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ABSTRACT 

Fast-spreading mid-ocean ridges (MOR) are underlain by a thin, quasi-

steady-state melt or crystal mush body at the base of the sheeted dykes, referred 

to as the axial melt lens (AML). Although the AML is thought to play a key role in 

the development of MOR basalts (MORB), debate persists regarding the 

composition of the AML and the role it plays in the accretion of the lower crust. I 

address this question by studying a suite of varitextured gabbronorites from the 

Hess Deep rift valley in the equatorial Pacific Ocean which are interpreted to have 

formed in the AML of the East Pacific Rise. This unique sample set provides an 

unparalleled opportunity to conduct the first comprehensive investigation of the 

AML at a fast-spreading MOR. To facilitate this study, I here develop a method for 

the quantitative assessment of compositional distribution (QACD) in whole-thin-

section element maps. QACD facilitates rapid data collection and processing to 

generate mineral modes, element and molar-ratio maps, and quantifying full-

sample compositional distributions. My application of QACD to the Hess Deep AML 

suite reveals that mineral phases within the AML here are too evolved to be in 

equilibrium with MORB. I test the broader applicability of this conclusion by 

conducting detailed mapping and sampling of an analogous AML horizon in the 

Oman Ophiolite (Wadi Saq, Ibra Valley). This section is characterised by an 

evolved sheeted dyke complex rooting into a quartz diorite-hosted AML, supporting 

the supposition that the AML accommodates the fractionation of highly-evolved 

melts. 

I propose a model wherein the AML is predominantly fed by small volumes 

of evolved interstitial melts expelled from the underlying crystal mush. In the months 

preceding decadal eruption events, short-lived, focused injections of primitive melts 

into the AML mix with the extant highly-fractionated melt and trigger eruptions. This 

model reconciles the apparent mismatch between the volcanic and plutonic records 

and inferences made on geophysical and petrological grounds. I suggest that the 

AML is an active player in the development of MORB, permitting the fractionation 

and storage of evolved melts expelled from the underlying crystal mush and 

recording the mixing of that material with primitive melt, hence fulfilling more of a 

passive role with respect to lower crustal accretion than previously proposed. 
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CHAPTER 1  

Introduction 

1.1 Background 

Mid-ocean ridge (MOR) volcanism is responsible for the production of igneous 

crust over approximately 2/3 of the Earth’s surface, driving hydrothermal systems 

which exchange chemical elements and heat between the ocean-crust system. The 

tectonic and volcanic characteristics of MORs have been found to systematically 

vary with magma supply and spreading rate (e.g., MacDonald et al., 1992; Perfit 

and Chadwick, 1998; Small, 1998; Rubin and Sinton, 2007), with fast-spreading 

ridges (80-180 mm/yr) typically characterised by small (50-1,000 m tall) volcanoes 

which form a semi-continuous ridge with lava fields extending several kilometres 

off its sides (Rubin et al., 2012) and slow-spreading ridges (20-55 mm/yr) 

characterised by a ~5-15 km wide rift valley where volcanism can be sparse, 

forming elongate volcanic ridges (Searle et al., 2010).  

Current models for the architecture of oceanic crust at fast-spreading MORs 

are the result of decades of geophysical experiments (e.g., Morton and Sleep, 

1985; Detrick et al., 1987; Harding et al., 1989; Kent et al., 1990) and in situ 

petrological and structural studies of ophiolites (e.g., Oman: Hopson et al., 1981; 

Pallister and Hopson, 1981; Nicolas et al., 1988a, 2000; Umino et al., 2003).  The 

classic Penrose Ophiolite model, as defined by the Penrose Ophiolite Conference 

in 1972, consists of a sequence from top to bottom of volcanic pillows, sheeted 

dykes, high level intrusives (e.g. trondhjemites and gabbros), layered cumulates 

(e.g. olivine gabbros, pyroxenites, and peridotites), and mantle peridotites 

(Greenbaum, 1972). Since the formation of the Penrose model, geophysical 

studies at mid-ocean ridges have provided further constraints on the architecture 

of the oceanic crust, reflected in the addition of seismically defined layers in the 

Penrose model. 

Based on decades of observations at MORs which have revealed a large 

variability in crustal architecture over the range of global spreading rates (<10-160 

mm/yr) we now recognise that the mechanisms of accretion of the oceanic crust 

vary fundamentally with spreading rate (Dick et al., 2006). For example, seafloor 

spreading at slow-spreading ridges exhibits both spatial and temporal 

heterogeneity as a result of reduced magma supply, significant tectonic stretching 
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and the incorporation of mantle materials into the lithosphere at the ridge axis. As 

it stands, the simplified Penrose model for oceanic crustal stratigraphy is likely to 

be applicable only to intermediate- to fast-spreading ridges (Dick et al., 2006). 

1.1.1 Fast-spreading mid-ocean ridges 

Beneath fast-spreading MORs, upwelling mantle undergoes decompression 

melting over a several hundred km wide region (Forsyth et al., 1998, Key et al., 

2013; Han et al., 2014), generating basaltic or picritic melt (O’Hara, 1968). These 

melts are focused towards the ridge axis during upwelling (e.g., Aharonov et al., 

1995; Katz et al., 2004, 2006; Han et al., 2014), where they are delivered to shallow 

levels to form oceanic crust.  

Early geophysical investigations at fast-spreading ridges, such as the East 

Pacific Rise (EPR), identified a thin lens-like body of melt at the base of the sheeted 

dykes referred to as the axial melt lens (AML) (Detrick et al., 1987; Sinton and 

Detrick, 1992). The AML overlies a larger region of ‘hot-rock’ (i.e., a seismic low-

velocity zone or LVZ) consisting largely of a crystal mush with small (10-20%, ~18% 

average; Crawford and Webb, 2002) proportions of melt (Crawford et al., 1999; 

Crawford and Webb, 2002; Dunn et al., 2000) (Figure 1.1). This larger LVZ has a 

width of ~1-2 km beneath the ridge axis and deepens and broadens beneath the 

ridge flanks to ~10-12 km at the base of the crust (Sinton and Detrick, 1992). As a 

whole, this crustal scale LVZ is commonly referred to as the axial magma chamber. 

The properties of this crystal mush region and the magmatic processes occurring 

within it are poorly constrained. 

Geophysical experiments have constrained the size of the AML to be ~500-

1000 m wide and ~30- 100 m thick (Detrick et al., 1987; Kent et al., 1993; Collier 

and Singh, 1997; Singh et al., 1998; Xu et al., 2014). These partially molten bodies 

have been imaged beneath a large portion of the EPR (Detrick et al., 1987; Kent et 

al., 1993; Tolstoy et al., 1996), suggesting that they are relatively steady-state 

features at fast-spreading ridges. The physical properties of the AML have been 

the subject of various geophysical studies over the past ~30 yr (e.g., Detrick et al., 

1987, 1993; Harding et al., 1989; Kent et al., 1990, 1993a, b; Vera et al., 1990; 

Caress et al., 1992; Hussenoeder et al., 1996; Collier and Singh, 1997,1998; Singh 

et al., 1998, 1999). Many of these AML studies have focused on the portion of the 

East Pacific Rise (EPR) that lies between 9-10°N along the ridge, where the AML 
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Figure 1.1: A schematic representation of a fast-spreading MOR magmatic system (c.f., Carbotte 
et al., 2013), with a segmented AML (red) sitting atop a crystal mush zone with potential lower 
crustal sills (light red). 

has been imaged at ~1-2 km below the seafloor (Kent et al., 1993a; Marjanovic et 

al., 2015).  Although qualitative and quantitative estimates of the proportion of melt 

within the AML (Singh et al., 1998; Canales et al., 2006; Xu et al., 2014) have been 

inferred from shear wave properties of the feature, the actual amount of melt 

present within the AML at various focus sites still remains poorly constrained 

(Marjanovic et al., 2015), with the best estimates at anywhere from <40% melt 

(Marjanovic et al., 2015) to between 40-60% melt (Singh et al., 1998) present within 

the AML mush. Several recent investigations have reported geophysical 

observations of variations in melt content and distribution over scales of a few 

hundred metres (i.e., smaller distances than the length of fine-scale AML segments 

= ~5-15 km) within the AML (Carbotte et al., 2013; Marjanovic et al., 2015). It is 

unclear whether the melt present within the AML is distributed in thin metre-scale 

sills (Barth et al., 1994) or in millimetre- to centimetre-scale pockets within a rigid 

crystal mush network (Marsh, 1989). 
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1.1.2 The architecture of the AML and the gabbroic lower crust 

Most of our current understanding regarding the petrological, structural, and 

geochemical nature of the AML has been inferred from geophysical studies at 

MORs (Marjanovic et al., 2015) and detailed petrological investigations of bespoke 

fossilised melt lenses in ophiolites (MacLeod and Yaouancq, 2000; Coogan et al., 

2002a). The gabbroic lower crust, as described from ophiolites like Oman, is 

composed of, from bottom to top, intercalated gabbros and dunites of the Moho 

transition zone, layered gabbros, and foliated gabbros which are commonly capped 

by a structurally and petrologically complex group of gabbros immediately beneath 

the sheeted dykes within a horizon which is commonly referred to as the dyke-

gabbro transition (DGT). The structurally highest gabbros have been variously 

referred to as the ‘high-level’, ‘isotropic’, ‘massive’, ’upper’, ’recrystallised’ or 

‘varitextured’ gabbros by previous authors (e.g., Gass, 1980; Pallister and Hopson, 

1981; Lippard et al., 1986; MacLeod and Rothery, 1992; MacLeod and Yaouancq, 

2000; Coogan et al., 2002a). Though many investigations include the foliated 

gabbros when referring to high-level gabbros, we have chosen to use the term as 

defined by MacLeod and Yaouancq (2000) which includes only the varitextured, 

isotropic gabbroic rocks which lie between the base of the sheeted dykes and the 

top of the foliated gabbros. The high-level gabbros as defined by MacLeod and 

Yaouancq (2000) are generally characterised as fine- to medium-grained, isotropic, 

ophitic gabbro, pegmatitic gabbro, oxide gabbro, diorite, and, in some cases, 

oceanic plagiogranites (see section 2.2.1 and section 6.4.2 for more information) 

(Rothery, 1983; Nicolas and Boudier, 1991; MacLeod and Yaouancq, 2000; 

Coogan et al., 2002a; Nicolas et al., 2008; France et al., 2009). 

The first characterisation of the high-level gabbros as a fossilised AML was 

from the Wadi Abyad section of the Oman ophiolite (MacLeod and Yaouancq, 

2000). The high-level gabbros within ~150 m of the base of the sheeted dykes at 

Wadi Abyad exhibit very strong geochemical, structural and textural variability (i.e., 

varitextured gabbros), containing abundant oxides associated with subordinate 

lenses of pegmatitic Fe-rich gabbros (i.e., ferrogabbros). MacLeod and Yaouancq 

(2000) interpreted the rocks as preserving the lateral edges of an AML 

approximately basaltic (Mg# of 65) in composition, which was derived from melt 

expelled from the underlying crystal mush. Investigations of the DGT and the AML 

published prior to (e.g., Rothery, 1983; Nicolas and Boudier, 1991; MacLeod and 
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Rothery, 1992; Gillis and Roberts, 1999) and since MacLeod and Yaouancq (2000) 

(e.g., Coogan et al., 2002a; Coogan et al., 2003; Gillis, 2008; Nicolas et al., 2008) 

have continued to debate aspects of the geochemical nature, evolution, and 

stability of the horizon and its relationship with the overlying sheeted dykes and 

underlying gabbroic crust (France et al., 2009). These investigations have resulted 

in a variety of models that characterise the AML and DGT as either a dynamic (Gillis 

and Roberts, 1999; Coogan et al., 2003; Wilson et al., 2006; Gillis, 2008) or 

relatively steady-state boundary layer (Rothery, 1983; Nicolas and Boudier, 1991; 

MacLeod and Yaouancq, 2000; Nicolas et al., 2008). 

 The internal crustal structure and MORB-like composition of the sheeted 

dyke complex and axial volcanic suite of the Oman ophiolite has been considered 

by many to be directly analogous to ocean lithosphere from MORs like the East 

Pacific Rise (EPR) (MacLeod et al., 2013). However, differences in magma 

composition between MORs and ophiolites limit their direct comparison and invite 

caution when considering analogous models for crustal accretion processes at fast-

spreading MORs (see section 2.2) (MacLeod et al., 2013). Until recently, 

investigations of the AML horizon at MORs have suffered from a paucity of in situ 

samples: published mineral chemical data are only available for five shallow (<300 

m below sheeted dykes) samples from Pito Deep (Perk et al., 2007) (Figure 1.2). 

Although gabbros drilled in IODP hole 1256D (Figure 1.2) have been suggested to 

represent AML gabbros (Koepke et al., 2011; France et al., 2009), drilling revealed 

that they are isolated intrusions into the sheeted dyke complex, suggesting that 

they may not directly relate to the main magmatic system in the lower crust. 

1.1.3 The role of the axial melt lens 

The AML is generally considered to be vital in the processes of crustal 

accretion, accommodating the fractionation of MOR basalts and feeding seafloor 

eruptions (Sinton and Detrick, 1992; Goss et al., 2010; Moore et al., 2014; 

Marjanovic et al., 2015), but its exact role is still heavily debated (Coogan et al., 

2002a; Pan and Batiza, 2002, 2003). The AML is primarily thought to be the zone 

where melts aggregate before being injected during dyking and eruption events 

(Sinton and Detrick, 1992). Further, the base of the sheeted dykes is considered to 

be an important horizon in the interaction between hydrothermal convective  
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Figure 1.2: An illustration indicating the general locations of Hess Deep, Pito Deep and ODP/IODP 
hole 1256D in the Eastern Equatorial Pacific Ocean. 

systems and the magmatic system at MORs (Gillis, 2008), serving as a major 

interface in the exchange of heat and chemical components between the oceanic 

crust and hydrothermal fluids (Liu and Lowell, 2009; Moore et al., 2014). Energy 

balance calculations of these axial hydrothermal systems require that the AML is 

replenished over decadal timescales in order to be maintained for any substantial 

length of time (Liu and Lowell, 2009), however, the particulars surrounding the 

compositions of replenished melt (i.e., MORB-like (Sinton and Detrick, 1992) vs 

more fractionated (Natland and Dick, 1996, 2009) vs more primitive (Singh et al., 

1998)) and the exact timescales over which the replenishment occurs remain 

unclear (Moore et al., 2014). 

There has also been much debate over the role of the AML in the accretion 

of the gabbroic lower crust. The majority of the models proposed for the magmatic 

accretion of the lower crust fall along an array between two dominant end-member 

models; the gabbro glacier model and the sheeted sill model (Figure 1.3). In the 

gabbro glacier model, primitive melts are delivered to the AML wherein crystals 

nucleate and accumulate along the floor of the AML and are then transported 

downwards and outwards by viscous, ductile flow to form the entire lower crust  
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Figure 1.3: A comparison of the range of existing models for the accretion of the lower gabbroic 
crust at fast-spreading mid-ocean ridges (c.f., Coogan et al., 2002a). Arrows indicate directions of 
mass transport with dashed lines indicating directions of porous flow. (a) Crystals formed within the 
AMC subside downwards and outwards to form the lower crust in a so-called ‘gabbro glacier’. (b) 
Crystals subside like in model A but this is focused to a narrow vertical conduit followed by spreading 
outwards in sill-like bodies. (c) Combines the ‘gabbro glacier’ in A with sill emplacement in the lower 
crust directly from the mantle. (d) The ‘gabbro glacier’ only forms the uppermost part of the crust 
and the entire lower crust (layered gabbros) is built from sills in a so-called ‘sheeted sill’ model. (e) 
The layered gabbros form in ‘off-axis’ sills and the foliated gabbros crystallise during porous melt 
migration up to the AMC. 

(Sleep, 1975; Sinton and Detrick, 1992; Henstock et al., 1993; Morgan and Chen, 

1993; Quick and Denlinger, 1993). In such a model, the majority of the latent heat 

of crystallisation is lost through the roof of the AML and the fabrics of the foliated 

and layered gabbros result from the down and outward flow of crystallised gabbroic 

material from the AML (Coogan et al., 2002a). In the sheeted sill model, the entire 

lower crustal gabbro section is accreted by crystallisation in sills within the lower 

crust with melts migrating through a network of sills before reaching the AML 

(Kelemen et al., 1997; Korenaga and Kelemen, 1997, 1998; Kelemen and 

Aharanov, 1998; Garrido et al., 2001; Lissenberg et al., 2004). MacLeod and 
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Yaouancq (2000) provided a recent variant on the sheeted sill model in which 

deeper, layered gabbros form in sills and the overlying foliated gabbros form by in 

situ crystallisation with the vertical fabrics developed by the upward flow of melt to 

the AML. Geological and petrological investigations of ophiolites have provided 

evidence that the lower oceanic crust is accreted from multiple levels of intruded 

melt sills between the AML and the Moho transition zone (Kelemen et al., 1997; 

Boudier et al., 1996; Kelemen and Aharanov, 1998; Korenaga and Kelemen, 1997; 

Bédard, 1993; Lissenberg et al. 2004). Such models are consistent with 

geophysical studies at fast-spreading ridges that suggest the presence of melt 

within the lower crust (10-20% melt; Crawford and Webb, 2002) (Singh et al., 2006; 

Crawford and Webb, 2002; Dunn et al., 2000; Garmany, 1989; Wilcock et al., 1992). 

Until recently, only seismic reflections from sills within the Moho-Transition Zone 

(MTZ) (Nedimovic et al., 2005) and AMLs (Detrick et al., 1987; Mutter et al., 1995; 

Singh et al, 1998) have been described, suggesting that melt is efficiently 

transported through the lower crust. Several investigations have seismically 

imaged a thin melt lens within the Moho-transition zone at the base of the lower 

crust (Garmany, 1989; Crawford et al., 1999; Canales et al., 2012). Canales et al. 

(2009) reported deep crustal seismic reflections collected off the southern Juan de 

Fuca ridge that they interpreted as originating from a molten sill within the presently 

accreting lower oceanic crust. More recently, Han et al. (2014) reported seismic 

imaging of several on- and off-axis magma bodies at multiple depths along the EPR 

between 9°39-40’N, suggesting that crustal accretion at fast-spreading MORs is 

not limited to the primary AML. 

The critical difference between these models is the nature of the melt 

delivered to the AML and the origin of the foliated gabbros. The gabbro glacier 

models require that primitive melts which are added to the crust from the mantle 

pass through the AML, crystallise, and subside to form the lower crust; suggesting 

that there should be evidence for the delivery of primitive melts to the AML 

preserved within the horizon (Coogan et al., 2002b). Although complete closed 

system crystallisation as the AML moved off-axis would result in evolved 

compositions within the horizon, a significant volume of primitive material would be 

expected to be preserved there under a Gabbro Glacier regime. In contrast, the 

sheeted sill model requires for most melts to have undergone significant 

crystallisation within the lower crust prior to their delivery to the AML; suggesting 
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that there should be evidence for significantly more evolved melts being delivered 

to the AML (Coogan et al., 2002b). In this case, we would expect to find 

predominantly evolved compositions within the AML horizon with little to no 

evidence for primitive material. We would also expect to see a gradual evolution 

up-section through the foliated gabbros. Thus, the upper crustal gabbros of the 

AML should provide valuable information regarding (i) the composition of melts 

delivered to and (ii) the processes at work within the AML and (iii) the formation of 

the gabbroic lower crust as well as (iv) the formation and development of MORB.  

The seemingly quasi-steady-state nature of the AML suggests that there are 

likely processes which define a steady state behaviour of the AML and those which 

act upon it during those times in which it deviates from steady state (Hooft et al., 

1997; Carbotte et al., 1998); hence, it is likely that the answers to questions 

regarding the nature, composition, residence time and distribution of melt within the 

AML may be complex (Pan and Batiza, 2002; 2003). Such complexity is suggested 

by previous observations which show that the properties of the AML (e.g., depth, 

width, and crystal content) exhibit very poor correlation with axial depth and cross 

sectional area, which are indicators of magma supply (Kent et al., 1994; 

Hussenoeder et al., 1996; Hooft et al., 1997; Carbotte et al., 2000). Several 

alternative interpretations have been provided based on such observations 

suggesting that the AML is either: a recently injected melt body (Hussenoeder et 

al., 1996; Hooft et al., 1997; Carbotte et al., 2000) or a segregation melt expelled 

from the crystal mush beneath the AML horizon (Natland and Dick, 1996; Philpotts 

et al., 1996; Hussenoeder et al., 1996). Pan and Batiza (2003) conclude from a 

comparison of their detailed mineralogical and petrological studies of MORBs from 

the EPR with previous studies of ophiolites, MOR gabbros, continental lava flows 

and cooling lava lakes that the formation and compaction of crystal networks is the 

most important process occurring within the oceanic crust, leading to an AML 

characterised by highly evolved magmas expelled from the interstices of the 

compacting crystal mush and suggesting that AMLs play very little role in crustal 

accretion and the development of MORB. The model of Pan and Batiza (2003) was 

later contested by subsequent studies of whole rock geochemical data (Goss et al., 

2010) for and phenocryst assemblages (Moore et al., 2014) of EPR lavas 

associated with the 1991-1992 and 2005-2006 eruptions of the EPR around 9°50’N 

which determined that the AML was fed by evolved melts from the crystal mush 
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during the period between the two eruptions with focused injections of large 

volumes of primitive melts into the AML preceding the 2005-2006 eruption. 

1.2 Objectives 

It follows from the discussion presented above that the role of the AML in both 

the development of MORB and the accretion of the lower crust is poorly constrained 

and heavily debated. This persisting uncertainty is mostly due to the paucity of in 

situ samples of this horizon. This dissertation represents the first thorough 

petrological characterisation of an AML from a fast-spreading MOR. Based on 

analyses of a unique sample set of an in situ fossilised AML recovered by ROV 

dive 78 of the JC21 site survey of the Hess Deep Rift Valley, Equatorial Eastern 

Pacific Ocean. 

In order to facilitate a fully rigorous analysis of a large sample suite, a new 

method has been developed and optimised for the rapid collection and processing 

of full-thin section quantitative element maps. Serial thin sections of the JC21 AML 

suite were cut for petrographic analysis and quantitative element mapping. In 

conjunction with this investigation, detailed mapping and sampling of an upper 

crustal section in the north-eastern Ibra Valley of the southern Oman Ophiolite was 

carried out to provide an analogous suite of samples for comparison to the Hess 

Deep AML suite, and to provide constraints on the three-dimensional distribution of 

the rocks formed in the AML.  

Combined with previous observations regarding the AML horizon at fast-

spreading MORs, the application of our new element mapping technique to the 

Hess Deep AML suite has allowed for us to address first-order questions regarding 

the nature and role of the AML in oceanic crustal accretion, including: 

 What are the compositions of melts delivered to the AML? 

 What implications do these findings have for crustal accretion models? 

 Is the AML an active or passive player in the development of MORB? 

 Is the AML an active or passive player in the accretion of the lower gabbroic 

crust? 

We aim to provide a holistic model which integrates our petrological data with 

existing constraints on the geophysical and structural nature of the AML.  
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1.3 Thesis organisation 

This thesis is subdivided into 7 chapters. Following this introduction, Chapter 

2 provides a review of our current understanding of the geological framework of the 

Hess Deep rift valley and the Oman ophiolite. A substantial component of this 

project was dedicated to the development and optimisation of an element mapping 

and processing technique for the quantitative assessment of compositional 

distribution (QACD) in igneous rocks, and a software package to facilitate the 

method. Chapter 3 provides the background and details surrounding the 

development and optimisation of the QACD method, as well as an overview of the 

QACD software. Chapter 4 presents the initial applications of the QACD method to 

various igneous rock samples to demonstrate the range and potential of the method 

in its application to geological materials. Chapter 5 presents the results of applying 

the QACD method to the AML samples recovered by expedition JC21 from Hess 

Deep. Chapter 6 presents the results of a detailed field investigation and whole 

rock geochemical study of an AML horizon in the vicinity of Wadi Saq in the north-

eastern Ibra Valley, southern Oman Ophiolite. Finally, a brief summary of the 

project is presented in Chapter 7 which highlights the main conclusions of the 

overall study and addresses the primary questions posited in the previous section 

(Section 1.2). Additional sample information, analytical methods, geochemical data 

and quality control information are presented in the appendices at the end of the 

thesis. The electronic appendices include both electronic versions of the 

appendices included in the print copy of the thesis, as well as thin section 

photomicrographs for the Oman samples, element maps and histograms for the 

Hess Deep samples presented in Chapter 5, and the full python scripts and 

software manual for the QACD software developed by this study. Digital copies of 

this data can be requested from the author by emailing: matthew.loocke@uta.edu. 
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CHAPTER 2  

Geological Framework 

This dissertation focuses on the AML horizon from two locations: in situ 

samples representing the fossilised AML of the fast-spreading East Pacific Rise 

recovered from the Intrarift Ridge of the Hess Deep Rift, and those of an analogous 

AML horizon to the east of Wadi Saq, in the north-eastern Ibra Valley, southern 

Oman Ophiolite. Together, these two sample suites provide constraints on the 

compositional and textural variability of (i.e., Hess Deep samples) and the three-

dimensional distribution of this variability (i.e., Wadi Saq samples) within the AML 

at fast-spreading MORs. 

2.1 The Hess Deep rift valley 

Hess Deep, in the Eastern Equatorial Pacific Ocean, is a ~5400 m deep rift 

valley that dissects ±1.3 Myr old crust formed at the EPR (Francheteau et al., 1990; 

Rioux et al., 2012a) (Figure 2.1) and exposes the most extensive section of in situ 

lower oceanic crust known from a fast-spreading MOR (Coogan et al., 2002b; 

Lissenberg et al., 2013). A large majority of our knowledge of lower crustal 

magmatic processes in fast-spreading oceanic crust is the result of focused 

submersible, dredge, and drilling studies of lower crustal rocks exposed on a 

topographic high within the rift valley called the Intrarift Ridge (e.g., Hekinian et al., 

1993; Natland and Dick, 1996, 2009; Pedersen et al., 1996; Coogan et al., 2002b). 

A large proportion of the samples to date have been strongly concentrated around 

the upper portion of the Intrarift Ridge, where ODP leg 147 drilled ~150 m into 

gabbroic rocks (Gillis et al., 1993). Those rocks recovered by leg 147 are thought 

to represent a high stratigraphic level, several hundred metres below the sheeted 

dykes (site 894) and a portion of the moho transition zone (site 895) (Gillis et al., 

1993). Drilling along the southern depths of the Intrarift ridge by IODP leg 345 

recovered lower crustal, primitive, modally layered olivine gabbros and troctolites 

from two ~110-m-deep holes (U1415J and P) and one 35-m-deep hole (U1415I), 

providing a vital missing piece of the most complete composite section of fast-

spreading EPR crust so far (Gillis et al., 2014). Overall, samples from the top of the 

gabbroic section, interpreted to be the level where the AML resides, are considered 

some of the most critically underrepresented horizons (Lissenberg et al., 2013). 
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Figure 2.1: (A) Morphotectonic map of the region surrounding the Galapagos microplate (after 
Lonsdale, 1988; Rioux et al., 2012). Inset shows the location of Hess Deep (PP=Pacific plate; 
CP=Cocos plate; NP=Nazca plate; GP=Galapagos microplate). (B) Relief and structural 
interpretation of the Hess Deep rift basin (modified after Lonsdale, 1988) showing the location of 
IODP/ODP drilling within the rift basin (green stars). (C) Bathymetric map of Hess Deep showing 
the location of ODP/IODP sites 894G and U1415 (white stars) and gabbroic rocks sampled during 
cruise JC-21 (ROV dive numbers in bold italics) (c.f., Lissenberg et al., 2013). 

The RSS James Cook cruise JC21 (January to February 2008) was carried 

out as a site survey for IODP Expedition 345. A suite of 93 gabbroic rocks ranging 

from primitive to evolved, consistent with previously recovered samples (Gillis et 

al., 1993; Hekinian et al., 1993), were collected by ROV Isis. The sample suite 

collected by the JC21 cruise represents the most extensive sampling of a more or 

less complete lower crustal section at a fast-spreading MOR, spanning from 

gabbros intercalated with mantle rocks at the base of the crust, through evolved 

oxide gabbronorites in the middle crust to highly-evolved, varitextured oxide 

gabbros and gabbronorites at the base of the sheeted dykes (Lissenberg et al., 

2013). Predominantly (melt-impregnated) dunites alternating with olivine gabbros 

and troctolites, interpreted to represent the lowest portions of the gabbroic crust, 

were recovered from the lower south slope of the Intrarift ridge, while oxide 
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gabbronorites, like those found in ODP 894G (Gillis et al., 1993) were recovered 

from the top of the south slope of the Intrarift ridge. 

ROV dive 78 sampled the structurally highest level, on the north slope of the 

Intrarift Ridge (Figure 2.1c). Twenty-three samples (8 dolerites, 14 gabbronorites, 

and 1 gabbro) were recovered from the traverse across the transition from the 

uppermost gabbros into the sheeted dykes, including variably but generally highly-

evolved, oxide-bearing varitextured gabbros (ranging from rare olivine gabbro to 

oxide gabbronorite). These varitextured gabbronorites occur in close proximity to 

dolerite dykes, resemble the uppermost gabbros interpreted to represent fossilised 

AMLs at ophiolite complexes formed at fast-spreading rates (MacLeod and 

Yaouancq, 2000; Coogan et al., 2002a; Lissenberg et al., 2004), and occur at the 

level in the crust where geophysical surveys have detected the AML (Detrick et al., 

1987; Sinton and Detrick, 1992; Carbotte et al., 2013; Marjanović et al., 2015); 

hence, the JC21 dive 78 samples have been interpreted to have formed in the AML 

of the EPR (Lissenberg et al., 2013).  

Lissenberg et al. (2013) analysed a small subset of the dive 78 rocks along 

with a large portion of the other recovered gabbroic rocks from the JC21 cruise. 

Only 11 out of the 23 samples recovered by dive 78 were petrographically 

characterized by Lissenberg et al. (2013) with minimal geochemical analysis 

compared to samples recovered from deeper along the Intrarift Ridge. The 

extensive suite of lower crustal gabbroic rocks recovered by the JC21 cruise 

allowed for Lissenberg et al. (2013) to carry out a rigorous assessment of melt 

evolution over the scale of a MOR magma chamber using mineral major- and trace 

element analyses. For the past decades, igneous geochemists and petrologists 

working at MORs have used the composition of MORBs to derive information about 

the mantle beneath MORs (e.g., mantle composition and the processes of melting 

and melt migration) (see Rubin et al., 2009 for a review) by assuming that fractional 

crystallisation is solely responsible for the modification of melts within MOR magma 

chambers and correcting for this process (e.g., Grove et al., 1992). Lissenberg et 

al. (2013) demonstrate that the major- and trace element evolution within the lower 

crust at Hess Deep (as recorded by clinopyroxene) is controlled by reactive porous 

flow which leads to the fractionation of and enrichment in incompatible trace 

elements in the melt with compositions far outside of the range of MORBs. The 

signature of reactive porous flow spans the entirety of the lower crust at Hess Deep, 
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increasing in strength up section until it peaks within the dive 78 varitextured 

gabbros. Based on this observation, Lissenberg et al (2013) suggest that MORB 

migrating through the lower crust or stationary within the AML would likely interact 

with the reacted melt prior to eruption to produce trace element enriched MORB 

which departs from the predicted fractional crystallisation pathways for highly 

incompatible elements. Further, Lissenberg et al. (2013) conclude that the lower 

oceanic crust plays a more substantial and complex role in the modification and 

evolution of MORB compositions through the dominant process of reactive porous 

flow than previously thought. 

2.2 The Oman Ophiolite 

The Oman, or Semail, Ophiolite in the Sultanate of Oman is the largest 

(nearly 20,000 km2) continuous sub-aerial exposure of oceanic crust resembling a 

Penrose ophiolite model on Earth (Anonymous, 1972; Nicolas et al., 2008) (Figure 

2.2). The Oman crustal section is composed of, from bottom to top, mantle 

peridotites, intercalated gabbros and dunites of the Moho transition zone, layered 

gabbros, foliated gabbros which are commonly capped by a structurally and 

petrologically complex group of gabbros, sheeted dykes and extrusive lavas. The 

large area of crust and mantle rocks exposed in the Oman Ophiolite provides an 

opportunity to directly study lower crustal materials that are typically obscured by 

volcanic cover at modern ridges. Extensive studies over the years have capitalized 

on the great exposures in Oman to understand everything from the structure of the 

crust and mantle in the ophiolite (Ceuleneer et al., 1988; Lippard, 1986; Nicolas et 

al., 2000) to the processes of crustal accretion (Browning and Smewing, 1981; 

Kelemen et al., 1997; Nicolas et al., 1988; Pallister and Hopson, 1981) and the 

tectonic origins of the ophiolite (Boudier et al.,1988; Gray and Gregory, 2000; 

Hacker et al., 1996; Pearce et al., 1981; Searle and Malpas, 1980; Searle and Cox, 

2002) in order to better constrain the current models for the accretion of the lower 

oceanic crust and the structure of the oceanic lithosphere (Rioux et al., 2012b). 

Accretion of the Cretaceous-aged fragment of oceanic lithosphere exposed 

in Oman occurred about 96 myr ago along the margin of the Tethys Ocean (Tilton 

et al., 1981; Tippit et al., 1981). Based on structural and petrological observations, 

the main or initial phase of ophiolite development is thought to have occurred at a 

mid-ocean ridge (MOR). However, the specific tectonic setting in which this first  
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Figure 2.2: A simplified overview geological and structural map of the Oman-UAE ophiolite (c.f., 
Nicolas et al., 2000a) including the names and locations of diapiric areas and global segmentation 
derived from discussions in Nicolas et al (2000b). The Wadi Tayin massif is outlined by a red box 
and the approximate location of the Ibra Valley is indicated by the blue box. 

phase of ophiolite construction occurred has been a point of great contention 

(Alabaster et al., 1982; Boudier and Nicolas, 2007; MacLeod et al., 2013; Pearce 

et al., 1981; Warren and Miller, 2007), with some studies arguing for its construction 

dominantly at a MOR (Ernewein et al., 1988; Nicolas, 1989; Boudier et al., 1997; 

Benoit et al., 1999; Boudier et al., 2000; Godard et al., 2006; Boudier and Nicolas, 
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2007; Koepke et al., 2009; Abily et al., 2011), while others argue for a supra-

subduction zone (SSZ) related environment (Pearce et al., 1981, 1984; Alabaster 

et al., 1982). Workers favouring a MOR origin have suggested that the early 

detachment event (intra-oceanic thrusting) occurred soon after accretion at the 

ridge (95-98 Ma) (Boudier et al., 1988; Montigny et al., 1988). The process of 

obduction of the ophiolite onto the Arabian margin was complete by 70 Ma 

(Coleman, 1981; Glennie, 2005; Searle and Cox, 1999).  

Detailed studies of the northern section of the ophiolite indicate that it formed 

during multiple, non-contemporaneous magmatic events accompanied by laterally 

variable and complex hydrothermal alteration (Lippard, 1986; Stakes and Taylor, 

1992). The volcanic sections of the Northern region include several geochemically 

distinct lavas with arc-like signatures (i.e. ‘V2’ = Lasail, Alley; Ernewein et al., 1988) 

overlying lavas with normal MORB-like chemistry (i.e. ‘V1’ = Geotimes) (Pearce et 

al., 1981; Alabaster et al., 1982; Ernewein et al., 1988; Godard et al., 2006). The 

Lasail and Alley units, which are thought to be derived by hydrous melting of a 

depleted MORB mantle source (Alabaster et al., 1982; Godard et al., 2006), are 

characterised by depletions in incompatible elements with some of the Alley 

volcanics reaching boninitic compositions (Ishikawa et al., 2002). Several lines of 

evidence, including large-ion lithophile element enrichment relative to MORB, the 

presence of boninites, and elevated εSr values for Lasail-related quartz-diorite and 

tonalite intruding the base of the Geotimes volcanics, suggest a subduction 

influence for the later magmatic stages of the ophiolite (Pearce et al., 1981, 1984; 

Alabaster et al., 1982; Grimes et al., 2013; MacLeod et al., 2013; Tsuchiya et al., 

2013). 

In contrast, the southern portion of the ophiolite is generally considered less 

complex than the north, with a more analogous architecture and geochemistry for 

crust formed at fast-spreading mid-ocean ridges (Nicolas et al., 2008; Nicolas and 

Boudier, 2011). Geochemically, lavas in the southern part of the ophiolite, which 

are comprised of only the Geotimes lavas, have been interpreted as being directly 

comparable to N-MORB (Ernewein et al., 1988; Coogan et al., 2004; Godard et al., 

2006). However, the Geotimes lavas extend to higher SiO2 and lower MgO than 

MORB and are characterised by a notable enrichment in Th and a slight depletion 

in Nb (Pallister and Knight, 1981; Pearce et al., 1981; Alabaster et al., 1982; Braun, 

2004; Bibby et al., 2011; MacLeod et al., 2012, 2013). The southern massifs, in 
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particular the Wadi Tayin massif, have therefore been used extensively as 

analogues for fast-spreading oceanic crust (e.g., Pallister and Hopson, 1981; 

Nicolas et al., 2000; Nicolas et al., 2008; Koepke et al., 2009; France et al., 2009; 

Nicolas et al., 2009; Boudier and Nicolas, 2011; Nicolas and Boudier, 2011). A 

recent geochemical compilation by MacLeod et al. (2013) indicates elevated water 

contents for Geotimes lavas along the length of the ophiolite including the southern 

massifs. This is incompatible with a MOR origin. The fractionation trends found 

within the Oman volcanic suite require water contents which are significantly higher 

than that found at modern MORs. MacLeod et al. (2013) find that the subduction 

signature developed rapidly with time in the Oman system and conclude that the 

ophiolite is likely an obducted forearc crustal section formed from a nascent forearc 

spreading system during subduction initiation. A similar model has been deduced 

for the Izu-Bonin-Mariana (IBM) system (e.g., Stern and Bloomer, 1992; Reagan et 

al., 2010) where MORB-like forearc basalts, remarkably similar to the Geotimes 

lavas, immediately follow subduction initiation (~52 Ma) and are succeeded by 

high-Mg andesites, boninites and arc tholeiites within a few million years (MacLeod 

et al., 2013). Although the Oman crustal sequence clearly formed by physical 

processes similar to those at modern fast-spreading MORs, its analogy is thus 

limited by our understanding of the effect of water on the physical and chemical 

behaviour of magma differentiation. Therefore, any model which seeks to address 

the processes of lithospheric accretion at fast-spreading MORs by comparison with 

ophiolites must carefully consider the role of water in such systems (MacLeod et 

al., 2013). 

2.2.1 The Wadi Tayin Massif and the Ibra Valley 

The Wadi Tayin Massif, the southern-most block of the Oman ophiolite, has a 

relatively simple volcanic and structural history, preserving a ~40 km long east-west 

transect perpendicular to the strike of the sheeted dykes and the inferred ridge axis 

(Figure 2.3) (Rioux et al., 2012b). Structural observations indicate that this region 

is the northern limb of an east-west syncline with an axis somewhere in the exposed 

pillow basalts in the centre of the Ibra valley (Hopson et al., 1981; Pallister and 

Hopson, 1981). The northern side of the valley sees multiple north-south drainages 

cutting the steeply south dipping limb and exposing a full lithospheric cross section. 

Faulting is limited to dominantly north- to northwest-striking normal faults that  
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Figure 2.3: Close-up Geologic cartoon of the Sumail and Wadi Tayin massifs in the southern portion 
of the Oman ophiolite (modified after MacLeod et al., 2013). The red box indicates the area of the 
Wadi Tayin presented in Figure 6.2. The inset provides an overview of the Oman ophiolite with a 
red box indicating the approximate location of the Figure 6.2. Mantle lithologies are represented 
pink shades. Gabbroic lithologies are represented by blue shades. Volcanics are represented by 
purple shades. 

generate little more than kilometre-scale offsets in the upper/lower gabbro contact 

and the crust-mantle transition (Rioux et al., 2012b). 

The Ibra Valley, which sits at the core of the Ibra Valley syncline (Figure 2.4), 

lies to the south of the Jabal (or Jebel) Dimh, a ~1km high mountain range exposing 

the crust/mantle transition along its E-W trending crest line (Pallister, 1981; Pallister 

and Hopson, 1981). The crustal and mantle rocks of the Ibra Valley, as described 

by previous studies, are typical of lithosphere observed in other portions of the 

Oman ophiolite (Boudier and Coleman, 1981; Gregory and Taylor, 1981; Hopson 

et al., 1981; McCulloch et al., 1981; Pallister, 1981; Pallister and Hopson, 1981; 

Pallister and Knight, 1981; Kelemen et al.,1997; Nicolas et al., 2000; Garrido et al., 

2001; Bosch, 2004; Van Tongeren et al., 2008; France et al., 2009; Nicolas et al., 

2009; Hanghoj et al., 2010; Boudier and Nicolas, 2011) (Figure 2.3). 
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Figure 2.4: Geologic map of the northern Ibra Valley (UTM coordinate system) modified after Rioux 
et al. (2012). Representative layering, foliation and sheeted dyke orientations ae shown (tick in the 
down-dip direction). The red box on the map indicates the study area represented in Figure 6.1. 

The general stratigraphy of the crust, from top to bottom, consists of basaltic 

pillows and lavas in the syncline core, sheeted dykes, high-level gabbros, foliated  

gabbros, and compositionally layered gabbros. This stratigraphy is exposed in both 

the northern and southern limbs of the syncline, but is structurally complicated and 

thinned along the southern flank by domal uplift from the Ibra Dome (Pallister, 1981; 

Pallister and Hopson, 1981). Centimetre to metre-sized gabbroic pegmatite dykes 

and sills intrude the layered gabbros locally, and the entire plutonic crust is intruded 

by localized, late olivine gabbro and wehrlite series in some localities (Hopson et 

al., 1981; McCulloch et al., 1981; Pallister and Hopson, 1981; Pallister and Knight, 

1981; Pallister, 1981; Rioux et al., 2012). 

The sheeted dyke complex in the Ibra Valley is estimated from cross-

sections to be approximately 1.2-1.6 km thick (Pallister, 1981) with the volcanic 

rocks belonging compositionally to the Geotimes unit. Unlike the northern portions 

of the ophiolite, there is little or no evidence for later, geochemically distinct volcanic 

rocks in the Ibra Valley (i.e., the Lasail, Alley, clinopyroxene-phyric, [‘V2’] and/or 

Salahi [‘V3’] units). A simple, short-lived magmatic history is suggested by the 

paucity of later volcanics and the presence of only minor intrusions of plutonic rocks 
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that could be related to these later suites (e.g. ‘V2’ plagiogranites; Haase et al., 

2016) into mantle peridotite (Pearce et al., 1981; Smewing, 1981; Alabaster et al., 

1982; Amri et al., 1996; Benoit et al., 1996; Kelemen et al., 1997; Python and 

Ceuleneer, 2003; Tamura and Arai, 2006; Hanghoj et al., 2010; Rioux et al., 2012). 

The Ibra Valley has traditionally been used as a fast-spreading MOR analogue, 

interpreted to have formed between ~96.4-95.5 Ma at a fast-spreading ridge with 

half-rates of 50-100 mm/yr (Rioux et al., 2012). 

2.2.2 The Wadi Abyad Crustal Section 

The Wadi Abyad section, described as ‘typical’ and relatively uncomplicated, 

is located in the Nakhl-Rustaq block of the central Oman ophiolite (Figure 2.2) 

(MacLeod and Yaouancq, 2000). The Abyad section begins in the south with 

harzburgites which pass up into dunites within a few metres of the sharp, planar 

contact between peridotites and layered gabbro referred to as the ‘Moho’. The 

gabbroic crust measures 2.6 km thick at Abyad and consists of layered gabbros 

(lower 2/3 of the gabbros), foliated gabbros (650 m thick) and varitextured gabbros 

(upper 200 m) which are overlain by NE-trending sheeted dykes. Orthopyroxene 

and primary oxide minerals are nearly completely absent from the Abyad section. 

The layering within the layered gabbros at Abyad is defined by cm- to m-scale 

variations in the modal proportion of clinopyroxene, plagioclase and olivine 

(MacLeod and Yaouancq, 2000; Coogan et al., 2002a). The layered gabbros 

transition upwards over 200 m into the foliated gabbros which are formed of 

massive non-layered olivine gabbros exhibiting prominent magmatic foliations 

approximately normal to that of the layered gabbros within the main facies 

(MacLeod and Yaouancq, 2000; Coogan et al., 2002a). Within ~150 m of the base 

of the sheeted dykes, the foliated gabbros transition into gabbros exhibiting strong 

textural, structural, and geochemical heterogeneity (i.e., varitextured gabbros) and 

an abundance of oxides occur in association with subordinate pegmatitic 

ferrogabbros. The first characterisation of a fossilised AML horizon, MacLeod and 

Yaouancq (2000) interpreted these rocks as preserving the lateral edges of an AML 

characterised by the differentiated end product of a basaltic liquid expelled from the 

underlying crystal mush.  

The ferrogabbroic pegmatites found within the varitextured gabbros at Wadi 

Abyad were interpreted to represent late-stage basaltic liquids which were able to 
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locally fractionate in situ and back-intrude the mostly crystalline gabbro at the edges 

of the AML (MacLeod and Yaouancq, 2000). The absence of plagiogranites in the 

Abyad plutonic section along with the ferrogabbroic fractionation trend was taken 

by MacLeod and Yaouancq (2000) to suggest that the AML differentiated under 

relatively water-poor, low fO2 (i.e., Oxygen fugacity) conditions with little-to-no 

assimilation of hydrated material from the base of the sheeted dykes. Although the 

ferrogabbroic pegmatites may form up to 40% of an outcrop in the Wadi Abyad 

varitextured gabbro horizon, MacLeod and Yaouancq (2000) emphasize that they 

are always subordinate to the more magnesian, finer-grained isotropic gabbros 

which are more representative of the facies as a whole. In fact, the combined bulk 

composition of the Abyad varitextured gabbro horizon is basaltic (Mg# = 65, TiO2 = 

1.1 wt.%) and comparable to the Abyad sheeted dykes that are preserved in 

discontinuous outcrops within the mouth of the wadi. Further, high-An plagioclase 

and high-Mg clinopyroxene in the Abyad varitextured gabbros suggest that 

primitive melts may be delivered to the AML with little modification. Although they 

address that variations do exist across the ophiolite, MacLeod and Yaouancq 

(2000) propose that their observations for the Abyad section are generally 

representative of the ophiolite overall. 

 



23 
 

CHAPTER 3  

QACD: A technique for the quantitative assessment of compositional 

distribution in geologic materials 

3.1 Introduction 

In order to fully understand the magmatic and petrogenetic history of an 

igneous rock, it is critical to obtain a thorough characterisation of the chemical and 

textural relationships of its mineral constituents. The compositions of minerals in a 

magma are strongly dependent on the magmatic conditions under which 

crystallisation occurs (e.g., melt composition, pressure, temperature, and volatile 

content); hence, mineral compositions have the potential to provide valuable 

information on the conditions and processes in the magma at the time of 

crystallisation (Pearce, 1994; see Ginibre et al., 2007 and references therein for a 

review on the topic). Some elements exhibit a proclivity to be affected by distinct 

magmatic processes and thus have the potential to record the effects of such 

processes during magma genesis (Saunders et al., 2014). The common 

occurrence of compositional zoning with respect to major elements can further 

elucidate temporal changes in the conditions of crystallisation in a magma.  

Traditional microanalytical methods of geological materials (e.g. spot or line 

profiles by electron probe micro-analyser (EPMA)) obtain chemical compositions of 

constituent minerals from target locations previously identified by the user during 

petrographic analysis, under the assumption that the chosen spots are 

representative of the sample. However, this assumption is difficult to verify, and 

petrographic selection of spots is prone to a number of pitfalls: (i) chemical zoning 

is often cryptic (e.g., olivine, pyroxene, amphibole); (ii) there may be bias towards 

anomalous features which stand out from the representative sample; (iii) it is 

statistically unlikely that a relatively limited number of spot analyses represent the 

true distribution of mineral compositions, given that most natural rocks consist of a 

heterogeneously distributed, diverse assemblage of minerals (Prêt et al., 2010a; 

Clarke et al., 2001).  

Element mapping combines microanalytical techniques that allow for the 

analysis of major- and minor elements at high spatial resolutions (e.g., electron 

microbeam analysis) with 2D mapping of samples in order to provide 

unprecedented detail regarding the growth histories and compositional distributions 

of minerals. Element maps acquired by EPMA or scanning electron microscope 
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(SEM) provide a visually powerful presentation of elemental distributions with 

micrometre to sub-micrometre spatial resolution, allowing for operators to readily 

recognize chemical features (e.g., compositional zoning within a grain or sample) 

that would otherwise not be readily visible in thin section or in associated SEM 

“compositional contrast” images (e.g., backscattered-electrons or BSE) (Newbury, 

2006, Prêt et al., 2010a). Element mapping is therefore increasingly used in the 

geological sciences for qualitative observations of textures, mineral zoning, and 

element distribution among rock components (Clarke et al., 2001; Friel and Lyman, 

2006; de Andrade et al., 2006; Prêt et al., 2010a, b; Ebel et al., 2014). 

This contribution presents a method for the acquisition and processing of 

large area X-ray element maps obtained by energy-dispersive X-ray spectrometer 

(EDS) to produce a quantitative assessment of compositional distribution (QACD) 

of mineral populations within geologic materials. Such maps can be used to not 

only accurately identify all phases and calculate mineral modes for a sample (e.g., 

a petrographic thin section), but, critically, enable a complete quantitative 

assessment of their compositions throughout a sample. The QACD method has 

been incorporated into a python-based easy-to-use graphical user interface (GUI) 

called Quack. By optimising the conditions at which the EDS X-ray element maps 

are acquired, we are able to obtain fully quantitative element maps for most major 

elements in relatively short amounts of time. Although fully quantitative maps of 

absolute element distributions typically require some form of standardisation prior 

to analysis, the X-ray element maps acquired by our method can be processed 

without the analysis of standards to create quantitative maps of major elements 

and molar ratios (e.g. An, Ca/Ca + Na + K, in plagioclase; Mg#, Mg/Mg + Fe, in 

pyroxene or olivine) accurate to within a 2σ error of their accepted values. Instead, 

corrections for individual elements and common element ratios are derived from a 

growing database of standard analyses and models calculated from first principles. 

The resulting element ratio maps and chemical population histograms provide a 

means of determining the full compositional distribution of a sample, from which 

constraints on the relative compositions and volumes of melts which contributed to 

the crystallisation history of the rock can be derived. Where previous techniques 

would require several days to collect a full thin section element map, the QACD 

method requires significantly shorter times of 6-8 hours. Thus, the QACD method 

facilitates the rapid collection and processing of large numbers of full-thin section 
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element maps that is required for the thorough characterisation of geologic units 

like the AML horizon. 

3.2 Developments in element mapping 

3.2.1 EDS detectors 

In the decades since the first X-ray “dot map” compositional image was first 

obtained (Cosslet and Duncumb, 1956; Duncumb and Cosslett, 1957), the 

technique of elemental mapping by electron-beam-excited X-ray emission, or 

simply element mapping, has become one of the most widely used operational 

modes of EPMA for the characterization of complex materials and microstructures 

(Goldstein et al., 2003; Newbury, 2006). Element mapping can be carried out using 

both energy-dispersive and wavelength-dispersive X-ray spectrometers (EDS and 

WDS), each with their own set of limitations (see Friel and Lyman, 2006 for a 

review). For example, the diffracting crystal in a WDS spectrometer is set to a 

specific wavelength to record the characteristic X-ray intensity of a specific element, 

thus, the number of elements that can be simultaneously analysed is dependent on 

the number of WDS spectrometers for a given instrument (Clarke et al., 2001). In 

contrast, EDS detectors record the entire X-ray energy spectrum for each analysis 

and therefore do not require for elements to be selected prior to measurement.  

In the past, X-ray mapping by EDS suffered from a significant time penalty in 

part due to the relatively low count rates (<25 cps) achievable with EDS detectors 

of the time. The efficiency of elemental mapping techniques saw a significant 

increase with the advent of the silicon (lithium-compensated) energy dispersive X-

ray spectrometer (Si(Li)-EDS), which was capable of achieving a maximum count 

rate of ~2000 cps under ‘best resolution’ operating conditions (i.e., long peaking 

time constant) (Fitzgerald et al., 1968). The Si(Li)-EDS had an improved energy 

resolution relative to the flow proportional counter and enabled the simultaneous 

measurement of elements across the entire range of electron-excited X-ray 

energies through the use of electronic signal processing. For the statistically sound 

measurement and quantification of major elements in “point” analyses, spectral 

measurements would typically require a minimum live time of >10 s (Newbury, 

2006). 

Significant advances in computing power, speed, and data storage resulted 

in the development of techniques for the collection of X-ray spectrum images (XSI) 
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(Gorlen et al., 1984) which allowed for the entire EDS spectrum to be recorded for 

each beam location, or pixel. During X-ray mapping, the beam is rastered over an 

array of points at a resolution set by the operator (e.g., 128 X 128). This inevitably 

has a limiting effect on the dwell time that can be afforded at each pixel. Newbury 

(2006) approximated the total live time for a 128 x 128 map with a pixel dwell time 

of 100 ms on a Si(Li) EDS at 1638 s or 27 min. Owing to the combined need for 

large acquisition times in order to obtain statistically robust data, large data 

processing times, and standardizations required to obtain fully quantitative 

concentrations, the technique has often been used for the qualitative visualisation 

of element distributions and in the calculation and classification of phase 

distributions for samples at relatively low resolutions, but not for the statistically 

rigorous quantification of compositional distributions within element maps. 

The introduction of the silicon drift detector (SDD) (Struder et al., 1998; 

Barkan et al., 2004; Newbury, 2005) has radically changed the measurement 

capabilities of EDS detectors, enabling for precisions and accuracies equivalent to 

that of an analysis carried out by WDS (Newbury, 2005; Ritchie et al., 2012; 

Newbury and Ritchie, 2016). For a given detector active area, an SDD can achieve 

slightly better energy resolution than the conventional Si(Li)-EDS (Newbury, 2005). 

The biggest advantage of the modern SDD is that, for a given resolution, it can 

provide significantly higher X-ray throughput count rates relative to a typical Si(Li) 

detector (see Newbury, 2005 for a detailed comparison of the two types of 

detectors). The general lack of a physical limitation on the size of SDDs coupled 

with recent advancements in computer processing capabilities has resulted in 

increasingly larger detectors being developed which are capable of handling 

increasingly larger X-ray count rates (e.g. up to 1,000,000 cps). Considering that 

100 ms was sufficient for the mapping of major elements with a Si(Li)-EDS at ~2000 

cps throughput and assuming a total of 3,276,800 counts for the map (i.e., 2000 

cps x 1638s), then the same 128 x 128 map carried out by an SDD-EDS with a 

modest throughput of ~20,0000 cps would result in a map with a total of 32,768,000 

counts. This would suggest that the dwell time could be dropped to as low as 10 

ms for the map collected by the SDD-EDS, maintaining an equivalent total number 

of counts to the Si(Li)-EDS and decreasing the live time to 163.84 s or <3 min. The 

higher X-ray throughput count rates of modern SDDs (up to >400,000 cps for some 

EDS systems) has thus enabled the use of lower beam currents and shorter dwell 
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times in order to achieve statistically sound measurements, further minimising both 

the dosage of samples and map live time and facilitating the collection of element 

maps over larger areas (e.g., full thin sections) at higher resolutions (e.g., <15 μm).  

3.2.2 Software for processing element maps 

Modern SEMs are increasingly being outfitted with SDD-EDS systems for 

chemical analysis and supplied with software for the collection and analysis of XSIs. 

The preservation of the full spectrum at each pixel in an XSI allows for the user to 

perform off-line analysis of the map, whether it be the extraction and quantification 

of user-defined regions of interest (ROIs), the calculation of phase maps by way of 

pixel grouping and sorting, or even the mapping of previously unconsidered 

elements (Liebske, 2015). Owing to a general lack of flexible post-processing 

functions in vendor-supplied element mapping software, many recent studies (e.g., 

Cossio et al., 2002; de Andrade et al., 2006; Prêt et al., 2010a, b; Liebske, 2015) 

have focused on the development of independent post-processing methods for the 

classification and separation of phases from XSIs or extracted element maps. 

However, a large proportion of these independently-produced post-processing 

methods fall short on their applicability to broader research.  

Clarke et al (2001) provided a MATLABTM-based scripting method for applying 

the Bence-Albee matrix correction algorithm (Bence and Albee, 1968) to X-ray 

element maps collected by WDS-EPMA in order to produce oxide weight percent 

and cation proportion maps limited to 8 major oxides (i.e., SiO2, Al2O3, FeO, MnO, 

MgO, CaO, Na2O, and K2O). The results can be plotted and exported as maps and 

binary scatter plots with a focus on calculating pressure-temperature conditions of 

metamorphic assemblages. It is important to note that in order to run the Bence-

Albee algorithm, several parameters must be specified beforehand, including pixel 

counting time, α-coefficient parameters specific to instrument geometry (e.g., Love 

and Scott, 1978), intensity on standards collected during standardisation β factors 

derived for the standard compositions, and background parameters if background 

corrections are required. The Bence-Albee method was also employed in 

XRMapAnal (Tinkham and Ghent, 2005), a standalone Windows executable 

program focused on applying the algorithm to element maps collected by WDS-

EPMA, which included functions for phase identification, modal analysis, and cation 

calculation. Aside from the ability to plot binary scatter plots, the majority of the 
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functions present within XRMapAnal are usually incorporated into vendor-provided 

element mapping software. Lanari et al (2014) produced XMapTools, a MATLABTM-

based GUI for processing element maps collected by WDS-EPMA. The XMapTools 

method, like many other methods, is geared towards estimating P-T conditions of 

metamorphic rocks by incorporating the method of de Andrade et al (2006) to 

separate phases using a K-means clustering algorithm (see section 3.5.2 for a 

description) and quantify mineral structural formulae by using quantified point 

analyses collected from within the mapped region as standards for correction rather 

than incorporating the more complicated Bence-Albee algorithm. The method 

incorporates two separate GUI modules, Chem2D and Triplot3D, for plotting binary 

and ternary scatter plots of the derived mineral compositions.  

Other methods have focused less on quantifying map compositions and more 

on accurate phase clustering and identification. Prêt et al (2010a,b) provided a 

method for thin-section scale phase-mapping which uses maps that have already 

been quantified by either commercial software or existing methods, thus allowing 

for both WDS- and EDS-derived maps to be used. The main focus of their method 

is on accurate phase thresholding for deriving phase modes and semi-quantitative 

porosity maps. In contrast, Cossio et al (2002) created Petromod, a Windows 95 

software package coded in Microsoft Visual Basic 5®. Petromod uses BSE and 

WDS/EDS maps which have previously undergone signal processing (i.e., 

correction for probe current drift, normalisation of maps, and smoothing with a 3-

by-3 median filter) to create a Microsoft Access® database for calculations. The 

approximate location of quantitative spot analyses is indicated by the user and used 

to create semi-quantitative maps intended only for deriving phase maps, 

determining modal phase abundances, and for discriminating between solid 

solution endmembers within phases. 

The recent efforts of Liebske (2015) produced iSpectra, an ‘open-source’ 

software optimised for analysing XSIs collected by EDS-equipped SEMs which is 

primarily focused on providing accurate phase identification and modal phase 

abundance calculations, lacking the ability to further process element maps in order 

to produce element ratio maps or detailed compositional statistics. iSpectra is 

aimed at producing more accurate phase identification and assignment by requiring 

the input of the raw 3D data cube (or XSI) for the mapped area in the Lispix format 

(Bright, 1987; http://www.nist.gov/lispix/). Lispix data sets are a common output 
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format for commercial EDS systems, consisting of a binary, uncompressed file 

containing a consecutive sequence of each spectrum with an accompanying file 

containing information regarding the data type and dimensions of the XSI (Bright, 

1987; Liebske, 2015). The uncompressed nature of this format means that it is 

subject to rampantly large file sizes; assuming that data are stored in a 16-bit format 

(i.e., whole numbers between ±32,000 that are ~2 bytes each), a 1024x768 map 

collected on an EDS detector with 2048 energy resolution would produce a data 

cube containing 1,610,612,736 data points (i.e., 1024x768x2048) and constituting 

exactly 3 GB of memory. This makes iSpectra, although rigorous in its approach to 

processing by requiring the full raw data cube, difficult to use and apply to large 

area maps with comparatively large memory requirements. The focus of iSpectra 

on the accurate identification of phases and determination of modal phase 

abundances in element maps, although useful, effectively limits users from carrying 

out any further processing of element maps to produce element ratio maps or 

statistical assessments of compositional variations. 

One of the most widely used commercial products for automated rapid 

quantitative mineral and phase analysis is QemSCAN (Pirrie et al., 2004). 

QemSCAN was originally designed to provide rapid quantitative modal mineral 

analyses for the mining industry by using a Carl ZeissTM SEM outfitted with four 

light-element EDS detectors to collect X-ray spectra over a user-defined pixel 

spacing at rapid (e.g., 10 ms per pixel) dwell times. The software automatically 

compares collected spectra against a database of known spectra to assign a 

mineral or phase name to each pixel. The software systematically maps the near-

surface qualitative composition for each particle, assigns it to a mineral/phase and 

creates digital phase maps from the data. Using the resulting phase maps, the 

software has the ability to provide data relating to the shape and size of and the 

specific density calculated for each particle. Unfortunately, instead of providing the 

functionality to fully quantify the chemical composition at each individual pixel, 

QemSCAN opts for a semi-quantitative calculation of the average or bulk chemical 

composition for a group of pixels identified as a phase. This is acceptable if the 

user is simply attempting to characterise the modal mineralogy of a sample or 

carrying out some form of feature analysis, but inappropriate for users who would 

like to examine the full quantitative chemical distribution within a phase and across 

a sample. Further, the QemSCAN software package, like many of those described 
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previously in this section, lacks the functionality for users to modify existing 

components or create their own application-specific data processing modules for 

use within the software. Although it was once a unique product in the field of 

electron microscopy, the basic analytical tools and processing functions of the 

QemSCAN system have become commonplace amongst the vendor-provided 

software for EDS detectors (e.g., AztecFeatureTM in the AztecTM software from 

Oxford Instruments or the COMPASSTM algorithm in the PathfinderTM software from 

Thermo ScientificTM). 

In some cases, investigators have taken advantage of the rapid collection time 

and high (e.g., 1 µm) resolution of BSE imagery to create compositionally calibrated 

BSE images for determining the distribution of plagioclase compositions. For 

example, Cashman and Blundy (2013) used the grayscale variations in BSE 

images to collect quantitative analyses which bracketed the compositional 

spectrum of plagioclase hosting melt-inclusions. The BSE images were imported 

into the ImageJ (http://rsb.info.nih.gov/ij/) image analysis software and the 

quantitative analyses of plagioclase were used to calibrate the linear grayscale 

variations in the images according to An content. These images were then used to 

examine the distribution of plagioclase compositions within the crystals at high-

resolution. The high resolution of the BSE imagery means that pixels of surface 

defects and with electron interaction volumes approaching grain boundaries will 

have higher error and skew the data, producing an ‘Edge’ effect. These pixels are 

generally accounted for by running the maps through median filters which average 

out the data while preserving edges and grain boundaries (see section 3.5.1 for 

more information). Though this method produces high-resolution compositional 

variations for a given phase, it is limited to phases (e.g., plagioclase, olivine, 

pyroxene) with elements, or more often molar ratios (e.g., An or Mg#), which have 

a significant effect on the mean atomic number (i.e., the density) of the material. 

Some of the aforementioned software (e.g., XMapTools and PetroMod) allow for 

the inclusion of BSE maps for their quantification methods, however, but still require 

that element maps be imported in order for the processing to be carried out. 

Many of the available processing methods and vendor-supplied software lack 

the ability to efficiently quantify EDS element maps according to mineral-specific 

standardisations. Map quantification within vendor-provided software (e.g., the 

Oxford Instruments Aztec software) is designed to quantify the EDS spectrum 

http://rsb.info.nih.gov/ij/
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stored for each pixel like it would for a typical quantitative spot analysis under 

normal operating conditions. In quantifying an EDS spectrum, integrated peak 

intensities for the elements chosen by the user are produced after filtering out the 

background noise of the energy spectrum surrounding the peaks. These 

background-corrected peak intensities are compared with those collected on 

standard reference materials for which the elemental concentration is known (i.e., 

Castaing’s “first approximation to quantitative analysis”; Castaing, 1951). In 

‘standardless’ correction methods, the appropriate intensities of standard reference 

materials are either derived from a suite of experimental standards measured by 

the software manufacturer (i.e., fitted standards) or calculated from first principles, 

considering every aspect of X-ray generation, propagation, and detection 

(Goldstein et al., 2003). In most analyses, the measured intensities from both the 

standard and the specimen require a correction for differences in density, energy 

loss, X-ray cross section, electron backscatter, and absorption within the solid in 

order to produce truly comparable intensities independent of the material. These 

effects are commonly referred to as inter-element or matrix effects and are 

corrected using a matrix correction method. For simplicity, the common matrix 

effects which must be accounted for are conveniently divided into atomic number 

(Z), X-ray absorption (A), and X-ray fluorescence (F); hence, every matrix 

correction (e.g., ZAF, XPP, PAP) at their core is built to correct for the combined 

matrix effects of ZAF (Goldstein et al., 2003). The process of quantifying analytical 

spectrum by applying background and matrix corrections, although relatively quick 

for individual spectra, can be time consuming when it is applied to every spectrum 

in an element map which may contain >1,000,000 pixels. We found that it took 

approximately four hours for the Aztec software on the Cardiff University EDS-SEM 

system to produce a quantified compositional map for an element map of ~500,000 

pixels collected in approximately six hours. Such long processing times are 

unacceptable if a user desires to apply standardisations to the map which are 

specific to mineral phases. 

In order to accommodate the large number of full-thin section quantitative 

element maps needed for our investigation of the AML horizon, we required both a 

method for the rapid collection of element maps, and software which could facilitate 

the efficient post-processing of element maps collected by our dual EDS-equipped 

SEM. In particular, we needed software which would facilitate our post-processing 
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methods to produce fully quantitative assessments of compositional distributions 

for element maps without the need of multiple software platforms and allow for the 

flexibility to easily adapt the software’s functionality, which none of the existing 

platforms provided. The resulting software, a python-based GUI referred to as 

‘Quack’ (see section 3.5 for an overview), facilitates every step of the QACD 

process from processing for ‘bad’ pixels and noise in maps through 

manual/automatic phase identification, calculation of modal phase abundances, 

quantification of elements and molar ratios without the need for standard analyses, 

and the production and export of both element/ratio maps and histograms. Most 

importantly, the Quack software allows for users to quickly quantify elemental 

concentrations and molar ratios for individual phases instead of having to quantify 

the entire map with a single broad standardisation or several times over for mineral-

specific standardisations. The python code for Quack allows for users to adapt the 

software to their needs and more readily create new functionality when it is needed, 

thus aiming to curb the perpetual development of more disparate software 

methods.  

3.3 Developing and optimising the QACD method 

The experimental method that was used to determine the optimal conditions 

for map collection is provided here, in consideration that the optimal conditions for 

efficiently collecting element maps of sufficient quality for the QACD method will 

vary between SEMs and detectors. Carbon-coated samples were analysed using 

the Zeiss Sigma HD SEM outfitted with dual 150 mm2 active area Oxford 

Instruments Xmax SDD EDSs in the School of Earth and Ocean Sciences at Cardiff 

University. The SDDs were controlled and the output from the digital signal 

processor (DSP) integrated in the Oxford system was processed by the Oxford 

Instruments Aztec Software package. Optimisation of the mapping procedure was 

carried out using plagioclase, olivine, and diopside standards from Astimex (see 

Table 3.1 for compositions). These X-ray maps of the standards were acquired with 

a constant beam accelerating potential of 20 keV while systematically varying other 

parameters individually in order to address the effect of each parameter on both 

the quality of the map output and the total live time needed to collect it (see Table 

3.2 for summary of experiments). These parameters include pixel dwell time (e.g., 

500, 1000, 5000, 10000, 20000, 50000, and 100000µs), and beam current (e.g., 1, 
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2.5, and 5 nA). Although the beam current was varied as a parameter, it was kept 

within limits of that needed to generate adequate X-ray flux to reach a reasonable 

deadtime (<45%) and a minimum output count rate of >200,000cps (i.e., minimum 

count rate to achieve robust counting statistics) on a pure copper target as a chosen 

reference standard. The beam current was measured with a stage mounted 

Faraday cup. However, due to known difficulties in calibrating stage mounted 

faraday cups with known current sources (Newbury, 2006), the repeatability was 

estimated on the independent EDS measurement of the integrated X-ray counts 

from the Cu standard, and was found to be better than 0.2% relative. 

The x-y-counts file for each element were imported into Quack and processed 

according to the QACD Initialize step (see below), which filters out pixel noise (i.e., 

statistically bad pixels) by calculating the total intensity at each pixel (i.e., sum of 

each element intensity) and thresholding the map based on statistical analysis of 

the totals frequency distribution and applies a 3-by-3 median filter to the maps as 

is typical of post-processing methods (e.g., Cossio et al., 2002) to ensure that 

anomalous pixels are removed and that crystal edges become smoothed (Muir et 

al., 2012). Once imported, all maps are added together to produce the total number 

of counts at each pixel. Each map is then divided by the total counts map as a 

means of normalising the data. This process of normalisation allows for spectra 

collected at various dwell times and beam currents to be directly compared. At this 

stage in the correction procedure there is still some variation between the spectra 

normalised peaks of various phases. This variation can be further reduced by 

calculating the mean atomic number (Z), mean atomic weight (A), and the h 

parameter (h = 1.2 x (A / Z 2)) of the absorption correction defined by Philibert 

(1963) for each pixel and multiplying the spectrum normalised elements by h. For 

the purposes of ratio map calculation, the derivation and application of the h 

parameter to the spectrum-normalised elements has no negative effect on the 

resulting element ratios. 

Finally, the element ratio maps are quantified using correction equations 

parameterised based on multiple linear least squares regressions of a growing 

database of both analyses of reference materials, internal standards and unknowns 

and theoretical EDS spectra generated using the DTSA-II software package from 

NIST (Ritchie et al., 2008; Ritchie, 2009). The reference database consists of 222  
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spectra (as of August 2016; Table 3.3) which have been previously quantified by 

traditional matrix correction methods (e.g., the ZAF or XPP methods) and verified 

against standard reference materials. As with the element maps, integrated 

element intensities for these spectra were normalised to the total counts in the 

spectrum to remove the effect of varying dwell times and beam currents. The 

normalised element intensities were then multiplied by the h parameter calculated 

for each spectrum. A multiple linear least squares method was then used to regress 

best-fit equations relating the h-corrected, normalised peak intensities to their 

corresponding elemental concentrations by weight percent. Equations were also 

derived for molar ratios (e.g., An in plagioclase) by regressing best-fit equations 

relating known values to those calculated using the h-corrected, normalised peak 

intensities (see Figure 3.1 for examples of the regressed lines for the molar ratios). 

Within the database, general equations are derived which include the entire range 

of spectra, as well as equations specific to minerals/mineral groups (e.g., feldspars, 

olivine, pyroxene, garnet, oxides). The process of applying the parameterised 

correction equations to the map results in a map of quantified pixels. The database 

and correction equations provide an internal ‘fitted standards’-type of standardless 

correction method to the Quack software. However, unlike most ‘fitted standards’ 

correction methods, which are system-specific, this quantification method is 

designed to not be system-specific (i.e., limited to the Cardiff system) in that it 

removes the effect of instrumental variations by first normalising the elements to 

the total counts at each pixel. Over time, we plan to incorporate more spectra 

collected by a variety of instruments over a range of analytical conditions for various  

SiO 2 Al 2 O 3 FeO MgO CaO Na 2 O K 2 O An
a

Plagioclase 53.12 29.35 0.34 0.1 11.93 4.36 0.24 59.3

SiO 2 Al 2 O 3 FeO MgO CaO Na 2 O Mg#
b

Diopside 55.34 0.62 0.83 17.76 24.8 0.41 97.4

SiO 2 FeO MgO NiO Fo
c

Olivine 41.6 7.25 50.97 0.37 92.6

a
An = 100 Ca/(Ca + Na)

b
Mg# = 100 Mg/(Mg + Fe

2+
)

c
Fo = 100 Mg/(Mg + Fe)

Table 3.1: Compositions of Astimex standards used for optimisation of the QACD method.
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Figure 3.1: Molar ratio as derived from the spectrum (i.e. the molar ratio of background-corrected 
element intensities normalised to the total number of counts in the spectrum) plotted against the 
known molar ratio of the analysed sample. An (Ca / (Ca + Na + K)) and Or (K / (Ca + Na + K)) 
consist of analyses of feldspar standards and unknowns. Mg# (Mg / (Mg + Fe)) and Cr# (Cr / (Cr + 
Al)) consist of a mixture of olivine, pyroxene, garnet, amphibole, spinel and oxide standards and 
unknowns. 
 

materials into the database, leading to the development of increasingly accurate 

corrections for a wider variety of materials (see discussion below for more details). 

To optimise the QACD method, the maps of plagioclase, diopside and olivine 

standards ran under different conditions were processed and corrected to produce 

molar ratio maps of An in plagioclase and Mg# in diopside and olivine. Histograms 

of An in plagioclase and Mg# in pyroxene and olivine were produced from the molar 

ratio maps and used to compare the quality (i.e. peak mean, median and 2σ error) 

of the resulting compositional peak for each histogram. The lowest energy X-ray 

measured most often by this method is Na, thus the initial experiments for 

optimising the QACD method were carried out on the Plagioclase standard. The 

effects of varying both the beam current and pixel dwell time on the peak quality 
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of calculated An for maps run at 20 keV and 64x48 resolution are summarised in 

Table 3.4 with the histograms of those maps presented in Figure 3.2. We found 

that the mean An of the Plagioclase standard (i.e., 0.593) is even reproduced to 

within 0.17% of the standard by the map collected with a 10,000 μs dwell time and 

1.0 nA beam, indicating that the method is accurate even under relatively 

challenging analytical conditions. The precision of the An peak produced by a given 

map is monitored by the standard deviation (σ) of the mean in the histogram, and 

is improved by increasing pixel dwell time and/or the beam current, resulting in a 

decrease in overall peak width and increase in the peak height. For a dwell time of 

50,000 μs we find that the standard deviation of the An peaks produced decreases 

between 1.0 nA (σ = 0.019 or 1.9 mol.%) and 3.0 nA (σ = 0.0115 or 1.15 mol.%) 

resulting in a narrower, taller peak in Figure 3.2 at 3.0 nA that is comparable to the 

200,000 μs peak produced at 1.0 nA. Thus, the standard deviation of the produced 

peak can be minimised by increasing the beam current. 

For an accelerating potential of 20 keV and beam current of 2.5 nA, modus 

operandi for the Cardiff University SEM, a pixel dwell time of 10,000 µs, or 10 ms, 

and a minimum output count rate of 200,000 cps are required to produce element 

ratio peaks that fall within a 2σ error of the reported standard value (see Table 3.5, 

Figure 3.3). We find that for longer pixel dwell times of 100 ms there is a significant 

increase in both precision (0.0371 at 10,000 μs vs 0.0109 at 100,000 μs) and 

accuracy (1.10% at 10,000 μs vs 0.37% at 100,000 μs) along with the ability to 

image lower concentration elements. In the end, we chose to use a standard pixel 

dwell time of 20 ms which, when compared to the 10 ms dwell time, more accurately 

reproduced the standard compositions (% error = 0.20%) within the range of 

accuracies achieved by longer dwell times; thus, optimising the balance between 

map quality and total run time. Figure 3.4 provides histograms of Mg# derived from 

maps of the olivine and diopside standards collected with a beam current of 2.5 nA, 

dwell time of 20 ms, a 64x48 resolution resulting in peaks of 0.928 and 0.968 with 

standard deviations of 0.0038 and 0.0085 and errors of 0.22% and 0.59% relative 

to the standard values of 0.926 and 0.974 for the olivine and diopside standards, 

respectively. 
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Figure 3.2: Histograms of An (Ca/Ca + Na) in plagioclase for maps carried out at varying dwell 
times (50k = 50 ms; 100k = 100 ms, 200k = 200 ms) and (A) 1.0 nA and (B) 3.0 nA beam currents. 
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Figure 3.3: A histogram of An in plagioclase (SPI/ASTIMEX Plagioclase/Labradorite standard) 
derived from element maps with varying pixel dwell time. The element maps were run at 20 keV 
with a set resolution (32x24 pixels) and set current (2.5 nA). See table 3.5 for statistics on each of 
the histograms presented here. 
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Figure 3.4: Histograms of Mg# (Mg/Mg + Fe) derived from maps of the (A) Olivine and (B) Diopside 
standards. 
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3.4 Proof of concept: zoned plagioclase 

A large proportion of studies focusing on the interpretation of crystal zoning in 

magmatic systems to date have been carried out on plagioclase, leading to the 

identification and classification of a variety of crystal morphologies and zoning 

patterns (see Ginibre et al., 2007 for a short review). Owing to the nature of 

plagioclase to reflect chemical variations through its optical properties, many of the 

previous studies of plagioclase zoning have been primarily carried out with 

polarizing light optical microscopes. In recent decades, studies of plagioclase 

zoning have benefited from the use of increasingly more detailed and efficient 

techniques based on the collection of BSE imagery and element maps by SEM or 

EPMA; hence, a natural sample containing zoned plagioclase was chosen for the 

initial testing of the QACD method. 

Dolerite sample JC21-73R-7 from the Hess Deep Rift, Equatorial Pacific 

Ocean (see Figure 2.1c for an approximate location of dive 73) was chosen after a 

petrographic investigation determined that it contained an abundance of optically 

zoned plagioclase phenocrysts. A phenocryst which exhibited a minimum of two 

distinct chemical zones and minor oscillatory zoning patterns was chosen for 

targeted mapping (Figure 3.5). After collecting a BSE image of the target 

phenocryst and the surrounding material (Figure 3.5A), a portion of the crystal 

which contained an approximate 50:50 proportion of two distinct, nearly 

homogeneous chemical zones was chosen for point analysis and element 

mapping. The quantitative point analyses determined the core and rim to be of An79 

(n=5) and An69 (n=5) rim, respectively. The area was mapped at a magnification of 

1000x and a resolution of 64 x 32 pixels with an accelerating potential of 20 keV 

and a current of 2.5 nA. The resulting An map can be seen in Figure 3.5B and the 

resulting An histogram in Figure 3.5C. The resulting histogram (bulk mean An = 

0.74; σ = 0.11) exhibits two peaks with medians centred around 0.69 and 0.79, both 

of which match the population peaks for the two previously determined 

compositional zones. 
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Figure 3.5: (A) A Back-scattered electron image of a zoned plagioclase phenocryst chosen for 
element mapping in dolerite 73R-7. The red box constitutes a zone with an approximate 50:50 
distribution of plagioclase zonation chosen for isolated mapping. (B) A ratio map and (C) histogram 
of An in plagioclase has been derived from the map outlined in the BSE image. The locations of 
quantitative point analyses of the core (An79) and rim (An69) are indicated by white circles. 
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Next, an element map was collected over the entirety of the phenocryst and 

the surrounding area represented in the BSE image of Figure 3.5A. Figure 3.6 

provides the resulting phase-separated map (A) and histogram (B) of An in 

plagioclase for the phenocryst and the surrounding dolerite matrix material. Note 

that although the previous analysis focusing on the two distinct zones within the 

plagioclase phenocryst resulted in a significantly ‘cleaner’ compositional histogram, 

it lacks information regarding the presence of both subtle changes in the internal 

zonation of the plagioclase phenocryst and the strong zonation in the grain as it 

approaches the grain boundaries.  

The low-An tail which is present within the histogram for the full plagioclase 

phenocryst in Figure 3.6B is representative of the portions of the plagioclase grain 

within the mapped area that are in contact with the surrounding phases. If this map 

had been created by using a calibrated BSE image, then the low-An tail could be 

considered as an ‘Edge’ effect, however, the geometry and distribution of the 

zoning combined with our use of a 3-by-3 median filter to smooth or average out 

the data while preserving grain boundaries instils confidence that this tail is more 

or less related to actual zoning in the plagioclase as it approaches the grain 

boundaries. 

Thus, we have successfully developed a method for the rapid collection and 

processing of whole-thin section quantitative element maps. We have 

demonstrated that, with the QACD method, we can determine the full, quantitative 

compositional distribution of plagioclase, pyroxene, and olivine compositions with 

the required accuracy and precision from these maps. 
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Figure 3.6: (A) A ratio map and (B) histogram of An in plagioclase derived from a 179x134 element 
map of a zoned plagioclase phenocryst in dolerite 73R-7. 
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3.5 Quack: software for QACD 

The QACD method has been incorporated into a software package with a 

user-friendly graphical user interface (GUI) called Quack, which can be run with 

Python version 2.7 (see Quack user-manual in the electronic Appendix E3 for a list 

of required plugins) and requires no prior knowledge of the Python coding language 

(i.e., no requirement for command line input). The program is structured into four 

main parts: Initialise, Phase, Ratio and Results (Figure 3.7). The first step 

(Initialise), starts by loading the maps. The user will determine what type of filters, 

if any, they would like to apply to the maps and the overall dataset. Next (Phase), 

the user has a choice regarding how they want to go about identifying phases in 

their dataset and creating phase masks. The third step (Ratio), allows the user to 

calculate element ratio maps and apply quantitative corrections. The final step 

(Results), allows the user to create and plot element/ratio histograms and maps. 

All of the functions used in these different stages are explained below and relevant 

software environment-specific explanations of the modules can be found in the 

Quack user-guide (electronic Appendix E3). 

 

Figure 3.7: A flowchart of the QACD method as it has been incorporated into the QACD software. 

 

3.5.1 Raw data treatment (Initialise) 

Previous methods for processing quantitative X-ray element maps have 

included ways to process the raw map data including the ability to calculate and 

remove backgrounds from the map (i.e. peak fitting) and correct for spectrometer 

dead-time (e.g. Tinkham and Ghent, 2005). Like most vendor-provided EDS 
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software, the Oxford Instruments Aztec Software package on the Cardiff system 

already provides a built-in method for correcting raw X-ray map data which is 

optimised for their detectors, known as TruMap. Since all EDS users have this 

ability, we have not included such options within the QACD processing method, 

and instead, we rely on the vendor-provided software to perform these intensive 

corrections. The resulting background-corrected element maps are each exported 

from Aztec as comma-separated format text files (.csv) and used as the primary 

data input for Quack. These files do not include a header and consist of simple 

matrices of X-ray intensity data corresponding to the number of collected photons 

per analysed element per pixel, with a single column of zeros at the far right of the 

matrix. 

Upon executing the Initialize section of Quack, the user is prompted to pick 

the working directory in which the CSV files are located and create a project file 

within this directory. This project file, an HDF5 or hierarchical data formatted file, is 

structured like a tree and serves as a storage location for the data to be processed 

throughout the session (Figure 3.8). Next, the user is prompted to pick the CSV 

files that they would like to process and load them into the project file. The CSV 

files are read into matrices and, if the data is indicated as being from the Aztec 

Software, the column of zeros at the end of the matrix is removed. The user is now 

asked if they would like to apply a ‘Pixel Totals’ filter, a 3-by-3 median filter, or both 

to each map in the dataset. The ‘Pixel Totals’ filter simply stacks the individual 

element maps and adds together the total photon count rates for each pixel. A 

histogram is created from the resulting matrix of totals and a threshold created from 

statistical analysis of the totals peak to remove salt-and-pepper noise from the map. 

The threshold is then applied to all of the element maps, thus removing pixels with 

statistically anomalous total counts. The 3-by-3 median filter smooths the maps 

using an algorithm that replaces the central value of a 3-by-3 pixel area with the 

median value of all the nine points within the area. This ensures that anomalous 

pixels (e.g. those resulting from irregularities in crystal surface or polish) are 

averaged out while preserving crystal edges (Muir et al., 2012). The resulting maps 

are saved and stored under a new ‘Filtered’ node within the project file. The filtered 

maps are flattened into vectors and two ‘stacks’ are created for use in various 

calculations in later steps: a stack of 5 pre-defined common elements (i.e., Mg, Al, 

Si, Ca, and Fe), and a stack of all of the loaded element maps. The latter is then 
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used to calculate the mean atomic number (Z), mean atomic weight (A), and the h 

parameter of the absorption correction defined by Philibert (1963) for each pixel. 

 

Figure 3.8: A screenshot of the main project manager window for the QACD software. A detailed 
view of the project tree can be seen in the centre of the window. 

3.5.2 Phase identification (Phase) 

Once the maps have been filtered and saved to the project file, the user 

begins the process of identifying mineral phases. The aim of image processing is 

to segment an original image (or set of images) into a classified image by assigning 

a mineral identity to each pixel (cf. Higgins, 2006). This can be done by simple 

IF/AND/OR mineral-specific algorithms (e.g., Muir et al., 2012) or more complex 

methods based on statistical algorithms (e.g., de Andrade et al., 2006; Lanari et al., 

2014; Liebske, 2015). The QACD method contains two types of phase identification 

that the user can choose from. The first allows the user to define individual phases 

by simple thresholding relative to the amounts of key elements; thresholding is 

done by sliders, which interactively update the map to reflect the current threshold, 

allowing for precise phase maps to be created that are specific to the compositions 
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in any given sample. Once the key elements and their thresholds have been 

determined, the user names and creates a phase mask which is stored in the 

project under the ‘Phase’ node (Figure 3.9). This results in maps that display the 

X-ray intensity data for pixels that lie solely within the boundaries of the phase of 

interest.  

 

Figure 3.9: A screenshot of the phase thresholding window for the QACD software. 

The second method is an advanced adaptation of a k-means clustering 

algorithm, an iterative process which assigns n observations (i.e., pixels) to exactly 

one of k clusters defined by centroids (Lloyd, 1957). Each observation is assigned 

to the cluster defined by a centroid with the nearest mean to the observation. 

Essentially, given a sequence of observations (x1, …, xn), the k-means algorithm 

partitions the observations into k (≤n) groups S = (S1, …, Sk) by minimising the sum 

of squares within each cluster. The sum of squares within each cluster is defined 

as the sum of the distance functions for each observation in the cluster relative to 

the centroid. 

∑∑‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝑆𝑖

𝑘

𝑖=1

 

The centroids are randomly selected by the algorithm and k is defined by the user 

before the algorithm is executed. Because this method is automated and can be 

influenced by slight variations in minor elements, the user has the choice between 
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using either of the two stacks (5 common major elements or all loaded elements) 

created in the initialization process. After choosing which stack to use, the user is 

prompted to provide a range for the possible number of phases. For example, if 

five main phases were identified during petrographic analysis, then the user might 

provide a range of five to nine for this step in order to account for potential variations 

in alteration phases or zoning within minerals or any accessory phases. The 

software then carries out a series of k-means clustering operations across the 

range of provided minimum and maximum numbers of phases. The user is then 

presented with the resulting maps to choose the most appropriate result for further 

editing, providing an opportunity for the user to edit the results by way of merging, 

deleting, and renaming the phases. The final phase masks are saved and stored 

in a ‘Cluster’ node within the project file under the phase name provided by the 

user. The clusters can be returned to for further editing, and the process can be 

repeated and stored under a separate and numbered cluster node.  

Both the clustering and the thresholding methods for phase separation have 

their strengths and uses. The sensitivity of the k-means clustering method to slight 

elemental variations makes it useful for simple bulk phase mask creation and modal 

abundance calculations. For this reason, we have included features for calculating 

modal maps within the phase clustering portion of the software. The thresholding 

method allows for finer control over phase separation by the user, thus it is less 

optimised for calculating bulk sample phase maps and more towards single phase 

masking. Although the thresholding method is not set up for producing modal phase 

maps, statistics are produced for each phase mask which include the total number 

of pixels in a phase; allowing for the user to record and determine modal 

proportions for masked phases with ease. 

3.5.3 Molar ratio and concentration map calculation (Ratios) 

In addition to the processing of element maps and phase identification, Quack 

facilitates the interactive manipulation and visualisation of element maps and the 

calculation of elemental concentration maps and geochemically useful element 

ratio maps. Several common presets (e.g., An, Mg#) have been included in the 

ratio map calculator for ease of use, and custom ratios can be calculated according 

preset formats (i.e., A / B or A / (A + B) or A / (A + B + C)). For quantifying a single 

element, a preset is provided which is referred to as ‘single’, as in single element. 
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The window contains a list and several dropdown menus that are populated with 

the names of the imported elements. Upon selecting a preset ratio, a label displays 

details on what the ratio is and the dropdown boxes for the elements are 

automatically updated to reflect the chosen ratio. The user can choose to change 

these elements as well as provide a custom name for the calculated map. After 

pressing the calculate button, a dialog appears asking for the user to specify what 

phase, if any, they would like the ratio map to be calculated for; this determines 

which equations from the database will be used to calculate the map. Whenever a 

new map is imported or created, statistics are calculated for the map data (i.e., 

range, mean, median, and standard deviation of the selected ratio) and stored as 

metadata when the map is saved to the project file. 

3.5.4 Figure creation and export (Results) 

The software has the ability to display/create and export element maps and 

histograms of map data (Figure 3.10). These can be carried out on any of the 

element maps, including the original filtered element intensity maps, within a 

project. The figure export window contains options for controlling the size, dpi 

(exported resolution), file type and name of the exported file as well as the figure 

title and whether or not to include an annotation with statistical information for 

histograms. Histograms are generated from the chosen map data upon launching 

the histogram export window. For molar ratio maps, the histograms are calculated 

with 1 mol.% wide bins. For element intensity or concentration maps, the software 

calculates the bin size for 100 bins between the minimum and maximum of the 

dataset. The bins cannot currently be changed or specified by the user; this feature 

will be incorporated in the next release of the software along with the ability to 

produce other potential statistical plots. Upon exporting a histogram, the user has 

the option to save a .csv file under the same name containing the bins and 

frequencies corresponding to the figure. 
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Figure 3.10: A screenshot of the figure export window for a (A) histogram and an (B) element map 
from the QACD software. 
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Aside from visualising data for export as maps and histograms, the Quack 

software also allows for the user to export data in the form of text files. Under the 

file menu portion of the Project Manager window the user can select the option to 

export various maps and data from the project as .csv files for use in other post-

processing software (Figure 3.11). Currently the software supports the export of 

phase masks, filtered and processed maps, user-created ratio maps, and the 

project log file. 

 

Figure 3.11: (A) A screenshot of the project manager window highlighting the location of the map 
export function. (B) A screenshot of the map export window, where users can export various maps 
and metadata from the project as .csv or .txt files. 

3.6 Discussion 

The QACD method has been optimised for the rapid collection for full-thin 

section quantitative element maps on any EDS equipped SEM. The previous 

processing methods outlined in section 3.2.2 were focused on post-processing of 

element map data derived primarily by WDS-EPMA. Those published methods 

which do allow for data derived from EDS systems as well as WDS-EPMA fall short 
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of being able to accommodate both the full range of processing from data filtration 

through quantification, molar ratio calculation, and statistical analysis of the data 

and, in particular, are not optimised for the processing of the large map sizes that 

are required for full thin section element maps.  

3.6.1 WDS vs EDS element mapping 

The problem of these software methods lacking the ability to process full-thin 

section element maps may be rooted in the specific nature of how mapping is 

conducted by WDS-EPMA. Element mapping with WDS requires a fixed beam due 

to the tendency of the spectrometer to experience defocusing when the beam is 

rastered outside of the focal region of the spectrometer (typically a narrow band 

within the centre of the field of view). A fixed beam means that each pixel in a map 

has to be collected by manually moving the stage from point to point; a method 

which we will refer to as stage mapping. Stage mapping results in longer run times 

for element maps due to delays in stage movement caused by stage 

communication and backlash corrections (on some systems, up to 0.75 s delays 

between controller input and stage movement; Newbury, 2006). A 64x32 resolution 

map (2,048 pixels) run with a 100 ms dwell time could experience up to 25 minutes 

and 36 seconds of delay time for stage movement on top of the expected 3 minutes 

and 25 seconds of live time that is actually spent collecting data at each spot, 

resulting in a full run time of 29 minutes and 1 second for the map. Further, the 

number of elements which can be collected for a WDS-EPMA map at a given time 

is limited to the number of WDS spectrometers that the machine is outfitted with 

(e.g., a 4 spectrometer EPMA can only analyse 4 elements at a time). Things 

become more complicated when collecting maps intended for quantification which 

require robust counting statistics typically achieved by longer dwell times (100-300 

ms vs 40 s m.o.) and/or higher beam currents (100nA vs 10nA modus operandi) 

that can be damaging to certain materials.  

If a user wanted to collect a 1200x700 (840,000 pixels) full-thin section 

element map of 8 major elements (e.g., Si, Ti, Al, Fe, Mg, Ca, Na, K) using the 

WDS-EPMA method with a 100 ms dwell time, a single pass would require a live 

time of 23 hrs and 20 min with up to 175 hrs of time needed for stage movement, 

assuming a system with a 0.75 s stage delay.  Even if the system had a shorter 

stage delay of 0.1 s, the time required for stage movement would be 23 hrs and 20 
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minutes, resulting in a single pass of 66 hrs and 40 minutes (2 days 18 hrs and 40 

min). Furthermore, because the WDS configuration limits the number of elements 

that can be analysed, two passes will be required in order to collect the full map. In 

total, the map would take 5 days 13 hrs and 20 min to finish. It is no surprise, 

therefore, that the previously published methods that focused on processing WDS-

EPMA element maps were not practically considering the processing of such large 

maps. 

In contrast, our optimised method for collecting full thin section element maps 

by EDS facilitates the collection of the entire energy range for every pixel with lower 

beam currents (e.g, 1-3 nA) and a minimum dwell time of 20 ms. With an ideal 

spectrometer throughput achieved at ~35% deadtime on our EDS system, a 64x32 

resolution map ran at 100 ms would require a 3 min 25 s live time and result in a 4 

min 37 s run time. Further, the same 1200x700 (840,000 pixel), 100 ms dwell time, 

full thin section map that took more than 5 ½ days to run by WDS-EPMA would 

only take 1 day 7 hrs 30 min. Using the minimum 20 ms dwell time achieved by the 

QACD method, the map would instead require a 4 hr 45 min live time resulting in a 

total run time of 6 hrs 18 min. The QACD method and Quack software is designed 

to capitalise on these advanced capabilities of EDS-SEM systems. 

3.6.2 Advantages of the Quack software 

As previously discussed in section 3.2.2, the existing processing software 

which is designed for EDS element maps is limited in capability. Each of the 

methods capable of handling EDS-derived element maps is primarily focused on 

accurate phase identification and the calculation of modal abundances, with no 

room for adaptation. In contrast, the Quack software has been designed to allow 

for user modification. The software is currently built for processing large maps, 

calculating molar ratio maps, and plotting histograms of the maps data, allowing for 

users to export any of the data that is generated by the method into text files and 

images. Thus, the user is not limited to the software in its current state and can 

even modify the code of the python-based software to suit their own research 

needs.  

The long term goal is to maintain the established GitHub 

(https://github.com/mloocke/QACD-quack) repository for the software, so that it 

would serve as a place for users to (i) obtain the most up-to-date version of the 
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software, (ii) provide feedback regarding software bugs, (iii) request new features, 

and (iv) provide their own custom-coded features and modules for addition to the 

software. The GitHub repository will eventually also serve as a home for the QACD 

quantitative correction database. The database has currently only received spectra 

and analyses derived from the Cardiff University SEM that are limited to the 

standards and unknowns and optimised operating conditions of the Cardiff SEM 

lab. Like the experimental petrology database at the core of the MELTs modelling 

software (Ghiorso and Sack, 1995), the long term goal of the QACD database is to 

incorporate spectra acquired by users on their own EDS-equipped SEM under 

various conditions for a wide variety of standard and unknown compositions. Over 

time, these will facilitate the derivation of increasingly more accurate and precise 

correction models for a larger variety of elements, molar ratios, and mineral phases 

than is currently available to us. The QACD method has thus been designed to be 

a bespoke ‘living’ method that is easily updated and adapted with time. 

3.7 Conclusion 

The QACD method and the Quack software provide a new method for the 

rapid collection of full-thin section quantitative element maps and a new post-

processing tool for calculating mineral modes, producing element 

intensity/concentration and molar ratio maps, and quantifying full-sample 

compositional distributions. For the first time, a series of samples can feasibly be 

mapped in full to provide a thorough compositional characterisation of a rock or 

rock unit, allowing for full histories of igneous rocks to be reconstructed. Using the 

traditional method of map collection by WDS-EPMA, an investigation seeking to 

characterise the bulk compositional distribution of an igneous rock unit based on 

10 thin sections would require more than 55 days of run time to complete; hence, 

full-thin section quantitative element mapping is not common for petrological 

studies. Using the QACD method, the same 10 thin sections could be mapped over 

the course of two to three days (i.e., 2 days 15 hrs or 63 hours). Thus, the QACD 

method facilitates the incorporation of element mapping into the modus operandi 

of a geochemist or petrologist with access to EDS-equipped systems. 
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CHAPTER 4  

Application of the QACD method to natural samples 

4.1 Introduction 

The first application of the QACD method after initial testing and development 

on standard reference materials was full thin section element maps of six natural 

samples: (i) the same dolerite with zoned plagioclase phenocrysts from Hess Deep 

as was used for the initial tests (JC21-73R-7); (ii) a crystal-rich intermediate tuff 

from Almeria, Spain (ALM1) with a complex crystal assemblage exhibiting a variety 

of plagioclase zoning patterns and at least two distinct compositions of 

clinopyroxene; (iii) a basalt from the Gakkel Ridge, Arctic Ocean (HLY0102-D45-3) 

characterised by a large number of phenocrysts and glomerocrysts constituting 

approximately 20 modal percent of the rock in hand sample; (iv) an olivine gabbro 

(90R-6 126-129) and (v) an oxide-bearing olivine gabbro (80R-6 121) from ODP 

hole 735B. 

4.2 Plagioclase zonation in a dolerite 

The first successful full-thin section quantitative element map collected by the 

QACD method was that of dolerite sample JC21-73R-7 (Figure 4.1), in which 

previous testing of the method had been carried out on a compositionally zoned 

phenocryst. After collecting a full thin-section BSE image (Figure 4.1B), an element 

map was carried out at an accelerating potential of 20 keV, a beam current of 2.5 

nA, a pixel dwell time of 20ms and a pixel step-size of 15 μm. The resulting An map 

can be seen in Figure 4.1C and the resulting An histogram in Figure 4.2. A total of 

~100 phenocrysts were counted in the map, of which 60 crystals are larger than ~1 

mm. An examination of both the BSE image and the An map of the phenocrysts 

reveals several interesting features within the sample that were not readily apparent 

in plain- or cross-polarised light microscopy. (i) Two plagioclase phenocrysts have 

higher-An cores (~An87) than the rest of the sample; one just to the left of the map 

centre, and the other in the upper portion of the map, just to the right of centre. 

These two grains differ in zoning pattern with the central grain being characterised 

by a large high-An core and thin lower-An rim, and the upper-right grain being 

characterised by a smaller high-An core with slightly concentric zoning out to the 

lower-An rim. The likelihood of an analyst picking these grains for probing based 

on petrography is ~2% (2 out of 100) for the bulk phenocryst population and ~3% 
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(2 out of 60) if they are focusing on characterising the larger grains.  (ii) Only a 

small number of the larger phenocrysts (6 out of 60 or ~10%, of the phenocrysts) 

preserve a narrow reverse zone before transitioning into the normally-zoned rim. 

The likelihood that these grains would be chosen for analysis is 6% (6 out of 100) 

for the overall phenocryst population and 10% for the larger sub-population. Even 

if the analyst happened to choose those grains, such subtle features may not be 

readily apparent in spot traverses, unless a BSE map had been made beforehand. 

(iii) The matrix plagioclase is observed to cover a wide range of An compositions. 

The bulk of the matrix plagioclase have compositions which appear to be in 

equilibrium with phenocryst rims and exhibit zoning over short distances towards 

lower An.  

The histogram derived from the map (Figure 4.2) provides quantitative 

constraints on the nature of how An is distributed across the sample with the 

phenocryst cores (~An80) making up a comparatively smaller peak to that of the 

phenocryst rims and more primitive of the matrix compositions (~An66-67). The 

range of matrix compositions observed in the map is reflected in the the lower-An 

tail of the histogram. Further, subtle zoning features observed within phenocrysts 

in the map represent a statistically insignificant proportion of the overall population, 

and are thus not readily apparent when examining the bulk population histogram. 

For example, the higher-An phenocryst cores are represented by very small bars 

in the histogram, while the subtle reverse zoning identified in a handful of 

phenocrysts from the map is lost in the bulk compositional distribution. 

This sample illustrates the need for combining the use of element maps and 

histograms for reconstructing the full petrogenetic histories of rocks. The element 

maps provide constraints on compositional and textural variations and can reveal 

a lot about the true nature and histories of a sample without context as to how they 

relate to the overall compositional distribution. The histograms then allow for the 

overall compositional distributions to be quantified. Thus, element maps and 

histograms employed by the QACD method inform one another and prevent the 

user from acquiring incomplete or unrepresentative data and potentially erroneous 

interpretations. 
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Figure 4.1: A (A) cross-polarised light photomicrograph, (B) back-scattered electron map and (C) 
molar ratio map of An for the JC21-73R-7 thin section. The red box in each panel indicates the 
location of the grain chosen for detailed element maps in Section 3.5. 
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Figure 4.2: Histogram of An in plagioclase corresponding to the full thin section map of 73R-7 
displayed in Figure 4.14C. 

4.3 Feldspar and pyroxene phenocrysts in a tuff 

A single thin section of a crystal-rich intermediate tuff (ALM1) containing 

abundant plagioclase, amphibole and pyroxene crystals of variable morphologies 

was chosen for further application of the QACD method. ALM1 was sampled from 

a stream bed to the north-northwest of the town of Rodalquilar along the 

southeastern coast of Spain (Figure 4.3). The catchment of the stream is located 

in the northeastern portion of the Rodalquilar caldera complex within the Miocene 

Cabo de Gata volcanic field (Cunningham et al., 1990; Rytuba et al., 1990). The 

precise origin of the sampled mafic tuff within the caldera complex is unknown, but 

not of importance to this study.  

Petrographic analysis of the ALM1 thin section (Figure 4.4) reveals a cargo 

dominated by large hornblende, orthopyroxene, and quartz grains, plagioclase with 

a range of morphologies, various fragments of coarse grained xenoliths composed 

of mostly plagioclase and clinopyroxene, and a single large clast of tholeiitic basalt 

containing phenocrysts of clinopyroxene and plagioclase with similar morphologies 

and zonation patterns to crystals found throughout the tuff. A full thin section 

element map was collected with an accelerating potential of 20 keV, a current of 

4.0 nA, a pixel dwell time of 20 ms, and a pixel step size of 15 μm. Phase masks 

were created for plagioclase (703,259 pixels or 23.61 modal %) and pyroxene 

(148,226 pixels or 4.98 modal %) and the resulting An in plagioclase and Mg# in  
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Figure 4.3: A geologic map of the Roalquilar and Lomilla calderas along the southeastern coast of 
Spain (modified after Rytuba et al., 1990). The bottom right panel indicates the approximate location 
of the Rodalquilar caldera with a red star. The red star on the main geologic map indicates the 
approximate sample location for the ALM1 tuff. 

pyroxene maps and histograms can be seen in Figure 4.5. The bulk thin section 

maps and histograms for the ALM1 tuff further illustrate the strengths of using such 

figures in the interpretation of complex materials. 

The map of An in plagioclase for the ALM1 tuff (Figure 4.5A) exhibits a range 

of grain morphologies, zoning styles, and textural relationships that can be used to 

further constrain the history and origin of the rock. Overall, there is an impressive 

array of variability in plagioclase zoning patterns; some completely primitive (high-

An), some completely evolved (low-An), and some which fall somewhere in 

between, displaying predominantly normal zoning (i.e., evolving from core to rim) 

with the exception of a small percentage of larger grains which contain a reversely 

zoned core and normally zoned rim. Only an element map will allow for the user to 

appreciate the extreme variability in plagioclase composition and zoning across the 

ALM1 tuff, providing constraints on the potential origin of the incorporated 

materials. At first glance, one may be compelled to assume that the variety in 

crystal zoning and grain shape would result in a histogram with relatively distinct 

peaks for each of the dominant zones. However, the corresponding histogram 

reveals very little else regarding the plagioclase crystal population aside from the 

bulk range and primary concentration of An across the sample. There are at least 

three readily identifiable peaks/bumps in the histogram, with the most obvious 

located at approximately An78 and An69 and a subtle bump located around An55. 
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Figure 4.4: A (A) plain-polarised light photomicrograph and a (B) cross-polarised light 
photomicrograph of the ALM1 thin section. A cross-polarised light photomicrograph of the (C) 
clinopyroxene and (D) plagioclase grains chosen for detailed element maps. The locations of the 
clinopyroxene and plagioclase grains are indicated in panels A and B by the dashed red boxes. 

In contrast to the plagioclase, the element map of Mg# in pyroxene reveals 

that there are clearly two distinct populations of pyroxene within the sample, a 

higher-Mg# population exhibiting regular zonation and a lower-Mg# population. The 

largest concentration of the higher-Mg# pyroxene is within the large basaltic clast 

in the right half of the map. The presence of individual higher-Mg# pyroxenes within  
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Figure 4.5: Full thin section element maps (2725 x 1093 pixels) of An in plagioclase (A) and Mg# 
in clinopyroxene (B) and their corresponding histograms (C,D) derived from the ALM1 tuff. The 
black boxes in panel A and panel B indicate the locations of the maps displayed in Figure 13B and 
A respectively. 

the matrix of the tuff outside of the basaltic clast suggests that the tuff was not only 

picking up basaltic fragments, but also crystals sourced from these basalts. The 

corresponding histogram of Mg# in pyroxene reveals two dominant peaks related 

to the two distinct populations identified in the map. A large, tight peak in Mg# 

around 55 reports to a low-Ca pyroxene (orthopyroxene) characterised by large, 

tabular, euhedral grains amongst the main matrix of the tuff. The second, broader 
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peak in Mg# around 85 corresponds to the smaller, chemically-zoned Ca-rich 

clinopyroxenes found amongst the matrix and in the clast of tholeiitic basalt. 

Two grains (one clinopyroxene and one plagioclase) exhibiting zonation were 

chosen for higher resolution element maps (Figure 4.6). The zonation pattern of 

each grain is readily apparent in both the ratio maps and histograms for each 

element map. In comparing the histogram of Mg# in pyroxene in Figure 4.6c with 

that of the bulk thin section in Figure 4.5d, the range of Mg# in the small grain is 

seen to cover the entire range of the clinopyroxene mapped over the bulk sample. 

This provides a great deal of information regarding the range in composition for the 

bulk sample, but the degree of detail reflected in the element map of the isolated 

grain is lost in the background when examining the crystal populations within the 

rock as a whole. This is further exhibited by the two peaks in An in plagioclase for 

the element map of the plagioclase grain. Although the histogram of An in 

plagioclase for the isolated grain in Figure 4.6d easily covers the range of An in 

plagioclase for the bulk thin section, the two peaks are reflected as little more than 

slight bumps in the bulk histogram.  

A complex sample such as the ALM1 tuff has the potential to pick up 

phenocrysts and clasts from a variety of sources. In such a situation, the histograms 

can be used to narrow down the compositional ranges from which the phenocrysts 

and clasts were incorporated, and the information regarding chemical zoning 

patterns and crystal morphologies gleaned from the element maps can further be 

used to narrow down the sources of the populations within the sample. In the ALM1 

sample, for example, the observation that the high-Mg# pyroxene is present both 

within the basaltic fragment and as individual grains amongst the matrix suggests 

that the tuff was picking up both crystals and basaltic fragments; this information is 

critical when attempting to reconstruct the geological history of such a complex 

sample. The ALM1 element map essentially provides a window into the full history 

of the Rodalquilar caldera, including its basaltic stage. This is another example of 

a situation where the element map is critical with the histograms serving a more 

subsidiary, complimentary role in the overall analysis and interpretation. 
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Figure 4.6: (A-B) Ratio maps and (C-D) histograms of An and Mg# in plagioclase and pyroxene, 
respectively, derived from 256 x 192 pixel element maps of two separate grains within the ALM1 
tuff. The location of the two element maps is indicated in Figure 4.5A and B. 

4.4 MORB phenocryst populations 

As a contrast to the compositional range and complexity of the ALM1 tuff, two 

MORB samples, characterised by distinctly high and low modal proportions of 

phenocrysts, were chosen for analysis by the QACD method. Where the ALM1 tuff 

is derived from a setting and eruptive process which is expected to result in a 

complex phenocryst population derived from a wide variety of source compositions 

within the Rodalquilar complex, MORB typically record simpler histories. Textural 

and compositional variations in the phenocryst populations of MORB samples likely 

reflect variations in both the composition of and magmatic processes within the 

source of the phenocrysts; hence, we can use them to extract information regarding 

the nature of the magmatic plumbing system at MORs.  

Collected from the Gakkel Ridge, an ultraslow spreading MOR located in the 

Arctic Ocean (Figure 4.7; Michael et al., 2003), HLY0102-D45-3 (86.0217°N, 

25.0783°E) is an olivine-, clinopyroxene-, plagioclase-phyric basalt dredged from a 

small volcanic edifice within the sparsely magmatic zone of the Ridge. Sample 

HLY0102-D45-3 (D45-3) is characterised by a phenocryst population (~20 modal 
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%) with an abundance of clinopyroxene, no Cr-spinel, and glomeroporphyritic 

textures (i.e., phenocrysts tend to clump together). 

An element map (2281x17580 pixels) was collected on a thin section of 

sample D45-3 using an accelerating potential of 20 keV, a beam current of 2.5 nA, 

a pixel dwell time of 20 ms, and a pixel step size of 10 μm (Figure 4.8). Out of a 

map of 4,009,998 pixels, a total of 786,769 pixels (19.62 modal %) were determined 

to belong to the phenocryst population. The phenocryst assemblage of D45-3 lacks 

any systematic variability in grain size and morphology for the primary phases. 

Plagioclase (~68% of the phenocrysts) grains tend to be elongate with skeletal 

features occasionally appearing within grain interiors. Olivine (~20% of the 

phenocrysts) displays skeletal textures with euhedral to subhedral grains. Both 

plagioclase and olivine are found as single phenocrysts and associated with 

glomerocrystic clumps. Clinopyroxene (~12% of the phenocrysts) is rarely found 

outside of glomerocrystic clumps and is characterised by euhedral to subhedral 

grains which can be oikocrystic to plagioclase and olivine. 

 
Figure 4.7: A bathymetric map of the Gakkel Ridge separated into the 3 main magmatic zones of 
the ridge (after Michael et al., 2003). Sampling locations are indicated by circles and colour-coded 
according to their dominant lithology.  
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Figure 4.8: A false-coloured, layered element map of a selected portion of the HLY0102-D45-3 
sample. As in Figure 4.8, the predominantly black and red regions in the sample are vesicles and 
cracks containing alteration and products of oxidative weathering. The red boxes indicate the 
approximate locations of the higher-resolution maps provided in Figures 4.13 (left) and 4.15 (right). 

For the overall sample (Figure 4.9), plagioclase is predominantly 

characterised by an overall narrow range of An variability with a mixture of non-

systematic, oscillatory and sector zoning patterns which do not correlate with 

crystal habit. Such complex zoning patterns were not visible during petrographic 

analysis of the thin section. A single large phenocryst of resorbed plagioclase with 

a complex internal zonation pattern and a rim in equilibrium with the bulk 

plagioclase phenocrysts is present in the upper right quadrant of the element map. 

Like the plagioclase grains, the clinopyroxene grains span a relatively narrow range 

of compositions, exhibiting a complex mixture of oscillatory and sector zoning 

across the sample (discussed below). Although the larger clinopyroxene grains 

exhibited vague hints of oscillatory zonation petrographically, there was no 

evidence for such complex zonation patterns in thin section. Very small grains of 

primarily lower An plagioclase and lower Mg# clinopyroxene are also found to be 

scattered throughout the matrix material. Olivine grains are found to primarily 

exhibit minor concentric zoning, even across skeletal morphologies, over a narrow 
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range of Mg# with the exception of two grains which contain high-Mg# cores and a 

single phenocryst which contains a lower-Mg# core similar to the average smaller 

olivines found within the matrix of the sample. These anomalous olivine grains do 

not appear texturally different from the overall population, and lack any petrographic 

evidence for such zonation in thin section. 

The histogram of An in plagioclase found in Figure 4.10a complements the 

An maps, revealing a relatively narrow range of An contents across the 

glomerocrystic clumps and phenocrysts (average ~An54) with the single, large 

phenocryst of resorbed plagioclase making up the whole of the peak from ~An70-84. 

We note that the tail of low An displayed in Figure 4.10a is associated with smaller 

phenocrysts and larger matrix plagioclase. The clinopyroxene grains display a 

relatively small range of Mg# (average ~69; Figure 4.10b) with the small 

clinopyroxene grains within the matrix material constituting the low Mg# tail of the 

primary clinopyroxene peak. Olivine grains are found to have a narrow Mg# range 

of 72-78 (average ~74; Figure 4.10c) with the two grains exhibiting high Mg# cores 

represented by barely visible bars between ~84-87 and matrix olivines covering the 

range between the primary peak and a minimum Mg# of 60. 

An element map (4738x4646 pixels) was collected on a representative 

glomerocrystic clump (left red box in Figure 4.8) under the same conditions as used 

for the larger map, but with a pixel step size of 5.75 μm (Figure 4.11). Plagioclase 

(143,749 pixels) and olivine (13,458 pixels) phenocrysts within the clump primarily 

exhibit oscillatory zoning patterns with narrow ranges of An and Mg# (Figure 4.12a 

& c) which fall within the range of those seen in the overall section (Figure 4.10a & 

c). As we noted in the overall map, the matrix plagioclase, which is more readily 

visible in the glomerocryst map (Figure 4.11), falls towards lower An, constituting 

the low An tail exhibited in Figure 4.12a. In contrast to the plagioclase and olivine, 

the clinopyroxene crystals within the clump exhibit primarily oscillatory zoning with 

evidence for sector zoning occurring within the interior of the larger, oikocrystic 

clinopyroxene (Figure 4.11b). 

A second element map (317x333 pixels) was collected over the large 

resorbed plagioclase phenocryst (right red box in Figure 4.8) under typical running 

conditions with a 10 μm pixel step size and a slightly longer dwell time of 30 ms 

(Figure 4.13). The map reveals a complex zoning pattern in An with a vaguely  
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Figure 4.9: Molar ratio maps of (a) An in plagioclase and Mg# in (b) clinopyroxene and (c) olivine 
calculated from the element map of HLY0102-D45-3 displayed in Figure 4.10. 
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Figure 4.10: Frequency distribution histograms derived from the molar ratio maps of (a) An in 
plagioclase and Mg# in (b) clinopyroxene and (c) olivine of Figure 4.11. 
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Figure 4.11: Molar ratio maps of (a) An in plagioclase and Mg# in (b) clinopyroxene and (c) olivine 
calculated for the high-resolution map of a phenocryst clot indicated by the left-most red box in 
Figure 4.10. 
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Figure 4.12: Frequency distribution histograms derived from the molar ratio maps of (a) An in 
plagioclase and Mg# in (b) clinopyroxene and (c) olivine of Figure 4.13. 
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Figure 4.13: Molar ratio (a) map and (b) frequency distribution histogram of An in plagioclase for 
the high-resolution map of a resorbed plagioclase phenocryst indicated by the right-most red box in 
Figure 4.10. 
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euhedral ~An81 core that is concentrically zoned outward towards ~An74-76 

compositions. The overall zoning pattern is interrupted by a smooth, rounded, 

resorbed edge overgrown with a euhedral rim of low An plagioclase (average 

~An54) which is in equilibrium with the bulk of the phenocrysts and matrix 

plagioclase of the overall sample. 

The overall relatively homogeneous nature of the D45-3 phenocryst 

assemblage suggests that the bulk of the phenocrysts are likely derived from the 

same or similar material to the glomerocrystic clumps. The smooth nature of the 

transition in molar ratios between the phenocrysts and the matrix materials 

suggests that they are likely derived from a liquid with a similar composition and 

petrogenetic history; it is possible that such phenocrysts crystallised from the host 

magma at depth prior to eruption. The complex nature of the resorbed plagioclase 

phenocryst suggests that it and the high-Fo olivines are most likely derived from a 

source which is disparate to that of the bulk of the sample’s phenocrysts (i.e., 

xenocrystic). These xenocrystic grains exhibit overgrowth rims with compositions 

in equilibrium with the host magma, suggesting that they have resided within the 

host magma long enough to at least nucleate and crystallise new material. We 

might interpret these results to suggest that these xenocrystic grains were 

incorporated by the magma prior to a period of crystallisation where the magma 

was allowed to cool for long enough to develop larger phenocrysts/glomerocrysts 

prior to eruption. Regardless of the interpretation of such minor details, we can be 

certain that the phenocryst populations of D45-3 suggest some form of a longer 

period of cooling and crystallisation prior to eruption. 

The nature of and relationships between crystal morphology, composition and 

zoning patterns within the D45-3 phenocryst populations is subtle and not readily 

observable in transmitted light microscopy, a contrast to the readily apparent 

complexity observed previously in the ALM1 tuff. The relatively narrow range of 

melt compositions that is expected for MORB magmas means that observations of 

compositional zoning and textural and morphological relationships between phases 

from element maps hold more clout over the process of determining the 

petrogenetic history of a given sample. Observations of compositional and textural 

variations between phenocrysts and glomerocrysts within the element maps of 

D45-3 have provided constraints regarding the magmatic (e.g., crystallisation) and 

mechanical (e.g., incorporation and transport) processes relating to the origin of 
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the crystal populations in the host magma. In support of the element map 

observations, the histograms provide us with a quantification of the compositional 

distribution of the crystal populations within the sample, allowing for us to assess 

how the compositions of the phenocryst populations relate or differ to that of the 

host magma. 

4.5 Mid-ocean ridge gabbros 

Two thin sections of coarse-grained gabbroic rocks have been chosen to 

illustrate the application of QACD to plutonic rocks. Thin sections 90R-6 126-129 

and 80R-7 121 (referred to further as 90R-6 and 80R-7) are an olivine gabbro and 

oxide-bearing olivine gabbro sampled from ODP hole 735B which drilled 1508 m 

into gabbroic rocks unroofed at the Atlantis Bank core complex on the 

slow/ultraslow-spreading (15.7 mm/yr; Baines et al., 2007) Southwest Indian Ridge 

(Dick et al., 2000). Petrographic analysis revealed that both thin sections contained 

subtle evidence suggestive of zonation within the plagioclase, but deformation has 

obscured most of it; therefore, the full extent to which the plagioclase is zoned could 

not be readily determined in thin section. Further, there was no apparent zonation 

observed in the clinopyroxene and olivine of both thin sections. 

4.5.1 Sample 90R-6 126-129 

Thin section 90R-6 (Figure 4.14) is characterised by very large, subhedral to 

anhedral, granular plagioclase (~10-20 mm long) and olivine (~1-8 mm) with 

interstitial, anhedral clinopyroxene (~5-15 mm long). Grain boundaries between 

plagioclase and olivine are noted to be curved. A full-thin section element map was 

acquired using an accelerating potential of 20 keV, a beam current of 2.5 nA, a 

pixel dwell time of 20 ms, and a pixel step size of 25 μm (Figure 4.14). The resulting 

map of 1,125,183 pixels was found to consist of 70.6% plagioclase (794,377 

pixels), 10.4% clinopyroxene (116,765 pixels), and 13% olivine (145,709 pixels) 

with ~6% of the mode being constituted by minor oxide and alteration phases.  

Maps of An in plagioclase and Mg# in clinopyroxene and olivine for 90R-6 are 

provided in Figure 4.15. Contrary to petrographic observations of the sample, the 

plagioclase grains of 90R-6 are found to exhibit a variety of complex zoning 

patterns (Figure 4.15a). In fact, the high degree of variation in the geometry and 

intensity of zoning between individual plagioclase grains suggests that an analyst 

would have a hard time picking a grain and vector to collect a ‘representative’ profile  
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Figure 4.14: A (A) cross-polarised light photomicrograph and a (B) false-coloured, layered element 
map of the of 90R-6 126-129 thin section. 

from, even with the aid of an element map. The complexity of the plagioclase in 

90R-6 provides vital information regarding the magmatic history of the sample and 

can only be fully appreciated with an element map. In contrast to plagioclase, 

olivine in 90R-6 exhibits no obvious compositional zonation (Figure 4.15c). The 

curved olivine-plagioclase grain boundaries are found to often cut across 

compositional zoning patterns in plagioclase, suggesting that the anhedral olivine 

grains may have crystallised from a later, reactive intercumulus melt. The 90R-6 



QACD: Application 

79 
 

clinopyroxenes (Figure 4.15b) are interstitial to both plagioclase and olivine, 

suggesting that they were the last phase to crystallise. The clinopyroxene exhibits 

minor compositional zonation within each grain without any obvious preferential 

geometry, suggesting that this zonation may primarily be related to changes in melt 

composition associated with normal crystallisation. The element map revealed two 

compositional features that were invisible in thin section, and would have been 

unlikely to have been revealed by conventional EPMA studies. First, thin, dark 

clinopyroxene films observed along some of the olivine and inter-plagioclase grain 

boundaries in the layered element map for the sample (Figure 4.14) were revealed 

during processing to be more primitive (higher-Mg# of ~88) interstitial 

clinopyroxene (lighter-colours regions outlining inter-grain junctions in the left 

portion of Figure 4.15b). Second, one interstitial clinopyroxene has markedly lower 

Mg# (~78) than the other clinopyroxenes. 

 The histograms for the 90R-6 element maps support observations from the 

element maps for compositionally complex plagioclase and comparatively simple 

clinopyroxene and olivine (Figure 4.16).  Plagioclase is found to range in 

composition from An55-81, with primary peaks representing the average cores and 

rims at ~An70 and ~An62, respectively. Several of the larger plagioclase with regular, 

concentric zoning are observed to have thin, higher-An zones occurring 

approximately at the boundary between their cores and more evolved rims in the 

element maps, these higher-An zones are represented in the histogram as a small 

tail skewed towards An80. In contrast, the clinopyroxene (Mg# 75-88, average 83) 

and olivine (Mg# 78-84, average 81) cover relatively narrow compositional ranges, 

suggesting that they likely crystallised from smaller batches of interstitial melt within 

a plagioclase framework that is suggested by the complex zoning patterns to have 

been derived from multiple melt batches. 
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Figure 4.15: Molar ratio maps of (a) An in plagioclase and Mg# in (b) clinopyroxene and (c) olivine 
calculated from the element map of 90R-6 126-129 displayed in Figure 4.16. 
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Figure 4.16: Frequency distribution histograms derived from the molar ratio maps of (a) An in 
plagioclase and Mg# in (b) clinopyroxene and (c) olivine in 90R-6 126-129 presented in Figure 4.17. 
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4.5.2 Sample 80R-7 121 

Thin section 80R-7 (Figure 4.17) is characterised by very large, subhedral to 

anhedral, granular plagioclase (~5-15 mm long) and intergranular, anhedral to 

subhedral olivine (~5-7 mm) with granular to intergranular, anhedral to subhedral 

clinopyroxene (~5-20 mm). A full-thin section element map was acquired of this 

sample using an accelerating potential of 20 keV, a beam current of 2.5 nA, a pixel 

dwell time of 20 ms, and a pixel step size of 40 μm (Figure 4.17). The resulting map 

of 499,552 pixels (447,451 after removing the epoxy) was found to consist of 39.4% 

plagioclase (176,351 pixels), 38.5% clinopyroxene (172,190 pixels), and 9.5% 

olivine (42,715 pixels) with ~12.6% of the mode being constituted by oxide, apatite 

and alteration phases. 

A thick zone in the left portion of the thin section contains plagioclase and 

clinopyroxene which are characteristically more enriched in Na and Fe, 

respectively. The plagioclase found in this portion of the thin section tends to be 

more heavily affected by deformation. Oxides (1.5%) and apatites (0.3%) within the 

sample are primarily associated with the enrichment zone, forming along the 

periphery of the enriched plagioclase. The Na and Fe enrichment along grain 

boundaries is observed to decrease in relative intensity with distance away from 

this zone. In the rest of the sample, straight to slightly curved, well-equilibrated 

plagioclase-clinopyroxene grain boundaries are observed in contrast to the more 

chaotic, seriate boundaries and deformation observed within the enrichment zone. 

Aside from the high concentration of accessory phases and deformation, 

petrographic observations of the thin section do not suggest any difference in 

compositional zonation associated with the enrichment zone. The concentration of 

Na decreases away from the enriched zone, resulting in a gradual increase in the 

overall plagioclase An. Both olivine and clinopyroxene cut across An zonation in 

plagioclase, suggesting that these phases reacted with the plagioclase during 

crystallisation. We see a comparable trend in clinopyroxene Mg# (Figure 4.18b) to 

An in plagioclase, with Mg# decreasing towards the centre of the enrichment zone 

(Mg# from ~80 to 60). The core Mg# of clinopyroxene is nearly constant across the 

sample (Mg# ~80) with all grains exhibiting some degree of zonation towards lower 

Mg# at their rims. The net intensity of core to rim Mg# zonation in clinopyroxenes 

decreases with distance away from the enrichment zone and varies relative to 

orientation, with more intense zonation occurring in grain boundaries which face 
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Figure 4.17: A (A) cross-polarised light photomicrograph and a (B) false-coloured, layered element 
map of the of 80R-7 121 thin section. White lines A, B and C represent examples of core to rim 
analysis profiles discussed in the text and plotted in Figure 4.22. 

the direction of the enrichment zone (discussed below). Olivine does not display 

any marked zonation in Mg# within individual grains (Figure 4.18c), but vary  

between regions of the thin section, with the lowest Mg#s (median ~54) present 

amongst the most evolved plagioclase and clinopyroxene in the upper-left portion 

of the section, slightly less- 
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Figure 4.18: Molar ratio maps of (a) An in plagioclase and Mg# in (b) clinopyroxene and (c) olivine 
calculated from the element map of 80R-7 121 displayed in Figure 4.19. 
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evolved Mg#s (median ~58) associated with correspondingly less-evolved 

plagioclase and clinopyroxene in the lower and middle portions of the section, and 

the most primitive Mg#s (median ~68) being found in grains associated with the 

‘normal’ portions of the sample outside of the periphery of the enrichment zone. 

Plagioclase is found to exhibit gradual, concentric zonation in An which is 

most apparent in the right portion (~An60 to An48) of the thin section (Figure 4.18a). 

Both the minimum and bulk An of plagioclase grains is observed to plummet within 

the left portion of the thin section (~An40 to An30), reaching its lowest values in the 

upper-left portion of the thin section (~An25) where the concentrations of accessory 

and alteration phases become most abundant. As in the layered element map, the  

Histograms of the ratio maps (Figure 4.19) exhibit comparatively complex 

compositional distributions over a wide range of compositions, with overall 

plagioclase An ranging between An20-65 and Mg# in clinopyroxene and olivine 

ranging from 57-85 and 48-74, respectively. Overall, the histogram of An in 

plagioclase reflects the transitional nature of An across the sample with the four 

main peaks reflecting the gradual step down in the average core An composition 

for each of the compositional zones from the outer portions of the sample (peak at 

~An52), into the edges of the enrichment zone (slight peak at ~An48), the bulk of the 

enrichment zone (peak at ~An39), and the most evolved portion in the centre of the 

enrichment zone (peaks at ~An34). The compositional segmentation in olivine Mg# 

observed between the regions of the section is reflected in the corresponding 

histogram, with peaks at Mg#s of ~68, 58, and 55 reflecting the transition from the 

less-affected portions of the sample gradually into the core of the enrichment zone. 

The histogram of Mg# in clinopyroxene reflects the overall distribution of similar 

Mg# cores across the sample (peak at Mg# ~80) with a second peak (Mg# ~69) 

representing the average or most abundant rim composition across the sample. 

The most extreme evolved rims found immediately adjacent to the enrichment zone 

are represented by the tail that is skewed towards lower Mg#s on the left side of 

the secondary peak. 

We interpret the enrichment zone in the sample to represent a pathway for 

the focused transport of evolved melt which reacted with the surrounding gabbroic 

material to produce highly evolved (i.e., low An and low Mg#) plagioclase, 

clinopyroxene, and olivine and an abundance of accessory oxides and apatites. 

The effects of this reactive process diminish with distance away from the primary  
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Figure 4.19: Frequency distribution histograms derived from the molar ratio maps of (a) An in 
plagioclase and Mg# in (b) clinopyroxene and (c) olivine in 80R-7 121 presented in Figure 4.20. 
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reaction zone, resulting in a range of zoning profiles across grains. This is most 

apparent in the large clinopyroxene grain at the centre of the element map. The 

white lines labelled A, B, and C in Figure 4.17 represent 3 possible vectors that 

could be chosen for collecting representative zonation profiles for the sample based 

on petrography only. The results of these profiles for Mg# in clinopyroxene are 

provided in Figure 4.20 where it becomes apparent just how evolved the rims 

adjacent to the reaction zone have become. The lack of evidence for compositional 

zonation in transmitted light microscopy of the sample means that without the aid 

of an element map, an analyst would need to rely on choosing the most optimal 

vector from core to rim in relation to the grain shape, likely resulting in profiles A 

and B due to presence of less alteration on the right side of the grain. Profile A 

maximises the distance covered to the outer extensions of the grain covering a 

range of Mg# between 82 and 75 over a distance of ~8 mm, while profile B follows 

the shortest path to the grain boundary with a range of Mg# between 82 and 78 

over a distance of ~5.5 mm. In contrast, profile C covers a wide range of Mg# 

between 82 and 66 over a distance of ~10 mm. Simple probing based on 

petrographically-determined optimal analytical locations has a significant chance of 

missing the presence of the melt-rock reaction feature within the 80R-7 sample. 

Similar to sample 90R-6, even with representative profiles like that of profile C in 

Figure 4.20, the analyst would lack the appreciation for the degree of compositional 

and textural complexity and variability for the sample. This is best illustrated by the 

olivine grains, of which each has a different composition and lacks any zonation. If 

a thorough petrologist had probed each of the olivine grains, they would not know 

how to appropriately interpret the results without some sort of context. The element 

maps provide the analyst with contextual information which is key to appropriately 

interpreting a sample. 
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Figure 4.20: Representative core to rim profiles of Mg# in clinopyroxene derived from vectors 
indicated by white lines in Figure 4.19. 

4.6 Discussion 

The QACD method offers a number of important advantages over 

conventional microanalysis by EPMA, which are critical in the interpretation of 

igneous rocks: 1) it reveals the full range of mineral compositions present; 2) it 

reveals the complete variability in zoning patterns present; 3) it provides textural 

context for the variations in compositions and zoning patterns; 4) it is statistically 

rigorous, precluding bias. These four advantages are discussed in turn below using 

examples from this study. 

4.6.1 Full range of mineral compositions 

Each sample which we have applied the QACD method to has been revealed 

to contain primary mineral phases which cover a range of compositions and 

typically display some degree of variability across the sample. A volcaniclastic 

sample like the ALM1 tuff is expected to have incorporated crystals and clasts from 

a wide range of source compositions. In such samples, a thorough characterisation 

of the sample can provide important constraints on both the total range of source 

compositions of the source material incorporated into the tuff and the compositions 

of the sources which contributed the bulk of the material to the sample. This is 

illustrated by the histogram of An in plagioclase for the ALM1 sample (Figure 4.5c) 

in which we observe that the entire compositional range found in the sample covers 

An16-94 with the bulk of the distribution falling around three primary peaks at An78, 
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An69, and An55. We interpreted the full range of the ALM1 An in plagioclase to 

indicate that it is sampling materials from across the full magmatic history of the 

Rodalquilar caldera complex with the primary peaks (as well as a clast and crystals 

from a tholeiitic basalt) indicating primary sampling of the basaltic stage of the 

caldera. 

4.6.2 Complete variability in zoning patterns  

The element map collected for the 90R-6 126-129 gabbro is an example of a 

sample which exhibited little petrographic evidence for compositional zoning (partly 

obscured by deformation) or even compositional variability across the sample, but 

was revealed through element mapping to exhibit extremely complex zoning 

patterns for An in plagioclase (Figure 4.15a) which varied substantially between 

individual grains. Such samples cannot be accurately represented by a handful of 

petrographically-chosen analytical profiles, and thus require the collection of a full-

thin section quantitative element map in order to fully appreciate the nature and 

degree of complexity in compositional zoning for the sample. 

4.6.3 Textural framework 

Sample 80R-7 121 is an example of a sample which can easily be 

misrepresented by careful choosing of representative locations by an analyst, and 

thus requires a thorough assessment of the compositional variability for the sample 

in order to fully appreciate its complexity. This was partly illustrated by the 

representative line profiles in Figure 4.20 which found that the full range of 

compositional zoning in the clinopyroxene was revealed only by choosing a profile 

in the opposite orientation to those deemed appropriate according to petrographic 

observations. The resulting histograms for 80R-7 allow for the user to track the bulk 

changes in mineral compositions as seen in the element maps between the normal 

portions of the sample and the gradually more evolved, melt-rock reacted portions 

of the sample. The need for textural context is best illustrated by the nature of the 

olivine grains in 80R-7 121 (Figure 4.18). As we previously noted, a thorough 

petrologist might probe each of the olivine grains, finding that each one has a 

different composition and lacks any zoning without any context. It is only by 

collecting an element map that the analyst has the true context of how a particular 

grain or composition relates to the overall sample, thus facilitating an appropriate 

interpretation of the data. 
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4.6.4 Statistically rigorous 

Element maps such as those presented above provide information which is 

valuable in determining both the quantitative (e.g., histograms) and qualitative (e.g., 

molar ratio maps) nature of compositional distributions within and across geologic 

samples. For example, such information can prove valuable in determining whether 

oscillatory zonation in a plagioclase crystal is the result of either large-scale, 

repeated changes in externally controlled growth conditions or kinetic effects at the 

crystal-melt interface; two types of processes with distinct implications for growth 

environment dynamics (Pearce, 1994; Ginibre et al., 2007). This suggests that 

although element maps are, in themselves, a visually powerful tool for the 

examination of elemental distributions over large areas, the information which they 

provide can be misleading to the human eye when examined from a qualitative 

point-of-view.  

Consider the map of An in plagioclase presented in Figure 4.1: the eye is 

naturally drawn to the large, high An grains of the sample, and thus one might 

predict that such compositions would constitute a significant portion of the sample 

and form a large peak when compared with the rest of the plagioclase in the map. 

Although the histogram for that map, which is displayed in Figure 4.2, does exhibit 

a peak for those high-An grains, that peak is not so large as to eclipse the rest of 

the sample in the histogram. We critically note that, more often than not, during the 

development of the QACD technique, we found ourselves making such mistakes 

and over-estimating our own predictions of the modal proportions of specific 

compositional ranges and features present in element maps. Such a mistake as 

this can lead to a preferential choice by a user to only analyse specific portions of 

the map that may stand out from the rest of the sample (e.g., high An cores and 

low An rims), but may not be fully representative of the sample as a whole. If a user 

were to carry out point analyses on just the extremes of An composition for the 

mapped plagioclase phenocrysts in Figure 4.2 (i.e., means of ~An69 and ~An80), 

then the resulting data would fail to reveal the presence of a second major peak at 

An69.6, which is actually the major peak of the sample, and the general nature of 

the transition between the extreme ends of An zonation. For example, if we 

consider the range of An found in the phenocryst cores (i.e., An74.5-83.5), then 

analyses of the phenocryst cores would only be representative of ~17% of the 
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plagioclase present in the sample (i.e., 82,378 pixels out of the total 472,960 

plagioclase pixels in Figure 4.1). 

 The potential for bias in the choice of targets for spot analysis is effectively 

removed by treating every pixel of a quantitatively-optimised element map as a 

single analysis. Further, by quantifying element maps for useful element ratios, like 

An, and deriving histograms of the data, vital information can be gleaned regarding 

both the map-scale variations in chemical zonation and crystal morphologies, 

inherently qualitative features which invite error on the part of human operators, 

and the relationship of such chemical variations to the overall distribution of 

chemical populations within the sample. 

4.7 Conclusions 

Element mapping is critical in reconstructing the full histories of igneous rocks. 

We have demonstrated here that QACD provides four major distinct advantages 

over conventional element map processing, (i) providing a statistically rigorous 

method, precluding operator bias, for revealing (ii) the full range of mineral 

compositions and (iii) the extent and distribution of compositional zoning (iv) within 

the textural context of the sample. Although we have primarily presented 

applications for the QACD method with respect to primary mafic phases (e.g., 

plagioclase, pyroxene, olivine), the application of the method is not limited to these 

phases. We have included corrections for oxides and garnets in the QACD software 

which allow for its application to other rock types, including metamorphic rocks. The 

ability of the software to be easily modified and adapted means that new 

applications for the QACD method can be developed by users. 
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CHAPTER 5  

The paradox of the axial melt lens at fast-spreading mid-ocean ridges 

5.1 Introduction 

Here we present the first comprehensive study of the AML horizon at a fast-

spreading MOR (Hess Deep, equatorial Pacific Ocean). We show that plagioclase 

and pyroxene within the AML are much too evolved to be in equilibrium with MORB, 

with mean An (54.85) and Mg# (65.01) consistent with derivation from basaltic 

andesite to andesite melts (Mg# 43-26). Primitive compositions (i.e., An≥80 and 

Mg#≥85) are critically under-represented within the AML, constituting ~0.26% of 

plagioclase and ~0.02% of pyroxene. We propose that, in between decadal 

eruptions, the AML is predominantly crystal mush and is fed by small volumes of 

evolved interstitial melts. Short-lived, focused injection of primitive melt leads to 

mixing of primitive melts with the extant highly fractionated melt, and triggers 

eruptions. This model reconciles the paradoxical compositional mismatch between 

the volcanic and plutonic records with the geophysical characteristics of the AML, 

the short residence times of Pacific MORB phenocrysts, and the incompatible trace 

element over-enrichments in MORB. 

5.2 Methods 

The JC21 Dive 78 hand samples are varitextured to the degree that they 

cannot be fully represented by a single 2.8 x 4.8 cm thin section. Seventeen (three 

dolerites and fourteen gabbronorites) of the twenty-three samples collected by dive 

78 were slabbed for subsampling. A series of locations which adequately 

represented the range of textural variability of each sample were mapped onto the 

surfaces of the slabs (Figure 5.1) and cut to produce thin sections for microanalysis. 

A total of sixty serial thin sections were produced from the seventeen slabbed 

samples. The number of serial thin sections cut from each sample varied according 

to its degree of textural variability. For example, one to two sections were cut for 

samples which exhibited markedly lower degrees of textural variability while some 

of the most variable samples had six or seven sections cut from them. 

5.2.1 The QACD method 

The complex nature of the dive 78 samples presented a challenge for 

documenting the full range and distribution of compositions within the AML at Hess 

Deep by traditional microanalytical techniques (e.g., point by point EPMA analysis).  
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Figure 5.1: A photograph of the slab from which thin sections 78R-5D, 78R-5E, and 78R-5F were 
samples. Photomicrographs of the serial thin sections have been superimposed the slab to illustrate 
their original orientation and the range of textural changes exhibited across the sample. 

To obtain a rigorous characterisation of the composition of the AML horizon at Hess 

Deep, we have developed a methodology for the collection and processing of full 

thin section quantitative element maps (see Chapters 3 & 4) (thin section ratio maps 

and frequency distribution histograms are provided in the electronic appendices of 

this thesis). 

A total of thirty-four thin sections across seventeen samples from the dive 78 

suite were deemed appropriate for element mapping based on petrographic 

observations (i.e., minimal alteration and satisfactory polish). Full thin section 

quantitative multi-element maps were collected on a Zeiss Sigma HD analytical 

scanning electron microscope equipped with two 150 mm2 active area EDS 

detectors in the School of Earth and Ocean Sciences at Cardiff University. Typical 

pixel step-sizes of 25 μm with a dwell time of 20 ms and a minimum output count 

rate of 200,000 counts per second were used. The resulting element maps were 

post-processed using a python-based script (i.e., the Quack software; see Chapter 

3 for a description of the method).  

In order to track the degree of evolution of the melts parental to the AML 

gabbros, we have focused on An (=Ca / [Ca + Na] in plagioclase) and Mg# (=Mg / 
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[Mg + Fe] in clinopyroxene). The precision of An and Mg# calculated by this method 

have been determined on plagioclase and diopside standards to be ~3 and 2 mol% 

(2σ), respectively. Phase masks for plagioclase and pyroxene were calculated from 

the element maps using simple IF/AND/OR statements to classify each mineral. 

The resulting phase masks were used to segment calculated molar ratio maps of 

An and Mg# for plagioclase and pyroxene respectively. Histograms with 0.01 (i.e., 

1 mol%) wide bins were calculated for each map and combined to produce bulk 

sample histograms and a bulk AML histogram. The corresponding ratio maps and 

frequency distribution histograms for the individual samples are provided in the 

electronic appendix. 

5.2.2 Modelling melt differentiation 

A series of fractional crystallisation models were carried out to investigate and 

parameterise the relationship between An in plagioclase, Mg# in clinopyroxene and 

the corresponding Mg# of the parent melt. Using MELTS (Ghiorso and Sack, 1995), 

fractional crystallisation models of a least-squares regressed parental EPR MORB 

composition (Lissenberg et al., in revision), all assuming perfect fractional 

crystallisation, were carried out with oxygen fugacities between the quartz-fayalite-

magnetite buffer and 1 log unit below at 1 kbar under dry conditions. 

5.3 Results 

Petrographic analysis (see Table A.1) of the sixty serial thin sections reveals 

that the varitextured nature of the hand samples is often reflected to a further extent 

both within and across serial thin sections. Sample 78R-6, for example, was 

described in handsample as a medium grained, equigranular disseminated oxide 

gabbro with moderate to strong magmatic foliation lacking any obvious textural 

variability. In fact, serial thin sections 78R-6A, 6B and 6C were found to contain 3 

identifiable textural domains and rare olivine grains (up to 5-7 mm) (see Figure 5.2 

for descriptions of the domains). The degree of textural variability exhibited by 

sample 78R-6 on the scale of a single thin section, though a little less than most, is 

qualitatively representative of the dive 78 samples analysed by this study. 

The An and Mg# maps produced from the dive 78 thin sections represent a 

total of more than 13 million and 12 million spot analyses of plagioclase and 

pyroxene, respectively. An average of 400,000 pixels of plagioclase and 350,000 

pixels of pyroxene where analysed in each thin section which, using a 25 um pixel  
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Figure 5.2: Photomicrographs of serial thin sections (A, B and C) for 78R-6, a disseminated oxide 
olivine-bearing gabbronorite which reflect the average range of variability encountered in the 
gabbroic rocks of dive 78. Isolated grains of olivine (outlined in red) occur dispersed throughout the 
sample. The blue line demarks a textural change between a domain of large, blocky plagioclase 
with a weak to moderate foliation towards the top left of the thin sections and a more pyroxene-rich 
domain containing long, acicular plagioclase with a strong foliation towards the bottom left of the 
sections. Rounded hornfelsic domains composed of equigranular plagioclase and clinopyroxene 
(outlined in green) can be found in some of the Dive 78 samples exhibiting sharp, non-gradational 
contacts with the surrounding material. 
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step-size translates to approximately 250 and 220 mm2, respectively. In the case 

of plagioclase, for a specific composition to represent 1%, 5% or 10% of the sample 

it would need to constitute ~2.5, 12.5 or 25 mm2 of the mapped plagioclase. 

Similarly, for a specific pyroxene composition to represent 1%, 5% or 10% of the 

sample it would need to constitute ~2.2, 10.9 or 21.9 mm2 of the mapped pyroxene. 

Extrapolating to the bulk of the AML, for a plagioclase composition to represent 1%, 

5% or 10% of the AML it would need to constitute ~81.25, 406.25 or 812.5 mm2 

while a pyroxene composition would need to constitute ~75, 375 or 750 mm2 across 

the analysed samples. 

 There is no evidence to suggest that there is any systematic compositional 

variability between textural domains in a majority of the thin sections. This is 

reflected in section 78R-6A where the molar ratio maps of An (Figure 5.3A) and 

Mg# (Figure 5.3B) exhibit no apparent variation between the three textural domains 

highlighted previously in Figure 5.2A. Plagioclase is consistent across the 78R-6A 

textural domains with normal binary zoning between an ~An58 core and an ~An50 

rim (Figure 5.3C) while pyroxene mostly have an average Mg# of 72.5 (Figure 5.3D) 

with occasional larger grains exhibiting zoning towards a more primitive core. This 

would seem to suggest that the various textural domains encountered at the scale 

of a thin section are likely derived from the same melt or melts of similar 

composition by varying physical processes. The only samples which exhibit any 

systematic compositional variability between textural domains are those which 

contain pegmatite veins. The pegmatite veins in samples like 78R-5x4B (Figure 

5.4) tend to be significantly evolved and often exhibit a strong gradation towards 

more primitive compositions away from their margins and into the rest of the 

sample. 

Sample 78R-14, like 78R-5x4B, contains a prominent pegmatite vein which is 

more evolved than the surrounding gabbroic material (Figures 5.5 and 5.6). The 

evolved pegmatite vein in 78R-14A is represented in Figure 5.5C by a large peak 

at ~An45. The main distinguishing characteristic between the pyroxene in the 

pegmatite and the rest of 78R-14A is the presence of a lower Mg# peak at ~50 

(Figure 5.6C) which corresponds to small purple pixels adjacent to patches of 

alteration in the molar ratio map (Figure 5.6A). Section 78R-14E (Figure 5.5B and 

5.5D) was sampled away from the pegmatite vein and exhibits a main peak around 

~An54 for the matrix material and slight zoning towards more evolved compositions  
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Figure 5.3: Molar ratio maps of (A) An in plagioclase and (B) Mg# in pyroxene derived from thin 
section 78R-6A and their associated frequency distribution histograms (C-D). 
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Figure 5.4: A (A) photomicrograph of  and the molar ratio maps of (B) An in plagioclase and (C) 
Mg# in pyroxene produced from thin section 78R-5x4B, an oxide gabbronorite containing a 
prominent pegmatite vein. Quartz (outlined in red in panel A) is often found within dive 78 pegmatite 
veins. 
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Figure 5.5: Molar ratio maps of An in plagioclase and their associated frequency distribution 
histograms for thin sections 78R-14A (A, C) and 78R-14E (C, D). 
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Figure 5.6: Molar ratio maps of Mg# in pyroxene and their associated frequency distribution 
histograms for thin sections 78R-14A (A, C) and 78R-14E (C, D). 
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which indicate cryptic amounts of pegmatite-related material within the section. No 

apparent peak can be found at a Mg# of 50 for 78R-14E (Figure 5.6D) but a large 

tail towards high Mg#s is present which is the result of a poor polish in the upper 

right corner of the thin section.  

The histograms of the ratio maps for all of the serial thin sections were 

combined on a sample by sample basis to produce bulk compositional distribution 

histograms of each sample. For example, in the case of sample 78R-14 (Figure 

5.7) the combined bulk histograms of the two serial thin sections reveal An 

distributions with a mean of An49 and two prominent peaks at ~An45 and ~An54 

which represent the pegmatite and the rest of the sample, respectively. The Mg# 

distributions reflect the low Mg# bits found in the pegmatite and the bulk pyroxene 

zonation observed throughout the sample in Figure 5.6B. The ‘strip-a-grams’ 

presented in Figure 5.8 are an attempt to present all of the bulk thin section 

histograms on a single, informative plot for direct comparison. The ‘strip-a-gram’ 

plots heatmaps of the calculated probability density functions of each An and Mg# 

histogram as horizontal strips; hence the name ‘strip-a-gram’. Although we lack 

accurate depth estimates for our AML samples in this study, the y-axis of the ‘strip-

a-gram’ could be adapted to plot samples according to depth. The overall 

distribution of An compositions in Figure 5.8A clusters approximately between An50 

and An60 with two prominent samples peaking around An45 (sections 78R-2B and 

78R-2F) and a handful of samples broadly distributing above An60 with the highest 

being 78R-5F. The overall distribution of Mg# in Figure 5.8B clusters between Mg#s 

of 65 and 70 with a group of three sections (78R-5D, 78R-5x4B and 78R-5x4C) 

clustering around a mode of 40-42 and three prominent sections at the top of the 

plot (78R-6A, 78R-6B and 78R-6C) clustering around a mode of 70 to 73. 

 Combining all of the samples together, the bulk AML was found to have a 

mean An of 54.85 and Mg# of 65.01 (Figure 5.9). The overall distribution is skewed 

towards more evolved An and Mg#, which likely reflects extreme fractionation 

during closed system crystallisation, or ‘fossilisation’, of the AML. Primitive 

plagioclase and clinopyroxene compositions are scarce (An≥80: ~0.26%; Mg#≥85: 

~0.02%) across the thin sections, with 78R-8A containing the only identifiable 

coherent domains of primitive plagioclase. In 78R-8A the primitive plagioclase 

constitutes ~0.4% (i.e., 700 out of 174980 analyses) (Figure 5.10) and occurs as 

discrete resorbed cores (~An80-85; <1mm) in larger (up to 2mm in length) evolved  
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Figure 5.7: Combined bulk sample histograms of (A) An in plagioclase and (B) Mg# in pyroxene for 
sample 78R-14. 
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Figure 5.8: Strip-a-grams of probability (%) density distributions for (A) An in plagioclase and (B) 
Mg# in pyroxene for the bulk samples of dive 78. Each strip represents the combined results of each 
serial thin section for all of the analysed samples. 
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Figure 5.9: Frequency (black lines) and cumulative (red lines) distribution histograms for (a) An in 
plagioclase and (b) Mg# in pyroxene. 

plagioclase grains. The bulk of the 78R-8A plagioclase are characterised by an 

~An57 core and an ~An50 rim. The plagioclase grains which contain the primitive 

cores exhibit concentric zoning from the ~An82 core through an ~An57 zone to an 

~An50 rim, suggesting that the primitive cores did not crystallise from, and were 

likely entrained within, the parent melt of the bulk of the sample. 
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Figure 5.10: (A) Molar ratio map of An in plagioclase and (B) the associated frequency distribution 
histogram for thin sections 78R-8A. 

5.4 Discusison 

5.4.1 Melt composition within the AML 

We have parameterised the measured An and Mg# distributions against melt 

compositions using a MELTS (Ghiorso and Sack, 1995) fractional crystallisation 

model of a primary EPR MORB (Lissenberg and MacLeod, in revision). Results 

(Figure 5.11) show that the bulk AML mean An54.85 and clinopyroxene Mg# of 65.01 

would equate to a melt Mg# of 43 and 26, respectively, with melt compositions of 

basaltic andesite and andesite: hence, the gabbros are derived from melts 

substantially more evolved than mean EPR MORB (mean Mg# 58) (Lissenberg and  
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Figure 5.11: Melt Mg# versus (a) An in plagioclase and (b) Mg# in clinopyroxene. The 
representative probability distributions for each molar ratio are plotted along the x-axis in each panel 
for reference. Fractional crystallisation MELTS (Ghiorso and Sack, 1995) models (black lines) of a 
parental EPR MORB (Lissenberg et al., in revision) have been plotted for oxygen fugacities between 
the quartz-fayalite-magnetite buffer and one log unit below it. The remaining melt fraction is plotted 
at 5% intervals (white circles). See the Methods section for details on the modelling. The shaded 
blue and red regions represent the range of melt Mg# in equilibrium with the means of the 
plagioclase and clinopyroxene datasets, respectively. 

MacLeod, in revision). Only 3.77% of plagioclase and 0.01% of pyroxene within the 

AML samples have compositions primitive enough (An≥69, Mg#≥87) to have been 

derived from mean EPR MORB, and only ~0.55% of plagioclase has An≥77 and 

therefore could be in equilibrium with primitive (Mg#≥65) MORB. Although the 

precise percentages will vary depending on assumed primary melt composition and 

fractional crystallisation model, the bulk AML plagioclase An and clinopyroxene 

Mg# is consistently more evolved than that which is predicted to be in equilibrium 

with mean to primitive EPR MORB compositions. 

According to our parameterised model, the calculated bulk mean An and Mg# 

compositions equate to drastically different equilibrium melt Mg#s, suggesting that 

there is a compositional gap between the two phases. While this could be 

considered a reflection of the phases fractionating at different points during the 

parent melt’s evolution, there is a simpler explanation for the compositional gap. 

Plugging the mean pyroxene Mg# of 72.5 for section 78R-6A (Figure 5.3D) into the 

parameterised MELTs model returns a plagioclase (An50 to An55) in equilibrium with 

the plagioclase rims found within the section. This would suggest that the more 

primitive plagioclase cores crystallised from a more primitive melt, forming a 

framework, and the plagioclase rims and evolved interstitial pyroxenes crystallised 

from an evolved interstitial melt. 
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The data presented here are paradoxical: that although geophysical evidence 

indicates that the AML is the proximate source of MORB, the plutonic rocks that 

occur at this level are too evolved to be in equilibrium with MORB. Hence, the 

plutonic and volcanic records do not tally. 

5.4.2 A conceptual model for the axial melt lens 

Any petrological model for the AML, in addition to resolving this paradox, must 

be able to account for: (i) the observations of generally high crystal (<40% melt; 

Marjanović et al., 2015; Xu et al., 2014) content of the AML and its fine-scale along-

axis segmentation in melt proportions (Marjanović et al., 2015; Carbotte et al., 

2015); (ii) the short (30-90 days) residence times of Pacific MORB phenocrysts 

(Pan and Batiza, 2002, 2003; Moore et al., 2014); (iii) the indication of melt mixing 

as a major process prior to eruption based on the presence of a number of distinct 

compositional groups in lava phenocrysts (Pan and Batiza, 2002, 2003; Goss et 

al., 2010; Moore et al., 2014); (iv) clinopyroxene trace elements for the dive 78 

samples indicating crystallisation from melts with strongly enriched and fractionated 

trace element patterns, which has been interpreted as a signature of reactive 

porous flow of interstitial melt in the lower crustal crystal mush (Lissenberg et al., 

2013); (v) the presence of incompatible trace element over-enrichments in MORB 

(O’Neill and Jenner, 2012; Lissenberg et al., 2013). 

We propose that the AML is characterised by protracted, mush-dominated 

periods where it is fed by evolved interstitial melts extracted from the underlying 

lower crustal crystal mush (Figure 5.12A and 5.12C), undergoing slow cooling and 

crystallisation which may lead to the development of fine-scale segmentation of the 

AML horizon (Singh et al., 1998; Carbotte et al., 2013; Marjanović et al., 2015). 

These small volumes of melts would be over-enriched in trace elements and highly 

fractionated as a result of reactive porous flow through the crystal mush beneath 

(Lissenberg et al., 2013). In the few months leading up to decadal eruption events 

(Pan and Batiza, 2002, 2003; Goss et al., 2010; Moore et al., 2014) (Figure 5.12B), 

primitive melt is injected into the AML in large, focused volumes where it undergoes 

rapid mixing with small volumes of the extant evolved melt to produce a hybridised 

MORB with over-enriched incompatible trace elements. The rapid emplacement of 

the primitive melt likely contributes to triggering of a diking or eruption event (Goss 

et al., 2010; Moore et al., 2014), thus limiting the mixing and residence time of  
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Figure 5.12: Along-axis cartoon representation of the model for the evolution of the AML developed 
in this paper. (a) An inter-eruption, mush-dominated period where the AML horizon is recharged by 
small volumes of evolved, interstitial melt extracted from the underlying crystal mush (pale red 
arrows). The AML undergoes slow cooling and crystallisation. Pale pink regions in the diagram 
represent frozen portions of the melt lens. On a decadal timescale (b), large volumes of primitive 
melt from the lower crust are injected into the AML where they undergo rapid mixing with the highly-
fractionated, evolved extant melt (black arrows). These injection events are likely to occur within 30-
90 days of eruption events, playing a leading role in triggering these eruptions. (c) After an eruption 
has drained the AML of large volumes of hybridised magmas, the remaining melt will begin to slowly 
cool and crystallise as the dominant mechanism of melt delivery returns to that of the evolved 
interstitial melt as in panel a.  

magma with MORB compositions in the AML, and the amount of material 

contributed by it to the plutonic record. Any primitive melt remaining in the AML 

after eruption will continue to mix with the extant fractionated melt to produce a 

hybrid, evolved abyssal tholeiite liquid (Natland and Dick, 2009) with a low 

crystallisation temperature and the capability to produce a two pyroxene 

assemblage (i.e., a gabbronorite) (Walker et al., 1979). This model accounts for the 

general lack of primitive compositions in the AML and the abundance of 

orthopyroxene in the upper gabbros of the Hess Deep plutonic section. Hence, the 

evolved nature of the plutonic rocks in the AML does not in itself require that MORB 

bypasses the AML horizon altogether, as has been suggested previously (Natland 

and Dick, 1996, 2009). Further, the geophysical observation of variations in melt 

content and distribution over scales of a few hundred metres (i.e., smaller distances 

than the length of fine-scale AML segments) (Marjanović et al., 2015) suggests that 

the focused nature of primitive melt delivery to the AML horizon could lead to the 

preservation of evolved pockets of melt which lack interconnectivity (e.g., pale pink 

region between the AML segments in Figure 5.12) with the broader AML horizon. 

With increasing crystallisation and occlusion of porosity, strong crystal networks 

form in these lower-temperature segments of the AML (Pan and Batiza, 2003), 

isolating and thus preserving pockets of evolved material within the horizon, now 

represented by the skew towards low Mg# and An (Figure 5.9). 
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5.5 Conclusions 

Our holistic model for the role of the AML at fast-spreading MORs reconciles 

the paradoxical compositional mismatch between the volcanic and plutonic records 

with the geophysical characteristics of the AML, the short residence times of Pacific 

MORB phenocrysts, and the incompatible trace element over-enrichments in 

MORB. It is also consistent with detailed examinations of the changes in magmatic 

chemistry during the repose time between the 1991-1992 and 2005-2006 eruption 

events of the EPR region around 9°50’N. During this period, the underlying AML 

was gradually recharged with more evolved residual liquids originating from the 

underlying mush zone (Goss et al., 2010). Focused replenishment of primitive 

magma to the AML ~6 weeks prior to eruption may have played a major role in 

triggering the eruption event (Moore et al., 2014). 

The data presented in this paper are difficult to reconcile with previous models 

in which primitive melts fed from the mantle enter and reside in the AML and 

crystallise significant gabbroic material (e.g., the gabbro glacier model) (Morgan 

and Chen, 1993; Coogan et al., 2002a). We instead propose that while the AML is 

an active player in the development of MORB, permitting the fractionation and 

storage of evolved melts from the underlying crystal mush and recording the mixing 

of that material with primitive melt, it fulfils more of a passive role with respect to 

lower crustal accretion (Pan and Batiza, 2002, 2003). 

Future work should seek to establish whether the evolved compositions 

determined at Hess Deep are a general feature of AML plutonic rocks elsewhere. 

Given the segmentation of mid-ocean ridge axes (Carbotte et al., 2015), as well as 

the AML itself (Carbotte et al., 2013; Marjanović et al., 2015), some degree of 

variability is likely to occur (Perk et al., 2007), although the Pito Deep plagioclase 

and pyroxene compositions in the shallow gabbros overlaps those described herein 

from Hess Deep. However, we can rule out that the evolved nature of the Hess 

Deep AML is the result of its putative location near a segment end (Stewart et al., 

2005; Rioux et al., 2012a), since the Hess Deep crust has a bulk Mg# of 74.29 (i.e., 

that of a primary mantle melt), and the gabbroic rocks beneath the melt lens have 

steeply dipping foliations and lineations. These observations indicate delivery of 

primary melt to the Hess Deep section and a crustal accretion mechanism involving 

vertical (i.e., within-section) melt and/or mush transport. 
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CHAPTER 6  

An evolved melt lens in the northern Ibra Valley, southern Oman Ophiolite 

6.1 Introduction 

In order to further constrain the characteristics of the AML horizon in support 

of our investigation of the in situ Hess Deep AML sample suite (Chapter 5), we 

have mapped and sampled in detail this horizon in an ‘undisturbed’ section of the 

Oman ophiolite (Wadi Saq) located in the north-eastern Ibra Valley, Wadi Tayin 

Massif, southern Oman Ophiolite (Figure 2.4). The mapping location was chosen 

based on the abundance of relatively continuous outcrops from the foliated gabbros 

through the DGT into the sheeted dykes. Continuous outcrops of the AML horizon 

are uncommon due to preferential meteoric alteration relating to the prevalence of 

fractures, igneous contacts and lithological heterogeneity within the horizon 

(France et al., 2009). The good exposure and near-continuous outcrop within the 

mapping area provided a natural laboratory to observe the complex nature of the 

AML across a range of scales (i.e., from pluton- down to sub-centimetre-scale). The 

observations of the mapped section have provided analogous constraints for our 

Hess Deep investigation regarding the three-dimensional nature and distribution of 

the rocks which formed in the AML, while providing vital information regarding the 

nature and variability of the DGT in the Oman ophiolite. 

6.2 Structure of the Wadi Saq upper gabbros 

We selected an area to the east of the Wadi Saq, near the village of Farigh 

along the northern limb of the Ibra valley for detailed study on the basis of 

continuous exposure from the foliated gabbros up through the base of the sheeted 

dykes; herein referred to as the Wadi Saq section (Figure 6.1). The general 

stratigraphy of the section follows a roughly N-S trend from lower crust to upper 

crust, with mapping covering the top of the foliated gabbros, through high-level 

gabbros and into the base of the sheeted dykes (Figure 6.2). Continuous outcrop 

becomes lost within the sheeted dykes, which outcrop discontinuously in the gravel 

plains to the south, before passing into scattered Geotimes lava outcrops and 

thence, 4km to the south, into a window of underlying (Hawasina) shelf sediments 

and a recumbent fold/thrust complex (Hopson, 1981; Pallister, 1981; Pallister and 

Hopson, 1981). The dominant lithologies based on field observations, and referred 

to by their descriptive field names are as follows: foliated gabbros, patchy isotropic  
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Figure 6.1: A 1:5,000 geologic map of the hills to the east of the village Farigh where the Wadi Saq 
enters the gravel plains. Roughly 1km of true stratigraphic thickness has been mapped from the 
upper foliated gabbros up through the base of the sheeted dykes. 
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gabbros, spotty gabbros, quartz diorites, sheeted dykes, and cross-cutting dykes.  

The Ibra area lacks good exposure of bedded volcanic rocks or 

interbedded/overlying pelagic sediments, therefore, one must rely on the attitude 

of lithologic contacts or cumulus layering in the plutonic rocks in order to correct for 

the Ibra Valley syncline in restoring the stratigraphy to horizontal (Pallister, 1981). 

The crust/mantle boundary along the crest of Jabal Dimh (~30 km E-W extent) has 

a southerly dip of ~30-35° (Pallister, 1981; Pallister and Hopson, 1981). Assuming 

that layering in the upper gabbros formed horizontally, Pallister (1981) constructed 

a series of cross-sections perpendicular to the fold axis defining the fold symmetry 

by the attitudes of cumulus layering and unit contacts in the upper gabbros. We 

employed this same technique for reconstructing the approximate unit thicknesses 

reported in this chapter. A cross-section line was defined through the centre of the 

mapped area and used to calculate the distance from the fold hinge, as defined by 

Pallister (1981), to each of the unit contacts. These distances were used to 

calculate the variation in the expected dip of the contacts assuming a dip for the 

crust/mantle boundary of ~30° and checked against estimates from the field and 

the derived cross-sections for accuracy. The resulting dips (25-20°) and average 

unit thicknesses were then used to estimate the original stratigraphic thicknesses. 

Figure 6.4 provides a stratigraphic cartoon using these calculated thicknesses and 

summarising the field observations presented below. A range of representative field 

photographs of the mapped units are provided in Figures 6.3-8, with high resolution 

versions of these figures provided in the electronic appendix. For each unit, 

summaries of petrographic descriptions have been provided in Appendix A (Table 

A.2) and full-thin section scans are provided in the electronic appendix (E5) for 

reference.  
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Figure 6.2: A simplified cartoon of the representative mapped stratigraphy of the Wadi Saq section 
based on field observations as described in the text of section 6.1. The foliated gabbros at the base 
of the column contains lenses of anorthosite (yellow) and pegmatite (red). Pegmatites also appear 
in the patchy and spotty gabbros as veins and patches and are found intruding along the margins 
of cross-cutting dykes (orange) into the diorite unit. The varitextured nature of the diorite becomes 
more intense at the base of the sheeted dykes (black patterns). Xenoliths of the diorite can be found 
throughout the sheeted dykes. 
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6.2.1 Foliated gabbros (Figure 6.3) 

The upper portions of the foliated gabbros mapped by this study (~270 m 

thick) consist of a series of subfacies that, unlike other sections in Oman (e.g., Wadi 

Abyad; MacLeod and Yaouancq, 2000), can vary significantly perpendicular to the 

foliation (i.e. palaeo-horizontal) on the scale of an outcrop (Figure 6.3A). Though 

these subfacies usually exhibit prominent magmatic foliations (average strike of 

005° and dip of 66° to the NW), it is not uncommon for portions of the outcrop to 

exhibit a range of fabric intensities from very strong to weak (or non-existent in the 

case of pegmatite lenses) (Figure 6.3D and 6.3F). The dominant subfacies of the 

unit is a medium grained (2-5 mm), granular gabbro with a range of modal phase 

proportions between more leucocratic (50-60% plagioclase) and more melanocratic 

(40-50% plagioclase) bands (Figure 6.3A, 6.3B and 6.3F). This dominant subfacies 

comprises the bulk of the outcrop and consist of anywhere from 0.2-1 m wide bands 

in which plagioclase is typically euhedral/subhedral and blocky to tabular with slight 

variability in grain size, while pyroxene is generally subhedral and lacking in grain 

size variation (even in the more melanocratic facies) and minor olivine, where 

present, is generally subhedral, altered, and variable in grain size. Olivine is present 

throughout the mapped portion of the foliated gabbros as predominantly altered, 

oxidised grains in outcrop that increase in abundance with depth in the section.  

Other identified subfacies include anorthositic leucogabbros gradational to 

anorthosites (Figure 6.3E-F), foliated olivine gabbro, and foliation-parallel lenses of 

pegmatites (Figure 6.3A and 6.3D). In several cases, most or all of these subfacies 

can be observed occurring in a single 5-10 m wide outcrop (Figure 6.3A). The 

anorthositic subfacies is dominated by subhedral, rounded, blocky to tabular 

plagioclase ranging from <0.1 mm up to ~0.5 mm in length with rare patches of 

interstitial oxide or pyroxene appearing in the wholly anorthosite endmembers. The 

anorthosites are typically found as thin (<0.2 m) bands that are gradational to the 

other subfacies, but one band was documented as having sharp contacts with the 

surrounding foliated gabbros (sample ML98). The foliated olivine gabbro subfacies 

occurs as 0.5-1.5 m wide bands and resembles the dominant granular gabbro 

(sensu stricto) subfacies but also containing abundant, large (up to 1 mm), 

subhedral to euhedral granular olivines. Foliation-parallel pegmatite lenses within  
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Figure 6.3: Representative field photographs of foliated gabbros from Wadi Saq. (A) Four subfacies 
of the foliated gabbros in a single outcrop, including (F1) a strongly foliated, medium-grained 
granular subfacies cut by (F2) lenses and veins of pegmatite which grades into (F3) a finer-grained 
subfacies with (F4) wispy veins of anorthosite. (B) Modal layering parallel to the foliation. (C) 
Strongly foliated granular pyroxene clots in a plagioclase matrix with extreme modal variation. (D) 
Anorthosite strips amongst pegmatite lenses ~1 m to the south of the modal layering in panel B. (E) 
Wispy strips of anorthosite with undulating margins near the contact with the patchy gabbros. (F) 
Outcrop containing 3 subfacies of the foliated gabbros including (from left to right) (i) a granular, 
melanocratic subfacies with a weak fabric, (ii) an anorthositic strip with mafic stringers, and (iii) a 
moderately foliated granular subfacies. 

the foliated gabbros tend to occur as ~5-10 cm wide bands that span the length of 

outcrops but may not be readily traced between outcrops. The pegmatites are 

characterised by large (up to 2.5 cm), euhedral plagioclase surrounded by 

interstitial green and brown amphibole, clinopyroxene (where primary mineralogy 

is preserved), and occasional oxides (up to ~1 cm). Two other subfacies were 

identified higher up in the section near the contact with the patchy gabbro. These 
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facies include intergranular to subophitic patches within the more dominant 

granular leuco- and melagabbro subfacies, and anorthositic leucogabbros with 

spot-like, weathered clots of pyroxene ± oxide ± amphibole oikocrysts (up to ~0.5 

cm in diameter). 

Overall, the foliated gabbros exhibit subhedral granular to intergranular, 

moderately well-equilibrated textures with gently curved plagioclase grain 

boundaries. In most samples, plagioclase grains are elongate (>2:1 aspect ratio), 

tabular, anhedral to subhedral grains. Clinopyroxene, though appearing granular in 

some outcrops, tends to be interstitial (sometimes poikilitic) to plagioclase. When 

present, olivine is granular, anhedral to subhedral, and forms either large (up to 5 

mm), solitary grains or granular clusters interstitial to plagioclase. Both oxide and 

brown amphibole, though major phases in pegmatitic lenses within the unit, are 

typically found occurring as minor, late, interstitial phases in a large number of 

samples.  

We note a characteristic absence of cross-cutting dykes within the foliated 

gabbro section. The contact between the foliated gabbros and the isotropic or 

patchy gabbros is gradational, with strong foliations transitioning into the isotropic 

matrix of the patchy gabbro over ~5-7 m. It is along the foliated-patchy gabbro 

contact in the patchy gabbro that the first cross-cutting dolerite dykes occur in the 

section. Several cross-cutting dykes were observed cutting along the foliated-

patchy gabbro contact horizontally from the East before abruptly cutting up-section 

into the patchy gabbros trending ~005°. These cross-cutting dykes can be traced 

through the entire section into the sheeted dykes where they become lost between 

discontinuous outcrops. The origin of these cross-cutting dykes is discussed further 

in section 6.4.5.  

6.2.2 Patchy gabbros (Figure 6.4) 

The patchy gabbro (~70 m thick) consists of a subophitic fine to slightly 

medium grained (1.5-4 mm), ‘50:50’ (i.e., 50% pyroxene, 50% plagioclase) gabbro 

that lacks any observable fabric (i.e., isotropic) and is characterised by patches and 

networks of pegmatites (Figure 6.4). The distribution of pegmatite patches is 

heterogeneous within the patchy gabbro, ranging from outcrops with little (<1 modal 

%) or no patches to outcrops dominated by patches (>50 modal %) which. The 

pegmatites of the patchy gabbro resemble those found within the  



 Wadi Saq AML  

117 
 

 
Figure 6.4: Representative field photographs of patchy gabbros from Wadi Saq. (A) Typical, 
isotropic, featureless patchy gabbro matrix. (B) An example of a pegmatitic patch within the patchy 
gabbro. (C) A pegmatite patch within the patchy gabbro approximately 1.5 m to the east of panel B. 
(D) Typical network of pegmatite patches within the patchy gabbro. (E) Pegmatite patches within 
the patchy gabbros exhibiting minor grain size variation in the matrix material. (F) A patchy gabbro 
from the transition with the foliated gabbros containing pegmatite patches aligned parallel to the 
foliated gabbros. 

foliated gabbros, characterised by large (0.2-20 mm) euhedral to subhedral 

plagioclase grains surrounded by interstitial green and brown amphibole with 

variable abundances of oxides (from <1% up to >10%). Pegmatites in outcrops 

which contain a smaller mode of patches tend to be characterised by sharp 

boundaries with the background subophitic gabbro and maintain the typical 

intersertal pegmatite textures as seen in the foliated gabbro pegmatites. Those 

pegmatites which dominate the mode of outcrops tend to form complicated 

networks with diffuse margins that grade into and interact with the surrounding host 
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gabbro, leading to more complex ‘varitextured’ relationships and a general 

decrease in the pegmatite grain size. There are no major subfacies identified with  

the exception of some more leucocratic patches and more transitional subophitic 

to ophitic textured gabbros, both of which appear near the upper contact with the 

spotty gabbro. The bulk of the cross-cutting dykes in the patchy gabbros exhibit 

strongly chilled margins with an average trend parallel to ~345°. Oxide and brown 

amphibole are more abundant within the patchy gabbros, most often appearing 

within pegmatitic patches, but also found as late interstitial phases within the 

subophitic matrix of the samples where they can account for up to 5% of the mode. 

Some thin sections are slightly varitextured, however, such textural complexity is 

not readily apparent in hand sample, and is not observed in outcrop outside of the 

vicinity of pegmatite patches. 

The contact between the patchy gabbro and the spotty gabbro roughly 

parallels the trend of the foliated-patchy gabbro contact, deeper in the section. The 

contact is gradational in some places while in others there is a definite high-

temperature contact defined by the sharp boundary of pegmatite patches and veins 

intruding up into the spotty gabbro. In the upper 5-10 m of the patchy gabbro, the 

spotty gabbro begins to appear in channels and layers roughly parallel to the trend 

of the contact. Hence, we believe that the spotty gabbro unit is related to the patchy 

gabbro with the intruding pegmatite veins and patches along the contact being 

related to the main pegmatites of the patchy gabbro unit. 

6.2.3 Spotty gabbros (Figure 6.5) 

The spotty gabbro (~ 50 m thick) gets its name from characteristic clots of 

oikocrystic pyroxene ± oxide ± amphibole that give it a ‘spotty’ appearance in 

outcrop (Figure 6.5). The size and concentration of the spots (average of 5-10 mm) 

varies quite significantly within the unit, increasing in concentration in the vicinity of 

the contacts with the units above and below. The matrix surrounding the spots is 

typically characterised by a mantle of adcumulus, subhedral plagioclase (~0.5-1.5 

mm) which grades out into the rest of the sample at its edges. The unit is heavily 

varitextured with respect to both the mode and grain size of phases, and thus there 

are no discernible subfacies observed. However, some outcrops and thin sections 
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Figure 6.5: Representative field photographs of spotty gabbros from Wadi Saq. (A) Typical 
characteristic spots of the spotty gabbros made up of clinopyroxene clots containing acicular 
plagioclase within a matrix dominated by plagioclase. (B) An example of the typical texture of 
subophitic clinopyroxene clots within a plagioclase matrix that characterises the spotty gabbros. (C) 
A small patch of diffuse, coarse-grained pegmatitic material within a varitextured portion of the spotty 
gabbro. (D) Elongate ‘zebra’ spots of amphibole distributed between patches of more typical 
clinopyroxene spots. (E) Patches of ‘zebra’ spots within the gradational contact with the Diorite unit. 
(F) ‘Zebra’ spots surrounding a fine-grained leucocratic patch near the contact with the diorite. 

reveal textural features within the spotty gabbros that vaguely resemble portions of 

the patchy gabbro (i.e., the subophitic host gabbro with diffuse networks of 

pegmatites) and subfacies of the foliated gabbros (i.e., anorthositic patches with 

>70% plagioclase and interstitial pyroxene and oxide; granular leuco- to 

melagabbros with clinopyroxene dominantly interstitial/intergranular to 

plagioclase). Overall, the spotty gabbro could be classified as a ‘50:50’ gabbro with 

local modal variations on the order of ±10-15% in plagioclase and clinopyroxene. 
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Like the patchy gabbro, oxide and brown amphibole are common across the spotty 

gabbro unit and not limited to pegmatitic or coarse-grained patches. Though oxides 

are observed to occasionally display more granular morphologies (e.g., within 

coarse-grained pegmatite patches), they predominantly occur alongside brown 

amphibole as a late interstitial phase to both the dominant granular plagioclase and 

intergranular/interstitial clinopyroxene. No olivine is observed within the spotty 

gabbros. 

Crosscutting dykes (~0.5-1m wide) continue through the spotty gabbro unit 

as in the patchy gabbro beneath, exhibiting strongly chilled margins. Although 

obscured in many cases by the cross-cutting dykes, the spotty gabbro-quartz diorite 

contact is observed as being dominantly gradational. We note that often within 5 m 

of the contact, the spotty gabbro is observed to contain diffuse patches of more 

elongated spots, referred to as ‘zebra’ spots in the field (Figure 6.5D-F). These 

‘zebra’ spots are characterised by elongated (up to 1.5 cm long) amphibole 

oikocrysts. We interpret the ‘zebra’ spots and the gradational contact between the 

units as suggesting that, as with the patchy-spotty gabbro contact, the bulk of the 

spotty gabbros and quartz diorites are magmatically related. Pegmatites intrude 

along the margins of cross-cutting dykes and out into the main spotty gabbro along 

joints and fractures, implying that the host was likely cool during dyke intrusion. The 

cross-cutting pegmatite veins are likely associated temporally with the same group 

of later pegmatites identified throughout the deeper units of the section; hence, we 

believe that these pegmatites may post-date the main phase of magmatism at the 

ridge axis. We also note that more leucocratic patches, suggestive of possible 

xenoliths of the quartz diorite but lacking in abundant amphibole, are observed as 

occurring within the upper ~1-2 m of the spotty gabbro. These patches could 

represent felsic enclaves resulting from high-temperature magmatic interactions 

between the two units or, if they are xenoliths, they could represent pieces of a 

more crystalline diorite that was stoped into a still partially molten spotty gabbro.  

6.2.4 Quartz diorite (Figures 6.6 & 7) 

The quartz diorite unit (~110 m thick) forms the top of the plutonic section, 

and consists predominantly of two grain-size varieties, each containing their own  
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Figure 6.6: Representative field photographs of the dominant facies within the quartz diorite unit 
from Wadi Saq. (A) An example of the typical fine-grained subfacies of the diorite unit containing 
occasional small (< 0.5mm) amphiboles. (B) An example of the spotty diorite subfacies consisting 
of up to 1 cm in size clots of amphibole with inclusions of acicular plagioclase. (C) An example of 
the typical medium-grained subfacies which contains abundant acicular amphiboles. (D) An 
example of the medium-grained subfacies which is dominated by blocky amphibole instead of 
acicular amphiboles. (E) An example of the typical coarse-grained version of panel C with large 
acicular amphiboles. (F) An example of the coarser-grained, quartz-rich diorite which contains 
blocky to tabular amphiboles and is found often cross-cutting the main body of the quartz diorite 
and intruding up into the base of the sheeted dykes. 

subfacies: the first ranging from fine (<1 mm) to medium grained (2-4 mm) and a 

second variety which is coarse grained (up to 7 mm) (Figure 6.6). Overall the quartz 

diorite contains notable amounts of quartz, oxides and other minor phases with 

extreme textural variabilities akin to the high-level ‘varitextured’ gabbros described 

in Wadi Abyad (Coogan et al., 2002a; MacLeod and Yaouancq, 2000) (Figure 6.7). 

Quartz is often found in close association with plagioclase, forming  
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Figure 6.7: Representative field photographs of varitextured outcrops within the quartz diorite unit 
from Wadi Saq. (A) Patches of coarser diorite with acicular amphibole within typical medium-grained 
diorite with blocky amphibole. (B) Pods of medium-grained, acicular amphibole diorite within 
varitextured patches of finer-grained material dominated by higher concentrations of amphibole. (C) 
A mixed matrix of fine and medium-grained diorite with concentrated patches of spotty diorite 
containing oxides. (D) Tabular outcrop of medium-grained diorite with diffuse patches of spotty 
diorite. (E) Complicated mixture of fine-grained diorite with diffuse patches of slightly coarser 
material containing abundant elongate clusters of acicular amphibole and oxide. (F) As in panel E, 
another complex mixture near the base of the sheeted dykes that also contains concentrated 
patches of spotty diorite. 

both granular masses and myrmekitic intergrowths of quartz and plagioclase 

interstitial to larger plagioclase grains. Small (up to 10 cm wide patches) ‘spotty’ 

diorites are characterised by 3-6 mm clots of pyroxene ± oxide ± amphibole, like 

that observed in the spotty gabbros (Figure 6.6B), within both grain-size varieties 

of the unit. Petrographic examination of these ‘spotty diorite’ clots reveals them to 

be clasts of granular to subophitic material dominated by amphibole. Both of the 



 Wadi Saq AML  

123 
 

grain-size varieties are found to contain subfacies that are characterised by 

abundant acicular amphiboles (Figure 6.6C and 6.6D). An extremely quartz-rich 

subfacies of the coarse-grained unit with grain sizes of up to 7 mm is commonly 

observed in the vicinity of the roots of the sheeted dykes (Figure 6.6F). As in the 

spotty gabbro, crosscutting dykes in the quartz diorite have strongly chilled margins 

(Figure 6.8A) with pegmatitic veins, accompanied by greenschist-facies alteration, 

often observed protruding into the quartz diorite along joints and fractures from the 

margins of the cross-cutting dykes. 

6.2.5 Sheeted dykes (Figure 6.8) 

The top of the quartz diorite is defined by the base of sheeted dykes, which is 

characterized by a complex relationship between dyke roots and later coarse-

grained diorites intruding the dykes. The overall grain size of the diorite unit tends  

to fine towards the base of the sheeted dykes with outcrops of dyke roots exhibiting 

magmatic flow fabrics and grain-size reduction from the surrounding fine-grained 

diorite over a distance of several cm into the core of the dyke roots (Figure 6.8D). 

We suggest that these are equivalent features to the ‘foliated microgabbros’ 

described by MacLeod and Rothery (1992) and MacLeod and Yaouancq (2000) 

within the sheeted dyke-gabbro transition. Abundant acicular amphibole 

phenocrysts and both dioritic xenoliths and xenocrysts occur throughout the 

mapped portion of the sheeted dykes (Figure 6.8F), further suggesting that the 

sheeted dykes are rooting in and being sourced from the diorite unit (see section 

6.4). 

The sheeted dykes have a predominantly N-S strike as defined by their chilled 

margins and are dominantly lighter in colour (Figure 6.8C) compared to the darker 

cross-cutting dykes that can be tracked from the top of the foliated gabbros into the 

sheeted dyke complex. The cross-cutting dolerite dykes manifest in a markedly 

different way on hillslopes with dark and rubbly weathering (Figure 6.8A and 6.8B), 

and a slight green-coloured tinge likely related to greenschist-facies hydrothermal 

alteration. They form several metre-wide groups, however, outside of these groups 

the dolerite dykes tend to form distinct anastomosing dykes within the larger 

packages of lighter-coloured dykes. These generally seem to follow and intrude 

along the joints and fractures of the lighter-coloured dykes. 



 Wadi Saq AML  

124 
 

 
Figure 6.8: Representative field photographs of sheeted and cross-cutting dykes from Wadi Saq. 
(A) Greenschist facies-altered dolerite dykes splitting and anastomosing around blocks and strips 
of coarse-grained diorite. The dolerite dykes exhibit chilled margins against the diorite. (B) An 
outcrop of the sheeted dykes containing abundant light-coloured dykes cut by highly greenschist 
facies-altered dolerite dykes (e.g., outlined by the red lines). (C) A typical tabular/blocky outcrop of 
intact, light-coloured sheeted dykes. Red lines indicate approximate locations of dyke margins. Note 
the presence of a thin zone of alteration in the centre of the dyke. (D) A sheeted dyke keel observed 
rooting in medium-grained diorite at the base of the sheeted dykes. A continuous grain size 
gradation is observed between the diorite and the keel of the fine-grained dyke. Subtle magmatic 
foliations defined by plagioclase and amphibole in the coarser material are oriented towards the 
dyke keel. (E) An example of the interior of a typical light-coloured sheeted dyke. (F) An example of 
a disaggregated dioritic xenolith found in the core of a light-coloured dyke high in the sheeted dykes. 

6.3 Whole-rock geochemistry 

Whole-rock geochemistry was carried out to determine the geochemical 

composition of each of the units and assess their origins and relationships to each 

other. The stratigraphic section described above was sampled systematically at a 

variety of scales, where possible, to assess smaller-scale variability within the units.  
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A total of 104 samples (i.e., 27 foliated gabbros, 15 patchy gabbros, 11 spotty 

gabbros, 17 quartz diorites, 14 sheeted dykes, and 20 cross-cutting dykes) were 

collected across the Wadi Saq section. Although variable degrees of outcrop 

degradation within the patchy gabbros, spotty gabbros, and particularly the quartz 

diorite unit hindered more detailed sampling of small-scale variabilities within the 

units, great care was taken to collect representative samples of the textural range 

within each unit for geochemical and petrographic analysis. All 104 samples were 

processed and analysed for whole-rock major and trace element chemistry by 

inductively coupled plasma-optical emission spectrometry (ICP-OES) and -mass 

spectrometry (ICP-MS) in the School of Earth and Ocean Sciences at Cardiff 

University (see Appendix B for description of the analytical methods). Average bulk 

rock major element and trace element data for each unit is provided in tables 6.1 

and 6.2, respectively, with the full ICP-OES and ICP-MS datasets being provided 

in tables C.1-6 and C.7-12, respectively, of Appendix C. 

6.3.1 Alteration effects 

The major element compositions of the lavas, dykes, and upper plutonics 

from the Oman ophiolite have been affected to some degree by low-grade 

metamorphism (e.g., greenschist facies assemblages in the sheeted dykes) related 

to seafloor hydrothermal circulation (Pearce et al., 1981; Alabaster et al., 1982; 

Lippard et al., 1986; Miyashita et al., 2003; Umino et al., 2003; MacLeod et al., 

2013). This alteration is most commonly reflected in the compositions of fluid-

mobile elements (e.g., Na, K and Ca) with other elements like Si, Fe, and Mg having 

the potential to be mobilised to some extent. Loss on ignition (LOI) measured for 

the whole rock powders provide relatively low averages for most of the units (see 

Table 6.1) with the cross-cutting dykes, commonly observed in the field as having 

abundant greenschist facies alteration, having the highest values (2.74%). The 

lowest LOIs on average are found in the diorites (1.44%) with the bulk of the 

gabbros and the sheeted dykes falling between ~2.0-2.1%. As a whole, we found 

good correlations against Zr, an immobile incompatible element often used as an 

index of fractionation, for all elements except Rb, Cs, Ba, and, in the diorite and 

cross-cutting dykes, K; Pb, and Sr exhibit reasonably good correlations (Figure 

6.9), and CaO and SiO2 do not appear to be significantly affected (Figure 6.10).  
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Figure 6.9: Plots of Ce, Rb, Pb, Y, Cs, Sr, Cr, Ba, and Ti against Zr for the Wad Saq samples. Grey fields 
represent data for the Wadi Abyad section (MacLeod and Yaouancq, 2000). 

Coherent trends for the majority of the major oxides plotted against Zr and Mg# 

(100 x Mg / (Mg + Fe)) (Figure 6.10) suggest that their overall concentrations, if 

altered in any way, mirror their original compositions, reflecting comagmatic 

variations. Despite the relatively consistent correlations for most elements and in 

accordance with previous investigations (e.g., Lippard et al., 1986; Miyashita et al., 

2003; MacLeod et al., 2013), we mostly consider a subset of the major elements 

and immobile trace elements (i.e., HFSE and REEs) in our interpretations of the 

petrogenetic histories for the Wadi Saq samples. 
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Figure 6.10: Whole rock Mg# plotted versus (a) SiO2, (b) TiO2, (c) P2O5 and (d) CaO for each of 
the units in the Wadi Saq area. Data from the Wadi Abyad section (MacLeod and Yaouancq, 2000) 
is plotted for comparison in the grey fields. 

6.3.2 Foliated gabbros 

The foliated gabbros cover the Mg# range of the gabbroic section but are 

characteristically more primitive (38.5-83.1, average 73.0) with relatively low 

incompatible element contents (e.g., TiO2: 0.12-0.91 wt.%, average 0.45 wt.%) and 

variable, but mostly positive Eu anomalies (0.43-1.91, average 1.02) indicative of 

a cumulate origin. On average, the foliated gabbros display a marked increase in 

minimum Mg# and both minimum and maximum TiO2 contents up section (Figure 

6.11). We note that the Wadi Saq foliated gabbros share very little overlap with the 

known compositional range of the Ibra Valley volcanic crust as found in the Oman 

DB due to their likely cumulate origin (MacLeod et al., 2013) (Figure 6.11). For the 

most part, the range of subfacies within the foliated gabbros can be considered as 

a continuous range of modal  
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Figure 6.11: Variations in whole rock (a) Mg#, (b) TiO2, (c) Zr and (d) Ce (e) and Eu/Eu* anomaly 
plotted against sample depth relative to the upper crust-lower crust (UC-LC) boundary, or the base 
of the sheeted dykes. 

variations with the exception of anorthosite and pegmatite lenses; hence, we 

consider the gradational range of subfacies as a whole (FG) and the anorthosites 

(FG-A) and pegmatites (FG-P). 

The main FG group (18 samples) is characterised by moderately primitive 

Mg# (65.4-83.1, average 75.2) with low TiO2 concentrations (0.2-0.79, average 

0.47) and more positive Eu anomalies (0.63-1.97, average 1.26) relative to the bulk 

of the unit, reflecting a relatively plagioclase-rich cumulus nature. 

The FG-A group (3 samples), which includes samples which were determined 

petrographically to have modes which fall in the transition between pure  

anorhtosite and the main FG group, is characterised by lower Mg# (38.5-78.6, 

average 63.4), lower TiO2 concentrations (0.12-0.36, average 0.21), and strong 

positive Eu anomalies (1.43-4.79, average 3.02) relative to the bulk unit, reflecting 

its plagioclase-rich cumulate nature.  

The FG-P group (6 samples) is characterised by moderate Mg#s (62.3-79.4, 

average 71.3) with enriched TiO2 concentrations relative to the bulk foliated 

gabbros (0.25-0.91, average 0.51) and moderately positive Eu anomalies (0.72-

1.47, average 1.04). The range of Eu anomalies likely reflects variability in 

plagioclase content for FG-P cumulates. 
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Rare earth element (REE) patterns for the foliated gabbros (Figure 6.12) cover 

almost the entire range of concentrations of the plutonic section and have positive 

Eu anomalies with the exception of a single sample from the FG group and 3 

samples from the FG-P group. The range of REE-patterns in the FG-P group likely 

reflects variations in the degree of fractionation of the parental melt. The FG-P 

group is enriched in Ce (average 14.1 ppm) and depleted in Zr (average 13.7 ppm) 

relative to the FG-A (Ce = 1.3 ppm; Zr = 16.0 ppm) and FG (Ce = 5.2 ppm; Zr = 

20.9 ppm) groups, suggesting that the FG-P on average is more fractionated than 

the rest of the foliated gabbros. This is most obvious in Figure 6.13 where the FG-

P, with the exception of 1 sample, is enriched in most elements relative to the rest 

of the foliated gabbros. Some of the foliated gabbros, particularly the FG-P, are 

depleted in Cr, Ti and V, suggesting that they have fractionated spinel and oxides. 

Interestingly, the Wadi Abyad foliated gabbros show no signs of oxide accumulation 

or fractionation. 

 
Figure 6.12: Whole rock REE plots by lithologic unit. The range of analyses of Ibra Valley sheeted 
dykes from the Oman DB (MacLeod et al., 2013) are plotted for comparison. 
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Figure 6.13: MORB-normalised (Sun and McDonough, 1982; Pearce and Parkinson, 1993) extended spider 
diagrams for the Wadi Saq section. Data from the Wadi Abyad foliated gabbros (FG) including anorthosites 
(FG-A) and pegmatites (FG-P), varitextured gabbros (VTG), dyke rooting zone (DRZ), and sheeted dyke 
complex (SDC) were provided by Christopher MacLeod. 

6.3.3 Patchy gabbros 

The patchy gabbros have more moderate Mg#s relative to the foliated 

gabbros (46.3-70.1, average 58.2), a range of incompatible element concentrations 

(e.g., TiO2: 0.52-2.78, average 1.38) which increase in samples with more 

abundant pegmatite patches, and moderate Eu anomalies (0.72-1.56, average 

1.14). In contrast to the foliated gabbros, the patchy gabbros fall within the known 

compositional ranges for both the Ibra Valley volcanics (Figure 6.11) and some of 

the Wadi Abyad upper plutonics (Figure 6.10), implying that the patchy gabbros 

likely crystallised from melts which were within the compositional range of the Ibra 

valley dykes and the high-level Wadi Abyad gabbros. Compared to the FG-P group, 

the patchy gabbros have higher Mg#s on average (i.e., 58 versus 71) and are more 
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highly enriched in high-field strength elements (e.g., Zr, average 56.3 ppm) than in 

REEs (e.g., Ce, average 6.9 ppm), suggesting that (i) the parental melts of the 

patchy gabbros have yet to fractionate zircon and (ii) the more fractionated parental 

melts of the FG-P group likely occurred later, assuming the gabbroic section 

evolved from a relatively homogeneous melt composition. The most depleted REE 

patterns of the patchy gabbros in Figure 6.12 belong to samples collected from the 

transition between the foliated and patchy gabbros and samples which contain an 

abundance of very large pegmatite patches. Samples with REE patterns falling 

towards the middle of the range (i.e., OM14-ML50, 51, 54, 57, and 93) lack any Eu 

anomalies and are found to contain an abundance of smaller, more diffuse 

pegmatite patches mixed with the background isotropic gabbro in thin section; 

suggesting that these REE patterns are the result of mixing between these two 

textural endmembers. In fact, those samples containing a larger proportion of or 

nearly pure pegmatite patches (found predominantly towards the top of the unit) 

are found to have more negative Eu anomalies relative to the more positive Eu 

anomalies of those samples with larger proportions of the host isotropic gabbro 

(Figure 6.11), suggesting that the pegmatite patches may be former liquids and the 

relatively patch-free isotropic gabbros may be cumulates. The most REE-enriched 

pattern (OM14-ML95) is found to contain more of the background isotropic gabbro 

in thin section with occasional pegmatites forming more diffuse, gradational 

patches. In Figure 6.13, we find that all of the patchy gabbros have either 

accumulated or fractionated oxides and the pegmatites tend to be more Fe-rich, 

comparable to the ferrogabbro pegmatites found within the varitextured gabbros of 

Wadi Abyad (MacLeod and Yaouancq, 2000). 

6.3.4 Spotty gabbros 

Relative to the stratigraphically lower patchy gabbros, the spotty gabbros 

cover a wider range of Mg# (44.0-81.3, average 63.1) with moderate incompatible 

trace element contents (e.g., TiO2: 0.53-2.20, average 1.07) and, with the exception 

of OM14-ML11 (Eu/Eu* = 0.45), slightly positive to no Eu anomalies (0.45-1.28, 

average 0.88). Although they plot entirely within the compositional range of the 

Wadi Abyad upper gabbros (Figure 6.10), the spotty gabbros completely cover and 

partially overlap the range of TiO2 contents and Mg#, respectively, for the Ibra 

Valley volcanics (Figure 6.11). The average trace element contents of the spotty 
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gabbros are very similar to those of the patchy gabbros (e.g., Ce, average 7.2 ppm; 

Zr, average 58.9 ppm) with REE patterns plotting towards more enriched 

compositions (Figure 6.12). Like the patchy gabbros, the enrichment in Zr likely 

indicates an evolved liquid which has yet to fractionate zircon. Cumulate textures 

in thin section suggest that the enriched compositions and relatively smooth REE 

patterns of the spotty gabbros are the result of mixing (i.e., crystals and 

intercumulus liquid) and not crystallisation from a pure liquid. The extended spider 

diagram in Figure 6.13 shows that all of the spotty gabbros, like the patchy gabbros, 

have either fractionated or accumulated oxides. In comparison, the high-level 

gabbros from Wadi Abyad show evidence for oxide accumulation but not 

fractionation (MacLeod and Yaouancq, 2000). 

6.3.5 Quartz diorites 

The quartz diorite unit is characterised by low Mg# (5.4-36.9, average 24.7), 

moderate incompatible element concentrations (e.g., TiO2: 0.22-1.37, average 

0.76) and variable Eu anomalies (0.43-1.81, average 1.02); compositions which 

share little to no overlap with upper plutonics of the Wadi Abyad section (Figure 

6.10) and partially overlap with the Ibra Valley sheeted dykes in major element 

chemistry (Figure 6.11). On average, the quartz diorite unit is significantly enriched 

in trace elements (e.g., Ce, average 37.2 ppm; Zr, average 410.3 ppm) with REE 

patterns covering the bulk of the range for the Wadi Saq plutonics (Figure 6.12). 

Based on the extreme textural variability found within the quartz diorite unit in 

outcrop, hand sample, and thin section, we suggest that the resulting compositions 

and REE patterns are a reflection of mixing across such variability and do not 

attempt to decipher the data further. The diorites can be seen in Figure 6.11e to 

cover a similar range of Eu anomalies across the entire thickness of the unit. 

Samples which plot toward more positive Eu anomalies tend to have significantly 

less extreme textural variability, instead displaying gradual changes across 

samples with occasional discrete textural domains. All of the diorites in Figure 6.13 

show evidence for either fractionation or accumulation of oxide with some samples 

exhibiting highly fractionated patterns with enriched Zr. The Ce vs Zr plot in Figure 

6.9 suggests that there are two trends leading to the Zr enrichment which are likely 

related to a mixture of extreme fractionation and accumulation of zircon.  
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6.3.6 Sheeted and cross-cutting dykes 

The sheeted dykes are characterised by moderately low Mg# (24.4-62.6, 

average 43.9), moderately high incompatible element concentrations (e.g., TiO2: 

0.97-2.15, average 1.59), and little to no Eu anomalies (0.81-1.13, average 1.02); 

compositions which partially overlap with the upper plutonics of the Wadi Abyad 

section (Figure 6.10) and fall towards the most enriched end of the known range 

for the Ibra Valley sheeted dyke complex (Figure 6.11). The major element 

chemistry of the sheeted dykes bridges the gap between the quartz diorite and 

gabbroic units, as it overlaps with the two disparate compositional groups in Figure 

6.11. On average, the sheeted dykes are enriched in trace elements, falling 

approximately halfway between the average compositions of the quartz diorite and 

the gabbroic units (e.g., Zr, average 194.2 ppm; Ce, average 20.9 ppm) with REE 

patterns plotting mostly around the middle of the range of the Wadi Saq units and 

within the range of the Ibra Valley volcanics (Figure 6.12). Some of the sheeted 

dykes exhibit negative V anomalies (Figure 6.13), suggesting that, unlike the Wadi 

Abyad sheeted dykes (MacLeod and Yaouancq, 2000), they have fractionated 

oxide. We also note the presence of positive anomalies in Zr for the sheeted dykes 

(Figure 6.13), which plot approximately half-way between those of the extremely 

enriched quartz diorites and the other units. Positive Zr anomalies are characteristic 

of the quartz diorites whereas the spotty gabbros have strong negative anomalies 

and the foliated and patchy gabbros have more variable concentrations. 

The cross-cutting dykes have slightly higher Mg# (37.6-75.2, average 54.5), 

slightly lower incompatible element contents (e.g., TiO2: 0.77-1.86, average 1.41), 

and similar Eu anomalies (0.44-1.29, average 0.89) relative to the sheeted dykes. 

These compositions cover the compositional range of the Ibra Valley volcanics with 

some samples expanding the Ibra Valley range to both more primitive and more 

evolved compositions (Figure 6.11). On average, the cross-cutting dykes are more 

depleted in trace elements, relative to the sheeted dykes (e.g., Zr, average 113.3 

ppm; Ce, average 13.1 ppm) and have REE patterns which cover a large portion 

of the range of the Wadi Saq units (Figure 6.12). The cross-cutting dykes within the 

plutonic section have similar, albeit slightly more depleted, compositions relative to 

the sheeted dykes. Two samples are found to have negative V anomalies in Figure 

6.13, consistent with oxide fractionation. Unlike the sheeted dykes, the cross-

cutting dykes in Figure 6.13 have variably positive and negative Zr anomalies 
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consistent with those seen in the patchy gabbros, but with concentrations akin to 

those of the spotty gabbros. The cross-cutting dykes include enriched compositions 

which more similar to those of the spotty gabbros than to the quartz diorites, 

suggesting they might represent a late stage of the axial sequence which was 

unable to mix with the more fractionated melt typically hosted within the quartz 

diorite melt lens. Further, the appearance of these cross-cutting dykes parallel to 

and along the foliated-patchy gabbro contact suggests along-strike lateral 

propagation of melts.  

6.4 Discussion 

6.4.1 The anatomy of the dyke-gabbro transition 

The gradational boundaries and consistent geochemical trends observed 

across the lithological units of the Wadi Saq section suggest that the units share a 

common magmatic lineage, likely forming around the same time beneath the ridge 

axis. Although the cumulate foliated gabbros exhibit lateral modal and textural 

variability, the bulk of the samples within the unit follow a coherent trend towards 

more evolved compositions (e.g., lower Mg#, higher TiO2; Figure 6.11 & 10)) up 

section with pegmatitic lenses occurring throughout the unit with fractionated and 

evolved compositions. The contact between the foliated and patchy gabbros is 

complex with a large portion of the contact appearing gradational. One sample from 

the patchy gabbro side of the contact between the two units (ML71) contains 

patches of olivine-bearing foliated gabbro within the coarse-grained subophitic 

matrix characteristic of the patchy gabbro, suggesting that the melt which sourced 

the patchy gabbro was expelled from the underlying foliated gabbros. This is further 

supported by (i) an overlap between the most primitive, relatively patch-free patchy 

gabbros and the more evolved foliated gabbros and (ii) the apparent continuous 

trend towards more evolved compositions up section between the units. As with 

the foliated gabbro-pegmatites, the pegmatite patches within the patchy gabbro 

appear to have relatively evolved, fractionated, liquid-like compositions. These 

compositions along with the tendency of the pegmatites to form diffuse networks 

and isolated patches may suggest that they were partly derived from late-stage 

trapped liquids within the isotropic, subophitic gabbro host. The spotty gabbro 

shares a generally gradational boundary with the patchy gabbros that is reflected 

in the complete compositional overlap between the two units (Figure 6.11 & 10). 
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The spotty gabbros are highly varitextured, typically characterised by more evolved 

compositions with higher concentrations of REEs and strong, consistent depletions 

in Zr and Ti relative to the patchy gabbros (Figure 6.13). The REE patterns for the 

spotty gabbros (Figure 6.12) suggests that they are comparable to the more REE-

enriched patchy gabbros which typically contain greater proportions of pegmatite 

patches and occur towards the top of the patchy gabbro unit. We infer that the 

spotty gabbros are cumulates with higher proportions of fractionated liquids derived 

from the underlying patchy gabbro. 

The quartz diorite unit is completely gradational with the spotty gabbro, 

suggesting that, although the diorite is evolved in composition, it is comagmatic 

with the more primitive gabbroic portions of the section. The major element 

compositions of the quartz diorite continue the evolutionary trends established by 

the gabbros (Figures 6.11 & 10) and exhibit REE patterns which cover the entire 

range of those seen in the gabbros (Figure 6.12). The gradational boundary 

between the quartz diorite and spotty gabbro coupled with the complete overlap 

between the most REE-enriched samples of both units suggests that they are likely 

cogenetic and derived from the same evolved melt. Magmatic flow fabrics occur 

between the diorite and dyke keels at the base of the sheeted dykes, and suggest 

that the dykes are sourced from the quartz diorite. This is supported, in part, by the 

observation of the sheeted dykes bridging the compositional gap between the 

gabbros and the diorites and the presence of strong, positive Zr anomalies for the 

sheeted dykes in Figure 6.13, which are characteristic of the quartz diorite. Thus, 

we interpret the quartz diorite as the fossilised AML for the Wadi Saq section. With 

our combined field- and geochemical evidence we have thus documented a 

continuous series of cumulates to evolved liquids comprising the upper portions of 

a magmatic system that fed the sheeted dykes of the Wadi Saq section (Figure 

6.2).  

6.4.2 The role of hydrous partial melting 

Oceanic ‘plagiogranites’, a non-descriptive field term encompassing 

tonalities, trondhjemites, and granodiorites in predominantly mafic systems 

(defined in Coleman, 1977 and Koepke et al., 2007), are thought to be a common 

feature at the base of the sheeted dyke complex in ophiolites (Pallister and Hopson, 

1981; Koepke et al., 2004, 2007; France et al., 2010). Though many potential 
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origins have been suggested, the two predominant processes suggested for 

producing such magmas are (i) extended fractional crystallisation of a MORB 

magma (e.g., Beccaluva et al., 1977; Coleman and Donato, 1979; Malpas, 1979; 

Aldiss, 1981; Dubois, 1983; Lippard et al., 1986; Amri et al., 1996; Floyd et al., 

1998; Selbekk et al., 1998; Beccaluva et al., 1999; Niu et al., 2002; Rao et al., 2004; 

Bonev and Stampfli 2009; Rollinson, 2009), which has been verified in experimental 

studies (Dixon-Spulber and Rutherford, 1983; Berndt et al., 2005; Feig et al., 2006) 

and (ii) ‘hydration melting’ of hot gabbros or sheeted dykes initiated by influx of 

seawater-derived hydrothermal fluid from active shear zones (e.g., Malpas, 1979; 

Gerlach et al., 1981; Pederson and Malpas, 1984; Flagler and Spray, 1991; Spray 

and Dunning, 1991; Koepke et al., 2004, 2007; Wanless et al., 2010; France et al., 

2010). The ‘hydration melting’ process has been proposed by many recent studies 

of these types of rocks in ophiolites (France et al., 2010), with such an anatectic 

origin being interpreted from trace element modelling and or observations of 

discrete patches of hornfelsic/granoblastic material within the AML horizon; this 

granoblastic material is often interpreted to represent the restites of partial melting 

of stoped pieces of the base of the sheeted dykes (Koepke et al., 2007, 2008, 

Nicolas et al., 2008; France et al., 2009, 2010, 2014). Some studies have even 

gone on to infer that the ‘hydration melting’ process has a main control on MORB 

geochemistry (e.g., Koepke et al., 2008; France et al., 2009, 2010) 

A means for distinguishing between these two processes was proposed by 

Brophy (2009) based on the REE-SiO2 systematics of mafic to felsic magmas in 

MOR environments. For liquids greater than ~62 wt. % SiO2, hydration melting 

yields a negative to flat correlation between REE abundances and increasing SiO2, 

while fractional crystallisation should yield a positive correlation (Brophy, 2009; 

Brophy and Pu, 2012). The quartz diorite unit exhibits a positive correlation 

between REE concentration and SiO2, indicating a fractional crystallisation origin 

(Figure 6.14). The continuous trend which can be seen in SiO2-La and SiO2-Yb 

between the quartz diorite, sheeted dykes, and gabbroic units is consistent with 

field and geochemical observations suggesting that the unit is not a late intrusive, 

but is rather an extreme differentiate of the magmatic system. This is further 

supported by positive correlations between Ce (a light-REE) and Nb (Figure 6.15) 

and Zr (Figure 6.9) (incompatible trace element), which are continuous with the rest 

of the mapped units, and the correlations between Mg# and TiO2 and SiO2 (Figure 
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6.10A and 6.10B), which are both continuous with the rest of the mapped units and 

consistent with fractional crystallisation. 

In considering the possibility of a ‘hydrous melting’ origin, we carried out a 

simple mass balance model wherein we took the results of partial melting 

experiments of altered sheeted dykes from the Oman ophiolite published by France 

et al. (2010) (Table 6.3) and calculated the equivalent thickness of dyke material 

that would need to be melted to create a 1x1x120 m tall column of the Wadi Saq 

diorite unit, and what volume of restite would be left after such a process (Table 

6.3). The thickness of the diorite unit (ZDRT = 120 m) is divided by the corresponding 

volume percent (Fliq) of liquid which most closely matches the diorite composition, 

resulting in the thickness of dykes (ZSD) needed to be incorporated and melted in 

order to produce the observed 120 m thickness of the diorite unit: 

𝑍𝑆𝐷 =
𝑍𝐷𝑅𝑇
𝐹𝑙𝑖𝑞

 

The volume percent of restite left in the diorite after partial melting (Fres) is 

calculated as: 

𝐹𝑟𝑒𝑠 =
(𝑍𝑆𝐷 − 𝑍𝐷𝑅𝑇)

𝑍𝑆𝐷
 

The results of this calculation (Table 6.3) show that a thickness of >12 km of 

sheeted dykes would need to be partially melted in order to produce a 120 m thick 

diorite unit with comparable Mg# to that of the Wadi Saq average (24.74), leaving 

behind a total restite thickness of 11,880 m (99 vol.%) in the field area. This is quite 

improbable as (1) we did not stumble across an 11.88 km thick body of granoblastic 

restites in the Wadi Saq area and (2) the average upper crustal (i.e., lavas + 

sheeted dykes) thickness in Oman is ~1.5-2 km (Nicolas et al., 1996). Further, the 

thickness of dykes required to produce a melt with the maximum Mg# found in the 

Wadi Saq diorite (i.e., 36.9) would be ~444 m and result in 73 vol.% (~ 324 m) of 

restites. Critically, we did not find any field evidence for patches of granoblastic 

material in the quartz diorite unit or within the rest of the Wadi Saq section. France 

et al. (2010) present this model in such a way that it seems perfectly viable for 

producing leucocratic melts; however, this model does not account for the extreme 

range of compositions or textures found in the Wadi Saq quartz diorite. The 

observation of the sheeted dykes rooting into the diorite body, and the diorite having 

a gradational rather than sharp contact with the spotty gabbro below it argues for a 
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Figure 6.14: Plots of bulk-rock (a) La and (b) Yb versus SiO2 (wt.%) for the Wadi Saw upper crustal 
section. The axes on the right side of the diagrams provide the values for La and Yb normalised to 
Chondrite values of Palme and O’Neill (2013). Grey fields represent the range covered by the Wadi 
Abyad section (MacLeod and Yaouancq, 2000). 

comparatively simpler origin for the diorite unit. On this basis alone, the 120 m thick 

quartz diorite unit mapped in the Wadi Saq area could not have been formed solely 

or dominantly by stoping and re-melting of the base of the sheeted dykes. Hence, 

both the field- and geochemical data indicate that an origin of the quartz diorite by 

hydrous partial melting is very unlikely. 
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Figure 6.15: Plot of bulk-rock Nb versus Ce for the Wadi Saq units. The generally positive slope of 
the trend is consistent with fractional crystallisation. Grey fields represent the range covered by the 
Wadi Abyad section (MacLeod and Yaouancq, 2000). 

A third, often overlooked mechanism for producing such evolved rocks in 

MORB-like environments is the presence of water in the parental melt. MELTs 

modelling (see the figure caption for 6.16 for model conditions) provided by 

MacLeod et al (2013) found that increasing concentrations of water in a melt 

accelerates Si enrichment in the liquid line of descent (Figure 6.16). This catalytic 

effect of water leads to the development of substantially more evolved and 

fractionated melts at a given melt fraction for moist melts compared to dry melts. 

Therefore, the point at which a melt reaches oxide saturation will be earlier in wetter 

melts, leading to larger volumes of more evolved liquids. This is illustrated in Figure 

6.16b, where the addition of 0.1% H2O results in oxide saturation (i.e., the peak in 

TiO2) at ~20% liquid, a difference of 7% compared to the dry system. The presence 

of abundant brown amphibole in the Wadi Saq section suggests that the magmatic 

system was being fed by a moist melt. However, the most compelling evidence for 

a moist parental magma at Wadi Saq is in the abundance of Ti and V anomalies in 

extended spider diagrams (Figure 6.13) indicative of oxide accumulation and 

fractionation for all of the Wadi Saq units. This is critical when compared to the  
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Figure 6.16: Plots of (A) SiO2 and (B) TiO2 versus melt fraction (liquid %) for MELTs models (Ghiorso and 
Sack, 1995) derived by MacLeod et al (2013). The models use a MORB parental melt composition (Kinzler 
and Grove, 1993) modified with lower initial TiO2 (0.7 wt.%) to match the depletion observed in Oman. 
Fractional crystallisation models were carried out at 2 kbar with initial oxygen fugacity at the quartz-fayalite-
magnetite buffer. Initial H2O concentrations were varied progressively between 0 and 2 wt.% (MacLeod et al., 
2013). 
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Wadi Abyad section which shows no sign of either oxide accumulation or 

fractionation in the foliated gabbros or sheeted dykes, but does have oxide 

accumulation in the ferrogabbro pegmatites of the high-level gabbros (MacLeod 

and Yaouancq, 2000). The difference in oxide abundance between the Wadi Saq 

and Wadi Abyad sections raises key questions about where and when oxides have 

crystallised and reacted/precipitated and their effective mass balance. 

Unfortunately, these questions are outside of the scope of this investigation. 

6.4.3 An evolved melt lens 

The quartz diorite and sheeted dykes at Wadi Saq fall towards more evolved 

compositions compared to data for the entire Wadi Abyad section (Figure 6.10). 

We previously noted that the sheeted dykes trend towards more evolved 

compositions which are consistent with the range of extant data for the Ibra Valley 

volcanics (Figure 6.13; MacLeod et al., 2013) and suggests that Wadi Saq is not 

simply an anomalously evolved section within the Ibra Valley. In fact, the Wadi Saq 

section lies at the most fractionated end for the Oman Ophiolite. The MELTs 

models used in Figure 6.16 further support the idea that the units can be related by 

simple progressive fractional crystallisation of a moist (up to 0.6 wt.% H2O; 

MacLeod et al., 2013) Geotimes melt composition. Such a moist parental magma 

might explain both the ubiquitous amphibole within the section, appearing even in 

the deepest portions of the foliated gabbros sampled by this study, and the 

abundance of quartz (both granular and in myrmekitic associations), Fe-Ti oxides, 

and amphibole within the quartz diorite unit. The fractional crystallisation models 

(Figure 6.16) show that increasing water contents within the starting melt results in 

Experiment
a

M 1030 M 1000 M 970 M 955 M 940 M 910 M 880 M 850

T (°C) 1030 1000 970 955 940 910 880 850

Melt SiO2 55.5 59.2 63 64.4 69.3 69.3 71.2 72.6

Melt Mg# 48.9 49.0 46.8 43.8 38.0 33.9 32.9 26.3

Fliquid (vol%) 93 70 50 40 27 7 2 1

Calculated Values
b

ZSD (m) 129 171 240 300 444 1714 6000 12000

Frestite (vol%) 7 30 50 60 73 93 98 99

Table 6.3: Results of mass balance calculations for a hydrous melting origin of the quartz diorite unit.

a
 Experimental runs from France et al (2010)

b
 As in the text, all values are calculated assuming a 120 m thickness of quartz diorite is created
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progressively earlier saturation of oxides (e.g., 0 wt. % H2O, Fe-Ti oxide saturation 

at F = 0.16; 0.6 wt. % H2O, Fe-Ti oxide saturation at F= 0.32), which roughly 

coincides with the saturation of phases like amphibole and quartz. This means that 

for a relatively dry system, oxides, amphiboles, and quartz might not be expected 

until there is only 15% melt left of the starting volume compared to 32% in a system 

with ~0.6 wt. % water; effectively doubling the volume of fractionated and evolved 

material that is produced. Therefore, a moist parental melt composition should 

result in an overall more evolved and fractionated upper crustal section. 

The role of the quartz diorite in the Wadi Saq AML becomes apparent when 

we consider (i) the field observations of magmatic flow fabrics between the quartz 

diorite into the keels of dykes within the dyke-gabbro transition, (ii) the magmatic, 

gradational contacts between the quartz diorite and spotty gabbro units and (iii) the 

TiO2, Fe2O3, and trace element (e.g., Zr) enrichments exhibited by the unit. Further, 

the Wadi Saq dykes are most similar in composition to the Geotimes volcanics 

(Figure 6.17), suggesting that they are not anomalous relative to the rest of the 

Oman ophiolite. However, while the plutonic portion of the Wadi Saq section lies at 

the fractionated end of the spectrum for the Oman ophiolite, the sheeted dykes at 

Wadi Saq have below average TiO2 concentrations relative to that of the Geotimes 

lavas and dykes of the OmanDB database (Figure 6.11; MacLeod et al, 2013). The 

lower TiO2 concentrations may reflect the comparatively high amount of oxides 

found in the upper plutonics at Wadi Saq. Thus, the relatively evolved nature of the 

Wadi Saq upper gabbros compared to those of Wadi Abyad (MacLeod and 

Yaouancq, 2000; Coogan et al., 2002) might be, among other factors, a function of 

higher concentrations of water in the parental melt and/or temperature variations 

along the paleo-ridge axis (MacLeod et al., in prep). 
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Figure 6.17: Bulk-rock (a) Zr/Y and (b) La/Yb versus MgO in Wadi Saq sheeted and cross-cutting 
dykes plotted relative to combined lavas and dykes for the Geotimes (i.e., ‘V1’) and 
Lassail/Alley/CPX-phyric (i.e., ‘V2’) volcanics in the OmanDB database (MacLeod et al., 2013). 

6.5 Conclusions 

Detailed mapping and sampling of the Wadi Saq DGT, north-eastern Ibra 

Valley, southern Oman Ophiolite has revealed a plutonic complex separating the 

sheeted dykes and the foliated gabbros comprised of three distinct units: an ophitic 

gabbro with pegmatitic patches (patchy gabbro; 70 m), overlain by a varitextured 

spotty gabbro (50 m), capped by an extremely varitextured quartz-diorite (120 m). 

The sheeted dykes are observed rooting in the quartz-diorite, and contacts 

between the plutonic units are gradational and subhorizontal. All of the units, except 

for the foliated gabbros, are isotropic, lacking any strong fabrics, and primary 

igneous amphibole and oxides are ubiquitous throughout the section, increasing in 

modal abundance towards the base of the sheeted dykes and indicating extensive 
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differentiation and/or the presence of small amounts of water in the primary liquid. 

Geochemical data, supported by field observations, suggest that all of the units can 

be related by simple progressive fractional crystallization of a moist Geotimes melt 

composition. The field relationships, as well as the relatively evolved composition 

of the overlying sheeted dykes and the bulk Ibra Valley volcanics, suggest that the 

Wadi Saq AML accommodated the formation of highly evolved melts relative to 

other sections like Wadi Abyad. We rule out a substantial role for hydrous partial 

melting in the origin of evolved melts at Wadi Saq, and instead suggest that small 

concentrations of water in the parental melt had a catalytic effect in accelerating 

the fractionation of the system. This is primarily based on (i) the lack of patches of 

granoblastic material in the field area, suggested to represent the restites of 

partially melted pieces of the sheeted dykes (France et al., 2010) and (ii) the 

composition of the quartz-diorite unit.  

We see a gradual evolution up section in Wadi Saq which is consistent with 

observations provided from Wadi Abyad, however, the extremely evolved nature of 

the Wadi Saq dyke-gabbro transition contrasts with the more primitive AML and 

sheeted dyke complex documented in Wadi Abyad, suggesting that there is lateral 

variability in the AML along the Oman ridge axis. While Wadi Saq shows evidence 

for some degree of oxide accumulation and fractionation in every unit, the Wadi 

Abyad section only shows evidence for oxide accumulation in the ferrogabbro 

pegmatites within the varitextured gabbros. Further work is needed in order to 

determine exactly where and when oxides have crystallised and their effective 

mass balance in both sections. 

Any working model for the Wadi Saq AML must address the evolved nature 

of the quartz diorite unit while taking into account those observations which suggest 

that it was derived from the same parental melts as the gabbroic units. Future work 

will require detailed major and trace element analyses of minerals for the various 

units in order to fully constrain the magmatic history of the section. The often 

complex, varitextured nature of the Wadi Saq gabbros and diorites will require the 

application of an element mapping technique (e.g., QACD) in order to confidently 

reconstruct these histories. Element maps of the Wadi Saq samples can then be 

used to inform the selection of locations for trace element analyses. Such data will 

be critical in assessing the role of the AML at Wadi Saq compared to Hess Deep. 
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CHAPTER 7  

Summary and Conclusions 

7.1 The QACD method 

In seeking to fully characterize the petrologic and geochemical nature of the 

AML horizon at fast-spreading MORs, we have developed and optimised a method 

for the rapid collection and processing of full-thin section quantitative element maps 

to produce a quantitative assessment of compositional distribution (QACD). The 

QACD method and the Quack software, in which the method is incorporated, 

provide a new method for the rapid collection of full-thin section quantitative 

element maps and a new post-processing tool for calculating mineral modes, 

producing element intensity/concentration and molar ratio maps, and quantifying 

full-sample compositional distributions.  

We have demonstrated that element mapping is critical in reconstructing the 

full histories of igneous rocks, with the QACD method, in particular, providing four 

major advantages over conventional methods for element map processing by (i) 

precluding operator bias as a statistically rigorous method and (ii) revealing the full 

range of mineral compositions and (iii) the extent and distribution of compositional 

zoning (iv) within the textural context of the sample. Our optimisation of element 

map collection for the QACD method has reduced the minimum amount of time 

expected for a quantitative element map from several days by WDS-EPMA down 

to 6-8 hours (Cardiff University SEM) on an EDS equipped SEM or EPMA; for the 

first time, making feasible the collection of element maps for a full suite of samples. 

The QACD method thus facilitates the incorporation of element mapping into the 

modus operandi of a petrologist for reconstructing the full histories of igneous rocks. 

Further, the open-source development of the Quack software with the Python 

coding language allows for users to readily modify and the adapt the software for 

to suit their own particular research.  

7.2 The Wadi Saq AML 

Although our analysis of the Wadi Saq AML horizon in the Oman ophiolite 

suggests that (i) water in the parent melt likely played a major role in the 

development of the system and (ii) the Wadi Saq AML fed the overlying sheeted 

dykes, the varitextured and evolved nature of the horizon together with the evolved 

composition of the overlying sheeted dykes and Ibra Valley volcanics suggest that 
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the Wadi Saq AML accommodated the formation highly evolved melts.  The degree 

to which the Wadi Saq dyke-gabbro transition (DGT) is evolved contrasts with the 

more primitive, but still evolved, dyke-gabbro transition documented previously at 

Wadi Abyad in the Nakhl-Rustaq block further north in the Oman ophiolite 

(MacLeod and Yaouancq, 2000; Coogan et al., 2002a). This would suggest that 

there is lateral variability in the AML along the Oman ridge axis, which is consistent 

with recent geophysical observations (e.g., Marjanović et al., 2015; Carbotte et al., 

2015) at modern fast-spreading MORs which suggest a discontinuous, segmented 

AML along the length of the ridge axis. The next logical step in understanding the 

processes which formed the Wadi Saq section is to collect detailed mineral major- 

and trace element data on the samples by EPMA and laser ablation (LA)-ICP-MS 

analysis, respectively. 

7.3 The Hess Deep AML  

In applying the QACD method to the Hess Deep AML sample suite, we have 

presented the first comprehensive investigation of the AML horizon at a fast-

spreading MOR. Considering the results of our investigation at Hess deep together 

with our observations from the Oman ophiolite and geophysical and petrological 

constraints on the properties of the AML at modern fast-spreading MORs, we are 

able to address the first-order questions regarding the nature and role of the AML 

in oceanic crustal accretion posed in section 1.2 of this thesis. 

7.3.1 What are the compositions of melts being delivered to the AML? 

Our application of the QACD method to the Hess Deep AML sample suite 

revealed that plagioclase and pyroxene within the AML are much too evolved to be 

in equilibrium with MORB, with mean An55 and Mg# of 65.01 which are consistent 

with derivation from andesitic melts (Mg# <43). A critical lack of more primitive 

compositions within the Hess Deep AML suggests that if primitive melt is delivered 

to the AML, then it likely does not remain within the AML long enough to contribute 

extensive amounts of material to the horizon. Considering the highly fractionated, 

incompatible element enriched signatures of the clinopyroxenes analyzed in a few 

of the Hess Deep AML gabbros by Lissenberg et al. (2013), we propose that the 

AML receives and accommodates the storage and fractionation of highly evolved 

melts expelled from the underlying crystal mush. 
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7.3.2 What implications do these findings have for crustal accretion models? 

Lissenberg et al (2013) report an overall upward fractionation of the plutonic 

sequence at Hess Deep that reaches its maximum in the AML horizon. Further, our 

data strongly suggest that the AML mostly crystallises from evolved, migrating 

interstitial melts. Together, these observations are difficult to reconcile with 

previous ‘gabbroic glacier’ models in which primitive melts fed from the 

mantle/lower crust are injected into and reside within the AML and crystallise 

significant gabbroic material (Morgan and Chen, 1993; Coogan et al., 2002). Thus, 

we conclude that the AML is not an active player in the accretion of the lower 

gabbroic crust. Instead, it is a passive player in lower crustal accretion, serving as 

a natural collection point for melts migrating upwards through the lower crust in 

response to buoyancy and compaction of the crystal mush (Lissenberg et al., 

2013). 

7.3.3 Is the AML an active or passive player in the development of MORB? 

The compositions reported by our investigation are simply too evolved to be 

in equilibrium with mean EPR MORB. The evolved nature of the AML suggests that 

it plays an active, but subsidiary role in feeding the upper crust. This is consistent 

with the hypothesis that primitive MORB may be delivered to the AML where it 

reacts and mixes with the resident reacted, incompatible element enriched melt 

prior to eruption (Goss et al., 2010; Lissenberg et al., 2013). A rapid mixing and 

reaction between injections of large volumes of primitive MORB and the evolved 

extant melt of the AML could account for (i) the critical lack of primitive material in 

the AML horizon, (ii) the geochemical observations of phenocrysts populations in 

MORB lavas indicating melt mixing prior to eruption (Pan and Batiza, 2002, 2003; 

Goss et al., 2010; Moore et al., 2014) and (iii) the observed over-enrichments of 

incompatible trace elements in MORB (O’Neill and Jenner, 2012; Lissenberg et al., 

2013). 

7.4 A holistic model for the role of the AML at fast-spreading MORs 

The AML, as suggested by the data presented in this thesis, is evolved in 

composition and accommodates the storage and fractionation of highly evolved 

melts. We propose a model wherein, between decadal eruptions, the AML is 

predominantly a crystal mush, fed by small volumes of evolved interstitial melts 

expelled from the underlying crystal mush. Short-lived, focused injection of primitive 
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melt in the months preceding eruption events leads to mixing of primitive melts with 

the extant highly fractionated melt, and triggers eruptions. This holistic model for 

the role of the AML at fast-spreading MORs reconciles the paradoxical mismatch 

between the volcanic and plutonic records with the geophysical constraints of the 

AML, the short residence times of Pacific MORB phenocrysts, and the observed 

incompatible trace element over-enrichments in MORB. 

7.5 Future work 

Our investigation, though comprehensive, only characterised the AML 

horizon sampled from the Hess Deep rift. If there is any lateral variability in the AML 

along axis as is suggested by geophysics and our analysis of the Wadi Saq section 

of the Oman Ophiolite, then it is likely that the compositions and processes that 

characterise the Hess Deep AML may not be representative of the AML horizon as 

a whole; thus, we cannot and should not assume that the nature of the AML is fully 

understood. Further comprehensive investigations of similar AML horizons from 

other locations along fast-spreading mid-ocean ridges are required if we are to fully 

understand the complex nature of the AML and the potential role(s) that it plays in 

the accretion of fast-spreading MOR crust. Such investigations should seek to 

establish whether the evolved compositions determined at Hess Deep are a 

general feature of the AML along MORs and address questions such as:  

 How is the AML affected by variations in primary melt composition 

(e.g., water)? 

 How is the AML affected by variations in mantle temperature 

along-axis? 

 How is the AML affected by along-axis variations in melt volume? 
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APPENDIX A  

Sample locations and petrography 

A1 Hess Deep: JC21 Dive 78 

Table A1 contains the locations and thin section descriptions (including modal 

phase estimates) for the JC21 Dive 78 thin sections which were analysed for 

element maps by this study. Naming conventions for lithological classification follow 

IODP procedures as indicated in the annotation for Table A1 and are as follows: 

 Lithology 

o Gabbro: < 5% orthopyroxene 

o Gabbronorite: > 5% orthopyroxene 

o Troctolite: > 5% olivine 

o Trondhjemite: > 20% quartz and < 1% K-feldspar 

o Totally altered: no igneous relics 

o Breccia: mixed lithologies 

 Modifiers 

o Troctolitic: 5% < clinopyroxene < 15% 

o Olivine: 5% < olivine 

o Olivine-bearing: 1% < olivine < 5% 

o Orthopyroxene-bearing: 1% < orthopyroxene < 5% 

o Disseminated oxide: 1% < oxides < 2% 

o Oxide: 2% < oxides 

o Anorthositic: 80% < plagioclase 
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A2 Oman: Wadi Saq 

Table A2 contains the locations, station numbers and field and thin section notes 

for each of the samples analysed for this study.  
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APPENDIX B  

Whole rock method 

B1 Preparation of rock samples into powder 

Rock samples were prepared into powder using the rock preparation facilities at 

Cardiff University. Weathered surfaces, veins and alteration patches were removed 

from the rock samples using a diamond-bladed rock saw. Samples were then 

crushed to a coarse grit by a steel jaw crusher. Approximately 80 ml of each sample 

was reduced to a fine powder in an agate ball mill. Afterwards, approximately 2 g 

of each powdered sample was ignited for two hours in a furnace at 900°C to drive 

off volatile substances and determine loss on ignition (LOI) values. The LOI of a 

sample was calculated using the following equation: 

𝐿𝑂𝐼 (𝑤𝑡. %) =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑤𝑒𝑡 𝑝𝑜𝑤𝑑𝑒𝑟 − 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑖𝑔𝑛𝑖𝑡𝑒𝑑 𝑝𝑜𝑤𝑑𝑒𝑟

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑤𝑒𝑡 𝑝𝑜𝑤𝑑𝑒𝑟
× 100 

Equation B1 

B2 Preparation of solutions for ICP-OES and ICP-MS 

Samples in this study were prepared for ICP analysis using the lithium metaborate 

fusion method. To prepare the samples, 0.1 ± 0.001 g of each ignited sample was 

mixed with 0.6 ± 0.004 g of lithium metaborate flux in a platinum crucible. A few 

drops of lithium iodide wetting agent were added to each mixture which was then 

fused using the Claisse Fluxy automated fusion system. After the mixture was then 

dissolved in a 50 ml solution of 20 ml of 10% HNO3 and 30 ml of 18.2 Ω deionised 

water obtained using a Milli-Q purification system. After the mixture had fully 

dissolved, 1 ml of 100 ppm Rh spike was added to the solution which was then 

made up to 100 ml with 18.2 Ω deionised water. Approximately 20 ml of each 

solution was run on ICP-OES to obtain major element and some trace element 

abundances. An aliquot of 1 ml of each solution was added to 1 ml of In and Tl and 

8 ml of 2% HNO3 and run on the ICP-MS to obtain trace element abundances. The 

instruments at Cardiff University used to analyse elemental abundances are a Jobin 

Yvon Horiba Ultima 2 ICP-OES and a Thermo Elemental X7 series ICP-MS. The 

samples were run on the mass spectrometers by Dr. Iain McDonald. 
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B3 Evaluation of the accuracy and precision of the geochemical data 

B3.1 Standards 

In order to assess the accuracy and precision of the whole rock elemental data 

obtained by ICP-OES and ICP-MS, external and internal standards were analysed. 

The external standards used were JB-1, GP13 and MRG1. JB1-A is a basalt issued 

by the Geological Survey of Japan with certified element values published in Imai 

et al. (1995). GP13 is a peridotite with values reported by Ottley et al. (2003). MRG1 

is a gabbro standard issued by the Canadian Certified Reference Materials Project 

of CANMET’s Mining and Mineral Sciences Laboratories with values reported in 

Abbey (1981). These three standards were run in every batch of samples analysed 

mainly to assess the accuracy of the results but also to help determine the precision 

of the results. Three internal standards were also run in every sample batch. These 

three samples were… and were used to assess the precision of the elemental data. 

B3.2 Accuracy 

All of the results from the different runs of standards are given in tables B1 & 2 

along with percentage errors of the measured values compared to certified values. 

The percentage error for each element was calculated using the following equation: 

% 𝑒𝑟𝑟𝑜𝑟 =
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑛𝑑 𝑐𝑒𝑟𝑡𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝐶𝑒𝑟𝑡𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
× 100 

Equation B2 

B3.3 Precision 

The precision of the elemental data can be determined by examining the multiple 

analyses of the external and internal standards. The precision of a standard sample 

with respect to each element is represented by the relative standard deviation 

(RSD). The RSD is a percentage value and is calculated for each element using 

equations B3 through B5 below. The standard values and their corresponding 

RSDs are reported in tables B3 & 4. 

𝑥𝛼 =
∑𝑥

𝑛
 

Equation B3 
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Where xα is the average element concentration, x is the element concentration and 

n is the number of measurements. 

𝑠 =
√∑(𝑥 − 𝑥𝛼)2

𝑛 − 1
 

Equation B4 

Where s is the standard deviation. 

𝑅𝑆𝐷(%) =
100𝑠

𝑥𝛼
 

Equation B5 
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APPENDIX C  

Whole rock results 

Tables C1 through C6 report whole rock ICP-OES analyses of major and some 

trace elements for the Wadi Saq samples. Tables C7 through C12 report whole 

rock ICP-MS analyses of trace elements for the Wadi Saq samples. Samples are 

grouped according to their igneous unit as mapped in the field area (i.e., diorites = 

C1, C7; foliated gabbros = C2, C8; patchy gabbros =C3, C9; spotty gabbros = C4, 

C10; sheeted dykes = C5, C11; cross-cutting dykes = C6, C12). The foliated 

gabbros have been grouped within their respective tables by dominant sub-

lithology (i.e., foliated gabbro, foliated gabbro-anorthosite, foliated gabbro-

pegmatite). In each table, all iron is calculated as total Fe3+ (i.e., Fe2O3(T)). 
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Summary of electronic appendices 

 

APPENDIX A-C excel workbooks: 

Contains excel workbooks containing the tables for each of the print appendices. 

The files are: APPENDIX A- Sample list and descriptions, APPENDIX B- Analytical 

tables for Whole Rock precision, and APPENDIX C- Whole Rock Tables. 

 

APPENDIX E1- Wadi Saq Whole Rock Data:  

This is an excel workbook which contains the entirety of the Wadi Saq whole rock 

data split between two worksheets for ICP-MS and ICP-OES data. Each of these 

worksheets are grouped according to mapped unit. A third worksheet is provided 

which contains Tables 6.1 and 6.2 of the text (unit averages by ICP-MS and ICP-

OES). 

 

APPENDIX E2- QACD Software: 

The entirety of the python scripts and files needed for the QACD software. See the 

user manual for instructions. At this moment the software requires an installation of 

Python to work. The ‘Main.py’ file is the script that is used to execute the software. 

 

APPENDIX E3- QACD User Manual: 

A pdf of the most up-to-date version of the QACD User Manual. This guide is for 

familiarising the user with the QACD process and provides information regarding 

what modules need to be installed in the python libraries for operation. For future 

reference, the most up-to-date version of the QACD software and the user manual 

can be found on the GitHub repository (www.github.com/mloocke/QACD-quack). 

 

APPENDIX E4- Hess Deep Element Maps and Histograms: 

A copy of the supplementary files for the Hess Deep AML investigation as they 

were submitted to Nature Geoscience.  

 

APPENDIX E5- Wadi Saq Thin Section Scans: 

Scans of the Wadi Saq thin sections organised by lithology. 

 

APPENDIX E6- High resolution thesis figures: 

High-resolution copies of the figures used in the printed thesis, organised by 

chapter. 
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