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Abstract

Publishing transaction data is important to applications such as marketing research

and biomedical studies. Privacy is a concern when publishing such data since they

often contain person-specific sensitive information. To address this problem, different

data anonymization methods have been proposed. These methods have focused on

protecting the associated individuals from different types of privacy leaks as well as

preserving utility of the original data. But all these methods are sequential and are

designed to process data on a single machine, hence not scalable to large datasets.

Recently, MapReduce has emerged as a highly scalable platform for data-intensive ap-

plications. In this work, we consider how MapReduce may be used to provide scalab-

ility in large transaction data anonymization. More specifically, we consider how set-

based generalization methods such as RBAT (Rule-Based Anonymization of Transac-

tion data) may be parallelized using MapReduce. Set-based generalization methods

have some desirable features for transaction anonymization, but their highly iterat-

ive nature makes parallelization challenging. RBAT is a good representative of such

methods. We propose a method for transaction data partitioning and representation.

We also present two MapReduce-based parallelizations of RBAT. Our methods en-

sure scalability when the number of transaction records and domain of items are large.

Our preliminary results show that a direct parallelization of RBAT by partitioning data

alone can result in significant overhead, which can offset the gains from parallel pro-

cessing. We propose MR-RBAT that generalizes our direct parallel method and allows

to control parallelization overhead. Our experimental results show that MR-RBAT can
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scale linearly to large datasets and to the available resources while retaining good data

utility.
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Chapter 1

Introduction

The digital data containing person-specific information are increasingly being collec-

ted, analysed and disseminated, often in response to government laws or to benefit

organizations. For example, private California-based hospitals [13] are required to

publicly release some demographic data for every patient discharged from their facil-

ity1. Electronic Patient Record [88], an online system in the United Kingdom, allows

patients’ demographics, their medical and billing details to be collected and shared.

Tesco, a large retail organization, collect and share their customers’ information with

a range of retailers and manufacturers [103]. Different countries including the United

States of America, the United Kingdom and Canada have also created a range of online

data repositories following open government initiatives [90, 120, 91].

These collected datasets are valuable sources for analytical studies. For example,

health-related personal information shared among healthcare institutions can help ad-

vance personalized medicine [42]. Business Intelligence is another application of

person-specific data. As reported by Chen et al. [15], survey results showed that 97

percent of companies with revenues exceeding $100 million are engaged in business

analytics using the data containing personal information. However, such data often

contain sensitive information about individuals, and releasing them in their original

1http://www.oshpd.ca.gov/hid/Products/Hospitals/QuatrlyFinanData/CmpleteData/default.asp
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form may compromise individuals’ privacy. According to a survey [119], 89% of on-

line users have expressed serious concerns about their privacy. Estimated by Forrestor

Research, e-tailers lose $15 billion a year due to privacy concerns of online consumers

[19]. Westin [61] conducted over 30 surveys from 1978 to 2004 to show people’s at-

titude towards privacy over time and found that the majority fall into the Pragmatic

category i.e. they are willing to share their information only with trusted parties. It

is important therefore that we consider how individuals’ privacy contained within data

may be protected.

1.1 Privacy and Its Protection

Despite the fact that many attempts have been made over a long time [28, 107], we do

not have a single, universally agreed-upon definition for privacy. For example, Westin

[128] defined privacy as an ability to know when, how, and to what extent information

about us is communicated to others. Parent [95] defined it as the amount of control

someone has over information about himself. Allen [4] defined it as an ability to con-

trol the way others have access to us. Not surprisingly, how privacy may be protected

will depend on the specific aspects of privacy that one seeks to protect. For example,

cryptography [118, 134] and access control [10, 47] seek to provide secrecy and pro-

tect access to information, whereas data anonymization [34] controls the amount of

information that can be publicly released.

In this thesis, we consider a scenario where data are required to be released to third

parties or to be made available publicly. Typically, how the published data may be

analysed is not known at the time the data are published. For example, in October

2006, Netflix released a dataset containing 100 million anonymous movie ratings and

challenged the research community to develop predictive algorithms that would do

better than their own recommendation system [6]. At the time of publishing the data,

Netflix could not be certain how the data might be used or analysed. To protect privacy
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in this type of scenario, we need to have the data sanitized (anonymized) to a pre-

defined privacy level, so that no sensitive information about the individuals contained

in the data will be disclosed when the data are released.

1.2 Privacy Protection in Transaction Data

Data can be of different forms, for example, relational data such as demographics,

graph data produced by social networks, search logs maintained by search engines, and

location data collected by location-based applications. Among them, transactional data

are of interest and important. They are a major source of information for understanding

and analysing the habits and activities of an individual.

A transaction dataset is a collection of records called transactions. Each transaction is

a set of items drawn from a domain and is assumed to be associated with an individual.

Table 1.1 shows an example of transaction dataset containing query terms posed by

search engine users, where each search term is an item and each row (collection of

search terms) is a transaction.

User Search logs

Jerry Flu symptoms, Dutch floral designs, Depression and medical leave

Alice Fiber mark , Car crash photos, How to kill your wife

Viccie Parking near Georgia town, Numbness in hand, Breast cancer

Jackie Parking near Georgia town, Dogs food, Breast cancer

Table 1.1: An example transaction dataset

Transaction data are useful in different applications. For example, search logs such as

the dataset given in Table 1.1 can help personalized web search. The diagnosis records

and market basket data can assist in personalized medicine and purchasing trend pro-

jection. However, transaction data also contain person-specific sensitive information,

as can be seen from Table 1.1, which can be disclosed when the data are released.
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To protect such data, transactions are typically de-identified prior to their release. That

is, direct person identifying items such as social security numbers, names or phone

numbers are removed. Table 1.2 shows the de-identified transactions given in Table

1.1. Unfortunately this may not provide sufficient protection for individuals’ privacy

because combinations of non person-identifying items may still be used to identify

an individual in a de-identified dataset [5, 84]. For example, AOL released the de-

identified search logs of its 650, 000 users in 2006 in order to support research [5].

Searcher No. 4417749 was tracked back to Thelma Arnold, a 62-year-old resident of

Lilburn from the released dataset by her neighbour, even if the explicit identifiers such

as user names and IP addresses were removed from the released search records. Netflix,

the world’s largest online movie rental service, released a de-identified dataset contain-

ing movie ratings records of nearly a half-million of its users in 2006, with the motive

to improve the accuracy of its movie recommendations algorithm. Narayan et al. [85]

used the rating information from Internet Movies Database (IMDb), another movies-

related website to show that only a small fraction of external information (rating dates

and some movies) is needed to identify Netflix subscribers even if the published data

are fully de-identified. This can then lead to the disclosure of the sensitive information

associated with them, by observing and inferring from movie titles suggesting polit-

ical beliefs (e.g. Fahrenheit 9/11), religious views (e.g. Jesus of Nazareth), and sexual

orientations (e.g. Queer as Folk).

Search Logs

Flu symptoms, Dutch floral designs, Depression and medical leave

Fiber mark , Car crash photos, How to kill your wife

Parking near Georgia town, Numbness in hand, Breast cancer

Parking near Georgia town, Dogs food Breast cancer

Table 1.2: De-identified transaction dataset

Publishing transaction data therefore requires protection against two types of potential

privacy leak: identity disclosure and sensitive information disclosure. identity disclos-
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ure occurs when an individual can be linked to their transactions in the dataset. This

usually happens when certain combination of items occurs uniquely or infrequently

within the released data and an attacker has the knowledge of this combination. For

example, if we know that Viccie is a Lilburn resident and has a numbness problem, then

releasing Table 1.2 will lead to the unique identification of her record in the dataset.

Sensitive item disclosure is where sensitive information about an individual is learnt

with or without identifying their transactions. For example, knowing that Jackie has

searched for Parking near Georgia Town, one can infer that she has searched for Breast

Cancer too.

One solution to preventing such disclosures is to anonymize data [21, 36]. That is, we

perform some form of data transformation so that the frequency of item occurrences

is altered, hence the two types of disclosure are prevented in the transformed data.

Different anonymization techniques have been proposed in the literature [113, 116, 50,

12, 36, 132, 73]. A popular approach is set-based generalization which attempts to

hide an original item by replacing it with a set of items. For example, Table 1.3 is

a set-based generalized version of Table 1.2, where (Fiber mark, Numbness in hand,

Dogs food) is a generalized item which is interpreted as representing any non-empty

subset of the items contained in it. As can be seen, with this type of generalization,

Viccie can no longer be uniquely identified from Table 1.3, even if we know that she

has a numbness problem.

However, protecting transactions through set-based generalization has a price to pay:

we lose some utility in the generalized data. For example, suppose that we need to

count the number of times the search terms Fiber Mark and Dog Foods appear together

in the search log. Using Table 1.3, three transaction records satisfy this query whereas

in the original dataset (Table 1.1), it is not supported by any transaction record. It is

important therefore to have an anonymization method that will not lead to excessive

data distortion. However, finding an optimal generalization solution that achieves the

required privacy protection and retains the utility of the data as much as possible is
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Search Logs

Flu symptoms, Dutch floral designs, Depression and medical leave

(Fiber mark, Numbness in hand, Dogs food) , Car crash photos, How

to kill your wife

Parking near Georgia town, (Fiber mark, Numbness in hand, Dogs

food), Breast cancer

Parking near Georgia town, (Fiber mark, Numbness in hand, Dogs food)

Breast cancer

Table 1.3: An example of set-based generalization

challenging.

Existing transaction data anonymization approaches [113, 116, 50, 12, 132, 73] are

designed to perform anonymization in sequential settings, and typically assume the

use of a single centralized machine. This limits their applicability to small-scale data-

sets. However, data are becoming larger and more scalable anonymization methods are

needed.

One way to enhance the scalability of existing methods is to optimize their memory

utilization. For example, using sampling [63, 65, 75] can help reduce memory require-

ment. However, such strategies may still not be able to deal with increasingly large

datasets [80]. Sample sizes can still be very large and the anonymization solutions

derived from the samples can significantly compromise privacy and data utility. For

instance, Walmart handles more than a million customers every hour, collecting an

estimated 2.5 petabytes of data in the process [1]. Gartner predicts that the amount

of data in all forms will grow 650% in the next five years [3]. According to IDC2,

the amount of digital information doubles every eighteen months. In 2011, the data

held by hospitals and medical centres were estimated to be about one billion terabyte

[3]. When dealing with such large-scale data, parallel and distributed computing using

2http://www.idc.com
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shared-nothing commodity clusters is becoming a promising direction.

Recently, MapReduce [22] has emerged as a scalable and cost-effective data-processing

platform, providing a simple, yet powerful parallel computing paradigm. In recent

years there has been an increasing support for MapReduce from both industry and aca-

demia, making it one of the most rapidly adopted frameworks for parallel processing

of large data volumes today [58]. Google uses its implementation of MapReduce to

process more than ten petabytes of information per day [22, 58]. Hadoop, an open

source implementation of MapReduce, has been adopted by more than 160 different

organizations including commercial companies and research institutes such as Yahoo,

Twitter, Facebook, Amazon and IBM3.

1.3 Research Problem

Our work aims to study how MapReduce may be used for large transaction data an-

onymization. More specifically, we attempt to address the scalability issues associated

with set-based generalization methods [75, 69, 73]. We will focus on the parallel-

ization of RBAT (Rule-Based Anonymization of Transaction data) [72], an existing

transaction data anonymization method, on MapReduce.

RBAT is able to deal with both types of disclosure and can retain high data utility

by allowing fine-grained privacy requirements to be specified. Moreover, it does not

require a generalization hierarchy, hence its search space for generalization solutions

is wider than those explored by hierarchy-based methods. This allows better utility to

be retained in anonymized data.

Since, achieving required privacy level and good data utility are important aspects of a

data anonymization method, our study is based on the following hypothesis:

A MapReduce-based parallelization of RBAT will scale linearly to large transaction

3http://wiki.apache.org/hadoop/PoweredBy
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data while achieving the same privacy level and utility of anonymized data as its se-

quential counterpart.

Note that while we consider the parallelization of RBAT using the MapReduce paradigm

in this thesis, some design aspects of our proposed method are applicable to other trans-

action data anonymization methods too. Thus, our solutions are not limited to RBAT

only.

1.4 Research Methodology

Recall that this study aims to check the feasibility of the application of MapReduce in

design of a transaction data anonymization solution that is scalable to large data and

achieves the required level of privacy without significant loss of utility. We perform

our study in the following sequential steps.

1. The first and foremost step towards the design of scalable transaction data anonym-

ization is to design a partitioning strategy. RBAT has more than one inputs that can

be considered for partitioning. There can be more than one way to partition an input

and to represent the partitions in the memory of the assigned nodes. Also, different

partitioning methods can have different effects on the anonymized results as well as

the level of parallelization that can be achieved. Therefore, we design a partitioning

method by studying different possible partitioning methods and identifying their effect

on the anoymized results and on the level of parallelization that can be achieved.

2. Next, we design the parallelelization of RBAT. To carry this out, we first identify

the high-level steps that must be kept intact to ensure that the same anonymized results

can be achieved as RBAT does. For each step, we design its parallel implementation

by partitioning data and performing the key operations using MapReduce.

3. Finally, we experimentally evaluate our implementation over a physical cluster. We

mainly measure the scalability with respect to large problem instances and the physical
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resources available. We also analyse the performance and identify any bottlenecks that

may have arisen due to the design constraints, imposed by MapReduce.

1.5 Research Challenges

Parallelizing a set-based generalization method such as RBAT on MapReduce is chal-

lenging, and the following issues need to be tackled:

1. Data Partitioning is important to any algorithm that attempts to process a large

amount of data in parallel and it is important to the parallelization of RBAT

too. Partitioning must allow to deal with large problem instances in a scalable

way and the workload among processing nodes must be balanced. Transaction

datasets often are large and contain varying numbers of items in each record.

Therefore, even when the number of records are equally split among partitions,

the workload associated with each partition may not be fairly distributed. In

MapReduce, parallel tasks are created typically by partitioning one input and all

other inputs need to be replicated to each processing node [23]. Dealing with

large problem instances consisting of large transaction records or the domain of

items is challenging.

2. Most of the computations in set-based generalization methods such as RBAT re-

quire a global view of data. A MapReduce computation usually consists of a

sequence of two key computational stages: Map and Reduce. The communic-

ation among processing node during these stages is not allowed except at the

end of the map stage. If the computations assigned to a processing node are de-

pendent on the data assigned to the other nodes, most of the data will need to be

communicated to the reduce stage via network interconnection. Communicating

such a large amount of data can incur high communication cost and may result

in ineffective resource utilization. Therefore careful partitioning and placement

of input is required.
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3. RBAT is a good representative of iterative transaction data anonymization. The

method iterates until the solution gives the required privacy level with best pos-

sible utility based on some heuristics. Each iteration consists of a number of

iterative steps. To ensure good utility of data, these steps must be performed in

sequence. In MapReduce, no data is kept between any iterations. Each itera-

tion requires to set up parallel tasks and to re-load data associated to the tasks.

Designing a performance-effective solution is not straightforward.

4. Parallelization may also affect the utility of anonymized data. If the scalabil-

ity achieved is at the cost of sacrificing a large amount of data utility, then the

anonymized results may not be usable, rendering our algorithm ineffective.

1.6 Contribution

In this work, we address the challenges described in the previous section. In particular,

we make the following contributions:

1. We propose a partitioning scheme for transaction data. The method does not

put any restriction on the number or size of any partitions and allows to balance

the workload associated with each partition even when the datasets consist of

transaction records of varying sizes. It partitions more than one input and hence

allows to deal with problem instances consisting of a large number of transaction

records or domain of items. This is useful for achieving scalability. Our parti-

tioning does not require a large amount of data to be communicated among ma-

chines and therefore does not incur high network cost. Our partitioning scheme

also represents data in a way so that the required computations are performed

efficiently.

2. We propose two parallelizations of RBAT: direct parallelization and loop-controlled

parallelization. The direct parallelization implements RBAT on MapReduce by
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mainly partitioning data in order to achieve scalability. Our experimental study

shows that the method is scalable but its performance can be even worse than

its sequential counterpart due to large parallelism overhead. The loop-controlled

parallelization deals with the parallelism overhead and addresses the perform-

ance bottlenecks of our direct parallel method. Our method is based on the idea

that increasing the number of MapReduce rounds increases the level of syn-

chronization during anonymization operations but decreases the communication

cost at each MapReduce round, whereas decreasing the number of rounds to be

employed will incur less parallelism overhead but increases the amount of com-

putations during each MapReduce round. Our loop-controlled method general-

izes the direct parallel method and allows to control the number of MapReduce

rounds to be employed at each iteration of the anonymization process.

3. We evaluate our design on real-world transaction datasets using a commodity

cluster. Our experimental results show that our loop-controlled method can scale

linearly to large datasets, and nearly linear to cluster sizes. Our method can

perform nearly 9 times faster than RBAT using a cluster of 14 processing nodes

while retaining almost the same level of utility as RBAT does.

1.7 Thesis Structure

The rest of the thesis is organized as follows:

Chapter 2 surveys the existing work relevant to our problem of large-scale transaction

data anonymization. We briefly discuss the existing transaction data anonymization

methods, and review different techniques used to address the scalability issues of data

anonymization in centralized settings. The application of MapReduce for privacy-

preserving data publishing and other areas are also surveyed.

Chapter 3 gives the background necessary to understanding our work. We define rel-

evant concepts and introduce some important notations. This is followed by a brief
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overview of RBAT and MapReduce. We also present a framework where general is-

sues concerning the parallelization of a method such as RBAT on MapReduce will be

discussed.

Chapter 4 describes a direct parallelization of RBAT using MapReduce. We give

detailed description of our data partitioning and representation mechanism, and our

MapReduce-based design for RBAT. We experimentally evaluate the scalability of our

method over large data volumes of up to 128 million real-world transaction records us-

ing a commodity cluster consisting of 14 homogenous slave nodes and a master node.

Chapter 5 analyses in detail the performance bottlenecks that arise from the direct

parallelization of RBAT presented in Chapter 4. We present our loop-controlled paral-

lelism to deal with these performance bottlenecks. We also present the details of the

solution to deal with these performance bottlenecks. We give an analytical model to es-

timate the performance of our proposed method. We test the scalability of our method

on various data volumes and available resources.

Chapter 6 concludes the thesis and presents some possible future research directions

for our work.
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Chapter 2

Related Work

This chapter will review the existing literature relevant to our problem of anonymizing

large transaction data. We first review the existing works on transaction data anonym-

ization, then techniques used by existing sequential methods to address the problem

of scalable anonymization. We also study the application of MapReduce in different

applications including privacy preservation methods.

2.1 Transaction data anonymization

There are considerable research efforts for designing privacy-preserving data publish-

ing methods [36, 2]. Privacy-preserving data publishing aims to protect the privacy of

individuals whose records are contained in the released data. One way to achieve this

is to anonymize data, before releasing the data to untrusted recipients. The anonym-

ization techniques typically transform the data in a way that the published records are

protected against identity and sensitive information disclosure attacks [34].

Existing data anonymization methods mostly differ in two important aspects: privacy

protection and utility preservation. A method must ensure that the anonymized data

is protected against the disclosure of identity and the sensitive information contained

in their records. But this must not be at the cost of high data utility loss. A method
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that gives maximum possible privacy protection but distorts the data significantly, may

result in the published data far from serving the purpose of its release. Therefore,

some tradeoff between privacy and utility must be made. The privacy and utility level

achieved by an anonymization method is determined by the privacy model and the

anonymization techniques used.

A privacy model defines the constraints of privacy protection. For example, k-anonymity

[110] requires that the probability of an individual being uniquely identified in the

released data is no more than 1
k
. Other privacy models include l-diversity [76], t-

closeness [68], δ-presence [86], (c,t)-isolation [14], (a,k)-anonymity [129], (c, l)-

diversity, confidence bounding [125, 124] and ε-differential privacy [26, 25]. These

privacy models cannot be trivially adopted to anonymize transaction data, as transac-

tion records do not follow a small fixed schema and each record is a subset of items

usually drawn from a large domain. So applying these privacy principles to transaction

data may cause high information loss, which can render the anonymized data useless

[39, 75]. Therefore, a different set of privacy models, considering specifically the

characteristics of transaction data, were proposed. For example, km-anonymity [114],

(h, k, p)-coherence [132], complete k-anonymity [51], and ρ-uncertainty [12].

An anonymization technique is used to transform data in order to satisfy a privacy

model. Several data anonymization techniques exist: generalization [35, 109, 126, 56],

suppression [109, 56], perturbation [100, 18] and dissociation [40, 117]. Generaliza-

tion [35, 109, 126, 56] transform data by replacing a value with a more generalized

but consistent value. Suppression [109, 56] anonymizes data by removing a value or

a record. Perturbation [100, 18] distorts the data by adding noise, swapping values,

or generating synthetic data based on some statistical properties of the original data.

Dissociation [40, 117] dissociates the relationship between sensitive and non-sensitive

items. These techniques have implications on the privacy and utility achieved. For

example, suppressing the values or the records gives high privacy protection but may

also cause high data distortion. Perturbation preserves statistical information and the
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anonymized data can be used to build data mining models accurately but noise addition

falsifies the information contained at record-level. Hence, the anonymized results are

limited in their applications. For example, when biomedical studies [72, 34] require

analyses to be made at record-level, such perturbed data may not be useful. In this

thesis, we consider the methods based on generalization since they provide good util-

ity of data and retain the original information at record-level. In the following, we will

discuss these methods and the level of privacy and utility they provide in detail.

2.1.1 Generalization-based Transaction Data Anonymization

Different generalization-based methods exist for transaction data anonymization [72,

114, 132, 51, 115, 70, 12, 73]. These methods achieve the required privacy by repla-

cing an item with its generalized representation containing less specific information.

Generalization may be performed by allowing different occurrences of an original item

to be mapped to different generalized items. Such generalization is called Local Gen-

eralization. For example, consider 2-anonymizing the dataset shown in Table 2.1.

Figure 2.1: An example hierarchy

Using the hierarchy shown in Figure 2.1, the anonymized form of Table 2.1 using local

generalization is shown in Table 2.2. Note that the occurrences of items a and b are

intact in the last three transaction records whereas the same items are replaced by their

generalized representation A in the first two transaction records.

Global generalization forces all the occurrences of an item to have only one generalized
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TID Items

1 a

2 a, b

3 a, b, d

4 a, b, c, d

5 a, b, d

Table 2.1: An example dataset

TID Items

1 A

2 A

3 a, b, B

4 a, b, B

5 a, b, B

Table 2.2: A 2-anonymized dataset using local generalization

representation. For example, 2-anonymized form of Table 2.1 using global generaliza-

tion is given in Table 2.3.

TID Items

1 A

2 A

3 A, B

4 A, B

5 A, B

Table 2.3: A 2-anonymized dataset using global generalization

Below, we survey some local and global generalization methods for transaction data

anonymization.
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Local Generalization-based Methods

He et al. [51] and Terrovitis et al. [115] proposed local-generalization based methods

to achieve complete k-anonymity and km-anonymity.

He et al. [51] proposed a top-down greedy partitioning method, which uses local gen-

eralization to achieve k-anonymity for transaction data. The method starts with all

the transaction records creating a single partition. It then splits each partition into

sub-partitions, until no split can be performed without violating the required privacy

protection. Logically, each partition represents a generalized representation, corres-

ponding to a level in given generalization hierarchy. Every time when a partition is

to be split, one of the generalized item associated with the partition is specialized to

its child nodes in the hierarchy. The choice of the generalized item is made greedily,

depending on which specialization causes maximum information gain. This requires

iterating over all the generalized items associated with the partition and computing the

information gain as a result of specialization. The method terminates when no partition

can further be split without violating the privacy protection requirement.

Terrovitis et al. [115] proposed a local recoding method, which sorts the records and

partition them into n parts. Each part is anonymized independently using their pro-

posed Apriori anonymization method to achieve km-anonymity. The whole process

generalizes the dataset progressively in m iterations. That is, the ith iteration ensures

that the anonymized data achieves ki-anonymity. This is done by computing the num-

ber of occurrences of all itemsets of size i and finding the unprotected itemsets in given

datasets. For each itemset found unprotected, the algorithm attempts to find a general-

ized representation that makes the itemset protected and causes minimum information

loss. To make the count of occurrences of the itemsets efficiently and reducing memory

requirements, the algorithm scans the whole dataset at the beginning of each iteration

and constructs a count tree, similar to a FP-tree [48].

Local generalization potentially causes less data distortion than global generalization.
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However, the inconsistent generalization of items in a dataset may result in derivation

of inaccurate results [34, 75]. Also, all the existing local recoding methods achieve

privacy protection against identity disclosure attack and are not trivial to extend them

for protection against sensitive itemset disclosure. The methods are also based on the

models with some uniform privacy assumptions and therefore may excessively distort

the data. For example, complete k-anonymity is based on the assumption the itemsets

of all sizes in given dataset need to be protected. Therefore, the model requires that

each transaction record must be identical to (k−1) other transaction records. Similarly,

km-anonymity requires that all itemsets of size m must be contained by at least k

transaction records.

The MapReduce realization of such local generalization methods is relatively trivial,

since the algorithms recode data chunks independently. However, the issues such as

dealing with the large domain of items may still need to be addressed. For example,

an ith iteration of apriori anonymization [115] constructs a count tree, containing all

possible itemsets of size i and their possible generalizations. Similarly, the partitioning

method proposed in [51] requires the taxonomy tree to be loaded into the memory,

while anonymizing each partition.

Global Generalization-based Methods

Anonymization methods employing global generalization has also been proposed. Some

of these methods find the anonymized solution by replacing one or more items by any

of their ancestor nodes in the hierarchy. Other methods do not require any gener-

alization hierarchy and the generalized representation is created dynamically by the

methods.
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Hierarchy-based Methods

Terrovitis et al. [114] designed a global generalization-based method to achieve km-

anonymity. Their method works in bottom-up fashion. Starting from original items,

the algorithm performsm iterations, protecting increasingly large combination of items

in each iteration. During each iteration, the unprotected combinations of certain size

are protected by replacing a group of items by a more generalized item using a given

generalization hierarchy. For each unprotected combination of items, the algorithm

examines all possible generalizations and finds one that incurs the least information

loss and satisfies km-anonymity.

Hierarchy-based generalization have also been integrated with suppression by some

works [70, 12]. Liu et al. [70] proposed a top-down greedy method which replaces a

set of public items with their generalized representations and suppresses some items to

enforce km-anonymity. Starting with the most generalized cut, which is to generalize

all the items to the root of a given taxonomy tree, the algorithm greedily attempts to

find a more specialized cut, giving the required privacy protection while incurring less

information loss, until no such specialization is found. To find a specialized cut, the

method evaluates all possible nodes of the current cut and specializes the node causing

maximum information gain due to specialization and incurring minimum suppression

cost. The suppressions, required for a given generalization cut, is also determined by

greedily constructing a tree in top-down manner which starts by assuming that all items

are to be suppressed and iteratively removes an item from the suppression list, which

is the most promising in terms of privacy and utility. For performance reasons, the

algorithm works in m rounds to progressively protect the unprotected combination of

items. That is, at an ith round, it ensures to achieve ki-anonymity. Cao et al. [12] pro-

posed ρ-uncertainty, a model to limit the probability of inferring any non-public item,

given that the attacker may know any sensitive and non-sensitive items of a record. The

potential set of sensitive inferences are framed as sensitive association rules, with a set

of items as antecedent assumed to constitute the background knowledge of an attacker.
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They also proposed a top-down algorithm to achieve this. The method first iteratively

suppresses non-public itemsets to control the confidence of the rules involving sensit-

ive items only, and then generalizes public items to ensure that no sensitive association

rule has confidence greater than ρ. The generalization starts with all non-sensitive items

mapped to the most generalized item in a given hierarchy. The algorithm then iterat-

ively specializes a generalized item causing maximum possible information gain, until

no information gain can be harnessed anymore, without violating the ρ-uncertainty.

Set-based Generalization Methods

All the methods discussed in the previous section require the use of a generalization

hierarchy. In such methods, if an original item is generalized to any of its ancestors,

all of its siblings are forced to be generalized to that common ancestor in the hierarchy

too. This limits the search space considered by these methods. Another set of methods

overcomes this limitation by using set-based generalization, which is to replace a com-

bination of original items with their set representation. Set-based generalization was

first introduced by Li et al. [69] to anonymize transaction data, and has been shown to

retain utility better, since it allows to explore a larger search space [75, 69, 73].

Loukides et al. [73] also showed that full-subtree recoding is a specific case of set-

based generalization, where the generalizations that original items are mapped to are

restricted to their ancestors in a given taxonomy tree. So the methods based on set-

based generalization can also be restricted to find a solution based on the given tax-

onomy tree. The method proposed by Loukides et al. [73] is one such example.

They proposed a constraint-based k-anonymity model that allows to specify privacy

and utility constraints and proposed a heuristic, constraint-based anonymization of

transactions (COAT), which protects transaction records by ensuring that all poten-

tially linkable itemsets (specified by the privacy constraints) appear at least in k trans-

action records, using allowable generalizations (specified by the utility constraints).

To achieve this, COAT iteratively performs the anonymization. During each iteration,
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it finds and protects an unprotected privacy constraint whose itemset specified in the

privacy constraint appears most frequently in given dataset. To protect a privacy con-

straint, the algorithm iteratively selects an item from the itemset specified in the privacy

constraint that appears least frequently and generalizes it. The generalization is made

using the generalization incurring minimum information loss from all allowable gen-

eralizations, specified by the utility constraints and suppresses it if no utility constraint

exists to generalize it any further. The algorithm continues generalizing or suppressing

items, until the current privacy constraint is protected and then moves on to the next

unprotected privacy constraint. The algorithm stops when all the privacy constraints

are protected. The method does not require a hierarchy for generalization. The pri-

vacy protection is achieved by a constraint specification model which allows to specify

the privacy requirements and does not make any assumption on the number or size of

itemsets to be protected. However, the model anonymizes data based on the utility

constraints. This may result in the anonymization solution with good data utility for

intended utility requirements and may ignore the anonymization solution which gives

better utility in general.

Loukides et al. [74] proposed PS-rules model which allows to specify the privacy

constraints, and Rule-Based Anonymization of Transaction data (RBAT), a top-down

specialization method which generalizes given transaction data to protect the PS-rules.

As shown by Table 2.4, comparing to other methods, RBAT has some desirable fea-

tures. For example, it ensures the protection against both identity and sensitive itemset

disclosure attacks. The method does not require a generalization hierarchy. The PS-

rules model [74, 75] allows privacy constraints to be specified, and does not make any

assumption about the privacy constraints such as the itemsets of certain size must be

protected. Therefore, it provides good data utility.

RBAT is also a good representative of other global anonymization methods. For ex-

ample, global anonymization methods are mostly iterative and each iteration involves

a number of anonymization operations to be performed in sequence. RBAT can also be
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used to achieve the privacy constraints specified by most of the other transaction data

anonymization models such as km-anonymity [114], (h, k, p)-Coherence [132], com-

plete k-anonymity [51], and ρ-uncertainty [12]. For example, specifying the privacy

constraints consisting of all itemsets of size m using PS-rules and setting RBAT to

achieve identity disclosure only, will allow to achieve the km-anonymity. We therefore

consider the parallelization of RBAT in this work.

2.2 Non-Parallel Methods for Scalable Data Anonym-

ization

The scalable anonymization of large transaction data has been considered in central-

ised settings. Data indexing and sampling are two commonly used techniques. Disk-

based methods with external indexing is one way considered by existing methods.

Iwuchukwu et al. [55] proposed the application of spatial indexing to k-anonymizing

data. The proposed method uses a multi-dimensional R-tree. Each node in the tree rep-

resents a generalized representation. A path from the root node to a leaf node produces

a set of records in a given dataset that satisfy the generalization constraints imposed by

the path followed to reach the leaf node. For example, consider 3-anonymizing a rela-

tional dataset shown in Table 2.5. The possible R-tree constructed is shown in Figure

2.2.

LeFevre et al. [63] also proposed a technique for scaling an existing generalization

method, Mondrian [64], to datasets larger than the available memory. The algorithm is

based on the idea of decision tree construction method, RainForest [37]. Starting with

all attribute values generalised to the root, the algorithm scans the input dataset D to

collect some statistics (depending on the split criteria), and creates a frequency group.

It then chooses an allowable split attribute based on this frequency group. D is scanned

again to create m partitions based on the split attribute. The partitions are written to

the disk, if they are larger than available memory. The process is recursively repeated
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Method Search method Techni -

ques

Privacy Model Attacks Hierarchy-based Privacy

As-

sump-

tions

RBAT [72] Top-Down Global

General-

ization

PS-rules Both no User-

specified

Con-

straints

AA [114] Bottom-up Global

General-

ization

km-anonymity Identity Disclosure yes All

m-sized

itemsets

need to

be pro-

tected

Greedy [132] Bottom-up Local

General-

ization

km-anonymity Identity Disclosure yes All m-

itemsets

are to be

protec-

ted

Anonymize [51] Top-Down Local

General-

ization

k-anonymity Identity Disclosure yes All

itemsets

need to

be pro-

tected

LRA [115] Bottom-up Local

General-

ization

km-anonymity Identity Disclosure yes All m-

itemsets

are to be

protec-

ted

mHgHs [70] Top-Down Global

General-

ization+

Suppres-

sion

km-anonymity Identity Disclosure yes All m-

itemsets

are to be

protec-

ted.

TDControl [12] Top-Down Global

General-

ization+

Suppres-

sion

ρ-uncertainty Sensitive Itemset Disclosure yes All

sensitive

asso-

ciation

rules

must be

protec-

ted.

COAT [73] Iterative Global

General-

ization+

Suppres-

sion

Privacy and utility specification Identity Disclosure no utility

require-

ments

specific-

ation

Table 2.4: Comparision of transaction data anonymization methods
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Figure 2.2: A example R-tree for k-anonymous data

ID Age Sex

1 21 F

2 22 F

3 35 F

4 36 M

5 45 M

6 55 M

Table 2.5: An example Dataset T

in depth-first manner, until no split is possible. Using such disk-based approaches

with high-speed disks may address the problem of anonymizing data larger than main

memory but these disk-based methods in general limit the performance of the method,

to the capabilities of current hardware technologies such as disk I/O speed. Also, the

use of resources will still be limited to the processing and storage capability of a single

machine. For example, accessing a large amount of data from disks frequently may

lead to a performance bottleneck. Therefore, dealing with increasing scale of data

using disk-based methods may not be promising in terms of scalability.

The use of sampling techniques have also been considered by some works [63, 65, 75].

Lefevre et al. [63] proposed the use of random sampling for scalable k-anonymization
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Figure 2.3: A example 2-anonymous data using Mondrian

of relational data. The method scans the input data and generates a random sample

that fits in the available memory and applies the Mondrian method to anonymize the

data. The sample is used to construct the partition tree by choosing the allowable splits.

For example, consider a sample of six records used to create a partition tree as shown

in Figure 2.3. The data sample is first partitioned vertically across the sex attribute

and then horizontally across the age attribute. This creates three different partitions

satisfying 2-anonymity. The partition tree created by the sample is used to anonymize

original data and any splits violating the privacy constraints are undone. Most closely

related to our work is the sampling-based method proposed by Loukides et al. [75]

to anonymize transaction data. The algorithm uses top-down specialization. It selects

a random sample of pre-determined size. Starting with all the items mapped to the

most generalized item, it recursively performs specializations until no specialization

can be made without violating any privacy constraint. Each time, a specialization

operation is performed, the privacy constraints are checked using the sample. The

set of generalizations acquired using the sample are then revised using the top-down

and bottom-up cut-revision phases. The top-down revision phase further attempts to

specialize the generalized items in order to find a solution with same privacy level

but better utility. The bottom up cut-revision phase ensures the privacy protection
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by generalizing the items further, if the anonymized solution found using the sample

does not give the required privacy protection for the whole dataset. Although the above

approaches solve the problem of the limitations put by disk-based methods, the privacy

and utility achieved by the anonymized solution using the sample may not guarantee

the same level of privacy and utility for the original data. Therefore, the anonymized

solution may need to be revised using the whole dataset.

2.3 Possible Choices for Parallelization

There are two important aspects of a parallel system: an algorithm for carrying out

the computation in parallel and the parallel model used for its design. The choice of a

parallel model affects the way the parallel algorithms are designed and help determines

their different characteristics such as parallelism overhead, degree of parallelism etc.

According to the existing work [104, 106, 11], a parallel model must be general enough

to model a range of physical architectures. This makes the parallel solutions portable to

various architectures. The cost of the algorithms estimated using a parallel model must

not differ too much from its cost in practice on the targeted physical architectures. The

model must also be manageable. That is, it must abstract the details such as parallelism,

communication, synchronization etc.

Several parallel architectures exist [11, 66, 130] supported by different parallel models.

Based on characteristics such as the instructions and the data processing patterns, Flyyn

[32] broadly classified these architectures into four categories: SISD (Single Instruc-

tion, Single Data Stream), SIMD (Single Instruction, Multiple Data Stream), MISD

(Multiple Instruction, Single Data Stream) and MIMD (Multiple Instruction, Multiple

Data Stream). Two important families of these parallel architectures suitable to our

problem of large-scale data processing are SIMD and MIMD. For example, a cluster

of workstations or massive parallel processor allows the use of multiple processors

to perform large-scale computations in parallel. Below, we survey some important
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parallel models supported by these classes of physical architectures and analyse their

characteristics.

2.3.1 PRAM

Fortune and Wyllie [33] proposed PRAM (Parallel Random Access Machine), a paral-

lel extension of the random access machine model. It consists of an unbounded number

of processors, each with its own local set of registers. All the processors are connected

to an unbounded global memory, shared among the processors via which they commu-

nicate. A PRAM processing cycle consists of a number of time steps. During a unit

time step, each processor may read any data from global memory into its local register

set, perform any computations over the data stored in its local registers and write any

data to the shared memory.

Although the model is simple to adopt and had led itself to be a widely accepted re-

search tool, as evidenced by a number of solutions designed based on it [59], the model

is based on some unrealistic assumptions and neglects some practical issues. For ex-

ample, the cost of a PRAM algorithm assumes that cost incurred by a processor to

access its local registers and the cost to perform inter-processor communication is the

same. All processors are also assumed to work synchronously. Therefore, the perform-

ance of the parallel solutions in practice may be far worse than estimated at the time of

their design [41, 20].

2.3.2 BSP

Valient [121] proposed the BSP (Barrier Synchronous Parallel) model, in an attempt to

overcome the unrealistic assumptions made by PRAM about the physical characterist-

ics of the underlying architecture. The model assumes the use of two-level memory:

local and global. It also differentiates the costs associated with accessing local memory

and global memory. A BSP system consists of a number of components, each of which
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is assumed to have a processor and a local memory associated with it. All the compon-

ents are assumed to be connected to all other processors via some means of point-to-

point communication.

The computation consists of a sequence of steps called supersteps. During a superstep,

each component performs its assigned tasks locally and any necessary communication

with other components. Every l time steps, a global check is made to determine if the

current superstep is completed by all the participating components. If all the tasks of

current superstep is finished, the components are synchronized and moved to the next

superstep. Otherwise, the system waits for another l time steps to allow the completion

of unfinished tasks of the current superstep.

The model takes into account the different characteristics related to parallel design

and the physical architecture used such as computational cost, communication and

synchronization cost, bandwidth inefficiency etc., so the estimated performance of the

parallel method on any given architectural settings is more predictable than PRAM.

The parallel programs written in different implementations of BSP are portable to vari-

ous architectures [105, 45]. However, the implementations of the model still require

specifications related to parallel execution such as synchronization etc.

2.3.3 MapReduce

Dean et al. [22] proposed MapReduce for large-scale data processing in parallel. It

simplifies the design of the scalable solutions for processing a large amount of data, by

hiding lower-level details of parallel execution such as fault-tolerance, load balancing

and synchronization.

MapReduce follows the client/server architecture. One of the machines works as a

master node which performs scheduling of tasks, coordinates the distribution of data to

the worker nodes and holds, all the book-keeping about the workers, jobs and the data.
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Each client node is assumed to have its own local memory and a global distributed

memory shared among all nodes.

Working Mechanism: A MapReduce computation consists of a number of MapRe-

duce rounds. Each MapReduce round consists of two computational stages called Map

and Reduce, intermediated by a communication stage called Shuffle. An schematic

representation of a typical MapReduce round is shown in Figure 2.4.

Figure 2.4: A schematic representation of a MapReduce round

The map/reduce computations take input and produce output as a set of key/value pairs.

The input and output are usually stored in a distributed file system [38]. A typical

MapReduce cluster consists of a single master node (computer) which schedules and

monitors different map/reduce data processing tasks over the slave nodes. Concep-

tually, a MapReduce round consists of map, shuffle and reduce phases, and can be

expressed as:

Map(k1, v1)→ list(k2, v2)

Reduce(k2, list(v2))→ list(k3, v3)

In the Map stage, the given data are logically partitioned into a number of disjoint sub-

sets and each subset is assigned to a mapper. The assignment of partitions to mappers
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is made dynamically and is determined at runtime. A mapper (in parallel to other map-

pers) reads a record in the form (k1, v1) from its assigned data partition, performs the

user-specified computation, and outputs another set list(k2, v2). If a mapper runs out

of memory at this stage, the part of output is temporarily moved to the local file system

(LFS).

The output pairs produced by mappers (intermediate output) go through a shuffle

phase. At this stage, each mapper locally performs the partitioning of its output. Given

r reducers, the key space of intermediate output is divided into r partitions in a way

each partition has almost an equal number of distinct keys. This is to ensure that the

amount of work associated with each partition is approximately the same. The parti-

tioning is usually done via a hash function h on a key k of each pair, i.e. h(k) mod r.

This ensures that the pairs with the same key from different mappers are assigned to a

single reducer. The partitioning strategy is based on the assumption that the amount of

work associated with each key of intermediate output is the same. Note that a mapper

output may not be local to its assigned reducer. In this case, shuffle also involves trans-

ferring mapper output to a reducer over the network. The shuffle phase starts as soon

as the first mapper finishes its processing, so it may overlap with the map phase.

A reducer ri acquires its assigned part of map output by copying the pairs (k2, v2) from

bi,j , an ith partition from the jth mapper (1 ≤ j ≤ M ), sorts all the assigned pairs

by their keys to construct (k2, list(v2)) and processes list(v2) for each distinct key k2

using a user-specified reduce function. The output produced by the reduce phase can

be the final output or can be input to another mapper in the next MapReduce round.

It is worth noting that there is an overhead for achieving parallelization in MapReduce.

This mostly consists of the cost of initializing a MapReduce job, I/O cost of reading

input and writing output by mappers and reducers during the map and reduce stages,

and the cost of shuffling mapper output over the network to reducers. It is also worth

observing that output produced by mappers is an input to reducers, which is transferred

via shuffle phase. Therefore, less the intermediate output produced by the map stage,
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the lower the cost of transferring it over the network will be and the lower the I/O cost

of writing intermediate output and reading input by the mappers and reducers will be.

The number of mappers and reducers must also be specified based on the available

resources. Setting them to a high value may result in a small amount of work for each

mapper or reducer, and the performance gain by parallel processing may be offset by

their setup cost. Setting them to a low value on the other hand, may result in ineffective

resource utilization.

Example 1. Consider a simple word count using MapReduce. A given text is divided

into M = 3 chunks and assigned to mappers. During the map stage, a mapper is

assigned a chunk of text. Each ith line of the assigned chunk is read in the form of a

pair 〈i, li〉, where li represents the contents of ith line in the partition. It then counts the

occurrences of each distinct word in li, and outputs 〈word, occurrencesj〉 for each dis-

tinct word. Once the lines are processed, the output pairs of each mapper are divided

into r = 2 partitions. For each map output pair 〈word, occurrencesj〉, it computes

h(word) mod r to decide to which of the two reducers the pair is sent to. The pairs

are then copied to their assigned reducers. A reducer sums up all local occurrencesj

(1 ≤ j ≤M ) of a word, and outputs the global count 〈word, occurence〉.

MapReduce and other Parallel Architectures: Mapreduce was originally designed

to run on a large cluster of commodity machines, but later was also adopted to other

parallel architectures. Some existing works [49, 108, 16] proposed a design and im-

plementation of MapReduce over graphics processing unit (GPU) clusters. Chen et

al. [17] attempted to scale up MapReduce applications by proposing a number of

work partitioning schemes which leverages both CPUs and GPUs to perform the given

computations in parallel. Karloff et al. [58] and Goodrich et al. [44] showed that

MapReduce can also be used to simulate PRAM and BSP models.

Unlike other parallel models such as BSP, MapReduce was not introduced with any

formal cost estimation formulation. Therefore, an analytical study taking into account

the characteristics of physical architecture and the given problem instance is needed to
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help predict the cost of a parallel solution.

2.4 MapReduce and Privacy Protection

The privacy protection using MapReduce has recently been considered. Some methods

allow the computations to be performed using MapReduce while controlling the access

to original data or the sensitive information therein. Roy et al. [102] proposed Air-

avat, a MapReduce-based system that ensures security and privacy guarantees, when

the distributed computations are performed over sensitive data stored in a cloud. The

system prevents the information leakage which might occur due to access available

to original data or output of the computation performed by the untrusted data users.

The privacy and security is achieved by enforcing access control policies over the data

access via system resources such as network connections or storage channels and by

also ensuring that the output of the computations are differentially private [26]. Zhang

et al. [136] studied the problem of performing MapReduce-based computations over

hybrid clouds. They adopted MapReduce to perform secure computations using the

non-sensitive data in public clouds and the sensitive data in private clouds. They pro-

posed Sediac, a MapReduce-based system which partitions a computing job according

to the required privacy level. The tasks performing computations over public data are

scheduled on a public cloud and those processing private data always stay on a private

cloud. A two-stage process is used to aggregate the results. In the first stage, the public

and private clouds individually perform their local aggregation. The aggregated res-

ults from public clouds are then brought to private cloud for final aggregation. The

use of cryptographic methods to perform information-retrieval operations in a privacy-

preserving way using MapReduce has also been considered. Blass et al. [7] proposed a

MapReduce-based privacy-preserving method to search words from the data stored in

public clouds in encrypted form. During the map stage, each node performs the search

over encrypted data using an instance of private information retrieval method on its

assigned data partition. The intermediate search results are aggregated by the reduce
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phase. Mayberry et al. [78] proposed a MapReduce-based solution to the problem of

protecting the privacy of cloud users from untrusted cloud providers. More specific-

ally, they proposed a method to protect the information leakage about the data access

patterns of cloud users. Given n files stored in a cloud, their MapReduce-based imple-

mentation of a private information retrieval protocol allows an encrypted query to be

performed over distributed data in a way that the information about which files were

accessed is not disclosed to the cloud provider. All these privacy-preserving meth-

ods focus on the privacy and security concerning data sharing over clouds rather than

focusing on achieving scalability. These methods also make different privacy assump-

tions and can not be adopted to our scenario. For example, adopting the access control

method will need to limit the access of data to trusted users and is orthogonal to our

scenario of releasing data to untrusted recipients.

Leveraging MapReduce to address scalability issues in privacy-preserving methods

has also recently been investigated. Zhang et al. [137] proposed a MapReduce-based

local recoding method to k-anonymize the data to prevent proximity privacy attacks

[127], which happens when the sensitive values in an anonymized group are not di-

verse enough. The proposed method uses clustering and consists of two phases. The

first phase uses a method similar to Lloyd’s k-means clustering [71] and partitions data-

set into a pre-defined number of partitions so that records with similar non-sensitive at-

tribute values and contain semantically distant sensitive values are placed in the same

partition. During the second stage, each partition is assigned to a worker node, which

then uses complete linkage agglomerative clustering to produce groups of records, each

of size at least k. The non-sensitive attribute values in each group are replaced by their

most generalized representation in the group. The groups from all the worker nodes are

finally combined to form the anonymized dataset. Since the partitioning is made based

on the data distribution, the created partitions may not be balanced in the associated

workload.

More closely related to our work are the MapReduce-based top-down [139] and bottom-
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up [138] methods to achieve k-anonymity. The top-down specialization method pro-

posed by Zhang et al. [139] partitions data into a number of partitions by randomly

assigning records to the partitions. All partitions are then anonymized in parallel. Each

partition is anonymized by a number of worker nodes using a MapReduce-based top-

down specialization job. To ensure that all the data partitions achieve the same level

of anonymization, the algorithm merges all the generalization cuts into a single most

generalized cut, by choosing the most generalized representation of an attribute value

used in any of the data partitions. Zhang et al. [138] proposed a MapReduce-based im-

plementation of bottom-up generalization method. Starting from the original attribute

values, the algorithm iteratively finds the best generalization and updates the anonym-

ized dataset accordingly, until all the generalizations occur in no less than k records. To

find the best generalization candidate, the algorithm scans the dataset and collects the

required statistics in a single MapReduce round. Similar to our method, the algorithm

performs all the computations requiring full data scan in parallel and keeps the updated

anonymization level which is used to construct the anonymized dataset in the end us-

ing single MapReduce round. But this may lead to poor performance, as evidenced

by our preliminary experiments (Section 4.4). Also, all the methods are for relational

data so do not take into account the characteristics of transaction data. Furthermore,

these method also achieve k-anonymity. Unlike k-anonymity however, the models for

protecting sensitive information disclosure do not have the property of monotonicity.

That is, achieving the required protection on individual data partitions may not guar-

antee the same or higher protection level on the overall dataset. So such methods can

not trivially be extended to achieve the protection against both types of disclosure.

2.5 Other applications of MapReduce

MapReduce has been adopted to address scalable data processing in various applica-

tions [67, 99, 94, 29]. Despite its wide-spread adoption, its simplicity introduces some

limitations in the way the processing must be performed. This often causes degraded
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performance to an unacceptable level when performing various processing tasks [23].

In the following, we highlight some of these limitation and describe possible solutions

in the light of existing applications.

Load balancing: In order to achieve the effective resource utilization, workload

balance among processing nodes is important. In MapReduce, the parallel tasks are

performed at both the map and reduce stages. These tasks are created by partitioning

input data at the map and reduce stages respectively. Therefore, workload balancing

must be done at both stages.

Existing methods employ different load balancing strategies. Okcan et al. [89] pro-

posed a randomized method to map an arbitrary join condition to MapReduce with the

goal of balancing workload among reducers. Given two datasets S and T to join based

on an arbitrary condition θ, the algorithm first constructs a |S| × |T | matrix, with an

entry Mi,j set to true if the ith record (1 ≤ i ≤ |S|) of S and jth record (1 ≤ j ≤ |T |)

of T satisfies θ condition. The records corresponding to the entries satisfying the con-

dition are then mapped to reducers in a way that all reducers get an equal number of

records. Finally, the reducers generate output pairs of the joined records. Vernica et

al. [123] studied the problem of finding similar pairs of records from a dataset using

MapReduce. The method first reads the input records in parallel and produces a list

of tokens (words) that appear in the join-attribute value ordered in ascending order of

their frequency. The map stage of the second stage orders the tokens of each record in

ascending order of their global frequency using the frequency list created in the pre-

vious stage and creates a prefix of size k. For example, consider an ordered record

{call, back, I, will} with the token call appearing least frequently in the given dataset.

The prefix of size 2 is {call, back}. The records with at least one common token in

their prefixes are sent to the same reducer to perform the join operation. Using the

least frequent tokens of records as their prefixes will eliminate the skew which could

have arisen due to the presence of frequent tokens. This results in workload balance

among reducers.
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Communication among processing nodes: MapReduce provides limited commu-

nication among processing nodes. At each MapReduce round, the processing nodes

are not allowed to communicate with each other during the map and reduce stages ex-

cept at the shuffle stage. That is, when a processing node finishes its assigned map

tasks, the map output is sent to the reduce tasks for further processing.

The lack of communication among the nodes may cause a large amount of data to

be shuffled to the nodes and hence may result in high shuffle cost. Existing works

attempted to reduce the communication cost by collecting some statistics from given

data and creating independent data partitions based on such collected statistics. Li et

al. [67] proposed PFP, an adaptation of the FP-Growth method for association rule

mining [48]. They proposed a method to partition a given dataset into a number of

subsets so that each subset can be processed independently and the amount of data

to be communicated among the processing nodes is minimized. The algorithm first

computes the support of all distinct items of the given dataset D to find the set of

frequent items. At this stage, the algorithm also discovers the universe of items I . I is

then divided into G groups using a single machine. The list of all the groups and a data

partitionDj is assigned to a mapper. The mapper then creates a pair containing a group

identifier and a list of all the dependent records in Dj for each group. At the reduce

stage, a reducer is assigned a group and receives all dependent transactions from the

map stage. It then builds the local FP-tree and the conditional FP-tree recursively by

computing the frequent itemsets. The top-K most supported locally found patterns are

emitted by each reducer and are used to construct a list of globally frequent itemsets.

However, creating the independent data partitions may also require to replicate some

data to more than one node which may increase the memory requirement on each

processing node. Data elimination is another way to reduce the communication cost.

Park et al. [96] proposed a MapReduce-based method to perform skyline processing

from large data volumes. The method first uses a data sample to construct a histogram

called sky-quadtree. The leaf nodes of the quadtree with non-skyline sample points

only are marked as pruned. The unpruned regions are used to partition the whole
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dataset into regions and each region is mapped to a processing node for local skyline

computation. The local computation results are sent to a single machine for global

skyline output.

Another challenge is to perform global computations. For example, finding a max-

imum value globally from locally found maximum values may require to perform a

part of the computation serially. This limits parallelism. Mullesgaard et al. [83] pro-

posed a method to compute global skyline results without limiting the number of pro-

cessing nodes to one only. Their method divides the given data space into parts. The

partitions are mapped to different slave machines for local skyline computation. The

locally found skyline results are then grouped together in a way that each record and

its possible set of dominating records are grouped together. The groups are mapped

to different processing nodes and each processing node computes a part of the global

skyline.

Iterative processing: In MapReduce, each round is considered as separate. That is,

no data is kept between two MapReduce rounds. Setting up each MapReduce round

incurs parallelism overhead including the cost of setting up tasks on processing nodes

and reading data associated with the tasks. Algorithms designed to employ a large

number of MapReduce rounds may not be scalable and efficient, due to large paral-

lelism overhead. Recent algorithmic formalizations of MapReduce have also focused

primarily on optimizing the number of rounds used to solve a problem [58, 30]. Unfor-

tunately many applications exist where the number of required iterations is a function

of some characteristics of the given input such as size or distribution of certain val-

ues, and they are not directly supported by the framework and can cause considerable

performance overheads. Some examples of such applications are K-means [77], de-

terministic annealing clustering [101], and Pagerank [8].

One way to address this problem is to modify the MapReduce paradigm. Some exist-

ing variants [54, 133] generalize the data flow model supported by MapReduce. For

example, Dryad [54] proposed computation to be specified as a directed multigraph
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with nodes representing the processes and the edges representing the communication

channels among them. Map-Reduce-Merge [133] extends the existing map-reduce by

adding the merge step which can merge the output of two different MapReduce rounds

without setting up an extra MapReduce round. These generalized frameworks support

more complicated data flow patterns, but still require computations to be specified as a

directed acyclic graph.

Some other existing works [9, 27, 135] focus on addressing the problem of efficiently

supporting iterative methods, and proposed some other variations of the framework.

Ekanayake et al. [27] and Bu et al. [9] proposed to avoid reading unnecessary data

repeatedly from distributed storage, by identifying invariant data and keeping them

locally over iterations. Twister [27] also attempted to reduce parallelism overhead by

initializing mappers and reducers once in the beginning and pushing the map outputs

directly over the network to reducers instead of materializing them locally. Haloop

[9] caches and indexes the invariant reduce input and output across all reducers, in

order to reduce the shuffling cost and the cost of setting up a separate MapReduce job

to evaluate the termination condition. Spark [135] allows to keep the data partitions

in the memory of the worker nodes across different iterations, and also facilitates the

use of shared variables to distribute the read-only data and accumulate the information

from worker nodes.

However, these variations assume that most of the data remain static between iterations.

Iterations of some methods such as RBAT do not satisfy this requirement. Furthermore,

these variations also limit some features of the standard MapReduce framework. For

example, forcing the data to remain locally on fixed nodes means that the tasks in-

volving such data cannot be scheduled to be processed on multiple computing nodes

which may result in poor performance of the applications, especially over heterogen-

eous clusters. Also, some variations of MapReduce such as Spark [135] only supports

reduction of map output locally in the worker nodes (analogous to combiner in MapRe-

duce), but final reduction of all map output is only allowed to be done by a single node.
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This means that not all the resources are utilized at the reduce phase. Also, this may

not be scalable when the output of the map stage can not fit into the memory of a single

node.

Existing methods also attempted to use design-side strategies to reduce the number

of iterations. Ene et al. [29] used MapReduce for k-median and k-center clustering

of large datasets. The algorithm takes a constant number of MapReduce rounds to

construct a well-represented sample from the given dataset. At each round, the points

not represented by the sample are read in parallel, and the sample size is increased by

adding the points with a certain probability. All the sampled points, along with their

pairwise distances and any additional statistics from the given dataset (which is also

computed in parallel), are mapped to a single machine to run an instance of the sequen-

tial k-median or k-center clustering method. Riondato et al. [99] proposed PARMA, a

MapReduce-based approximation method for association rule mining. The algorithm

takes two MapReduce rounds. During the first MapReduce round, the given dataset is

scanned to create N random samples, which are mined independently by the reducers,

each using an instance of a sequential pattern mining method. The results created by

the samples in the previous phase are aggregated to obtain an ε-approximation of the

exact output with the probability 1− δ, where ε and δ are pre-defined parameters. The

use of sampling may reduce the number of MapReduce rounds employed, but this may

be at the cost of some loss of quality or accuracy in the output. Panda et al. [93] adop-

ted MapReduce to construct a part of the regression tree from large training data. The

algorithm is based on an existing top-down method [24]. At the root node of the tree,

the algorithm requires examining the entire training dataset, in order to find the best

split predicate which is used to partition the data. The process is recursively repeated

until the stop criteria is met. The tree constructed so far is maintained in a distributed

cache and the nodes to be considered for further splitting are maintained in two queues

held in the memory of master node. One of the queues holds the nodes to be split se-

quentially. The splits of such nodes are performed in the memory of a single machine.

The second queue holds the remaining nodes. The algorithm reads the entire training
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dataset in parallel, and finds a set of good splits for these nodes. For each node, the

locally chosen set of splits, along with some statistics is collected centrally on single

machine, which aggregates the computations and outputs the best split.

Despite the focus on the problem of iterative computations (as evidenced by the work

surveyed here), scalability to large datasets in some iterative applications can still be

achieved by direct implementation of the sequential methods in MapReduce. These

methods keep the processing logic from their sequential counterpart. Verma et al.

[122] proposed a MapReduce-based method to make the selecto-recombinative ge-

netic algorithms [43] scalable to large datasets. Starting with initializing a population

with random individuals in a single MapReduce round, the algorithm iteratively creates

new populations by selecting and combining a set of individuals from the current pop-

ulation, until some convergence criteria is met. Each iteration is performed in a single

MapReduce round. During the map stage, the mappers compute the fitness value of

individuals in the current population, and shuffle the output to a randomly selected

reducer. A reducer (in parallel with other reducers) creates new individuals from a

given set of individuals by sections-and-recombination. Papadimitriou et al. [94] pro-

posed DISCO, an iterative distributed co-clustering method using MapReduce. The al-

gorithm alternatively performs row or column-wise scan of the given matrix, assigning

each row (or column) a group label to minimize the overall error. Each scan is per-

formed using a single MapReduce round. During the map stage, a mapper reads a row,

assigns a group label, and computes the associated per column statistics for that row.

The rows with the same group label are sent to the same reducer which merges them

into a single cluster and the associated statistics is aggregated for each group. Each it-

eration is followed by a global synchronization of the group matrix and a column-wise

data scan, which is also performed in the same way as row-wise scan, but on the trans-

posed matrix. This continues until the error does not decrease between two consecutive

iterations. McNabb et al. [79] proposed MRPSO, a MapReduce-based implementa-

tion of particle swarm optimization. Starting with initializing a set of particles (points)

with some random positions and velocities, the algorithm iteratively attempts to find
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the best possible position and velocity of each particle, with the goal to optimize some

given function. At each iteration, the mapper takes individual particles, computes their

new position and velocity, and also evaluates the input function to ensure that its local

best so far is updated. The updated state for the particle is shuffled to all its dependent

particles, which is then used by the reducers to update the global best in the neighbour-

hood of each particle. These methods highlight the fact that MapReduce can be used

for scalable computation from large datasets without sacrificing the quality or accuracy

of output results.

2.6 Summary

In this chapter, we reviewed the existing work relevant to our study of large transaction

data anonymization. We surveyed different models and privacy techniques used for

data anonymization. We discussed different generalization-based methods for transac-

tion data anonymization and compared them in terms of their ability to offer privacy

protection and retain data utility. We have seen that set-based global generalization

methods prevent one or both types of disclosures without significantly compromising

data utility. But all these methods search the solution space in an iterative manner.

We also surveyed the existing non-parallel attempts to address the problem of scalable

data anonymization. We have seen that techniques such as sampling or indexing are

not sufficient to deal with increasing data volumes and may compromise the privacy

and utility of anonymized data.

We also have studied different parallel models and discussed their features. We have

seen that MapReduce provides certain features such as abstraction to parallel execution

details and has been applied to address the problem of scalability in various domains.

Some recent studies have also focused on the scalability issue of privacy-preserving

methods but the problem of scalable transaction data anonymization still need to ad-

dressed.
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We also surveyed other applications of MapReduce for scalable computations and stud-

ied some limitations of the paradigm. We have seen that MapReduce allows limited

communication among processing nodes. Performing iterative computations may in-

cur large parallelism overhead and have been addressed in different ways. We have

seen that adopting modifications of MapReduce to address these limitation will limit

certain features provided by the framework. Therefore, these must be considered when

designing parallel solutions using MapReduce. In the next chapter, we study how

MapReduce can be used to parallelize RBAT, a set-based generalization method and

discuss different issues to be considered for our parallel solution.
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Chapter 3

RBAT and MapReduce

In this chapter, we study how MapReduce can be used to make set-based generalization

methods scalable to large data volumes without affecting the level of privacy and utility

they offer. More specifically, we formulate a MapReduce parallelization of RBAT.

Section 3.1 provides some important notations and concepts, and formally defines our

problem. We give an overview of RBAT in Section 3.2. Section ?? presents a brief

overview of how MapReduce works. Finally, Section 3.3 gives a general framework

to consider possible ways of parallelizing RBAT in MapReduce, and discusses the

important issues around these possible solutions.

3.1 Preliminaries and Problem Definition

Let I = {i1, · · · , i|I|} be a finite set of literals called items. Let |I| be the size of I . A

transaction t = 〈im, . . . , in〉 is a record where each ij (1 ≤ j ≤ |I|) is a distinct item of

I . A transaction dataset D = {t1, . . . , t|D|} is a collection of transaction records over

I . Any subset λ ⊂ I is called an itemset over I . The frequency of an itemset is called

its support in a given dataset.

Definition 1. (Support) Given an itemset λ, its supporting transactions in D are the

transactions containing all items of λ and the number of such transactions, denoted by
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σD(λ), is called its support. i.e. σD(λ) = |{t ∈ D ∧ λ ⊂ t}|.

Table 3.1 shows an example transaction dataset. 〈b, c, e,g,h〉 is an example trans-

action, where boldface indicates sensitive items. (b, c) is an itemset, and its support

σD(b, c) = 1 with the first transaction being its supporting transaction.

Patient Diagnosis Codes

Alice b, c, e, g, h

Bob a, c, d, i, j

Tom a, f, l

Jim b, e, g, h

Jerry d, f, l

Table 3.1: An example dataset D

We partition I into two disjoint subsets P and S such that P ∪ S = I and P ∩ S = ∅,

and represent their size by |P | and |S| respectively. S contains items that represent the

sensitive information about the associated individuals who need to be protected, and P

contains all other items called public items. We assume that S needs to be published

intact, since it is often required by applications [132] and that an attacker may have

knowledge about individuals in the form P . Also, each transaction record is assumed

to contain one or more items from P and as well as from S.

The background knowledge of an adversary is considered to be in the form of an item-

set. When the itemset has support below a certain threshold k then the adversary may

be able to use the itemset to associate an individual to his transaction with the prob-

ability higher than 1
k
, thereby breaching privacy. For example, consider the dataset D

shown in Table 3.1. Assuming that D is de-identified (i.e. not containing patients’

names). If an adversary knows that Bob was diagnosed with a and c, he will be able

to uniquely associate Bob with his transaction, and hence can infer that Bob was also

diagnosed with i and j. To protect this, PS-rules must be specified [72].
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Definition 2. (PS-rule) Given two itemsets p ⊆ P and s ⊆ S, a PS-rule is an implica-

tion of the form p→ s.

Each PS-rule captures an association between a public and a sensitive itemset. The

antecedent and consequent of each rule can consist of any public and sensitive items

respectively and many PS-rules can be specified by data publishers to capture detailed

privacy requirements. A published transaction dataset is deemed to be protected if the

specified PS-rules are protected.

Definition 3. (Protection of PS-rule) Given a dataset D, the parameters k ∈ [2, |D|]

and c ∈ [0, 1], a PS-rule p → s is protected in D if 1) σD(p) ≥ k and 2) Conf(p →

s) ≤ c where Conf is defined as σD(p∪s)
σD(p)

.

Condition 1 protects data against identity disclosure by ensuring that the probability of

associating an individual to his or her transaction in D using the antecedent of any PS-

rule is no more than 1/k. Condition 2 prevents sensitive item disclosure by ensuring

that the probability of linking an individual to a set of sensitive items specified by

the consequent of a PS-rule is at most c, given that the probability of associating an

individual to his or her transaction using the rule’s antecedent is no more than 1/k.

Diagnosis Codes

(a,b,c,d,e,f), g, h

(a,b,c,d,e,f), i, j

(a,b,c,d,e,f), l

(a,b,c,d,e,f), g, h

(a,b,c,d,e,f), l

Table 3.2: The most generalized dataset D̃

Given a set of transactions D and a set of PS-rules Θ, if any rule in Θ is not protected,

then D must be sanitized. We sanitize data, using a set-based generalization approach.
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The set-based generalization maps a combination of original items to a itemset con-

sisting of all these items.

Definition 4. (Set-based Generalization) Let P̃ be a partition of P . Set-based gener-

alization is a function φ : P → P̃ which maps each item i ∈ P to a generalized item

ĩ ∈ P̃ containing i.

Note that using set-based generalization, an item can not be mapped to an empty set.

Hence, each item i ∈ P is generalized to (i1, · · · , in) (1 ≤ n ≤ |P |). We use the

brackets to represent a generalized item. When i = φ(i), the item is mapped to its

original representation. In such cases, we simply drop the brackets.

Set-based generalization retains data utility better than other generalization methods

[87, 73, 75] due to their ability to represent a large number of possible generalizations.

Example 2. Suppose that we require k = 3 and c = 0.6. PS-rule ac → h is not

protected in D as ac has a support of 1 only. But ac → h is protected in D̃ given

in Table 3.2 where all public items {a, b, c, d, e, f} are mapped to (a, b, c, d, e, f) fol-

lowing the generalization, since ac is now supported by all transactions records and

Conf(ac→ h) = 0.5.

Privacy preservation is one aspect of anonymization. The other aspect is to retain the

utility of data. There can be many possible generalizations of a dataset, offering the

same level of privacy protection but the one which has minimum loss of information is

preferred. Different utility measures have been proposed to capture the loss of inform-

ation incurred by generalization. Some of them assume that the usage of published

data is known at the time of anonymization. For example, multiple-level mining loss

measure expresses the information loss in the detection of multi-level frequent item-

sets [115], when mining is performed on an anonymized dataset instead of the original

one. Classification Metric [57] assumes that the purpose of published data is to train a

classifier. Other general-purpose utility loss measures have also been proposed. Nor-

malized Certainty Penalty [131] penalizes the generalized data based on the number
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of its descendant nodes in a given generalization hierarchy. Generalized loss measure

[56] computes the information loss as the sum of the ratio of the number of leaf nodes

under a sub-tree rooted at each generalized node, to the total number of leaf nodes in

the generalization hierarchy. RBAT uses the Utility Loss (UL) measure [73], which

can be applied in the absence of a generalized hierarchy.

Definition 5. (Utility Loss) Given a generalized dataset D̃, the utility loss of a single

generalized item ĩ is given by UL(̃i) = 2|̃i|−1
2|P |−1

× w(̃i) × σD̃ (̃i). The utility loss of the

whole dataset D̃ is calculated as UL(D̃) =
∑
∀ĩ∈P̃ UL(̃i).

The UL measure given in Definition 5 captures the loss of information in terms of the

size of the generalized itemset, its significance (weight) and its support in D̃. The more

items are generalized together, the more uncertain we are about its original represent-

ation, hence more utility loss. w(̃i) assigns some penalty based on the importance of

the items in ĩ. The support of the generalized item also affects the utility of anonym-

ized data. The more frequent the generalized item is, the more distortion to the whole

dataset will be.

3.1.1 Problem Statement

Privacy-preservation has two goals: achieving a required level of protection and re-

taining the data utility as much as possible. More formally, given a transaction dataset

D with a set P of public items, a set of PS-rules Θ, and the support and confidence

parameters k and c, find the generalization P̃ of all the items in P using set-based gen-

eralization so that the anonymized form D̃ of D, constructed by replacing P with P̃ in

D satisfies the following condition:

1. Each PS-rule of Θ is protected in D̃

2. UL(D̃)−UL(D) is minimum, where UL(D̃) and UL(D) are calculated accord-

ing to Definition 5.
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Algorithm 3.1: RBAT (D, Θ, ĩ, k,c)

Input: Original dataset D, set of PS-rules Θ, minimum support k and maximum con-

fidence c.

Output: Anonymized dataset D̃

1: Q.enqueue(̃i)

2: while |Q| > 0 do

3: ĩ← Q.dequeue()

4: {il, ir} ← Split(̃i)

5: D′ ← Update(ĩl, ĩr, ĩ, D̃, D)

6: if Check(D′, Θ, k,c) = true then

7: Q.enqueue(ĩl)

8: Q.enqueue(ĩr)

9: D̃ ← D′

10: return D̃

Loukides et al. [75] showed that finding an optimal anonymized solution, satisfying

the above conditions is NP-hard. Also, the solution may not exist in some cases. For

example, if there exists a rule P → S ∈ Θ for which σD(P ∪ S) > |D| × c. We

consider how to achieve scalability, while maintaining the required level of privacy

and minimum possible loss of utility.

3.2 Overview of RBAT

RBAT [72] is a heuristic method for anonymizing transaction data using set-based

generalization. It allows detailed privacy constraints to be specified as a set of PS-

rules. The pseudocode of RBAT is given in Algorithm 3.1.

RBAT is iterative and works in a top-down fashion. Starting with all public items

mapped to a single most generalized item ĩ and D̃ containing the original transactions
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with all public items replaced by ĩ, each iteration involves replacing a generalized item

ĩ with two less generalized items ĩl and ĩr. RBAT does that greedily by maximizing

UL(̃i)−(UL(ĩl)+UL(ĩr)). To find less generalized items of ĩ, each iteration performs

three main steps as follows.

Step 1 (Finding a Specialization): RBAT uses a two-step heuristic to split ĩ into two

disjoint subsets (step 4). The first step finds a pair of items from ĩ that incur maximum

UL when generalized together. The pair is used to initialize two subsets. The second

step iterates over the remaining items of ĩ, generalizing each item with the items of

either subset based on which generalization incurs less information loss.

Step 2 (Data Specialization): After the split, the dataset is updated to take the effect

of specialization (step 5). Given that ĩ is split into ĩl and ĩr, the algorithm creates a

temporary dataset D′ which is a copy of the current anonymized data D̃ but with all

occurrences of ĩ replaced by either ĩl or ĩr.

Step 3 (Checking for Privacy Protection): Finally, the check phase (step 6) ensures

that current specialization does not compromise the required privacy level. It checks

the protection of all PS-rules and returns true if all PS-rules are protected in D′, in

which case D′ is copied to D̃ and the items ĩl, ĩr are enqueued to be considered for

further split (steps 7-9). If check returns false, then the current split is discarded and ĩ

is not considered for further split.

The algorithm continues the above three main steps until Q contains no generalized

items to be considered for further split and returns D̃ in the end (step 12). This top-

down specialization process constructs a binary tree called Split-Tree with root rep-

resenting the most generalized item and the set of leaf nodes called Split-Cut. The

generalized items represented by a Split-cut can not be specialized further without vi-

olating any privacy constraints.

Example 3. Consider the anonymization of the transaction dataset shown in Table 3.1

with k = 3, c = 0.6 and a set of PS-rules Θ = {be → gh, f → l}. Initially, all the
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public items inD are generalized to a single most generalized item ĩ = (a, b, c, d, e, f).

The generalized dataset D̃ produced at this stage is shown in Table 3.2.

The split phase attempts greedily to find two more specific representations of ĩ =

(a, b, c, d, e, f) in order to minimize UL. Since 〈a, e〉 is the pair in ĩ incurring max-

imum information loss when generalizing together, the algorithm uses it as seeds to

initialize two subsets. The remaining items {b, c, d, f} are iterated by the method in

the same sequence as they appear in ĩ, and each item is generalized to either of the

subsets depending on which generalization incurs less information loss. This results in

two specialized items i.e. ĩl = (a, b, f) and ĩr = (c, d, e) being returned.

To ensure that the current split gives the required privacy level, a temporary dataset

D′ is created. D′ contains a copy of D̃ with ĩ replaced by ĩl and ĩr. That is, a, b and

f are replaced by ĩl = (a, b, f) where as c, d and e are replaced by ĩr = (c, d, e).

D′ is then used in the check phase. The check phase returns true, since φ(b)φ(e) =

(a, b, f)(c, d, e) and φ(f) are supported by more than k = 3 transactions in D′ and the

confidence Conf(be → gh) = 0.5 and Conf(f → l) = 0.5 is also not greater than

c = 0.6.

Figure 3.1: An example Split-Tree

After the check phase returns true, the generalized dataset D̃ and P̃ are updated. That

is, D̃ is updated to contain the dataset as shown in Table 3.3 and P̃ is updated by

replacing ĩ = (a, b, c, d, e, f) with ĩl = (a, b, f) and ĩr = (c, d, e). The split-update-

check iteration is repeated for the (a, b, f) and (c, d, e). Let splitting ĩl = (a, b, f)

and ĩr = (c, d, e) result in {(a, f), (b)} and {(c, d), (e)} respectively. Note that items

b and e are generalized to themselves. Now, the PS-rule be → gh is supported by 2
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transaction records, and hence will not remain protected after specializing ĩl and ĩr

further. Therefore, the algorithm return D̃ (Table 3.3). The Split-Tree of the anonym-

ization process is shown in Figure 3.1 with root representing the most generalized

item i.e. (a, b, c, d, e, f) and the Split-Cut containing the current set of mappings i.e.

{(a, b, f), (c, d, e)}.

Diagnosis Codes

(a,b,f), (c,d,e), g, h

(a,b,f), (c,d,e), i, j

(a,b,f), l

(a,b,f), (c,d,e), g, h

(c,d,e), (a,b,f), l

Table 3.3: An anonymized dataset D̃

3.3 Parallel Design of RBAT using MapReduce

There can be different ways to parallelize RBAT. Our goal is to achieve scalability

for large problem instances, but this must not be at the cost of high utility loss and

the loss of privacy level provided by RBAT. Therefore, we consider the solutions that

preserve the three key (iterative) steps of the heuristics used by RBAT. Figure 3.2 gives

a general framework for parallelization of the split, update and check phases of RBAT

using MapReduce.

As shown by Figure 3.2, the parallel solution is iterative. Each iteration consists of a

number of MapReduce rounds and performs the operations of split, update and check

in parallel. We consider parallelizing these steps by partitioning the inputs to RBAT

and performing computations on them in parallel.

There are different inputs to RBAT which may be considered for parallelization. Since
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Figure 3.2: A general framework for MapReduce-based design of RBAT

MapReduce assumes that the input considered for partitioning comes from a single

source, partitioning more than inputs is not supported by the model [23]. One way is to

partition the transactions only. This will allow the algorithm to deal with large data an-

onymization but partitioning transactions only will not be sufficient. Some operations

of the algorithm may not require to perform computations on D and therefore parti-

tioning D will not introduce any parallelism in such operations. For example, PS-rules

are checked using a temporary anonymized version D′ of D. Another reason is that

the method may not be able to deal with a large domain of items and a large number of

privacy constraints.

Another input to consider for partitioning is PS-rules. When anonymizing a transaction

dataset, each specialization may require a large number of PS-rules to be checked at

each iteration. So partitioning PS-rules may also be considered in our parallel design.

This will allow the algorithm to deal with large privacy constraints. Assuming that each

machine will have access to the whole dataset, the rule checking can be performed
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locally on each machine and there will be no shuffle cost. However, this will limit

parallelization to the check phase only because the split phase does not have PS-rules

as input. Such partitioning may not also allow to deal with large datasets because each

machine will require access to the whole dataset.

Transaction datasets can consist of a large domain of items. For example, some of the

real-world datasets such as the dataset released by AOL contained 10, 154, 742 unique

search queries and the records of 657, 426 users [97]. So partitioningD may not reduce

the overall memory requirement. For example, consider the first split when ĩ = P and

assume that D is partitioned. Finding a pair with maximum UL will require memory

at O(P 2). Therefore, partitioning the domain of items may also need to be considered.

Preserving the key steps of RBAT in its parallel design is also challenging due to lim-

itations of MapReduce (discussed in the previous chapter). In RBAT, these key steps

are performed in sequence repetitively. That is, each split-update-check iteration re-

quires more than one MapReduce round. Therefore, the parallelism overhead incurred

by each iteration may be high. Also, most of the operations of RBAT require a global

view of data. If the partitioning is not made carefully, high communication cost may

be incurred. For example, if each mapper requires to shuffle most of the transaction

records to the reduce stage, the communication cost of the MapReduce round will be

high especially when the size of the dataset is very large.

In Chapters 4 and 5, we further discuss these issues in detail and will attempt to address

them in our parallel design.

3.4 Summary

In this chapter, we discussed the concepts important to understanding our solution in

the following chapters. We presented a general framework to understand the design our

parallel method, and discussed different ways to perform partitioning and MapReduce

operations. Our discussion showed that uniformly partitioning one input only through
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all MapReduce-based anonymization operations (e.g. partitioning only Θ, domain of

items or D) may not lead to a scalable solution for all problem instances. Preserving

the key steps of RBAT and their sequence in its MapReduce-based parallelization may

also cause a large amount of parallelism overhead. Therefore, a more careful way to

parallelize RBAT is required. In the next two chapters, we analyse these issues in detail

and will discuss the solutions to address them in our parallel design.
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Chapter 4

Direct Parallelization of RBAT

In this chapter, we describe our first attempt to parallelize RBAT into a sequence of

MapReduce operations. We focus on the partitioning of input in order to make RBAT

scalable to large problem instances.

As discussed in the previous chapter, there are different partitioning strategies that can

be considered. We partition data D and the associated domain of items here, while

assuming Θ to be small enough to fit into the memory of single machine. This is

because while partitioning PS-rules can help improve performance, its size is unlike to

be huge in practice, and our focus in this direct parallelization of RBAT is to make it

scalable to large datasets.

Observing that the support computation required by the split and check phases (Steps

4 and 6 of Algorithm 3.1) and the update phase (Step 5) of RBAT, needs the whole

dataset to be scanned. Our solution partitions the data across the available computing

nodes and performs these operations in parallel. The data partitions created are all

disjoint. That is, no transaction records are replicated to more than one partition. Our

partitioning allows to control the number of distinct items in each partition. To create

the parallel tasks to be performed independently, our method only requires a small

amount of input to be replicated to each mapper. For example, PS-rules are copied to

all mappers at the check phase. In the following, we explain our method in detail. We
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describe our data partitioning approach and parallel support computation in Section

4.1 and 4.2 respectively, followed by the parallel MapReduce based design of RBAT

in Section 4.3. The notations used throughout our work are shown in Table 4.1.

Notation Description

D Original Dataset

D̃ Anonymized Dataset

Θ PS-rules

I Domain of items

P Public items

S Sensitive items

P̃ Split-Cut

ĩ Generalized item under specialization

k Minimum support for each PS-rule

c Maximum confidence for each PS-rule

M Maximum number of available mappers

R Maximum number of available reducers

Table 4.1: Notations used in our work

4.1 Data Partitioning and Representation

There are two important aspects that must be considered when designing a MapReduce-

based parallel solution. First, the partitioning must be made in a way that the workload

is balanced and replication is minimized among slave nodes. Second, the data must

be represented in a way that computations can be performed efficiently. Given a set

of transactions D to be anonymized and M mappers available, we partition D among

M mappers in such a way that each mapper gets approximately an equal number of

records. Generally speaking, there are two approaches to partitioning and representing
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D: item-based or record-based.

With item-based partitioning, a set of transactions is partitioned vertically based on

items. Let I be the domain of all items in D. We divide I into M disjoint subsets

Ij, 1 ≤ j ≤ M , and then hash D into M subsets based on Ij . Each mapper m is

assigned a set of pairs 〈i, v〉, where i is an item in Ij and v is a vector of identifiers

of transactions that contain i as an item. The assigned pairs are represented as the

following hash table:


i1 : t1,1 · · · t1,β1

i2 : t2,1 · · · t2,β2

. . . . . . . . . . . .

i|I|j : t|I|,1 · · · t|I|,β|I|


where i1, . . . , i|I| ∈ I serve as index, and tj,l, 1 ≤ j ≤ |I|, 1 ≤ l ≤ βj are identifiers

of transactions containing the index item. βj (1 ≤ βj ≤ |D|) represents the size of jth

vector. For example, using item-based representation, Table 4.2 can be represented as

follows.

TID Purchased items

1 b, c, f,

2 a, d, f

3 a, f

4 b, d, e, f

5 d, f

Table 4.2: An example dataset T
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a : 2 3

b : 1 4

c : 1

d : 2 4 5

e : 4

f : 1 2 4 5


Item-based partitioning is efficient for support computation. For example, suppose that

the item-based representation (shown above) of the dataset shown in Table 4.2 is di-

vided into two partitions I1 and I2. Let I1 be assigned to a mapper and contain the

vectors corresponding to the items a, b and c. To compute σT (a, b), the method will

only need to access the vectors indexed by a and b. But when the vectors corresponding

to all the items of an itemset are assigned to different partitions, the support computa-

tion can not be performed locally at any mappers and may need to shuffle the relevant

vectors over the network to a reducer. For example, consider the same partitioning used

in the previous example. Computing the support of (a, d), will require both mappers

to shuffle the relevant vectors over the network. This may dramatically increase the

shuffle cost, specifically when the data is large.

Record-based partitioning, on the other hand, partitions data horizontally by records.

Given D has {t1, . . . , t|D|} transactions, it assigns about n = |D|
M

transaction records to

each mapper. That is, {t1, · · · , tn} are assigned to the first mapper, {t(n+1), · · · , t2n} to

the second mapper, and so on. Note that for efficiency purposes, we assign transactions

based on their arrival order, as it outperformed other two approaches discussed in [31].

However, our method can trivially be adapted to any other approach discussed in [31]

such as random partitioning. That is, to randomly assign the transaction records to

partitions.

Using the record-based partitioning approach, each mapper will have a disjoint subset

of transaction records Dj, 1 ≤ j ≤ M , where Dj may contain any items of I . The

assigned set of records is represented as follows:
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t1 : i1,1 · · · i1,α1

t2 : i2,1 · · · i2,α2

. . . . . . . . . . . .

t|Dj | : i|Dj |,1 · · · i|Dj |,α|Dj |


where ij,l-th (1 ≤ j ≤ |Dj|, 1 ≤ l ≤ αj) entry represents the lth item of jth transaction

record, and αj (i ≤ αj ≤ |D|) represents the number of items in jth transaction record.

This approach will only require count to be distributed over the network. For example,

consider the support computation of (ab) using the record-based representation of T

shown in Table 4.2. Let T be partitioned into two subsets with T1 containing the

first three transaction records and T2 containing the last two transaction records. The

support computation from T will only require σT1(ab) and σT2(ab) be computed and

sent to a single reducer. Therefore, the network cost does not grow with the size of

data to be anonymized. However, the support computation of a generalized item, using

such representation will require the scanning of the whole partition.

We may leverage a hybrid of both techniques for data partitioning and representa-

tion. Adopting record-based partitioning can potentially reduce the network cost which

could potentially be far more significant than performing an in-memory scan of the

data partition. So we assign each partition Dj to a mapper, and each mapper (in par-

allel to other mappers) reads its assigned subset for processing. To make the support

computation efficient, we can represent each data partition Dj using the hashing struc-

ture employed by item-based partitioning. This approach will ensure low overhead for

shuffling the data over the network and will also make the support computation effi-

cient. But observe that the memory required by each partition may still be large due to

the number of items in each partition. To demonstrate this, considerD with the domain

size |I| is partitioned among M mappers. Assume that each partition is assigned |D|
M

transaction records and each item of I appears at least once in each data partition. The

memory requirement on each mapper will be O( |D|
M
× |I|). When |I| is large, each

partition may still require a large amount of memory.
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One way to handle a large domain of items is to construct a partitioning method that

allows to control the number of distinct items in each partition. To ensure this, we

represent the dataset using a matrix with |D| rows and |I| columns. The rows are

labelled with the transaction identifers and the columns are labelled with the items.

An element ai,j ∈ {0, 1} is 1 if jth item exists in ith transaction and 0 otherwise. For

example, the matrix representation of the transaction dataset shown in Table 4.2 is as

follows.



a b c d e f

1 0 1 1 0 0 1

2 1 0 0 1 0 1

3 1 0 0 0 0 0

4 0 1 0 1 1 1

5 0 0 0 1 0 1


Using the matrix representation, we partition data using a two-way partitioning ap-

proach: horizontal and vertical so that each partition contains a part of the whole do-

main. For example, the above matrix can be divided into four partitions as follows.



a b c d e f

1 0 1 1 0 0 1

2 1 0 0 1 0 1

3 1 0 0 0 0 0

4 0 1 0 1 1 1

5 0 0 0 1 0 1


Such partitioning allows to control the number of transaction records and the number

of distinct items in each partition. Once the data is partitioned using the two-way

partitioning approach, we represent each partition using an item-based representation.

For example, the first partition containing the first three transaction records and the
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columns corresponding to the items {a, b, c} can be represented as follows:


1 2 3

a 0 1 1

b 1 0 0

c 1 0 0


For simplicity of our discussion, we now assume that given |D| × |I| matrix represent-

ation of D is divided into {D1, . . . , D√M} horizontally and into {I1, . . . , I√M} vertic-

ally and we use the notation {D1, . . . , DM} to represent such partitioning. In general,

the number of partitions made vertically do not necessarily have to be the same as the

horizontal number of partitions.

4.2 Parallel Support Computation

We observe that support computation is the most frequent operation in RBAT that

requires full data scan. It is performed to compute the UL of generalized items and to

check if PS-rules are protected. In RBAT, the support is computed using Definition 1.

We now show how support is computed using MapReduce. Given D and a set λ =

{λ1, λ2, . . . , λh} where each λj (1 ≤ j ≤ h) is an itemset, the support of all item-

sets in λ can be computed using a single MapReduce round. D is partitioned into

{D1, . . . , DM} using the partitioning approach discussed in the previous section. Each

mapper then iterates over λ, computing and emitting the local support of each element

λa ∈ λ:

Map(Dj, λ1, . . . , λ|λ|) → [〈λ1, σDj(λ1)〉 . . . 〈λ|λ|, σDj(λ|λ|)〉]
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These partial supports are shuffled over the network to the corresponding reducers.

Each reducer (in parallel to other reducers) accumulates the partial supports corres-

ponding to λx (1 ≤ x ≤ |λ|) and computes the global support.

Reduce([〈λx, σD1(λx) . . . , σDj(λx)〉] → 〈λx,
M∑
j=1

σDj(λx)〉

4.3 Direct Parallelization of RBAT

In this section, we will discuss our parallel design of RBAT using MapReduce. We

mainly parallelize RBAT by partitioning data and performing all the required support

computations in parallel using the partitioning strategy and support computation pat-

tern discussed in Sections 4.1 and 4.2 respectively. A schematic representation of our

parallel RBAT is shown in Figure 4.1. Our method assumes that the privacy constraints

are small enough to fit into the memory of a single machine.

Preprocessing: The algorithm starts with a pre-processing phase, which computes

the pairwise UL of all possible pairs of P . The pseudocode of this phase is shown

in Algorithm 4.1. Steps (2-10) compute the support of all the pairs, using a single

MapReduce round. In addition to computing the global support of each pair, the reduce

stage also computes the pairwise UL of all the pairs and outputs P where P is a |P | ×

|P | matrix with the rows and columns labelled by the items in P and an entry Pi,j
(1 ≤ i, j ≤ |P |) gives UL(i, j).

Note that the UL measure (Definition 5) is symmetric e.g. UL(ix, iy) = UL(iy, ix), so

we only calculate the UL of the pairs corresponding to the entries of upper or lower

triangle only. Let |P | denote the size of P . The number of distinct pairs will be(|P |
2

)
= 1

2
· (|P | − 1) · |P |. Assuming that each mapper is assigned the same number

of transaction records and the number of items in each partition is also the same, the

memory requirement for each mapper to hold its assigned data partition is O( |D|
M

).
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Figure 4.1: A schematic representation of Parallel RBAT

Each mapper also creates and holds ( (|P |−1)|P |
2

) output pairs. Therefore, the amount

of memory required by a mapper on each machine will be O( |D|
M

+ (|P |−1)|P |
2

). For a

mapper, the cost of creating the index-based representation of its assigned data partition

is O( |D|
M

). Considering that each mapper computes the partial support of all pairs on

data partitions in parallel, the overall processing cost of the map stage consists of the

cost involved in representing the partitions using item-based scheme and computing

the partial support of all pairs, and is O( |D|
M

+ (|P |−1)|P |
2

).

Here, the number of distinct keys in the output pairs produced by the map stage is(|P |
2

)
. If the key space is partitioned into R equal partitions, and all R reducers copy

and process the map output in parallel, the shuffling cost in the worst case (when no
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reducer resides locally to its assigned map output) and computational cost of the reduce

stage is O(M · (|P |−1)|P |
2R

).

Algorithm 4.1: COMPUTEUL (P )

Input: A data partition Dj , Domain of public items P .

Output: A matrix P , containing all pairwise

ULs.

1: Map(m, 〈Dm, P 〉)

2: Dm ← Load the m-th partition of D from DFS

3: ix ← ∅, iy ← ∅

4: for x← 1 to (|P | − 1) do

5: ix ← x-th item of P .

6: for y ← (x+ 1) to |P | do

7: iy ← y-th item of P .

8: EMIT 〈(ix iy), σDm(ix, iy)〉

9: end for

10: end for

11: Reduce((ix iy), [〈σD1(ix, iy)〉, 〈σD2(ix, iy)〉, . . . , 〈σDM (ix, iy)〉])

12: P [x][y]← UL(ix, iy)

13: EMIT 〈(x y),P [x][y]〉

Finding Maximum Pair: The first phase shown in Figure 4.1 corresponds to the first

step of the split phase (Step 4) of RBAT. Given a generalized item ĩ, the algorithm

uses a single MapReduce round with M mappers and a single reducer to find a pair

which when generalized together incurs maximum UL. Each mapper reads a subset

of a pre-computed matrix P containing ULs of all possible pairs of public items P

(Step 2). While reading its assigned subset Pm, each mapper keeps track of the pair

with maximum UL found so far, and shuffles to a single reducer in the end (Step 3).

Once all the locally found pairs with the maximum UL arrives, the reducer compares

them to find the pair 〈ix, iy〉with maximum UL globally. Since a mapper keeps the pair
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with maximum UL only, the memory requirement is constant irrespective of the size of

P . Considering that M available mappers read P in parallel, the overall computational

cost of the map phase is O( |P|
M

). Also, each mapper outputs only one pair, the maximum

number of pairs shuffled to a reducer is M . Therefore, the amount of memory required

at the reduce phase is O(M).

Note that the algorithm reads all pairs and their UL inP but certain pairs can be ignored

without comparison i.e. a pair containing an item which is not generalized to ĩ. For

example, consider P = {a, b, c, d} and the matrix P shown as follows:

P =


a UL(a, b) UL(a, c) UL(a, d)

b UL(b, c) UL(b, d)

c UL(c, d)


At the first split, the most generalized item is to be specialized so all four items of P

are generalized to ĩ = (a, b, c, d). Splitting ĩ requires comparison of all pairs in P .

Suppose ĩ is specialized to ĩl = (a, b, c) and ĩr = (d). When splitting ĩl, the mappers

will only need the pairs containing a, b and c. So the pairs such as (a, d) or (c, d) are

not considered for comparison and ignored.

Algorithm 4.2: FINDMAXPAIR (̃i)

Input: A generalized item ĩ to split.

Output: A pair ix, iy ∈ ĩ such that UL(ix, iy) is max-

imum.

1: Map(m,Pm)

2: Pm ← Load the m-th partition of P̃ from DFS

3: EMIT(∅, 〈ia, ib〉) such that UL(ia, ib) is maximum in Pm
4: Reduce(∅, [〈ia1 , ib1〉, 〈ia2 , ib2〉, . . . , 〈iaM , ibM 〉])

5: 〈ix, iy〉 ← 〈iaj , ibj〉 such that UL(iaj , ibj) is maximum, 1 ≤ j ≤M

6: EMIT(∅, 〈ix, iy〉)
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Split using seeds: The second step of the split phase is iterative (Steps 2-16 of Al-

gorithm 4.3) and uses 〈ix, iy〉 to split ĩ into two less generalized items ĩl and ĩr. Initially,

Il and Ir are assigned the seeds ix and iy (Step 2). For every item iz ∈ ĩ that is not

a seed, a MapReduce round is used to decide whether it should be generalized with

Il or Ir (Steps 3-15). The M mappers read D in parallel and compute σDj(Il ∪ {iz})

and σDj(Ir ∪ {iz}). These partial supports from all the mappers are shuffled over the

network to a single reducer (Steps 4-7). The reducer then computes the UL of Il∪{iz}

and Ir∪{iq} and adds iz to either Il or Ir based on which generalization incurs less UL

(Steps 8-14). Finally, Il and Ir are returned as two less generalized items (Step 16).

For example, consider the split of ĩ = (a, b, c, d). Suppose (a, d) is the pair incurring

maximum UL on generalization. Let Il = {a} and Il = {d}, the first MapReduce

round generalizes b either with the items of Il or Ir. Suppose D = {D1, D2}, the map-

pers compute σD1(a, b), σD2(a, b), σD1(b, d) and σD2(b, d). The reducers aggregates the

partial supports and compute UL(a, b) and UL(b, d). Suppose UL(a, b) > UL(b, d),

Ir is updated to contain b and d. In the next MapReduce round, the algorithm computes

the UL(a, d) and UL(b, c, d) and assuming that UL(b, c, d) > UL(a, d), the algorithm

generalizes d to Il and return the generalized items ĩl = (a, d) and ĩr = (b, c).

Using such item-based representation, the partial support computation of an item from

a data partition is O(1). In order to compute the partial support σDj(Il ∪ {iz}) and

σDj(Ir∪{iz}), the number of indexed vectors to be accessed is (|ĩl|+ 1) and (|ĩr|+ 1).

Given that Il ∩ Ir = ∅, the computational cost of the map stage is O(̃i).

At each round of this stage, a mapper needs to hold a data partition of size ( |D|
M

) and

the generalized items ĩl and ĩr. So the overall memory required for a map task on each

machine is O( |D|
M

+ |P |). Note that each mapper outputs only one pair, containing the

partial supports σDj(Il∪{iz}) and σDj(Ir ∪{iz}). Therefore, the memory required for

the output at each MapReduce round is O(1). Since each mapper communicates one

pair only, the shuffle cost is O(M) at each MaReduce round. At this stage, all pairs

are received and processed by one reducer only. Therefore, the computational cost of
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reduce stage is also O(M).

Algorithm 4.3: MR-SPLIT (̃i)

Input: A generalized item ĩ to split.

Output: Less generalized items ĩl and ĩr

1: {ix, iy} ← FINDMAXPAIR (̃i)

2: Il ← ix, Ir ← iy

3: for each iz ∈ ĩ and z /∈ {x, y} do

4: Map(m, 〈Il, Ir, iz, Dm〉)

5: Dm ← Load the m-th partition of D from DFS

6: ĩl ← Il ∪ {iz}, ĩr ← Ir ∪ {iz}

7: EMIT(iz, 〈σDm(ĩl), σDm(ĩr)〉)

8: Reduce(iz, [〈σD1(ĩl), σD1(ĩr)〉, 〈σD2(ĩl), σD2(ĩr)〉, . . . , 〈σDM (ĩl), σDM (ĩr)〉])

9: if UL(̃il) > UL(̃ir) then

10: Il ← Il ∪ {iz}

11: else

12: Ir ← Ir ∪ {iz}

13: end if

14: EMIT(〈Il, Ir〉)

15: end for

16: return 〈ĩl = Il, ĩr = Ir〉

Update: As discussed in Section 3.2, RBAT undergoes the update phase after each

split and uses two less generalized items to create a temporary dataset D′. Let us

assume that ĩ is split into ĩl and ĩr. Suppose the anonymized form D̃ ofD is partitioned

among M mappers. Given a data partition D̃j , a mapper replaces all occurrences of

ĩ with ĩl and ĩr. Finding out if an occurrence of ĩ in a transaction record of D̃ is

to be replaced by ĩl or ĩr, requires access to the original representation Dj of D̃j .

For example, consider a transaction record t = {a, b, c,h}, its anonymized form t̃ =

{a, (b, d, f), c,h} and that the generalized item ĩ = (b, d, f) is split into ĩl = (b, d) and
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ĩr = f . Creating an updated version of t̃ requires replacing ĩ with ĩl or ĩr. Since, the

original representation of the item in t is b, which is now mapped to ĩl so the updated

version is t′ = {a, (b, d), c,h}.

This requires to hold three versions of a dataset. Considering that D′ is discarded if

the PS-rules are unprotected, one possible way to reduce the space requirement is to

update the generalized dataset D̃ after checking the privacy constraints. The algorithm

will not need to construct a temporary dataset and no specializations will be needed

to roll back on account of inadequate privacy. But, the check phase will require the

generalized dataset D̃ as well as its original counterpart D. Our approach is to keep

the current split-cut, instead of constructing and updating D̃.

We divide the update phase into two parts. The first part (depicted in Algorithm 4.4)

is performed after each split, and uses a single map-only round to update the current

split-cut. The current split-cut P̃ is partitioned into M subsets and each subset P̃m

is loaded into the memory of mapper m (Step 2). The mapper (in parallel to other

mappers) iterates over all the generalized items in P̃m, to find ĩ. If ĩ is found, the

mapper replaces it with the specialized items ĩl and ĩr and returns the updated split-cut

partition P̃ ′m (Steps 3-8). If the mapper does not find ĩ in its assigned partition then P̃m

is returned (Step 9).

The second part (Algorithm 4.5) is performed once at the end of the anonymization,

when no split can further be made without sacrificing the required privacy level. This

is also a map-only round so incurs no shuffling cost. The mappers read the original

dataset D (step 2), and are also given a copy of split-cut P̃ . Given a data partition Dm,

a mapper m generalizes each transaction record t ∈ Dm by finding and replacing a

subset t̃ of P̃ containing the mappings of all the items in t (step 4-7). The generalized

form D̃m of Dm is then returned (step 8).

This will not require to store and/or load any other copy of the dataset except D. Also,

the check needs the split-cut and original dataset only. Next, we also show that this will

not significantly incur any extra computational or memory requirements at the check
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Algorithm 4.4: UPDATECUT (P̃ , ĩ, ĩl, ĩr)

Input: A Split-cut P̃ , generalized item ĩ, and its specializations ĩl and ĩr.

Output: The updated split-cut P̃ ′.

1: Map(m, 〈P̃m, ĩ, ĩl, ĩl〉)

2: P̃m ← Load the m-th partition of P̃ from DFS.

3: for each generalized item ĩj ∈ P̃ do

4: if ĩj = ĩ then

5: P̃ ′m ← Replace(P̃m, ĩ, ĩl, ĩr)

6: EMIT(∅, 〈P̃m〉) and return.

7: end if

8: end for

9: EMIT(∅, 〈P̃m〉)

Algorithm 4.5: GENERALIZE (D, P̃ )

Input: Original dataset D and, Split-cut P̃ .

Output: A generalized form D̃ of D.

1: Map(m, 〈Dm, P̃ 〉)

2: Dm ← Load the m-th partition of D from DFS.

3: D̃ ← ∅.

4: for each transaction t ∈ D do

5: t̃← A subset of P̃ , satisfying ∀i ∈ t, φ(i) ∈ t̃

6: Add t̃ to D̃m

7: end for

8: EMIT(∅, 〈D̃m〉)

9: return {D̃1, . . . , D̃M}

stage.

Rule Checking: The third step shown in Figure 4.1 corresponds to the check phase

(Step 3) of RBAT (see Section 3.2). To reduce the space requirements, we do not
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create any generalized form of D, but rather check the privacy protection using the

original dataset D and the current split-cut P̃ . Consider a PS-rule p → s, an original

transaction record t ∈ D and its generalized form t̃ ∈ D̃. Let i ∈ P be a item, φ(i) be

its generalized representation, and {φ(i)} be the set of items generalized to φ(i).

Observation 1. If ∃i ∈ p, for which t ∩ {φ(i)} = ∅ holds true, then antecedent p will

not be supported by t̃

Observation 1 is based on the property of set-based generalization that a generalization

consists of a combination of all the items mapped to it. For example, suppose that a

generalized item (a, b, c) consists of a, b and c and all three items are generalized to the

same generalized item. Given that a transaction record in its generalized form, supports

a generalized item ĩ then its generalized form must contain any of the individual items

of ĩ. For example, consider a transaction record t = {b, d, g,h}, its anonymized form

t̃ = {(b, c), d, (a, g),h} and a set of PS-rules Θ = {a d → h, a f → h}. Let φ(f) =

(e, f), the first PS-rule is supported by t̃ because φ(a) ∩ t = g and φ(d) ∩ t = d. The

second PS-rule is not supported by t̃ because φ(f) ∩ t = ∅.

The rule checking phase (depicted in Algorithm 4.6) employs a single MapReduce

round. During the map stage, a mapper m loads its assigned data partition (step 2)

into memory and also reads the current split-cut P̃ . The mapper iterates over PS-rules

Θ, computing and emitting the partial supports σDm(p̃) and σDm(p̃ ∪ s) for each PS-

rule (steps 3-5). Note that we need to compute the generalized form of each rule’s

antecedent and the partial support computation of each PS-rule is performed using

Observation 1. The partial supports are then shuffled over the network to reducers with

p→ s as key. The reducers compute the global support σD′(p̃) and σD′(p̃∪ s) for each

PS-rule (step 7), and return true or false based on if the rule is protected or not (steps

8-10).

Each mapper needs to load Θ, P , and a partition of D. The mapper also needs to hold

|Θ| output pairs. Therefore, the memory required on each mapper is O( |D|
M

+|P|+|Θ|).

Each mapper represents its assigned data partition Dj using item-based representation.
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Algorithm 4.6: MR-CHECK (D, Θ, k, c)

Input: Original dataset D, PS-rules Θ, Minimum support k, Maximum confidence c.

Output: True if each protected PS-rule and False other-

wise.

1: Map(m, 〈Dm, Θ〉)

2: Dm ← Load the m-th partition of D from DFS

3: for each rule p→ s ∈ Θ do

4: COMPUTE AND EMIT (p→ s, 〈σDm(p̃), σD′
m

(p̃ ∪ s)〉) using Observation 1

5: end for

6: Reduce(p→ s, [〈σD′
j
(p̃), σD′

j
(p̃ ∪ s)〉, 1 ≤ j ≤M ])

7: σD′(p̃) = ΣM
j=1σD′

j
(p̃), σD′(p̃ ∪ s) = ΣM

j=1σD′
j
(p̃ ∪ s)

8: if σD′(p̃) < k or σD′ (p̃∪s)
σD′ (p̃)

> c then

9: EMIT(r, False)

10: end if

Let the maximum size of PS-rules in Θ be |r|. The cost of computing partial support of

all PS-rules is (|Θ| · |r|). So the overall computational cost is O( |D|
M

+ |Θ| · |r|). Each

mapper needs to shuffle a pair, containing partial support of a PS-rule. Let R reducers

copy the map output to reducers, the overall shuffle cost and the computational cost of

the reduce phase is O(M · |Θ|
R

).

4.4 Experimental Evaluation

In this section, we empirically analyse the scalability of our parallel design (discussed

previously in Section 4.3). We measure the scalability with respect to large problem

instances and the resources available. More specifically, we measured the effect of

increasing cluster size, data volumes, the number of PS-rules and the domain size on

the performance of our method.
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We implemented our method using Hadoop version 1.0.3 1 API combined with Java

1.7.0_8. Hadoop is the most popular and open-source implementation of MapReduce.

It is also similar to Google’s implementation of MapReduce [38]. A Hadoop cluster

follows the master/slave architecture and consists of two main parts: data manage-

ment layer, which consists of a Namenode instance running over the master node and

a number of datanodes running over slave machines. The data are stored in the Ha-

doop Distributed File System (HDFS). Another important part is the execution engine,

which consists of a Jobtracker and a set of tasktracker instances. The main execution

is controlled by Jobtracker running over the masternode. All the MapReduce tasks are

performed by the Tasktracker daemons running over the slave (worker) nodes.

All the experiments were performed over a cluster of fifteen computers, running Ubuntu

10.0.4 operating system and physically located within the same building. The com-

puters were interconnected by a 100Mbps Ethernet connection. One of the machines

was allocated to run the master program. All the worker machines used to perform

MapReduce tasks were homogenous in configuration. The machine running the mas-

ter program contains four physical cores and 8GB memory. All the slaves have 3GB

physical memory, Intel CoreTM 2 Duo Processor Model E8500 with 6MB Cache size,

and two physical cores.

We used BMS-Web-View-1 [75], a real-world click-stream dataset with |D| = 59602

and |I| = 497, in our experiments. The maximum and average transaction size of the

dataset is 264 and 2.4 respectively. We acquired the larger data sizes by random selec-

tion and duplication of transaction records from the original dataset. 10% of the items

were randomly selected as sensitive items. In the set of experiments, we do not report

data utility, since our parallel version preserves the processing of its sequential coun-

terpart and hence gives exactly the same anonymized results given by RBAT. Unless

otherwise specified, our default settings for the experiments are given in Table 4.3

To get maximum possible performance, we followed the existing relevant work [112]

1http://hadoop.apache.org/
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Parameter Default value

|D| 32M (millions)

|I| 497

|Θ| 1,000

k 60

c 0.8

M 32

R 8

Table 4.3: The default parameter settings for experiments

and customized the Hadoop based on the availability of resources as shown in Table

4.4.
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Figure 4.2: Datasize vs. Runtime

To check scalability with respect to increasing data volumes, we varied datasize from

2M to 128M (Million) transaction records and measured the response time of both

RBAT and our parallel implementation. As shown in Figure 4.2, the runtime of parallel

RBAT (P-RBAT) grew sub-linearly with increasing size of data and grew much slowly

than RBAT did. However, P-RBAT performed less efficiently than RBAT. This is due
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Parameter Description Value

mapred.job.reuse.

jvm.num.tasks

Allows the JVM re-use among con-

secutive tasks

-1(yes)

io.sort.mb Memory for sorting map output 300MB

mapred.child.ulimit The maximum memory, of a pro-

cess launched by the Map-Reduce

framework

2GB

io.sort.mb Memory for sorting map output 300MB

io.sort.spill.percent A limit of the buffer, after which re-

cords begin to be spilled to disk

0.85

mapred.{map/reduce}.

tasks.speculative.execution

Allow multiple instances of same

MapReduce task to run in parallel

true

mapred.reduce.parallel.copies The number of parallel transfers run

by reduce during shuffle phase.

8

Table 4.4: Hadoop parameter settings

to the overwhelming parallelization overhead, consisting of I/O, network and setup cost

incurred by each MapReduce round. We also observed that our method is less stable in

terms of runtime behaviour as the dataset becomes larger. For example, increasing |D|

from 2M to 4M increases the runtime by a factor of 0.1, whereas from 64M to 128M,

the runtime increases by a factor 0.8. This is because larger data sizes incur increased

I/O cost for each data scan, hence the increased overhead which affects the scalability

of our method. As described in Section 4.2, our method does not require the shuffling

of any transaction records. Therefore, increasing the size of D does not affect the

amount of data to be shuffled at any MapReduce round. The number of MapReduce

rounds also remains fixed, provided that the domain size does not increase. So the

setup and communication cost incurred by the shuffle stage of all MapReduce rounds

remained fixed too. This shows that our method can handle increasing data volumes
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in a scalable way for dense datasets [92]. If the domain size is large, the scalability of

our method can be affected by the increasing I/O cost, since the algorithm undergoes a

large number of MapReduce rounds.
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Figure 4.3: Scalability with respect to cluster size

We have also studied the scalability of P-RBAT with respect to the size of the com-

puting cluster. Figures 4.3(a) and 4.3(b) show the response time and relative speed up,

respectively, with varying number of computing nodes used in anonymization. The

relative speedup is measured as the ratio of runtime obtained by the sequential RBAT

implementation, to the runtime of P-RBAT with a cluster size whose speedup is meas-

ured. The cluster size was varied from 2 to 14. We found that P-RBAT scaled better

when a small number of processing nodes were used e.g. 2 to 8. Setting the cluster size

to more than 8 nodes did not result in any significant performance gains. This is be-

cause of the associated overhead which is proportional to the size of cluster used. For

small cluster sizes, the performance gain is higher than the associated overhead and

increasing the workload causes decreased workload on each machine. Therefore, our

algorithm performs better until it attains maximum performance gain at certain point

(at cluster size of 8 nodes in our experiment). After this point, the algorithm starts

slowing down. This is because, when more nodes were used, the computation on each
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node is reduced, making the overhead resulting from setting up parallel processing a

significant proportion of the overall response time.
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Figure 4.4: Scalability with respect to cluster size

The overall speedup is far worse than the ideal (linear) speedup. We attribute this

to the parallelism overhead. Our further analysis (Figure 4.4) showed that most of

the overhead came from the split phase, which is due to mapping the sequential split

phase to MapReduce by only partitioning data. This affects the overall speedup of our

algorithm.

We also studied the effect of privacy parameters k and c on speedup of the algorithm

(Figure 4.3). Increasing c and decreasing k relax privacy requirements and allow the

algorithm to undergo further splits. As shown by the results, the algorithm attains bet-

ter speedup as the size of split tree grows. This indicates that most of the parallelism

overhead comes from the initial splits. The number of MapReduce rounds required

to split a generalized item ĩ increases proportionally to |̃i|. So the later splits are per-

formed using fewer MapReduce rounds, and hence the overall performance gain easily

offsets the parallelism overhead. This implies that the algorithm can be expected to

scale better with respect to increasing cluster size, when privacy requirements are tight

i.e. k is large and c is small.
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Figure 4.5: Performance with respect to |Θ|, k = 60, c = 0.8

To further examine the scalability of our parallel method, we also evaluated its runtime

behaviour with respect to increasing |Θ| from 1K (thousand) to 32K. As depicted in

Figure 4.5, the runtime of P-RBAT grows sub-linearly to the size of Θ. P-RBAT also

grows much slower in runtime than RBAT with respect to increasing |Θ|, but the overall

performance of P-RBAT is at least four times worse than its sequential counterpart.

Figure 4.5 confirms that this is mainly because of the parallelism overhead at the split



4.4 Experimental Evaluation 78

phase. Our further analyses of the effect of increasing |Θ| on the check phase (Figure

4.5-b) also show that for a smaller number of 1K to 2K PS-rules, the performance

of P-RBAT’s check phase is nearly same as sequential rule checking. The difference

between the runtime of the two methods increases as the number of PS-rules increases.

For example, when |Θ| = 1K, the runtime of P-RBAT’s check phase is worse than the

sequential rule checking of RBAT by a factor of 30%. But, the check phase of P-RBAT

at |Θ| = 4K is better by nearly 30%. So the performance of our algorithm is better,

when large privacy constraints are involved.

During the check, the algorithm did not seem to utilize the resources effectively. For

example, P-RBAT performs rule checking using fourteen computing nodes, but the

runtime of its check phase is better than RBAT by only 7 times. To further investigate

the performance bottlenecks, we examined the runtime behaviour of P-RBAT with

different privacy parameter settings. Figure 4.6 shows when the algorithm undergoes a

single split-check iteration. Observe here that RBAT grows more slowly and performs

better than P-RBAT. Comparing the results to that in Figure 4.5, one can conclude that

there is a relationship between the performance behaviour of P-RBAT and the number

of split-check phases the algorithm undergoes. That is, the larger the split tree, the

more the number of times the rules are checked and hence causes P-RBAT’s check

phase to outperform the sequential rule checking. This is also an indication that higher

performance gain and better scalability can be expected when the required privacy is

not high and allows the construction of a large split tree during the anonymization.

Our further analyses showed that the main bottlenecks lie in the number of PS-rules

checked by P-RBAT which makes the ineffective resource utilization, because P-RBAT

checked extra rules not checked by its sequential counterpart. Figure 4.7 shows the

difference of the PS-rules checked by P-RBAT and the rules checked by RBAT with

k = 60 and c = 0.8. Both algorithms undergo three split-check iterations. As the num-

ber of given rules Θ increases, the difference of the rules actually checked by P-RBAT

and those checked by RBAT increases. This is because RBAT checks PS-rules sequen-
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Figure 4.6: Performance with respect to |Θ|, k = 80, c = 0.7

tially, and stops as soon as any rule is found unprotected. But during a MapReduce

round, there is no communication among mappers until the shuffle phase. So P-RBAT

can not know if any PS-rule is not protected until the end of the rule-checking round,

making checking all PS-rules necessary. In the worst case, P-RBAT checks (|Θ| − 1)

more rules than RBAT does in a single split-check iteration. This happens when the

first PS-rule in Θ is unprotected. On the other hand, considering a split-check iteration
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when all PS-rules are protected, both implementations check all |Θ| rules. In this case,

P-RBAT is observed to perform better than RBAT, provided that the size of Θ is large

(larger than 2K in our settings). To generalise this, suppose that an anonymization pro-

duces a split tree with n nodes (corresponding to split-check iterations the algorithm

performs). The number of inner nodes of the split-tree corresponds to the split-check

iterations when all rules are protected. So given that the size of the split-tree is n, the

number of times RBAT and P-RBAT check exactly the same number of PS-rules is

bn
2
c. The remaining dn

2
e are leaf nodes and correspond to the split-check iterations

when check returns false i.e. at least one PS-rule is unprotected. So with n split-check

iterations, P-RBAT at maximum checks (|Θ|− 1)×dn
2
emore rules than the sequential

check by RBAT. So the better resource utilization can be expected to be at first bn
2
c

split-check iterations which may be offset by extra communication cost of later dn
2
e

split-check iterations.

To further investigate this, we set k = 80 and c = 0.7 and analysed the performance.

The first split does not cause any PS-rule not protected. So the difference of the number

of rules checked by P-RBAT and the rules checked by RBAT is smaller than when

k = 60 and c = 0.8. This indicates that in order to make the algorithm scalable, the
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bottleneck due to the difference of the PS-rules checked by RBAT and P-RBAT needs

to be addressed.
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Figure 4.8: Performance with respect to |I|

We also tested the effect of |I| on the scalability of our method. As shown by Figure

4.8-(a), the runtime of P-RBAT grows much faster than RBAT as |I| increases. 4.8-

(b) shows the effect of |I| on scalability of the algorithm with respect to computing

resources. The runtime was observed to increase by at least 225%, as we double the

domain size. This is because the the number of MapReduce rounds vary with domain

size. Setting up a MapReduce round incurs the cost of setting up Map and Reduce

tasks, I/O cost of reading input and writing output. Therefore our algorithm makes the

effective use of resources when the domain size is small.

We also measured the scaleup [111, 46] which captures the scalability of a parallel

algorithm with respect to increasing size of computing cluster and the data size at the

same time. We measured the scaleup of P-RBAT by the ratio of the time taken by a

cluster size of one computing node only, to the time taken by m nodes on a workload

of (m × 8)M transactions. As shown by the results (Figure 4.9), the response time of

our parallel method remain nearly constant as we increase data size as well as cluster

size. This shows that our algorithm can scalably deal with large problem instances
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as large cluster size becomes available. Throughout the experiment, the scaleup was

observed to drop by less than 10%. This is because of ineffective resource utilization

due to design side restrictions. For example, splitting a generalized item ĩ requires

|̃i|−1 MapReduce rounds. At each MapReduce round, our design restricts the number

of machines to be used at the reduce phase to one. Therefore, increasing the number

of available processors can increase the number of mappers used in anonymization,

causing more intermediate output to be shuffled to the reducer, thereby incurring a

high network cost.

4.5 Summary

In this chapter, we attempted to address the problem of achieving scalability in large

transaction data anonymization. We proposed a partitioning method which allows to

deal with large datasets and the associated domain of items. Our partitioning scheme

allows most of the computations to be performed locally and therefore does not incur

high communication cost. To keep the tasks independent at each operation, our method

replicates a small amount of auxiliary input such as PS-rules or split-cut to each slave
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node. We also proposed a MapReduce-based parallization of RBAT. Our design pre-

serves the processing logic of RBAT, so gives exactly the same privacy/utility level as

RBAT does. Our experimental evaluation demonstrates that our method can deal with

large datasets in a scalable way. But the response time of our algorithm is unreason-

ably slow. This is because of the parallelism overhead due to iterative computations at

the split phase and the extra computational cost due to the lack of interaction among

processing nodes at the check phase. In the next chapter, we will attempt to address

these performance bottlenecks at the split and check phases.
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Chapter 5

MR-RBAT: A Scalable Transaction

Data Anonymization Method

In the previous chapter, we discussed the direct parallel implementation of RBAT

which partitions data and performs different operations of transaction data anonym-

ization in parallel. The experimental evaluation showed that the algorithm can handle

increasingly large volumes of data in a scalable way. The algorithm preserves the pro-

cessing logic of RBAT, and therefore guarantees the same level of privacy and data

utility as RBAT does. But its response time is unacceptably slow. We attribute this to

the limitations of MapReduce. Our solution is iterative and each iteration requires a

number of MapReduce rounds. MapReduce does not support iterative processing well

[62, 9]. In MapReduce, each round is configured separately. This generates a signific-

ant overhead which offsets the gains from parallel processing. Also, MapReduce does

not allow communication among processing nodes at the Map and Reduce stages. This

causes the algorithm to perform extra computation at each iteration. In this chapter, we

give a detailed analysis of the performance bottlenecks of our parallel solution and

present a solution to address them. We also give an analytical study to estimate the

performance of our method based on given parameter settings. Section 5.1 proposes

improvements to our parallel anonymization method (described in Section 4.3) to deal
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with performance bottlenecks. We give our analytical study to estimate the perform-

ance of our solution in Section 5.2. Section 5.3 empirically evaluates our method and

finally Section 5.4 concludes the chapter.

5.1 MR-RBAT

In this section, we address the performance bottlenecks of our direct parallel method.

Recall that given a generalized item ĩ, the split phase takes (̃i−1) MapReduce rounds to

find two more specialized items of ĩ. This incurs large amount of parallelism overhead,

especially at the early splits of the anonymization process. For example, at the first

split, ĩ = P therefore the first split causes (|P | − 1) MapReduce rounds. Assuming

that ĩ is split into ĩl and ĩr, each specialized item containing |P |
2

items. Therefore,

splitting ĩl and ĩr requires ( |P |
2
− 1) MapReduce rounds. Comparing to the first split,

these two splits incur less parallelism overhead but it may still be large enough to

offset the performance gains from parallelism. The algorithm can be expected to gain

performance after the first few splits. But this may not always be the case. For example,

splitting ĩ may result in split with |ĩl| = 1 and |ĩr| = (|̃i| − 1). In such cases, the later

splits may also be expensive in terms of parallelism overhead and may cause the overall

performance gain to be offset by parallelism overhead incurred by splitting generalized

items.

The extra computational cost incurred by the rule checking in parallel also needs to

be addressed. Since rule checking in parallel is performed using a single MapReduce

round, it does not incur high cost of setting up mappers/reducers and reading data. But

using a single MapReduce round results in limited communication among processing

nodes. As a result, all PS-rules are checked by the parallel method. During the early

split-check iterations, no PS-rule is unprotected and hence causes the parallel method

to perform better than its sequential counterpart. But when any PS-rule is unprotected,

the number of PS-rules checked by the parallel method may be greater than those
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checked by its sequential counterpart and hence may result in extra computational as

well as communication cost.

Our proposed method address these performance bottlenecks by controlling the num-

ber of MapReduce rounds at the split phase and by employing more than one MapRe-

duce round at the check phase. This will reduce the parallelism overhead at the split

phase and will increase the communication and synchronization at the check phase.

Fixing the number of MapReduce rounds used at each stage will fix the associated

parallelism overhead and may result in better performance of the algorithm. But set-

ting them to some arbitrary value may affect data utility or may not result in effective

resource utilization in all problem instances. We allow the user to fix the number of

MapReduce rounds to be employed at the split and check phases.

Algorithm 5.1 shows the overall structure of MR-RBAT. Algorithm 5.1 itself is per-

formed sequentially (by a single computer), and specifies the different MapReduce

operations, their dependencies and interaction with other sequential and/or parallel op-

erations. Note that all the MapReduce operations use the same data partitioning and

representation mechanisms we discussed previously in Section 4.1.

The algorithm starts with a pre-processing phase described in Section 4.3 and follows

the same top-down specialization as RBAT. The update is also performed in the same

way discussed in Section 4.3. The split and check phases are performed in a more

generalized way than our direct parallel implementation (discussed in Chapter 4), so

that the overhead can be controlled. In following, we describe in detail the revised

design of split and check phases.

5.1.1 α-Split

Recall that RBAT finds specialization of a generalized item using a two-step heuristic.

Given a generalized item ĩ to split, the first step uses a single MapReduce round to

find a pair of items in ĩ with maximum utility loss when generalized together. The
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Algorithm 5.1: MR-RBAT (D, Θ, ĩ, k, c)

Input: Original dataset D, a set of PS-rules Θ, the most generalized item ĩ, minimum

support k and maximum confidence c.

Output: Anonymized dataset D̃

1: P ← COMPUTEUL(P,D)

2: P̃ ← {̃i}

3: Q.enqueue(̃i)

4: while |Q| > 0 do

5: ĩ← Q.dequeue()

6: {ĩl, ĩr} ← α-SPLIT (̃i, P̃ , D̃)

7: P̃ ′ ← UPDATECUT(P̃ , ĩ, ĩl, ĩr)

8: if γ-CHECK (D, Θ, P̃ ′, k, c) = true then

9: Q.enqueue(ĩl)

10: Q.enqueue(ĩr)

11: P̃ ← P̃ ′

12: end if

13: end while

14: D̃ ← GENERALIZE (D, P̃ )

15: return D̃

second step is sequential and uses 〈ix, iy〉 to split ĩ into two less generalized items ĩl

and ĩr. RBAT does this by assigning ix and iy to Il and Ir first, then considering each

item iq ∈ ĩ − {ix, iy} in turn and assigning it to either Il or Ir based on UL(Il ∪ iq)

and UL(Ir ∪ iq). The direct parallelization of this heuristic (discussed in the previous

chapter) requires |̃i| − 2 MapReduce rounds, as the assignment of each item is recurs-

ively dependent on the assignment of the items preceding it. In the worse case when

the most generalized item is split to single items, one per iteration, it will require a total

of O(|P |2) MapReduce rounds. This will result in a significant setup and data loading

overhead.
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Alternatively, one may split ĩ based on seeds only. That is, we decide whether an item

iq ∈ ĩ should be assigned to Il or Ir based on UL(iq, ix) and UL(iq, iy). This would

then require only a single MapReduce round to split ĩ. While this can cut the number

of MapReduce rounds significantly, it may cause substantial data utility loss. Consider

an extreme case where ĩ = {i1, . . . , i|P |} is the most generalized item, i1 and i|P | are

the seeds, σD(ij) < k/4, j < |P | and k/2 < σD(i|P |) < k. Assuming that a uniform

weight of 1 is used in UL calculation, then it is easy to see that using this strategy all

the items will be generalized with i1, resulting in ĩl = (i1, · · · , i(|P |−1)) and ĩr = (i|P |).

As σD(i|P |) < k, ĩ cannot be split, and the data has to be generalized using the most

generalized item ĩ, incurring a substantial utility loss.

Observing that the split by seeds approach and RBAT are two extremes of paralleliz-

ation, we propose a generalization which covers a range of solutions between the two

extremes. More generally, we specify the upper bound α of MapReduce rounds to

employ for each split of MR-RBAT.

Definition 6 (α-Split). Given a generalized item ĩ and a pair of seeds ix and iy, α-

Split, 1 ≤ α ≤ |̃i| − 2, partitions ĩ into α buckets and splits ĩ in α iterations. Items

in each bucket are split based on seeds only, and the splits obtained from the previous

iterations are used as the seeds in the current iteration.

We revised the split phase of our direct parallel anonymization method (discussed in

previous chapter) using Definition 6 and call it α-Split. The pseudocode of α-Split is

given in Algorithm 5.2. The algorithm first finds the pair of items with maximum UL.

The search of the maximum pair is performed, using the same Max_Pair method

described in Section 4.3. The pair is then used to initialize Il and Ir (step 2), the

two subsets containing items of specializations of ĩ. All the remaining items of ĩ are

partitioned into α buckets (step 3). Currently, the partitions are created by sequentially

assigning an almost equal number b = |̃i|−2
α

of items to the partitions. Let i′ = ĩ −

〈ix, iy〉, the partitions are made so that first partition of ĩ contains {i′1, . . . , i′b}, the

second partition contains {i′(b+1), . . . , i
′
2b}, and so on.
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Algorithm 5.2: α-SPLIT (̃i, α)

Input: A generalized item ĩ to split, and split threshold α.

Output: Less generalized items ĩl and ĩr

1: {ix, iy} ← FINDMAXPAIR (̃i)

2: Il ← ix, Ir ← iy

3: {̃i1, ĩ2, . . . , ĩα} ← PARTITION(̃i− {ix, iy})

4: for h = 1 to α do

5: Map(mi, 〈Il, Ir, ĩh, Dm〉)

6: Dm ← Load the m-th partition of D from DFS

7: for each iq ∈ ĩh do

8: ĩl ← Il ∪ {iq}, ĩr ← Ir ∪ {iq}

9: EMIT(iq, 〈σDm(ĩl), σDm(ĩr)〉)

10: end for

11: Reduce(iq, [〈σD1(ĩl), σD1(ĩr)〉, 〈σD2(ĩl), σD2(ĩr)〉, . . . , 〈σDM (ĩl), σDM (ĩr)〉])

12: if UL(̃il) > UL(̃ir) then

13: Il ← Il ∪ {iq}

14: else

15: Ir ← Ir ∪ {iq}

16: end if

17: EMIT(r, 〈Il, Ir〉)

18: return 〈ĩl = Il, ĩr = Ir〉

Given Il = ix and Il = iy, α-Split takes α MapReduce rounds to split ĩ into two less

generalized items. At the jth round, the algorithm takes a partition ĩj (1 ≤ j ≤ α) and

decides for each item iq ∈ ĩj whether to generalize it with Il or Ir. Each mapper reads a

copy of Il, Ir, ĩj and its assigned subset ofD. It then iterates over each item iq ∈ ĩj and

computes the partial support of gen(Il ∪ iq) and gen(Ir ∪ iq) locally (steps 5-10). All

partial supports are then shuffled to the reducers. Each reducer aggregates all partial

supports related to iq and generalizes iq with Il or Ir, based on which generalization
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incurs less UL (steps 11-18). Il and Ir are then sequentially updated to contain all

the items of ĩj (step 19). This fixes the number of MapReduce rounds and hence the

associated parallelism overhead incurred by the split phase does not vary with the size

of the generalized item considered.

Note that the partitions are processed in sequence and the subsets Il and Ir are updated

at the end of each iteration. Also, as the items are assigned to the partitions (we al-

ternatively use the term buckets) in the same order as they appear in ĩ, we have the

following Lemma.

Lemma 1. The split stage of our direct parallel anonymization (MR-Split) is a special

case of α-Split.

Proof. Let ĩ = (i1, . . . , i|̃i|) be a generalized item to split with the pair 〈ix, iy〉 incurring

maximum UL. Dividing the items in ĩ′ = ĩ−〈ix, iy〉 into α partitions gives {̃i1, . . . ĩα}.

The partitions are processed sequentially. At the jth MapReduce round, the subsets Il

and Ir contain the items of all preceding partitions i.e. all the items of {̃i1, . . . , ĩ(j−1)}.

Setting α = |̃i| − 2, the size of each partition will be |̃i−2|
α

= 1. Consider that the

items are assigned to the partitions in the same sequence as they appear in ĩ, we have

ĩ1 = i′1, . . . ĩα = i|̃i′| in which case each partition contains an individual item. At the jth

MapReduce round, the algorithm generalizes i′j to either Il or Ir and the subsets Il and

Ir contain {i1, . . . , i(j−1)} and hence gives the same specialized items as MR-Split.

Lemma 1 shows that α-Split can be used to produce the same specializations of ĩ

as produced by RBAT. But other anonymized solutions can also be produced using

different settings of parameter α.

Example 4. Consider a generalized item ĩ = (a, b, c, d, e, f) to split. Suppose the pair

of items of ĩ incurring maximum UL when generalized together is 〈a, e〉 which gives

ĩ′ = ĩ − 〈a, e〉. Let α = 2 and the number of mappers is set to 2. Let ĩ′ be partitioned

into ĩ1 = {b, c} and ĩ2 = {d, f}.
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During the first MapReduce round, Il = a and Ir = e. Each mapper m gets a data

partition Dm of size |D|
2

and the first bucket ĩ1 = {b, c}, and computes the supports

σDm(a ∪ b), σDm(e ∪ b), σDm(a ∪ c) and σDm(e ∪ c). Suppose that the number of

reducers is set to 2. All the partial supports corresponding to the item b of the bucket

go to the first reducer and those corresponding to c are sent to the other reducer, These

partial supports are then aggregated by the reducers.

The first reducer computes and compares UL(gen(a, b)) and UL(gen(b, e)) and gener-

alizes b with Il = a and the second reducer computes UL(gen(a, c)), UL(gen(c, e)) and

generalizes c with Ir = e. Il and Ir are then updated to contain items from ĩ1 before

moving on to ĩ2. The next MapReduce round repeats the same process over ĩ2 = {d, f}.

Given that Il = {a, b} and Ir = {c, e}, the mappers compute σDm(a ∪ b ∪ d),

σDm(a ∪ b ∪ f), σDm(c ∪ e ∪ d) and σDm(c ∪ e ∪ f). These partial supports are

used by the reducers to compute UL of all the pairs. Suppose that UL(d∪ Il) > d∪ Ir)

and UL(f ∪ Il) > UL(f ∪ Ir), we have ĩl = (a, b) and ĩr = (c, d, e, f) as two less

generalized representations of ĩ.

5.1.2 γ-Check

Recall that the direct parallel implementation of RBAT (discussed in the previous

chapter) checks all PS-rules in one MapReduce round. On the one hand, this incurs

a small parallelism overhead which does not vary with the size of Θ. The algorithm

will also require reading the dataset only once in parallel and hence the I/O cost will

not be large either. But this also limits the communication that can be made among

mappers. MapReduce is mainly designed for batch-processing over a shared-nothing

computing cluster. During a MapReduce round, the only way to perform communic-

ation and synchronization among worker nodes is by using the shuffle phase. It does

not allow determination of unprotected rules (if any) until the whole round is finished.

For example, if p → s ∈ Θ is the first PS-rule and is unprotected, the algorithm can

not determine this at the map stage since there is no communication among mappers
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except to reducers by shuffling partial support for aggregation. So the algorithm will

check all PS-rules in each check phase, even when the first PS-rule is unprotected. This

will incur the extra computational cost of processing all PS-rules, and also increase the

network cost because of shuffling partial supports of Θ rules to reducers.

Alternatively, the rule checking can be performed in the same way as RBAT does (Sec-

tion 3.2). This will require O(|Θ|) MapReduce rounds. At each round, the algorithm

takes a PS-rule and checks for its protection. At the end of each MapReduce round, the

algorithm synchronizes the results of the PS-rules checked so far and decides whether

to check the remaining PS-rules. This will allow the algorithm to stop as soon as the

first unprotected (if any) PS-rule is found but will also incur the I/O and setup cost

proportional to |Θ|.

Observe that sequential rule checking and checking rules in one MapReduce round are

two extremes of tradeoff between parallelism overhead and the extra computational

cost. Sequential rule checking will check the same number of rules checked by RBAT

so does not incur any extra computational cost but it will incur parallelism overhead

proportional to the size of Θ. Performing rule checking using only one MapReduce

round will have the minimum parallelism cost but it will incur maximum computational

cost. To allow a balance between parallelism overhead and the extra computational

cost, we propose a more general approach which allows the number of MapReduce

rounds to be specified and controlled.

Definition 7 (γ-Check). Given a set of PS-rules Θ, γ-Check, 1 ≤ γ ≤ |Θ|, checks Θ

in γ iterations. Each iteration checks |Θ|
γ

PS-rules in Θ.

Using Definition 7, we present the revised version of the check stage of our direct

parallel method (Section 4.3) in Algorithm 5.3. The algorithm partitions Θ into γ

subsets (step 1) and checks the subsets in sequence. The partitions are made in a way

that each subset contains |Θ|
γ

= n consecutive PS-rules of Θ. That is, Θ1 = {p1 →

s1, . . . , pn → sn}, Θ2 = {p(n+1) → s(n+1), . . . , p2n → s2n} and so on. During the

jth MapReduce round, a mapper m loads its assigned data partition Dm (step 4) and
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reads a copy of Θj . It then iterates over each rule p → s ∈ Θj , computing the partial

support of p̃ and p̃∪ s (steps 5-8), where φ(p) = p̃ generalizes p. Note that the support

computation is performed using the original dataset D and the current split cut P̃ , and

in the same way as the check stage of our direct parallel method (MR-Check) does.

The partial supports from all mappers with the associated PS-rules as their keys are

then shuffled to reducers. A reducer aggregates all partial supports pertaining to a PS-

rule and checks the protection conditions specified in Definition 3 (steps 9-13). The

algorithm will not undergo any subsequent rounds, if any rule is found unprotected

in the current round. Hence, γ-Check at maximum checks ( |Θ|
γ
− 1) more rules than

RBAT does, but would require a maximum of γ MapReduce rounds only.

Example 5. Consider checking Θ = {b e → g, a → j, c d → h, f → l} using the

dataset shown in Table 3.1. Let k = 2, c = 0.4 and γ = 2. The first MapReduce will

check first |Θ|
γ

= 2 PS-rules. Let D is divided into two partitions with D1 containing

first three and D2 containing last two transaction records. The first mapper computes

the partial support from the first data partition i.e. σD1(b e) = 2, σD1(b e ∪ g) = 1,

σD1(a) = 3, and σD1(a j) = 1. The second mapper computes the partial support from

D2 i.e. σD2(b e) = 2, σD2(b e ∪ g) = 1, σD2(a) = 2, and σD1(a j) = 0. Assume that

R = 2, the first reducer aggregates the partial support associated with b e → g and

returns false since Conf(b e → g) = 0.5 and the second reducer returns true since

Conf(a → j) = 0.2. The algorithm will not undergo the next MapReduce to check

any further PS-rules. The first PS-rule checked by RBAT is b e → g so our parallel

solution incurs the overhead of checking ( |Θ|
γ
− 1) = 1 extra PS-rule.

Performing rule-checking in some constant number of rounds provides a way to limit

the parallelism overhead to some constant. This also allows to control the trade off

between the cost of performing extra computations and the parallelism overhead. That

is, reducing the number of MapReduce rounds to employ at the rule checking phase

allows more computations to be performed at each MapReduce round and reduces the

synchronization level at the rule checking phase. It also allows to control the amount of
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Algorithm 5.3: γ-CHECK (D, P̃ Θ, k, c, γ)

Input: Original dataset D, Split-cut P̃ , PS-rules Θ, Minimum support k, Maximum

confidence c, Check threshold γ.

Output: True if all PS-rules of Θ are protected and False other-

wise.

1: {Θ1,Θ2, . . . ,Θγ} ← PARTITION(Θ)

2: j ← 1, protected← true

3: while j ≤ γ and protected = true do

4: Map(m, 〈Dm, Θj〉)

5: Dm ← Load the m-th partition of D from DFS

6: for each rule p→ s ∈ Θj do

7: p̃← φ(p)

8: COMPUTE AND EMIT (p→ s, 〈σDm(p̃), σDm(p̃∪ s)〉) using Observation 1

9: end for

10: Reduce(p→ s, [〈σDj(p̃), σDj(p̃ ∪ s)〉, 1 ≤ j ≤M ])

11: σD(p̃) = ΣM
j=1σDj(p̃), σD(p̃ ∪ s) = ΣM

j=1σDj(p̃ ∪ s)

12: if σD(p̃) < k or σD(p̃∪s)
σD(p̃)

> c then

13: EMIT(r, False)

14: end if

15: update protected← false, if any reducer emits False.

memory required at each mapper and reducer in a MapReduce round. That is, using a

small number of MapReduce rounds causes the increased amount of memory required

to hold the map output and the reduce input at each MapReduce round and increasing

the number of MapReduce to be employed at the rule checking phase will produce a

large number of map output pairs to be shuffled to reducers and processed by reducers

at the reduce phase.

Assuming that PS-rules are partitioned in the same sequence as they appear in Θ and

the subsets are checked in sequence, we have Lemma 2.
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Lemma 2. MR-Check and the check phase of RBAT are special cases of γ-Check.

Proof. Let |Θ| be the number of rules to be checked. Setting γ = 1 gives the number

of PS-rules to be checked at each MapReduce round as |Θ|
γ

= |Θ|. In this case, all

the PS-rules are checked in one round only and hence emulates MR-Check. Similarly,

setting γ = |Θ| gives |Θ|
γ

= 1 PS-rule to be checked in a MapReduce round, hence

emulates the sequential rule-checking of RBAT.

Note that each MapReduce round requires to readD into the memory of worker nodes,

therefore setting γ to large values may cause a significant I/O cost, especially when

|D| is large. We will further discuss this in Section 5.2.

From Lemmas 1 and 2, we have Corollary 3.

Corollary 3. MR-RBAT is a more general form of RBAT.

Proof. Consider a generalized item ĩ is to be split. Consider that the pair of items with

maximum UL is chosen as seeds to initialize Il and Ir and let α be set to (|̃i| − 2).

Following Lemma 1, α-Split gives the same specializations as the split phase of RBAT

does. Similarly, let the number of rules to be checked be |Θ|. Let γ = |Θ|, and

following Lemma 2, the algorithm checks the same PS-rules checked by RBAT. Setting

α = (|̃i| − 2) and γ = |Θ| gives a special case of MR-RBAT. Since α and γ be set to

any values up to (|̃i| − 2) and |Θ| respectively, MR-RBAT is a more generalized form

of RBAT.

5.2 Performance Estimation

This section presents an analytical study on the performance of MR-RBAT. We analyse

the cost of MR-RBAT’s split and check phases in terms of data and hardware charac-

teristics. More specifically, we attempt to find the cost of split and check phases with
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respect to datasize, size of a generalized item considered for a split, the number of PS-

rules, the number of mappers M and reducers R. For the sake of simplicity we assume

that we have (M + R) number of physical computing cores to run all M mappers and

R reducers in parallel and the number of map tasks are also the same as the number of

mappers.

The effect of α

In this section, we analyse the cost of α-Split with respect to given parameters. Fol-

lowing the common assumption [38], let tM , tS and tR be the cost of Map, Shuffle

and Reduce phases respectively of a single MapReduce round. The cost of finding the

specialized representation of a generalized item ĩ is given as follows.

Tα = α× (tM + tS + tR) (5.1)

The parallelization overhead of the map phase is constituted by the startup and disk I/O

cost. The disk I/O is performed while reading a data partition into the memory of each

mapper or spilling the intermediate output to the disk. We ignore the spilling cost and

assume that each mapper has enough space to hold the output pairs. Let sm(M) be the

setup cost of M mappers. Given data |D| is read by M mappers in parallel and let ω

be the average time that it takes to read a transaction (of average size in D) from the

distributed file system, the overall parallelism cost by map phase is given in Equation

5.2

tM = sm(M) +
|D|
M
· ω (5.2)

Given α, the map output pairs with the number of distinct keys produced is (|̃i|−2)
α

.

Given R reducers and considering that the map output pairs with the same key must be
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sent to a single reducer, the degree of parallelism at the shuffle stage is determined by

min(R, (|̃i|−2)
α

). Let ξ be the network efficiency constant.

tS =
|̃i| − 2

α×min(R, |̃i|−2
α

)
· ξ (5.3)

During a MapReduce round, the number of pairs sent by each mapper is |̃i|−2
α

. So the

number of pairs sent by M mappers will be M × |̃i|−2
α

. Let s(R) be the start up cost of

R reducers. min(R, |̃i|−2
α

) reducers read M ×
√
|P ′| map intermediate output pairs in

parallel, the overall cost of reduce phase is as given in Equation 5.4.

tR = sr(R) +
M × (|̃i| − 2)

α ·min(R, |̃i|−2
α

)
· ω (5.4)

Substituting the cost of tM , tS and tR in Equation 5.1, we have the overall cost of

α-SPLIT using α iterations to split ĩ.

Tα = α×
[
sm(M) + sr(R) +

|D|
M
· ω +

|̃i| − 2

α×min(R, |̃i|−2
α

)
· (ξ +M · ω)

]
(5.5)

Clearly, a large α, which a direct parallelization of RBAT would imply, can result in

a significant overhead cost due to the setup and data loading requirements. We will

show in Section 5.3 that it is possible to use a small α in split to control overhead

while retaining good data utility. Note that at this stage, the number of computations

performed (effective CPU utilization) during the split stage is ( |D|
M
× (|̃i|−2)) and does

not vary with α.

The effect of γ

This section analyses the cost of γ-Check. Following Equation 5.1, the overhead in-

curred by a single MapReduce round can be calculated as the sum of parallelism cost

at map, shuffle and reduce stages.
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The cost incurred by the map phase is computed using Equation 5.2. Given γ MapRe-

duce rounds, a mapper outputs the partial support of |Θ|
γ

PS-Rules in a single MapRe-

duce round. The number of parallel connections to be utilized during the shuffle phase

is min(R, |Θ|
γ

). The shuffle cost of a single MapReduce round is given as follows.

tS =
|Θ|

γ ×min(R, |Θ|
γ

)
· ξ (5.6)

The total number of intermediate pairs produced at the map stage is M × |Θ|
γ

and

the number of reducers to be utilized for reading map output is min(R, |Θ|
γ

), the cost

incurred by the reduce phase is given as follows.

tR = sr(R) +
M × |Θ|

γ ·min(R, |Θ|
γ

)
· ω (5.7)

From Equations 5.2, 5.6 and 5.7, the overall parallelism overhead of a γ MapReduce

rounds is given as follows.

Tγ = γ ×
[
sm(M) + sr(R) +

|D|
M
· ω +

|Θ|
γ ×min(R, |Θ|

γ
)
· (ξ +M · ω)

]
(5.8)

It is easy to observe from Equation 5.8 that γ also controls the level of parallelism

achieved at the shuffle and reduce stages. For example, setting |Θ|
γ
≥ R allows all

available reducers being effectively utilized at each MapReduce round. This is because

MapReduce forces all the pairs with the same key to be processed by same reducer.

Fixing γ also affects the computational cost of γ-Check. At a rule-checking stage, the

PS-rules in Θ may or may not be protected. Therefore, we analyse the computational

cost of γ-Check under both conditions. Let r be the average rule size. The case when

all PS-Rules are protected, the computational cost is given as follows.

Cγ = |Θ| ×
(
r +

M

min( |Θ|
γ
, R)

)
(5.9)
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Notice that given that all PS-rules are protected, the computational cost at the map is

not affected by γ where as the level of parallelism achieved at the reduce stage depends

on γ.

Now, we analyse the case when one or more PS-rules are unprotected. Suppose that

nth is the first PS-rule found unprotected. In this case, the sequential method checks

the first n rules. When checking rules in γ rounds, suppose this unprotected rule is

found after checking all the rules of the first q rounds and x more rules of the (q+ 1)th

round by MR-RBAT so the number of rules checked by the sequential method can be

represented as follows.

n = q × |Θ|
γ

+ x (5.10)

Where q ∈ [1, γ], x ∈ [0, |Θ|
γ
− 1] and q × |Θ|

γ
≤ n < (q + 1)× |Θ|

γ
. The actual number

of MR rounds the algorithm undergoes γ′ can be calculated as follows.

γ′ =

 (q + 1) if x > 0

q if x = 0

So MR-RBAT incurs the cost of checking (γ′× |Θ|
γ
−n) more rules than the sequential

method. Using the above relation and Equation 5.10, it can be observed that when

x = 0, the number of PS-rules checked by the sequential method and γ-Check is the

same.

5.3 Experimental Evaluation

In this Section, we empirically evaluate our work. Section 5.3.1 presents the scalability

of our algorithm (discussed in Section 5.1) and the data utility achieved, with respect

to different inputs (e.g. |D|, |Θ|) and the associated parameters (e.g. α, γ). Section

5.3.2 empirically tests the cost estimation of MR-RBAT (presented in Section 5.2).
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5.3.1 Evaluation of MR-RBAT

We implemented MR-RBAT to run as a master program (Algorithm 5.1). We used

ARE (average relative error) [72] and UL measures to quantify the utility of anonym-

ized data. ARE quantifies the data utility by measuring the difference between the

support of a query in the original data and the anonymized data. ARE is a widely used

application-specific measure, and is independent of the working mechanism of any an-

onymization method. The UL measure is algorithm-specific, but captures the loss of

information without considering any specific application of the anonymized data. We

measured ARE using a workload of 1000 randomly generated queries, with an average

and maximum size of 6 and 10 items respectively. Unless otherwise specified, we used

the same settings described in the previous chapter, except for |D| = 16M , k = 15

and c = 0.9. This caused RBAT to undergo a large number of split-check iterations

and hence allowed us to study the effect of γ on data utility.

We first tested the effect of α on runtime and on data utility. As can be seen from

Figure 5.1(a), runtime scales largely linearly with respect to α. This suggests that

dividing ĩ into different sizes of buckets had little impact on the outcome of split in each

iteration. This is further confirmed by the ARE and the UL results in Figure 5.1(b)-(c).

When α is very small, many items of ĩ are put into one bucket and assigned to Il or

Ir based on seeds only. This caused items with high ULs to be generalized together.

But setting α > 4, i.e. buckets are smaller enough, the α value only affected runtime

without affecting the utility of anonymized results in a significant way. This shows that

the performance of splitting ĩ can be significantly improved by using a relatively small

α without compromising data utility.

We also observed an interesting relationship between α and split skewness during these

experiments. Let Sα be the split tree constructed by MR-RBAT based on some α, and

ĩ be a non-leaf node of Sα with ĩl and ĩr as its left and right children respectively. We
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Figure 5.1: Effect of α

measure split skewness ξ(Sα) using Equation 5.11.

ξ(Sα) =
∑
ĩ∈Sα

|| |̃il| − |̃ir| ||
|̃i|

(5.11)

It was observed that split skewness decreased as αwas increased. This is because when

α is small, a large bucket of items will be split in a single round based on the seeds

only. If data distribution is such that generalizing most of items in the bucket with one

of the seeds produces a larger UL than the other seed does, then most of the items will

be generalized with one seed, resulting in a skewed split. Skewed splits are more likely
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to make Θ unprotected, resulting in an early stop in split and a higher ARE. This is

confirmed by Figure 5.2, which shows the average skewness at each split. This further

indicates that very small α values are to be avoided.

Figure 5.3 shows how MR-RBAT performed with respect to varying data sizes. For

smaller datasets, it performed no better than RBAT due to the overwhelming parallel-

ization overhead. However, the run-time of MR-RBAT grows much more slowly than

RBAT does, especially when α is small. This demonstrates its scalability to large data-

sets. It is interesting to observe the run-time for α = 32. At this setting, MR-RBAT and

RBAT achieved almost the same performance in terms of runtime. This suggests the

severity of overhead caused by iteration using MapReduce: the gains from parallel pro-

cessing has almost been exhausted entirely by the overhead. Figure 5.3(b) and 5.3(c)

show the ARE and UL results in these experiments. It is expected that setting a smal-

ler α would help performance, but could potentially affect the utility of anonymized

results. However, Figure 5.3(b)-(c) shows that almost identical utility can be achieved

when α = 32. This confirms the feasibility and effectiveness of using α in the split

phase of MR-RBAT to balance performance and utility retention.

We also evaluated the scalability of MR-RBAT at varying cluster size from 2 to 14,
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Figure 5.3: Scalability with respect to Datasize

and at different α values. Figures 5.4(a) and 5.4(b) show the runtime and speedup,

respectively. The relative speedup was measured as the ratio of runtime obtained by

the sequential RBAT implementation, to the runtime of MR-RBAT with a cluster size

whose speedup is measured. Comparing to the direct parallel implementation of RBAT

(discussed in the previous chapter), MR-RBAT performs nearly up to eight times bet-

ter, and hence shows the effectiveness of α towards better resource utilization. It also

achieved a near linear speedup when a smaller cluster (relative to data size) was used

(up to 4 in our experiments). This is because when a small cluster is used, the work-

load assigned to each machine is large. As we increase the cluster size, the workload

on each machine reduces and causes the performance gain. But after a certain point,



5.3 Experimental Evaluation 104

0

6000

12000

18000

24000

30000

36000

42000

48000

54000

60000

R
un

tim
e(

se
cs

)

0 4 8 12 16

No.of Nodes

= 1
= 2
= 8

(a) Runtime vs Cluster Size

0

4

8

12

16

R
el

at
iv

e
Sp

ee
du

p

4 8 12

No. of Nodes

= 1
= 2
= 8

Ideal

(b) Speedup vs Cluster Size

Figure 5.4: Scalability with respect to Cluster Size

the workload on each machine reduces to the level that the setup cost and communic-

ation overhead dominates over the actual processing time. For example, using up to

4-nodes cluster sizes, the speedup is nearly linear whereas using a 14-nodes cluster,

the speedup drops to nearly 1
2

of the ideal (linear) speedup. One reason for this in-

effective resource utilization is the constant data size of 32M . When the cluster size

increased, the computation performed by each mapper became lighter, and the effect of

overhead on runtime became more significant. So adopting a suitable ratio of data size

to cluster size is important to achieving a good speedup. We also partially attribute this

to the MapReduce platform. MR-RBAT uses one reducer only in the first step of α-

SPLIT, and others are used as mappers. Increasing the number of mappers causes more

intermediate output pairs to be fetched and processed by the single reducer, thereby

degrading the speedup.

Next, we varied domain size to see its effect on runtime and the data utility. As shown

in Figures 5.5, MR-RBAT’s runtime was more stable and grew much more slowly than

RBAT did as the domain size increased. On the other hand, the difference in ARE as

well as in UL between RBAT and MR-RBAT increased slightly as the domain size was

increased. This is because MR-RBAT uses a fixed number of MapReduce rounds in

split. Increasing domain size causes more items to be put in one bucket. This causes the
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Figure 5.5: Effect of |I|

items causing high loss of information to be generalized together. Comparing to direct

parallel anonymization (discussed in the previous chapter), the overall performance

and the stability of MR-RBAT’s runtime growth is higher, but this also contributed to

an increased ARE and UL.

We tested the effect of γ on runtime. Note that a γ setting will only affect runtime,

not the utility of anonymized results, so only the runtime results are reported in Figure

5.6. Observe that initially the runtime was decreased when we increased γ (see Figure

5.6(a)). This is because when γ is small, the inefficiency introduced by γ-CHECK is

mainly from the need to check extra, but unnecessary rules. As γ increases, the number
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Figure 5.6: Effect of γ

of unnecessary rules to check decreases, resulting in a better runtime. However, as we

further increase γ, reduction through checking fewer unnecessary rules decreases, but

the cost of setting up more MapReduce rounds increases, making an increase in the

overall runtime.

Increasing the number of rules also caused the runtime of MR-RBAT to increase, but

much more slowly than RBAT did, except for γ = 1, as shown in Figure 5.6(b). When

γ = 1, MR-RBAT checks every rule in Θ and is not efficient for the reason we gave

above. All other settings of γ have resulted better runtime and scalability with respect

to the number of rules to be enforced in anonymization.

Finally, we tested the scaleup of our method. As shown by the results in Figure 5.7,

the response time of MR-RBAT remains nearly constant as we increase the data size

as well as the cluster size. The scaleup was observed to drop by less than 5% and

has improved by nearly 5% comparing to our direct parallel implementation. This is

because MR-RBAT allows to use more than one reducer at the second step of the split

phase whereas the number of reducers at the first step are still restricted to one only.

Therefore, the effective resource utilization is not made at the reduce stage.
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Notation Empirical Value (Seconds)

sm(M) 29.99325

sr(R) 15.331

ω 0.00000379

ξ 0.001058298

Table 5.1: Empirical values for evaluation of cost estimation

5.3.2 Evaluation of Performance Estimation

We used our implementation to test the accuracy of our cost estimation study. To carry

this out, we first computed the numerical values (shown in Table 5.1) for each variable

used in our analytical study and computed the parallelism cost of different settings (1

to 32) of α and γ using Equation 5.5 and 5.8 respectively. The values were computed

by running our implementation twenty times and in controlled settings e.g. to compute

sm(M), we tune our method to run an empty Map-only job and compute the average

of their runtime. The experiments were performed under the same default settings,

presented in Table 4.3.
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Figure 5.9: Evaluation of cost estimation of γ-Check with respect to γ

To check the accuracy of our analytical study, we compared the estimated cost with

the runtime acquired by actually running our implementations of the α-Split (Section

5.1.1) and γ-Check (Section 5.1.2) phases at different α and γ settings respectively.

As shown by our results shown in Figure 5.8 and 5.9, our cost estimation is close to
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the parallelism cost observed, using the implementations of α-Split and γ-Check. This

shows that our analytical study has estimated the cost well, suggesting that relevant

parameters have been considered and the model is reasonably accurate. This is signi-

ficant as this cost model could help set α and γ values, as we have seen in Section 5.2.

However, the estimated cost should not be expected to be an exact replication of the ac-

tual runtime overhead. We attribute this to the level of details captured in our analytical

study. For example, the study does not take into account the overhead which is associ-

ated with system calls for opening and reading local files at the map and reduce stages.

Note that throughout our experimental study, the number of map output pairs was not

high and hence the associated memory requirements were not higher than the memory

space available on each physical node running the map instances. Therefore, the actual

shuffle time of the α-Split and γ-Check implementations does not vary significantly

with varying α and γ settings.

5.4 Summary

In this chapter, we have studied how performance of the direct parallel implementation

of RBAT on MapReduce can be improved. The direct parallel anonymization of RBAT

using data partitioning can incur an overwhelmingly high parallelization cost due to

the iterative operations to be performed. MR-RBAT employs two controls to limit

the maximum number of MapReduce rounds to be used during data generalization,

thereby reducing the overhead and computational cost. This improves the perform-

ance of the algorithm and also causes better resource utilization. We give an analytical

study to help estimate parallelism overhead, and hence the performance of our method.

Our analysis shows that the parameters α and γ may also be used to control memory

requirements in each MapReduce round. This ensures the scalability of our method,

when the generalized item to split consists of a large number of items and the num-

ber of PS-rules to check is large. We also empirically studied the effect of different

settings of these controls and found that MR-RBAT can scale nearly linearly with re-
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spect to large problem instances and the increasing cluster size, while retaining good

data utility. MR-RBAT also performed nearly up to eight times better than the direct

parallel implementation of RBAT, and up to 9 times better than the sequential RBAT

implementation over a cluster of 14 machines in our experiments.
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Chapter 6

Conclusions and Future Work

This chapter summarises our contributions and discusses possible future research dir-

ections based on our current work.

6.1 Research Summary

Transaction data publishing has important applications in different domains, such as

personalized medicine and purchasing trend projection. However, identity of the in-

dividuals associated with transactions and the sensitive information contained in their

transaction records may be disclosed. Set-based generalization methods such as RBAT

prevent such attacks while retaining good utility of data, but they are all centralized and

can not handle large data volumes in a scalable manner. This research has addressed

the problem of scalable transaction data anonymization for large datasets. More spe-

cifically, we have parallelized RBAT using MapReduce. The contributions can be sum-

marised as follows:

• Data Partitioning: Data Partitioning is important to any algorithm that at-

tempts to process a large amount of data in parallel and it is important to the

parallelization of RBAT too. In our work, we proposed a two-way partitioning
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strategy for transaction data. The importance of our partitioning is two fold.

First, our method takes into account the characteristics of transaction data such

as the number and the length of transaction records, the number of distinct items

in the dataset etc. and is independent of the algorithm-specific computations to

be performed on the partitions. Our method may be used to perform different

operations in other transaction data anonymization algorithms e.g. the creation

of the count tree to achieve km-anonymity [114]. This also allows to balance the

workload associated with each partition. Second, our partitioning takes into ac-

count the restriction imposed by MapReduce. For example, MapReduce allows

limited communication among machines and the machines are only allowed to

communicate via network interconnection. Our method creates the partitions

in a way that each partition can be processed independently in parallel to other

partitions and only a small amount of data needs to be communicated among

machines.

• Parallelization of RBAT: We proposed two MapReduce-based methods for large-

scale data anonymization. Our approaches are the first to address the scalability

issues in transaction data anonymization. Our direct parallelization of RBAT

(P-RBAT) uses our partitioning method to design the MapReduce-based paral-

lelization of RBAT and allows to handle large datasets in a scalable way. The

method preserves the processing logic of RBAT while performing the key op-

erations of RBAT using MapReduce. Therefore, it gives the same level of data

utility as RBAT does. The loop-controlled method (MR-RBAT) improves the

response time of P-RBAT and allows to deal with the performance bottlenecks

which arise due to certain limitations of MapReduce. As suggested by the ex-

periments, the algorithm performs up to 10 times better using a cluster of 14

machines at the data utility loss by 5% comparing to its sequential counterpart.

The applicability of our results in terms of scalability, privacy and data utility

were also experimentally evaluated on different data, privacy and hardware char-

acteristics and similar results were achieved [82, 81].
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Our approaches address the limitations of existing MapReduce-based privacy-

preserving approaches outlined in Section 2.4. Both the approaches do not com-

promise the level of privacy provided by RBAT and therefore prevent the dis-

closure of both identity and the sensitive information in large transaction data

while existing approaches do not prevent both types of disclosure and focus on

identity disclosure in relational data.

• α Control: MapReduce does not support iterative computation well and a non-

negligible performance penalty is paid, since data must be reloaded and repro-

cessed in each iteration. We proposed α control which allows to control the

parallelism overhead by specifying the number of MapReduce rounds to employ

for performing iterative computations. Unlike other existing methods (outlined

in Section 2.5), our solution does not require any modifications to the frame-

work itself and does not perform any data elimination which may have largely

affected the level of privacy and utility that can be achieved in the anonymized

data. Our approach also has applications to the parallelization of other iterative

methods. For example, COAT [73] protects a privacy constraint by iteratively

selecting and generalizing an item from the itemset specified in the privacy con-

straint that has minimum support in given dataset. A greedy max-k-cover al-

gorithm [52] addresses the problem of covering a maximum set of elements with

a fixed number of subsets by iteratively selecting a subset from given input that

covers a large number of elements. Different methods for performing operations

from large graphs such as multi-way partitioning [60] also requires iterative pro-

cessing. Using our approach, these methods will allow to control the parallelism

overhead.

• γ Control: Another limitation of MapReduce is the lack of support of early

termination which would allow the processing nodes to cease processing, when

a specific condition holds. Such a limitation is due to the result of limited com-

munication among mappers and reducers in a MapReduce round and introduces
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performance-bottlenecks in various applications. A typical example arises in the

context of rank-aware processing e.g. performing top-k queries [53] in MapRe-

duce will require to process the whole dataset by mappers and will require to

communicate the locally found top-k queries to a single processing node. We

proposed γ control that allows to perform the intended processing in multiple

phases. At each phase, our approach uses a single MapReduce round to perform

a part of the computation and stops when a termination condition is met. This

will create α pauses in a given computation for checking the termination condi-

tion and will produce accurate results without requiring redundant work done on

each processing node.

• Performance Estimation: Setting α and γ to some small value will incur small

parallelism overhead and may cause effective resource utilization by allowing

to perform large number of computations in parallel. But this may also require

a large amount of memory on each mapper to hold map output. Setting these

controls to some large value will reduce such memory requirements but will also

incur large parallelism overhead which may offset the performance gain of par-

allel processing. Our analytical study helps estimating the cost of MR-RBAT

for these parameter settings. Our performance estimation captures the character-

istics of a physical architecture and given problem instance. Our performance

estimation has practical implications. Our experimental study (Section 5.3) con-

firms that the effect of α and γ on parallelism overhead and computational cost

is the same as predicted by our analytical study.

6.2 Future Work

This work has shown that our proposed methods can achieve scalability w.r.t large data

volumes and the available resources. Our work can be extended in various directions:
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• Multiple Specializations: A possible extension to MR-RBAT is to allow mul-

tiple specializations in parallel. Currently our methods preserves the sequence

of key steps of RBAT. That is, starting with the most generalized item ĩ, it splits

a generalized item into two more specialized items ĩl and ĩr and performs the

checking of all PS-rules. Next, the algorithm considers ĩl and ĩr for further spe-

cializations using the split-check iterations in sequence. To make more effective

resource utilization, the specialization of ĩl and ĩr can be made in parallel.

• Data utility estimation: Our analytical study helps estimate the performance

of MR-RBAT for given parameter settings but does not give an indication of how

these parameter settings affect the utility loss of the anonymized data. Some ap-

plications such as biomedical studies [42] require high data utility. Therefore,

choosing the parameter settings that make a good trade off between perform-

ance gain and the utility of anonymized data is important. Our method can be

extended in this direction, to give some approximation guarantees for certain

parameter settings.

• Data Heterogeneity: Our partitioning method assumes that the dataset to be

anonymized only consists of the records containing a set of items only. For

real-world applications, the datasets to be published contain both relational and

transaction attributes [98]. For example, some analytical studies may require

purchasing patterns from customers of certain age groups or gender. Unlike

transactional data, relational data can contain numerical attributes such as age

or average income. Dealing with such heterogenous data containing relational

attributes and set of items requires a different partitioning strategy.
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