
Interactive Design Exploration for Constrained Meshes

Bailin Deng∗, Sofien Bouaziz, Mario Deuss, Alexandre Kaspar,
Yuliy Schwartzburg, Mark Pauly

Computer Graphics and Geometry Laboratory, EPFL, CH-1015 Lausanne, Switzerland

Abstract

In architectural design, surface shapes are commonly subject to geometric con-
straints imposed by material, fabrication or assembly. Rationalization algo-
rithms can convert a freeform design into a form feasible for production, but
often require design modifications that might not comply with the design intent.
In addition, they only offer limited support for exploring alternative feasible
shapes, due to the high complexity of the optimization algorithm.

We address these shortcomings and present a computational framework for
interactive shape exploration of discrete geometric structures in the context of
freeform architectural design. Our method is formulated as a mesh optimiza-
tion subject to shape constraints. Our formulation can enforce soft constraints
and hard constraints at the same time, and handles equality constraints and
inequality constraints in a unified way. We propose a novel numerical solver
that splits the optimization into a sequence of simple subproblems that can be
solved efficiently and accurately.

Based on this algorithm, we develop a system that allows the user to explore
designs satisfying geometric constraints. Our system offers full control over
the exploration process, by providing direct access to the specification of the
design space. At the same time, the complexity of the underlying optimization
is hidden from the user, who communicates with the system through intuitive
interfaces.

Keywords: Architectural geometry, Design exploration, Fabrication-aware
design, Constraint-based modeling

1. Introduction

Digital tools have become ubiquitous in the architectural design process. For
freeform architecture in particular, proper mathematical models, efficient geom-
etry processing algorithms, and interactive shape editing software are essential
for effective design. These tools provide great flexibility in creating complex

∗Corresponding author. Telephone: +41 21 69 37533. Fax : +41 21 69 37540.
Email address: bailin.deng@epfl.ch (Bailin Deng)

Preprint submitted to Computer-Aided Design February 10, 2014

©2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

architectural designs, but offer limited support for incorporating constraints
imposed by material, fabrication, or assembly. One example is building with
planar quadrilateral panels, which are popular for cost-effective realization of
freeform structures with glass panels. In such a construction, the distance be-
tween the two diagonals of a panel needs to be smaller than a certain threshold
to avoid large internal bending stress [1, 2]. These constraints are difficult to
control manually, and typically require a separate rationalization process that
maps the design to physical production. Rationalization needs to negotiate be-
tween physical constraints and design intent, often triggering several iterations
to enable real-world fabrication of the digital design. This time-consuming pro-
cess can lead to suboptimal designs or a significant increase in overall cost.

In this paper, we propose a new approach to geometric form finding and de-
sign that takes the constraints into account. Given a set of soft constraints and
hard constraints, our approach enables the user to explore the space of shapes
that satisfy the hard constraints exactly, and the soft constraints as much as
possible. By integrating constraints into the design process, our approach yields
designs that can be more effectively rationalized with respect to a given con-
struction approach, thus avoiding unnecessary design iterations or suboptimal
design solutions.

In our system, a typical design session proceeds as follows (Figure 1): First,
an initial specification of constraints is provided by the designer. Starting from
some initial shape, the user can then freely navigate feasible shapes by directly
interacting with the current design. Our optimization algorithm computes a
new design that stays within the constraint space, thus satisfying the geometric
requirements imposed by the design rationale. This new design provides realtime
visual feedback according to the user input, enabling effective exploration of
design alternatives. The user can also alter the shape space by introducing new
constraints, or by modifying or removing existing constraints. The design is
automatically updated to remain in the new shape space. Such flexibility allows
the user to test different rationalization options easily.

1.1. Related work

Computational methods for architectural design have become increasingly
popular in recent years [3, 4]. With a focus on physical production, various
rationalization algorithms have been proposed for many geometric goals such
as: planar mesh optimization [5, 6, 7, 8, 9, 10, 11], multi-layer structures [12],
single-curved panels [13], straight panels [14, 15], double-curved panels [16, 17],
ruled panels [18, 19], circle and sphere packings [20], circular arc structures [21],
point-folding structures [22] and functional webs [23]. These methods typically
take a given freeform surface as input, and compute a surface decomposition
that relates to a physical layout of panels. Usually such rationalization methods
allow some deviation from the input reference surface to improve the quality of
the paneling. They do not, however, support interactive exploration of the
design alternatives.

Integrating rationalization methods into existing shape editing tools is typi-
cally not a viable option, since these algorithms often require minutes or some-

2

Figure 1: Handle-based constrained deformation of the Lilium tower, under hard constraints
of planar faces (for all faces with more than three vertices) as well as soft constraints of regular
polygonal faces (for all faces). Top: different feasible shapes during the exploration, with all
boundary vertices and a set of interior vertices in the middle selected as handles. The interior
vertex handles are moved during the exploration (shown in yellow). Middle and bottom:
architectural design based on one of the feasible shapes.

times hours to compute a solution, thus preventing an interactive shape ex-
ploration process. Therefore, research efforts have focused on alternative ap-
proaches.

Geometric shape spaces have recently become popular as a tool for design
exploration. One common interpretation of a shape space is a restriction of
the space of all free parameters of a design. For example, Kilian et al. [24]
represented a triangle mesh as a point in a high-dimensional space that treats
each vertex coordinate as a free variable. They defined suitable Riemannian
metrics on this space to restrict the embedding of the mesh to nearly isometric
deformations of a given input surface. This allows exploring the manifold of
shapes that approximately preserve lengths.

3

The method by Yang et al. [2] introduced a shape exploration tool for con-
strained meshes. They compute a local approximant of a high-dimensional
constrained shape manifold, which the user can navigate efficiently. Based on
this work, Zhao et al. [25] developed a guided exploration tool for the local
approximant by automatically sampling new shapes. For these approaches, the
generated shapes only satisfy the constraints approximately, and the constraint
violation may exceed the tolerance for large deformations. Thus it is usually
necessary to project the new mesh onto the constrained shape manifold to ob-
tain feasible results. Compared to these methods, our system directly computes
new shapes that satisfy all hard constraints, without the need for projection.

Vaxman [26] introduced a method for deforming polyhedral meshes while
preserving the planarity of faces. In this method, a new mesh is computed by
applying affine transformations to the faces of the old mesh. Poranne et al. [27]
provided a characterization of maximal linear subspaces within the manifold of
polyhedral surfaces, allowing shape exploration in a larger space than [26]. For
meshes with general shape constraints, Bouaziz et al. [28] proposed a frame-
work for imposing constraints to mesh elements. To solve the corresponding
least squares optimization problem, they employ an alternating minimization
approach to decompose the original problem into a sequence of simple sub-
problems. Similarly, Poranne et al. [29] combined alternating least squares and
penalty method to planarize polygonal meshes. Both [28] and [29] enforce shape
constraints using penalty methods, so they handle soft constraints only. Deng et
al. [30] presented a constrained optimization approach to compute and explore
local modifications for constrained meshes. Using an augmented Lagrangian
solver, they computed new shapes that satisfy all constraints exactly, enabling
the method to enforce hard constraints.

1.2. Overview and contribution

Our work deals with similar problems as [28], namely optimization and de-
formation of meshes subject to shape constraints. Unlike [28] and [29] which
enforce soft constraints only, and [30] which only handles hard constraints, we al-
low both soft constraints and hard constraints at the same time, by unifying the
approaches in [28] and [30]. The new mesh shape is computed by constrained
optimization, where the soft constraints contribute to the objective function.
By introducing auxiliary variables, we convert the problem into one with sep-
arable objective function and linear side constraints, which is solved using an
augmented Lagrangian solver. The special structure of the problem allows us
to decompose the solver into a set of simple subproblems. Each subproblem is
either evaluating a proximal operator [31, 32], or solving a sparse symmetric
positive definite linear system, both of which can be done efficiently. We imple-
ment the method on GPU to gain significant speedup from parallelism, which
allows interactive exploration of the shape space. Our contribution includes:

• a unified formulation of equivalent conditions for shape constraints, equipped
with proximal operators with intuitive geometric meanings;

4

• a general shape optimization framework that enforces both soft constraints
and hard constraints, with an augmented Lagrangian solver consisting of
simple subproblems that can be efficiently solved. Our solver outperforms
the commonly used interior point method for interactive applications.

The paper is organized as follows. Section 2 presents the formulation of the
optimization problem. Section 3 provides an efficient numerical solver, based
on which a constrained shape exploration system is proposed in Section 4. Ex-
amples are given in Section 5 for design exploration using this system, followed
by further discussion and conclusion in Section 6.

2. Formulation

2.1. Constraints for polygonal meshes

We focus in this work on polygonal meshes as construction-aware represen-
tations for freeform architectural surfaces. For example, such a mesh represents
panels as faces [5], or represents curve elements as edge polylines [23]. Typically,
the mesh is subject to a set of shape constraints related to fabrication or aes-
thetics. For a mesh with nv vertices {vi | i = 1, . . . , nv} and fixed connectivity,
we represent its shape using a vector p = [pT1 , . . . ,p

T
nv

]T ∈ R3nv , where pi ∈ R3

is the position of vertex vi. In this paper, we consider constraints that can
be represented as equality or inequality conditions about the vertex positions.
Namely, each constraint has one of the following forms

Equality constraint: f(p) = 0,
Inequality constraint: a ≤ g(p) ≤ b,

where f , g are vector-valued functions. A constraint involving m vertices
vi1 , . . . , vim , whether equality or inequality, can always be represented as

Mp ∈ C.

Here matrix M collects all the involved vertex positions into a vector

Mp = [pTi1 , . . . ,p
T
im]T , (1)

and C is the feasible set for this vector. If a constraint is translation-invariant
(i.e., applying a common translation to all involved vertices does not change
the status of constraint satisfaction), it can also be represented using one of the
following forms of M:

Mp =

[
(pi1 −

1

m

∑m

k=1
pik)T , . . . , (pim −

1

m

∑m

k=1
pik)T

]T
, (2)

or Mp =
[
(pi2 − pi1)T , . . . , (pim − pi1)T

]T
. (3)

5

-

-

-

Figure 2: Planarization of a polygonal mesh using soft and hard constraints face planarity.
Left: the initial mesh with an average edge length of 1.5. The boundary vertices are selected
as handles, with target positions being the same as their initial positions. Middle: result with
soft constraints of planar faces. Right: result with hard constraints of planar faces. Color-
coding shows the maximum distance between a vertex and the least squares fitting plane for a
face. The hard constraint result satisfies the constraints much better than the soft constraint
result.

Remark. Forms (2) and (3) for constraint representation were used in [28] and
[30] respectively. Compared to the “näive” form (1), they usually lead to faster
convergence of alternating minimization solvers (see [28] for a detailed discus-
sion).

Depending on the importance of each constraint, a designer may want to
strictly enforce some constraints, while allowing others to be slightly violated.
Therefore, we distinguish two types of constraints:

• Hard constraints are conditions that need to be satisfied exactly. For
example, panel shapes may need to satisfy the constraints imposed by the
chosen fabrication technology and construction material.

• Soft constraints are criteria that we would like the mesh to meet, but
they are allowed to be violated if they conflict with other conditions. For
example, the designer may want mesh faces to be regular polygons, in
order to achieve more aesthetic shapes. But this condition can be relaxed
for the mesh to have more degrees of freedom in its shape.

2.2. Optimization problem for constrained mesh deformation

Assume that we are given Nh hard constraints {Mi
hp ∈ Hi | i = 1, . . . , Nh}

and Ns soft constraints {Mj
sp ∈ Sj | j = 1, . . . , Ns} for the mesh shape. Starting

from an initial mesh, we provide a system where the user can explore other
feasible mesh shapes with the same connectivity. In this system, the user first
chooses a set of vertices as handles, and specifies their target positions in the
new shape. A new mesh is computed based on the following criteria:

• The handle vertices are close to their target positions.

• The new mesh has a small value of fairness energy.

• All hard constraints are satisfied exactly.

• The soft constraints are satisfied as much as possible.

6

• The non-handle vertices are close to their initial positions.

The last condition above prevents unnecessary shape changes, and ensures that
the problem is well-defined. Based on these criteria, the new mesh is computed
by solving a constrained optimization problem

min
p

whFhandle + wcFclose + wfFfair +

Ns∑
j=1

ws
jF

(j)
soft (4)

s.t. Mj
hp ∈ Hj , j = 1, . . . , Nh.

Here wh, wc, wf and ws
j are positive weights. Functions Fhandle, Fclose, Ffair

measure respectively the distance from handle vertices to their target positions,
the distance from non-handle vertices to their original positions, and the fairness
of the new mesh, respectively

Fhandle =
∑
i∈Γ

‖pi − ti‖22, Fclose =
∑
j /∈Γ

‖pj − p0
j‖22, Ffair = ‖L(p− p0)‖22.

Here Γ is the index set for handle vertices, ti is the target position for vertex vi,
p0
j is the original position for vertex vj , and vector p0 packs the original positions

for all vertices. Matrix L measures the smoothness of vertex displacements
p−p0 across the mesh. It can be a Laplacian matrix, or a matrix that computes

the second/third order difference terms along mesh polylines [2]. Function F
(j)
soft

penalizes the violation of soft constraints Mj
sp ∈ Sj , which we define as the

squared Euclidean distance between Mj
sp and Sj

F
(j)
soft =

[
dist(Mj

sp,Sj)
]2
.

3. Numerical solution

This optimization problem (4) usually involves a large number of nonconvex
nonlinear constraints, and is difficult to solve efficiently. To achieve interactive
results, we employ a strategy similar to [30]: First we introduce a set of aux-
iliary variables with additional constraints to convert (4) into a problem with
separable target function and linear side constraints; the converted problem is
then solved using an augmented Lagrangian method [33]. Similar to [30], the
special structure of this problem enables us to decompose the solver into a set of
simple subproblems, which can be solved in parallel to gain significant speedup.
This section explains our method in detail.

3.1. Converted problem

First for each soft constraint Mj
sp ∈ Sj , we introduce auxiliary variables

sj ∈ Sj to write its violation measure as

F
(j)
soft = min

sj∈Sj
‖Mj

sp− sj‖22.

7

Next for each hard constraint Mi
hp ∈ Hi, we introduce auxiliary variables

hi ∈ Hi to rewrite the condition as Mi
hp = hi. Using the function definitions

in Section 2, and incorporating new variables h = [hT1 , . . . ,h
T
Nh

]T and s =

[sT1 , . . . , s
T
Ns

]T , we derive the following equivalent problem

min
p,h,s

1

2
‖Dp− r‖22 +

wf

2
‖L(p− p0)‖22 +

Ns∑
j=1

ws
j

2
‖Mj

sp− sj‖22

+

Ns∑
j=1

σSj (sj) +

Nh∑
i=1

σHi(hi) (5)

s.t. Mi
hp = hi, i = 1, . . . , Nh,

where

D =

 d1I3

. . .

dnv
I3

 , r =

 r1

...
rnv

 ,
with I3 being the 3× 3 identity matrix, and

di =

{ √
wh if i ∈ Γ√
wc otherwise

, ri =

{
diti if i ∈ Γ
dip

0
i otherwise

, for i = 1, . . . , nv.

Indicator functions σSj (sj) and σHi
(hi) ensure sj ∈ Sj and hi ∈ Hi, respectively

σSj (sj) =

{
0 if sj ∈ Sj
+∞ otherwise

, σHi
(hi) =

{
0 if hi ∈ Hi
+∞ otherwise

.

Remark. In this formulation, auxiliary variables from different constraints are
independent from each other. If a vertex is involved in multiple constraints, it
will induce different auxiliary variables in each constraint. As a result, there can
be a large number of auxiliary variables. This seemingly redundant formulation
is actually the key to high efficiency, as it splits the target function into separable
terms that can be handled in parallel (see the next section for details).

3.2. Augmented Lagrangian solver

In optimization problem (5), let the target function be denoted by F (p,h, s),
and the violation of side constraints be denoted by ci(p,h) = Mi

hp − hi. The
augmented Lagrangian method solves (5) by searching for a saddle point of the
augmented Lagrangian function

L(p,h, s,λ;µ) = F (p,h, s) +

Nh∑
i=1

[
λTi ci(p,h) +

µ

2
‖ci(p,h)‖22

]
.

Here λi are Lagrangian multiplier vectors, which together form the dual variable

λ =
[
λT1 , . . . ,λ

T
Nh

]T
. p,h and s are called the primal variables, and µ > 0

is a penalty parameter. Our solver iteratively updates p,h, s,λ and µ until
convergence. In each iteration, new values (p̂, ĥ, ŝ, λ̂, µ̂) are computed from
current values (p,h, s,λ, µ) using the following steps:

8

1. Primal update: (p̂, ĥ, ŝ) = argmin
p,h,s

L(p,h, s,λ;µ).

2. Dual update: λ̂i = λi + µ ci(p̂, ĥ), i = 1, . . . , Nh.

3. Penalty update: choose µ̂ ≥ µ.

The primal update step is explained below. For the penalty update step and
the convergence criteria, refer to [30] for more details.

3.2.1. Primal update

The primal update minimizes a function of primal variables L̂(p,h, s) =
L(p,h, s, λ;µ). For this we employ an alternating minimization strategy: Start-
ing from initial values p(0) = p, h(0) = h, s(0) = s, we iteratively perform the
following updates until convergence:

1. Fix p, update h, s:
(
h(k+1), s(k+1)

)
= argmin

h,s
L̂
(
p(k),h, s

)
.

2. Fix h, s, update p: p(k+1) = argmin
p
L̂
(
p,h(k+1), s(k+1)

)
.

(h, s)-update. This problem is separable with respect to the auxiliary variables
for each constraint. Thus we have independent subproblems that can be solved
in parallel (superscript counters are ignored to simplify notations),

min
hi

‖hi − (Mi
hp +

λi
µ

)‖22 + σHi(hi), i = 1, . . . , Nh, (6)

min
sj
‖sj −Mj

sp‖22 + σSj (sj). j = 1, . . . , Ns. (7)

Geometrically, the solutions are the Euclidean projections of Mi
hp + λk/µ and

Mj
sp onto feasible setsHi and Sj respectively, which can be computed efficiently

for many shape constraints (see Section 3.3).

p-update. This is equivalent to

min
p
‖Dp−r‖22 +wf‖L(p−p0)‖22 +

Ns∑
j=1

ws
j‖Mj

sp−sj‖22 +µ

Nh∑
i=1

‖Mi
hp−hi+

λi
µ
‖22,

which reduces to solving a symmetric positive definite sparse linear systemDTD + wfL
TL + µ

Nh∑
i=1

(
Mi

h

)T
Mi

h +

Ns∑
j=1

ws
j

(
Mj

s

)T
Mj

s

p

= DT r + wfL
TLp0 + µ

Nh∑
i=1

(
Mi

h

)T (
hi −

λi
µ

)
+

Ns∑
j=1

ws
j

(
Mj

s

)T
sj .

9

Figure 3: Distance D between the diagonals of a quad with vertices pi1 ,pi2 ,pi3 ,pi4 .

3.3. Proximal operators

Our solver can be easily adapted to different types of shape constraints. The
only difference is the solution to the primal update subproblem for auxiliary
variables, which has a general form

min
y
‖y − x‖22 + σC(y). (8)

Its solution is the so-called proximal operator for indicator function σC [32].
Geometrically, it is the Euclidean projection of x onto feasible set C, which
means moving x by the least amount to satisfy the constraint.

In Section 3.1, we introduce auxiliary variables to convert the original op-
timization problem. This is an instance of a numerical optimization strategy
called variable splitting [34]. Proximal operators together with variable splitting
play an important role in numerical optimization, since they provide simple sep-
arable reformulations of the optimization problems. Such reformulations can be
easily parallelized, and enable efficient solutions to many problems that are oth-
erwise difficult to solve [31, 32]. Our method is most useful when the proximal
operators can be efficiently evaluated, which is indeed the case for many shape
constraints relevant to architectural design and fabrication [28]. In the following
sections, we present some proximal operators that are used in this paper.

3.3.1. Bounded diagonal distance of quad faces

When realizing freeform shapes using planar quadrilateral glass panels, a
certain tolerance is usually allowed for the violation of planarity. Such violation
is measured using the distance between the two diagonal lines of the quad,
leading to the following fabrication constraint for each quad face with vertex
positions pi1 , pi2 , pi3 , pi4 [2] (see Figure 3)

D(pi1 ,pi2 ,pi3 ,pi4) ≤ ε, (9)

where D(pi1 ,pi2 ,pi3 ,pi4) is the distance between diagonal lines pi1pi3 , pi2pi4 ,
and ε > 0 is a tolerance value. Since this constraint is translation-invariant, we
can represent it as in the form of (2)

[(pi1 −mp)T , (pi2 −mp)T , (pi3 −mp)T , (pi4 −mp)T]T ∈ C,

10

Figure 4: Proximal operator for bounded distance between diagonal lines.

where mp =
1

4

∑
k=1

pik , and C = {q = [qT1 ,q
T
2 ,q

T
3 ,q

T
4]T | D(q1,q2,q3,q4) ≤ ε}.

The proximal operator problem has the form

min
y

4∑
k=1

‖yk − xk‖22 + σC(y),

with auxiliary variable y = [yT1 ,y
T
2 ,y

T
3 ,y

T
4]T , and xk,yk ∈ R3 (k = 1, 2, 3, 4).

If D(x1,x2,x3,x4) ≤ ε, then we have a trivial solution yk = xk for all k.
Thus we consider only the nontrivial case where D(x1,x2,x3,x4) > ε, namely
the distance between diagonal lines of quadrilateral x1x2x3x4 is larger than
the tolerance ε. The solution is a closest quadrilateral for which the distance
between diagonals is exactly ε; thus we only need to solve (see Figure 4)

min
y

4∑
k=1

‖yk − xk‖22 s.t. D(y1,y2,y3,y4) = ε. (10)

For the solution points y1, y2, y3, y4, there must exist two parallel planes
P1 and P2 that contain y1, y3 and y2, y4 respectively, and are distance ε apart.
These two planes share a common unit normal vector n, and can be represented
using the linear equations

P1 : {z ∈ R3 | z · n = d},
P2 : {z ∈ R3 | z · n = d+ ε},

where d is a scalar that represents the signed distance from plane P1 to the
origin. Since yk needs to be closest to xk, y1, y3 are the closest projections of
x1, x3 onto P1, and y2, y4 are the closest projections of x2, x4 onto P2. Thus
the target function in (10) can be written as a function h of n and d,

h =

4∑
k=1

‖xk − yk‖22 =
∑
i=1,3

(xi · n− d)2 +
∑
j=2,4

(xj · n− d− ε)2.

11

Figure 5: Comparison between the constraints of face planarity and bounded diagonal dis-
tance. Left: a given quad mesh whose faces are not planar. All vertices on the top boundary
curve and the sharp circular polyline between the roof and the side (shown in yellow) are
selected as handles, with target positions the same as the initial positions. Top right: result
under hard constraints for face planarity for all faces. Bottom right: result under hard con-
straints of bounded diagonal distance for all faces. Bounded diagonal distance leads to more
freedom in shapes than exact planarity, and results in smooth shapes in this case (note the
kink in the top right figure).

From the optimality condition
∂h

∂d
= 0, we obtain

d = n ·mx −
ε

2
,

where mx =
1

4

∑4
k=1 xk. Substituting this into the definition of h, we obtain

h = ‖Xn− b‖22

where

X =

xT1 −mT

x

xT2 −mT
x

xT3 −mT
x

xT4 −mT
x

 , b =
1

2

−ε
ε
−ε
ε

 .
Then the unit normal vector n is the solution to

min
n
‖Xn− b‖22 s.t. ‖n‖2 = 1.

This is a least squares minimization over the unit sphere, which can be solved
using the method in Section 12.1.2 of [35]. From the values of n and d, we

12

pi1

pi2

pi3

∠pi2pi1pi3 ∈ [α, β]

Figure 6: Bound constraint for angle ∠pi2pi1pi3 .

obtain yk (k = 1, 2, 3, 4) as

yk =

 xk + n
[
− ε

2
− (xk −mx) · n

]
, k = 1, 3,

xk + n
[ε

2
− (xk −mx) · n

]
, k = 2, 4.

3.3.2. Bounded angles

When using a polygonal mesh to represent realizations of freeform designs,
we can represent the nodes, beams, and panels of the surface with the vertices,
edges, and faces of the mesh, respectively. For such a mesh we can require the
corner angles of each face to stay within a given range of values, in order to
prevent small angles between adjacent beams and facilitate the fabrication of
nodes and panels. Let α, β ∈ (0, π) be the minimum and maximum values that
are allowed for interior angles. For the angle ∠pi2pi1pi3 between edges pi1pi2
and pi1pi3 , this constraint means (see Figure 6)

cosβ ≤ (pi2 − pi1) · (pi3 − pi1)

‖pi2 − pi1‖2 ‖pi3 − pi1‖2
≤ cosα. (11)

This translation-invariant constraint can be represented in the form of (3)

[(pi2 − pi1)T , (pi3 − pi1)T]T ∈ C,

where

C =

{
q = [qT1 ,q

T
2]T

∣∣∣∣ q1,q2 ∈ R3, cosβ ≤ q1 · q2

‖q1‖2 ‖q2‖2
≤ cosα

}
.

Figure 7: Proximal operator for bounded angles.

13

The proximal operator problem is

min
y

∑
i=1,2

‖yi − xi‖22 + σC(y),

with auxiliary variable y = [yT1 ,y
T
2]T , and x1,x2,y1,y2 ∈ R3. We only consider

the non-trivial case where [xT1 ,x
T
2]T /∈ C, i.e. the angle between x1 and x2 is

outside the range [α, β]. There are two possibilities:

1. If the angle between x1 and x2 is larger than β, the problem reduces to
(see Figure 7(a))

min
y1,y2

∑
i=1,2

‖yi − xi‖22 s.t.
y1 · y2

‖y1‖2 ‖y2‖2
= cosβ.

2. When the angle between x1, x2 is smaller than α, the problem becomes
(see Figure 7(b))

min
y1,y2

∑
i=1,2

‖yi − xi‖22 s.t.
y1 · y2

‖y1‖2 ‖y2‖2
= cosα.

Both cases require minimum displacement from x1 and x2 to reach a designated
angle between them. To achieve minimum displacement, the solution y1, y2

must lie on the plane spanned by x1 and x2. Therefore, both cases reduce to
2D problems. In the first case x1 and x2 need to be moved towards each other,
while in the second case they are moved away from each other. Let θ and φ be
the angles between x1, y1 and between x2, y2, respectively. Let η be the sum of
θ and φ, and let γ be the angle between x1 and x2. In the first case η = γ − β,
while in the second case η = α− γ. The minimum displacement from x1 to y1

implies that y1 − x1 must be orthogonal to y1, so

‖y1 − x1‖22 = (‖x1‖2 sin θ)
2
.

Similarly, we have

‖y2 − x2‖22 = (‖x2‖2 sinφ)
2

= [‖x2‖2 sin(η − θ)]2 .

Now the original constrained problem is reduced to an unconstrained one

min
θ

(‖x1‖2 sin θ)
2

+ [‖x2‖2 sin(η − θ)]2 .

The solution to this problem is

θ =
1

2
arctan

‖x2‖22 sin(2η)

‖x1‖22 + ‖x2‖22 cos(2η)
.

14

Figure 8: Switching between different shape spaces by changing constraint types. Top: an
initial planar quad mesh. All boundary vertices are selected as handles, with target positions
the same as their initial positions. Middle: result shape under hard constraints for face
planarity and soft constraints for regularity of polygons. Note the shape changes of the quads
in the middle part of the mesh due to the constraints of regular polygons. Bottom: a different
result shape, by replacing the regular polygon constraints with hard constraints of bounded
angles between 60 and 120 degrees. There is a notable change of face shapes around the
singularity (see the zoomed-in images), where the initial mesh and the previous result mesh
violate the angle constraints. On the other hand, the faces are thinner due to the lack of
regular polygon constraints.

3.3.3. Other shape constraints

Below we list other shape constraints that appear in the examples in Sec-
tion 5. Their proximal operators can be found in [28].

• Planar faces: All vertices of a face lie on a common plane.

• Regular polygonal faces: All edges of a face form a regular planar polygon.

• Bounded edge length: The length of each mesh edge stays within a given
range [lmin, lmax].

15

Figure 9: Handle-based shape exploration of a quad mesh subject to hard constraints of
bounded diagonal distance of faces. The initial mesh (shown on the top) is a planar quad
mesh. Two interior vertices (shown in yellow) and all boundary vertices are selected as handles.
During the exploration only the interior handles are moved.

4. Interactive shape exploration

Using the algorithm in the previous section, we implement an interactive
exploration system for mesh shapes subject to constraints. First in the spec-
ification phase, the user specifies the soft constraints and hard constraints for
an initial mesh, and selects handle vertices. Then in the exploration phase,
the mesh shape is updated by solving the optimization problem (5). When
the user drags the handles, the mesh shape is consecutively updated using a
sequence of handle positions obtained during the dragging, providing intuitive
visual feedback to the user about feasible shapes and their relations to handle
positions. Alternatively, the user can leave the handle vertices at their original
positions, which effectively performs rationalization (trading off constraint sat-

16

Figure 10: Shape exploration with varying weights of soft constraints. The given mesh is a
quad mesh with valence three for all interior vertices. The exploration is done under hard
constraints for bounded diagonal distance of faces, and soft constraints for regular polygonal
faces. With increasing weights of soft constraints (from top to bottom: 0, 16, 100, 400, 1600)
and fixed weights for other terms, the soft constraints gradually induce a cube-like pattern
across the surface.

isfaction against deviation from the original surface). In the exploration phase,
the user is allowed to change their constraint specification (by adding or remov-
ing constraints, changing weights, etc.) on the fly, to switch between different
shape spaces.

To achieve interactive exploration, it is crucial that we solve the optimization

17

Figure 11: Shape exploration of a planar quad mesh under different extra shape constraints.
Upper left: initial PQ mesh, with the handle vertices highlighted in yellow. Upper-right: result
under hard constraints of bounded edge length. Bottom-left: result under hard constraints of
bounded edge length and soft constraints of regular polygonal faces.

problem efficiently. Since the independent subproblems of our augmented La-
grangian solver enables parallel solving, we implement it on GPU using CUDA.
Interested readers are referred to [36] for more details. Using an NVIDIA
GeForce GTX 580 graphics card, we achieve interactive performance for prob-
lems with 20K vertices and 80K auxiliary variables (see the accompanying
video).

5. Results

This section presents some examples of shape exploration using our method,
as well as comparison between our method and other optimization methods.

5.1. Examples

Figure 2 is a comparison between soft and hard constraints of planar faces,
which shows that the our solver is able to produce results that strictly satisfy
hard constraints.

18

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1
interior point method

time (s)

co
nv

er
ge

nc
e

our approach

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

time (s)

co
nv

er
ge

nc
e

interior point method
our approach

Figure 12: Comparison of convergence speed between our method and the interior point
method. Each method is used to solve the constrained optimization problems for deforming
two quad meshes subject to hard constraints of bounded diagonal distance. For each mesh,
all boundary vertices and one interior vertex are used as handles. For all boundary handle
vertices, the target positions are the same as their initial positions. In each example, the
upper left image illustrates the initial mesh shape, with the interior handle vertex shown in
yellow; the lower right image is the optimization solution. The plots of deviation function
δ(t) (defined in Equation (12)) show that our method converges rapidly to an approximate
solution.

In Figure 5 we compare between the hard constraints of planar faces and
bounded diagonal distance on the same quad mesh, showing that bounded diag-
onal distance provides more degrees of freedom to achieve smoother shapes. In
this paper, we always set the diagonal distance tolerance to 1% of the average
edge length of the initial mesh, according to [2].

Figures 1 and 9 are examples of shape exploration by dragging handles.
Figure 1 is a tri-hex mesh subject to a hard constraint of face planarity and a
soft constraint of regular polygonal faces, while Figure 9 is a quad mesh subject
to a hard constraint of bounded diagonal distance. The exploration sessions of
these two models are also shown in the accompanying video, from which we can
see the interactive performance of the system.

Figures 8, 11 and 10 show shape exploration for a mesh with different con-
straint specifications. Figures 8 and 11 are examples with different constraint
types on same meshes, while Figure 10 is an example under a same set of con-
straints but different soft constraint weights.

5.2. Comparison

To evaluate the efficiency of our method, Figure 12 compares the perfor-
mance between our method and the interior point method [37], which is a pop-
ular choice for general constrained optimization problems. The interior point
solver is implemented using the commercial software package KNITRO [38].
Since KNITRO is only available on CPU, we compare it against a CPU imple-
mentation of our method. To speed up the interior point solver, we evaluate
the Jacobian of the constraint functions in parallel using OpenMP. The two

19

methods are applied to the same optimization problems for handle-based defor-
mation of constrained meshes, and converge to the same results. To compare
their convergence speed, Figure 12 plots for each method,

δ(t) =
‖p(t)− p∗‖
‖p0 − p∗‖

, (12)

indicating the deviation between intermediate mesh shapes during optimization
and the final shape, where p(t) is the mesh shape at time instance t, and p0,
p∗ are the initial and final mesh shapes respectively. Our method decreases
δ(t) rapidly at the start. When a user drags the vertex handles continuously,
it is important to update the mesh shape promptly to provide visual feedback
to the user. An approximate solution is sufficient for intuitive feedback, and
our method is well suited for this scenario. With a GPU implementation, the
decrease of δ(t) for our method is even faster (see [36]), enabling realtime de-
formation of constrained meshes.

6. Discussion and Conclusion

A key factor for the efficiency of our method is the use of auxiliary variables,
together with the alternating minimization strategy for the primal update. First
of all, this leads to separable subproblems for updating auxiliary variables, which
gains speedup easily from parallelism. Moreover, the update of vertex variables
only requires solving a linear system of fixed size, regardless of the number
of constraints of the problem. Additionally, the linear systems are predefined,
making it possible to prefactorize them to accelerate the solving. On the con-
trary, the interior point method needs to solve a linear system involving both the
primal and the dual variables at each iteration. Increasing the number of con-
straints leads to larger linear systems and thus more time needed for each solve.
Furthermore, each iteration solves a different linear system, making it difficult
to gain speedup from numerical prefactorization. The fast convergence of our
method at the beginning of the optimization is typical for numerical solvers that
employ auxiliary variables and proximal operators [32]. On the other hand, the
final convergence of such solvers is slow (typically linear), and it might take a
long time to converge to a solution of high accuracy [39]. In the future, in order
to improve the final convergence rate, we can either employ a hybrid approach
which switches to Newton-type solvers at the final stage, or speed up the dual
problem using accelerated gradient descent similar to [40].

Another limitation of our method is that it cannot handle arbitrary hard
constraints. Hard constraints are often desirable in the context of architectural
geometry and physical production. It can be tempting for a user to set a large
number of constraints as hard constraints. However, if the number of hard
constraints is too large, the problem may not have a feasible solution. In this
case, our optimization may become unstable and the output may not satisfy any
of the prescribed constraints. In future work, we would like to explore heuristics
and algorithms to detect if the problem is not feasible and to find a minimal

20

set of constraints to remove in order to make the problem feasible. Another
drawback of this method of optimization is that it is not easy to predict how
changing the weights for soft constraints influences the final model. An avenue
of future work is to perform sensitivity analysis on the weights and give guidance
to the user whether small or large changes can have significant effect on the final
result.

To conclude, we have presented a framework for interactive shape exploration
of architectural designs based on shape constraints. Our new formulation pro-
vides a simple, but effective recipe to enforce soft and hard constraints while
allowing interactive performances. Mixing soft and hard constraints during the
exploration phase helps to achieve designs that are both aesthetically pleasing
and respect constraints imposed by material, fabrication, or assembly.

Acknowledgements

The models are provided by Yang Liu (Figure 2), Asymptote Architecture
and Waagner Biro (Figure 8), Zaha Hadid Architects and Amir Vaxman (Fig-
ure 1). The model in Figure 12 right is taken from [13]. This work has been sup-
ported by Swiss National Science Foundation (SNSF) grants 20PA21L 129607
and 200021 137626. This research has received funding from the European
Research Council under the European Unions Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement 257453, ERC Starting Grant COSYM.

References

[1] Glymph, J., Shelden, D., Ceccato, C., Mussel, J., Schober, H.. A
parametric strategy for free-form glass structures using quadrilateral planar
facets. Automation in Construction 2004;13(2):187 – 202.

[2] Yang, Y.L., Yang, Y.J., Pottmann, H., Mitra, N.J.. Shape space
exploration of constrained meshes. ACM Trans Graph 2011;30(6):124:1–
124:12.

[3] Ceccato, C., Hesselgren, L., Pauly, M., Pottmann, H., Wallner, J.,
editors. Advances in Architectural Geometry 2010. Springer; 2010.

[4] Hesselgren, L., Sharma, S., Wallner, J., Baldassini, N., Bompas, P.,
Raynaud, J., editors. Advances in Architectural Geometry 2012. Springer;
2013.

[5] Liu, Y., Pottmann, H., Wallner, J., Yang, Y.L., Wang, W.. Geometric
modeling with conical meshes and developable surfaces. ACM Trans Graph
2006;25(3):681–689.

[6] Wang, W., Liu, Y., Yan, D.M., Chan, B., Ling, R., Sun, F.. Hexagonal
meshes with planar faces. Tech. Rep.; Department of Computer Science,
The University of Hong Kong; 2008.

21

[7] Wang, W., Liu, Y.. A note on planar hexagonal meshes. In: Nonlinear
Computational Geometry; vol. 151 of The IMA Volumes in Mathematics
and its Applications. 2010, p. 221–233.

[8] Zadravec, M., Schiftner, A., Wallner, J.. Designing quad-dominant
meshes with planar faces. Comput Graph Forum 2010;29(5):1671–1679.

[9] Schiftner, A., Balzer, J.. Statics-sensitive layout of planar quadrilateral
meshes. In: Advances in Architectural Geometry 2010. 2010, p. 221–236.

[10] Liu, Y., Xu, W., Wang, J., Zhu, L., Guo, B., Chen, F., et al. General
planar quadrilateral mesh design using conjugate direction field. ACM
Trans Graph 2011;30(6).

[11] Zimmer, H., Campen, M., Herkrath, R., Kobbelt, L.. Variational
tangent plane intersection for planar polygonal meshing. In: Advances in
Architectural Geometry 2012. 2013, p. 319–332.

[12] Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., Wang, W.. Geome-
try of multi-layer freeform structures for architecture. ACM Trans Graph
2007;26(3).

[13] Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H., Wang, W.,
Baldassini, N., et al. Freeform surfaces from single curved panels. ACM
Trans Graph 2008;27(3):76:1–76:10.

[14] Pottmann, H., Huang, Q., Deng, B., Schiftner, A., Kilian, M., Guibas,
L., et al. Geodesic patterns. ACM Trans Graph 2010;29.

[15] Wallner, J., Schiftner, A., Kilian, M., Flry, S., Hbinger, M., Deng, B.,
et al. Tiling freeform shapes with straight panels: Algorithmic methods.
In: Advances in Architectural Geometry 2010. 2010, p. 73–86.

[16] Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N.J., Pottmann, H.,
Pauly, M.. Paneling architectural freeform surfaces. ACM Trans Graph
2010;29(4):45:1–45:10.

[17] Eigensatz, M., Deuss, M., Schiftner, A., Kilian, M., Mitra, N.J.,
Pottmann, H., et al. Case studies in cost-optimized paneling of architec-
tural freeform surfaces. In: Advances in Architectural Geometry. 2010,.

[18] Flöry, S., Pottmann, H.. Ruled surfaces for rationalization and design
in architecture. In: LIFE in:formation. On Responsive Information and
Variations in Architecture. 2010, p. 103–109. Proc. ACADIA 2010.

[19] Flöry, S., Nagai, Y., Isvoranu, F., Pottmann, H., Wallner, J.. Ruled
free forms. In: Advances in Architectural Geometry 2012. 2013, p. 57–66.

[20] Schiftner, A., Höbinger, M., Wallner, J., Pottmann, H.. Packing circles
and spheres on surfaces. ACM Trans Graphics 2009;28(5).

22

[21] Bo, P., Pottmann, H., Kilian, M., Wang, W., Wallner, J.. Circular arc
structures. ACM Trans Graphics 2011;30(4).

[22] Zimmer, H., Campen, M., Bommes, D., Kobbelt, L.. Rational-
ization of triangle-based point-folding structures. Comp Graph Forum
2012;31(2pt3):611–620.

[23] Deng, B., Pottmann, H., Wallner, J.. Functional webs for freeform
architecture. Comput Graph Forum 2011;30(5):1369–1378.

[24] Kilian, M., Mitra, N.J., Pottmann, H.. Geometric modeling in shape
space. ACM Trans Graph 2007;26(3).

[25] Zhao, X., Tang, C.C., Yang, Y.L., Pottmann, H., Mitra, N.J.. Intuitive
design exploration of constrained meshes. In: Advances in Architectural
Geometry 2012. 2013, p. 305–318.

[26] Vaxman, A.. Modeling polyhedral meshes with affine maps. Computer
Graphics Forum 2012;31(5):1647–1656.

[27] Poranne, R., Chen, R., Gotsman, C.. On Linear Spaces of Polyhedral
Meshes. ArXiv e-prints 2013;1303.4110.

[28] Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., Pauly, M.. Shape-
up: Shaping discrete geometry with projections. Computer Graphics Forum
2012;31(5):1657–1667.

[29] Poranne, R., Ovreiu, E., Gotsman, C.. Interactive planarization and
optimization of 3d meshes. Computer Graphics Forum 2013;32(1):152–163.

[30] Deng, B., Bouaziz, S., Deuss, M., Zhang, J., Schwartzburg, Y.,
Pauly, M.. Exploring local modifications for constrained meshes. Computer
Graphics Forum (Proceedings of Eurographics 2013) 2013;32(2):11–20.

[31] Combettes, P.L., Pesquet, J.C.. Proximal splitting methods in signal
processing. In: Fixed-Point Algorithms for Inverse Problems in Science
and Engineering. Springer; 2011,.

[32] Parikh, N., Boyd, S.. Proximal algirhtms. Foundations and Trends in
Optimization 2014;1(3):123–231.

[33] Bertsekas, D.P.. Constrained Optimization and Lagrange Multiplier Meth-
ods. Athena Scientific; 1996.

[34] Eckstein, J.. Splitting methods for monotone operators with applications
to parallel optimization. Ph.D. thesis; MIT; 1989.

[35] Golub, G., Loan, C.V.. Matrix Computations. Johns Hopkins University
Press; 3rd ed.; 1996.

23

[36] Kaspar, A., Deng, B.. Realtime deformation of constrained meshes using
gpu. In: 2013 Symposium on GPU Computing and Applications. 2013,.

[37] Nocedal, J., Wright, S.J.. Numerical Optimization. Springer; 2nd ed.;
2006.

[38] Byrd, R.H., Nocedal, J., Waltz, R.A.. KNITRO: An integrated package
for nonlinear optimization. In: Pillo, G., Roma, M., editors. Large-
Scale Nonlinear Optimization; vol. 83 of Nonconvex Optimization and Its
Applications. Springer US; 2006, p. 35–59.

[39] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.. Distributed
optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends in Machine Learning 2011;3(1):1–122.

[40] Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.. Fast alternating
direction optimization methods. UCLA CAM Reports; 2012.

24

