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Summary 

The complement cascade is being increasingly implicated in development and disease.  

To understand these various roles, mouse models have been used and are proving to 

be an excellent tool.  While they have helped to elucidate many roles of central 

cascade components, they do not adequately model complement regulators.  

Complement Receptors 1 (CR1) and 2 (CR2) have been implicated in modifying 

disease states, such as Alzheimer’s disease and Systemic Lupus Erythematosus, but 

they are not well replicated in mice.  This leaves a gap in knowledge about how these 

receptors are functioning.  To overcome this, a mouse model was engineered to 

replace endogenous murine Cr2 with the human complement receptors, CR1 and CR2. 

This model will be an asset to the complement research community, but there is need 

for characterizing the expression of CR1.  This project aims to establish and validate 

this model.  CR1 has an array of allotypes in human populations, and using traditional 

recombination methods (FLP-FRT and Cre recombination) two of the most common 

alleles are replicated within this mouse, along with creating a CR1 knockout allele.  To 

validate the model a variety of techniques were used to ensure the correct targeting of 

the genomic construct into the murine Cr2 locus.  Once integration was confirmed, the 

allelic series was established.  Expression patterns in blood-derived cells were probed 

at an RNA level, with the different isoforms of CR1 being identified at a protein level. 

These models accurately produce viable protein products. These findings ensure that 

an accurate mouse model will be available to the complement research community. 
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1. Introduction  

The innate immune system is the first line of defense for a variety of insults, whether 

this is an infection or at the site of injury.  It is capable of driving regeneration, 

remodelling and restoration in a variety of different tissues, along with protecting our 

systems as a whole from pathogen-mediated damage.  The complement cascade is 

one of the oldest components of the innate immune system and therefore, an integral 

player in the body’s defensive and developmental systems (Wyssokowitsch 1866; 

Nuttall 1888; Ehrlich and Morgenroth 1889; Ehrlich and Morgenroth 1899; Buchner 

1889a; Buchner 1889b; Buchner 1899; Buchner 1900; Bordet 1898; Bordet 1896). 

Central components of the cascade are highly conserved throughout differing species, 

highlighting its evolutionary importance, with bacteria evolving to produce complement 

combating components to defend themselves against attack (van den Berg et al. 

1996). 

Complement has been shown to have a major influence in diseases such as 

glaucoma(Williams et al. 2016; Howell et al. 2013; Howell et al. 2011), Alzheimer’s 

disease (AD)(Shen and Meri 2003; Jun et al. 2010; Mahmoudi et al. 2015; Crehan et 

al. 2012; Fonseca et al. 2016; Lambert et al. 2009; Killick, T. R. Hughes, et al. 2013; 

Fonseca et al. 2011; Strohmeyer et al. 2000; Tooyama et al. 2001; Corneveaux et al. 

2010; Kolev et al. 2009; Brouwers et al. 2012; Van Cauwenberghe et al. 2013; 

Schjeide et al. 2011; Hazrati et al. 2012; Shen et al. 2001; Killick, T.R. Hughes, et al. 

2013; Ma et al. 2014; Carrasquillo et al. 2010; Zhou et al. 2008; Hamilton et al. 2012; 

MM et al. 2010; Biffi 2012; Maier et al. 2008b; Chibnik et al. 2011; Keenan et al. 2012; 

Britschgi et al. 2012; Maier et al. 2008a), Schizophrenia (Arakelyan et al. 2011; Sekar 

et al. 2016), Systemic Lupus Erythematosus (SLE) (Iida et al. 1982; Dykman et al. 

1984; Ross et al. 1985; Richardson et al. 1990; Corvetta et al. 1991; Levy et al. 1992; 

Bowness et al. 1994; Marquart et al. 1995; Moulds et al. 1996; Korb and Ahearn 1997; 

Wu et al. 2002; Arora et al. 2004; Nath et al. 2005; Asokan et al. 2006; Wu et al. 2007), 

and Rheumatoid arthritis (Wilson et al. 1986; Corvetta et al. 1991; Kumar et al. 1994; 

Jones et al. 1994; Arora et al. 1998; Okroj et al. 2007) among many others. While the 

complement cascade components can influence disease progression, some of the 

major factors influencing their efficiency in diseased environments are the complement 

regulators and receptors. These include Complement Receptor 1 (CR1), Complement 

Receptor 2 (CR2), Decay Accelerating Factor (DAF), and Membrane Cofactor Protein 

(MCP), that all have important roles in regulating the responses of the complement 

cascade (reviewed in Merle et al. 2015a; Merle et al. 2015b).  
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1.1 The Complement Cascades 

The complement cascade has three known branches of activation: The Classical 

pathway (Ferrata 1907; Brand 1907), the Alternative pathway (Pillemer et al. 1954; 

Pillemer 1955) and the Lectin pathway (Kawasaki et al. 1978; Kozutsumi et al. 1980) 

(Fig 1). Each pathway is initiated via different triggers; the Classical pathway is 

traditionally thought to be initiated via antibodies (though recent studies suggest that 

they may not be the only instigating factor (Naito et al. 2012; Nayak et al. 2010; Korb 

and Ahearn 1997; Bergamaschini et al. 1999)), the Alternative pathway generally 

initiates via the hydrolysis of a single complement protein and finally the Lectin 

pathway is initiated by the binding of polysaccharides commonly seen on the surface of 

bacteria. Although each pathway is initiated in different ways, all three pathways 

converge to form a convertase that allows for the initiation of the terminal pathway 

(reviewed in Merle et al. 2015a).  While this is the traditionally held view, studies are 

emerging to suggest that there are additional roles for the complement cascade 

proteins, along with a variety of elements that are able to interact at multiple different 

places within the cascade (Amara et al. 2008; Naito et al. 2012; Bergamaschini et al. 

1999). 

With these inherent capabilities and the role of complement cascade components ever 

expanding, from development to disease, there is an urgency to fully understand all of 

its capabilities. Much of the cascade is being delved into and dissected via the use of 

animal models. For instance, of relevance to these studies, the use of these animal 

models has helped to uncover C1q as an integral component of synaptic modelling in 

development (Stevens et al. 2007; Schafer et al. 2012), the impact of C1q and C3 on 

the development and progression of glaucoma (Howell et al. 2011; Williams et al. 

2016), the involvement of a variety of complement components in tissue regeneration 

and growth (Rutkowski et al. 2010; Mastellos and Lambris 2002; Del Rio-Tsonis et al. 

1998), and that regulation of C3 is essential to embryo survival (Xu et al. 2000; Mao et 

al. 2003). Along with this, models have shown that complement can play a hugely 

influential role in the progression of AD (Hazrati et al. 2012; Keenan et al. 2012; Maier 

et al. 2008a; Zhou et al. 2008). Although these breakthroughs have aided in furthering 

our understanding of the complement cascade, these models are limited in their 

genetic ability to mimic human systems accurately.  

1.1.1 Classical Pathway:  

The activation of the Classical pathway is initiated via the binding of antigens to 

complement component 1 (C1) (reviewed in Gál et al. 2004; Sarma and Ward 2011; 
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Merle et al. 2015a).  C1 is made up of a subset of units; C1q, C1r and C1s (C1q6r2s2). 

Once antigen binding occurs structural changes in C1q, permit the activation of C1r 

and C1s. Activated C1s in the C1 complex causes the cleavage of 2 proteins, C4 and 

C2. These proteins are broken down into ‘a’ and ‘b’ fragments (C2a, C2b, C4a and 

C4b). C2b and C4a are released into the fluid phase and are rapidly degraded. C2a 

and C4b are able to bind to the antigen-presenting cell, whether this be self or foreign, 

to form the C4b2a complex which is considered a C3 convertase. This C3 convertase 

can now contribute to the continuation of the cascade. C3 is converted into its 

anaphylatoxin, C3a, and opsonin, C3b. The C3 convertase, C4b2a, is now able to 

interact with C3b and this interaction in turn is considered to be a C5 convertase.  

While the C5 convertase is being formed, C3a is signaling an immune response, and 

attracting a variety of immune cells to the area of activation. 

1.1.2 Lectin Pathway:  

The Lectin pathway instigates a similar chain reaction to the Classical Pathway but is 

initiated via the binding of Mannose Binding Lectin (MBL) or Ficolins to polysaccharide 

residues on the surface of pathogens (reviewed in Gál et al. 2004; Sarma and Ward 

2011; Merle et al. 2015a). Once bound, MBL associated serine proteases (MASP) 

MASP-1 and MASP-2 are activated.  Once activated both MASP-1 and MASP-2 

undergo conformational changes and have the capability to cleave C2 and C4 into their 

respective ‘a’ and ‘b’ fragments (Sarma and Ward 2011).  These then form the C3 

convertase, C4b2a.  Along with the ability to cleave C2 and C4, MASP-1 is also 

capable of cleaving C3 independently (Dahl et al. 2016; Rossi et al. 2001; Thiel et al. 

1997). 

1.1.3 Alternative pathway:  

The Alternative pathway is, at a low level, always active in healthy individuals and 

constantly surveying for pathogens (reviewed in Sarma and Ward 2011; Merle et al. 

2015a). This pathway is activated via the spontaneous hydrolysis of C3, causing a 

cleavage of a thioester bond to form C3(H2O). This event enables a conformational 

change of C3, allowing the binding of Factor B. Upon binding the serine protease, 

Factor D, is able to cleave Factor B into the non-catalytic Ba and catalytic Bb. Bb 

remains integrated with C3(H2O) to form a C3(H2O)Bb complex. This complex is now 

considered a fluid phase C3 convertase and is able to instigate the cleavage of C3 into 

C3b and C3a. The C3(H2O)Bb complex is relatively unstable, but binding of the serum 

protein properdin stabilizes the complex and continues to cleave additional C3.  An 
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additional C3b will then bind to the C3(H2O)Bb complex creating C3(H2O)BbC3b, a C5 

convertase.  

1.1.4 The Terminal pathway:  

Once each pathway has converged upon their individual C5 convertase, the terminal 

pathway can be initiated (Tedesco et al. 2004; Sarma and Ward 2011; Merle et al. 

2015a). The presence of these convertases initiates the conversion of C5 into C5a and 

C5b. C5a is an anaphylatoxin while C5b is recruited to form the membrane attack 

complex (MAC). This complex is established with C5b, C6, C7, C8 and C9 coming 

together into a ring like structure. This structure is able to embed into the membrane of 

the targeted cell, creating a pore and enabling cell lysis. 

 

1.2 Complement components within the cascade: 

Along with their roles of being initiators and integral members of the complement 

cascade itself, recent studies have suggested complement-independent roles of 

cascade components.  These roles are considered to be ‘complement-independent’ as 

they do not follow the traditionally assumed cascades. The three main contenders in 

the complement cascade are C1, C3 and C5.  Each play an integral role within the 

various pathways, but both can be activated via alternative means.  
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Figure 1. The Three Complement Cascades The complement cascade is comprised 

of multiple factors, traditionally defined by three major pathways. The classical pathway 

is generally activated by antibodies, and cleaves C4 and C2 to make a C3 convertase.  

This convertase is able to cleave C3, releasing an anaphylatoxin (C3a) and an opsonin 

(C3b). C3b interacts with the C3 convertase to form a C5 convertase. This convertase 

is then able to cleave C5 into C5a, an anaphylatoxin, and C5b, which recruits C6-C9 to 

form the membrane attack complex (MAC). The MAC creates a lytic pore in the 

membrane of a target cell, eventually leading to cell death. The Lectin pathway follows 

the same cascade as the classical, but is activated by the binding of MBL to cell 

surface polysaccharides, found on invading pathogens.  The activation of the MBL 

causes conformational changes within MASP-1 and MASP-2, leading to the cleavage 

of C4 and C2, instigating the remainder of the pathway. The alternative pathway is 

activated by spontaneous hydrolisis of C3, which enables the binding of Factor B.  

Factor D is then able to cleave Factor B into its two fragments, Bb and Ba.  Bb remains 

bound to C3(H2O) and this is considered a C3 convertase.  This C3 convertase is then 

able to cleave C3 into C3a and C3b.  C3b is able to bind to this complex creating a C5 

convertase and continuing to the terminal pathway, forming the MAC (as previously 

described). 

Reviewed in: Gál et al. 2004; Tedesco et al. 2004; Sarma and Ward 2011; Merle et al. 

2015a 
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1.2.1 C1 

The C1 complex is the initiating factor of the classical pathway and plays a pivotal role 

in the recognition of immune complexes. It is composed of six C1q molecules, two C1r 

molecules and two C1s molecules. The C1q molecule itself is built from 18 polypeptide 

chains (6A, 6B, 6C) (Kishore and Reid 2000). The C1r and C1s molecules interact to 

form a Ca2+ dependent complex (C1r2-C1s2) that in turn binds to the collagen domains 

of C1q. Once activated, via binding of IgG or IgM, conformational changes occur within 

the collagen region of C1q, this in turn activates C1r, which then activates C1s.  This, 

now active, C1 complex is able to cleave C4 and C2, via C1s, into their fluid phase 

(C2b and C4a) and surface-bound (C2a and C4b) fragments, to form the C3 

convertase. Ultimately, the C1 inhibitor (C1INH) binds to the C1 complex and 

dissociates the C1r2-C1s2 component, leaving the C1q molecule able to interact with 

cell surface receptors while remaining bound to an immune complex.  

Although C1 is traditionally assumed to be activated by antibodies, in more recent 

years C1q has been show to also be activated through a variety of different ligands.  

These include the binding of soluble oligomers such as amyloid beta (Aβ) 

(Bergamaschini et al. 1999) and prion protein (Blanquet-Grossard et al. 2005); direct 

binding to apoptotic cells (Korb and Ahearn 1997); and cardiolipin (Rossen et al. 1994).  

Along with this, C1q has been demonstrated to activate canonical Wnt signaling (Naito 

et al. 2012) thus promoting age related phenotypes, as well as being implicated in the 

polarization of macrophages (Benoit et al. 2012). 

1.2.2 C3  

C3 is the most abundant complement protein (Rodriguez et al. 2015) and is an integral 

component of all three complement cascade pathways. Upon cascade activation, via 

C3 convertases or through spontaneous hydrolysis, C3 is cleaved into an 

anaphylatoxin (C3a) and an opsonin (C3b).  C3a is released into the fluid phase 

surrounding the cell/target and mediates a potent inflammatory response, while C3b 

binds to glycoproteins across the surface of the targeted object. C3b in a C5 

convertase will also bind C5, enabling C2a in the convertase to cleave C5.  The 

production of C3b also creates a positive feedback loop, amplifying its own production 

through auto-activation. In the presence of properdin, the C3 convertase is stabilized 

and protected from cleavage by Factor I (Fearon and Austen 1975; Medicus et al. 

1976; Kemper et al. 2010). C3b readily opsonizes target cell surfaces making them 

more attractive to phagocytes and giving additional binding site to allow for 

phagocytosis.    
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C3b and its breakdown products iC3b, C3dg, and C3d are important targets for 

complement receptors. Although C3b breakdown products can maintain a bond to a 

substrate they are unable to function within the C3 or C5 convertases (Jacobson and 

Weis 2008). While C3b plays a major role in continuing the complement cascade, C3a 

is creating a powerful inflammatory response through its anaphylactic activity. A recent 

review (Coulthard and Woodruff 2015) looked at the variety of roles C3a plays in the 

inflammatory response and found that it is a complex interaction which can be swayed 

by acute and chronic phase inflammation.  In an acute setting, C3a is seen as an anti-

inflammatory, preventing the mobilization of neutrophils that limits their accumulation 

within tissues, reducing the inflammatory response (Wu et al. 2013). Whereas in a 

chronic state of inflammation, C3a is deemed to be pro-inflammatory with signaling 

increasing cytokine release, increasing production of inflammatory mediators in 

monocytes/macrophages and modulating T-cell response (Lim et al. 2012; Strainic et 

al. 2013). The culmination of these findings is that C3a should be considered more of 

an “inflammatory modulator” rather than pro or anti-inflammatory.  While C3a is readily 

released, it is rapidly cleaved to C3ades-Arg, leaving it with less than 10% of its original 

biological activity (Sarma and Ward 2011). C3ades-Arg has not been seen to interact with 

the C3a Receptor, but studies have observed interactions with the C5a Receptor, 

C5aR2 (Kalant et al. 2003; Kalant et al. 2005; Chen et al. 2007), and this interaction is 

thought to contribute to the induction of triglyceride synthesis in adipocytes (Kalant et 

al. 2005).  

While C3 is considered a lynch pin within the cascade, it also plays a complex role in 

development and disease. C3 deficient mice show protection against hippocampal 

decline associated with aging (Shi et al. 2015), while mouse models of AD develop an 

increased burden of Aβ plaques (Maier et al. 2008b). The increasing complexity of C3’s 

influential function deems it important, and necessary, to fully understand the various 

associated regulators. 

1.2.3 C5 

C5 plays an important role for instigating the composition of the MAC.  Once cleaved 

by its respective convertase its two derivatives, C5a and C5b, are released (Shin et al. 

1968).  C5a is considered to be a potent anaphylatoxin with powerful chemotactic 

abilities, more so than C3a. It has been shown to increase vascular permeability, 

influence cytokine and chemokine release, along with phagocytosis (reviewed in Guo 

and Ward 2005) and has also been shown to influence macrophage polarization (Ruan 

et al. 2015).  C5b is the initiating factor for the construction the MAC, and is able to 

attract C6, C7, C8 and C9 molecules. These components come together to form a ring 
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like, porous structure (Podack et al. 1982; Tschopp et al. 1985).  This configuration is 

then able to infiltrate the plasma membrane of cells, forming a lytic pore, and supports 

the destruction of the target cell.  Although the majority of C5 activation occurs through 

the C5 convertases, there has been evidence to indicate an interaction, and activation, 

of this terminal component with the coagulation pathway (reviewed in Amara et al. 

2008). One component of this pathway demonstrated to be able to locally activate C5a 

is Thrombin (Huber-Lang et al. 2006). 

Along with being the final stage of all 3 complement pathways, C5 has been 

demonstrated to play a multitude of roles, including reassigning oligodendrocytes into a 

more precursor state (Rus et al. 1997), as well as being able to inhibit Caspase-3 

activity (Mukherjee and Pasinetti 2001). While being incorporated into the membrane 

attack complex, a low copy number of C9 can create a functional pore rather than a 

rigid lysing one (Bhakdi and Tranum-Jensen 1991).  

 

1.3 Regulating the complement cascade 

While complement is a necessary tool for tackling infection and local tissue damage, if 

left unchecked it can be detrimental to the host.  This requirement for regulation is 

provided by a group of regulatory proteins, which work by either competitively 

inhibiting, or degrading components of the C3 and C5 convertases (Fig 2, Table 1).   

Most of these regulators are located in a region defined as the Regulators of 

Complement Activation (RCA) locus, found on human Chromosome 1 at locus 1q32 

(Fig 3) (Weis et al. 1987; Rodriguez de Cordoba et al. 1985; Rodriguez de Cordoba 

and Rubinstein 1986; Lublin et al. 1987; Lublin et al. 1988; Hourcade et al. 1992). The 

RCA is highly conserved throughout many organisms, and contains the majority of the 

genes currently understood to regulate the complement cascade. Each gene within the 

RCA is generally made up a varying number of short consensus repeats (SCRs, also 

known as complement control protein (CCP) repeat sequence), 60 amino acids in 

length (Hourcade et al. 1992).  The presence of these SCRs is important as their main 

targets are the various convertases within the complement cascade. These regulatory 

proteins work in tandem to regulate the complement system, thus directing an immune 

response to invading pathogens, to clear potentially damaging debris, all while 

preventing aberrant damage to host tissue.  
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Table 1 – Regulators and Receptors of Complement 

Regulators/Receptors 

of Complement 

Alternative Names Genomic 

Location  

Target SCRs 

CR1 CD35, C3BR, C4BR 1q32 C3b, C4b, C1q, 

MBL 

30 (varies depending 

on allotype) 

CR2 CD21, C3DR 1q32 iC3b, C3d 15-16 

DAF CD55 1q32 C4b, C3b,  4 

MCP CD46 1q32 C3b, C4b 4 

CD59 N/A 11p13 C5b-9, C8, C9 N/A 

Factor H CFH, FH, HF 1q32 C3b 20 

Factor I CFI, FI, IF 4q25 C3b, C4b N/A 

C4BP C4BPA, C4BPB 1q32 C4b N/A 

Clu APOJ 8p21-p12 C5b-, C7, C8, 

C9 

N/A 

CR3 CD11b/CD18, 

ITGAM/ITGB2 

16p11.2/21q22.3 iC3b N/A 

CR4 CD11c/CD18, ITGAX 16p11.2 iC3b N/A 

C3aR1 C3AR 12p13.31 C3a, C4a N/A 

C5aR1 C5AR, C5R1, CD88 19q13.32 C5a N/A 

C1qR CD93,C1QR1, C1qRP 20p11.21 C1q N/A 

C1 Inhibitor SERPING1,C1IN, 

C1NH, C1INH 

11q12.1 C1r, C1s, 

MASP-1, MASP-

2 

N/A 

References: (Ripoche et al. 1988; Nicholson-Weller and Wang 1994; Andrews et al. 

1985; Wong et al. 1989; Klickstein et al. 1988; Iida et al. 1983; Weis et al. 1984; Moore 

et al. 1987; Fujisaku et al. 1989; Toothaker et al. 1989) 
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Figure 2. Interactions of Complement Regulators with the Cascades There are 

many regulators and receptors put in place to ensure that the complement cascade 

does not go awry.  A lot of these regulators/receptors are targeted towards the central 

component, C3, or the byproducts of its breakdown. CR1 (in bold) is integral to 

regulating C3, along with CR2 (in bold) being a receptor instigating immune cell 

response. 

 

 

Figure 3. Regulators of Complement Activation The regulators of complement 

activation (RCA) are an evolutionarily conserved family of genes.  They are found on 

Chromosome 1 at 1q32.  The genes that make up the RCA mostly contain short 

consensus repeats (SCR, also known as complement control protein repeats). Genes 

within this region tend to have C3 as a target. 
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1.3.1 CR1 

Complement Receptor 1 is a negative regulator of complement, and a known receptor 

for C3b, C4b, C1q and MBL proteins.  CR1 works as a cofactor enabling Factor I to 

cleave and hence inactivate C4b and C3b (Zhang et al. 2013). CR1 is a type 1 

transmembrane glycoprotein that is found on a multitude of immune cells and is 

considered an integral receptor for C3b and C4b (Iida et al. 1982). There are 4 known 

allotypes of CR1 in human populations, CR1-F (CR1-A) 220kDa in size, CR1-S (CR1-

B) 250kDa in size, CR1-F’ (CR1-C) 190kDa in size and CR1-D 280kDa in size 

(Dykman et al. 1983a; Dykman et al. 1983b; Dykman et al. 1984; Dykman et al. 1985; 

Van Dyne et al. 1987).   Allotypes A and B are the most common in the human 

population (Fig 4) with a prevalence of A=0.87 and B=0.11 in Caucasians, A=0.82 and 

B=0.11 in African Americans, A=0.89 and B=0.11 in Mexicans (Moulds et al. 1996), 

and A=0.916 and B=0.084 in Asian Indians (Katyal et al. 2003).  The differences 

between the 4 allotypes of CR1 is a result of the number of long homologous repeats 

(LHRs; each comprising a set of 7 SCRs) they consist of; this variation is thought to be 

due to insertion-deletion events that occurred via unequal crossing over (Holers et al. 

1987). The unequal crossing over events have led to a variation of 1.3-1.5kb between 

each allotype, with this difference being equivalent to one LHR (Holers et al. 1987; 

Wong et al. 1989). Environmental or genetic stressors are thought to have perpetuated 

these CR1 polymorphisms (Nath et al. 2005; Cockburn et al. 2004). These LHRs are 

comprised of 7 SCRs, which tend to be repetitive in nature. The SCRs have an 

inherent binding affinity which allow for localization and immobilization of various 

complement components (McLure et al. 2004). Each SCR domain is oriented such that 

it is able to interact with adjacent domains, enabling the capture of the complement 

component it is targeted to (Lehtinen et al. 2004).  Multiple SCR domains are required 

for interactions to occurs, as single SCR domains do not interact or immobilize 

potential targets (Adams et al. 1991; Coyne et al. 1992). The composition of the LHRs 

are repetitive and this is thought to facilitate the interaction of CR1 and its binding 

targets (Klickstein et al. 1987).    

The most common allotype of CR1 (CR1-A) consists of 30 SCRs, with the first 28 being 

organized into 4 LHRs. Each LHR is comprised of 7 SCRs which are homologous 

across the LHRs (Wong et al. 1989). The first three SCRs are conserved in these 

LHRs and are the domains that contain the binding site for C3b and C4b (Klickstein et 

al. 1988; Wong et al. 1989; Merle et al. 2015a).  Each LHR consists of sites able to 

bind a variety of molecules; LHR-A is able to interact with C4b and enables accelerated 

decay of C3 and C5 convertases (Klickstein et al. 1988; Krych-Goldberg et al. 1999), 
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while LHR-B and LHR-C are able to bind C3b along with C4b (Klickstein et al. 1988) 

and PfEMP1 (Rowe et al. 1997), and finally LHR-D is able to bind both C1q (Klickstein 

et al. 1997) and MBL (Krych-Goldberg and Atkinson 2001; Ghiran et al. 2000). LHR-B 

and C are also able to work together as a cofactor for Factor I, enabling the proteolytic 

cleavage of C3b and C4b into their inactivated forms; iC3b, C3c, C4c and C4d (Ross 

and Lambris 1982; Medof and Nussenzweig 1984; Sarma and Ward 2011; Merle, 

Church, et al. 2015; Krych et al. 1998; Klickstein et al. 1988; Smith et al. 2002). The 

inactive forms of C3b and C4b are now targets for other complement receptors such as 

CR2. LHR-D is a region generally associated with the various blood groups; Knops, 

McCoy, York and Swain-Langley/Villien (Moulds 1981; Moulds et al. 1991; Daniels et 

al. 1995). The variations within these blood groups are generated via a single 

nucleotide polymorphism (SNP) in exon 29 – within SCR 25 (of CR1-A) (Moulds et al. 

2004). 

 

  

Figure 4. Complement Receptor 1 (A) Complement Receptor 1 (CR1) has 4 

allotypes, with the two most common being CR1-B and CR1-A.  These genes contain a 

varying number of SCR (B) that influence the number of LHR (C) in the protein. CR1-B 

contains an extra LHR. CR1 is a membrane bound protein, containing extracellular 

LHR regions, a transmembrane (TM) region and an intracellular domain (CD) that is 

able to instigate intracellular signaling. The soluble form of CR1 (sCR1) is created via 

cleavage at the TM region by elastases and metalloproteinases. 
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Although the precise expression pattern is still being determined, reports suggest CR1 

is commonly, and in varying quantities, expressed on the plasma membrane of multiple 

blood derived cells (including erythrocytes, eosinophil, monocytes/macrophages, B-

lymphocytes, dendritic cells and a sub-set of CD4+ T-cells (Fig 5) (Weiss et al. 1989; 

Rodgaard et al. 1995; Rodgaard et al. 1991; Fang et al. 1998; Pascual et al. 1993; 

Pascual et al. 1994; Merle, Church, et al. 2015)). In the brain, CR1 may also be 

expressed on microglia, neurons (Hazrati et al. 2012) and astrocytes (Morgan and 

Gasque 1996; Fonseca et al. 2016). Erythrocyte CR1 plays an integral role in the 

clearance of soluble immune complexes and is a mediator for transporting them to 

macrophages in the spleen and Kupffer cells in the liver (Cosio et al. 1990; Craig et al. 

2002), allowing for these cells to engulf and phagocytose immune complexes (van Es 

and Daha 1984; Skogh et al. 1985). The levels of CR1 seen on erythrocytes is thought 

to differ due to a HindIII restriction fragment length polymorphism, which corresponds 

to a SNP in intron 27 of the CR1 gene (Wilson et al. 1987).  This variation is thought to 

affect the stability of mRNA, but the data for this is not clear and is deemed 

controversial. 

Several exonic SNPs have also been suggested to potentially influence the stability of 

CR1 on erythrocytes, and thus mediate the high and low levels of expression (Xiang et 

al. 1999). While this variation is seen on erythrocytes, leukocyte expression does not 

seem to show the same variability (Wilson et al. 1986). While CR1 has been 

demonstrated on CD4+ and CD8+ T lymphocytes (Rodgaard et al. 1991), the 

functional significance has yet to be elucidated, but an increased level of expression 

has been seen in activated T-cells (Rodgaard et al. 1995). CR1 is also able to 

participate in T-cell regulation/activation by inhibiting proliferation if crosslinked (Lipp et 

al. 2014). CR1, activated by iC3b, on T-cells reduces their rate of proliferation and 

secretion of IL-2 (Wagner et al. 2006). It has also been shown to contribute to the 

generation of regulatory T-cells, through the co-ligation of MCP (Török et al. 2015). The 

presence of CR1 on B-cells is considered to be a controller of proliferation (Fingeroth 

et al. 1989), as, when bound to one of its ligands, B-cells are unable to instigate 

proliferation (Józsi et al. 2002; Erdei et al. 2003).  This may be of importance for the 

prevention of auto-antigen mediated B-cell activation (Khera and Das 2009). While 

effects of CR1 have been observed on the fates of each of these cells, the precise 

mechanisms by which CR1 is acting is yet to be determined.  
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Figure 5. Complement Receptor Expressing Cells Present in the Blood The 

various cell types in the blood are derived from haematopoietic stem cells. Each cell 

comes from a particular lineage with CR1 and CR2 expression differing among these 

cell types. Blue boxes denote CR1 expressing cells, such as erythrocytes, eosinophil, 

monocytes/macrophages, B-lymphocytes, dendritic cells and T-cells. Red boxes 

denote CR2 expressing cells such as T-cell progenitors, B-cells and mature T-cells. 

 

CR1 has been shown to have phagocytic properties that have been observed on 

neutrophils and macrophages (Schorlemmer et al. 1984), with C3b thought to be 

important for this process. Once an immune complex, or LPS, is bound to CR1 a 

phagocytic response is instigated (Griffin and Mullinax 1990).  Although the presence 

of C3b is important for this process if C3b binds to CR1 without an immune complex 

attached, a phagocytic response is not induced (Griffin and Mullinax 1990).  CR1 has 

also been shown to work synergistically with Fc-gamma receptors to promote the 

uptake of opsonized immune complexes with these particles being destroyed within the 

lysosome (Ehlenberger and Nussenzweig 1977). Along with these phagocytic 

capabilities of CR1, it has also been shown to exert decay accelerating abilities, similar 

to that of DAF (Noris and Remuzzi 2013). 
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The non-membrane bound, soluble form of CR1 (sCR1) found in plasma is derived 

from membrane bound CR1 through proteolytic cleavage at the transmembrane region 

via elastases and metalloproteinases (Danielsson et al. 1994; Hamer et al. 1998; 

Sadallah et al. 1999). While plasma levels of sCR1 are considered to be too low for 

functional significance (Pascual et al. 1993), it is suggested to be locally active (Khera 

and Das 2009) as it is released locally from leukocytes, predominantly 

polymorphonuclear leukocytes (Danielsson et al. 1994). This sCR1 is observed most 

commonly during potent complement activation (Weisman et al. 1990; Mulligan et al. 

1992; Ramaglia et al. 2008). With the ability to be locally active, it enables a more 

immediate regulation of the complement cascade, allowing time for response cells to 

reach the site of activation and prevent untoward damage. CR1 is also commonly 

found in urine (uCR1), coating membrane vesicles released from the glomerular 

podocytes.  The presence of this uCR1 was demonstrated when differences in the 

allotypes of erythrocyte CR1 and uCR1 of patients who had undergone renal transplant 

were seen (Pascual et al. 1994). 

With CR1 playing a multifaceted and influential role on the regulation of the 

complement cascade, and being intertwined with the regulation of differing cell types, 

when studying the complement cascade in animal models, it is important to 

recapitulate the function of CR1 as closely as possible.  

 

1.3.2 CR2 

Complement Receptor 2 is a downstream receptor of the complement cascade, as well 

as being a bridge between the innate and adaptive immune systems. It is a 145kDa 

multi-functional glycoprotein receptor, primarily binding to the C3 fragments; iC3b, 

C3dg and C3d (Iida et al. 1983; Holers and Kulik 2007). Along with being the receptor 

for C3 fragments, it is also utilized as a receptor for the gp350/220 viral coat protein of 

the Epstein-Barr virus (EBV) (Fingeroth et al. 1984), CD23 (Aubry et al. 1992), 

Interferon-alpha (Asokan et al. 2006; Delcayre et al. 1991) and HIV-1 (Herrero et al. 

2015).  CR2 is commonly found on B-cells and follicular dendritic cells (FDC), and it 

plays an important role of bridging innate and adaptive immunity through engagement 

with the B-cell receptor (BCR). Once bound to an immune complex, CR2 will associate 

with CD19 and CD81, creating a B-cell specific signal transduction complex. This 

association results in enhanced calcium release, proliferation and activation of B-cells 

(Hannan et al. 2002).  CR2 expression has also been found on thymocytes and a sub-

population of T-lymphocytes (Fig. 5) (Levy et al. 1992; Watry et al. 1991; June et al. 
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1992). As well as this it has also been linked to intracellular signaling pathways such as 

the membrane phosphoprotein p53, nucleolin-mediated regulation of PI3-kinase (Barel 

et al. 2001; Barel et al. 2003) and antigen internalization and response (Barrault and 

Knight 2004). 

CR2 consists of 15-16 SCR arranged into 4 LHR (Fig 6), containing 3 or 4 SCR each 

(Weis et al. 1984; Moore et al. 1987; Fujisaku et al. 1989; Toothaker et al. 1989), with a 

28 amino acid transmembrane region and 34 amino acid cytoplasmic tail.  The gene is 

comprised of 16 exons, with the variance in the number of SCR being down to 

alternate splicing of a single exon (exon 11). CR2 is able to function as a receptor for 

the various degradation products of C3b, regardless of whether they are bound to 

immune complexes or free, with most of this functionality occurring within SCR-1 and 

SCR-2 (Kalli et al. 1991).   

 

Figure 6. Complement Receptor 2 (A) Complement Receptor 2 (CR2) has 2 common 

variants among human populations.  The variation occurs in the number of Short 

Consensus Repeats (SCR) present at a protein level.  This variation occurs at an 

alternate splicing level, with CR2 16 SCR containing an additional exon (exon 11). (B) 

The SCR form 4 long homologous repeats (LHR) within the protein, each having the 

capability to bind inactive and degraded fragments of C3b. 

Whilst the role of CR2 appears to be mostly as a receptor for C3b fragments, it was 

also discovered to be the receptor for EBV.  CR2 was shown to bind EBV using MHC-II 

as a co-receptor, and thus enabling the virus to take advantage of CR2 to infect B-

cells.  Along with EBV, HIV also utilizes CR2s role on FDC, a receptor for C3b bound 

immune complexes that is able to retain them for a prolonged period (Qin et al. 1998).  
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HIV also takes advantage of this retention on naïve T-cells (Moir et al. 2000), and 

enables transfer, and thus infection, of HIV incorporated complexes. This ability of HIV 

to bind to CR2 on T-cells has also been suggested to be reflected in B-cells and 

potentially FDCs (Moir and Fauci 2009).  The integral role CR2 has in the ability for HIV 

to infect has also been demonstrated through the blocking of this receptor, and 

therefore inhibiting HIV binding (Kacani et al. 2000).  

CR2 is also able to make a complex with CR1 on B-cells, which is not fully understood.  

One theory suggests the role is for both CRs to bind and stabilize iC3 (C3(H2O)) (Leslie 

et al. 2003; Nielsen et al. 2001). iC3 has a higher affinity for CR1, but is also able to 

bind to CR2. Once iC3 is bound to CR2, or the CR1/CR2 complex, it is stabilized and 

this enables the activation of the alternative pathway (Nielsen et al. 2001). The 

importance of this interaction, along with further potential roles this complex may play 

is yet to be fully determined. 

CR2 has also been shown to have the ability to save peripheral B-cells from sIgM-

mediated apoptosis (Kozono et al. 1998). The majority of research has focused on the 

role of membrane bound CR2, but more recent studies have suggested that soluble 

CR2 (sCR2) also plays various roles.  This sCR2 is potentially derived from one of two 

origins; proteolytic cleavage (Ling et al. 1998) or alternate splicing. Although it has not 

been fully elucidated as to where sCR2 is derived from, it has been noted that there is 

an increased level in the cerebrospinal fluid of multiple sclerosis patients (Lindblom et 

al. 2016). 

The signaling pathways CR2 has been shown to be integral in are with the activation 

and differentiation of B-cells (Roozendaal and Carroll 2007; Carroll 2008).  This role is 

through the co-receptor complex with CD19 and CD81 (Bohana-Kashtan et al. 2004), 

reducing the threshold for B-cell activation and enhancing intracellular calcium influx 

(Dempsey et al. 1996; Carter et al. 1991). This in turn leads to MAP kinase (MAP-K) 

activation (Tooze et al. 1997). Once CR2 is bound to an antigen complex with iC3b, it 

associates with CD19 and CD81.  Phosphorylation is initiated on CD19, which provides 

a docking site for Vav (O’Rourke et al. 1998) and PI3-K (Buhl and Cambier 1999).  This 

interaction leads to the enhanced calcium flux and MAP-K activation.  While CD19 

activates this signaling at a low level when not associated with CR2 or CD81, when 

CR2 is present this signal is amplified (Dempsey et al. 1996). The binding of iC3b 

usually instigates this signaling pathway; but lipid rafts are also able to bind the 

CR2/CD19/CD81 receptor complex and prolong the signaling activity (Cherukuri et al. 

2016; Pierce 2002).  When CR2 is in excess, it can down regulate the calcium influx 

response (Chakravarty et al. 2002). Along with initiating signaling pathways in the 
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CR2/CD19/CD81 complex, CR2 is also able to signal independently.  In addition, CR2 

is able to directly trigger the binding of pp60src to nucleolin, initiating nucleolin 

phosphorylation that activates PI3-K which, in turn, phosphorylates AKT leading to 

activation of glycogen-synthase kinase activity (Barel et al. 2003; Bouillie et al. 1999).  

Where there is much known about CR2, it is important to understand the full scope of 

its capabilities.  While cell culture studies and animal models have been essential to 

understanding a wide variety of its function, they have not been able to elucidate the 

finer details of the inner workings of the interactions between CR2 and CR1.   

 

1.4 Complement in disease  

Historically, research has focused on the role of complement components in immune 

responses, infections and autoimmune diseases. However, more recently, the role of 

the complement cascade has been expanded to include a variety of additional 

responses including the remodelling and plasticity of neuronal synapses (Stevens et al. 

2007; Schafer et al. 2012) and the dedifferentiation of cells to a more precursor-like 

state (Mastellos et al. 2013).  These different functions of complement work on a finely 

balanced scale, and if there is any aberrant regulation of these components, then 

detrimental effects can occur.  Most complement-associated diseases are related to 

defects within this regulation, potentially by modulating the levels and accessibility of 

different complement factors. The diseases associated with complement dysregulation 

include Age-Related Macular Degeneration, SLE, Rheumatoid Arthritis, AD, along with 

many others (Table 2).  

1.4.1 CR1 as a risk factor for Alzheimer’s disease (AD) 

In 2009, a genome-wide association (GWA) study identified CR1 as a potential risk 

factor for AD (Lambert et al. 2009).  This association was corroborated in 2010 

(Carrasquillo et al. 2010; Jun et al. 2010; Corneveaux et al. 2010), 2012 (Brouwers et 

al. 2012; Keenan et al. 2012; Hazrati et al. 2012) and 2013 (Van Cauwenberghe et al. 

2013).  The exact nature of the association of CR1 with AD is not well understood. One 

study (Hazrati et al. 2012) identified the risk of AD is most likely associated with the B 

allele of CR1, with CR1-A/B allotypes carrying a 1.8x higher risk of disease over the 

CR1-A/A allele in their cohort. This risk was associated with a faster rate of cognitive 

decline.  This study also identified differences in post-mortem neuronal morphology 

and distribution between the two carrier states, CR1-A/A and CR1-A/B.   Carriers of 
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CR1-A/A appeared to have a more filiform like structure to neuronal CR1, with 

expression that associated more readily with the endoplasmic reticulum, whereas the 

CR1-A/B carriers tended to have a more vesicular like pattern to CR1 expression, 

associating more highly with lysosomes inside the neurons. Along with this difference 

in gross distribution, a reduced expression level of CR1-B was seen in comparison to 

that of CR1-A. Another study (Keenan et al. 2012) identified specific CR1 SNPs 

(rs6656401 and rs4844609) that can influence the rate of cognitive decline in AD 

patients in combination with APOE status.  These SNPs are associated with the C1q 

binding region in CR1, with the patients carrying both APOE4 and rs4844609 seeing a 

faster decline in episodic memory. While the functional implications of these SNPs are 

yet to be determined, it is suggested that they may be integral in the clearance of Aβ 

through C1q binding (Hazrati et al. 2012). Young adults who carry rs6656401 were 

seen to have reduced grey matter volume in the entorhinal cortex (Bralten et al. 2011), 

an area associated with atrophy in AD patients (Braak and Braak 1991; Hyman et al. 

1984).  Biffi et al. (2010) also saw drastic differences in entorhinal cortex volume of AD 

and MCI patients depending on their CR1 genotype. Although the expression of CR1 

within these patients was seen in neurons, recently the Tenner group was unable to 

localize any CR1 expression to these cells, instead seeing a correlation with CR1 

expression with astrocytes (Fonseca et al. 2016). 

While variations in CR1 have been associated with AD through GWA and other genetic 

studies, the mechanisms by which they function is still elusive. With the expression 

patterns of CR1 varying between different studies, it is important to model these 

identified risk factor variants.  Accurately modelling CR1 will enable a more precise 

definition to its influence in diseased states, along with allowing for the determination of 

interactions that result in potential compounding phenotypes.  
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Table 2 – Various Diseases Associated with Complement Components 

Disease Complement Association References 

Alzheimer’s 
disease (AD) 

CR1 has been associated via GWA studies 
as a potential risk factor.  The implication 
of which is yet to be determined. Studies in 
mice have shown that a deficiency of C3 
leads to a higher deposition of plaques.  

Jun et al. 2010; Brouwers et al. 2012; 
Lambert et al. 2009; Keenan et al. 
2012; Hazrati et al. 2012; Carrasquillo 
et al. 2010; Van Cauwenberghe et al. 
2013; Corneveaux et al. 2010 

Systemic 
Lupus 
Erythematosus 
(SLE) 

Reduced levels of CR1 and CR2 are seen 
in patients with SLE.   Polymorphisms in 
C2 have been identified in patients 
suffering from SLE.  

Khera and Das 2009; Ross et al. 1985; 
Richardson et al. 1990; Wilson et al. 
1986; Miyakawa et al. 1981; Walport 
et al. 1985; Corvetta et al. 1991; 
Birmingham et al. 2006; Holme et al. 
1986; Moulds et al. 1996; Katyal et al. 
2003; Kumar et al. 1994; Wu et al. 
2007; Marquart et al. 1995 

Rheumatoid 
Arthritis 

CR1 has varying expression levels 
depending on cell type in RA patients.  
Studies have suggested an overall 
reduction in CR1 levels, additional work 
identified expression level are reduced 
among the B-cell and leukocyte 
populations, with neutrophils and 
monocytes seeing an increase in CR1. 

Jones et al. 1994; Kumar et al. 1994; 
Arora et al. 1998 

Malaria CR1 is important to the process of 
rosetting, particularly on erythrocytes.  
Erythrocytes deficient in CR1 were shown 
to not perform rosetting behavior when 
infected with P. falciparum, and may play 
an important role in malarial virulence. 

Khera and Das 2009; Birmingham et 
al. 2003; Xiang et al. 1999; Thomas et 
al. 2005 

CVID Mutations within the CR2 gene, whether 
homozygous or compound heterozygous, 
have been associated with CVID.  While 
commonly this disorder is associated with 
mutations in CD19, CD81 and CD21, Thiel 
et al identified a CR2 deficient male in 
2012 who had previously been 
undiagnosed with CVID. 

Thiel et al. 2012 

Schizophrenia A recent study identified polymorphisms 
within C4 as a risk factor for schizophrenia. 

Sekar et al. 2016 

Epstein Barr 
Virus (EBV) 

EBV utilizes CR2 via stabilization and 
internalization of immune complexes, to 
gain access to cells enabling it to carry out 
its life cycle. 

Fingeroth et al. 1984 

HIV HIV hijacks the stabilization and 
internalization mechanisms of CR2. C3 
and C2 both have increased expression 
levels in astrocytes of infected cultures. 

Speth et al. 1997; Moir and Fauci 
2009; Moir et al. 2000 

Age Related 
Macular 
Degeneration 

Variations within C2, C3, Factor I and C9 
have been associated with an increased 
risk. 

Seddon et al. 2013 

Multiple 
Sclerosis 

Increased levels of sCR2 observed in 
cerebrospinal fluid of patients 

Lindblom et al. 2016 

Bacterial 
Infections 

C2, C6, C7, C8, C9.  A deficiency or 
polymorphism in any of these complement 
components can leave a carrier at a 
profound risk to bacterial infections. With 
terminal components are most commonly 
susceptible to Neisseria meningitidis 
infections. 

Orren et al. 2012; Egan et al. 1994; 
Friduss et al. 1992; Ross and Densen 
1984; Joiner 1988; Nagata et al. 1989 
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1.4.2 Complement Roles in Systemic Lupus Erythematosus (SLE)  

SLE is a complex autoimmune disorder that is caused by the production of 

autoantibodies against a variety of molecules that are not specific to an organ type. 

Autoantibodies deposit on a wide array of tissues, which induces inflammation and 

causes injury to these areas (Oishi et al. 2008).  SLE is one of the most common 

diseases associated with complement dysregulation (Khera and Das 2009). CR1 levels 

are reduced in SLE patients, with a marked decline on erythrocytes (Ross et al. 1985; 

Richardson et al. 1990; Wilson et al. 1986; Miyakawa et al. 1981; Walport et al. 1985; 

Corvetta et al. 1991; Birmingham et al. 2006; Holme et al. 1986), along with leukocytes 

(Fyfe et al. 1987) and glomerular podocytes (Arora et al. 2004; Raju et al. 2001). 

Various influencing associations have been observed in CR1 and its role in SLE, which 

include; the HindIII polymorphism effecting CR1 levels on erythrocytes (Wilson et al. 

1987), proteolytic cleavage of CR1 to create a stumped peptide, along with 

transcriptional and post-translational modifications.  While the majority of these factors 

have withstood interrogation, the HindIII polymorphism has seen higher levels of 

variation in disease effects (Walport et al. 1985; Moulds et al. 1996; Katyal et al. 2003; 

Kumar et al. 1994).  Often patients with SLE are seen to have increased deposition of 

complement C3 along with its degradation products, and this is frequently described as 

an inverse correlation with the levels of CR1. 

Variations in CR2 have also been identified as a risk factor for SLE. Wu et al. (2007) 

identified a SNP within the untranslated region of CR2 that influenced the levels of 

transcriptional activity.  Additional SNPs have been found within introns and exons 

between the studied populations, which also influence the inherent level of 

susceptibility (Douglas et al. 2009). The most strongly associated SNP increased CR2 

expression, potentially promoting the development of autoimmunity and altering B-cell 

responses.  Though Wu et al identifies this SNP as influencing an upregulation of CR2 

expression, generally the levels of CR2 seen in SLE are decreased on the surface of 

B-cells (Marquart et al. 1995; Wilson et al. 1986).  

While Complement Receptors 1 and 2 are regularly identified as influential factors in 

SLE studies, it still remains unclear how they are influencing disease state. 

1.4.3 Malaria   

Malaria is caused by infection with the Plasmodium falciparum parasite, transmitted by 

the Anopheles mosquito. Merozoites invade the erythrocytes of patients and multiply 

asexually, infecting the host further and enabling the uptake of the P. falciparum by 
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mosquitos to further their life cycle as well as continuing to infect a wider population. 

The role CR1 plays in malarial infection is not clear, but it is thought that plasmodium 

PfEMP1 is able to interact with CR1 specific sites on erythrocytes, leading to rosetting. 

This rosetting occurs when PfEMP1 binds to uninfected erythrocytes and enables the 

coupling of an infected erythrocyte.  When this bond occurs, multiple erythrocyte 

rosettes are formed, which have the potential to block small capillaries.  Many CR1 

polymorphisms have been associated with malaria, with most having a connotation 

with the level of infection severity in P. falciparum malaria, such as the Q981H 

polymorphism (Birmingham et al. 2003; Xiang et al. 1999; Thomas et al. 2005).  

1.4.4 Immunodeficiency, Common Variable 7 (CVID7)   

CVID7 is an immunodeficiency disorder associated with mutations in the CR2 gene.  

Mutations that occur, whether they are compound heterozygous or homozygous, result 

in a severe reduction of CR2 expression.  Patients who present with CVID tend to have 

recurrent bacterial infections, starting from childhood, with diagnosis usually occurring 

in early adulthood. While uncommon, some patients with CVID will also present with an 

autoimmune disorder such as rheumatoid arthritis, immune thrombocytopenic purpura 

or autoimmune haemolytic anemia. One case was presented in 2012 (Thiel et al. 2012) 

of a 28-year-old male with CVID7, previously undiagnosed. Thiel et al describe the 

patient as having hypogammaglobulinemia and a severe reduction in IgD-CD27+ 

memory B-cells. Upon closer analysis, cells were devoid of CR2, internally and on the 

cell membrane, along with a lack of any sCR2 in the serum. While most other cases of 

CVID present due to mutations in CD19, CD81 or CD20, this is the first presentation of 

this disorder with a CR2 deficiency.  

 

1.5 Modelling complement in disease 

To be able to gain a more comprehensive view of the complement system mouse 

models are readily used (Howell et al. 2011; Zhou et al. 2008; Williams et al. 2013; 

Schafer and Stevens 2010; Chu et al. 2010; Stevens et al. 2007; Killick, T. R. Hughes, 

et al. 2013; Maier et al. 2008b; Stephan et al. 2013).  The ability to use an organism 

with a comparable innate immune system enables a greater insight into the emerging 

complement-independent pathways, with complement components not following the 

traditional cascade route.  Modelling this will allow for targeted therapies to be honed, 

causing minimal damage to unaffected areas. Mouse models have been an excellent 

tool for unraveling a variety of nuances surrounding complement, such as its role in 
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synaptic pruning in development (Schafer and Stevens 2010; Stevens et al. 2007), the 

importance of C3 regulators in development (Xu et al. 2000; Mao et al. 2003) and how 

a lack of certain complement factors can influence recovery from traumatic brain injury 

(Neher et al. 2014). These discoveries in mouse models have led to a much greater 

understanding of the inner workings of complement in a variety of scenarios, and have 

identified potential areas for therapeutics. 

1.5.1 Evolutionary Divergence of Human and Mouse Complement Receptors  

Elucidating the roles complement play in disease is key to designing therapeutics that 

target the cascade. Whilst our knowledge of complement is being vastly broadened 

through the use of mouse models, these models do not adequately recapitulate the 

scope of human complement receptors.  Although the three central pathways of the 

complement cascade are highly conserved between mammals, the regulators differ 

(Farries and Atkinson 1988; Nonaka 2001; Jacobson and Weis 2008). It is thought that 

during evolution, branching occurred between primates and sub-primates leading to a 

duplication/deletion event (Jacobson and Weis 2008; Holers et al. 1992).  While there 

are some similarities between the RCA of humans and mouse, a striking difference is 

that sub-primates carry no true orthologue of CR1 (Fig 7A).  The closest mouse 

equivalent of the human CR1 gene is created through alternative splicing of the mouse 

Cr2 (mCr2) gene, or Crry (Paul et al. 1989; Kurtz et al. 1990).  Given that CR2 and 

CR1 show differing expression patterns, these variations lead to differences in the 

expression pattern between human CR1 and the CR1-like mouse proteins.  These 

differences greatly limit research into understanding the mechanisms by which CR1 

and CR2 impact health and disease. 

1.5.1.1 Mouse Cr2 Produces the Closest Orthologue of Human CR1 

Mouse Cr2 (mCr2) is considered a homolog to human CR2, but unlike human CR2 

which produces one protein containing either 15 or 16 SCR, mCr2 is alternatively 

spliced to create two mouse proteins CR2 (CD21, 145KDa) and CR1 (CD35, 190kDa) 

(Fig 7). This splice site lies directly after the signal sequence in the mCr2 gene, with 

the Cd35/Cr1 (mCr1) splice variant including all 19 exons, whereas Cd21/Cr2 utilizes 

only 14. The supplementary exons in mCr1 encode for 6 additional SCRs, with binding 

domains available for C3b. Mouse Cr1 has also been demonstrated to be able to bind 

both C3b and C4b complexes while mCR2 is only able to bind the C3 fragment C3dg 

(Jacobson and Weis 2008). Both CR1 and CR2 have restricted expression patterns, 

only found in FDC and B-cells (Kaya et al. 2001; Kurtz et al. 1989; Qin et al. 1998), 

although recent reports have described expression of only the CR1 spliceform is 
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present in FDC (Donius et al. 2013). This FDC mCr2/Cr1 in mouse is not considered 

phagocytic but is an anchor for immune complexes enabling the generation of a strong 

antibody response, and aiding in the maturation of B-cells (Wu et al. 2000; Prodeus et 

al. 1998; Fang et al. 1998).   

Mouse models completely deficient in mCr2/Cr1 have shown that mCr2/Cr1 is 

implicated in the prevention of the production of auto-reactive antibodies (Prodeus et 

al. 1998; Chen et al. 2000; Wu et al. 2002). Mice with restricted deficiencies in FDC 

and B-cells show depressed T-cell antibody response to low dose immunization, along 

with a heightened sensitivity to S. pneumonia infection (Molina et al. 1996; Ahearn et 

al. 1996; Haas et al. 2002). These deficient mice also display a heightened 

inflammatory response state in their spleens, compared to their WT counterparts 

(Jacobson and Weis 2008).  Along with this, mCR2 deficient mice have been used 

extensively to study the role mCR2/CR2 plays in immune function and modulation, and 

are regularly used in research concerning autoimmune disease. 

While researchers readily use mouse CR2 as a model for human CR2, they also use 

the alternate splicing of mCR2 to model human CR1. Restriction within the expression 

of mCR2 poses difficulties in modelling CR1 due to the wider array of expression seen 

in humans. Along with this restriction in expression, mouse CR1 and CR2 both 

possess the same C-terminal, giving each the same ability to interact with CD19 and 

CD81 (Barrington et al. 2009; Kalli and Fearon 1994) (along with fragilis/Ifitm proteins 

(Smith et al. 2006)), enabling co-accessory activation of B-cell response (Matsumoto et 

al. 1991; Bradbury et al. 1992; Matsumoto et al. 1993), an activity lost in human CR1 

(Matsumoto et al. 1993). 
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Figure 7. Murine Complement Regulation (A) The Regulators of Complement 

Activation (RCA) are located in a similar region of the murine genome (Chromosome 

1).  The evolutionary divergence seen between human and mouse is with the 

presence/absence of CR1.  (B) The Cr1 isoform seen in mice is derived from alternate 

splicing from the endogenous Cr2 gene.  (C) The protein products from this alternate 

splicing have differing numbers of LHR, with an additional LHR in the Cr1 variant.  This 

additional region is able to bind C3b, whereas the Cr2 protein is only able to bind iC3b 

and C3dg.  While the binding of C3b and C4b is mostly carried out by Crry. 
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1.5.1.2 Crry is Used as an Alternative Orthologue to CR1 

Complement receptor 1-related gene/protein-y (Crry, Cr1l) is a rodent specific, 70 kDa, 

membrane bound regulator of the complement cascade.  It is considered to be a CR1 

like gene, and is able to inhibit C3b activity, while also mimicking the abilities of both 

human DAF and MCP (Li et al. 1993; Kim et al. 1995). CRRY is expressed ubiquitously 

and is highly important in the regulation of the alternative pathway (Paul et al. 1989).  

This is readily demonstrated by the perinatal lethality of Crry KO mice, with maternal 

C3 deposits seen on the placenta of Crry KO embryos giving rise to placental 

destruction by E10.5 (Xu et al. 2000; Mao et al. 2003).  This lethal phenotype is 

rescued by the complete C3 or Factor B deficiency in the mothers (Xu et al. 2000; Mao 

et al. 2003).  

CRRY has been essential in helping model human diseases, with the use of transgenic 

mouse models aiding in furthering our understanding. The role of CRRY has been 

studied in mouse models for a variety of diseases including MS (Ramaglia et al. 2012a; 

Davoust et al. 1999), AD (Killick, T. R. Hughes, et al. 2013; Maier et al. 2008a) and 

uveitis (Manickam et al. 2010). While CRRY has been a useful tool for studying gross 

complement regulation, it does not fully recapitulate CR1 in expression patterns or 

functionality, and so does not aid in the elucidation of CR1’s function. 

1.5.2 Current mouse models  

The lack of ability to truly understand the nature of murine CR1 leaves a gap in 

knowledge and hampers the elucidation of its part in disease. While CRRY has been 

an important stepping stone in our understanding of the role complement modulators 

contribute to disease (Molina et al. 2002; Davoust et al. 1999; Ramaglia et al. 2012a; 

Killick, T. R. Hughes, et al. 2013; Manickam et al. 2010; Maier et al. 2008a), its 

multifunctional role, along with differential expression patterns, muddies the waters, 

leaving us unable to tease out the finer details of how human complement receptors 

are facilitating diseased states. It is also important to be able to differentiate the 

influence CR2 and CR1 (especially the various alleles) have in disease, along with 

understanding the impact various SNPs have in disease progression or protection. As 

much as human tissues and cell lines can help us gain a crude understanding, it does 

not allow for the finer details to be determined in a complete system. 

While previous attempts have been made to further understand the roles of CR2 and 

CR1 in model systems they have not been wholly successful. Cr2 KO mice have 

helped to elucidate the importance of CR2 in humoral immune response, along with B-
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cell maturation and prevention of auto-antibody production (Molina et al. 1996; Ahearn 

et al. 1996; Prodeus et al. 1998; Chen et al. 2000; Haas et al. 2002; Wu et al. 2002; 

Donius et al. 2014), but with the production of two proteins they do not reflect human 

complement regulators. 

In 2000 Marchbank et al. developed a mouse model expressing hCR2 utilizing the P1 

phage clone, containing all of the known transcriptional regulatory regions. When 

combined with a mCr2 KO background, the humoral immune function was restored and 

associations with CD19 were seen. While this is a useful model to understand the role 

of hCR2 in the B-cell and humoral immune function, especially when used in 

conjunction with a mCr2 knockout mouse, it has a reduced level of hCR2 expression. 

In 2002, Marchbank et al. developed a second mouse model carrying hCR2.  This 

model utilizes the lambda promoter, giving B-cell specific expression. These mice 

showed premature expression in B-cell development, indicating that CR2 plays an 

integral function in the development and maturation of B-cells.  Although these mice 

have been useful in identifying a potential role for CR2 in development, they showed a 

greatly diminished B-cell population, along with a reduced level of CR2 expression 

(~25% of the levels seen in humans).  While these mice have opened up avenues for 

understanding the relationship between CR2 and B-cell development and immune 

function. However, they lack sufficient expression levels making it challenging to 

understand the roles of human CR2 in health and disease. 

Along with mouse models for CR2, researchers have also worked to develop models 

for CR1. One group (Repik et al. 2005) has previously engineered a mouse model to 

carry the CR1 gene, expressed under the GATA promoter, but the expression pattern 

was restricted solely to erythrocytes.  Although this was a first step to understanding a 

more comprehensive role of immune complex transportation to the spleen and liver, it 

has not allowed for the systemic importance of this regulator to be elucidated. Along 

with this, another group created a mouse model using the F-allele of CR1, under the 

lambda promoter (Pappworth et al. 2012).  This mouse showed hCR1 expression 

restricted to B-cells, with diminished levels of expression.  While the levels of CR1 

expression were similar to those of the hCR2-int (previously reported in Marchbank et 

al. 2002s) it still does not reflect the levels seen in human populations. These mice 

were also bred to a mCR2 KO background and hCR1 was shown to not replace the 

role of CR2 in mice. When combined with hCR2 mice (under the lambda 

promoter,Marchbank et al. 2002), the presence of hCR1 was not able to rescue the 

effects of premature hCR2 expression. To date, no ‘humanized’ mouse models have 
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included the entire intergenic region between CR1 and CR2 and this may be a 

potential reason for the low expression level observed. 

Despite, their limitations, humanised CR1 and CR2 models have provided some utility. 

For instance, CR2 mouse models have played an important role in understanding the 

importance of expression timing and humoral immune response activity, but they have 

not been able to replicate expression levels seen throughout the human population.  

The ability to model this is extremely important with regards to diseases such as SLE, 

which sees a decline in CR2. The same theme resonates with the models for CR1. 

CR1 is a widely expressed protein that has not been replicated in mouse models, with 

their expression patterns being restricted to Erythrocytes or B-cells. While these mice 

have been important to the understanding of immune complex transportation, they do 

not reflect what is seen in the general populous.  Expression levels in these models are 

lower than those of a human system, so modelling diseases such as Rheumatoid 

Arthritis and SLE which see a general decline in CR1 levels.  

With this in mind, more comprehensive research models need to be made readily 

available to the research community.  This will allow the role of these complement 

regulators to be fully understood and potentially allow for more educated, targetable 

assets for human health and disease.  

 

1.6 Aim of This Study 

The aim of this thesis is to characterise a new mouse model for human CR2 and CR1 

generated by JAX Genetic Engineering Technologies. This model was created by 

targeted insertion of a construct contain both hCR2, hCR1 along with their intergenic 

region.  The construct was targeted at the endogenous mCr2, aiming to replace this 

genomic region in its entirety. With correct genomic placement within the RCA, this 

potentially enables tighter and more efficient regulation of both genes, and hopefully a 

more reflective expression pattern of hCR1 utilizing the intergenic region. 

Characterisation of this mouse model will include developing genotyping, creating an 

allelic series to mimic the more common alleles of CR1 in the population, determining 

whether the various protein products are produced and examining various cell types in 

whole blood for hCR2 and hCR1 expression.  The development and characterisation of 

this mouse will aim to further the understanding of the regulation of the complement 

cascade, and its importance in development and disease.  
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2. Materials and methods  

2.1 Mouse husbandry 

All mice were maintained on a 12/12 hour light/dark cycle.  Mice were housed in 6 inch 

duplex wean cages with pine shavings and group-housed dependent on sex at wean. 

All mice were maintained on LabDiet ® 5K67. The Institutional Animal Care and Use 

Committee (IACUC) at The Jackson Laboratory approved all mice used in this study. 

Daily monitoring of mice via routine health care checks was carried out to determine 

the general wellbeing, with any mice considered to be unhealthy being euthanized with 

IACUC approved CO2 euthanasia methods. 

2.2 Humanising Complement Receptors CR1 and CR2  

For the effective study of the role CR1 plays in health and disease JAX Genetic 

Engineering Technologies set developed a mouse model via vector targeted embryonic 

stem (ES) cells (Fig 8).  A multi-staged approach was planned to create a construct of 

such a large caliber. In silico regions were designed to encompass the human mRNA 

transcripts of Cr2 and Cr1 along with their corresponding human intergenic region 

(HIR). In parallel to this design a retrieval vector for mCr2 was utilized, targeted with a 

Spectinomycin cassette, producing a vector with the 5’ and 3’ flanking regions of mCr2. 

To ensure the integrity of the human genes, they were assembled in a linear manner.  

The human Cr2 mini gene was excised from its vector and incorporated with the HIR 

gap repair vector.  This was then targeted to the mCr2/Spectinomycin vector, with 

successful integration being determined by selection with ampicillin and kanamycin.  

The Cr1 mini gene containing vector was then targeted using Apa1 and AvrII restriction 

enzymes, excising the fragment for integration into the multigene vector. Finally, this 

multigene vector was targeted with a neomycin cassette at synthetic intron 19 in the 

human CR2 mini gene. This neomycin cassette aids in the initial identification of 

successful integration of the construct into an ES cell line.  Once the vector was 

confirmed, C57BL/6J (B6, Jax #664) ES cells were targeted with the multigene vector, 

with incorporation occurring at the genomic locus for Cr2.  ES cells were then 

transferred to a blastocyst from a B6(Cg)-Tyrc-2J/J (B6Tyr, Jax #58) and implanted into 

pseudo-pregnant females.  Litters contained a variety of chimeric pups of differing 

degrees of penetrance.  

For this model to become an asset to research communities an initial level of 

characterization must be achieved.  To ensure that this is achieved and that the model 

will be fruitful for complement research, the various alleles of CR1 will need to be 



 33 

recreated, along with assessing if expression is present and where the expression 

might be seen within this mouse model. 

 

 

 

Figure 8. Design and Development of Humanising Complement Receptors 1 and 

2 (A) The development of the insertion vector used a multistage approach.  First the 

Cr2 region was prepared with a spectinomycin cassette, and the CR2 and HIR vector 

is prepared in parallel.  These vectors were integrated together, with the CR1 

sequence being integrated into the vector after.  Finally, a Neomycin cassette was 

insert into the synthetic intron 19 of CR2.  Once the vector was confirmed to contain 

the whole sequence in the appropriate orientation, it was incorporated into embryonic 

stem cells from C57BL/6J mice.  These were implanted into B6(Cg)-Tyrc-2J/J 

blastocysts and introduced into pseudo-pregnant females. Chimeric mice were 

produced and utilized to create an allelic series. (B) A linear depiction of the final 

construct containing the Neomycin cassette in CR2 intron 19, LoxP sites in introns 3 

and 20 of CR1, and FRT sites in introns 12 and 20 of CR1.  The LoxP and FRT sites 

enable the development of an allelic series. 
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2.3 Developing the allelic series 

Chimeric mice were received from JAX Genetic Engineering Technologies and were 

used to create the subsequent mice throughout this study. The initial stage of 

developing the allelic series was to remove the neomycin cassette embedded within 

intron 19 of CR2. This was carried out using a breeding scheme involving B6.129S4-

Gt(ROSA)26Sortm3(phiC31*)Sor/J (B6.ROSA-Phi, Jax #7743) mice. This particular strain of 

mouse targets the attB-attP region surrounding the Neomycin cassette.  Removal was 

confirmed via genotyping targeting Neomycin. Once removal was confirmed a subset 

of mice were intercrossed to establish the CR2CR1L/L allele.  Homozygous mice were 

intercrossed for a further generation to produce an experimental cohort and colony. 

The genotype for this colony represents the second most common allele in human 

populations the CR1-B.   

Heterozygous CR2CR1L/WT mice were used to create the CR2CR1S/WT and 

CR2CR1KO/WT mice.  To establish the CR2CR1Short/WT allele, CR2CR1L/WT mice were 

crossed to B6.129S4-Gt(ROSA)26Sortm1(FLP1)Dym/RainJ (B6.ROSA-Flp, Jax #9086) 

mice.  The Flp recombinase is ubiquitously expressed and targets the removal of 

exons 13-20 via the flanking FRT sites in introns 12 and 20.  The removal of these 

exons produces the shorter, more common, form of CR1 in the population – CR1-A. 

Mice that were successfully targeted, were used to establish a homozygous colony. 

These produced CR2CR1S/S mice which were then intercrossed for a further generation 

to produce a colony and cohort of mice for further characterization. 

Finally, the CR2CR1KO/WT mice were created utilizing B6.Cg-Tg(Sox2-cre)1Amc/J 

(Sox2-cre Jax #8454).  In this strain, Cre recombinase is ubiquitously expressed and 

excises the targeted region using the LoxP sites, located within introns 3 and 20, to 

create a null allele (knockout, KO).  Female B6.Sox2-cre mice were bred to male 

CR2CR1L/WT mice, as the cre is active without necessarily needing to be inherited. 

Weanlings were genotyped to ensure the removal of the targeted sequence and were 

intercrossed to establish a homozygous colony.  

2.4 Breeding schemes  

Chimeric mice from the two targeted B6 ES cell lines, 5H4 and 5E2, were bred to B6Tyr 

mice  (Fig 9).  From these, black pups were pursued for further breeding as they would 

have the construct integrated due to B6 ES cells being targeted initially.  Mice 

determined positive through genotyping for the construct were then bred to B6 mice to 

confirm germline transmission by genotyping. After germline transmission was 

confirmed, male mice from each line were sent for sperm cryopreservation, with the 
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Neomycin cassette intact. Transgenic mice from the 5H4 line were also bred to 

B6.ROSA-Phi mice to remove the neomycin cassette.  Once the cassette was removed 

mice were bred to establish the allelic series – [1] mice were intercrossed to establish 

the long allele (CR2CR1Long.B6, CR2CR1L), [2] CR2CR1L were crossed to B6.ROSA-

Flp mice to create the short allele (CR2CR1Short.B6, CR2CR1S), and [3] CR2CR1L were 

crossed to Sox2-cre mice to create the knockout allele (CR2CR1KO.B6, CR2CR1KO).  

CR2CR1S mice were then intercrossed to establish the homozygous allele for each 

strain. CR2CR1KO mice were also intercrossed to produce a homozygote colony. 

Homozygotes from the original intercrosses were then bred for a further generation to 

establish cohorts for testing. 
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Figure 9. Breeding Schemes for the Developing the Allelic Series (A) The flow 

diagram represents the generation of the allelic series through the breeding with a 

variety of site-specific recombination strains.  Each allele was eventually bred to be 

homozygous for the particular CR1 variants. Of the two-targeted ES cell lines; 5H4 was 

used to continue the development of the allelic series, whereas the 5E2 line was 

cryopreserved. (B) Mice containing the genomic construct were bred to a variety of 

strains to induce the allelic series for CR1.  The breeding of the original construct to 

B6.ROSA-Phi mice enabled the removal of the Neo cassette, leaving a “Clean” CR2 

and the CR1L allele. These mice were bred to either ROSA-FLP mice to yield the CR1S 

allele or the Sox2-cre mice to yield the CR1KO allele. 
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2.5 Genotyping 

Tail tip samples were incubated in lysis buffer (25mM NaOH, 200µM EDTA, pH12) at 

95oC for 1 hour (hr) and then neutralized (40mM Tris HCl, pH5). Primers were 

designed to identify the presence of the specific parts of the CR1/CR2 construct, along 

with primers for the endogenous Cr2 and Crry genes. These primers were designed 

using the Primer3 tool within MacVector using the genetic construct and through 

Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/).  Once primers were 

identified they were checked against species (Homo Sapiens and Mus Musculus) with 

Primer-BLAST to ensure that the identified primer pairs were unique between species 

and within the genes of interest. All primers were diluted to 20µM. All genotyping 

assays were established using a temperature gradient to determine effective annealing 

temperatures. 

The primer pairs were as follows: 

For Cr1: Forward 5’ – GTACTACGGGAGGCCATTCT – 3’ and Reverse 5’ – 

TGGCTTGGGGTACGCTC – 3’ with a product size of 708bp at an annealing 

temperature of 58.1°C.  

For the HIR Forward 5’ – TCACTCACCTCGAGCCATCT - 3’ and Reverse 5’ – 

TCAGCAGGTCTTGGCTTCAG – 3’ with a product size of 291bp at an annealing 

temperature of 59.3°C. 

For the mCr2/Cr2 insertion site: Common primer forward primer: 5’ - 

TCTTCCTCTCCTTGCTACAGG - 3’ C Cr2 Reverse: 5’ - 

AGAAGAGGTGGGGACGTTCT - 3’ and CR2 Reverse: 5’ - 

TACCAACAGCAATGGGGGTA - 3’ with the mCr2 product size at 300bp and the Cr2 

product size at 198bp with an annealing temperature of 60°C. 

For Cr1 knockout (KO): Forward 5’- TCTTGTACTACAGGGCACCG – 3’ and Reverse 

5’ – ACCTCTAGGATTAAACGGTGGGG – 3’ with a product size of 150bp if cre 

recombination has not occurred, with an annealing temp 57.5°C.  The absence of a 

band, with a CR1 positive genotype, indicated the removal of exons 4-20 and the 

knockout allele is present.  

To identify the Short (S) allele, the protocol utilized the Forward primer from the KO 

allele with the following Reverse primer 5’ – CGATCATGGCTCACTGCGAA-3’.   A 

product size of 251bp was to be expected if Flp recombination had not occurred. The 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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absence of a band, with a CR1 positive genotype, indicated Flp recombination. The 

annealing temperature for this reaction was 57.8°C.  

For Crry: Forward 5’- TTGCTAATTGGTAGTGAGGAAAGG -3’ and Reverse 5’- 

TAAGTTGTTGTGAGGCTTGGGT -3’ with a product size of 190bp and an annealing 

temperature of 55.4°C.  

All samples and primer pairs were run on the following protocol: 

1. 94°C 3minutes (min) 

2. 94°C 30seconds (sec) 

3. Annealing temp for 30sec 

4. 72°C 1min 

5. Repeat steps 2-4 39 times 

6. 72°C for 5min 

7. 10°C forever 

2.6 Establishing Cohorts 

Once homozygous mice of the various alleles were identified from the first stages of 

the intercross (CR2CR1L/L at generation N3F1, CR2CR1S/S at generation N4F1, 

CR2CR1KO/KO at generation N4F1), they were intercrossed for further generations and 

genotyped to confirm a homozygous population.  Mice were genotyped and cohorts of 

3 males and 3 females from each genotype in the allelic series were identified. A wild 

type cohort was established from a separate B6 colony, and aged alongside their 

transgenic counterparts.  At 3 months old, all mice were bled via submandibular bleed 

and tissue harvested. The exception to these cohorts was with the CR2CR1KO/KO 

colony due to reduced numbers of homozygotes being produced at N4F1.  

2.7 Timed matings and embryonic development of CR2CR1KO/KO mice 

To study the possible partial lethality in CR2CR1KO/KO mice, timed matings were 

established and embryos collected at embryonic day 7.5 (E7.5) and 12.5 (E12.5). A 

total of 5 pregnant females were harvested with a total of 23 E7.5 pups and 14 E12.5 

pups. Gross morphology was observed and posterior node and tail samples were 

taken for genotyping, respectively. 
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2.8 Isolation of specific blood-derived cells by Fluorescence Activated Cell 

Sorting (FACS) 

For all mice in all cohorts (22 mice in total), 100μl of blood was collected via 

submandibular bleeding into tubes containing 0.5M EDTA to prevent coagulation (Fig 

10).  Each sample was diluted 1:1 with 1xPhosphate Buffered Solution (1xPBS) and 

the phases separated using Ficoll via centrifugation at 400g for 30min. The serum and 

leukocyte layer were collected into fresh tubes, while 10μl of the erythrocyte and 

granulocyte fraction were collected into an additional tube.  The cells were washed with 

3x volume of 1xPBS and centrifuged at 400g for 10min and this wash was repeated 

once.  Cells were re-suspended in 3ml of FACS buffer (1% BSA in 1xPBS) and 

centrifuged at 400g for a further 6min. Cells were resuspended in 300μl of FACS buffer 

and incubated with the following antibodies for 30min on ice in the dark; leukocytes and 

serum samples - CD3e-APC (eBioscience clone: 17A2 #17-0032-82, 1:100), CD45.2-

BV421 (BioLegend clone: 104 #109832, 1:100), B220-PECy7 (BioLegend clone: RA3-

6B2 #103222, 1:100), CD41-FITC (eBioscience clone: eBioMWReg30 #11-0411-82, 

1:240), CD11b-BV605 (BioLegend clone:M1/70 #101237, 1:200); Erythrocytes and 

granulocytes – CD45.2-BV421 (1:100).   After incubation, 2ml of FACS buffer was 

added and samples were centrifuged for 6min at 400g.  The supernatant was removed 

and cells were re-suspended in 250µl of FACS buffer. Samples were filtered before 

addition of propidium iodide.  Cell sorting was carried out on the FACSAria II Sorter in 

collaboration with JAX Flow Cytometry Service.  The erythrocyte and granulocyte 

fraction was sorted into CD45.2 negative and CD45.2 positive cells respectively.  While 

the leukocyte fraction was sorted into CD3 positive (T-cells), B220 positive (B-cells), 

CD11b positive (Macrophages/Monocytes) and CD41 positive (Platelets) cells. Cells 

were sorted into RNA Later (RLT) buffer with 1% β -mercaptoethanol (β-ME) and 

stored at -80°C until RNA was extracted. Beads were used as single channel controls 

and to ensure cell viability, along with background intensities, a subsection of cells 

were used as unstained controls. For cell counts please see Appendix I. 
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Figure 10. Experimental design for Blood-Derived Cell Sorting To determine cell 

specific expression of each of the humanized genes FACS was utilized to crudely 

separate out a variety of cell types in peripheral blood.  The white blood cell and 

platelet fraction was separated using Ficoll and cells sorted into T-cells, B-cells, 

Macrophages/Monocytes and Platelets.  The red blood cell fraction was separated into 

Erythrocytes and Granulocytes. cDNA was synthesized from each division. WBC – 

White blood cell and platelet fraction, RBC - Red blood cell and Granulocyte fraction. 

 

 

 

 

 

 



 42 

2.9 Tissue harvesting and preparation  

Mice were terminally anaesthetized using a Ketamine/Xylazine (99mg/kg Ketamine, 

9mg/kg Xylazine) mix. They were transcardially perfused with 1XPBS. Spleen was 

harvested and half was cryopreserved in the following manner: submerged in 4%PFA 

overnight, rinsed in 1xPBS, submerged in a 10% sucrose solution overnight followed 

by submerging in a 30% sucrose solution overnight. Tissue was blocked in OCT and 

stored at -80°C until sectioning. Spleen samples were sectioned at 8µm and stored at  

-80°C for further testing. The other half was snap frozen and stored at -80°C for further 

use. 

2.10 RNA and Protein preparation  

RNA and protein were extracted from the snap frozen tissue using Trizol (Thermo 

Scientific #15596026) according to manufacturer’s instructions. Briefly, samples were 

weighed and submerged into 1ml of Trizol per 0.1mg of tissue.  Each sample was 

homogenized using the OmniTipTM Homogenizer and dissociated for 5min at room 

temperature (RT).  200μl of chloroform was added per 1ml of Trizol, mixed for 15sec, 

incubated for 3min at RT and centrifuged for 15min at 12,000g.  The aqueous phase 

was removed and RNA was precipitated out of solution with isopropanol for 10min at 

RT. Samples were centrifuged at 12,000g for 15min, after which the supernatant was 

removed and pellets were washed with 75% ethanol. Samples were centrifuged for a 

final time at 7,500g for 5min. The ethanol wash was removed and the pellets were air 

dried, and re-suspended in dH2O (Sigma Aldrich #W3500).  

From the remaining non-aqueous phase, DNA was precipitated out using 100% 

ethanol and centrifuged for 12min at 12,000g.  The remaining supernatant was 

transferred into a clean tube, and protein was precipitated out of solution using 

isopropanol for 10min at RT.  Samples were centrifuged at 12,000g for 15min, and the 

remaining supernatant removed.  0.3M Guanidine HCl in 95% ethanol was used to 

wash the protein pellets, incubated for 20min with a 5min centrifugation at 7,500g.  

This was repeated a further two times.  Pellets were given a final wash in 100% 

ethanol and centrifuged at 7,500g for 5min.  A 1:1 solution containing 8M urea and 1% 

SDS was used as a resuspension buffer for the protein.  Samples were left overnight at 

+4°C before breaking down the pellet via sonication. Each sample was sonicated at 

least three times at 30sec intervals. Samples were centrifuged for 10min at 10,000g, 

the final supernatant was transferred to a new tube with protease inhibitor (Thermo 

Scientific #78440). 
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All RNA and protein samples were stored at -80°C before use. RNA Concentrations 

were determined via Nanodrop and protein concentrations via detergent compatible 

(DC) Protein Assay (Bio-Rad #5000112) respectively. 

2.11 RNA extraction for sorted cells and cDNA synthesis 

cDNA was synthesized using JAX Genome Technologies. Briefly, buffer RLT (Qiagen) 

containing 10 μl β-ME per 1 ml buffer was added to the cells. Cells were homogenized 

by vortexing. Total RNA was isolated using the RNeasy Mini kit (Qiagen) for samples 

containing >500,000 cells and the RNeasy Micro kit (Qiagen) for samples containing 

<500,000 cells, according to manufacturer’s protocols, including the optional DNase 

digest step. RNA quality was assessed using the Agilent 2100 Bioanalyzer instrument 

and RNA Pico LabChip assay (Agilent Technologies).  RNA was reverse transcribed 

with Random Decamers and M-MLV RT using the Message Sensor RT Kit (Invitrogen). 

2.12 cDNA synthesis and RT-PCR from RNA extracted from spleen 

RNA extracted via Trizol was treated with DNase at 37°C for 30min, the reaction was 

stopped on ice and 0.5M EDTA was used to deactivate the DNase. Samples were 

centrifuged and the supernatant was transferred to a new tube. A lithium 

chloride:Ethanol solution was used to precipitate the RNA overnight at -20°C. Samples 

were centrifuged at maximum speed for 20min at +4°C, the supernatant removed and 

remaining pellets were washed with 70% ethanol.  RNA was resuspended in dH2O and 

concentrations were read using the Nanodrop.  1μg of RNA was used to synthesize 

cDNA. Briefly, RNA was combined with random primers, dNTPs, RNase inhibitor, 

Multiscribe Reverse Transcriptase and made up to volume with dH2O.  The reaction 

was incubated at 25°C for 10min, 37°C for 2hr, 85°C for 5min and +4°C. Samples were 

diluted 1:4 and concentrations were read again on the Nanodrop to ensure that no 

degradation had occurred.  Samples were stored at -20°C until required.   

To assess transcription, primers were designed specifically to transcript sequence for 

mCr2, Crry, Cr1 and Cr2, with particular care taken to ensure that no repeat sequences 

were captured.  This was determined by probing the whole construct sequence with a 

variety of primers and identifying pairs that were unique to the gene of interest.  These 

primers were then run through the Primer3 program to ensure the primers were unique 

to species and gene. 100ng of cDNA was used to determine whether expression was 

present. The primers for each gene are as follows: 
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For Cr2 at exon 11: Forward: 5’- TGGGGCAGAAGGACTCCAAT -3’ and Reverse: 5’- 

GCTCCACCATGGTCGTCATA -3’ with a product size of 148bp and an annealing 

temperature of 60°C. 

For Cr1 at exon 2: Forward: 5’- TCCATTTGCCAGGCCTACCA -3’ and Reverse: 5’- 

TGCACCTGTCCTTAGCACCA -3’ with a product size of 152bp and an annealing 

temperature of 60°C. 

For Cr1 covering exon 4 and 5: Forward: 5’- TGGTTCCTCGTCTGCCACAT -3’ and 

Reverse: 5’- AGGATTGCAGCGGTAGGTCA -3’ with a product size of 178bp and an 

annealing temperature 60°C. 

For mCr2: Forward: 5’- AATGCAAGAGAACCACTAAACAGAA -3’ and Reverse: 5’- 

GCTTTTCGGTTCTTGTCACC -3’ with a product size of 250bp and an annealing 

temperature of 60°C. 

For Crry: Forward: 5’- GGAGGAGTCAAGCTAGAAGTTT -3’ and Reverse: 5’- 

GTGTTGCAGCGGTAGGTAAC -3’ with a product size of 521bp and an annealing 

temperature of 55.3°C. 

All samples were run on a 2% agarose gel at 130V for 40min and images taken using 

the GeneSnap for Syngene program. 

2.13 Western Blotting 

6% gels were hand cast to determine the size difference between the CR1L/L and 

CR1S/S alleles. Protein was diluted to 80µg of total protein with 2x Laemmli buffer 

(BioRad). Samples were denatured at 95°C for 5min and loaded onto the gel. Gels 

were run for 1hr at 150V and transferred to nitrocellulose membrane via the iBlot for 

13mins. Blots were incubated at RT for 1hr with blocking solution (5% skimmed milk 

powder block in 0.1% PBS-Tween).  Blots were then washed with 0.1% PBS-Tween for 

three 15min incubations and then incubated using rabbit-anti CD35 (Abcam 

#ab126737, 1:100) for 48hrs in 0.1% PBS-Tween on an orbital shaker at +4°C. Blots 

were washed three times in 0.1% PBS-Tween and incubated with the appropriate 

secondary (Anti-Rabbit IgG HRP 1: 50,000 Millipore #AP132P) for 1.5hrs at RT. Blots 

were then washed an additional three times and detection was carried out using ECL 

detection regents (GE Healthcare RPN2109). Blots were treated with 0.25% sodium 

azide for 2hrs at RT and washed thoroughly in 0.1% PBS-Tween. These blots were re-

blocked and re-probed with mouse anti-CD21 (Abcam #ab54253, 1:100) in 0.1% PBS-

Tween overnight at +4°C.  Blots were washed and incubated in the appropriate 
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secondary antibody (Anti-Mouse IgG HRP 1:40,000 Millipore #AP308P) for 2hrs at RT, 

washed and detected.  Finally, blots were treated with 0.25% sodium azide and probed 

with a loading control, anti-Vinculin (Abcam# ab129002, 1:10,000) in 0.1% PBS-Tween 

overnight at +4°C, washed three times, incubated with the appropriate secondary 

antibody (Anti-Rabbit HRP 1:50,000) for 1hr at RT, washed and detected. 

In addition to these antibodies, others were also tested to determine the expression of 

CR1 and CR2 in the spleen.  A variety of mouse monoclonal antibodies were tested 

(Table 3).  No signal was detected using the above method, so a variety of different 

testing paradigms were used.  They included using: TBS instead of PBS, as some 

antibodies can have their binding inhibited using PBS; primary antibody incubation 

times were adjusted in an attempt to boost binding and increase signal; a variety of 

blocking buffers along with differing concentrations of block in PBS-Tween and TBS-

Tween; and using a PVDF membrane instead of nitrocellulose, as this is deemed to be 

more sensitive. Although all these variables were tested, none of the mouse 

monoclonal antibodies showed specific binding to CR1 and CR2 (Appendix II). 

Table 3 – Complement Receptor Antibodies used herein 

Antibody Host Epitope target Western blot Immunofluorescence 

CR1 
ab126737 

Rabbit 

C-Terminus 
KGNNAHENPKEVAIHL
HSQGG SSVHPRTLQT 

NEENSRVLP 

Reactive with 
human CR1 

Minimal staining – 
possibly macrophages 

 

CR1 ab25 Mouse 
E11 clone, target 

unknown 
No detectable 

signal 
No detectable signal 

CR1 3E10 Mouse Unknown 
No detectable 

signal 
No detectable signal 

CR1 
MB135 

Mouse Unknown 
No detectable 

signal 
No detectable signal 

     

CR2 
ab54253 

Mouse Unknown  
Reactive with 

human and mouse 
CR2 

N/A 

hCR2 Mouse Unknown 
No detectable 

signal 
N/A 

1048 Mouse Unknown 
Reactive with 
human CR2 

N/A 

B Ly-4 Mouse Unknown 
Reactive with 
human CR2 

N/A 
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2.14 Immunofluorescence  

Sections of spleen were incubated with LAB solution (Polysciences #24310) for 20min, 

washed in PBT (1% TritonX-100 in 1xPBS) for 5min and incubated overnight in a 

humidified chamber at +4°C with goat anti-Iba1 (Abcam #ab5076, 1:300), rabbit anti-

CD35 (Abcam #ab126737, 1:300) and Rat anti-B220 (Biolegend, 1:300) in PBT with 

10% normal donkey serum.  Sections were washed in PBT, 3x5min, and incubated 

with their respective Alexa Fluor secondary antibody at a concentration of 1:1000 for 

2hrs in PBT: donkey anti-goat IgG 488 (Invitrogen #A11055), donkey anti-rabbit IgG 

594 (Invitrogen #A21207), and donkey anti-rat IgG 647 (Abcam #ab150155). After 

incubating with the appropriate secondary antibodies, sections were washed 3x5min in 

PBT and counterstained with DAPI (Invitrogen #D1306, 1:1000) for 5min at RT in 

1xPBS with a final wash in 1xPBS for 5min.  Slides were mounted using Aqua 

Poly/mount (PolySciences, Inc. #18606) and stored at -20°C until visualized using the 

Zeiss Axio Observer. 
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3. Results 

Previous work carried out by JAX Genetic Engineering Technologies developed a 

construct carrying both human Cr1 and human Cr2, along with the intergenic region. 

This construct was integrated into the mouse Cr2 locus of B6 ES cells, with lines 5H4 

and 5E2 demonstrating successful integration. These targeted cell lineages were 

implanted into B6Tyr blastocysts and produced 27 chimeras with >50% penetrance and 

1 chimera with <50% penetrance.  Chimeras from both lines successfully bred to B6Tyr 

mice with 30% of pups inheriting the construct. 

3.1 Protein Products are Comparable in Size to the Human Counterparts 

To estimate the predicted protein size of each protein product for CR2, CR1L/L and 

CR1S/S a combination of bioinformatics tools were utilized.  First, to determine the 

mRNA sequence from the original construct, the NCBI tool Spidey was used 

(https://www.ncbi.nlm.nih.gov/spidey/). Spidey determines the mRNA regions within a 

query sequence by comparing a cDNA sequence to a genomic sequence. Briefly, for 

each gene, the predicted gene sequence from the CR2/CR1 construct was compared 

to the human genomic sequence (retrieved from NCBI Entrez gene; CR2: 

NM_001006658, CR1:  NM_00651). Secondly, the predicted protein sequence for each 

gene was determined using Open Reading Frame finder from NCBI 

(https://www.ncbi.nlm.nih.gov/orffinder/). Finally, to determine the molecular weights of 

each predicted protein, a protein molecular weight predictor tool 

(http://www.bioinformatics.org/sms/prot_mw.html) was used. The predicted molecular 

weights are: CR2 – 148kDa, CR1L/L – 273kDa and CR1S/S – 223kDa.  

To determine the most likely isoforms created by the CR2/CR1 mouse, protein 

sequences were aligned with previously reported sequences for the various alleles of 

CR1 and CR2 using ClustalW in the MacVector program. The predicted protein 

sequence for CR2 was aligned with the isoforms containing 15 (NP_001868.2) and 16 

(NP_001006659.1) SCR sequences, and determined that the constructed sequence 

matched that of the 16 SCR variant commonly found in human populations. To align 

the CR1L/L and CR1S/S, both sequences were compared with the known sequences for 

the CR1-A (NP_000564) and CR1-B (NP_000642) alleles (Fig 11).  With the exception 

of the first few amino acids, the sequences aligned to their respective human 

counterparts precisely. This demonstrates that the CR1-A allele should be equivalently 

produced through the CR1S/S constructed sequence, and likewise the CR1-B allele 

should be produced through the CR1L/L sequence.  

https://www.ncbi.nlm.nih.gov/spidey/
https://www.ncbi.nlm.nih.gov/orffinder/
http://www.bioinformatics.org/sms/prot_mw.html
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Figure 11. Alignments for Common Complement Receptor 1 Allotypes From the 

construct, each viable protein sequence was aligned to the NCBI reference sequences 

for the most common CR1 variants.  Both CR1L and CR1S align to their respective 

reference sequence.  The image is a representative of the variation between the two 

most common isoforms.  For whole sequence alignment please see Appendix (III and 

IV). 
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3.2 Chimeras Produce Viable, Construct-Carrying Pups with Successful Germline 

Transmission 

To determine the transmission of the CR2/CR1 construct, genotyping was designed to 

specific regions throughout each of the gene sets and confirmed in the first generation 

of CR2Neo/WTCR1L/WT mice (Fig 12). Targeted mice, carrying the construct were bred to 

B6 mice to ensure germline transmission, and that no part of the insert would be lost 

due to recombination.  Matings were established with male and female carriers to 

determine whether there was a sex bias to inheritance of the construct, but this was not 

seen. Both 5H4 and 5E2 lineages produced healthy pups which had successful 

transmission of the construct.  Once germline transmission was identified and the 

development of the allelic series was instigated. 

 

 

Figure 12. Confirmation of the Construct Integration and Transmission 

Genotyping was developed to determine the inheritance of each portion of the 

construct.  To ensure that the surrounding genes remained intact genotyping was 

developed to ensure Crry was not disrupted. Protocols were also developed to confirm 

the generation of the allelic series.  Genotyping for Neomycin ensured that it was 

removed from the intronic region in CR2. Samples are labeled as such: [1] 

CR2NeoCR1L/WT [2] CR2CR1L/L [3] CR2CR1S/S [4] CR2CR1KO/KO [5] WT and [6] Water, 

with [L] denoting the ladder. Neo - Neomycin 



 51 

3.3 Possible Partial Homozygous Lethality in CR2CR1KO/KO Mice  

While establishing a cohort for CR2CR1L/L and CR2CR1S/S mice produced homozygous 

mice, with 25% of the N3F1 and N4F1 pups being determined as homozygotes, the 

CR2CR1KO/KO cohort did not follow the same pattern. Upon an initial N4F1 intercross a 

markedly reduced number of CR2CR1KO/KO were seen, with 108 pups being born, and 

only 14 were homozygotes. From these, 10 were males and 4 were female.  Therefore, 

I hypothesized that some CR2CR1KO/KO mice may fail to develop to term. To test this, 

timed mating’s were established, sperm plugs observed, and embryos harvested at 

E7.5 and E12.5.  Each uterine horn was inspected for signs of embryo resorption, or 

gaps between embryos indicating likely early resorption.  No obvious signs were seen, 

and the embryos were removed from their amnions to identify any gross morphological 

changes (Fig 13), with posterior node and tail samples taken for genotyping at their 

respective time point.  Of the 37 embryos studied at E7.5 and E12.5 only 4 were 

homozygous for CR2CR1KO/KO, with no morphological differences observed between 

CR2CR1KO/KO and CR2CR1WT/WT or CR2CR1KO/WT embryos.  Eventually, a breeding 

pair of homozygote CR2CR1KO/KO was established to produce a colony, and they 

produced homozygote pups at equivalent rates to the CR2CR1L/L and CR2CR1S/S 

colonies. This would suggest that while there is not total lethality of the CR1KO/KO 

mouse, there may be difficulties in establishing initial cohorts, due to associations that 

have been unexplored.   

The insertion and subsequent removal of large portions of genomic material has the 

potential to interrupt regular transcription of genes surrounding the area of interest. As 

the RCA is an area that is tightly regulated, with a cluster of genes in close proximity, 

there is the potential for dysregulation. Determining whether there was the potential for 

lethality within the CR2CR1KO/KO
 mice is important due to the lethality seen within Crry-

KO mice (Xu et al. 2000; Mao et al. 2003). Removal of the majority of the CR1 

sequence has not disturbed Crry expression, enabling development to continue. As 

expected, the loss of endogenous mCr2 has not disrupted development. 

In summary, using a combination of genomic recombineering and genotyping, these 

data show that the CR2/CR1 mouse is genetically viable.  The loss of mouse Cr2 does 

not appear to disrupt development, and no surrounding regions were disturbed. 

 

 

 

 



 52 

 

 

 

Figure 13. Assessing CR1KO/KO Development (A) While the expected results were 

seen in producing a cohort for the CR1L/L and CR1S/S alleles, CR1KO/KO proved to have 

difficulties.  To investigate this, E7.5 and E12.5 were studied to determine if there were 

any developmental defects.  No gross defects, or reabsorption, were seen and only 4 

of the 37 mice showed a homozygous genotype (circled in red). (B) Tables identify the 

genotypes and sex of each embryo, M – male, F – Female, WT – Wild type, HET – 

heterozygous, HOM - homozygous. 
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3.4 Splenic Expression of CR2 and CR1 in Homozygous Mice 

To begin to assess the RNA expression of Cr2 and Cr1 we assessed spleen tissue. As 

a primary organ of complement processing the spleen is an ideal target to identify the 

expression of its receptors. cDNA was generated from 3 males and 3 females, from 

each cohort, from whole spleen to determine the successful expression of both Cr2 

and Cr1, along with ensuring that the expression of Crry was not disrupted.  Targeted 

primers confirmed that Cr2 and Cr1 were present in the spleen and that mCr2 had 

been successfully removed (Fig 14).  The presence of Crry was seen in all samples 

with no disruption observed between cohorts.  Primers designed for Cr1 targeted both 

exon 2 and a region spanning exon 4 and 5. This strategy identified that CR2CR1KO/KO 

mice produced a transcript containing only the first two exons but subsequent exons 

were excised.   

 

 

Figure 14.  RNA Expression in Spleen of Transgenic Mice To determine whether 

RNA was produced in the spleen, primers were designed to exon specific regions.  All 

mice homozygous for each allele showed expression of the human genes, but no 

expression of the mouse Cr2. WT mice showed only Cr2 and Crry expression. 

CR2CR1KO/KO mice showed RNA expression of exons 2 for CR1, but did not have any 

further RNA present, as demonstrated with the CR1 ex4/5 protocol. All samples 

showed no disruption to Crry expression. Samples are labeled as such: [L] denotes the 

ladder, [1] CR2CR1L/L Female, [2] CR2CR1L/L Male, [3] CR2CR1S/S Female, [4] 

CR2CR1S/S Male, [5] CR2CR1KO/KO Female, [6] CR2CR1KO/KO Male, [7] WT Female, [8] 

WT Male, [9] Water. 
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3.5 Western Blotting Confirmed the Presence of Human Protein in Spleen 

To confirm that the predicted CR1 and CR2 proteins corresponded to their predicted 

sizes, western blotting was used to visualize each of the protein isoforms. Wild type 

samples were used as a negative control and to determine cross reactivity of 

antibodies.  To assess the allelic variations a variety of antibodies were used, with one 

antibody showing specificity (See Material and Methods for details). Both CR2CR1L/L 

and CR2CR1S/S mice showed bands at their predicted sizes (Fig 15). The 

CR2CR1KO/KO mice showed no expression of a CR1 protein at any size. Minimal cross 

reactivity was observed within the wild type mice in the spleen. The presence of these 

bands confirms that these mice are translating the humanized genes and producing 

viable proteins.   

Testing for CR2 showed that all CR2CR1 mice showed a single band at 148kDa.  The 

wild type counterparts showed 2 bands, one at 150 kDa and another 190kDa. This is to 

be expected as the mouse Cr2 gene produces two protein products via alternate 

splicing, in contrast to the human CR2 counterpart.  These data suggest that the CR2 

insert is being correctly translated and is able to be produced in cells within the spleen.   

Therefore, the CR1L/L, CR1S/S and CR1KO/KO alleles are created through recombineering 

and produce viable protein products. With protein expression confirmed, the 

expression patterns need to be identified in the mouse model.  
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Figure 15. Protein Expression in the Allelic Series of Transgenic Mice (A) Mice 

express CR1 at the expected sizes depending on their allotype. (B) CR2CR1L/L mice 

express a larger protein than the CR2CR1S/S mice. CR2CR1KO/KO do not express any 

form of CR1. CR2 expression is comparable between the three alleles, with a single 

protein product being produced.  WT mice produce two protein products from the one 

Cr2 gene via alternate splicing. Vinculin is shown as the loading control. 
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3.6 Localising Cell Specific Presence of CR1 and CR2 

Two methods were selected to assess cell specific expression within this mouse 

model.  First, antibodies were used to determine cellular location of the CR1 protein, 

and then blood-derived cells were sorted using FACS.  RT-PCR was utilized to 

determine RNA expression in these cells. 

 

3.6.1 Immunofluorescent Co-localization within the Spleen of Transgenic Mice 

To assess the expression patterns of CR1 within the spleen of transgenic mice, 

immunofluorescence was used to determine cell specific expression. Sections were co-

stained with Iba1 and B220 in an attempt to co-localize expression within the spleen.  

Although some staining was apparent in transgenic samples the WT counterparts 

showed similar staining. Although the endogenous mCR2 had been replaced, the 

appearance of this staining made it difficult to discern whether the signal was genuine 

or whether there was cross reactivity occurring (Fig 16).  Pre-conjugated antibodies 

also showed no discernable signal preventing localization of expression to be 

effectively determined (data not shown). To be able to clearly define cell specific 

expression, and to determine antibody cross reactivity, a mCr2 knockout mouse will be 

used as a negative control in the future. 

Initial staining identified that there was auto-fluorescence present in the spleen, seen 

with the secondary controls.  In addition, non-specific binding was seen in WT samples 

with the CR1 antibody. To try to counter this, CR1 was stained with different secondary 

antibodies. This still showed non-specific staining in the WT controls.  In an attempt to 

define whether this was due to experimental method a different approach was taken.  

Two paradigms were tested with just the CR1 antibody: one with LAB solution 

incubation and one without.  Samples were incubated in either LAB solution for 20min 

or in PBT for 20min.  All slides were washed in PBT for 5min and incubated for 30min 

in PBTB (3% BSA in PBT).  CR1 antibody was diluted to 1:300 in PBTB and incubated 

at +4°C for 2 nights.  After incubation, samples were washed in PBT 3x5min and the 

appropriate secondary antibody (Alexa Fluor 594) was applied 1:1000 for 2hrs at RT in 

PBT.  Samples were washed for a further 3x5min in PBT and co-stained with DAPI.  

Slides were mounted using Aqua Polymount and visualized on the Zeiss Axio Observer 

(Fig 17).  This was repeated with the addition of Goat anti-Iba1 in an attempt to localize 

expression to specific cell types (data not shown). 

To test the mouse monoclonal antibodies in tissue, pre-conjugation was required to 

prevent any aberrant binding of secondary antibodies to the endogenous IgG’s in the 
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spleen of these mice. Although these antibodies were pre-conjugated, no specific 

staining was observed. 

 

 

 

Figure 16.  Localising Expression within the Spleen of Transgenic Mice 

Immunofluorescent staining showed cross reactivity of the antibodies in both WT and 

Homozygous CR2CR1 mice. Macrophage staining (IBA1) green, CR1 red, DAPI blue. 

Images taken at 63x. [A] Is a transgenic mouse stained for CR1, [B] shows a WT 

spleen with similar staining. [C] and [D] represent the boxed area in the respective 

images above. White arrows show similar punctate staining between the transgenic 

and control. 
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Figure 17. CR1 Staining Under Different Experimental Paradigms Differing 

blocking conditions and the use of LAB solution was used to determine whether the 

cross reactivity was based on incubation conditions with the use of just the CR1 

antibody (red) and DAPI  (blue). 

 

3.6.2 Cell Specific Expression of CR2 and CR1 in Peripheral Blood 

To determine the expression patterns of CR1, FACS was carried out on the peripheral 

blood of the allelic series and wild type mice.  Cells were sorted into T-cells, B-cells, 

Monocyte/Macrophages, Platelets, Erythrocytes and Granulocytes using various 

antibodies. RNA was extracted, DNase treated and cDNA produced (Fig 10 and 18). 

To determine the cell specific expression B-cells were first targeted (Fig 19), as the 

human CR2 is driven by the mCr2 promotor this suggests expression will be 

identifiable in this cell type. Both CR1 and CR2 were seen to be expressed in B-cells, 

with the confirmation of a lack of mCr2 throughout the allelic series.  These results also 

confirmed that the CR1KO/KO was a true null, but still expressed humanized CR2. From 

this both the CR2CR1L/L and CR2CR1S/S were screened to determine the cell specific 

expression on CR1 in each sorted cell type (Fig 20).  CR1 expression was consistently 

present in B-cells and Granulocytes (Fig 20), but multiple other cells types gave 

inconsistent expression profiles (data not shown).  Inconsistent expression was even 

observed within the erythrocyte population. This inconsistency is not entirely 
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unexpected and is thought to be due to the low levels of RNA generally found in 

mature erythrocytes.  

 

In summary, this data has shown that the CR1/CR2 construct correctly integrated into 

the mouse genome, specific allotypes of CR1 can be produced through 

recombineering, and these allotypes are expressing in multiple cell types, including B-

cells and Granulocytes.   
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Figure 18.  Cells sorted from Blood-Derived Cells Each sorted cell type, had cell 

counts taken during sorting and were averaged for each cohort (for cell numbers refer 

to Appendix I Table A and B). Bars on the graph denote the standard error of the 

mean. Representative plots of various cells sorted from the white blood cell (WBC) and 

red blood cell fractions (RBC) from age and sex matched mice for all genotypes.  [A] 

Platelets were sorted from the White blood cell (WBC) fraction and viable CD41-FITC+ 

cells were separated. [B] Monocyte/Macrophages (Mo./Ma.) were sorted from the 

WBC, CD45.2-BV421+ fraction and viable CD11b-BV605+ cells were separated. [C] T-

cells and B-cells were sorted from the WBC, CD45.2-BV421+ fraction and viable 

CD3e-APC+ (B220-PECy7-) cells were sorted separately from B220-PECy7+ (CD3e-

APC-) cells. [D] Granulocytes (Gran.) and Erythrocytes (Ery.) were sorted from the Red 

Blood Cell (RBC) fraction and separated based on their viable CD45.2-BV421 status; 

Erythrocytes were considered CD45.2-BV421- whereas Granulocytes were considered 

CD45.2-BV421+. 
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Figure 19. RNA Expression of CR1 in B-cells from Transgenic Mice Primers 

designed to specific RNA sequences were utilized to determine cell specific expression 

of CR1 in peripheral blood cells. To begin screening, B-cells were initially assessed, as 

this was the cell type that was expected to express both genes.  CR1 was expressed 

from the humanized mice and they were negative for mCr2.   The samples in each lane 

are as follows, [L] denotes Ladder [1] CR2CR1L/L Male [2] CR2CR1L/L Female [3] 

CR2CR1S/S Male [4] CR2CR1S/S Female [5] CR2CR1KO/KO Male [6] CR2CR1KO/KO 

Female [7] WT Male [8] WT Female [9] Water.  
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Figure 20.  Blood-Derived Cell Specific Expression in CR1L/L and CR1S/S Mice To 

assess the cell specific expression in both the CR2CR1L/L and CR2CR1S/S pooled 

samples from each cell type were tested for CR1 expression. B-cells and Granulocytes 

showed expression for CR1 in both CR2CR1L/L and CR2CR1S/S mice, showing no 

gross expression differences at initial characterization. B – B-cells, T- T-cells, M – 

Macrophages/Monocytes, E – Erythrocytes, G – Granulocytes, P - Platelets 
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4 Discussion 

4.1 Mice Successfully Inherit Humanized Genes and Express Them  

The very nature of creating a humanized mouse model is one fraught with difficulties.  

However, successful production of chimeras enabled the development of these 

humanized mice. Germline transmission was successful in both targeted cell lines, with 

no recombination or rearrangement occurring at any point throughout the construct. 

While there were initial hurdles in establishing the homozygous alleles, homozygosity 

was ultimately successful for all alleles, long, short and knockout.  This enabled the 

characterization of all the alleles for CR1, including the more prevalent ones found in 

human populations. Western blotting was able to confirm the varying protein products 

produced by the CR1 allelic series. This work also confirmed that the homozygous 

CR1 knockout did not produce a viable protein product. When it came to determining 

the cell specific expression of each allele via immunofluorescence in the spleens 

difficulties were seen.  These came from the potential cross-reactivity of antibodies with 

various other complement control proteins, as many of the complement receptor 

antibodies tend to target areas containing SCRs.  These regions are replicated 

throughout many complement regulatory proteins, and due to the expansion and 

replication of CR1 through evolution (Farries and Atkinson 1988; Jacobson and Weis 

2008), it is possible that there is non-specific binding throughout this family of genes 

across species.  To counter this inability to be certain with immunofluorescent staining, 

an RNA based approach was utilized to determine the cell specific expression in whole 

blood.  These RNA based techniques identified that there was definitive expression 

message of Cr1 and Cr2 in B-cells.  Along with this, CR1 was also seen to be 

expressed in granulocytes at an RNA level. While expression levels in other cell types 

was not immediately identified, it cannot be ruled out, this is partly due to inconsistent 

results seen in a variety of cell types.  To clarify the expression profile of these genes 

more cells will need to be sorted. RNA sequencing (a more sensitive approach than 

RT-PCR) will then be employed to determine the cell specific expression of CR1 and 

CR2. While one antibody showed specificity in western blotting, it was unclear whether 

it was specific in immunofluorescence.  The inability to define specificity within this 

setting prevented having confidence in the antibodies ability to show specificity in a 

FACS setting, so it was excluded from the cell sorting panel.  Along with this lack of 

specificity it also targeted the intracellular C-terminus, so may pose difficulties in giving 

a strong signal through FACS. Additional antibodies will also need to be identified, or 

created, to ensure specificity and protein expression, allowing for multiple techniques 

to be used to definitively define the expression patterns of CR1 and CR2. 
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4.2 Future Experiments Required for Comprehensive Validation of this Model 

Although this mouse has been identified to express the human CR2 and various alleles 

of CR1 within the spleen and peripheral blood, it is important to identify whether this 

mouse model will interact with the complement system in the mouse and function as it 

does in the human system. To do this, both CR2 and CR1 will need to be rigorously 

tested for their functional ability to bind mouse C3b, C1q and other components.  This 

will ensure that the mouse model will work in a comparative fashion to that of the 

human system. Along with determining cell specific expression in the blood and 

functional capabilities, additional work also needs to be carried out to determine cell 

specific expression within the brain.  This would be carried out via primary cell culture 

of neurons, astrocytes and microglia to determine expression at an RNA level, as there 

are currently no definitive antibodies (Fonseca et al. 2016). These experiments will aim 

to bring a consensus to an inconsistently reported field and this knowledge will then be 

able to assist in understanding the mechanistic fundamentals of CR1 and CR2 roles in 

homeostasis, development and disease in a neural environment.  

A further area that will require validation is identifying suitable antibodies that are 

readily available to the research community. While some of these antibodies worked in 

different contexts, they did not appear to work in this CR2/CR1 mouse.  Currently 

available antibodies are generally inconsistent between assays and tissues samples, 

as identified by Fonseca et al. in 2016. As this inconsistency across antibodies has 

also proved difficult in defining this mouse clearly, it is important to test future 

antibodies with the appropriate controls.  Two major controls for determining suitable 

antibodies are to use a mCr2 knockout mouse and a Crry knockout mouse.  Both of 

these mice will eliminate the potential of cross reactivity due to similarities between the 

orthologous genes. Once these varying factors have been determined, a more effective 

model will be available, that does not rely on utilizing human samples and will allow the 

understanding of CRs in a complete system. This will enable new and more consistent 

antibodies to be developed and used to illuminate previously unknown aspects of both 

CR1 and CR2 in systemic research. 

 

4.3 Implications of This Model 

The development of this mouse model will open up a gateway to further understanding 

the complement cascade.  With the discoveries made within the last decades a more 

expansive role of complement has emerged (Stevens et al. 2007; Schafer et al. 2012; 

Howell et al. 2011; Williams et al. 2016; Rutkowski et al. 2010; Mastellos and Lambris 

2002; Del Rio-Tsonis et al. 1998). It is now more important than ever to understand 
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how the complement components are regulated.  As mouse models are being used 

more readily to understand mechanisms, being able to better mimic the role of CR1 

effectively will be of great benefit. The role CR1 plays in disease has previously been 

modeled in mice using mCr2 or Crry (Prodeus et al. 1998; Chen et al. 2000; Wu et al. 

2002; Molina et al. 1996; Ahearn et al. 1996; Haas et al. 2002; Ramaglia et al. 2012b; 

Davoust et al. 1999; Killick, T. R. Hughes, et al. 2013; Maier et al. 2008b; Manickam et 

al. 2010), as they are the closest mouse orthologues to CR1.  While this has led to 

some understanding of the role CR1 can have as a regulator in disease, it does not 

fully mirror the expression and functional capabilities of CR1. It is important to 

understand its role in modulating inflammation and other roles in a disease context, 

with this new mouse model it will hopefully open up undiscovered avenues of the role 

CR2 and CR1 that were not able to be elucidated via in vitro studies.  The potential of 

this is that it could have a major impact on understanding autoimmune diseases such 

as SLE and rheumatoid arthritis, and what factors may influence this, along with the 

insights into the impact CR1 has on infectious disease, such as its influence on the 

rates of malarial infection, and understanding why CR1 is considered a risk factor for 

late onset AD and what role it may have in the progression of disease (Fig 21, Table 

4). 

 

 

Figure 21. Locations of Disease Associated SNPs within CR1 Various SNPs in 

CR1 have been associated with disease, with exon specific SNPs being targetable with 

this new mouse model. Red lines indicate an intronic SNP and blue lines indicate an 

exonic SNP.  AD – Alzheimer’s disease, E - Erythrocyte 
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Table 4 – CR1 Relevant SNPs Associated with Disease 

SNP Position  Ref Alt Disease 
Association 

Reference 

rs6701713 Chr1:207612944 Intron, 
intron 
31/39 

A G AD Naj et al. 2011 

rs6656401 Chr1:207518704 Intron, 
intron 4 

G A AD Lambert et al. 2009 

rs3818361 Chr1:207611623 Intron, 
intron 
29/37 

A G AD Hollingworth et al. 2011; 
Lambert et al. 2009 

rs4844609 Chr1:207609321 Missense, 
exon 29/37 

T A AD Keenan et al. 2012 

rs9429942 Chr1:207495285 Upstream 
variant 

C T Malaria 

Gastric 
cancer 

Teeranaipong et al. 2008; 
Zhao et al. 2015 

rs2274567 Chr1:207580276 Missense, 
exon 22/30 

A G Malaria Lan et al. 2015 

rs2296160 Chr1:207621975 Missense, 
exon 36/44 

A G Malaria Lan et al. 2015 

rs4844600 Chr1:207505962 Missense, 
exon 2 

A C,G Malaria Lan et al. 2015 

rs7525160 Chr1:207495069 Upstream 
variant 

G C Non-small cell 
lung cancer 

Yu et al. 2014 

rs6691117 Chr1:207609336 Exon 29/37 A G AD 

Erythrocyte 
sediment rate 

Ma et al. 2014; Kullo et al. 
2011 

rs17047660 Chr1:207609511 Missense, 
Exon 29/37 

A G Malaria Apinjoh et al. 2014; 
Diakite et al. 2011; Toure 
et al. 2012; Kariuki et al. 
2013 

rs12034598 Chr1:207584170 Intron, 
intron 
24/32 

A G Inflammation Naitza et al. 2012 

rs12034383 Chr1:207630250 Intron 
37/45 

G A Erythrocyte 
sediment rate 

Kullo et al. 2011 
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4.4 Long vs Short Forms of CR1 

There are a variety of human CR1 isoforms and thus it is important to understand the 

functional implications of the more common allotypes. While selection pressures, such 

as malaria, have been a major factor in some geographical regions driving the 

prevalence of certain alleles, other regions do not have these pressures. Yet there is 

still a bias towards particular allele frequencies, with CR1-A and CR1-B remaining as 

the most common allotypes but varying in relative terms between populations. The 

prevalence within these different populations are: Caucasian A=0.87 and B=0.11, 

African Americans A=0.82 and B=0.11, Mexicans A=0.89 and B=0.11 and Asian 

Indians A=0.916 and B=0.084 (Moulds et al. 1996; Katyal et al. 2003). This bias may 

be due to undiscovered molecular functions of certain CR1 isoforms that could have 

major implications in our understanding of the complement cascade.  With the 

development of this allelic series, the research community will be able to further 

decipher why there might be continued inheritance of multiple alleles of CR1. The 

research community can use these tools to gain insight into how each allele interacts 

within the complement cascade. These findings will be of importance in understanding 

and modelling human disease, and generating disease models.     

 

4.5 Investigating the Role of CR1 in Alzheimer’s disease (AD) 

With the identification of CR1 as a major risk factor for AD (Jun et al. 2010; Brouwers 

et al. 2012; Lambert et al. 2009; Keenan et al. 2012; Hazrati et al. 2012; Carrasquillo et 

al. 2010; Van Cauwenberghe et al. 2013; Corneveaux et al. 2010), a more accurate 

model needed to be developed to understand how variation in CR1 increases 

susceptibility to this disease. While a variety of SNPs have been identified to link CR1 

with AD (Corneveaux et al. 2010; Carrasquillo et al. 2010; Jun et al. 2010; Brouwers et 

al. 2012; Lambert et al. 2009; Keenan et al. 2012; Van Cauwenberghe et al. 2013), one 

study suggested that carrying both the CR1-A and CR1-B alleles represents a major 

risk factor (Hazrati et al. 2012). As these various alleles do not exist in any orthologue 

in mouse models of AD, it has not been possible to determine the importance of 

allotype in disease progression and prevalence. The influence of this heterozygous 

allotype could now be understood with this model.  In addition, in 2012, Keenan et al 

identified a novel SNP within the C1q/MBL binding domain of CR1 in patients with AD.  

This SNP resulted in an increase in the decline of episodic memory. Further, co-

inheritance with the ε4 allele of APOE compounded the effect of memory decline. The 

availability of the humanized CR2/CR1 mouse model will enable for the first time the 

functional consequences of the CR1 coding variants to be assessed. At JAX, we are 
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currently using gene editing by CRISPR to introduce the coding variant identified by 

Keenan and colleagues (Keenan et al. 2012) into our CR2/CR1 mouse.  Additional 

work has seen the risk factor rs6656401 for AD also being correlated with reduced grey 

matter in the entorhinal cortex of young adults (Bralten et al. 2011), which suggests 

that CR1 may play a role in modelling the developing brain. While general associations 

of CR1 with AD are thought to be through the clearance pathways of Aβ (Hazrati et al. 

2012), no true mechanism has been elucidated.  With the availability of the allelic 

series within this mouse, and utilizing new gene editing technologies, it can be readily 

used to identify the strength and involvement of these risk factors on disease state. 

To assess the role of CR1 in AD, we now plan to breed the various alleles into a 

mouse strain already carrying AD relevant mutations.  These mutations are known 

early onset AD genes, such as APP (Goate et al. 1991; Murrell et al. 1991; Chartier-

Harlin et al. 1991) and PSEN1 (Schellenberg et al. 1992).  APP is a membrane bound 

protein that is cleaved via a variety of secretases (De Strooper and Annaert 2000).  

Mutations within these genes can affect the secretase cleavage sites, causing an 

imbalance in the level of Aβ40/Aβ42 produced.  The imbalance favours the creation of 

Aβ42, a “stickier” protein than Aβ40, which is the main component of senile plaques, a 

hallmark feature of AD (Selkoe 1994).  PSEN1 is a gamma secretase, which is able to 

cleave APP into these Aβ components.  Mutations within this gene alter its ability to 

cleave APP in the correct ratio, leading to higher levels of Aβ42 being produced (Duff 

et al. 1996; De Strooper et al. 1998). One of the more common strains of mice that 

utilize mutations in these particular genes is the APP/PS1 strain (B6.Cg-

Tg(APPswe,PSEN1dE9)85Dbo/Mmjax Jax#5864, MMRC# 34832-JAX (Jankowsky et 

al. 2004)).  Utilizing this APP/PS1 strain, a model could be developed to understand 

the role of the various CR1 alleles in AD, along with being able to test the different 

GWAS identified SNPs. 

While studying this model on an AD susceptible background will enable a deeper 

understanding of the influence CR1 has in disease status and progression, it is also 

important to be able to elucidate the genetic interaction APOEε4 and CR1 have.  While 

both have been identified separately as major risk factors for AD, they have more 

recently been identified to have a compounding detrimental phenotype in late onset AD 

cases, specifically with the rs4844609 SNP (Keenan et al. 2012).  Little has been 

uncovered about this potent effect, as it is difficult to fully dissect how each gene 

influences the other in human genetic studies.  The use of this mouse model, in 

combination with a humanized APOEε4 model, while using CRISPR to introduce the 

disease associated SNPs, will enable the research community to fully elucidate the 
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molecular mechanisms that underpin how these two disease alleles work in concert to 

create a significantly higher risk factor for AD behavioural deterioration.  

 

4.6 Conclusion 

The work described in this thesis and the models created have the potential to 

profoundly impact the complement research community.  The ability to adequately 

model CR1 and CR2 in a model system, such as the mouse, will give a greater 

understanding into why the complement cascade has been so heavily conserved 

throughout evolution along with its role in development and disease. A more complete 

understanding of the complement cascade, and its regulators, will lead to more 

targeted and personalized therapeutics.  
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6. Appendix 

Appendix I 

Table A – Cell counts per sample and cell type 

Cohort Sex CD3 B220 CD41 CD11b CD45 + 
CD45- 

WT F 16542 14808 217331 4083 1265 
1*10^6 

WT F 45550 48423 689808 18780 289 
1*10^6 

WT F 32069 33179 619628 9226 127 
1*10^6 

WT M 8581 7548 372348 12619 602 
1*10^6 

WT M 27942 29408 449116 9588 127 
1*10^6 

WT M 5744 5375 151916 5838 354 
1*10^6 

CR2CR1L/L F 51000 78000 185000 10000 1434 
1*10^6 

CR2CR1L/L F 15751 24694 146000 4922 1777 
1*10^6 

CR2CR1L/L F 21348 23379 371947 7282 572 
1*10^6 

CR2CR1L/L M 45172 54383 295458 6940 481 
1*10^6 

CR2CR1L/L M 25349 32538 207249 6999 798 
1*10^6 

CR2CR1L/L M 45285 48806 512879 13238 503 
1*10^6 

CR2CR1S/S F 31297 25273 587000 2702 151 
1*10^6 

CR2CR1S/S F 16333 20259 157345 1123 244 
1*10^6 

CR2CR1S/S F 11031 8778 109886 5015 1210 
1*10^6 

CR2CR1S/S M 14538 17479 319093 4792 219 
1*10^6 

CR2CR1S/S M 9529 12652 77010 2891 411 
1*10^6 

CR2CR1S/S M 1358 1909 457812 1183 1002 
1*10^6 

CR2CR1KO/KO F 27914 30758 400669 16725 1019 
1*10^6 

CR2CR1KO/KO F 28374 32558 370961 10325 704 
1*10^6 

CR2CR1KO/KO M 42090 59187 378278 11725 1272 
1*10^6 

CR2CR1KO/KO M 40636 40333 1000000 44910 1077 
1*10^6 
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Appendix I 

Table B – Average Cell counts per cohort per cell type 

Cohort Sex CD3 B220 CD41 CD11b CD45 + CD45 -  

WT F 31387 32137 508922 10696 560 1*10^6 

WT M 14089 14110 324460 9348 361 1*10^6 

CR2CR1L/L F 29366 42024 234316 7401 1261 1*10^6 

CR2CR1L/L M 38602 45242 338529 9059 594 1*10^6 

CR2CR1S/S F 19554 18103 284744 2947 535 1*10^6 

CR2CR1S/S M 8475 10680 284638 2955 544 1*10^6 

CR2CR1KO/KO F 28144 31658 385815 13525 862 1*10^6 

CR2CR1KO/KO M 41363 49760 689139 28318 1175 1*10^6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 106 

Appendix II 

Testing human complement receptor expression by Western blotting using 

various commercially available antibodies and antibodies provided by Prof. Paul 

Morgan. The antibodies tested produced a variety of results.  Overall, 

antibodies gave inconclusive results. Some (e.g. B and C) showed no obvious 

specific binding, whereas the other antibodies (A, D and E) demonstrated 

expression of the hCR1 and hCR2 proteins - but with suspected non-specific 

staining also. Further work is required to validate CR1 and CR2 protein 

expression in the mouse, potentially using mouse Cr2 KO animals, additional 

antibodies and western blotting conditions.
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Appendix III 

Full sequence alignment of the CR1 proteins 
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Appendix IV 

Full sequence alignment of the human CR2 sequences
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Appendix V 

Suppliers for consumables used throughout this thesis 

Abcam 

1 Kendall Square, Suite B2304  

Cambridge, MA USA 02139 

 

Agilent Technologies 

5301 Stevens Creek Blvd 

Santa Clara, CA USA 95051 

 

BioLegend 

9727 Pacific Heights Blvd 

San Diego, CA USA 92121 

 

Bio-Rad Technologies 

Life Science Research, Education, Process Separations, Food Science 

2000 Alfred Nobel Drive 

Hercules, California USA 94547 

 

eBioscience, Inc. 

Headquarters 

10255 Science Center Drive 

San Diego, CA USA 92121 

 

EMD Millipore 

290 Concord Road 

Billerica 

Massachusetts 01821 

United States of America 
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GE Healthcare Bio-Sciences  

P.O. Box 643065 Pittsburgh,  

PA 15264-3065 

United States of America 

 

Integrated DNA Technologies, Inc. 

1710 Commercial Park  

Coralville, Iowa USA 52241  

 

Invitrogen 

168 Third Avenue 

Waltham, MA USA 02451 

 

The Jackson Laboratory (JAX, JAX Genomic Engineering Technologies, JAX Flow 

Cytometry Service, JAX Genome Technologies) 

600 Main Street 

Bar Harbor, ME USA 04609 

 

LabDiet  

PO Box 19798  

St. Louis, MO USA 63144 

 

Polysciences, Inc. 

400 Valley Road 

Warrington, PA  USA18976 

 

Qiagen Inc. 

27220 Turnberry Lane Suite 200  

Valencia, CA USA 91355 
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Sigma-Aldrich 

3050 Spruce St. 

St. Louis, MO USA 63103 

 

Thermo Fisher Scientific 

168 Third Avenue 

Waltham, MA USA 02451 

 

Zeiss Microscopy 

One Zeiss Drive 

Thornwood, NY 10594 

USA 


