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a b s t r a c t 
 
Fully protected pyrazolidines can be readily obtained by acid-catalysed cyclisations of the corresponding allylic hydrazines by 
carbenium ion generation using concentrated sulfuric acid in dichloromethane.  

 

 
 
 
 
 
 
 

Pyrazoles and their partly and fully reduced derivatives, pyrazo-lines and 
pyrazolidines, form an important group of heterocycles, with potentially 
important contributions to make to drug design by reason of their ability to 
form strong hydrogen bonds at either or both nitrogen atoms. It is perhaps 
also signiÞcant that Nature does not seem able to form NAN bonds directly 
and hence such compounds will occupy an entirely non-natural portion of 
chemi-cal space and hence are likely to continue to play a central role in the 

discovery of novel pharmaceuticals.1 Despite the enormous contribution 
made by heteroaromatic residues, both with and without incorporated 
nitrogen atoms in a majority of commercial drug structures, it has recently 
become plain that to achieve a con-tinuation of this success, it would be wise 
to embrace semi-satu-rated and fully saturated analogues of such structural 
features, in order to introduce both greater ßexibility and increased three 

dimensional shape.1 

 
 

Many synthetic routes have been deÞned for the syntheses of such 
heterocyclic systems, but quite often these suffer from a lack of 
regioselectivity, particularly when both CAN bonds are formed effectively 
simultaneously from a hydrazine and an all-carbon bis-electrophile such as a 

1,3-dicarbonyl or a conjugated enone.2 Hence, often it is preferable to 

assemble such structures using a stepwise approach.3,4 The inspiration for the 
present methodology was derived from a possible extension of our Þnding 
that unsatu-rated sulfonamides 1 are readily converted into the corresponding 
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pyrrolidines 2 following exposure to acid,5 in an intramolecular 
hydroamination reaction. A particularly rapid and efÞcient exam-ple (Scheme 
1) features favourable tertiary carbenium ion genera-tion by protonation of 
the alkene group in the precursor sulfonamide 1, which is then trapped by the 
sulfonamide group to give an essentially quantitative yield of the 
corresponding pyrrolidines 2. 

 
Such cyclisations are quite general and are also successful when 

secondary carbenium generation is required. The fact that concen-trated 
sulfuric acid can be used in less than stoichiometric quanti-ties gives the 
method some positive environmental credentials as the only by-product of 
these usually very clean cyclisations is the sodium or potassium sulfate 
generated upon mild, basic work-up. Of course, the highly acidic nature of the 
method will impose some restrictions on future applications; thus far, remote 
alkenes, alkynes, sulfones, esters and alcohols protected as the correspond-ing 
acetates have been found to be stable and not to interfere with such 
cyclisations. It was against this background that we wondered if such 
methodology could be extended to include cyclisations of suitably protected 
allylic hydrazines 3 which, if successful, would result in the deÞnition of a 
new and perhaps efÞcient approach to pyrazolidines 4 (Scheme 2). 

 
 

Herein, we report our preliminary results, which show that this idea is 
indeed viable. A recent report strongly suggested that the methodology shown 
in Scheme 2 would be successful. In this study, the discovery of novel, two-
step cyclisations was described in which the acylhydrazones 5 having a distal 
prenyl alkene under-went conversion into the annulated pyrazolidines 7 

(Scheme 3).4 A likely mechanism involves imine protonation followed by 
cyclisa-tion to form a cyclohexane which generates exactly the type of 
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Scheme 5. Regioselective Mitsunobu coupling.  
Scheme 1. Intramolecular, acid-catalysed hydroamination. 
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Scheme 2. Idea: would protected hydrazines cyclise? 
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Scheme 3. Acid-catalysed imine cyclisation: possible mechanism.4 
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Figure 1. Hydrazines from cinnamyl, crotyl and geranyl alcohols. 

 
symmetrically protected hydrazine 13 by a Ôhalf-MitsunobuÕ wherein no 

additional nucleophile is added; the hydrazine by-pro-duct plays this role.8 
Although more rapid, this direct method never gave much above a 50% yield 
after careful chromatography and hence the lengthier route was preferred. It 
did however pro-vide useful structural conÞrmation of the assigned structures 
13 and others. The isomer 17 of the mixed carbamateÐsulfonamide protected 
hydrazine 15 was prepared by a direct, regioselective Mitsunobu alkylation of 

alcohol 12 (Scheme 5).9 
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The methods shown in Scheme 4 were also used to prepare rep-resentative 

phenyl- 18aÐc and a methyl-substituted hydrazine 19 along with the geranyl 
derivative 20 using cinnamyl, crotyl and geranyl alcohols respectively, in 
similarly good yields (Fig. 1).  

In general, the precursors 13Ð15 and 17Ð20 were readily puri-Þed by 
column chromatography and subsequently characterised by the usual criteria. 

However, line broadening was usually evident in both 1H and 13C NMR 

spectra, due to restricted rotation. For example, at 400 MHz in CDCl3, the 
symmetrically protected preny-lated hydrazine 13a showed a pair of broad 

resonances for the NH group (dH 6.6 and 6.8) in a ratio of ca. 2:1 but, when 
combined, integrating accurately for one proton, together with an indistinct 

methylene resonance centred at dH 4.04 and one sharp and one slightly 

broadened methoxy resonances at dH 3.65 and 3.63. Simi-larly, in the 13C 
NMR spectrum, whilst the two allylic methyl groups and one of the methoxy 
groups appeared as very sharp res- 

 
Scheme 4. Starting material synthesis: Reagents and conditions: (i) (a) phthalic anhydride, THF, 

rt, 0.5 h; (b) DCC, rt, 18 h, add HOAc and Et3N, reßux, 1 h (95%); (ii) Ph3P, THF, 0 LC, 
DIAD, 0 LC, 0.25 h, alcohol 12, 0 LC, 0.25 h, add hydrazine 9, then rt, 18 h (87%); (iii) 

MeNHNH2, CH2Cl2, EtOH, 0 LCÐrt, 18 h (96%); (iv) K2CO3, Et2O, H2O, amine 11, add 

ClCO2Me, rt, 2 h (92%); (v) diisopropyl azodicarboxylate, Ph3P, Et2O, rt, 18 h (ca. 50%); (vi) 

as (iv) with ClCO2Bn (97%); (vii) TsCl, pyridine, CH2Cl2, 0Ð 20 LC, 18 h (92%). 

 
 
tertiary carbenium ion 6 featured in our pyrrolidine synthesis (Scheme 1), 
subsequent trapping of which by the newly generated hydrazine leads to the 

observed products 7. Of course, as pointed out,4 alternative mechanisms 
could well be in operation, but at least a compatibility between such masked 

hydrazines and an acid-catalysed reaction looked likely.5 

 

We relied on the Mitsunobu reaction6 to obtain suitable sub-strates for our 
investigation of the idea shown in Scheme 2, as out-lined in Scheme 4. 
 

Starting with methyl carbazate 8, addition to phthalic anhy-dride followed 

by carbodiimide-induced cyclisation gave the dou-bly protected hydrazine 9.7 
A Mitsunobu coupling of this intermediate with prenyl alcohol 12 then gave 
fully substituted hydrazine 10, the Ing-Manske deprotection of which led to 
the free amine 11. Coupling of this with a chloroformate or tosyl chloride 
then gave precursors 13a, 14 and 15 in generally excellent yields. More 
directly, prenyl alcohol 12 was converted into the 

 
onances, the alkene methine (:CH) was slightly broadened and all remaining 
resonances were very broad. In practice, once such fea-tures became familiar, 
these served as highly characteristic pat-terns enabling identiÞcation of such 
products.  

Our initial attempts to carry out the cyclisation summarised in Scheme 2 
were focussed on the precursor 13a as it should be amongst the easiest to 
convert into a tertiary carbenium ion and also contained robust, acid-resistant 
protecting groups. Catalysis of the desired cyclisation using two contrasting 
acids, concentrated sulfuric and trißuoromethanesulfonic (trißic) acid, was 

examined.5 Sulfuric acid is poorly soluble in dichloromethane, the most suit-

able solvent for such chemistry so far identiÞed,10 and hence may react in a 

quite different manner with freely soluble trißic acid.11 

 
 

We were pleased to Þnd that stirring the methoxycarbonyl-pro-tected 
hydrazine 13a with 0.5 equiv of concentrated sulfuric acid in 

dichloromethane11 at ambient temperature overnight resulted in complete 
disappearance of the staring material and isolation of a single product 21 in 
excellent yield. Similar excellent yields were also obtained but more rapidly 
by gently reßuxing the reac-tion mixture for three hours or using trißic acid, 
when the cyclisa-tion occurred at ice temperature in around two hours. In all 
cases, work-up was simple: the acid was neutralised using saturated aqueous 
potassium carbonate and the separated organic layer washed with water then 

dried (MgSO4) and evaporated. 



 
Table 1  
Acid-catalysed cyclisations of hydrazines 13Ð15 and 17 
 

Precursor Conditions Product Yield 

NCO Me 0.5 eq c.H2SO4   
2 

20 LC, CH2Cl2 18 h 
NCO2Me 95% 

NHCO2Me N 
93%  0.5 eq c.H2SO4 CO2Me  40 LC, CH2Cl2 3 h  

13a 21 
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NCO2

i
Pr 0.5 eq c.H2SO4 i  

NHCO2
i
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22 
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0 LC, CH2Cl2 1 h Ts   
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NTs  
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N 
94%  

0 LC, CH2Cl2 <1 h CO2Me   
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Under more vigorous conditions than these, or if the trißic acid was wet, 
variable loss of the protecting groups was evident from NMR spectra of the 
crude products. The pattern was much the same with cyclisations of the 
related bis-isopropyloxycarbonyl derivative 13b, which was converted into 
the pyrazolidine 22 under similar conditions. Somewhat to our surprise, the 
benzy-loxycarbonyl (Z) group also survived heating to 40 LC to give an 
equally good yield of the pyrazolidine 23 (Table 1). Exchanging one of the 
carbamate groups for a sulfonamide function acceler-ated the cyclisations, 
both examples of which (15 ? 24 and 17 ? 25) proceeded rapidly at 0 LC. In 

the case of substrate 15, a lower pKa of the NAH bond to be broken may be 

responsible,9 whilst in the latter example, perhaps greater steric compression 
due to the tosyl group assists the conversion to pyrazolidine 25. Overall, the 
reaction conditions are commensurate with the inter-mediacy of a tertiary 

carbenium ion and are relatively close to our previous observations.5 

 
 
 

Structural proof of the products was straightforward, although there were 
a few unexpected characteristics. Disappearance of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. ORTEP diagram of product 24. 

 
the resonance for the alkene methine around dH 5.2 was the clear-est sign of 
complete reaction. The products all showed similar degrees of resonance 

broadening due to restricted and/or pseudo-rotation. For example, in the 1H 

NMR spectrum of the pyra-zolidine 13a, in CDCl3 at 400 MHz and 32 LC, 

the two methoxy groups occurred as sharp singlets at dH 3.65 and 3.67, whilst 

the geminal methyl groups appeared as a sharp single resonance at dH 1.41. 
However, the methylene group remote from nitrogen appeared as a diffuse, 

broad signal centred on dH 1.88 and the two protons of the methylene group 

adjacent to nitrogen as two diffuse signals centred at dH 3.93 and dH 3.18. On 

warming to 50 LC, the N-CH2 resonances became very broad but the signal 

due to the other methylene group resolved into a triplet (dH 1.87, J = 6.7 Hz). 

By contrast, when the same sample was used to obtain a 13C proton-
decoupled spectrum under the same conditions, all resonances were sharp 
except for the geminal methyl groups, which appeared as very broadened 

resonances centred on dC 25.3 and 27.4 ppm. Similar effects were observed 

throughout this ser-ies; in many cases, heating the sample in d6-DMSO 

produced an even less informative 1H NMR spectrum. 

 
In a similar fashion, the mixed carbamateÐsulfonamide 24 showed sharp 

resonances for the tosyl and methoxy groups in its 1H NMR spectrum in 

CDCl3 at 32 LC, but separate, broadened reso-nances for each of the ring 

protons, centred on dH 3.64, 3.43, 1.94 and 1.75 and two broadened singlets 

for the geminal methyls cen-tred at dH 1.61 and 0.97. Once again, all 

resonances in the 13C spec-trum were sharp, except for the methyls which, as 
in previous examples, appeared as very broadened resonances centred on 24.2 
and 28.3 ppm. To be certain of these structural assignments, we carried out an 
X-ray crystallographic analysis of product 24, the result of which is shown in 

Figure 2.12 

 
We then continued onto a study of related cyclisations of the less highly 

substituted substrates 18aÐc and 19, each of which would give a less 
stabilised carbenium ion when protonated at the alkene function (Table 2). 
 

In the event, the cyclisations proceeded well under conditions which 
correlated well with the stability of the intermediate carbe-nium ion. Using 
either concentrated sulfuric or trißic acid, cyclisa-tions of the representative 
cinnamyl derivatives 18aÐc either 

 
 
Table 2  
Acid-catalysed cyclisations of hydrazines 18aÐc, 19 and 20 
 

Precursor Conditions Product  Yield 

 NCO Me 0.5 eq c.H2SO4     
 2 
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Figure 3. Elimination product from 18b. 

 
 
required heating for 3Ð6 h in dichloromethane or a more pro-longed reaction 
time at ambient temperature. At least with these substrates, yields were again 
excellent. 

Lengthier reaction times again began to cause loss of the pro-tecting 

groups. In the case of the NHTs derivative 18b, 18 h expo-sure to c.H2SO4 at 
ambient temperature led to clean conversion but only to an extent of ca. 50%. 
In contrast, under both conditions mentioned in Table 2, formation of an 
isolable by-product was evi-dent (5 10%), which turned out to be compound 
31, formed by elimination of toluenesulÞnic acid. This showed characteristic 

apparent triplets at dH 3.94 and 3.19, along with other consistent features. 
Similar elimination products were thought to be present in the crude reaction 
mixtures isolated from reactions of the other two cinnamyl-based precursors 
but were not isolated and there-fore not identiÞed with certainty (Fig. 3). 
 
 

Predictably, the corresponding crotyl derivative 19 required the much 
more vigorous conditions of reßux in dichloroethane in order to induce 
cyclisation. Nevertheless, a decent yield of the hoped-for pyrazolidine 29 was 
isolated, but once again there was evidence for the loss of protecting groups 
although no products from this were isolated. The products 26Ð29, in contrast 
to the foregoing gem-dimethyl derivatives (Table 1), exhibited largely Þrst 
order NMR spectra, with only minimal line broadening. 

 
A Þnal example featured an attempt to use a cascade cyclisation to form a 

bicyclic derivative. As this would be a return to the inter-mediacy of tertiary 
carbenium ions, it was expected to proceed under much milder conditions. In 
the event, the geranyl-substi-tuted hydrazine 20 was smoothly converted into 
a mixture 30 of two separable products, in a ratio of ca. 3:2, at 0 LC in under 
one hour. These were assigned as the trans- and cis-fused products 32 and 33 
(Fig. 4), on the basis of some rather poor quality NOE evidence. 
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Figure 4. trans- and cis-isomers of product 30. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. ORTEP diagram of the cis-isomer 33. 

 
 

Fortunately, both were crystalline solids and so X-ray crystallo-graphic 
analysis was used to conÞrm these assignments, by mea-  
surement of the minor isomer 33, the resulting ORTEP diagram of which is 

shown in Figure 5.13 
 

Some resonances were characteristic of the two isomers in their 1H NMR 
spectra: in the trans-isomer 32, one of the protons a-to nitrogen appeared as a 

dd pattern (J = 13.2 and 11.0 Hz) at dH 3.22 and a relatively sharp methoxy 

signal resonating at dH 3.63 whereas in the cis-isomer 33, the corresponding 

protons resonated as an apparent triplet (J = 13.0 Hz) at dH 3.09 and a very 

broadened resonance centred on dH 3.40.  
These model studies have therefore established that the cyclisa-tions 

shown in Scheme 2 are indeed viable, despite the presence of two albeit 
protected nitrogen atoms. Given due attention to the stability or otherwise of 
additional substituents, this combination of Mitsunobu coupling or, in the 
future, other CAN formation methods and the acid-catalysed cyclisation 
should provide viable and regiospeciÞc access to many types of pyrazolidines. 
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9. Dunford, D. G.; Chaudhry, F.; Kariuki, B.; Knight, D. W.; Wheeler, R. C. Tetrahedron 

Lett. 2012, 53, 7006Ð7009. and references therein.  
10. When temperatures above 45 LC were required, dichloroethane, bp. 84 LC, was used. As 

concentrated sulfuric acid can only be largely suspended in dichloromethane, measuring 
ÔstandardizedÕ mixtures was also quite inaccurate.  

11. Typically, 0.5 equiv of acid was used with respect to the precursor hydrazine. Reactions 
were carried out in anhydrous dichloromethane under dry nitrogen. Trißic acid was 
measured by syringe and added to the solution. Concentrated sulfuric acid was measured 
dropwise by glass pipette; typically 30 mg (two drops) was added to 4 mL of dry 
dichloromethane. 

12.  X-ray analysis of pyrazolidine 24: C14H20N2O4S, Mr = 312.38,   
Triclinic, P1, 

a = 8.2711(4) •, b = 9.5914(6) •, c = 10.2058(6) •, a = 106.254(3)L, b = 95.929 
(3)L,  c = 95.034(3)L,  V = 767.33(8) •3,  Z = 2, DX = 1.352 Mg m 3, k(Mo  Ka) 
= 0.71073 •, l = 0.228 cm 1, F(0 0 0) = 332, T = 160(2) K, crystal 
size = 0.30   0.30   0.12 mm3, Reßections collected = 5124, Independent 
reßections = 3689, 2555 with Fo > 4 s (Fo), Rint = 0.0462, Final R1 = 0.0892, 
wR2 = 0.1832 for I > 2sigma(I), and R1 = 0.1267, wR2 = 0.199 for all data. The CIF Þles 
have been deposit at Cambridge Crystallographic Deposit Center with registry number 
CCDC 888756. 

 
In the crystal, the toluene and methyl ester groups adopt a cis conformation. The other face 
of the phenyl ring overlaps partly with a ring from a neighbouring molecule resulting in 
intermolecular pÐp interaction. 

13.  X-ray analysis of pyrazolidine 33: C19H28N2O4S, Mr = 380.49,   
Triclinic, P1, 

a = 8.8933(6) •, b = 10.0576(6) •, c = 11.9571(5) •, a = 73.913(3)L, b = 73.257 
(3)L, c = 80.234(3)L, V = 979.36(10) •3, Z = 2, DX = 1.290 Mg m 3, k(Mo Ka) 
= 0.71073 •, l = 0.191 cm 1, F(0 0 0) = 408, T = 160(2) K, crystal 
size = 0.35   0.25   0.09 mm3, Reßections collected = 6520, Independent 
reßections = 4575, 2410 with Fo > 4 s (Fo), Rint = 0.0598, Final R1 = 0.0914, 
wR2 = 0.1806 for I > 2sigma(I), and R1 = 0.1887, wR2 = 0.2244 for all data. The 
CIF Þles have been deposit at Cambridge Crystallographic Deposit Center with  
registry number CCDC 888757.  
The toluenesulfonyl and methyl ester groups adopt a trans conformation in the crystal. The 
phenyl ring is involved in pÐp interactions through partial overlap with a ring from a 
neighbouring molecule. The closest contact made by the opposite face of the ring is 
through the tertiary hydrogen, with an intramolecular CÐH ring-centroid interaction of ca. 
2.7 •. 
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