristic for the vehicle routing problem with time windows and european
community social legislation. Transportation Science, 44(4):442–454, 2010.

[96] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7(1):
48–48, 1956.

[97] W Lampkin and PD Saalmans. The design of routes, service frequencies, and
schedules for a municipal bus undertaking: A case study. Journal of the Opera-
tional Research Society, 18(4):375–397, 1967.

[98] Gilbert Laporte and Yves Nobert. Exact algorithms for the vehicle routing
problem. North-Holland Mathematics Studies, 132:147–184, 1987.

[99] Young-Jae Lee and Vukan R Vuchic. Transit network design with variable
demand. Journal of Transportation Engineering, 131(1):1–10, 2005.

[100] Deming Lei and Xinping Yan. Urban transit route network design problem
using tabu search algorithm. In International Conference on Transportation
Engineering 2007. American Society of Civil Engineers (ASCE), 2007.

[101] Dudy Lim, Yew-Soon Ong, Yaochu Jin, and Bernhard Sendhoff. Trusted evol-
utionary algorithm. In 2006 IEEE International Conference on Evolutionary
Computation, pages 149–156. IEEE, 2006.

[102] Roger L Mackett and Marion Edwards. Guidelines for planning a new urban
public transport system. In Proceedings of the Institution of Civil Engineers.
Transport, volume 117, pages 193–201. Institution of Civil Engineers, 1996.

[103] Peter Mackie, James Laird, and Daniel Johnson. Buses and Economic Growth.
Technical report, University of Leeds, Institute for Transport Studies, 2012.

[104] Thomas L Magnanti and Richard T Wong. Network design and transportation
planning: Models and algorithms. Transportation science, 18(1):1–55, 1984.

[105] Christoph E Mandl. Applied network optimization. Academic Press, 1979.

[106] Christoph E Mandl. Evaluation and optimization of urban public transportation
networks. European Journal of Operational Research, 5(6):396–404, 1980.

Bibliography 185

[107] Héctor Martínez, Antonio Mauttone, and María E Urquhart. Frequency optimiza-
tion in public transportation systems: Formulation and metaheuristic approach.
European Journal of Operational Research, 236(1):27–36, 2014.

[108] Antonio Mauttone and María E Urquhart. A multi-objective metaheuristic
approach for the transit network design problem. Public Transport, 1(4):253–
273, 2009.

[109] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing
machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[110] Elnaz Miandoabchi, Reza Zanjirani Farahani, Wout Dullaert, and WY Szeto.
Hybrid evolutionary metaheuristics for concurrent multi-objective design of
urban road and public transit networks. Networks and Spatial Economics, 12(3):
441–480, 2012.

[111] Mark Mistretta, Jay A Goodwill, Rob Gregg, and Chirstopher DeAnnuntis. Best
practices in transit service planning. 2009.

[112] Alberto Moraglio and Ahmed Kattan. Geometric generalisation of surrogate
model based optimisation to combinatorial spaces. In European Conference
on Evolutionary Computation in Combinatorial Optimization, pages 142–154.
Springer, 2011.

[113] Christine L Mumford. Simple population replacement strategies for a steady-state
multi-objective evolutionary algorithm. In Genetic and Evolutionary Computa-
tion Conference, pages 1389–1400. Springer, 2004.

[114] Christine L Mumford. New heuristic and evolutionary operators for the multi-
objective urban transit routing problem. In 2013 IEEE Congress on Evolutionary
Computation, pages 939–946. IEEE, 2013.

[115] Muhammad Ali Nayeem, Md Khaledur Rahman, and M Sohel Rahman. Transit
network design by genetic algorithm with elitism. Transportation Research Part
C: Emerging Technologies, 46:30–45, 2014.

[116] NCHRP. Bus Route and Schedule Planning Guidelines. Transportation Research
Board National Research, 1980.

[117] Somnuk Ngamchai and David J Lovell. Optimal time transfer in bus transit route
network design using a genetic algorithm. Journal of Transportation Engineering,
129(5):510–521, 2003.

[118] G Nielsen, J D Nelson, C Mulley, G Tegner, G Lind, and T Lange. Public
transport–planning the networks. HiTrans Best Practice Guide. 2005.

186 Bibliography

[119] Miloš Nikolić and Dušan Teodorović. Transit network design by bee colony
optimization. Expert Systems with Applications, 40(15):5945–5955, 2013.

[120] Anthony O’Hagan. Bayesian analysis of computer code outputs: a tutorial.
Reliability Engineering & System Safety, 91(10):1290–1300, 2006.

[121] Beatrice Ombuki, Brian J Ross, and Franklin Hanshar. Multi-objective genetic
algorithms for vehicle routing problem with time windows. Applied Intelligence,
24(1):17–30, 2006.

[122] Luis Paquete, Marco Chiarandini, and Thomas Stützle. Pareto Local Optimum
Sets in the Biobjective Traveling Salesman Problem: An Experimental Study,
pages 177–199. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN
978-3-642-17144-4. doi: 10.1007/978-3-642-17144-4_7. URL http://dx.doi.

org/10.1007/978-3-642-17144-4_7.

[123] Vilfredo Pareto and D Cours. Economic politique. Lausanne, Switzerland, Rouge,
1896.

[124] SB Pattnaik, S Mohan, and VM Tom. Urban bus transit route network design
using genetic algorithm. Journal of transportation engineering, 124(4):368–375,
1998.

[125] PTV Group. How Can You Create Perfect Services All Along the Line?

[126] Alain Ratle. Accelerating the convergence of evolutionary algorithms by fitness
landscape approximation. In International Conference on Parallel Problem
Solving from Nature, pages 87–96. Springer, 1998.

[127] Jacques Renaud, Fayez F Boctor, and Gilbert Laporte. A fast composite heuristic
for the symmetric traveling salesman problem. INFORMS Journal on Computing,
8(2):134–143, 1996.

[128] Mauricio GC Resende and Celso C Ribeiro. Greedy randomized adaptive search
procedures. Technical Report TD-53RSJY, AT&T Labs, 2002.

[129] Franz Rothlauf. Design of modern heuristics: principles and application.
Springer Science & Business Media, 2011.

[130] Siv Schéele. A supply model for public transit services. Transportation Research
Part B: Methodological, 14(1):133–146, 1980.

[131] Jason R Schott. Fault tolerant design using single and multicriteria genetic
algorithm optimization. Technical report, DTIC Document, 1995.

[132] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency,
volume 24. Springer Science & Business Media, 2002.

http://dx.doi.org/10.1007/978-3-642-17144-4_7
http://dx.doi.org/10.1007/978-3-642-17144-4_7

Bibliography 187

[133] M C Shih and H S Mahmassani. A design methodology for bus transit networks
with coordinated operations. Technical Report SWUTC/94/60016-1, 1994.

[134] Mao-Chang Shih, Hani Mahmassani, and M Baaj. Planning and design model
for transit route networks with coordinated operations. Transportation Research
Record: Journal of the Transportation Research Board, (1623):16–23, 1998.

[135] Heinz Spiess and Michael Florian. Optimal strategies: a new assignment model
for transit networks. Transportation Research Part B: Methodological, 23(2):
83–102, 1989.

[136] Stephen Stradling, Michael Carreno, Tom Rye, and Allyson Noble. Passenger
perceptions and the ideal urban bus journey experience. Transport Policy, 14(4):
283–292, 2007.

[137] WY Szeto and Yongzhong Wu. A simultaneous bus route design and frequency
setting problem for tin shui wai, hong kong. European Journal of Operational
Research, 209(2):141–155, 2011.

[138] Kay Chen Tan, YH Chew, and Loo Hay Lee. A hybrid multi-objective evolution-
ary algorithm for solving truck and trailer vehicle routing problems. European
Journal of Operational Research, 172(3):855–885, 2006.

[139] KC Tan, TH Lee, K Ou, and LH Lee. A messy genetic algorithm for the vehicle
routing problem with time window constraints. In Evolutionary Computation,
2001. Proceedings of the 2001 Congress on, volume 1, pages 679–686. IEEE,
2001.

[140] VM Tom and S Mohan. Transit route network design using frequency coded
genetic algorithm. Journal of Transportation Engineering, 129(2):186–195,
2003.

[141] Paolo Toth and Daniele Vigo. An exact algorithm for the vehicle routing problem
with backhauls. Transportation science, 31(4):372–385, 1997.

[142] Paolo Toth and Daniele Vigo, editors. The Vehicle Routing Problem. Society for
Industrial & Applied Mathematics (SIAM), 2002.

[143] Paolo Toth and Daniele Vigo. The granular tabu search and its application to the
vehicle-routing problem. Informs Journal on computing, 15(4):333–346, 2003.

[144] Trapeze Group. About Trapeze Group, . URL http://www.trapezegroup.co.

uk/about.

[145] Trapeze Group. Public Transport Scheduling and Plan-
ning, . URL http://www.trapezegroup.co.uk/solutions/

public-transport-scheduling-and-planning.

http://www.trapezegroup.co.uk/about
http://www.trapezegroup.co.uk/about
http://www.trapezegroup.co.uk/solutions/public-transport-scheduling-and-planning
http://www.trapezegroup.co.uk/solutions/public-transport-scheduling-and-planning

188 Bibliography

[146] Christine L Valenzuela. A simple evolutionary algorithm for multi-objective
optimization (seamo). In Congress on Evolutionary Computation (CEC), pages
717–722, 2002.

[147] Cushman & Wakefield. UK cities monitor 2008. URL http://

investinmanchester.com/wp-content/themes/midas/docs/indicies-02.

pdf?f43d0a.

[148] Quentin K Wan and Hong K Lo. A mixed integer formulation for multiple-route
transit network design. Journal of Mathematical Modelling and Algorithms, 2
(4):299–308, 2003.

[149] Chen Wang, Qingyun Duan, Wei Gong, Aizhong Ye, Zhenhua Di, and Chiyuan
Miao. An evaluation of adaptive surrogate modeling based optimization with two
benchmark problems. Environmental Modelling & Software, 60:167–179, 2014.

[150] Peter R White. Public transport: its planning, management and operation.
Routledge, 2008.

[151] Peng Wu, Ada Che, Feng Chu, and Yunfei Fang. Exact and heuristic algorithms
for rapid and station arrival-time guaranteed bus transportation via lane reserva-
tion. IEEE Transactions on Intelligent Transportation Systems, 2016.

[152] Bin Yu, Zhongzhen Yang, Chuntian Cheng, and Chong Liu. Optimizing bus
transit network with parallel ant colony algorithm. In Proceedings of the Eastern
Asia Society for Transportation Studies, volume 5, pages 374–389, 2005.

[153] Bin Yu, Zhongzhen Yang, and Jinbao Yao. Genetic algorithm for bus frequency
optimization. Journal of Transportation Engineering, 136(6):576–583, 2009.

[154] Fang Zhao and Albert Gan. Optimization of transit network to minimize transfers.
Technical report, 2003.

[155] E Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and
applications. PhD thesis, Swiss Federal Institute of Technology Zurich, 1999.

[156] Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolutionary
algorithms – a comparative case study. In International Conference on Parallel
Problem Solving from Nature, pages 292–301. Springer, 1998.

[157] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. IEEE transactions on
Evolutionary Computation, 3(4):257–271, 1999.

http://investinmanchester.com/wp-content/themes/midas/docs/indicies-02.pdf?f43d0a
http://investinmanchester.com/wp-content/themes/midas/docs/indicies-02.pdf?f43d0a
http://investinmanchester.com/wp-content/themes/midas/docs/indicies-02.pdf?f43d0a

	Abstract
	Acknowledgements
	Contents
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Background
	The Urban Transit Network Design Problem
	Main Contributions
	Thesis Structure
	Summary

	Problem Definition and Formulation
	Optimisation
	Multi-objective Performance Metrics
	Combinatorial Optimisation

	Graph Theory
	Network Design Problem
	Frequency Setting Problem
	Problem Instances
	Network Evaluation
	Evaluation using the Transit Network
	Evaluation using the Route Network
	Mandl's Evaluation Method
	Evaluation Removing Overlapping Transfer Vertices
	Evaluation Using the GPU

	Complexities of the Urban Transit Network Design Problem
	NP-Completeness of the Network Design Problem
	Summary

	Literature Review
	Vehicle Routing Problems
	Practical Guidelines for the UTNDP
	Methods for tackling the UTNDP
	Mathematical Approaches
	Heuristics
	Metaheuristics

	Frequency Setting
	Limitations of Published Research
	Commercial Software
	Summary

	An Improved Approach to Network Design
	Heuristic Construction
	NSGAII
	Genetic Operators
	Crossover
	Mutation

	Measuring Population Diversity
	Experimental Method
	Experimental Results
	Genetic Operator Analysis
	Comparative Results
	Summary

	Surrogate Models for Network Design
	Overview of Surrogate-assisted Optimisation
	Proposed Management Strategies
	Proposed Surrogate Models
	Experimental Method for Surrogate Models
	Experimental Results for Surrogate Models
	Summary

	Frequency Setting
	Preliminary Investigation
	Evaluation with Frequencies Considered
	Problem Instance Demand Scaling
	Variable Fleet Size
	NSGAII
	Multi-objective First Descent
	Multi-objective Tabu Search
	Neighbourhood Operators
	Candidate Solution Selection
	Population Generation
	Experimental Method
	Experimental Results

	Constrained Capacity
	Experimental Method
	Experimental Results

	Constrained Capacity & Fleet Size
	Discussion: Alternative Approaches to Frequency Setting
	Summary

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

