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Systems of differential-algebraic equation (DAEs) arise from a variety of engi-

neering disciplines and are routinely generated by simulation and modeling software.

Such systems can be large, sparse, nonlinear in highest derivatives, and of high differ-

entiation index. Before a numerical solution method is applied, usually some struc-

tural analysis (SA) algorithm is used as a preprocessing tool to determine the (struc-

tural) index, number of degrees of freedom (DOF), constraints, and a set of variables

and derivatives that need initial values. Such structural information can be useful for

applying index reduction methods [8, 11] or regularization techniques [9, 23], so that

we can call a standard DAE numerical code on a reduced DAE of differentiation in-

dex 1 or a regularized DAE, respectively. Some Taylor series methods [1, 2, 14, 15]

are also built on SA.

Pantelides’s SA algorithm [17] is widely used. Pryce’s Σ -method [19] is equiv-

alent to it, but can also handle high-order systems. Both SA methods produce the

same structural index when applied to first-order systems [19, Theorem 5.8]. When

SA succeeds, in the sense that it produces a nonsingular Jacobian, the structural in-

dex is an upper bound for the differentiation index, and often they are the same [19].

However, the structural index can be arbitrarily higher than the differentiation index,

for example, on Reißig’s family of DAEs of differentiation index 1 [21]. It has been

shown in [26, §7.3] and [13, §5.2.5] that simple manipulations (similar to the linear

combination techniques introduced in this article) on equations or variables can make

the Σ -method report the correct (structural) index 1 on these DAEs.

Although the Σ -method succeeds on many problems of practical interest, it can

fail—hence Pantelides’s algorithm fails as well—on simple, solvable DAEs, produc-

ing an identically singular System Jacobian. Attempts to resolve SA’s failures were

made in existing literature. For example, Chowdhry et al. [6] propose the symbolic

numeric index analysis, which handles first-order linear constant coefficient DAEs

and some first-order DAEs where variables occur nonlinearly, but not all. Nor can

their method detect complex variable substitutions or symbolic simplifications [6].

Scholz and Steinbrecher develop a structural-algebraic method to fix SA’s failures on

coupled systems [24]. During the remedy process where they take a linear combina-

tion of the algebraic equations, they also regularize the system so that the resulting

DAE can be solved by a standard solver.

In this article, we investigate the Σ -method’s failures and present two conversion

methods that reformulate such a DAE in general form into an equivalent problem

with the same solution (locally). After each conversion, provided some conditions are

satisfied, the value of the signature matrix is guaranteed to decrease. We conjecture

that this decrease usually leads to a better formulation of a problem, so that the SA

may produce a (generically) nonsingular System Jacobian and hence succeed.

Compared to Scholz and Steinbrecher’s approach in [24], our methods target a

broader class of DAEs and hence are not limited to coupled systems. During a con-

version, we also take into account the equations involving derivatives, not just the

algebraic equations. Our expression substitution method can fix failure cases which

taking a linear combination of equations cannot fix well; see Example 4.2 and §5.2.

We also point out the key to remedying SA’s failures is to reduce the value of a sig-

nature matrix.
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The rest of this article is organized as follows. Section 2 summarizes the Σ -

method theory and the notation we use throughout this article. Section 3 describes

this SA’s failures. Section 4 introduces the conversion methods and illustrates them

with simple examples. Section 5 presents further two examples illustrating our meth-

ods and an example where neither method is applicable. Section 6 gives conclusions.

2 Summary of the Σ -method.

We consider DAEs in the general form

fi( t, the x j and derivatives of them) = 0, i = 1:n , (2.1)

where1 the x j(t), j = 1:n, are state variables that are functions of an independent

variable t, usually regarded as time.

We let σ (x j,w) denote the order of the highest derivative to which variable x j

occurs in w, or −∞ if neither x j nor its derivatives2 occur in w. Here w can be a

scalar, a vector, or a matrix, depending on context.

The Σ -method constructs for a DAE (2.1) an n× n signature matrix Σ , whose

(i, j) entry is σi j := σ (x j, fi). A highest-value transversal (HVT) of Σ is a set T of n

positions (i, j) with one entry in each row and each column of Σ , such that the sum

of these entries is maximized. This sum is the value of Σ , written Val(Σ). If Val(Σ) is

finite, then the DAE is structurally well posed (SWP); otherwise, Val(Σ) = −∞ and

the DAE is structurally ill posed (SIP). In the SIP case, there exists no one-to-one

correspondence between equations and variables.

We henceforth consider the SWP case. Using a HVT, we find 2n integers c :=
(c1, . . . ,cn) and d := (d1, . . . ,dn) associated with the equations and variables of (2.1),

respectively. These integers satisfy

ci ≥ 0 for all i; d j− ci ≥ σi j for all i, j with equality on a HVT . (2.2)

We refer to such c and d, written as a pair (c;d), as a valid offset pair. It is not unique,

but there exists a unique elementwise smallest solution (c;d) of (2.2), which we refer

to as the canonical offset pair [19].

Any valid (c;d) can be used to prescribe a stage-by-stage solution scheme for

solving DAEs by a Taylor series method. The derivatives of the solution are computed

in stages k = kd ,kd +1, . . . ,0,1, . . . where kd :=−max j d j. At each stage k, we solve

a system comprising

0 = f
(ci+k)
i for all i such that ci + k ≥ 0 (2.3)

for derivatives

x
(d j+k)
j for all j such that d j + k ≥ 0 , (2.4)

1 The colon notation p :q for integers p,q denotes either the unordered set or the enumerated list of

integers i with p≤ i≤ q, depending on context.
2 Throughout this article, “derivatives of x j” include x j itself as its 0th derivative: x

(l)
j = x j if l = 0.
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using x
(<d j+k)
j , j = 1:n, found in the previous stages. Here z(<r) is a short notation

for z,z′, . . . ,z(r−1), and z(≤r) includes z(<r) and z(r).

If the solution scheme (2.3–2.4) can be carried out for stages k = kd :0, and the

derivatives x
(≤d j)
j , j = 1:n, can be uniquely determined, then we say the solution

scheme and the Σ -method succeed. Otherwise we say our SA fails, in the sense that

the Jacobian used to solve (2.3) at some stage k ∈ kd :0 does not have full row rank.

The Jacobian used to solve (2.3) for stages k≥ 0 is called the System Jacobian of

(2.1), an n×n matrix J(c;d) := (Ji j) defined by

Ji j :=
∂ f

(ci)
i

∂x
(d j)
j

=
∂ fi

∂x
(d j−ci)
j

=





∂ fi

∂x
(σi j)

j

if d j− ci = σi j, and

0 otherwise ,
(2.5)

with i, j = 1:n. The second “=” in (2.5) results from Griewank’s Lemma [7] (see

later Lemma 4.1), and the third “=” follows from (2.2).

Although a different (c;d) produces a different solution scheme (2.3–2.4) and

generally a different J(c;d), all J’s nevertheless share the same determinant [14]. If

one J is nonsingular and hence all J’s are, then there exists (locally) a unique solution

at a consistent point, as described in [19]. The SA now uses the canonical (c;d) to de-

termine the structural index νS; it is maxi ci+1 if some d j = 0, and maxi ci otherwise.

The number of degrees of freedom (DOF) is Val(Σ) = ∑(i, j)∈T σi j = ∑ j d j−∑i ci.

Example 2.1 We illustrate3 the above concepts with the simple pendulum, a DAE of

differentiation index 3.

0 = f1 = x′′+ xλ

0 = f2 = y′′+ yλ −G

0 = f3 = x2 + y2− ℓ2

Σ =

x y λ ci[ ]
f1 2• 0◦ 0

f2 2◦ 0• 0

f3 0◦ 0• 2

d j 2 2 0

J =

x′′ y′′ λ[ ]
f1 1 x

f2 1 y

f ′′3 2x 2y

(2.6)

The state variables are x,y, and λ ; G is gravity and ℓ> 0 is the length of the pendulum.

There are two HVTs of Σ , marked with • and ◦, respectively. A blank in Σ denotes

−∞, and a blank in J denotes 0. The row and column labels in J show equations and

variables differentiated to order ci and d j, respectively.

Now that det(J) = −2(x2 + y2) = −2ℓ2 6= 0, the SA succeeds. The structural

index is νS = mini ci + 1 = 3, which equals the differentiation index. The pendulum

has Val(Σ) = ∑ j d j−∑i ci = 2 DOF.

3 Structural analysis’s failure.

In the following two subsections, we identify respectively the two causes of SA’s fail-

ures, which are not well distinguished in existing literature. One cause is due to not

3 When we present a DAE example, we also present its signature matrix Σ , the canonical offset pair

(c;d), and the associated System Jacobian J.
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doing symbolic simplifications, and can be identified by a structurally singular Jaco-

bian [14]. This failure is “easy” to fix, provided appropriate computer algebra oper-

ations can remove derivatives that occur of higher order than they should. The other

cause of failures is more subtle and obscure, for the System Jacobian is identically

singular but structurally nonsingular. Our methods fix the latter case in Section 4.

We use u 6≡ 0 to mean that u is not identically zero for all values of the variables

occurring in the expressions that define u. This u may be a scalar, a vector, or a matrix,

depending on context. Similarly, we use det(A) 6≡ 0 to mean that a matrix A is not

identically singular, or generically nonsingular.

3.1 Symbolic cancellation may cause failure.

In the encoding of a DAE, an equation f1 may be, for instance, x2 +(x1x2)
′− x′1x2

or x1 + x2 + cos2 x′1 + sin2 x′1. We say a symbolic cancellation occurs in f1, because

these expressions simplify to x2 + x1x′2 and x1 + x2 +1, respectively. That is, f1 does

not truly depend on x′1. We note that the problem of detecting such true dependence

(which is equivalent to recognizing zero) in any expressions is unsolvable in gen-

eral [22].

Codes like DAETS [15] and DAESA [16, 20], which are implemented through op-

erator overloading and do not perform symbolic simplifications, compute a formal σ̃i j

instead of a true one when constructing the signature matrix. For example, both codes

would find for f1 above the formal σ̃11 = 1 instead of the true σ11 = 0. By a formal

σ̃i j, we mean that x
(σ̃i j)
j appears as a highest-order derivative (HOD) in the encoding

of an equation fi, while a true σi j means that fi is not constant with respect to a HOD

x
(σi j)
j and thus truly depends on it—equivalently ∂ fi/∂x

(σi j)
j 6≡ 0. Obviously σ̃i j ≥σi j.

For a formally computed Σ̃ = (σ̃i j), also a valid offset pair (c̃, d̃) is found and a

System Jacobian J̃ is derived from (c̃, d̃) and Σ̃ by (2.5). Suppose symbolic cancella-

tions happen in some fi and make σ̃i j > σi j. Then fi does not truly depend on x
(σ̃i j)
j ,

and J̃i j is identically zero by (2.5), whether d̃ j− c̃i = σ̃i j holds or not. In this case, J̃

has more identically zero entries than does a J based on the true Σ and (c;d), hence

being more likely structurally singular.

Overestimating some σi j of Σ may seem dangerous to the SA’s success. Fortu-

nately, modern modeling environments usually perform simplifications on problem

formulation [5, 10, 25]. They can reduce the occurrence of a structurally singular J,

when SA is applied. Theorems 5.1 and 5.2 in [14] also ensure that, if Val(Σ̃)=Val(Σ)

and det(J) 6≡ 0, then an offset pair (c̃, d̃) of the formal Σ̃ is also valid for Σ , and

det(J̃) = det(J) 6≡ 0. In this case, such an overestimation would treat some identi-

cally zero entries of J as nonzeros and simply make the solution scheme slightly

less efficient; see [14, Examples 5.1 and 5.2]. By the same theorems, in the case

Val(Σ̃)> Val(Σ), J̃ must be structurally singular.
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3.2 SA can fail when J is structurally nonsingular.

Hereafter we focus on the case where an identically singular System Jacobian J is

structurally nonsingular—that is, there exists a HVT T of Σ such that Ji j 6≡ 0 for all

(i, j) ∈ T . We shall simply say “identically singular” to refer to this case.

When J is identically singular, the DAE may be still solvable, but the way its

equations are written may not properly reflect its structure. For example, if the pen-

dulum DAE (2.6) f = 0 is equivalently formulated as Mf = 0 with M being a random

nonsingular constant 3×3 matrix, then each row of Σ is [2,2,0], the canonical offset

pair is (c;d) = (0,0,0;2,2,0), and the resulting J is identically singular [13, §5.2.3].

Example 3.1 We illustrate a failure case with the following DAE of differentiation

index 2 [3, p. 23]. Throughout this article we shall use hi(t) for driving functions.

0 = f1 = x′+ ty′+h1(t)

0 = f2 = x + ty +h2(t)
Σ =

x y ci[ ]
f1 1• 1 0

f2 0 0• 1

d j 1 1

J =

x′ y′[ ]
f1 1 t

f ′2 1 t

The SA fails since J is identically singular but not structurally singular.

One simple fix is to replace f1 by f 1 = − f1 + f ′2, which results in the algebraic

system (hence of differentiation index 1) below; cf. [11, Example 5].

0 = f 1 = y−h1(t)+h′2(t)

0 = f2 = x+ ty+h2(t)
Σ =

x y ci[ ]
f 1 0• 0

f2 0• 0 0

d j 0 0

J =

x y[ ]
f 1 1

f2 1 t

The SA succeeds and we notice Val(Σ) = 0< 1=Val(Σ). This is a simple illustration

of our linear combination method in §4.1.

Another simple fix is to introduce a variable z = x+ ty and to eliminate x in f1

and f2, leading to a nonsingular J.

0 = f 1 =−y + z′+h1(t)

0 = f 2 = z +h2(t)
Σ =

y z ci[ ]
f 1 0• 1 0

f 2 0• 1

d j 0 1

J =

y z′[ ]
f 1 −1 1

f
′
2 1

This fix also gives Val(Σ) = 0 < 1 = Val(Σ), and is a simple illustration of our ex-

pression substitution method in §4.2.

A conjecture in [13, §5.2.3] attributed the SA’s failure to a DAE “being not sparse

enough to reflect its underlying mathematical structure” (sparsity refers to occurrence

of only a few derivatives in each equation). However, as we shall see later, decreas-

ing Val(Σ) may be the key to deriving a better problem formulation of a DAE. Our

conversion methods aim to do so, and are the main contribution of this article.
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4 Conversion methods.

We present two conversion methods that attempt to fix SA’s failures in a systematic

way. The first method is based on replacing an existing equation by a linear com-

bination of some equations and derivatives of them. We call this method the linear

combination (LC) method and describe it in §4.1. The second method is based on sub-

stituting newly introduced variables for some expressions and enlarging the system.

We call this method the expression substitution (ES) method and describe it in §4.2.

Given a DAE (2.1), we assume henceforth that Val(Σ) is finite and that the asso-

ciated System Jacobian J is identically singular but structurally nonsingular. We also

assume that the equations and variables in (2.1) are sufficiently differentiable, so that

our methods fit into the Σ -method theory; see Theorem 4.2 in [19] and §3 in [14].

After a conversion, we denote the corresponding signature matrix as Σ and Sys-

tem Jacobian as J. If Val(Σ) is finite and J is identically singular still, then we can

perform another conversion, using either of the methods, provided the corresponding

conditions are satisfied.

Suppose a sequence of conversions produces a solvable DAE with Val(Σ)≥ 0 and

a generically nonsingular J. Since each conversion reduces the value of the signature

matrix by at least one, the total number of conversions does not exceed the value of

the original signature matrix. If the resulting system is SIP after a conversion, that is,

Val(Σ) =−∞, then we say the original DAE is ill posed.

4.1 Linear combination method.

Let u := [u1, . . . ,un]
T 6≡ 0 be a nonzero n-vector function in the cokernel of J, that is,

u∈ coker(J) or equivalently JT u= 0. We consider J and u as expressions comprising

t and derivatives of the x j(t)’s, although in fact they are generally functions evolving

with t.

Lemma 4.1 (Griewank’s Lemma) [7] Let w be a function of t, the x j(t), j = 1:n,

and derivatives of them. Denote w(p) = dpw/dt p, where p≥ 0. If σ (x j,w)≤ q, then

∂w

∂x
(q)
j

=
∂w′

∂x
(q+1)
j

= · · ·=
∂w(p)

∂x
(q+p)
j

. (4.1)

Denote

I := { i | ui 6≡ 0}, c := min
i∈I

ci, and L :=
{

i ∈ I | ci = c
}
. (4.2)

We give two lemmas and use them to prove Theorem 4.1, on which the LC method

is based.

Lemma 4.2 Assume that u ∈ coker(J) and u 6≡ 0. If

σ (x j,u)< d j− c, for all j = 1:n , (4.3)
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then

σ
(
x j, f

)
< d j− c, for all j = 1:n , (4.4)

where

f := ∑
i∈I

ui f
(ci−c)
i . (4.5)

Proof The formula for c gives ci− c ≥ 0 for all i ∈ I. By (2.2), σ (x j, fi) = σi j ≤
d j− ci. Applying Griewank’s Lemma (4.1) to (2.5) with w = fi and q = ci− c yields

Ji j =
∂ fi

∂x
(d j−ci)
j

=
∂ f

(ci−c)
i

∂x
(d j−ci+ci−c)
j

=
∂ f

(ci−c)
i

∂x
(d j−c)
j

for i ∈ I and all j = 1:n . (4.6)

This shows that such an f
(ci−c)
i depends on x

(≤d j−c)
j only. Then for all j = 1:n,

∂ f

∂x
(d j−c)
j

=
∂
(

∑i∈I ui f
(ci−c)
i

)

∂x
(d j−c)
j

by the definition of f in (4.5)

= ∑
i∈I

ui

∂ f
(ci−c)
i

∂x
(d j−c)
j

= ∑
i∈I

uiJi j by (4.3) and then (4.6)

= (JT u) j = 0 since u ∈ coker(J) .

Hence f depends on x
(<d j−c)
j only, for all j—this results in the inequality in (4.4). ⊓⊔

The following lemma is straightforward to prove.

Lemma 4.3 Assume that an n×n signature matrix Σ has a finite Val(Σ) and a valid

offset pair (c;d). Given a row of index l, if we replace in row l all entries σl j by

σ l j < d j− cl , then the resulting signature matrix Σ satisfies Val(Σ)< Val(Σ).

Theorem 4.1 Assume that a DAE has a finite Val(Σ), a valid offset pair (c;d), and

an identically singular J. Assume a nonzero vector u ∈ coker(J). Let I, c, and L be

as defined in (4.2). If u satisfies (4.3) and we replace fl by f l = f in (4.5) for a

given l ∈ L, then the resulting signature matrix Σ satisfies Val(Σ)< Val(Σ), and the

converted DAE and the original one have the same solution (if any) provided ul 6= 0.

We call (4.3) the condition for the LC method. The strict decrease Val(Σ) <
Val(Σ) results from Lemmas 4.2 and 4.3. The last claim can be shown by using (4.2)

and (4.5): we can recover the replaced equation fl =
(

f l−∑i∈I\{l} ui f
(ci−c)
i

)/
ul(t)

if ul(t) 6= 0 at t. Since fl = 0 if and only if f l = 0, both DAEs have the same solution

at t, and we say they are (locally) equivalent. The reader is referred to [26, §4.1] for

details on the equivalence of DAEs.
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Example 4.1 We illustrate the LC method with the following simple example:

0 = f1 =−x′1 + x3

0 = f2 =−x′2 + x4

0 = f3 = x1x2 +h1(t)

0 = f4 = x1x4 + x2x3 + x1 + x2 +h2(t) .

Σ =

x1 x2 x3 x4 ci





f1 1• 0 0

f2 1 0• 0

f3 0 0• 1

f4 0 0 0• 0 0

d j 1 1 0 0

J =

x′1 x′2 x3 x4





f1 −1 1

f2 −1 1

f ′3 x2 x1

f4 x2 x1

A shaded entry σi j in Σ denotes a position (i, j) where d j− ci > σi j ≥ 0 and hence

Ji j ≡ 0 by the formula (2.5) for J. The SA fails here since det(J)≡ 0.

We choose u = [x2,x1,1,−1]T ∈ coker(J). Then (4.2) becomes

I =
{

i | ui 6≡ 0
}
=
{

1:4
}
, c = min

i∈I
ci = 0, L =

{
i ∈ I | ci = c

}
=
{

1,2,4
}
.

Checking the condition (4.3) is not difficult; for example, σ (x1,u) = 0 < 1 = d1− c.

We pick l = 4∈ L (we shall reason why this choice is desirable) and replace f4 by

f 4 = ∑
i∈I

ui f
(ci−c)
i = x2 f1 + x1 f2 + f ′3− f4 =−x1− x2 +h′1(t)−h2(t) .

The resulting DAE is 0 = ( f1, f2, f3, f 4).

Σ =

x1 x2 x3 x4 ci





f1 1 0• 0

f2 1 0• 0

f3 0 0• 1

f 4 0• 0 1

d j 1 1 0 0

J =

x′1 x′2 x3 x4





f1 −1 1

f2 −1 1

f ′3 x2 x1

f
′
4 −1 −1

Now Val(Σ) = 0 < 1 = Val(Σ). The SA succeeds whenever det(J) = x2− x1 6= 0.

As the value of ul(t) may also evolve with t during integration, it would be desir-

able to select a ul such that the equivalence between both the original and converted

DAEs is global, in the sense that they always have the same solution (if any). In this

way we can stick to solving the converted system. Hence, we wish to select, when-

ever possible, an l ∈ L such that ul would be an expression never becoming zero, e.g.,

a nonzero constant, x2
1 +1, or 2+ cosx2.

Since determining whether an expression is identically zero is unsolvable in gen-

eral [22], we consider a (nonzero) constant ul as the most preferable choice among

all l ∈ L, and derive a set L :=
{

l ∈ L | ul is constant
}

that contains all l for such ul .

We summarize the steps of the LC method.

Step 1. Obtain a symbolic form of J.

Step 2. Find a vector u ∈ coker(J) and derive I, c, and L as defined in (4.2).
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Step 3. Check condition (4.3). If it is not satisfied, then set L← /0 to mean that the

LC method is not applicable; otherwise proceed to Step 4.

Step 4. L←
{

l ∈ L | ul is constant
}

. If L 6= /0, then choose l ∈ L; otherwise l ∈ L.

Step 5. Replace fl by f l = f as defined in (4.5).

We use L and L to decide a desirable conversion method; see Table 4.1 in §4.3.

We show below that the LC method cannot fix the following (artificially constructed)

DAE (4.7) because the condition (4.3) is not satisfied.

Example 4.2 Consider 0 = ( f1, f2), where

f1 = x1 + e−x′1−x2x′′2 +h1(t)

f2 = x1 + x2x′2 + x2
2 +h2(t)

Σ =

x1 x2 ci[ ]
f1 1• 2 0

f2 0 1• 1

d j 1 2

J=

x′1 x′′2[ ]
f1 −α −αx2

f ′2 1 x2

, (4.7)

and α = e−x′1−x2x′′2 . Obviously SA fails.

Take u = [α−1,1]T =
[
ex′1+x2x′′2 ,1

]T
∈ coker(J). Using (4.2) gives I =

{
1,2

}
,

c = 0, and L =
{

1
}

. The LC condition (4.3) is violated since σ (x j,u) = d j− c for

j = 1,2. If we choose l = 1 ∈ L and replace f1 by

f 1 = u1 f1 +u2 f ′2 = β + x′1 + x2x′′2 +(x′2)
2 +2x2x′2 +h′2(t) ,

where β = ex′1+x2x′′2 (x1 + h1(t)) + 1, then SA fails still on the resulting DAE 0 =(
f 1, f2

)
with Val(Σ) = Val(Σ) = 2 and det(J)≡ 0.

Σ =

x1 x2 ci[ ]
f 1 1• 2 0

f2 0 1• 1

d j 1 2

J =

x′1 x′′2[ ]
f 1 β βx2

f ′2 1 x2

We shall show in Example 4.3 that the ES method can reduce Val(Σ) and fix (4.7).

4.2 Expression substitution method.

Let v := [v1, . . . ,vn]
T 6≡ 0 be a nonzero n-vector function in the kernel of J, that is,

v ∈ ker(J), or equivalently Jv = 0. Denote

J :=
{

j | v j 6≡ 0
}
, s := |J| ,

M :=
{

i | d j− ci = σi j for some j ∈ J
}
, and c := max

i∈M
ci .

(4.8)

We choose an l ∈ J, and introduce s−1 new variables

y j := x
(d j−c)
j −

v j

vl

· x
(dl−c)
l for all j ∈ J \

{
l
}
. (4.9)

In each fi, we

replace every x
(σi j)
j = x

(d j−ci)
j with j ∈ J \

{
l
}

by
(

y j +
v j

vl

· x
(dl−c)
l

)(c−ci)
. (4.10)
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From the formula (4.8) for M, these replacements (or substitutions) occur only in fi’s

with i ∈M, because at least one equality d j− ci = σi j must hold for some j ∈ J.

After the replacements, denote each equation by f i (for all i /∈ M, f i and fi are

the same). Equivalent to (4.9) are s−1 equations

0 = g j :=−y j + x
(d j−c)
j −

v j

vl

· x
(dl−c)
l for all j ∈ J \

{
l
}

(4.11)

that prescribe the substitutions in (4.10). Appending (4.11) to the f i’s results in an

enlarged DAE consisting of

equations 0 =
(

f 1, . . . , f n

)
and 0 = g j for all j ∈ J \

{
l
}

in variables x1, . . . ,xn and y j for all j ∈ J \
{

l
}
.

The ES method is based on the following theorem.

Theorem 4.2 Assume that a DAE has a finite Val(Σ), a valid offset pair (c;d), and

an identically singular J. Assume that a nonzero vector v ∈ ker(J). Let J, s, and c be

as defined in (4.8). Assume that

σ (x j,v)

{
< d j− c if j ∈ J

≤ d j− c otherwise ,
and d j− c≥ 0 for all j ∈ J . (4.12)

For a given l ∈ J, if we

1) append s−1 equations g j, for all j ∈ J \
{

l
}

, as defined in (4.11) and

2) perform substitutions in fi, for all i = 1:n, as described by (4.10),

then the resulting signature matrix Σ satisfies Val(Σ) < Val(Σ), and the converted

DAE and the original one have the same solution (if any) provided vl 6= 0.

We call (4.12) the conditions for the ES method.

Example 4.3 We illustrate the ES method on the DAE (4.7). Suppose we choose

v = [x2,−1]T ∈ ker(J). Then (4.8) becomes

J =
{

1,2
}
, s = |J|= 2, M =

{
1,2

}
, and c = max

i∈M
ci = c2 = 1 .

We can apply the ES method as the conditions (4.12) hold:

σ (x1,v) =−∞ ≤ 1−1−1 = d1− c−1, d1− c = 1−1≥ 0 ,

σ (x2,v) = 0 ≤ 2−1−1 = d2− c−1, d2− c = 2−1≥ 0 .

We choose l = 2 ∈ J. Now J \
{

l
}
=
{

1
}

. Using (4.11), we append the equation

0 = g1 =−y1 + x
(d1−c)
1 −

v1

v2
· x

(d2−c)
2 =−y1 + x1 + x2x′2 ,
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which meanwhile defines the newly introduced variable y1 corresponding to x1. Then

we replace x′1 by (y1− x2x′2)
′ in f1 to obtain f 1, and replace x1 by y1− x2x′2 in f2 to

obtain f 2. The resulting DAE 0 = ( f 1, f 2,g1) and its SA results are shown below.

f 1 = x1 + e−y′1+x′22 +h1(t)

f 2 = y1 + x2
2 +h2(t)

g1 =−y1 + x1 + x2x′2

Σ =

x1 x2 y1 ci





f 1 0 1 1• 0

f 2 0• 0 1

g1 0• 1 0 0

d j 0 1 1

J =

x1 x′2 y′1





f 1 1 2x′2γ −γ

f
′
2 2x2 1

g1 1 x2

Here γ = e−y′1+x′22 . Now Val(Σ) = 1 < 2 = Val(Σ). The SA succeeds at all points

where det(J) = 2γ(x2 + x′2)− x2 6= 0.

We prove a lemma related to Theorem 4.2, using the following assumptions.

(a) Without loss of generality, we assume that the entries v j 6≡ 0 are in the first s

positions of v, that is, v = [v1, . . . ,vs,0, . . . ,0]
T . Then J = {1, . . . ,s} in (4.8).

(b) We introduce one more variable yl = x
(dl−c)
l for the chosen l ∈ J, and append

correspondingly one more equation 0 = gl =−yl + x
(dl−c)
l .

Lemma 4.4 Let (c;d) = (c1, . . . ,cn;d1, . . . ,dn) be a valid offset pair of Σ . Let c̃ and

d̃ be the two (n+ s)-vectors defined as

d̃ j :=

{
d j if j = 1:n

c if j = n+1:n+ s
and c̃i :=

{
ci if i = 1:n

c if i = n+1:n+ s ,
(4.13)

where c is as defined (4.8). Then the signature matrix Σ of the resulting DAE from the

ES method has the form in Figure 4.1.

The proof of this lemma is rather technical; we present it in Appendix A. Using

Lemma 4.4, we prove Theorem 4.2.

Proof We prove first the strict decrease Val(Σ)< Val(Σ). Let T be a HVT of Σ . By

Lemma 4.4,

Val(Σ) = ∑
(i, j)∈T

σ i j ≤ ∑
(i, j)∈T

(d̃ j− c̃i) since d̃ j− c̃i ≥ σ i j for all i, j

=
n+s

∑
j=1

d̃ j−
n+s

∑
i=1

c̃i =
n

∑
j=1

d j−
n

∑
i=1

ci = Val(Σ) by (4.13) .

We assert Val(Σ)< Val(Σ), and show that an equality leads to a contradiction.

Assume that Val(Σ) = Val(Σ). Then there exists a transversal T of Σ such that

d̃ j− c̃i = σ i j >−∞ for all (i, j) ∈ T . (4.14)

Consider (i1,1), . . . ,(is,s) ∈ T for the first s columns. Since the yl column has only

one finite entry σn+l,n+l = 0, position (n+ l,n+ l) is in T , and thus only s−1 numbers

of i1, . . . , is are greater than n, leaving at least one of them in 1:n. In other words,
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x1 · · · xl−1 xl xl+1 · · · xs xs+1 · · · xn y1 · · · yl−1 yl yl+1 · · · ys c̃i







f 1 −∞ c1

.

.

. < ≤ ≤
.
.
. ≤

.

.

.

f n −∞ cn

g1 =
<

=

< ≤
0 c

.

.

.
. . .

.

.

.
. . . −∞

.

.

.

gl = −∞ · · ·−∞ 0 c

.

.

. <
.
.
.

. . .
≤ −∞

. . .
.
.
.

gs =

<
= 0 c

d̃ j d1 · · · dl−1 dl dl+1 · · · ds ds+1 · · · dn c · · · c c c · · · c

Fig. 4.1: The form of Σ for the resulting DAE by the ES method, assuming J =
{1, . . . ,s} in (4.8). The <, ≤, and = mean the relations between σ i j and d̃ j− c̃i. For

instance, every σ i j whose (i, j) position is in the region marked with “≤” is≤ d̃ j− c̃i.

there exists a position (r, j) ∈ T with 1 ≤ r ≤ n and 1 ≤ j ≤ s in the “<” region in

Figure 4.1. Hence d̃ j − c̃r > σ r j, which yields a contradiction of (4.14). Therefore

Val(Σ) < Val(Σ). Finally we remove the yl column and its matched row gl . The

resulting signature matrix still has Val(Σ), since (n+ l,n+ l) ∈ T and σn+l,n+l = 0.

If vl 6= 0, then y j in (4.9) is well defined. Both the converted DAE and the orig-

inal one have the same solution in that we can recover the latter by reverting all

expression substitutions occurring in f i and removing all introduced variables y j and

equations g j. ⊓⊔

Choosing a vl in the ES method is similar to choosing a ul in the LC method. We

can introduce well-defined y j in (4.9) and perform the conversion process for l ∈ J

only if vl(t) 6= 0 at t, whence the original and converted DAEs are locally equivalent;

see details in [26, §4.2]. Therefore, it is again more desirable to choose a variable

index l ∈ J for which vl is a (nonzero) constant, so that global equivalence is achieved.

We hence define a set J :=
{

l ∈ J | vl is constant
}

, and whenever it is nonempty, we

choose an l in it. We summarize the steps of the ES method below.

Step 1. Obtain a symbolic form of J.

Step 2. Find a vector v ∈ ker(J) and derive J, s, M, c as defined in (4.8).

Step 3. Check conditions (4.12). If any of them is not satisfied, then set J ← /0 to

mean that the ES method is not applicable; otherwise proceed to Step 4.

Step 4. J ←
{

l ∈ J | vl is constant
}

. If J 6= /0, then choose an l ∈ J; otherwise an

l ∈ J.

Step 5. For each j ∈ J \
{

l
}

, append the corresponding equation g j defined in (4.11).

Step 6. Replace each x
(d j−ci)
j in fi by

(
y j +(v j/vl) · x

(dl−c)
l

)(c−ci), for all i ∈M and

all j ∈ J \
{

l
}

.
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Step 7. (Optional) For consistence, rename variables y j, j ∈ J \
{

l
}

, to xn+1, . . .,
xn+s−1, and rename equations g j, j ∈ J \

{
l
}

, to fn+1, . . . , fn+s−1.

The sets J and J are used to decide a desirable conversion method; see §4.3 below.

4.3 Which method to choose?

We present our rationale for choosing a conversion method in Table 4.1 and base

our choice on the following observations. If both methods are applicable, then we

consider as priority the equivalence between the original and the converted DAEs,

and hence wish to perform a conversion that ensures global equivalence. This is done

by choosing a nonzero constant ul for the LC method or vl for the ES method; re-

call discussions in §4.1 and §4.2. In the case where both methods guarantee global

equivalence or neither of them does, we choose the LC method, since it is simpler to

perform and maintains the problem size.

ES method

J 6= /0 J = /0 and J 6= /0 J = /0

LC method

L 6= /0 LC LC LC

L = /0 and L 6= /0 ES LC LC

L = /0 ES ES –

Table 4.1: Rationale for choosing a conversion method.

5 More examples.

We show in §5.1 how to iterate the LC method on a linear constant coefficient DAE,

illustrate in §5.2 the ES method with a modified pendulum problem by a linear trans-

formation of the state variables, and present in §5.3 a DAE where neither of conver-

sion methods is applicable, while a conversion can be easily found by observation.

5.1 A linear constant coefficient DAE.

Consider a linear constant coefficient DAE [24, Example 3]4, on which SA fails.

0 = f1 =−x′1 + x3 +h1(t)

0 = f2 =−x′2 + x4 +h2(t)

0 = f3 = x2 + x3 + x4 +h3(t)

0 = f4 =−x1 + x3 + x4 +h4(t) .

4 We consider it with parameters β = ε = 1, α1 = α2 = δ = 1, and γ =−1, and we use subscripts for

parameter indices. The equations g1,g2 are renamed f3, f4 and the variables y1,y2 are renamed x3,x4.
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Σ0 =

x1 x2 x3 x4 ci







f1 1• 0 0

f2 1• 0 0

f3 0 0• 0 0

f4 0 0 0• 0

d j 1 1 0 0

J0 =

x′1 x′2 x3 x4





f1 −1 1

f2 −1 1

f3 1 1

f4 1 1

We use a subscript in Σ0 and J0 to mean an iteration number.

We first find u = [0,0,−1,1]T ∈ coker(J0) and derive L = L =
{

3,4
}

. Obviously

the LC condition (4.3) is satisfied. We choose l = 3 and replace f3 by f 3 =− f3 + f4.

Σ1 =

x1 x2 x3 x4 ci





f1 1• 0 0

f2 1 0• 0

f 3 0 0• 1

f4 0 0• 0 0

d j 1 1 0 0

J1 =

x′1 x′2 x3 x4





f1 −1 1

f2 −1 1

f
′
3 −1 −1

f4 1 1

The SA fails still, so we iterate the LC method: find u = [−1,−1,1,1]T ∈ coker(J1),

derive L = L =
{

1,2,4
}

, and replace f1 by f 1 =− f1− f2 + f
′
3 + f4.

Σ2 =

x1 x2 x3 x4 c̃i





f 1 0• 1

f2 1 0• 0

f 3 0 0• 1

f4 0 0• 0 0

d̃ j 1 1 0 0

J2 =

x′1 x′2 x3 x4





f
′
1 −1

f2 −1 1

f
′
3 −1 −1

f4 1 1

The SA succeeds since det(J2) = 1. Note Val(Σ2) = 0 < Val(Σ1) = 1 < Val(Σ0) = 2.

5.2 Modified pendulum by change of variables.

For the pendulum DAE (2.6), if we perform a linear transformation on x,y,λ :




x1

x2

x3


=




1 1 0

0 1 1

1 0 1



−1


x

y

λ


 , (5.1)

then the SA fails on the resulting problem.

0 = f1 = x′′1 + x′′2 +(x1 + x2)(x3 + x1)

0 = f2 = x′′2 + x′′3 +(x2 + x3)(x3 + x1)−G

0 = f3 = (x1 + x2)
2 +(x2 + x3)

2− ℓ2 .
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Σ =

x1 x2 x3 ci





f1 2 2 0 0

f2 0 2 2 0

f3 0 0 0 2

d j 2 2 2

J =

x′′1 x′′2 x′′3[ ]
f1 1 1

f2 1 1

f ′′3 2(x1 + x2) 2(x1 +2x2 + x3) 2(x2 + x3)

We first attempt the LC method: find u = [2(x1+x2),2(x2+x3),−1]T ∈ coker(J)
and derive L =

{
1,2

}
by (4.2). For all l ∈ L, ul is not a constant, so L 6= /0 and L = /0.

Then we try the ES method to seek a conversion that guarantees global equivalence.

We show below how the ES method reveals the linear transformation (5.1) with-

out having the knowledge about the equations. Compute v = [1,−1,1]T ∈ ker(J) and

find J = J =
{

1,2,3
}

, s = |J|= 3, M =
{

1,2,3
}

, and c = 2 using (4.8). Obviously

the ES conditions (4.12) are satisfied, and the method guarantees global equivalence

because J 6= /0. We show the conversion for l = 1∈ J. As J\
{

l
}
=
{

2,3
}

, we append

the equations 0 = g2 =−y2 + x2 + x1 and 0 = g3 =−y3 + x3− x1, which meanwhile

define the newly introduced variables y2, y3 corresponding to x2, x3, respectively.

Then we perform the expression substitutions in the below table.

substitute for in

y′′2− x′′1 x′′2 f1, f2

y′′3 + x′′1 x′′3 f2

y2− x1 x2 f3

y3 + x1 x3 f3

After the substitutions, we rename y2,y3 to x4,x5 and g2,g3 to f 4, f 5. The SA suc-

ceeds on the resulting DAE with det(J) =−4ℓ2 6= 0.

0 = f 1 = x′′4 +(x1 + x2)(x3 + x1)

0 = f 2 = x′′4 + x′′5 +(x2 + x3)(x3 + x1)−G

0 = f 3 = x2
4 +(x4 + x5)

2− ℓ2

0 = f 4 =−x4 + x2 + x1

0 = f 5 =−x5 + x3− x1

Σ =

x1 x2 x3 x4 x5 ci







f 1 0 0 0 2• 0

f 2 0• 0 0 2 2 0

f 3 0 0• 2

f 4 0 0• 0 0

f 5 0 0• 0 0

d j 0 0 0 2 2

J =

x1 x2 x3 x′′4 x′′5





f 1 2x1 + x2 + x3 x3 + x1 x1 + x2 1

f 2 x2 + x3 x3 + x1 x1 + x2 +2x3 1 1

f
′′
3 2(2x4 + x5) 2(x4 + x5)

f 4 1 1

f 5 −1 1
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5.3 An example where both methods are not applicable.

Consider 0= f1 = x′1x′2−2cos2 t and 0= f2 = (x′1x′2)
2+x1+x2−4cos4 t−3sin t−2,

with initial values x1(0) = x′1(0) = 2, x2(0) = 0, x′2(0) = 1. The solution is x1(t) =

2sin t + 2, x2(t) = sin t. The SA gives Σ =

[
1 1

1 1

]
with c = [0,0], d = [1,1] and sin-

gular J =

[
x′2 x′1

2x′1(x
′
2)

2 2x′2(x
′
1)

2

]
. A straightforward fix of this failure is to introduce x3

and replace x′1x′2 by it, resulting Val(Σ) = 1 < 2 = Val(Σ) and det(J) = x′1− x′2 6= 0.

However, neither of our conversion methods is applicable. In the LC method, we

compute u= [2x′1x′2,1]
T ∈ coker(J) and find I =

{
1,2

}
, c= 0, and L=

{
1,2

}
. Since

x′1 and x′2 occur in u, the LC condition (4.3) is violated. Similarly, in the ES method

we compute v = [x′1,x
′
2]

T ∈ ker(J) and find J =
{

1,2
}

, s = 2, M =
{

1,2
}

, and c = 0,

and the first ES condition in (4.12) is violated. The algorithms described above for

both methods will return L = J = /0. Performing a conversion by either method gives

Val(Σ) = Val(Σ) = 2 and det(J)≡ 0 still.

The incapability of our methods here is due to a nonlinear operation on the com-

mon subexpression x′1x′2 that is already nonlinear in the derivatives of highest order.

This situation is not usual in practice, so should have minimal effect on the applica-

bility and usefulness of our methods.

6 Conclusions and related work.

We proposed two conversion methods aimed at improving the Σ -method, which han-

dles DAEs in the general form (2.1). Our methods convert a DAE with finite Val(Σ)
and an identically (but not structurally) singular System Jacobian to another DAE that

is more likely to have a nonsingular System Jacobian. A conversion guarantees that

both DAEs have (locally) the same solution if there exists one. The conditions for

applying these methods can be checked automatically, and the main result of a con-

version is Val(Σ)< Val(Σ), where Σ is the signature matrix of the resulting DAE.

We show in [27] a combination of our conversion methods with block triangu-

larization of DAEs [20]. We use these block conversion methods to improve the

efficiency of finding a useful conversion that reduces Val(Σ), and to remedy SA’s

failures in existing literature. For instance, on the Campbell-Griepentrog robot arm

DAE [4] of differentiation index 5, the SA reports structural index 3 and Val(Σ) = 2.

After applying either block LC or block ES method, we obtain structural index 5 and

Val(Σ) = 0, and the resulting DAEs are globally equivalent to the original formula-

tion. On the transistor amplifier and ring modulator DAEs [12], our block conversion

methods give Val(Σ) = 5< 8=Val(Σ) and Val(Σ) = 10< 11=Val(Σ), respectively.

We refer the reader to the first author’s PhD thesis [26] for details.

All of our conversion methods can be implemented in a computer algebra system.

The computational cost of a conversion depends on the size of the DAE, its sparsity,

and intricacy of the equations. Determining the cost in advance is undecidable in the

sense of Richardson [22]. For example, fixing Mf = 0 can be arbitrarily difficult,
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where f = 0 is a solvable DAE and M is a nonsingular dense matrix of expressions

comprising t and any derivatives of the x j’s, typically lower than the d jth.

Integrating our structural analysis software DAESA [16] with MATLAB’s Sym-

bolic Math Toolbox [28], we have built a prototype code that automates the con-

version process. We have applied our methods on DAEs on which the Σ -method

fails; they are either constructed to be SA-failure cases for our investigations, or bor-

rowed from the existing literature. Our code can successfully fix these solvable DAEs,

though incapable of dealing with the case in §5.3. We believe that our assumptions

and conditions are reasonable for practical problems, and that these methods can help

make the Σ -method more reliable.

Lastly we pose our main conjecture regarding SA’s failures. When we success-

fully fix them by performing symbolic simplifications or using our conversion meth-

ods, the value of a signature matrix always decreases. As the third author pointed

out in [18], the solvability of a DAE may lie within its inherent nature, not the way

it is formulated or analyzed. Hence we conjecture that a DAE formulation friendly

to SA should have the right Val(Σ) that can be interpreted as number of degrees of

freedom (DOF) of the underlying mathematical problem. However, based on our cur-

rent knowledge, it appears difficult to show why overestimating DOF can lead to an

identically singular System Jacobian.

A Preliminary results and proof of Lemma 4.4.

Let the notation be as at the start of §4.2. We prove a lemma first and then Lemma 4.4.

Lemma A.1 Let r ∈ J \
{

l
}

, w1 = yr +(vr/vl) · x
(dl−c)
l , and

w2 = w
(c−ci)
1 =

(
yr +(vr/vl) · x

(dl−c)
l

)(c−ci)
. (A.1)

Then

σ
(
x j,w2

)
=

{
< d j− ci if j ∈ J \

{
l
}

≤ d j− ci otherwise .
(A.2)

Proof Obviously σ (xl ,w1) = dl−c when j = l ∈ J. Now consider the case j 6= l. Since x j can occur only

in vr and vl in w1, we have σ
(
x j,w1

)
≤ σ

(
x j,v

)
≤ d j− c.

Noting that c = maxi∈M ci, we have c− ci ≥ 0 for all i ∈ M. Then (A.2) results from connecting

σ
(
x j,w2

)
= σ

(
x j,w1

)
+(c− ci) with (4.12) and the results in the previous paragraph.

The proof of Lemma 4.4 uses the two assumptions preceding it.

Proof Write Σ in Figure 4.1 into the following 2×3 block form:

Σ =


 Σ 11 Σ 12 Σ 13

Σ 21 Σ 22 Σ 23


 .

We aim to verify below the relations between σ i j and d̃ j− c̃i in each block.

(1) Σ 11. Consider j,r ∈ J \
{

l
}

. By (4.10), we substitute w2 in (A.1) for every x
(dr−ci)
r in fi for all i = 1:n.

By (A.2), σ
(
x j,w2

)
< d j−ci for all i ∈M. So these expression substitutions do not introduce x

(dr−ci)
r

in f i, where r ∈ J \
{

l
}

. Given M in (4.8), we have d j− ci > σi j for all i /∈M and j ∈ J. Hence

σ
(
x j, f i

)
< d j− ci for j ∈ J \

{
l
}
, i = 1:n . (A.3)
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What remains to show is the case j = l. From (4.9), x
(dr−c)
r = yr +(vr/vl) · x

(dl−c)
l . Taking the partial

derivatives of both sides with respect to x
(dl−c)
l and applying Griewank’s Lemma (4.1) with w= x

(dr−c)
r

and q = c− ci ≥ 0 for all i ∈M, we have

vr

vl

=
∂x

(dr−c)
r

∂x
(dl−c)
l

=
∂x

(dr−c+c−ci)
r

∂x
(dl−c+c−ci)
l

=
∂x

(dr−ci)
r

∂x
(dl−ci)
l

. (A.4)

Then

∂ f i

∂x
(dl−ci)
l

=
∂ fi

∂x
(dl−ci)
l

+ ∑
r∈J\{l}

∂ fi

∂x
(dr−ci)
r

·
∂x

(dr−ci)
r

∂x
(dl−ci)
l

by the chain rule

= Jil + ∑
r∈J\{l}

Jir ·
vr

vl

=
1

vl
∑
r∈J

Jirvr =
1

vl

(Jv)i = 0 by (A.4) and Jv = 0 .

This gives σ
(
xl , f i

)
< dl−ci for all i = 1:n. Together with (A.3) we have proved the “<” part in Σ 11.

(2) Σ 12. The substitutions do not affect x j , for all j /∈ L. By (A.2), such an x j occurs in every w2 of order

≤ d j− ci, where i ∈M. Hence also σ
(
x j, f i

)
≤ d j− ci for all i = 1:n and j /∈ L.

(3) Σ 13. Consider r ∈ J \
{

l
}

. For an i ∈M, yr occurs of order c− ci in w2 in (A.1). For all i = 1:n, if a

substitution occurs for an x
(dr−ci)
r in fi, then σ

(
yr, f i

)
= c− ci; otherwise σ

(
yr, f i

)
= −∞. In either

case σ
(
yr, f i

)
≤ c− ci.

(4) Σ 21. Equalities hold on the diagonal and in the lth column, as y
(dr−c)
r and y

(dl−c)
l occur in gl , where r ∈

J. What remains to show is the “<” part. Assume that j ,r , l ∈ J are distinct. Then by (4.9) and (4.12),

σ
(
x j,gr

)
= σ

(
x j,yr− x

(dr−c)
r +

vr

vl

· x
(dl−c)
l

)
≤ σ

(
x j,v

)
< d j− c . (A.5)

(5) Σ 22. Assume again that j ,r , l are distinct, where r ∈ J and j = s+ 1:n. Then replacing the “<” in

(A.5) by “≤” proves the “≤” part in Σ 22.

(6) Σ 23. Consider r, j ∈ J. By 0 = gl = −yl + x
(dl−c)
l and (4.9), y j occurs in gr only if j = r, and

σ
(
y j,g j

)
= 0. Hence, on the diagonal lie zeros, and everywhere else is filled with −∞.

Also worth noting is that in the yl column is only one finite entry σn+l,n+l = 0, and that in the gl row

are only two finite entries σn+l,n+l = 0 and σn+l,l = dl − c.

Recalling (4.13) for the formulas of c̃i and d̃ j of Σ , we can summarize that the above items (1)–(6)

verify the relations between σ i j and d̃ j− c̃i in Σ for all i, j = 1:n+ s; see Figure 4.1. ⊓⊔
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