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Abstract 

Colorectal cancer (CRC) patients survive and stay free of disease for longer 
after surgery if their primary tumours were infiltrated with an increased 
density of T cells. Studies of breast tumours and melanoma have also shown 
that the presence of specialised blood vessels named high endothelial 
venules (HEVs), within tumours are associated with a high density of 
infiltrating T cells and a positive prognosis. It is therefore possible, that 
presence of HEVs within CRC is associated with a high density of infiltrating 
T cells and a good patient outcome.  
To test this hypothesis, primary tumours, resected from sixty-two CRC 
patients were analysed for the presence of HEVs. These were studied with 
respect to the numbers and distribution of intra-tumoural T cells as well as 
tumour stage and patient survival. The results showed that HEV developed 
in response to CRC but were found within the extra-tumoural area and not 
the tumour mass. HEVs were also always present within a concentration of T 
and B cells, namely lymphoid aggregates which resemble ectopic lymphoid 
structures (ELS). These ELS were associated with more advanced disease 
and hence did not necessarily identify patients with a better prognosis.  
 

Recent studies have suggested that the type of T cells infiltrating the 
tumours is a determinant for patient outcome indicating that not all T cells 
confer benefit. IL-17A producing T cells are thought to drive CRC 
development. Moreover, our laboratory has previously shown that detection 
of a CEA (Carcinoembryonic antigen)-specific T cell response by in vitro 
secretion of IFN-γ is associated with tumour recurrence whereas the 
opposite is true for the 5T4 tumour antigen. This study therefore set out to 
determine whether IL-17A producing T cells are present at higher 
frequencies in CRC compared to normal bowel and whether IL-17A-
producing T cells are CEA-specific.   
 
The experiments revealed that IL-17A-producing T cells are present at a 
higher frequency within CRCs, but the prevalence of Th17 responses 
specific for 5T4 was slightly higher than for CEA, implying that IL-17A 
secretion by CEA-specific T cells was not responsible for the tumour 
recurrence. Tumours from CEA-responsive patients were less immunogenic 
than those from CEA non-responsive patients reflecting the aggressiveness 
of the tumour.  
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1. Introduction 

1.1 Colorectal cancer 

1.1.1 Colorectal cancer incidence 

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers in 

the Western world affecting 1.2 million individuals with 1 million new cases 

emerging every year (Jemal et al., 2011). It accounts for 600 000 deaths per 

annum worldwide and in developed countries it is the second and third most 

diagnosed tumour amongst women and men, respectively (Jemal et al., 

2011). Treatment often involves a colectomy, surgically removing the primary 

tumour from the affected colon, but despite such efforts 40 – 50 % of the 

patients still relapse and die after tumour excision.  

1.1.2 Colorectal cancer staging 

Colectomy specimens are histologically analysed and the CRC staged 

according to bowel muscle infiltration of the tumour and spread to adjacent or 

distant lymph nodes (LN). The Dukes’ classification (Dukes’ A to D) 

commonly used in the Great Britain, highly correlates with patient survival 

rate ranging from 90 to 10% according to Dukes’ A or Dukes’ D classification, 

respectively. Even though Dukes’ D was not initially proposed by Dukes’ as a 

disease stage, it is routinely used to indicate tumours that have metastasised 

to distant sites of the body. Dukes’ A tumours have penetrated the mucosa 

and submucosa layers. Dukes’ B1 and B2 have spread into and through the 

muscularis propria of the bowel wall, respectively. Dukes’ C1 is equivalent to 

B1 but the tumour has also spread to the regional LN and C2 is equivalent to 
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B2 but it has spread to the regional and apical LN (a group within the axillary 

LN) whereas Dukes’ D have invaded other parts of the body (Dukes, 1949; 

1932). The TNM classification is also routinely used to determine the extent 

of tumour growth and LN invasion. T refers to the actual tumour size, N 

refers to LN involvement and M is related to the development of distant 

metastasis (Figure 1.1).  

 

 

 

Figure 1.1 Colorectal cancer staging according to Dukes’ or TNM classification. 
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1.1.3 Colorectal cancer aetiology 

Colorectal cancer is usually described as hereditary or sporadic, however the 

latter form accounts for the majority of cases. Risk factors associated with 

the development of CRC encompass older age, male gender, having a 

familiar history of CRC, diabetes, inflammatory bowel disease (IBD), smoking, 

being obese and drinking alcohol in excess. Evidence also supports the 

association with increased red meat consumption (Brenner et al., 2014).  

1.1.3.1 Sporadic colorectal cancer 

The majority of CRC cases (approximately 85%) arise through the adenoma-

carcinoma pathway. This pathway involves the accumulation of a series of 

mutations in oncogenes and tumour suppressor genes, which over many 

years may lead to the development of a tumour (Raskov, 2014). Benign 

tumours that originate from glands and form within epithelial tissue are 

considered adenomas whereas a carcinoma corresponds to a malignant 

tumour with the potential to penetrate nearby tissue. 

1.1.3.1.1 p53 

The main function of the p53 protein is to detect and signal to caretaker 

genes cell damage including DNA damage so that such damage can be 

repaired. p53 stops cell division at the G1 phase so that cell repair can 

proceed. However if the cell damage is too severe p53 is involved in 

promoting apoptosis avoiding further damage and the replication of defective 

cells. Mutations in the p53 gene are detected in approximately 75% of all 

invasive CRC (Raskov, 2014). 
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1.1.3.1.2 Adenomatous polyposis coli 

Mutations in the adenomatous polyposis coli (APC) gene can be detected in 

about 80% of adenomas and carcinomas of the colon. The APC protein is 

involved in communication between colonocytes through cadherins. In order 

for APC to exert its proper function it binds β-catenin, GSK3-β and the 

cytoplasmic domain of cadherin therefore allowing the junctions to function 

adequately. APC is also involved in the wingless/integration1 (Wnt) signalling 

pathway via its interaction with β-catenin. By binding β-catenin in the 

cytoplasm APC prevents β-catenin translocation into the nucleus and Wnt-

pathway activation exacerbating proliferation and interfering with apoptosis 

and differentiation (Raskov, 2014). Mutations within APC lead to the 

formation of a shorter protein which will not bind β-catenin, allowing 

translocation of β-catenin into the nucleus and Wnt-pathway activation. 

1.1.3.1.3 K-ras 

K-ras is a GTPase and is involved in signal transduction upon ligand binding 

to the epithelial growth factor (EGF) receptor. Upon EGF receptor 

engagement K-ras acts downstream to activate genes involved in anti-

apoptosis, proliferation, cell survival, metastasis and angiogenesis. 30% to 

50% of all CRC patients have a mutation in the K-ras protein. Mutations in 

the BRAF protein are also implicated in the development of CRC as this is 

also involved in signalling downstream of K-ras upon EGF receptor activation 

(Raskov, 2014).  
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1.1.3.2 Hereditary forms of Colorectal cancer 

Familial CRC development accounts for approximately 20% of all CRC cases. 

Lynch syndrome and familial adenomatous polyposis (FAP) are the primary 

and secondary, respectively, causes of inherited CRC development (Valle, 

2014).  

1.1.3.2.1 Lynch syndrome 

Lynch syndrome (LS) arises as a consequence of a germline mutation in 

mismatch repair (MMR) genes. As the main function of MMR genes is to 

repair mutations, deletions or other abnormalities, their malfunction results in 

an increased number of mutated genes. Inactivation of MMR proteins such 

as MLH1, MLH2, MLH6 and PMS2 leads to microsatellite instability (MSI) 

and a 80% increased risk of developing CRC (Raskov, 2014; Valle, 2014).  

1.1.3.2.2 Familial adenomatous polyposis 

Familial adenomatous polyposis (FAP) accounts for roughly 0.2% to 1% of 

all the CRC cases worldwide. Even though some forms develop as a 

consequence of de novo mutations, the majority of the cases (80%) are a 

result of an autosomal dominant trait that arises as an outcome of mutations 

within the APC gene. FAP leads to the development of colonic adenomatous 

polyps throughout life which if left untreated leads to the development of 

CRC (Valle, 2014).  

1.1.3.3 Microsatellite instability in CRC    

Up to 15% of all CRCs show high microsatellite instability (MSI-H). Around 

3% of MSI-H CRCs arise due to LS whereas around 12% fall into the 

sporadic CRC category. Microsatellites are unique polymorphic non-coding 
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nucleotide sequences present in every cell in each individual. Microsatellites 

are three to hundred repeats of two to four nucleotides which are unique 

amongst every individual. Deficiency in any of the MMR proteins leads to a 

loss of function making them unable to repair shorter or longer microsatellites 

wrongly created because of replicative errors thus leading to MSI (Boland 

and Goel, 2010; Raskov, 2014). MSI+ CRCs have distinct characteristics 

compared to other CRCs. They show high lymphocytic infiltration, poor 

differentiation, tend to be proximal e.g. right-side of colon; and have a 

mucinous appearance. Usually patients with a MSI+ CRC respond differently 

to therapy and have a better prognosis (Buckowitz et al., 2005). 

1.1.4 Microbiota and the development of colorectal cancer 

Recent evidence suggests that microbial products derived from both 

commensal and pathogens contribute to protection against and/or 

development of CRC. Also, as different microorganisms express different 

pattern associated molecular patterns (PAMPs) they elicit specific pro/anti-

inflammatory responses which may impinge on tumorigenesis. The 

microbiota plays an important role at maintaining gut homeostasis and 

preventing dysbiosis as is observed when Clostridium difficile outgrows the 

gut commensals after antibiotic treatment (Keku et al., 2015). In an 

experiment designed to understand the role of bacteria in the development of 

colon cancer in TGF-β deficient mice, Engle et al., crossed a Tgf-β-/- with 

RAG (recombination-activating gene) 2-/- mice and observed the formation of 

adenocarcinomas. However, equivalent but germ-free (GF) animals were 

absent of any inflammatory bowel lesions or adenocarcinoma. Re-

introduction of the GF animals into the same housing facilities as the mice 



 7 

developing colon cancer led to the development of adenocarcinomas in the 

GF mice. Helicobacter hepaticus was identified as the pathogen present in 

animals developing adenocarcinomas but absent in cancer-free mice (Engle 

et al., 2002).  

Microbiota is closely linked to diet as fat, protein, fibre and carbohydrates 

present in everyday food are broken down and processed by the gut bacteria 

generating by-products which could be harmful and pro-tumorigenic. Gut 

commensals are of extreme importance when it comes to processing 

complex carbohydrates and fibre but the by-products generated during these 

processes may lead to the formation of reactive oxygen species (ROS), and 

secondary bile acids which can aid DNA damage and genetic mutations 

further promoting inflammation and cancer development (Keku et al., 2015). 

Short chain fatty acids (SCFAs) such as acetate, propionate and butyrate are 

generated as a result of carbohydrate and dietary fibre fermentation. 

Butyrate in particular has been associated with protection against CRC as it 

inhibits the growth of tumour cells, promotes apoptosis and maintains a low 

level of inflammation within the gut (Keku et al., 2015).  

Inflammation is closely linked to CRC and the presence of colonic regulatory 

T cells may serve a crucial homeostatic function in limiting excessive 

proliferation and expansion of pro-inflammatory T cells in the gut. Smith et al. 

observed that animals kept in GF conditions have a lower number of CD4+ 

cells expressing Foxp3, a transcription factor characteristic of regulatory T 

cells (Tregs). Addition of propionate, butyrate and acetate to the animals’ 

drinking water augmented the frequency and suppressive capacity of colonic 

Tregs (Smith et al., 2013). This indicates that microbiota and their byproducts 
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are directly linked to the level and function of colonic Tregs and could 

influence colonic inflammation and tumour formation.             

1.2 T cell subsets  

The first and immediate response to the presence of a foreign antigen is 

mounted by the innate immune system. This arm of the immune system 

consists of neutrophils, eosinophils, basophils, dendritic cells (DCs), 

macrophages and natural killer (NK) cells. Such cells recognise the foreign 

antigen in a non-specific manner, engulfing and destroying it by the release 

of toxic chemicals and degradative enzymes. In order to sense foreign 

organisms these cells are equipped with pattern recognition receptors 

(PRRs) which recognise PAMPs, consisting of lipoteichoic acid on the cell 

wall on Gram-positive bacteria, lipopolysaccharide on the outer membrane of 

Gram-negative bacteria, flagellin and double stranded RNA amongst others. 

PRRs detect features usually not present within the mammalian body 

triggering a cascade of events, which often results in pathogen clearance.  

A delayed but more specific response is also subsequently mounted by the 

adaptive immune system. B and T lymphocytes are responsible for such 

responses. B cells can either act as antigen-presenting cells (APCs) after 

antigen capture, ingestion, digestion and presentation on their surface in the 

context of major histocompatibility complex (MHC) or they can also 

recognise the antigen through the B cell receptor leading to plasma cell 

proliferation and antibody secretion. The other lymphocyte of the adaptive 

immune system, the T lymphocyte, expresses a T cell receptor (TCR) on its 

cell surface that recognises peptides bound to MHC molecules. Binding of 

the TCR to its cognate peptide / MHC complex leads to a cascade of 



 9 

reactions depending on the subtype of T cells, cytokine milieu and the co-

stimulatory signals provided. The co-receptors CD4 and CD8 distinguish T 

helper and cytotoxic T cells, respectively. CD4+ T cells or T helper cells boost 

the immune response by macrophage activation, induction of T cell 

proliferation and antibody secretion. The TCR present on CD4+ T cells 

interacts with MHC II/peptide complexes whereas the TCR present on CD8+ 

T cells interact with MHC I / peptide complexes.  

Even though Th1 and Th2 cells are the most well understood helper T cells, 

additional T helper subsets have been recently described such as Th9, Th17, 

Th22, Tregs and follicular T cells (Tfh). Tregs, Th1 and Th17 cells are 

thought to be the subsets most relevant to CRC and will therefore be 

described in detail. 

1.2.1 Th1 cells  

Th1 alongside Th2 cells were the first helper subsets to be described in a 

landmark study from the Coffman group (Mosmann et al., 1986). 

Engagement of TCR on a naive T cell with peptide/MCH II in the presence of 

IL-12, IFN-γ and IFN-α leads to CD4+ T cell activation and differentiation into 

a Th1 phenotype. Relocation of activated Th1 cells from blood to the site of 

infection and secretion of their signature cytokines: IFN-γ, TNF-α, 

lymphotoxin-α (LT-α) and IL-2 can potentiate their effector functions. IL-2 is 

essential for T cell survival and proliferation and helps activate cytotoxic T 

lymphocytes (CTLs) whereas IFN-γ promotes macrophage activation.  

Activation of naïve CD4+ T cells into Th1 cells is highly dependent on IFN-γ 

and IL-12 as these two cytokines activate STAT1 and STAT4, respectively. 
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Activation of both STAT1 and STAT4 is essential for the induction of Tbx21 

(T-box transcription factor) also known as T-bet which binds to the IFN-γ 

promoter inducing its secretion.  

 

Chemokine receptors located on the cell surface can modulate cell 

recruitment based on their specificity and local chemokine environment at 

the inflammatory site. CXCR3 and CCR5 are the main chemokine receptors 

present on classic Th1 cells (Annunziato et al., 2014).  

CXCR3 binds to CXCL9, CXCL10 and CXCL11 allowing migration of Th1 

cells to the site of inflammation and penetration into affected tissues (Groom 

and Luster, 2011). CCR5 binds to CCL3, CCL4 and CCL5 and is expressed 

on memory T cells. CCR5 engagement enhances T cell activation and 

increases proliferation of antigen specific T cells (Barmania and Pepper, 

2013). Therefore expression of chemokine receptors on the surface of T cells 

is important for trafficking and homing to inflammatory sites.  

1.2.2 Th17 cells 

1.2.2.1 Th17 cells development 

Th17 cells are a distinct subset of T helper cells first discovered in mice in 

2005 (Aggarwal et al., 2003; Harrington et al., 2005; Iwakura and Ishigame, 

2006; McKenzie et al., 2006; Park et al., 2005). Their main role is to protect 

against fungal and extracellular bacterial infections, but studies have 

demonstrated that they also play a role in the development of autoimmune 

conditions. The initial cues that inferred the existence of a fourth helper T cell 

subset came from studies carried out on models of autoimmune diseases 
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thought to be mediated by Th1 cells. In a series of in vivo studies in mice, 

Cua and colleagues demonstrated that IL-23 and not IL-12 signalling is 

crucial for the development of experimental autoimmune encephalomyelitis 

(EAE). To demonstrate this, the group took advantage of the shared subunit 

between both cytokines, p40. To determine the importance of each cytokine 

in the development of the disease they used animals either lacking the p19 

subunit, exclusive to IL-23, the p35 subunit, exclusive to IL-12 or the p40 

subunit necessary for the formation of both cytokines. To induce EAE, the 

murine model for multiple sclerosis (MS), animals were immunised with the 

encephalitogenic myelin oligodendrocyte glycoprotein 35-55 (MOG) peptide. 

Unexpectedly, animals resistant to the development of EAE were the ones 

lacking the IL-23 cytokine and not IL-12 (Cua et al., 2003). Injection of the IL-

23 cytokine into the central nervous system of p19-/- and p40-/- restored the 

EAE phenotype (Cua et al., 2003). To further understand why the IL-23 

cytokine was related to the onset of EAE, IL-23 in parallel to IL-12 was 

injected into the peritoneal cavity of mice and mRNA levels assessed. IL-23 

but not IL-12 induced the expression of IL-1β and TNF mRNA in 

macrophages (Cua et al., 2003). Such findings supported the idea of a fourth 

subset of helper T cells with important and distinct effector functions.  

Differentiation and maintenance of human Th17 cells often but not 

exclusively occurs in the constant presence of low levels of TGF-β (Bettelli et 

al., 2006; Y. K. Lee et al., 2009; Veldhoen et al., 2006) in combination with 

IL-21, IL-6 and IL-23 or IL-6 and IL-21. Any combination of these cytokines in 

addition to TCR engagement leads to the initial commitment to a Th17 

phenotype. Further exposure to IL-1β and IL-21 produced by the Th17 cells 
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themselves and IL-6 leads to additional amplification and upregulation of the 

IL-23 receptor (Figure 1.2). Albeit generally accepted as essential, TGF-β 

may not be as important as initially discussed for the development of Th17 

cells. The presence of Th17 cells can still be detected in TGF-β free systems 

and animals still develop EAE (Ghoreschi et al., 2010). It is possible that 

TGF-β plays a role in the initial differentiation of Th17 cells by inhibiting the 

development of other T cell lineages but is not critical for its effector functions. 

Moreover stimulation of activated T cells with IL-1β, IL-6 and IL-23 also drove 

the development of Th17 cells (Ghoreschi et al., 2010; Muranski and Restifo, 

2013). The heterodimeric cytokine IL-23 secreted by APCs and tissue 

resident macrophages becomes active when the p19 subunit comes together 

with the p40 subunit. Engagement of IL-23 with its receptor on the cell 

surface of a pre-committed Th17 cell leads to a final differentiated and stable 

effector phenotype capable of secreting IL-17A, IL-17F, IL-21 and IL-22 

(Bettelli et al., 2006; Veldhoen et al., 2006). The transcription factor retinoic 

acid-related orphan receptor γ thymus (RORγt) regulates IL-17A transcription 

and is required for Th17 differentiation (Ivanov et al., 2006) as IL-17 

production by CD4+ cells from mice lacking rorγt reduced drastically 

compared to wild-type (WT) mice. Another key transcription regulator in the 

differentiation of Th17 is STAT3. By creating a STAT3 knock-out (KO) mouse 

under the control of cre recombinase Yang et al. were able to knock out 

STAT3 in a controlled manner.   
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Figure 1.2 Differentiation and maintenance of human Th17 cells. Initial commitment of a 
naïve T cell into a Th17 cell involves TCR engagement in the presence of cytokines such as 
IL-6, IL-21 and low levels of TGF-β. The role of TGF-β in the initial commitment of naïve T 
cells is still controversial but it is believed that low TGF-β levels inhibit signalling through Th1 
and Th2 – associated transcription factors thus potentiating Th17 cell development. Upon 
initial Th17 commitment, cells amplify in the presence of IL-1β, IL-6 and IL-21 which will lead 
to the upregulation of the IL-23 receptor on the cell surface. IL-23/IL-23R engagement leads 
to further expansion and stabilisation of the Th17 cell phenotype. Effector Th17 cells mainly 
secrete IL-17A but also IL-17F, IL-21 and IL-22. 

 

 

After activation of STAT3-deficient naïve CD4+CD25-CD62LhiCD44lo T cells 

in the presence of a cocktail of Th17 promoting cytokines, RORγt expression 

and secretion of IL-17A were reduced. It was further demonstrated that IL-6 

and STAT3 activation are required for upregulation of IL-23 receptor 

expression of the surface of pre-committed Th17 cells (X. O. Yang et al., 

2007). Other transcription factors involved in Th17 cell differentiation are 

described in Table 1.1. 
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Table 1.1 Transcription factors involved in Th17 cell differentiation. Table created 
based on (Brüstle et al., 2007; Kurebayashi et al., 2013; Malhotra and Kang, 2013; Schraml 
et al., 2009; Tanaka et al., 2014; Veldhoen et al., 2008; F. Zhang et al., 2008). 

 

 

 

CCR6, a chemokine receptor for the CCL20 ligand, that allows T cells to 

home to mucosal tissues and to the skin was found to be expressed on 

memory T cells producing IL-17A in the peripheral blood of healthy donors. 

(Acosta-Rodriguez et al., 2007). RORC mRNA, the human ortholog of mouse 

RORγt, was also highly expressed in activated CCR6+ T cells (Acosta-

Rodriguez et al., 2007). Th17 cells are therefore widely characterised as 

CD4 and CCR6 positive T cells expressing the IL-23 receptor and secreting 

the IL-17A cytokine.  

 

 

Transcription 
factor Function/Effects upon manipulation References

IRF Cooperates with STAT3 in upregulation of RORγt Brüstle et al. 2007

BATF Batf-/- mice produced reduced levels of IL-17A and IL-22 Schraml et al. 2009

AHR
Addition of FICS, a high affinity endogenous AHR ligand, to 
naïve T cells led to high levels of Il17a, Il17f and Il22 mRNA 
expression

Veldhoen et al. 
2008

SMADs

SMAD2 can interact with RORγt and increase production of 
IL-17A whereas SMAD2/SMAD3 collectively bind to Foxp3 
inhibiting RORγt expression. Production of IL-17A is deficient 
in animals lacking SMAD2 

Malhotra and Kang 
2013

c-Maf/ Sox5
C-Maf and Sox5 form a complex which acts downstream of 
STAT3 and upstream of RORγt binding to its promoter and 
mediating activation

Tanaka et al. 2014

Hypoxia-inducible 
factor 1 (HIF-1) 

HIF-1α promotes Th17 differentiation by binding to Foxp3 
and inducing its proteosomal degradation 

Kurebayashi et al. 
2013

Runx1
It binds to rorγt and it enhances it transcriptional activity but it 
forms a complex with RORγt which binds to Il17 increasing 
its transcription 

F. Zhang et al. 
2008
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1.2.2.2 Th17 cells, IL17 and IL-22 in health and disease (excluding 

cancer) 

IL-17A is part of a family of six cytokines, A through F and the IL-17F amino 

acid conformation is 55% similar to IL-17A (Tesmer et al., 2008). The IL-17A 

cytokine is the most well studied cytokine of this family and from now on it 

will be mentioned as IL-17. IL-17 plays an important role in the interplay 

between the innate and adaptive immune systems. It is involved in 

angiogenesis and in recruitment of a multitude of cells necessary for an 

effective immune response. IL-17 has several functions: 1) acts on T cells to 

augment their proliferation, 2) attracts neutrophils to sites of infection, 3) 

promotes the expression of CXC chemokines and G-CSF, 4) recruits and 

enhances survival of macrophages, 5) induces pro-inflammatory cytokines 

such as IL-6, TNF-α and IL-1β, and 6) increases the production of matrix-

metalloproteinases, nitric oxide and the production of prostaglandin E2 

(PGE2) (Bettelli et al., 2008; Tesmer et al., 2008; Torchinsky and Blander, 

2010). 

Even though Th17 cells are now under great scrutiny due to their 

involvement in autoimmune conditions and cancer, their primary role appears 

to be as a defence mechanism against extracellular bacteria and fungi 

against which Th1 and Th2 cells are less effective. These findings are 

relevant to human infections as patients suffering from chronic 

mucocutaneous candidiasis (CMC), a condition characterised by the 

constant infection with Candida albicans (C. albicans), produce extremely 

low levels of IL-17 and IL-22 upon ex vivo stimulation with the yeast (Eyerich 

et al., 2008). Also mutations in the STAT3 gene resulting in the autosomal-
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dominant hyper-IgE syndrome or Job’s syndrome renders patients highly 

vulnerable to both fungal infections with C. albicans but also with 

Staphylococcus aureus (S. aureus). Further studies have shown that upon 

stimulation of patient’s peripheral blood mononuclear cells (PBMCs) with 

both C. albicans and S. aureus these patients lack the ability to generate 

specific Th17 responses against these pathogens (Milner et al., 2008). 

IL-22 produced by Th17 cells or other cells of the innate immune system is 

thought to be important in the defence against bacteria at the epithelial 

barrier level as its receptor (IL-22R) is expressed on epithelial cells namely of 

the human and mouse gastrointestinal tract. Inoculation of IL-22 KO mice 

with Clostridium rodentium, an enteric mouse pathogen, led to weight loss 

and extreme mortality compared to WT mice. IL-22 also upregulates the 

secretion of antimicrobial proteins such as haptoglobin, SAA3, 

lactotransferrin, RegIIIβ, RegIIIγ, S100A8 and S100A9 from/by colonic 

epithelial cells (Zheng et al., 2008).    

1.2.2.2.1 Inflammatory Bowel Disease (IBD) 

Ulcerative colitis (UC) and Crohn’s disease (CD) are the two main types of 

IBD affecting humans. Both are chronic diseases of the intestinal tract and 

can greatly disrupt the affected individuals’ daily life by causing bleeding, 

diarrhoea and abdominal pain. A genome-wide association study performed 

in a cohort of European individuals reported that single nucleotide 

polymorphisms in the il-23r allele was associated with susceptibility to IBD in 

some cases (Duerr et al., 2006; Maddur et al., 2012). UC and CD patients 

show increased infiltration of Th1 and Th17 cells and their associated 

cytokines in the intestinal mucosa and serum (Maddur et al., 2012).  
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1.2.2.3 Th17 cells in the intestine 

The human gastrointestinal tract is a key site of microbial-host interactions 

both during homeostasis and disease as is populated by a vast number of 

microorganisms in what forms the microbiome (Ley et al., 2006). The 

presence of normal flora can directly influence the generation of Th17 cells 

by modulation of IL-23 levels. The levels of microRNA-10a (miRNA-10a), 

known to suppress IL-23, are elevated in GF animals but return to a low level 

upon colonisation with normal flora (Chewning and Weaver, 2014). 

Segmented filamentous bacteria (SFB) are a group of spore-forming bacteria, 

anaerobic and gram-positive which reside in the ileum of mice under 

homeostasis. Secretion of IL-22 and IL-17 is absent in Swiss-Webster GF 

mice but highly abundant after colonisation with SFB. Such colonisation 

induces expression of RORγt specifically in CD4+ T cells demonstrating that 

Th17 differentiation can be induced by SFB. The secretion of both IL-17 and 

IL-22 by CD4+ T cells, barely detected in the small intestinal lamina propria 

infiltrating lymphocytes in GF conditions, increases by approximately 3-fold 

after colonisation with SFB (Ivanov et al., 2009). 

In a follow-up study in 2014 the group elucidated the mechanisms involved in 

the generation of a Th17 effector phenotype in response to SFB. Th17 cells 

were completely absent in mice lacking MHC II even after SFB colonisation. 

Furthermore, specific expression of MHC II on DCs is essential and sufficient 

in order to induce Th17 cell differentiation as mice lacking MHC II expression 

on DCs could not develop a Th17 response even after colonisation with SFB 

(Goto et al., 2014). 
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1.2.2.4 Th17 plasticity 

The helper T cell subsets have historically been considered terminally 

differentiated lineages. However the ability of Tregs and Th17 cells to alter 

their phenotype later on during their maturation stage has challenged such 

perspective as these two lineages appear to possess an aptitude to 

transdifferentiate from one subset of helper T cells into another.  

Lee et al. reported in 2009 the ability of Th17 cells to start secreting IFN-γ in 

the presence of IL-12. Interestingly, secretion of IFN-γ was accompanied by 

the down regulation of RORγt, RORα, ll-17A and Il-17F and upregulation of 

genes associated with a Th1 signature (Y. K. Lee et al., 2009). It 

subsequently become apparent that committed Th17 cells can convert into 

Th1 cells and have therefore been named non-classical Th1 cells. Non-

classical Th1 cells have the ability to secrete IFN-γ but express both RORγt 

and T-bet and the chemokine receptors CCR6 and CXCR3. The origins and 

functions of non-classical Th1 cells are yet to be fully understood. Thus far, 

non-classical Th1 cells are believed to arise from an IFN-γ/IL-17A double-

producing cell. This IFN-γ/IL-17A double-producing cell (Th17/Th1 cell in 

Figure 1.3) differentiates from a mature Th17 cell in the presence of IL-12 

and at this developmental stage it secretes IFN-γ and IL-17 and expresses 

RORγt and T-bet (Bailey et al., 2014). One study has proposed the usage of 

the CD161 marker to distinguish between classical and non-classical Th1 

cells, so in the future it may be possible to distinguish IFN-γ secreting cells 

that originate from Th17 cells (Cosmi et al., 2008). 
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In an extremely informative study Gagliani and colleagues asked if Th17 

cells could experience functional and genetic reprogramming to become a 

distinct T helper subset. The group observed that upon inflammation, T cells 

that had secreted IL-17A at some stage during maturation acquired 

characteristics of Tr1 cells. These Tr1exTh17 cells secreted IL-10, expressed 

low levels of RORγt, and were LAG-3+ and CCR6-. Additionally, pathogenic 

Th17 cells were injected in a RAG-/- mouse in order to monitor the 

development of colitis. Injection of pathogenic Th17 led to the development 

of colitis but injection of pathogenic Th17 cells in combination with Tr1 or 

Tr1exTh17 cells prevented the development of colonic inflammation (Gagliani 

et al., 2015).  

In another study by the Sallusto group, Th17 cells were shown to secrete 

different cytokines depending on the pathogen used to prime the response 

both in vitro and in vivo. Human naïve T cells primed with C. albicans in vitro 

secreted both IL-17 and IFN-γ whereas in contrast naïve T cells primed with 

S. aureus secreted high levels of IL-17 and IL-17 secreting cells could also 

secrete IL-10 upon activation (Zielinski et al., 2012). This finding suggests 

that different microorganisms have the capacity to elicit distinct helper 

responses. Co-secretion of IFN-γ or IL-10 by Th17 cells may have a 

beneficial/harmful effect on disease clearance on addition to the downstream 

effects caused by IL-17A. Th17 cells can also acquire other cell lineages 

phenotypes and have also been shown to acquire Tfh features (Peters et al., 

2011).  
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Figure 1.3 Schematic illustrating the plasticity of Th17 cells. Precursors of Th17 cells 
express the chemokine receptor CCR6 and the transcription factor RORγt. The presence of 
IL-1β and IL-6 within the microenvironment leads to upregulation of the IL-23 receptor, 
maturation of the Th17 phenotype and secretion of IL-17. Maintenance of Th17 cells can be 
achieved by IL-23 signalling. In the presence of IL-12, Th17 cells start secreting IL-17 and 
IFN-γ and CXCR3 is also upregulated on the surface of such cells (Th17/Th1). Continuous 
IL-12 signalling leads to IFN-γ expression alone but both T-bet and RORγt transcription 
factors are expressed resulting in a non-classical Th1 cell. Th17 cells can also adopt a 
regulatory phenotype upon stimulation with a high concentration of TGF-β. Th17 cells can 
either become Treg if they express Foxp3 and secrete TGF-β and IL-10 or Tr1 cells if they 
only secrete IL-10 and express the aryl hydrocarbon receptor. Based on (Bailey et al., 2014; 
Gagliani et al., 2015; Voo et al., 2009). 
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1.2.3 Regulatory T cells (Tregs) 

1.2.3.1 Discovery of Tregs 

Studies performed by Sakaguchi and Mason convincingly showed the 

existence of a distinct T cell population responsible for suppression of auto-

reactive cells (Fowell and Mason, 1993; Powrie and Mason, 1990; Sakaguchi 

et al., 1985). In 1995 Sakaguchi and colleagues showed that CD25 was a 

marker for such suppressive cells in mice. Depletion of CD4+CD25+ cells 

caused a series of autoimmune diseases, which could be prevented if the 

animals were re-inoculated with CD4+CD25+ cells (Sakaguchi et al., 1995). 

CD25 is the α chain of the IL-2 receptor and removal of the thymus in 

recently born mice eliminates the CD4 sub-population constitutively 

expressing CD25, resulting in development of autoimmunity in the 

thymectomised mice. However, injection of these mice with CD4+CD25+ but 

not CD4+CD25- T cells prevents the development of autoimmune disease 

(Asano et al., 1996). Similarly, Read et al. showed that transfer of 

CD45RBhigh cells into immunodeficient mice caused colitis but that this was 

prevented by injection of CD4+CD25+ T cells but not CD4+CD25- T cells from 

the CD45RBlow population (Read et al., 2000).  

 

Studies of scurfy mouse, which present with a pathology caused by 

uncontrolled CD4+ T cell proliferation with exacerbated cytokine production, 

revealed that these animals have a mutation within the Foxp3 gene 

generating a non-functional Foxp3 protein; a member of the 

forkhead/winged-helix family of transcriptional regulators. In these mice the 
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non-functional version of the Foxp3 protein results in excessive proliferation 

of CD4+CD8- T cells. (Brunkow et al., 2001).   

 

In 2003, Fontenot and colleagues showed that regulatory CD4+CD25+ 

T cells expressed higher levels (40-fold) of the Foxp3 mRNA in comparison 

with their CD4+CD25- counterparts. The same pattern was observed for the 

Foxp3 protein which was barely present in CD4+CD25- T cells but abundantly 

detected in the CD4+CD25+ T cell fraction. Furthermore, deletion of the 

Foxp3 gene rendered male mice susceptible to an autoimmune syndrome 

similar to the scurfy mice (Fontenot et al. 2003). CD4+CD25+ T cells from 

Foxp3+/+ mice were able to suppress CD4+CD25- T cell proliferation whereas 

CD4+CD25+ T cells from Foxp3-/- mice could not (Fontenot et al. 2003).   

 

 Further studies showed that Foxp3 expression converts naïve CD25- 

T cells into Tregs (Hori et al., 2003). DO11.10 CD4+ T cells (which express a 

TCR recognising an ovalbumin-derived peptide) from a RAG (recombination-

activating gene) KO mouse were used to test the ability of ectopic Foxp3 

expression to induce a regulatory phenotype in an antigen-specific manner. 

Upon infection with a bicistronic retroviral vector expressing Foxp3 and 

stimulation with OVA peptides, transgenic CD4+ T cells could control T cell 

proliferation whereas those stimulated with OVA but not infected with the 

Foxp3 retrovirus could not. The group also demonstrated that the 

CD4+CD25+ subset contained most of the Foxp3+ population (Hori et al., 

2003). 
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The most compelling evidence for the existence of a Treg subset of 

cells in humans comes in the form of a mutation within the Foxp3 gene 

causing a disorder known as IPEX (immunodysregulation, 

polyendocrinopathy, enteropathy, X-linked syndrome) (Bennett et al., 2001). 

IPEX manifests in a range of severe autoimmune episodes. Mutations in the 

Foxp3 gene render Foxp3 inactive, which affects Treg development and 

function in a similar fashion to the phenotype seen in scurfy mouse (Bennett 

et al., 2001). By immunohistochemistry and flow cytometry Roncador et al. 

also ascertained that the great majority of cells expressing the Foxp3 protein 

in humans were also CD4+CD25+. Foxp3 expression was detected on almost 

all CD4+CD25hi T cells, in less than half of the CD4+CD25Int T cells and no 

expression was detected in CD4+CD25- T cells (Roncador et al., 2005).  

 

In 2006, the Rudensky group reported the creation of a strain of mice 

in which depletion of Foxp3 could be achieved by injection of the diphtheria 

toxin. In this system, the human diphtheria toxin receptor was expressed only 

in Foxp3+ cells. Injection of the diphtheria toxin caused depletion of Foxp3+ 

Tregs and an autoimmune phenotype similar to Foxp3 deficient animals (Kim 

et al., 2006). 

1.2.3.2 Phenotypic characterisation 

Although not exclusive to Tregs, a number of markers have been associated 

with these cells including CD25, CTLA-4, GITR, LAG-3, CD127, the α chain 

of the IL-7 receptor, and Foxp3 (Corthay, 2009). The downside of such 

markers is the fact that they are also transiently expressed on other subsets 

of T cells during activation. Nonetheless, Foxp3 is still considered to be the 
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hallmark transcription factor marker for Tregs due to its importance for the 

development, maintenance and function of these cells. A combination of 

CD3+, CD4+, CD25+, Foxp3+ and CD127lo/- is generally considered the best 

combination for identification of Tregs in tumours (Santegoets et al., 2016). 

 

1.2.3.3 Origins 

1.2.3.3.1 Thymus-induced Tregs 

Tregs can be divided into thymus (tTregs) and periphery induced Tregs, 

(pTregs). tTregs and pTregs are also referred to as natural and induced 

Tregs, respectively. tTregs are generated at the time of negative and positive 

selection in the thymus. The process of positive selection identifies the 

thymocytes which engage with self MHC complexed with peptides with low 

avidity within the thymic epithelium enabling their survival. T cells which 

interact with self-antigens with high avidity die or become anergic in a 

process of negative selection. Meanwhile tTregs are generated as a result of 

immature thymocytes recognising self MHC:peptide with an intermediate 

avidity just below the strength of interaction necessary for negative selection 

(Reviewed in (Maloy and Powrie, 2001)). tTregs then populate LNs in a 

resting state and upon antigen encounter, upregulate CTLA-4 and Foxp3 

thus increasing their suppressive capacity (Gratz et al., 2013; Maloy and 

Powrie, 2001).  

1.2.3.3.2 Periphery-induced Tregs 

Generation of pTregs follows antigenic stimulation and exposure to 

appropriate cytokines, most notably TGF-β, in the periphery. Type 1 



 25 

regulatory T cells (Tr1) are also peripherally induced (Groux et al., 1997). 

These cells in a similar manner to Foxp3+ Tregs play a role in the 

suppression of effector T cell responses but they do not express Foxp3 and 

secrete high levels of IL-10 (Reviewed in (Pot et al., 2011)).  

1.2.3.4 Treg maintenance and survival 

IL-2 and TGF-β, and costimulation via CD28, are necessary for the survival, 

expansion and suppressive function of Tregs. Experiments performed in 

mice lacking either CD28 or B7-1 or -2 showed a reduced number of both 

tTregs and pTregs. Survival and renewal of pTregs is also dependent on 

CD28 as CD28 blockade hinders the survival and self-renewal of adoptively 

transferred Tregs in vivo (Huynh et al., 2014). ICOS is also important for 

growth, maintenance and expansion of CD4+Foxp3+ T cells (Burmeister et al., 

2008). 

1.2.3.5 Mechanisms of action of Tregs 

T lymphocytes which evaded thymic deletion and are reactive against self-

antigens can be detected in the periphery. The main function of Tregs is to 

control their activation and further expansion promoting self-tolerance and 

preventing autoimmunity. They also control the development of chronic 

inflammatory diseases, keeping the activation of innate and adaptive 

immune cells in check (Hori et al., 2003). Such mechanisms involve either 

contact-dependent interaction with APCs and modulation of their functions; 

scavenging of essential amino acids or the growth factor IL-2; direct targeting 

of effector cells by the secretion of granzyme B, TGF-β, IL-10 and IL-35 
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and/or catabolism of ATP by the ectonucleotidases (Attridge and Walker, 

2014). 

1.2.3.5.1 Contact-dependent Treg suppression 

Suppression by Treg via a contact-dependent fashion can occur either 

directly on conventional effector T cells (Tcons) or indirectly via suppression 

of APCs resulting in their diminished capacity to present antigen or tolerance 

induction. 

Birebent et al. reported that in the presence of an anti-CTLA-4 

blocking antibody Tregs were less able to suppress allogeneic cell activation 

of PBMCs suggesting that CTLA-4 engagement is one of the mechanisms 

used by Tregs to regulate the activity of target cells (Birebent et al., 2004). 

 

Tregs also possess the ability to turn APCs into tolerogenic cells by 

modulation of indoleamine 2,3-dioxygenase (IDO) expression. Engagement 

of CTLA-4 on Tregs with B7.1/2 on DCs leads to upregulation of IDO. IDO 

then mediates the conversion of tryptophan into kynurenine effectively 

starving conventional effector T cells (Tcons) of this essential nutrient. 

Furthermore IDO+ DCs interact with cytotoxic and helper T cells causing cell 

cycle arrest, apoptosis, anergy, and even acquisition of regulatory cell 

functions. IDO+ tumour cells can also modulate CTL, hindering cell activation 

and promoting cell death (Reviewed in (Löb et al., 2009)). The suppressive 

function of Tregs was also diminished by half in mice lacking Granzyme B 

compared to WT animals demonstrating that secretion of Granzyme B is 

another contact-dependent mechanism used by Tregs to regulate effector 

cell functions (Gondek et al., 2005). 
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LAG-3, a surface protein which interacts with MHC class II, is 

expressed on some Tregs and may also contribute to their suppressive 

functions (Workman and Vignali, 2005). 

1.2.3.5.2 Secretion of soluble factors 

Expression of the cytokines TGF-β, IL-10 and IL-35 by Tregs is also 

important for their suppressive functions.. Neutralisation of TGF-β has been 

shown to block the ability of Tregs to inhibit T cell-driven colitis in mice 

(Asseman et al., 1999; Powrie et al., 1996).  

 

Another cytokine important for the Treg suppressive activity is IL-35. 

Collison and colleagues demonstrated that IL-35 is upregulated in 

CD4+CD25+ Treg cells in comparison with CD4+CD25- T effector cells and 

that its expression is exclusive to Foxp3+CD4+ T cells. The group measured 

the suppressive ability of Tregs with or without IL-35 to control effector T cell 

proliferation in vitro and concluded that T cells lacking IL-35 are functionally 

defective (Collison et al., 2007).  

 

1.2.3.5.3 Competition with the target cell 

Contrary to conventional T cells which only upregulate CD25 upon activation, 

the constitutive presence of CD25 on the surface of Tregs allows them to 

more efficiently bind IL-2 thereby reducing the availability of this essential 

growth/survival factor for effector cells resulting in their apoptosis (Barthlott et 

al., 2005; la Rosa et al., 2004; Pandiyan et al., 2007).  
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Tregs also mediate the destruction of essential amino acids by induction of 

essential amino acids consuming enzymes such as arginase, tryptophan 

hydroxylase 1 and L-threonine dehydrogenase, after antigen-specific 

interaction between APCs and Tregs (Cobbold et al., 2009).  

 

1.3 Cancer immunosurveillance and immunoediting 

1.3.1 Initial experiments 

 The “cancer immunosurveillance” hypothesis emerged in the mid 50s 

with Burnet and Thomas’ proposal that lymphocytes would travel around the 

body sensing the presence of newly transformed cells and eliminating them 

(Burnet, 1957). They initially suggested that humans, as long-lived animals 

would be prone to the development of constant mutations leading to the 

formation of dangerous malignancies. Cells of the immune system, namely 

lymphocytes, would prevent this (Burnet, 1964). 

 

 The exciting concept that the immune system plays an active role in 

tumour protection was questioned after the “Stutman experiments” 

demonstrated that there was no difference in the number of tumours 

developing in immunocompetent and immunodeficient mice (Stutman, 1974). 

It was not until later on that the field understood that NK cells and a small 

percentage of functional αβ T cells were still present in the nude mice used 

(Ikehara et al., 1984; Maleckar and Sherman, 1987). The presence of these 

two populations of cells could have played an anti-tumour role thereby 

casting doubt over the interpretation of the findings.  



 29 

 

 In 1994 a role for IFN-γ in tumour cell specific killing began to emerge 

when Dighe et al. showed that mice that had been given anti-IFN-γ treatment 

as well as those inoculated with IFN-γ-insensitive Meth A cell lines developed 

tumours more promptly (Dighe et al., 1994). The same augmentation of 

tumours was later on observed in mice lacking the IFN-γ α chain and STAT1 

(Kaplan et al., 1998). Tumours also became detectable at an earlier time 

point in p53-/- x IFNγR-/- and p53-/- x Stat1-/- double KO mice. The role of IFN-

γ and perforin in tumour-mediated killing was also assessed with respect to 

cells of the innate immune system, namely NK cells. The number of lung 

metastases drastically increased in BALB/c pfp-/-, BALB/c IFN-γ-/-, B6 pfp-/- 

and B6 IFNγ-/- compared to control animals, with different tumour models 

showing that not only IFN-γ but also perforin greatly contributes to effective 

control of tumour growth (Street et al., 2001). 

 

 However, it was not until the generation of RAG KO mice, in the late 

nineties, that the technology to deplete NKT, T and B cells, leaving non-

lymphocyte compartments intact, became available. Shankaran et al. used 

age matched WT and RAG-/- mice to study the development of 

spontaneously forming and chemically induced tumours (Shankaran et al., 

2001). They observed the formation of more tumours and at an earlier stage 

on RAG-/- compared to WT mice (Shankaran et al., 2001).   

 

Throughout the nineties it became apparent that immunocompromised 

patients such as AIDS patients were more susceptible to tumours of viral 
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origin such as human papilloma virus, human herpesvirus 8 and Epstein-Barr 

virus (reviewed in (Boshoff and Weiss, 2002)). Such observations and the 

fact that the cancer incidence for a combination of malignancies including 

melanoma, colon, kidney and lung cancers amongst others was higher in 

patients immunosuppressed as a result of organ transplantation began to 

support the “cancer immunosurveillance” hypothesis in humans (reviewed in 

(Dunn et al., 2004)). Schreiber et al. since revisited the cancer 

immunosurveillance hypothesis and suggested it being only the first phase of 

what he and his colleagues named the “Three Es of cancer immunoediting” 

which refers to an elimination phase, equilibrium phase and escape phase. 

During the elimination phase both innate and adaptive arms of the immune 

system join forces to detect and destroy new transforming cells.  

 

The equilibrium phase describes the stage when some malignant cells 

have escaped elimination but are still kept under control by lymphocytes and 

the constant presence of IFN-γ and TNF-α. The continuous pressure exerted 

by the immune system leads to considerable cell death but also to the 

selection of cells carrying mutations and adaptations serving to reduce their 

immunogenicity (Dunn et al., 2004). In 2007 an elegant study showed the 

importance of the adaptive immune system in the maintenance of tumour 

dormancy. Mice were injected with methylcholanthrene (MCA) and 200 days 

later mice, which appeared tumour-free, received anti-CD4/-CD8/-IFN-γ 

antibodies. Tumour outgrowth was rapidly observed (Koebel et al., 2007) 

suggesting that T cells were controlling tumour progression.  
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Ultimately, the escape phase occurs when malignant cells evade the 

immune response and start to form a clinically apparent tumour. Many 

mechanisms are involved in immune evasion such as: secretion of TGF-β 

and IL-10, recruitment of immunosuppressive cells such as Tregs, MHC 

down regulation, loss of tumour antigen expression, mutation or loss of 

components of the antigen processing machinery and also the development 

of IFN-γ insensitivity. In a clinical trial where NY-ESO-1 protein was 

administrated with and without the ISCOMATRIX adjuvant, patients that 

relapsed showed down-regulation of NY-ESO-1 and HLA class I expression 

by immunohistochemistry (Nicholaou et al., 2011). The authors suggest that 

the altered tumour phenotype observed after relapse appears as a 

consequence of continuous selective pressure illustrating that immunoediting 

occurs in human tumours. 

 

1.3.2 Tumour infiltrating lymphocytes (TILs) and their role in tumour 

growth control 

The presence of immune cells within human solid tumours has been 

established for years. In 1931 the surgical pathologist MacCarty published 

the first study demonstrating that the highest tumoural infiltrate (breast, colon, 

stomach) of lymphocytes were found in patients with the best post-operative 

survival (MacCarty, 1931). These type of studies have been repeated, in 

often high profile publications, demonstrating the same fundamental point 

(Galon, 2006). 

 



 32 

1.3.2.1 The presence of TILs in human cancers 

Gooden et al. have compiled a comprehensive review detailing the 

prognostic influence of tumour-infiltrating lymphocytes (TILs) in cancer. In 

this review the authors included 52 studies carried out between 2003 and 

2011. Colorectal and ovarian cancers were the main malignancies 

considered and the lymphocytic prognostic significance was based on the 

presence and density of CD3+, CD4+, CD8+ and Foxp3+ T lymphocytes. 

Overall and/or progression-free survival were associated with infiltration of 

lymphocytes into the tumour mass after a combined analysis of hazard ratios 

and 95% confidence intervals for the 52 studies (Gooden et al., 2011).  

 

Schumacher et al. reported that the presence of CD8+ T cells in the 

stroma of oesophageal carcinomas was highly correlated with both disease-

free and overall survival as compared to peritumoural CD8+ T cells or their 

complete absence. IFN-γ was also measured by PCR and 

immunohistochemistry and its presence surrounding CD8+ T cells indicated a 

possible activation status for these effector cells (Schumacher et al., 2001).  

In a cohort of 186 ovarian cancer patients, Zhang et al. observed the same 

survival pattern. Patients whose tumours contained intratumoural T cells had 

a significantly longer progression-free and overall survival (L. Zhang et al., 

2003).  In hepatocellular carcinoma a longer tumour-free survival was highly 

correlated with a higher prevalence of memory, CD3+ and CD8+ T 

lymphocytes (Cai et al., 2006). Whilst it is widely accepted that a high density 

of CD3+, CD8+ and conventional CD4+ T cells is associated with a favourable 

outcome, elevated levels of CD4+ Foxp3+ T cells is often associated with a 
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negative outcome (Curiel et al., 2004; Geng et al., 2015). It has become 

apparent that even though the presence of lymphocytes within the tumour is 

of clinical relevance, their phenotype and activation status is even more 

important.  

 

1.3.2.2 Tumour cell killing by T helper cells and CTLs 

1.3.2.2.1 Tumour cell killing by T helper cells  

Th1 cells limit tumour growth through production of IFN-γ which activates 

macrophages enabling them to target and kill tumour cells in an antigen 

independent manner (Haabeth et al., 2014). IFN-γ and TNF-α released by 

effector T cells can also directly kill target cells albeit in distinct ways. TNF-α 

promotes cell death by activation of the caspase pathway whereas IFN-γ 

interacts with its receptor on the target cell promoting 1) an increased 

expression of MHC class I and endogenous peptides presentation, 2) 

upregulation of Fas (CD95) on the cell surface and 3) production of oxidative 

species (Barthlott et al., 2005; Pandiyan et al., 2007).  

 

Cytotoxic CD4+ T cells also kill MHC II+ tumour cells via granzyme B 

and perforin secretion and upon signalling through the death receptor Fas 

and TNF-related apoptosis-inducing ligand (TRAIL) (Haabeth et al., 2014).  

Even though CD4+ T cells can kill tumour cells on their own right they play a 

crucial role in promoting activation of CD8+ T cells. Furthermore secretion of 

IFN-γ by Th1 cells promotes upregulation of MHC I on the tumour cell 
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surface facilitating the engagement between the TCR and the MHC complex 

(Kennedy and Celis, 2008).   

 

1.3.2.2.2 Tumour cell killing by CTLs  

Once activated CTLs can target and kill tumour cells in an antigen-specific 

manner. Granule-mediated apoptosis mediated by perforin, granulysin and 

serine proteases or via death receptors/death ligands such as Fas/FasL and 

TRAIL. Upon activation CTLs upregulate TRAIL and Fas Ligands on their 

surface, which bind to their respective receptors on the target tumour cell, 

triggering apoptosis and cell death (Martínez-Lostao et al., 2015). In a similar 

fashion, Fas ligand binding to its receptor on the target cell allows DNA 

damage and/or cellular stress and mitochondrial malfunction can increase 

Fas transcription leading to its upregulation on the cell surface (Waring and 

Müllbacher, 1999).        

1.3.2.3 The presence of Tregs in human cancers 

It has been proposed that an elevated number of Foxp3+ Tregs within the 

tumour positively influences the disease as these cells could suppress an 

effector T cell response against the tumour. In hepatocellular carcinoma 

(HCC) a low Treg count within the solid tumour was correlated with a longer 

overall and disease free survival. The positive benefit of low Tregs numbers 

within the tumour was even greater when CD3 cells were highly abundant 

(Gao et al., 2007).  Interestingly, in an ovarian cancer study by Sato et al. the 

authors reported that even though high numbers of Tregs within the tumour 

epithelium was indeed correlated with a shorter survival than patients with a 
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low frequency of Tregs within the epithelium, this difference lacked 

significance. However, a highly significant difference was observed when the 

ratio of CD8/Treg was calculated and survival measured in high and low 

CD8/Treg ratio groups. This indicates that not only the presence of Tregs 

within the tumour epithelium is important but also their numbers in 

comparison to conventional CD4+ and CD8+ effector T cells (Sato et al., 

2005). Evidence of better tumour clearance has also been reported after 

Treg depletion in a number of mouse models using cell lines or injection of 

carcinogen (Hindley et al., 2012; Teng et al., 2010).  

 

1.4 T cells and CRC development 

1.4.1 Th1 and CTL cells in CRC development 

Initial studies on the presence of TILs in CRC indicated that the existence of 

CD8+ T cells within the tumour mass was associated with a more favourable 

prognosis (Naito et al., 1998). A more favourable outcome has also been 

reported for a low CD4+/CD8+ ratio in a different cohort of CRC patients 

(Diederichsen et al., 2003).   

 

In an extensive study performed by Pagès et al. in 2005 looking at 

959 CRC samples, the absence of metastasis was associated with the 

presence of effector memory T cells. Also, patients that did not show early 

signs of metastasis and remained disease-free had increased levels of 

granulysin, granzyme B, CD8α, T-bet, interferon regulatory factor 1 (IRF-1) 

and IFN-γ when compared with relapsed patients. T cell markers like CD3+, 
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CD4+ and CD8+ were also upregulated in metastasis-free patients. 

Furthermore, patients’ whose tumours were infiltrated by a high density of 

memory T cells survived for longer than patients with a low memory T cell 

infiltration (Pagès et al., 2005). A follow-up study by the same group 

analysed the density of CD3+ and CD8+ T cells alongside granzyme B and 

CD45RO within the centre of the tumour (CT) and the invasive margin (IM). 

High levels of such markers both at the CT and IM were associated with a 

longer disease-free period for three different cohorts of CRC patients. The 

difference was even more striking when both regions (CT and IM) were 

combined for the analysis. In order to understand the role of immune cells in 

disease progression the patients were stratified according to high and low 

levels of CD3 and CD45RO cells at the CT and IM. As expected, patients 

whose tumours had a high density of CD3 and CD45RO at the CT and IM 

remained disease free for significantly longer than patients with a low density 

of such cells. However such observation remained true independently of 

tumour stage or node involvement suggesting that T cell infiltration may be a 

better prognostic factor for disease recurrence than tumour stage (Galon, 

2006). In another study performed in an Italian cohort of CRC patients a 

higher CD3 density by the tumour invasive margin was also associated with 

a beneficial survival in patients whose LN had not become affected by the 

tumour (Laghi et al., 2009). 

 

According to a number of studies it has become widely accepted that 

high densities of TILs are associated with a clinical advantage for CRC 

patients (Chiba et al., 2004; Galon, 2006; Guidoboni et al., 2001; Naito et al., 
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1998; Pagès et al., 2005; Prall, 2004; Ropponen et al., 1997; Zlobec and 

Lugli, 2008). However it has since become evident that not only the quantity 

but also the type of T cells infiltrating the tumour has an impact on patient 

survival. 

 

1.4.2 Tregs and CRC development 

Tregs, have an important role in inflammation control. Thus, if tumours are 

driven by inflammation, Tregs may limit tumour progression through 

suppression of inflammation. It is also the case however, that Tregs control 

antigen specific responses thus their presence in the gut has also been 

linked to a less favourable prognosis. Indeed, evidence exists that supports 

both a positive and negative role for Tregs in the development of this 

malignancy.

 

1.4.2.1 Tregs and promotion of CRC development 

Wolf et al. and our own group have detected the presence of a significantly 

higher amount of CD25hi in the blood of CRC patients compared to healthy 

controls (Clarke et al., 2006; Wolf et al., 2003) and removal of CD25hi cells, 

often resulted in an increased T cell responses against tumour antigens, 

measured in vitro. The same was not observed in healthy controls 

suggesting that Tregs are indeed regulating specific anti-tumour responses 

specifically in CRC patients (Clarke et al., 2006). Later studies have 

confirmed these findings and shown that higher numbers of Tregs are 

present within CRCs compared to normal bowel (Ling et al., 2007; Sellitto et 
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al., 2011). In a detailed study performed by our group, CD4+ T cell responses 

against the tumour antigens 5T4 and carcinoembryonic antigen (CEA) were 

measured before and after removal of the CRC. The study indicated that 

Foxp3 expression levels were elevated in the CRC group compared to 

healthy controls when measured before surgery. This returned to normal 

post-surgery suggesting that the CRCs drive Treg activation. When tumour 

recurrence was assessed in the patient cohort, it was found that a 

significantly higher proportion of 5T4- and CEA-specific T cell responses 

were suppressed by Tregs in the patients that recurred at 12 months 

compared to those who did not (Betts et al., 2012) implying that suppression 

of these responses contributes to disease progression. In further support of 

this hypothesis, Scurr et al. showed that 5T4-specific T cell responses was 

greater in healthy donors than CRC patients and that within the patient 

cohort, responses diminished with disease stage. Conversely, the 

percentage of CD4+ T cells expressing Foxp3+ increased with more 

advanced disease further supporting a role for the detrimental effect of Tregs 

in CRC tumour development by their potent suppression of anti-tumour T cell 

responses (Scurr et al., 2013). 

 

1.4.2.2 Tregs and their role in the prevention of CRC development 

Even though some studies indicate that Foxp3+ Tregs are associated with a 

less favourable prognosis in CRC patients, there is also some evidence 

suggesting a positive role of Tregs in preventing CRC development. In a 

study published in 2009 by Salama and colleagues, a high density of Foxp3+ 

Tregs in the tumour tissue was associated with a significantly better 
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prognosis (Salama et al., 2009). Sinicrope et al. also observed that a lower 

CD3+ to Foxp3+ ratio was associated with a worse disease-free survival even 

though there was no association with clinical outcome when Foxp3+ T cells 

were analysed alone (Sinicrope et al., 2009). In another study by Frey et al. 

high infiltration of Foxp3+ Tregs in MMR-proficient tumours was observed in 

an earlier disease stage and a positive association with survival was 

observed for MMR-proficient but not MMR-deficient tumours infiltrated by a 

high density of Foxp3+ Tregs (Frey et al., 2010). Interestingly, a high 

prevalence of Foxp3+ T cells within the tumour was associated with a better 

disease-specific and overall survival by Kaplan-Meier analysis. However, in 

multivariate analysis the Foxp3+ association with a favourable prognosis was 

no longer observed (Nosho et al., 2010). Lee et al. also reported the same 

finding. They reported an association between CD3, CD45RO, CD25 and 

Foxp3 high expression and prolonged survival. When the aforementioned 

markers were combined, the statistical difference between high and low 

density of cells in relation to overall survival was even more significant (W.-S. 

Lee et al., 2010).  

 

Ladoire and colleagues discussed the paradox of Treg infiltration in 

CRC cancers in a review written in 2011 (Ladoire et al., 2011). They highlight 

the fact that, unlike any site of the human body, the colon is constantly being 

exposed to microorganisms. Therefore even though tumour infiltrating Tregs 

have been associated with a less favourable prognosis because of their 

tumour antigen-specific suppression, their alternative function could be linked 

with inflammation control.  
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In a mouse model using RAG-2 deficient and WT mice Erdman et al. 

showed that inoculation of Helicobacter hepaticus into RAG-2-/- mice led to 

the development of inflammation and carcinomas. In contrast, WT animals 

injected with the same bacterium did not develop tumours or significant 

inflammation. Furthermore, adoptive transfer of CD4+CD45RBloCD25+ cells 

into RAG-2-/- mice before inoculation with H. hepaticus prevented intestinal 

inflammation and cancer development (Erdman et al., 2003).     

 

1.4.3 Th17 cells and CRC development 

Through an extensive analysis of two CRC patient cohorts and a validation 

cohort, the Galon group convincingly showed that it is not only the quantity 

but also the quality of T cells infiltrating the tumour that influences the 

patient’s prognosis. Elevated expression of Th1 genes is associated with a 

longer patient survival whereas early recurrence was observed in patients 

with a low level of expression of Th1-related genes. The complete opposite 

was observed for expression of Th17-associated genes. Surprisingly, when 

Th1 and Th17 genes were analysed in combination, patients whose Th17 

genes were highly expressed suffered an early relapse regardless of a high 

expression of Th1-associated genes. Such a finding implies that the harmful 

effects of Th17 activity outweigh the advantageous effect of Th1 cells. This 

result was confirmed by tissue microarray analyses of tumour centres (TC) 

and invasive margins (IM) (Tosolini et al., 2011). In order to understand the 

role of IL-17A in the development of colitis-associated cancer (CAC), Hyun et 

al., injected azoxymethane and dextran sodium sulphate (DSS) in order to 
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promote inflammation in WT and IL-17A KO mice. Less inflammation 

(including production of the pro-inflammatory cytokines IL-6 and IL-23) was 

observed post-DSS treatment in IL-17A KO compared to WT mice 

correlating with fewer tumours (Hyun et al., 2012). A similar association 

between Th17 activity has been observed in mouse models of sporadic CRC. 

Depletion of the APC gene leads to increased levels of IL-23 p19 and IL-17A 

within the tumour compared to normal tissue in a mouse model. Moreover, 

IL-23-deficient animals, developed less and smaller intestinal tumours than 

IL-23 proficient animals (Grivennikov et al., 2012). Wang and colleagues 

reported in 2014 that the level of Th17 cells in the blood of CRC patients was 

significantly elevated compared to healthy donors and this was even more 

pronounced in advanced stages of disease (K. Wang et al., 2014). At the 

protein level, IL-6 which is closely related to IL-17A secretion was also 

greatly upregulated in CRC patients and even more so in advanced disease 

(Li et al., 2014).  

1.5 Tumour antigens 

Currently there are two terms widely used to describe tumour antigens. 

Tumour-specific antigens (TSA) refer to antigens which are exclusively 

present on the surface of tumour cells and tumour associated antigens (TAA) 

which although expressed on tumour cells are also expressed on normal 

tissue. Tumour antigens can be classified into high or low tumour specificity, 

a classification proposed by Coulie in 2014 (Table 1.2) (Coulie et al., 2014).  

 

  



 42 

1.5.1 Classification of tumour antigens 

The ability to extract TILs and create stable CTL clones greatly potentiated 

the discovery of melanoma antigen family A 1 (MAGEA1), the first antigen to 

be described as a tumour antigen (van der Bruggen et al., 1991). 

1.5.1.1 Mutated tumour antigens 

Mutations are thought to be a feature of very immunogenic tumours as these 

create novel epitopes previously unseen by the immune system. Usually this 

occurs as a result of one point mutation which can alter the antigenic 

determinant recognised by the T cells or which allows a completely novel 

peptide to bind to the MHC (reviewed in (Vigneron, 2015)). Cancers that 

originate as a result of a high number of mutations such as lung cancer and 

melanoma resulting from exposure to tobacco and ultraviolet radiation, 

respectively, provide examples of tumour antigens created by mutations 

(Paschen et al., 2004). Mutations can also affect oncogenes thus altering 

their function and greatly enhancing the probability that an affected individual 

will develop cancer. Antigens exclusive to the tumour cells, created by 

mutations are attractive candidates for targeted immunotherapy as these are 

not expressed on any normal cell of the body. Besides, T cells primed by 

these tumour-specific novel antigens (neo-antigens) may elicit a stronger 

response than tumour-associated antigens due to a lack of negative 

selection in the thymus. However, the majority of these neo-antigens, even 

those which are presented by MHC molecules, fail to be recognised by T 

cells. They are also tumour and patient-specific thus laborious to identify and 

not applicable as target antigens for large-scale cancer treatment.    
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1.5.1.2 Cancer-testis/cancer-germline tumour antigens 

Cancer-testis or cancer-germline antigens become expressed as a result of 

promoter demethylation which activates the expression of cancer-

germline/cancer-testis genes. This only occurs in either tumour or germline 

cells, such as spermatocytes, spermatogonia or trophoblasts but because 

such cells do not express HLA molecules on their surface, even though they 

express the protein, it cannot be processed and presented in the context of 

MHC which would allow recognition by T cells (reviewed in (Coulie et al., 

2014).  

 

1.5.1.3 Tissue-specific/ differentiation tumour antigens 

Differentiation antigens possess low tumour specificity and include antigens 

present on the tumour cells and the cells where the tumour originated from 

e.g. melanoma and melanocytes (Coulie et al., 2014) 

1.5.1.4 Overexpressed tumour antigens 

Overexpressed antigens are another type of low specificity antigen. Such 

antigens are expressed on some normal cells but their abundance on the 

surface of tumour cells is much higher (Coulie et al., 2014).  
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Table 1.2 Human tumour antigens with high and low tumour specificity. High specificity 
antigens are classified into mutated, cancer-germline and viral antigens (not represented 
here). These are not present on normal cells. Low specificity tumour antigens are classified 
into differentiation and overexpressed antigens and are expressed at some level on normal 
cells. CDK-4, cyclin-dependent kinase 4. CASP8, caspase 8. 5T4, trophoblast glycoprotein. 
SSX-2, synovial sarcoma, x breakpoint 2. Gp100, glycoprotein 100. Mart-1, melanoma 
antigen recognised by T cells 1. HER2, human epidermal growth factor receptor 2. WT, 
Wilms Tumour 1. hTERT, human telomerase reverse transcriptase. CEA, carcinoembryonic 
antigen. Table created based on (Bright et al., 2015; Coulie et al., 2014; Tagliamonte et al., 
2015).       

 

Mutated antigens Cancer-germline antigens Differentiation antigens Overexpressed antigens

CDK-4 5T4 gp100 HER2
Mum-1 NY-ESO-1 Mart-1 (Melan-A) WT1
β-catenin SSX-2 Tyrosinase hTERT
CASP8 Livin

Survivin 
CEA

High specificity Low specificity
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1.5.2 Tumour antigens in colorectal cancer 

Cancer testis or cancer-germline antigens may be ideal targeting candidates 

in an immunotherapy approach as these are only highly expressed on 

tumour tissue and immune-privileged sites. However the challenge lies in the 

fact that even though colorectal malignancies may express such antigens 

they may be poorly immunogenic or not expressed at a high enough quantity 

to mount a robust immune response. Our own laboratory has focussed on 

examining T cell responses to two antigens expressed by CRC, namely CEA 

and 5T4. 

 

1.5.2.1 Detection of Th1 responses specific to tumour antigens in CRC 

patients  

In an unusual approach Bremers and colleagues detected T cell reactivity 

measured by IFN-γ secretion after incubation of CRC patient’s PBMCs with 

autologous tumour lysate. (Bremers et al., 2000). Tumour antigen reactive T 

cells were also detected in the blood of a cohort of 49 CRC patients. 9, 7 and 

6 patients out of 49 contained T cells in their blood reactive to Ep-CAM, her-

2/neu and CEA, respectively. CRC patients also showed a higher rate of T 

cell specificity against tumour antigens if they had metastatic disease and did 

not receive chemotherapy (Nagorsen et al., 2003).  

 

In the first study set to evaluate the detection of spontaneous T cell 

responses specific to tumour antigens and CRC patients’ prognosis, 
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Nagorsen et al. did not observe any difference in survival between 

responders and non-responders. Furthermore, the two-year survival went up 

in patients that did not develop a response to the tumour antigens measured, 

namely Ep-CAM, her-2/neu and CEA (Nagorsen et al., 2005). These initial 

studies successfully demonstrated that T cells specific to tumour antigens 

existed in the blood of CRC patients and could secrete IFN-γ. 

 

1.5.2.2 CEA 

The majority of CRCs overexpress CEA but the protein can also be detected 

at low levels on the surface of healthy mucosa (Davidson et al., 1989). CEA 

is a 180 kDa glycoprotein and due to its glycosylphosphatidylinositol linkage 

it can be easily shed into circulation (Bos et al., 2008). CEA has been shown 

to be involved in cell adhesion when expressed by the tumour cells by in vitro 

studies and it has also been associated with metastasis (Hammarström, 

1999; Kass et al., 1999).  

 

1.5.2.2.1 CEA-specific responses detected in the blood of cancer patients 

and healthy donors 

Lung cancer is another epithelial malignancy in which CEA is highly 

expressed. Crosti and colleagues assessed the presence of spontaneous 

CD4+ T cells specific to CEA in the blood of lung cancer patients and 

observed the existence of naturally occurring CD4+ T cells specific to CEA 

(Crosti et al., 2006). CD4+ responses specific to CEA were detected in the 

blood of pancreatic patients and healthy donors but amongst healthy donors 
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the CEA response detected was mainly a Th1 response whereas amongst 

patients the most prevalent CEA specific response detected was of a Th2 

type. Th17 cells specific to CEA were not detected in the blood of pancreatic 

patients (Tassi et al., 2008). 

 

Also, in a study of CEA-responsiveness amongst healthy individuals, 

IL-10-secreting, CEA-specific T cells were observed in 46% of those tested. 

IL-10 production appeared to be important for keeping CEA-specific T cells in 

check, as neutralisation of the cytokine unleashed IFN-γ-secreting CEA-

specific T cells (Pickford et al., 2007).  

 

1.5.2.2.2 CEA-specific T cell responses in CRC patients  

Our group as recently reported an unexpected finding regarding the 

presence of T cells specific to CEA in the blood of CRC patients. The 

detection of a CEA-specific response in the blood of these patients 

significantly correlated with tumour recurrence. Such a finding was not 

observed for T cell responses specific to the 5T4 antigen and if patients that 

responded to the 5T4 antigen were removed from the analysis, the CEA 

responders were even more likely to relapse. Intriguingly, such observation 

held true even after tumour stage stratification (Scurr et al., 2015).  

 

1.5.2.2.3 Expression of CEA in the gastrointestinal tract of a mouse model  

In 2008 the group of Rienk Offringa created a CEA transgenic (CEA-tg) 

mouse in which the pattern of CEA expression is very similar to what is 
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observed in humans. WT animals injected with MC38-CEA cells receiving T 

cells collected from WT animals previously immunised with CEA showed a 

superior survival of more than 80% compared to the 0% increased survival 

when the same cells were adoptively transferred into CEA-tg mice. This 

suggests that animals expressing CEA as a self-antigen develop regulatory 

mechanisms capable of suppressing CEA-specific responses; therefore 

CEA+ tumours can escape tumour growth control. Furthermore, prolonged 

survival of CEA-tg mice injected with anti-IL-10R antibody, MC38-CEA cells 

and cells reactive to CEA from WT animals, was associated with the 

development of colitis. The detection of CEA-specific IFN-γ producing T cells 

correlated with an even more severe inflammation. This strongly suggests 

that the presence of CEA-reactive Th1 cells can be detrimental and cause 

excessive inflammation if CEA is also expressed as an auto-antigen as in 

CEA-tg mice and immunoregulatory mechanisms are absent (Bos et al., 

2008).    

1.5.2.3 5T4-specific T cell responses in CRC patients  

5T4 is an oncofetal protein expressed on trophoblasts. It has been reported 

that there is very little (if any) expression on healthy tissues but the protein is 

abundantly expressed on some adenocarcinomas like ovarian, gastric and 

colorectal where its high expression has been associated with a poorer 

prognosis (Smyth et al., 2006). 5T4 is grouped in the cancer-germline 

category of antigens as it is expressed on embryonic cells but not on healthy 

adult tissues ((Starzynska et al., 1992) and reviewed in (Zhao and Y. Wang, 

2007) . CD8+ T cells specific for the 5T4 antigen were able to kill HLA-A2+ 

malignant pleural mesothelioma cell lines (Al-Taei et al., 2012). Our group 
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has detected 5T4-specific CD4+ T cells responses in the blood of CRC 

patients; a higher frequency of patients developed a response to 5T4 after 

the removal of the tumour (Betts et al., 2012). Interestingly, in a study 

performed by our group in a cohort of CRC patients, 5T4-specific responses 

detected by IFN-γ release decreased with more advanced disease. However 

responses specific to the recall antigen tuberculin purified protein derivative 

(PPD) remained robust suggesting that even though tumour antigen specific 

responses become impaired with tumour development, especially with more 

advanced carcinomas, bacterial responses did not (Scurr et al., 2013). This 

suggests that tumour development potentiates an immunoregulatory 

microenvironment capable of suppressing tumour antigen specific responses. 

 

1.6 Tertiary lymphoid organs (TLOs) and High endothelial 

venules (HEVs) 

One reported feature of the immune response to cancer is the development 

of tertiary lymphoid organs (TLOs). TLOs, with a cellular organisation similar 

to a secondary lymphoid organ (SLO) can also be referred to as ectopic 

lymphoid structures or organs (ELS/ELO). They are defined by the presence 

of distinct B and T cell areas, fibroblastic reticular cells (FRCs) and HEVs 

within the T cell area. Follicular dendritic cells (FDCs) and the activation-

induced cytidine deaminase (AID) enzyme representative of germinal centre 

activity are also present in fully developed TLOs (Neyt et al., 2012). 

Nevertheless, these ectopic structures can still function as a lymphoid organ 

even if they do not fulfil all the aforementioned criteria (Neyt et al., 2012). For 



 50 

a review of TLO development within tissues see (G. W. Jones and S. A. 

Jones, 2016). The term lymphoid aggregates/follicle is often used when not 

all the cells forming a TLO are present or have been definitively identified.  

1.6.1 TLOs 

1.6.1.1 TLOs in chronic inflammation and infection 

De novo formation of TLOs is associated with inflammation. These structures 

have been found in humans post infection with Helicobacter pylori and 

Borrelia burgdorferi, but also in the context of autoimmune conditions such 

as rheumatoid arthritis (RA), primary biliary cirrhosis, Hashimoto’s thyroiditis, 

MS, Myasthenia gravis, systemic lupus erythematosus and also in the 

context of transplant rejection and exposure to environmental stresses 

(Girard and Springer, 1995; Neyt et al., 2012). TLOs in chronic autoimmune 

diseases may act as a site for self-reactive T cell priming, thus contributing to 

the pathology. Lymphoid aggregates, also known as bronchus-associated 

lymphoid tissue (BALT) if in the lung, were detected in the lung of patients 

with RA and Sjögren syndrome, in the vicinity of areas enriched by 

citrullinated proteins. Since citrullinated proteins are thought to drive 

pathogenic T cell responses in these diseases, these observations imply a 

pathogenic role for the induced BALT in activating the pathogenic T cells 

(Rangel-Moreno et al., 2006). 
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1.6.1.1.1 TLOs in inflammatory bowel disease (IBD)  

TLOs also develop in the context of chronic inflammation in the absence of a 

tumour. These structures have been reported to be present in IBD such as 

UC and CD (Nascimbeni et al., 2004). 

1.6.1.1.2 TLOs in lung cancer 

TLOs present in human lung cancer were positive for the presence of 

CD62L+ cells. However no CD62L+ cells could be detected outside of TLOs 

indicating that active recruitment of naïve T cells were occurring within these 

structures but no where else within the tumour. The majority of the cells 

forming these organised structures were CD4+ memory T cells and to a 

lesser extent CD8+ naïve T cells, CD8+ memory T cells and CD4+ naïve T 

cells (de Chaisemartin et al., 2011). HEVs were also detected within these 

organised structures and but were never detected in the absence of 

surrounding cells (de Chaisemartin et al., 2011). This was the first study 

describing the presence of functional TLOs within a tumour. The same group 

had however published a previous study correlating the density of tumour 

induced-BALT with DC-Lamp+ (mature DCs) cells. A high density of DC-

Lamp+ cells was associated with a longer disease-free survival thus implying 

that such ectopic structures could be involved in anti-tumoural immunity 

supporting the maintenance of an anti-tumour response (Dieu-Nosjean et al., 

2008).  

1.6.1.1.3 TLOs in Human Melanoma Metastases 

TLOs have also been observed in metastatic lesions of melanoma but not in 

the primary tumour. Some cells within large follicles were AID+ indicative of 
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immunoglobulin hypermutation and functionality of the structures. Similarly to 

what was described for lung cancers, HEVs were also detected within or in 

close proximity to lymphoid aggregates. HEVs could also be detected within 

primary tumours in association with loose infiltrates of B and T lymphocytes 

but no FDC were present suggesting incomplete lymphoid neogenesis 

(Cipponi et al., 2012).    

1.6.1.1.4 TLOs in Colorectal cancer 

Lymphoid aggregates have been observed in the context of CRC comprising 

B and T cells and a network of FDCs (Bergomas et al., 2012). A more 

detailed study was later performed by Väyrynen et al. who confirmed the 

presence of these structures in CRC further indicating that the strucutres 

were mainly composed of B cell, T cells and macrophages with few FoxP3+ 

Tregs and DCs (Väyrynen et al., 2014). Di Caro et al. also reported the 

presence of organised structures with features similar to TLOs in CRC. 

These aggregates contained HEVs and positively associated with TIL density. 

In patients whose tumour had not spread to LN, the authors reported that a 

high density of TLOs was associated with a more favourable prognosis (Di 

Caro et al., 2014). 
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1.6.2 High endothelial venules 

1.6.2.1 HEVs in secondary lymphoid organs 

HEVs are important components of TLOs. HEVs are specialised blood 

vessels present in the paracortex and interfollicular areas of SLO excluding 

the spleen. They are specialised structures, which allow migration of naïve 

and central memory T lymphocytes along with other immune cells including 

naïve B cells and DCs, from the circulation into the lymphoid organ. Even 

though their role is mainly associated with the recruitment of B and T cells, 

low levels of DCs can also extravasate through HEVs. These specialised 

post-capillary vessels are formed by endothelial cells with a cuboidal and 

plump morphology thus the “high endothelial” name. The basal lamina of 

these vessels is composed by layers of pericytes, fibroblast reticular cells 

and extracellular matrix. Reviewed in (Ager and May, 2015; Girard et al., 

2012). 

 

The luminal surface of HEVs is decorated by peripheral node 

addressins (PNAds), also known as sialomucins. PNAds are a group of 

sialylated, sulphated and fucosylated glycoproteins including endomucin, 

nepmucin, podocalyxin, CD34 and GLYCAM1 only in the mice (Girard et al., 

2012). In order for HEVs to become functional they need to undergo some 

post-translational modification mediated by glycosyltransferases such as 

Fuc-TVII, β3GlcNAcT-3 and GlcNAc6ST-2 (Hiraoka et al., 1999; Malý et al., 

1996; Yeh et al., 2001).  
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O- and N-glycans present on the PNAds are decorated with the 6-

sulpho sialyl Lewis X motifs, a key determinant for L-selectin binding 

expressed on naïve and central memory lymphocytes and also the ligand for 

MECA-79. MECA-79 is the most utilised antibody to identify HEVs. It is 

highly specific and it does not react with other vessels, positively staining 

peripheral, mesenteric and mucosal HEVs present in LNs albeit with different 

patterns/intensity (Streeter et al., 1988). Emigration of lymphocytes through 

HEVs was abrogated in an in vivo system using the MECA-79 blocking 

antibody confirming its specificity (Streeter et al., 1988). 

 

Mucosal addressin cell adhesion molecule 1 (MAdCAM-1) is another 

marker associated with the HEV phenotype but unlike PNAd is mainly 

associated with mucosal and intestinal lamina propria HEVs and its 

expression is mainly observed in a less advanced developmental stage 

(Girard et al., 2012). Mouse HEVs present in Peyer’s patches (PP) and the 

intestinal wall only express MAdCAM-1 but not PNADs. Markers of vascular 

endothelial cells such as CD31 and vascular endothelial-cadherin are also 

present on the endothelial cells of HEVs even though not exclusive to these 

structures. 

 

Chemokines constitutively expressed by HEVs and surrounding cells 

such as CCL21, CXCL12 and CXCL13 also play a crucial role in the 

recruitment of naïve B and T lymphocytes. The high endothelial cells 

themselves secrete CCL21 whereas FRCs and FDCs express CXCL12 and 

13. CCR7 and CXCR4 are both expressed by naïve T cells and B cells also 
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express CXCR5 in addition to the previously mentioned chemokine receptors. 

See Figure 1.4 for an overview of an HEV. Reviewed in (Girard et al., 2012).  

 

1.6.2.2 HEVs in chronic inflammation and infection 

Even though HEVs are mainly present in SLOs in homeostatic conditions, 

their ectopic formation has been reported in both chronic inflammation and 

tumours. The presence of ectopic HEVs has been described in a range of 

inflammatory diseases such as autoimmune thyroiditis, atherosclerosis, 

psoriasis, dermatitis, bronchial asthma, IBD and RA (Aloisi and Pujol-Borrell, 

2006) mainly in association with TLOs.  

 

 

Figure 1.4 Schematic of a High Endothelial Venule. High endothelial venules are formed 
by plump and cuboidal endothelial cells that express peripheral node addressin (PNAds) on 
their luminal surface. PNAds (also known as sialomucins) are post-translational modified 
proteins which have O and N-glycans on their surface decorated with the 6-sulpho sialyl 
Lewis X motifs, a key determinant for L-selectin binding expressed on naïve and central 
memory lymphocytes. Adapted from (Girard et al., 2012). 
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1.6.2.3 HEVs in cancer 

Even though HEVs have been reported in sites of chronic inflammation, 

especially in patients with autoimmune conditions, it was not until 2011 that 

the Girard group described the existence of HEVs in solid tumour (Martinet et 

al., 2011). In this novel study, the group identified HEVs with the same 

phenotypic characteristics of LN HEVs in melanomas, breast, ovary and lung 

cancer but also colon carcinomas. HEV neogenesis may facilitate 

lymphocyte penetration into the tumour site allowing infiltration of naïve and 

effector T cells such as cytotoxic and helper T cells that could specifically 

target tumour antigens (Martinet et al., 2011). Thus, by presenting a major 

gateway for T cell infiltration into the tumour site, investigating the presence 

of HEVs within the tumour could offer more information on patients’ response 

to therapy and survival rate. In the context of cancer, identification of HEVs is 

usually performed by PNAd rather than MAdCAM-1 staining. 

 

1.6.2.3.1 Breast Cancer 

The Girard group not only performed a general analysis on the pattern of 

HEV expression on a number of solid tumours but also performed a more 

detailed analysis on two cohorts of 127 and 147 breast cancer patients. The 

presence of HEVs was strongly associated with B and T cells and further 

analysis based on HEV density showed that genes characteristic of naïve 

and central memory T and B cells such as CCL19, CCL21, CXCL13 and 

CCR7 were greatly upregulated in tissues with a high density of HEVs. Also, 

a high density of HEVs within the tumour positively predicted a longer 

disease and metastasis-free and overall survival (Martinet et al., 2011).     
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1.6.2.3.2 Melanoma 

In 2012 Martinet et al., published a similar study to the above but in 

melanoma patients. Two hundred and twenty five patients were included and 

similarly to what was observed in breast cancer, HEVs associated with 

infiltration of T and B cells but not Foxp3+ cells. Also, the Breslow tumour 

thickness of the lesions, a marker for disease progression, was inversely 

correlated to HEV density (Martinet et al., 2012). The type of HEVs also 

appears to be important in dictating the nature of the infiltrate. Lymphocytes 

accumulate more readily around cuboidal HEVs than flat HEVs suggesting 

that HEV morphology may be closely related to their function (Avram et al., 

2013). HEVs have been observed in primary and metastatic melanoma 

although ELS have only been observed in metastatic lesions (Cipponi et al., 

2012) and HEV-dense melanomas have been associated with a good 

prognosis (Avram et al., 2013).  

1.6.2.3.3 HEVs in other human tumours 

Even though HEVs have been associated with a favourable prognosis in 

some studies Shen et al. did not observe any significant difference in the 

total density of HEVs between metastasis and non-metastasis patients with 

oral and pharyngeal squamous cell carcinoma. Their data support the notion 

that HEVs play a role in the spreading of cancer cells to neck LNs assisting 

in metastasis development (Shen et al., 2014).  
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HEVs have also been detected in seminomas of 24 out of 26 patients. 

Seminoma is the most prevalent form of testicular cancer. HEVs were 

concentrated in lymphocytic rich areas mainly within the T cell zones and the 

number of T cells surrounding them was greater than B cells (Sakai et al., 

2014).  

 

1.6.2.3.4 Development of HEVs in mouse models 

The presence of HEVs has also been detected in carcinogen-induced 

fibrosarcomas in mice. Interestingly, HEV were only observed in the tumours 

after Treg-depletion suggesting a link between T cell activation and 

neogenesis of HEV. Moreover, HEV density correlated with TIL density and 

tumour regression (Hindley et al., 2012). These data indicate that HEV are 

beneficial for enabling tumour-specific T cells to enter and kill tumours. 

 

Concluding comments 

The studies described above indicate that the nature of the T cell 

response and their specificity in combination with ELS development are 

important parameters in determining the effectiveness of the immune 

response to CRC. With this in mind, I set out to test the hypotheses below:
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1.7 Hypotheses and Aims 

Two hypotheses were tested.  

1. Development of HEVs within the tumour epithelium/stroma of CRC 

patients allows the recruitment of naïve and central memory T cells 

potentiating an anti-tumour response which controls tumour growth 

and favours patient outcome.  

 

 This hypothesis was tested according to the following aims: 

1. Characterise the structure, relative location and density 

of HEVs within CRCs 

2. Correlate HEV density with T cell infiltration 

3. Study MSI in tumours with an elevated density of HEVs 

4. Correlate HEVs and TLOs with disease stage and 

patient survival 
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2. A high density of antigen-specific Th17 cells within CRC is associated 

with a less favourable prognosis associated with an elevated 

concentration of IL-17A. 

 

This hypothesis was tested according to the following aims: 

 

1. Determine the percentage of Th17 associated 

cytokines and chemokine receptors in the blood, 

healthy colon and tumour of CRC patients 

2. Measure IFN-γ and IL-17A production by CEA and 

5T4-specific responses in a cohort of CRC patients  
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2 Material and Methods 

2.1 Colorectal cancer patients – Cohort nr 1: HEV 

quantification 

Prior to my arrival, a postdoc in the laboratory, Dr Emma Jones had studied 

the phenotype of tumour infiltrating lymphocytes in a cohort of 62 CRC 

patients. These patients received surgery between 1997 and 2008 and 

tumour samples were collected immediately after surgery, fixed in formalin 

and embedded in paraffin. A healthy portion of the bowel was later collected 

from some patients for formalin-fixation and paraffin-embedding.   

Data regarding patient’s age, gender, tumour staging and five-year survival 

are shown in Table 2.1. 

2.2 Staining formalin-fixed paraffin embedded samples from 

CRC patients  

2.2.1 Immunohistochemistry 

A microtome (Surgipath) was used to cut 5µm thick sections which were 

subsequently mounted on glass slides then dried at room temperature for 

approximately one hour before placing in a 60°C oven overnight.  
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Table 2.1 Patient details. Information about the patient's age, gender and tumor location 
was only available for 54, 60 and 53 patients, respectively (n=62). Columns indicate number 
and percentage unless otherwise specified. Alive and Dead indicate survival at five years 
post surgery. SD, standard deviation 

 

  Number Percentage 

Age Mean 69.4; SD 10.7  

Sex     

    Male 30 50 

    Female 30 50 

Tumor location 

    Ascending colon 12 22.6 

    Transverse colon 2 3.8 

    Descending colon 2 3.8 

    Sigmoid colon and rectum 37 69.8 

Dukes' Staging     

    Dukes' A 24 38.7 

           Alive 21 87.5 

           Dead 3 12.5 

    Dukes' C 38 61.3 

           Alive 18 47.4 

           Dead 20 52.6 

Five-year survival 

    Alive 39 62.9 

    Dead 23 37.1 
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Prior to antibody staining, sections were dewaxed in xylene (3 X five 

minutes) and rehydrated in a descending alcohol series consisting of 100% 

ethanol (2 X 3 minutes), 90% ethanol (1 X 3 minutes) and 70% ethanol (1 X 

3 minutes) before placing in running tap water for 5 minutes and finally 

rinsing in distilled water. From this step onwards it was essential to make 

sure the sections did not dry out at any stage. Heat induced epitope retrieval 

(HIER) was routinely performed in order to ensure successful epitope 

unmasking. Approximately 800 mL of a 10 mmol/L Tris, 1 mmol/ EDTA pH9 

solution was microwaved at 900 watts for 5 minutes. The slides were then 

immersed in the hot buffer and microwaved for a further 8 minutes. Sections 

were left to cool down for approximately 20 minutes and then washed 3 

times in phosphate buffered saline (PBS) for a total of 5 minutes. 

Endogenous peroxidase activity was blocked by immersion in 1% hydrogen 

peroxide diluted in methanol (1% H2O2/MeOH) for 10 minutes. Slides were 

then washed 3 times in PBS for a total of 5 minutes. A hydrophobic barrier 

pen (Vector) was used to draw a circle around the tissue section and 

sections were incubated in two/three drops of 2.5% normal horse or goat 

serum (Vector laboratories) for 30 minutes to block non-specific antibody 

binding. A combination of different antibodies was used and is clearly 

specified in each Figure. For antibody clones, species and concentrations 

used see Table 2.2.  
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Table 2.2 Antibodies used in immunohistochemistry with the respective 
concentrations and the antigen retrieval method and buffer applied. 

 

 

The sections were incubated with the primary antibody diluted in 1% bovine 

serum albumin (BSA) in PBS overnight at 4°C in a humid chamber. Slides 

were then washed three times in PBS for a total of 5 minutes in order to 

remove excessive unbound antibody. Sections were then incubated in the 

appropriate species specific ImmPRESS Horse Radish Peroxidase (HRP) 

Polymer detection reagent (Vector laboratories) for 30 minutes in a humid 

chamber at room temperature. Slides were then washed three times in PBS 

for a total of 5 minutes and briefly incubated in Impact DAB (brown), Vector 

SG (grey) or Vector VIP (purple) peroxidase substrates (all Vector 

laboratories). This process was repeated sequentially with different 

antibodies to detect multiple antigens. Sections were subsequently 

dehydrated in an ascending alcohol series consisting of 70% ethanol (1 X 3 

minutes), 90% ethanol (1 X 3 minutes) and 100% ethanol (2 X 3 minutes) 

followed by three xylene washes (5 minutes each) before mounting in 

mounting medium (distyrene, a plasticizer, and xylene; DPX) and glass 

coverslips and drying in a 60°C oven overnight. For every new antibody 

Antigen Antibody Concentration 
(µg/mL) Species Antigen retrieval method 

CD3 CD3 (DAKO) 2 Rabbit 

Sections were microwaved for 
8 minutes in 10 mmol/L Tris, 1 

mmol/ EDTA buffer, pH9 

CD8 CD8 (DAKO) 2 Mouse 

FoxP3 FoxP3 (eBioscience) 1 Rat 

CD20 CD20 (DAKO) 0.45 Mouse 

MECA-79 MECA-79 (Santa Cruz 
Biotechnology) 2 Rat 

CD31 CD31 (Abcam) 2 Rabbit 
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tested an isotype control antibody was used in parallel to check for non-

specific staining. Lymph nodes were routinely included as a positive control. 

2.2.1.1 Rorγt and T-bet staining 

Methods for detecting RORγt and T-bet transcription factors in tissue 

sections differed slightly from those described above. For RORγt detection 

10 mmol/L Tris, 1 mmol/EDTA pH9 antigen retrieval buffer was pre-heated 

for 10 minutes before immersing the slides in the hot buffer and microwaving 

for a further 20 minutes. For T-bet detection 10mM citric acid /0.05% Tween 

20, pH 6 was pre-heated for 10 minutes, before immersing the slides in the 

hot buffer and microwaving for a further 8 minutes. For both RORγt and T-bet  

PBS washes and 1% H2O2/MeOH incubations were performed as above. 

Before addition of RORγt or T-bet primary antibody a 5X casein solution 

(Vector laboratories) was added to the slides for 30 minutes at room 

temperature in a humid chamber. The casein was then removed and RORγt, 

antibody (eBioscience, AFKJS-9, 4µg/mL), T-bet  (abcam, EPR9301, 4.4 

µg/mL) or relevant isotype control antibody (4µg/mL, rat IgG2a, Biolegend) 

added to the relevant slide and incubated overnight at 4°C. After washing 

three times in PBS for a total of 5 minutes, sections stained with the RORγt 

antibody were incubated with rabbit anti-rat (Vector), washed three times in 

PBS then incubated with ImmPRESS anti-Rabbit for 30 minutes at room 

temperature. After further PBS washes sections were incubated with DAB for 

1 minute and 30 seconds. CD3 was then detected and sections were 

washed in dH2O and incubated with anti-CD3 antibodies (DAKO, 2µg/mL) 

followed by PBS washes, incubation with ImmPRESS anti-Rabbit, further 
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PBS washes and 3 minutes of contact with SG. Rabbit IgG was used as an 

isotype control. Slides were then dehydrated and mounted as described in 

the previous section (Section 2.2.1).     

2.2.2 Immunofluorescence 

In some cases PNAds and CD31 were stained simultaneously in paraffin 

sections using immunofluorescence. Formalin fixed paraffin embedded 

sections were hydrated and HIER was performed with 10 mmol/L Tris, 1 

mmol/ EDTA pH9 as described in section 2.2.1. Endogenous biotin was 

blocked by incubating sections with Avidin/Biotin Blocking Kit (Vector 

Laboratories) according to manufacturer’s instructions. Non-specific antibody 

binding was blocked by incubating sections with 2.5% horse serum (Vector 

Laboratories) for 30 minutes at room temperature. Sections were incubated 

simultaneously with CD31 (Rabbit polyclonal IgG, 2µg/mL) and biotinylated 

MECA-79 (rat IgM, 1 µg/mL) antibodies, diluted in 1% BSA/PBS, overnight at 

4°C. Sections were washed three times in PBS in the following day for a total 

of 5 minutes and then incubated simultaneously with Streptavidin-Alexa 

Fluor555® (Life technologies, 1µg/mL) and Alexa Fluor488® (Life 

technologies, 2µg/mL) secondary antibodies diluted in 1% BSA/PBS, for one 

hour at room temperature in the dark. After washing three times in PBS for a 

total of 5 minutes sections were incubated with 1% paraformaldehyde for 10 

minutes at room temperature. Slides were washed a further 2X in PBS 

before excess unreacted aldehydes were quenched with 0.3M glycine in 

PBS for 10 minutes. After a final wash in PBS sections were mounted using 

Vectashield mounting medium with DAPI (4, 6-diamidino-2-phenylindole, 
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Vector Laboratories) and glass coverslips. The cover slips were sealed with 

clear nail polish. A Zeiss LSM5 Pascal confocal microscope was used to 

image the sections.          

2.2.3 Cell Quantification  

 A NIKON microscope was used to count CD3+, CD4+ (CD3+CD8-), CD8+ 

and FoxP3+ labelled cells. 10 high power (600x) fields of view within the 

tumour mass (tumour centre) and at the tumour invasive margin were 

counted per section and the mean calculated. The counts at the tumour 

invasive margin were performed in the area between the tumour invasive 

margin line and the dashed line represented in Figure 2.1. The area 

represents a high power field of view of 600x.  

 

 

Figure 2.1 CD3+ T cells were enumerated per 10 high power fields of view and the 
mean calculated. Such counts were performed separately within the tumour centre and by 
the tumour invasive margin. 
 

 

A scanscope (Aperio technologies) was used to scan all the sections 

analysed in this study. The HEV and aggregate/ lymphocyte analysis was 
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then performed using the scanned images with the aid of the ImageScope 

viewer software (Aperio). HEV densities were enumerated in two different 

sites, the centre of the tumour and the extra-tumoural area represented in 

green (Figure 2.2).   

 

 

Figure 2.2 Formalin-fixed paraffin embedded colorectal tumour samples were stained 
with MECA-79, CD3- and CD20-specific antibodies. Grey represents HEVs, brown 
represents CD3+ cells and pink represents CD20+ cells. A/F, lymphoid aggregate/follicle. 
HEV, high endothelial venule. The area covered in green represents the extra-tumoural area. 

 

All HEVs were enumerated in both areas and divided by the corresponding 

area (in mm2) to give the HEV density. In addition, lymphocyte aggregates / 

follicles composed of B and T cells were also enumerated in both areas and 

the corresponding density obtained by dividing by the area (in mm2). Gut-

associated lymphoid tissue (GALT) as part of the normal bowel was 

excluded from the lymphocyte aggregate / follicle enumeration. 

2.0 mm 

Tumour stroma 

Tumour invasive margin 

Tumour epithelium     

A/F with HEVs 
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2.3 Testing for microsatellite instability (MSI) in colorectal 

cancer patients 

Tumour tissue from samples containing HEVs within the tumour centre and 

from samples with the highest HEV density within the extra-tumoural area 

(for both Dukes’ A and C) was collected. This was done by tissue 

macrodissection in which a scalpel blade was used to scrape off the tumour 

tissue from tumour sections adherent to glass slides. Approximately 15 x 5 

µm sections were used per tumour to extract DNA. The tumour samples 

were collected in 1.5 mL vials and 180 µL of ATL buffer (Qiagen) was added. 

The vials were then centrifuging at 13 500 RPM for 5 minutes and left 

incubating overnight at room temperature. 20 µL of proteinase k (Qiagen) 

was added to the mixture the following morning to remove any contaminating 

proteins/nucleases and samples were left in the thermo shaker for 1h 05m at 

56°C followed by 1h 05m at 90°C. 

The EZ1 DNA Tissue kit (QIAGEN) was used with the EZ1 Advanced XL 

robot (Qiagen) according to the manufacturer’s instructions to purify DNA. 

The principle is illustrated in Figure 2.3. Reagent cartridges with magnetic 

particles were loaded into the robot, followed by elution tubes, tip holders 

and opened samples tubes.    
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Figure 2.3 DNA from the lysates binds to the silica surface of the particles present in 
the reagent cartridges in the presence of a chaotropic salt. The particles bound to DNA 
bind to a magnet and all the remnant product is washed away. The DNA is then washed and 
eluted in elution buffer and ready to collect. This figure was obtained from the EZ1 DNA 
Tissue handbook (Qiagen). 

 

The DNA was collected and its concentration measured using a nanodrop 

(Thermo Scientific).  The microsatellite instability (MSI) Analysis System 

(Promega) was used to identify MSI samples according to the manufacturer’s 

instructions. Briefly, the nuclease-free water, gold ST*R 10X buffer, MSI 10X 

Primer Pair Mix (MSI analysis system, Promega) and AmpliTaq Gold® DNA 
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Polymerase (ThermoFisher Scientific, Applied Biosystems) was defrosted 

and vortexed prior to use.    

  

Table 2.3 Volumes of PCR reagents used per individual reaction. 

 

 

 

The total reagent volumes were calculated according to the number of 

samples used and 8 µL of the master mix aliquoted into each well (see table 

2.3). 2 µL of the template DNA purified using the EZ1 DNA Tissue kit were 

pipetted into each well. The MSI 10X Primer Pair Mix contains fluorescently 

tagged primers which are specific for the amplification of seven markers 

including five mononucleotide repeat markers (NR-21, NR-24, BAT-25, BAT-

26, and MONO-27) and two pentanucleotide repeat markers (Penta C and 

Penta D), included to control for sample contamination. This set of five loci 

was selected due to their sensitivity and specificity for the detection of MSI 

by detecting deletion or addition of units altering the length of the alleles in 

the DNA. K562 Genomic DNA was included as a positive amplification 

control and nuclease-free water was included as a negative amplification 

control. A thermal Cycler was used for the amplification step.  

 

 

Reagent Volume per reaction
Nuclease-Free Water 5.85 µl
Gold ST★R 10X Buffer 1.00 µl
MSI 10X Primer Pair Mix 1.00 µl
AmpliTaq Gold® DNA polymerase (5u/ µl) 0.15 µl
Total reaction volume 8.00 µl
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The cycle used was as follows: 

 

 

 

The PCR products were then removed from the thermal cycler and stored at 

4°C until further use.  

To detect amplified fragments using the 3730 DNA Analyzer (Applied 

Biosystems) a master mix of HiDi formamide (7.6 µL/test) and Internal Lane 

Standard 600 (0.4 µL/test) was prepared and 8 µL loaded into each well prior 

to addition of 2 µL of the PCR products. The samples were then denatured 

for 3 minutes at 95°C and immediately transferred to an ice block to stop the 

reaction before capillary electrophoresis using the 3730 DNA Analyzer 

(Applied Biosystems) was performed by a dedicated technician. Peak 

Scanner™ Software Version 1.0 (Applied Biosystems) was used to analyse 

the data generated from capillary electrophoresis (an example is shown in 

Figure 2.4).     

 

95°C for 11 minutes, then:
96° for 1 minute, then:

94°C for 30 seconds
ramp 68 seconds to 58°C, hold for 30 seconds
ramp 50 seconds to 70°C, hold for 1 minute
for 10 cycles, then:

90° for 30 seconds
ramp 60 seconds to 58°C, hold for 30 seconds
ramp 50 seconds to 70°C, hold for 1 minute
for 20 cycles, then:

60°C for 30 minutes

4° soak
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Figure 2.4 Microsatellite instability analysis. The top panel represents a normal sample 
which is microsatellite stable. The loci sizes associated with microsatellite stability are 
labelled with the different markers on the top panel. The bottom panel corresponds to a MSI 
tumour. Instability in each locus is represented by the arrows, which indicates a shortening 
or enlargement of the fragments. This figure was obtained from the Promega kit 
documentation for MSI Analysis handbook. 

 

For a sample to be considered microsatellite instable at least two out of the 

five microsatellite loci studied had to be unstable. 

2.4 Second cohort of colorectal cancer patients  

Colorectal cancer patients admitted to the University Hospital of Wales for 

tumour resection were consented during the morning before surgery in order 

to collect specimens of the tumour, healthy bowel and approximately 50 mL 

of blood into tubes containing heparin. See Appendix for a copy of the 

patient information sheet and consent form. Patients’ details are shown in 

Tables 2.4, 2.5 and 2.6. Some of the samples were used only for method 
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optimisation. Ethical approval was obtained from the South East Wales 

Ethics Board.  

 

 
Table 2.4 Details of CRC patients whose PBMCs used for the optimisation of IL-17A 
detection by ELISpot and FluoroSpot. Information was not available on the tumour 
location or stage for one male patient. 

   

Male Female
n 11 1

Age (Range) 72 (63-84) 48

Tumour Location (%) Ascending 2 (18) 0 (0)
Transverse 1 (9) 0 (0)
Descending 0 (0) 0 (0)
Sigmoid 2 (18) 0 (0)
Rectum 5 (45) 1 (100)

TNM Stage (%) T1 0 (0) 0 (0)
T2 2 (18) 0 (0)
T3 7 (64) 0 (0)
T4 1 (9) 1 100)

(Lymph Node Spread) N0 4 (36) 0 (0)
N1 4 (36) 1 (100)
N2 2 18) 0 (0)

Dukes' Stage (%) A 0 (0) 0
B 4 (36) 0
C1 6 (55) 1
C2 0 (0) 0
D 0 (0) 0
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Table 2.5 Details of CRC patients whose samples were used for the analysis of 
tumour-infiltrating lymphocytes (TIL) and colon-infiltrating lymphocytes (CIL). 
 

 

Male Female
n 7 6

Age (Range) 71 (54-85) 75 (56-87)

Tumour Location (%) Ascending 3 (43) 3 (50)
Transverse 0 (0) 1 (17)
Descending 0 (0) 0 (0)
Sigmoid 2 (29) 0 (0)
Rectum 2 (29) 2 (33)

TNM Stage (%) T1 0 (0) 0 (0)
T2 3 (43) 0 (0)
T3 3 (43) 5 (83)
T4 1 (14) 1 (17)

(Lymph Node Spread) N0 5 (71) 3 (50)
N1 2 (29) 2 (33)
N2 0 (0) 1 (17)

Dukes' Stage (%) A 2 (29) 0 (0)
B 3 (43) 3 (50)
C1 1 (14) 3 (50)
C2 1 (14) 0 (0)
D 0 0 (0)
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Table 2.6 Details of CRC patients who’s PBMCs were used for detection of cultured 
tumour-antigen responses. Information was not available on the tumour stage for one 
male and one female patient. Information on the location of the tumour was not available for 
two males and one female patient. 

Male Female
n 12 12

Age (Range) 68 (42-87) 73 (54-87)

Tumour Location (%) Ascending 2 (17) 4 (33)
Transverse 1 (8) 1 (8)
Descending 0 (0) 0 (0)
Sigmoid 3 (25) 1 (8)
Rectum 4 (33) 5 (42)

TNM Stage (%) T1 1 (8) 0 (0)
T2 1 (8) 1 (8)
T3 7 (58) 9 (75)
T4 2 (17) 1 (8)

(Lymph Node Spread) N0 7 (58) 8 (67)
N1 2 (17) 2 17)
N2 2 (17) 1 (8)

Dukes' Stage (%) A 2 (17) 1 (8)
B 5 (42) 7 (58)
C1 4 (33) 3 (25)
C2 0 (0) 0 (0)
D 1 (8) 1 (8)
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2.4.1 Collecting patient samples 

Pieces of the tumour and healthy bowel obtained from the pathologist were 

transferred to tumour infiltrating lymphocyte (TIL) extraction media containing 

warm RPMI 1640 medium (ThermoFisher Scientific), supplemented with 

2mM L-glutamine, 1mM sodium pyruvate, 50 µg/mL of penicillin, 

streptomycin and gentamicin (Life Technologies) and 2 µg/mL of Fungizone 

(Amphotericin B, Life technologies) and taken to the laboratory.  

2.4.2 Lymphocyte Isolation 

2.4.2.1 Preparation of single cell Suspensions from Tissues 

The tumour and colon samples were minced into a fine pulp on a Petri dish 

using a blade and filtered through a 70 µm cell strainer to isolate the 

infiltrating cells. At this point cells were centrifuged twice in TIL extraction 

media at 2000 rpm for 10 min at room temperature. Supernatants were 

discarded carefully and fresh media added to the samples. Only mechanic 

dissociation was used to obtain single cell suspension because the addition 

of enzymes such as collagenase or DNase greatly alters the expression of 

certain cell surface proteins (including chemokine receptors relevant to this 

study). Prior to detection of intracellular cytokines, cells were left in the 

incubator overnight in TIL/CIL resting media containing (RPMI 1640 

supplemented with 2mM L-glutamine, 1mM sodium pyruvate, 50 µg/mL of 

penicillin and streptomycin, 10 µg/mL of gentamicin (Life technologies), 1 

µg/mL of Fungizone (Amphotericin B, Life technologies) and 10% of AB 

serum).   
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2.4.2.2 Ficoll separations 

PBMCs were isolated from blood by layering on an equal volume of 

Lymphoprep (Axis-Shield) before spinning at 2000 RPM for 20 min at room 

temperature without break. A Pasteur pipette was subsequently used to 

aspirate the ring of PBMCs formed in the middle of the layers after 

centrifugation. PBMCs were transferred into a falcon tube and fresh 

complete RPMI (RPMI 1640 supplemented with 2mM L-glutamine, 1mM 

sodium pyruvate and 50 µg/mL of penicillin and streptomycin) was used to 

wash the PBMCs twice. Firstly by centrifugation at 2000 RPM for 10 min 

followed by centrifugation at 1600 RPM for 5 min both at room temperature. 

The cells were then enumerated; 20µL of cell suspension was mixed with 

20µL of Trypan blue and cells were counted using a haemocytometer under 

a light microscope.  

2.4.3 CD25+ Cell Depletion by MACS  

In order to deplete CD25hi T cells from PBMCs CD25 MicroBeads II (Miltenyi 

Biotec) were used. Cells were magnetically labelled by resuspending up to 

107 cells in 90 µL of cold MACS buffer (1x PBS, 0.5% BSA, 5 mM EDTA) 

and adding 10 µL of MicroBeads II (Miltenyi Biotec) before thorough 

resuspension and incubation at 4° for 15 min. Cells were washed twice in 

2mL of MACS buffer followed by resuspension in 500 µL of MACS buffer. To 

positively select the CD25hi T cell fraction a MS column was placed into a 

MACS separator and the magnetically labelled cells passed through the 

column. The column was washed three times with MACS buffer in order to 

collect the unlabelled fraction before removing the column from the MACS 
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separator and eluting the labelled cells with 500 µL of MACS buffer. Both 

CD25 replete and deplete fractions were washed twice in RPMI media prior 

to further use. The percentage of CD4+CD25+ Treg depletion was analysed 

by flow cytometry as shown in the results section.     

2.4.4 Antigens/Mitogens 

Tuberculin purified protein derivative (PPD) (Statens Serum Institut, 

Denmark) and haemagglutinin protein (HA) (kindly provided by Dr John 

Skehel, NIMR) were used routinely as control antigens to test for recall 

responses in all patients. Phytohaemagglutinin (PHA) was also used in all 

assays as a positive control. All of the aforementioned antigens were used at 

a concentration of 4 µg/mL. 

2.4.4.1 Candida Albicans 

C. Albicans was prepared by inoculating pieces of frozen yeast (SC5314) 

into a 5 mL yeast peptone dextrose broth (Dr Selinda Orr). The mixture was 

left incubating at 30°C for 16-24 hours with constant movement (150-

200RPM). The C. Albicans was washed three times in sterile PBS. Between 

each wash the cells were centrifuged at 300g for 5 mins at 4°C. Cells were 

resuspended in PBS and enumerated under a light microscope using a 

haemocytometer. In order to heat inactivate the C. Albicans, the cells were 

heated at 100°C for 45 min prior to two further washes in PBS. Cells were 

aliquoted into eppendorf vials and stored at -80°C until further use.  
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2.4.4.2 Carcinoembryonic antigen’s proteins 

Whole CEA proteins from two different sources and obtained by two different 

methods were used to assess the development of anti-CEA responses in 

CRC patients. CEA from Sigma Aldrich was obtained from human fluids 

whereas CEA from Merck Millipore Calbiochem® was derived from a human 

colon adenocarcinoma cell line.  

2.4.4.3 Carcinoembryonic antigen and 5T4 peptide pools 

The CEA protein sequence AAA51967.1 was used to design a set of seventy 

20 amino acid long peptides, each overlapping by 10 residues and covering 

the entire protein (Table 2.7). The peptides were obtained from GLBiochem, 

China and their purity was greater than 90%. Two super pools of CEA 

peptides were created. Peptide pool 1 (pp1) covered peptides 1 to 35 and 

peptide pool 2 (pp2) covered peptides 36 to 70. These were used at a final 

concentration of 1.5 µg/mL/peptide. Two super pools were also prepared 

with 5T4 peptides. 5T4 pp1 spanned from peptide 1 to peptide 20 and 5T4 

pp2 spanned from peptide 21 to peptide 41. 5T4 peptides were already 

available in the laboratory also from GLBiochem (China) (Table 2.8). 5T4 

peptide pools were also used at a final concentration of 1.5 µg/mL/peptide.  
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Table 2.7 CEA 20 mer peptide sequences. 

 

No Sequence No Sequence
1 MESPSAPPHR WCIPWQRLLL 36 NTTYLWWVNNQSLPVSPRLQ
2 WCIPWQRLLL TASLLTFWNP 37 QSLPVSPRLQLSNDNRTLTL
3 TASLLTFWNP PTTAKLTIES 38 LSNDNRTLTLLSVTRNDVGP
4 PTTAKLTIESTPFNVAEGKE 39 LSVTRNDVGPYECGIQNELS
5 TPFNVAEGKEVLLLVHNLPQ 40 YECGIQNELSVDHSDPVILN
6 VLLLVHNLPQHLFGYSWYKG 41 VDHSDPVILNVLYGPDDPTI
7 HLFGYSWYKGERVDGNRQII 42 VLYGPDDPTISPSYTYYRPG
8 ERVDGNRQIIGYVIGTQQAT 43 SPSYTYYRPGVNLSLSCHAA
9 GYVIGTQQATPGPAYSGREI 44 VNLSLSCHAASNPPAQYSWL
10 PGPAYSGREIIYPNASLLIQ 45 SNPPAQYSWLIDGNIQQHTQ
11 IYPNASLLIQNIIQNDTGFY 46 IDGNIQQHTQELFISNITEK
12 NIIQNDTGFYTLHVIKSDLV 47 ELFISNITEKNSGLYTCQAN
13 TLHVIKSDLVNEEATGQFRV 48 NSGLYTCQANNSASGHSRTT
14 NEEATGQFRVYPELPKPSIS 49 NSASGHSRTTVKTITVSAEL
15 YPELPKPSISSNNSKPVEDK 50 VKTITVSAELPKPSISSNNS
16 SNNSKPVEDKDAVAFTCEPE 51 PKPSISSNNSKPVEDKDAVA
17 DAVAFTCEPETQDATYLWWV 52 KPVEDKDAVAFTCEPEAQNT
18 TQDATYLWWVNNQSLPVSPR 53 FTCEPEAQNTTYLWWVNGQS
19 NNQSLPVSPRLQLSNGNRTL 54 TYLWWVNGQSLPVSPRLQLS
20 LQLSNGNRTLTLFNVTRNDT 55 LPVSPRLQLSNGNRTLTLFN
21 TLFNVTRNDTASYKCETQNP 56 NGNRTLTLFNVTRNDARAYV
22 ASYKCETQNPVSARRSDSVI 57 VTRNDARAYVCGIQNSVSAN
23 VSARRSDSVILNVLYGPDAP 58 CGIQNSVSANRSDPVTLDVL
24 LNVLYGPDAPTISPLNTSYR 59 RSDPVTLDVLYGPDTPIISP
25 TISPLNTSYRSGENLNLSCH 60 YGPDTPIISPPDSSYLSGAN
26 SGENLNLSCHAASNPPAQYS 61 PDSSYLSGANLNLSCHSASN
27 AASNPPAQYSWFVNGTFQQS 62 LNLSCHSASNPSPQYSWRIN
28 WFVNGTFQQSTQELFIPNIT 63 PSPQYSWRINGIPQQHTQVL
29 TQELFIPNITVNNSGSYTCQ 64 GIPQQHTQVLFIAKITPNNN
30 VNNSGSYTCQAHNSDTGLNR 65 FIAKITPNNNGTYACFVSNL
31 AHNSDTGLNRTTVTTITVYA 66 GTYACFVSNLATGRNNSIVK
32 TTVTTITVYAEPPKPFITSN 67 ATGRNNSIVKSITVSASGTS
33 EPPKPFITSNNSNPVEDEDA 68 SITVSASGTSPGLSAGATVG
34 NSNPVEDEDAVALTCEPEIQ 69 PGLSAGATVGIMIGVLVGVA
35 VALTCEPEIQNTTYLWWVNN 70 IMIGVLVGVALI
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Table 2.8 5T4 20 mer peptide sequences. 

No Sequence No Sequence
1 MPGGCSRGPAAGDGRLRLAR 22 GLRRLELASNHFLYLPRDVL
2 AGDGRLRLARLALVLLGWVS 23 HFLYLPRDVLAQLPSLRHLD
3 LALVLLGWVSSSSPTSSASS 24 AQLPSLRHLDLSNNSLVSLT
4 SSSPTSSASSFSSSAPFLAS 25 LSNNSLVSLTYVSFRNLTHL
5 FSSSAPFLASAVSAQPPLPD 26 YVSFRNLTHLESLHLEDNAL
6 AVSAQPPLPDQCPALCECSE 27 ESLHLEDNALKVLHNGTLAE
7 QCPALCECSEAARTVKCVNR 28 KVLHNGTLAELQGLPHIRVF
8 AARTVKCVNRNLTEVPTDLP 29 LQGLPHIRVFLDNNPWVCDC
9 NLTEVPTDLPAYVRNLFLTG 30 LDNNPWVCDCHMADMVTWLK
10 AYVRNLFLTGNQLAVLPAGA 31 HMADMVTWLKETEVVQGKDR
11 NQLAVLPAGAFARRPPLAEL 32 ETEVVQGKDRLTCAYPEKMR
12 FARRPPLAELAALNLSGSRL 33 LTCAYPEKMRNRVLLELNSA
13 AALNLSGSRLDEVRAGAFEH 34 NRVLLELNSADLDCDPILPP
14 DEVRAGAFEHLPSLRQLDLS 35 DLDCDPILPPSLQTSYVFLG
15 LPSLRQLDLSHNPLADLSPF 36 SLQTSYVFLGIVLALIGAIF
16 HNPLADLSPFAFSGSNASVS 37 IVLALIGAIFLLVLYLNRKG
17 AFSGSNASVSAPSPLVELIL 38 LLVLYLNRKGIKKWMHNIRD
18 APSPLVELILNHIVPPEDER 39 IKKWMHNIRDACRDHMEGYH
19 NHIVPPEDERQNRSFEGMVV 40 ACRDHMEGYHYRYEINADPR
20 QNRSFEGMVVAALLAGRALQ 41 YRYEINADPRLTNLSSNSDV
21 AALLAGRALQGLRRLELASN



 83 

2.4.5 Primary cell Cultures 

Freshly isolated PBMCs from CRC patients were used to set up cell cultures 

in order to detect low frequency tumour-antigen specific responses. 13-14 

day cultures were used unless otherwise specified. During the optimisation 

stages different cell numbers were used and cells were grown for different 

periods of time. These variables are described in the first part of Chapter 4. 

After optimisation 0.5 x 106 PBMCs were seeded per well in a 96-well plate 

(Nunc) in 100 µL culture media (RPMI 1640 supplemented with 2mM L-

glutamine, 1mM sodium pyruvate, 50 µg/mL of penicillin, streptomycin and 

5% AB serum) as follows:   

 

 

Figure 2.5 Schematic of the 96-well plate used to culture PBMCs. HA; haemagglutinin, 
PPD; tetanus purified protein derivative, NS; non-stimulated. 

 

On day 0 HA and PPD were added at a final concentration of 4 µg/mL and all 

the peptide pools were added at a final concentration of 1.5 µg/mL/peptide. 

As a control no antigen was added to the NS (non-stimulated) well.  

10 µL of CellKine (CK) media (Helvetiva Healthcare) was added on day three 

and every three/four days 100 µL of culture media was replaced with fresh 

media supplemented with 40 U/mL of IL-2 resulting in a final concentration of 

20 U/ml of IL-2/well. The culture plate was kept in sterile conditions at all 

1 2 3 4 5 6 7 8 9 10 11 12
A PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS
B PBS HA NS HA NS HA NS HA NS PBS
C PBS PPD PPD PPD PPD PBS
D PBS CEA	pp1 CEA	pp1 CEA	pp1 CEA	pp1 PBS
E PBS CEA	pp2 CEA	pp2 CEA	pp2 CEA	pp2 PBS
F PBS 5T4	pp1 5T4	pp1 5T4	pp1 5T4	pp1 PBS
G PBS 5T4	pp2 5T4	pp2 5T4	pp2 5T4	pp2 PBS
H PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS
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times in an incubator (37°C, 5% CO2) for 13-14 days before re-stimulation. 

The wells at the edge of the plate were filled with PBS.    

2.4.6 IFN-γ  / IL-17A ELISpot Assays  

The IFN-γ and IL-17A ELISpot kits from Mabtech (Sweden) were used for all 

the ELISpot assays in combination with 96-well plates from Millipore (MAIP-

S-4510). To fully activate the membrane 50 µL of 70% ethanol were added 

to each well for 1 min. The plate was washed five times with sterile PBS (150 

µL/well) and coated with 50 µL of IFN-γ antibody (1-D1K, 15 µg/mL) or IL-

17A antibody (MT44.6, 10 µg/mL). Both antibodies were diluted in sterile 

PBS. Plates were left incubating overnight at 4°C. The following day the 

plate was washed five times with 150 µL/well of PBS prior to the addition of 

100 µL/well of culture media. The plate was then incubated at room 

temperature for at least 30 min to block the Fc receptors and diminish non-

specific binding. After the blocking step the culture media was removed and 

100 µL/well of culture media containing cells was aliquoted per well. 

Antigens were added to the culture media and plates left in the incubator 

(37°C, 5% CO2) for approximately 18 hours for the detection of IFN-γ or 42 

hours for the detection of IL-17A. 

Following 18 (IFN-γ) or 42 (IL-17A) hours incubation the cells were removed 

from the plates and the wells washed five times with 150 µL/well of PBS. 

50µL of the IFN-γ detection antibody (7-B6-1-biotin, 1µg/mL) or the IL-17A 

detection antibody (MT504-biotin, 0.5µg/mL) were added to each well and 

the plates incubated at room temperature for two hours. Following incubation 

the plates were washed five times with PBS and streptavidin-alkaline 
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phosphatase (1:1000) added to the wells (50 µL/well) and incubated for 1 

hour at room temperature. The wells were washed five times with PBS prior 

to addition of the substrate for approximately 15 minutes. The substrate 

consisted of 4% AP colour development, 1% substrate A, 1% substrate B in 

dH2O (Bio-Rad; Hercules, California). After 15 min the plate was washed 

under tap water to stop the reaction. The ELISpot plate reader (Autoimmun 

Diagnostika GMBH, A.I.D., Germany) and ELISpot 5.0 software was used to 

enumerate cytokine-producing T cells. The number of spots in each well was 

confirmed by eye.  

2.4.6.1 Ex vivo IFN-γ  / IL17A ELISpot Assay 

Ex vivo ELISpots were prepared on the day of blood collection. Ficoll purified 

PBMCs were enumerated and resuspended in culture media and added to 

the wells. 3.5 x 105 PBMCs were used per well for the detection of IFN-γ and 

5 x 105 PBMCs were used per well for the detection of IL-17A. Following 

incubation with a range of antigens the plates were developed as explained 

in section 2.4.6. 10 spots per 2 x 105 PBMCs post background subtraction 

and at least double the background were indicative of a positive ex vivo 

response. 

2.4.6.2 Cultured IFN-γ  / IL-17A ELISpot Assay 

For cultured IFN-γ or IL-17A ELISpot assays, PBMC lines kept in identical 

culture conditions as explained in section 2.4.5 were pooled from duplicate 

wells, washed and resuspended at 2 x 106/mL for IFN-γ detection and 5 x 

106/mL for IL-17A detection in 200 µL of culture media. 100 µL was added to 

two separate wells and one of them received antigen in order to compare 
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specific activation. An IFN-γ response was considered positive if for every 5 x 

105 cells seeded more than 50 peptide specific spots were present after 

subtraction of the background and there were double the number of 

background spots. An IL-17A response was considered positive if for every 5 

x 105 cells seeded more than 25 peptide specific spots were present after 

subtraction of the background and there were double the number of 

background spots. The number of cells initially seeded varied at times during 

the optimisation process as described in Chapter 4. 

2.4.7 IFN-γ  / IL-17A FluoroSpot Assays 

The human IFN-γ/ IL-17A FluoroSpot kit (MabTech) was used for all the 

FluoroSpot assays. 96-well IPFL plates specific for FluoroSpot (Millipore) 

were activated for 1 minute with 15 µL of 25% Ethanol. Following activation 

the plate was washed five times with PBS. A mix of coating antibodies was 

prepared by mixing anti-IFN-γ (1-D1K, 15 µg/mL) and anti-IL-17A (MT44.6 15 

µg/mL). 80 µl of the coating antibodies was added to the plates and 

incubated overnight at 4°C. The following day the plate was washed five 

times with PBS and incubated with 100 µL of culture media for at least 30 

minutes at room temperature. Culture media was removed and PBMCs in 

100 µL of culture media were added to each well. The plate was incubated 

for approximately 42 hours at 37°C with 5% CO2. The cells were removed 

from the plate and the wells washed five times with PBS. The detection 

antibodies were prepared by mixing anti-IFN-γ (7-B6-1-FS-FITC, 1:200) and 

anti-IL17A (MT504-biotin, 2 µg/mL) in PBS containing 0.1% of BSA before 

adding 100 µL to each well. The plate was incubated at room temperature for 
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two hours and washed five times with PBS. Anti-FITC-490 (1:200) and SA-

550 (1-200) were diluted in PBS containing 0.1% BSA and 80 µL of the 

solution added to each well. The plate was incubated in the dark for one hour 

at room temperature and washed again five times with PBS. 50 µL/well of 

Fluorescence enhancer (Mabtech) was added and the plate incubated for 15 

minutes at room temperature. The Fluorescence enhancer was removed 

from the wells by firmly tapping it onto paper towels before leaving the plate 

to dry in the dark at room temperature. Spots were detected and counted 

using an ImmunoSpot® Analyzer (C.T.L.) and ImmunoSpot 5.2 Analyzer 

(C.T.L.), respectively.     

2.4.7.1 Cultured IFN-γ  / IL-17A FluoroSpot Assays 

For the cultured IFN-γ/IL-17A FluoroSpot assays PBMC lines were grown in 

quadruplicate as shown in Figure 2.5. After 13-14 days of culture two 

identical lines were pooled together and washed at least twice with PBS (e.g. 

Lines in column 2 were pooled with lines in column 4 and lines in column 8 

were pooled with lines in column 10 (Figure 2.5)). After the last PBS wash, 

pooled cells in each well were resuspended in 200 µL of culture media and 

transferred to the FluoroSpot plate. Each pooled condition was split into two 

100 µL wells with 5 x 105 cells in each well. At this stage, if enough cells 

were available anti-DR (Biolegend, Clone L243, 10 µg/mL), anti-DQ 

(Biolegend, Clone Tu169, 10 µg/mL) and anti-HLA, A, B and C (Biolegend, 

Clone W6/32, 10 µg/mL) blocking antibodies were added to the wells and 

incubated at 37°C with 5% CO2 for 30-60 min before addition of the antigen. 

In order for a response to be considered positive it would have to be at least 
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double the background in addition to the following criteria: IFN-γ, IL-17A and 

IFN-γ/IL-17A responses were considered positive if a minimum of 50, 25 and 

10 spots, respectively, were present per 5 x 105 cells after subtraction of the 

background.  

2.4.8 Flow Cytometry 

2.4.8.1 Antibody staining 

0.2 – 1 x 106 PBMCs, colon infiltrating lymphocytes (CILs) and TILs were 

seeded in 96-well plates (Nunc) and washed twice in 200 µL PBS. 3µL of a 

1:10 dilution of aqua amine-reactive viability dye (Invitrogen) was added to 

the cell pellet to stain the dead cells. The cells were incubated with the dye 

for 15 min at room temperature in the dark. Cold flow cytometry buffer (PBS 

containing 2% foetal calf serum (FCS) and 5mM EDTA ) was used to wash 

the cells three times before addition of the surface antibodies. After the final 

wash the cells were resuspended in 50 µL of flow cytometry buffer containing 

anti-human antibodies to stain surface markers (Table 2.9). Cells were 

incubated with antibodies in the dark for 15 min at 4°C before being washed 

twice with flow cytometry buffer and incubated with 200 µL of 

fixation/permeabilization solution (eBioscience) overnight at 4°C. Cells were 

washed with 1x permeabilization buffer (eBioscience) and incubated with 30 

µL of 1x permeabilization buffer including 2% rat serum to block Fc receptors 

for 15 min at 4°C. Cells were resuspended in 50 µL 1x permeabilization 

buffer containing anti-human antibodies used to stain intracellular 

markers/cytokines (Table 2.10). Cells were incubated with the antibodies in 

the dark for 30 minutes at 4°C before washing three times in 1x 
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permeabilization buffer and fixed in flow cytometry buffer containing 2% 

paraformaldehyde (Sigma-Aldrich) prior to acquisition on a BD FACSCanto II.  

2.4.8.2 Activation for Intracellular Cytokine Analysis 

Cells were stimulated with phorbol myristate acetate (PMA,50 ng/mL) and 

Ionomycin (500 ng/mL) for five hours in combination with Brefeldin A (2 

µg/mL) before performing intracellular cytokine staining with the antibodies 

shown in Table 2.10. 

2.5 Statistical and graphical analyses 

Prism 5 (GraphPad) was used to perform all of the statistical analyses. The 

Mann-Whitney statistical test was used for comparison amongst groups. The 

Pearson method was used for correlation analyses and both P-value and 

Pearson correlation coefficients (r2) are shown. A P-value ≤ 0.05 was 

considered significant.  

Flow cytometry data was analysed using FlowJo version 10. 
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Table 2.9 Antibodies used for staining cell surface markers for flow cytometry. 
Dilutions or volumes per test are shown in cases where concentrations were not available. 
All the antibodies used were anti-human. 

 

         

Table 2.10 Antibodies used for intracellular staining and flow cytometry. Dilutions or 
volumes per test are shown in cases where concentrations were not available. All the 
antibodies used were anti-human. 

 

 

Marker Conjugate Clone Company
Final 
Concentration 
(µg/ml)

CD3 APC UCHT1 Biolegend 1.7 µg/ml
CD3 PE UCHT1 Biolegend 3.33 µg/ml
CD3 FITC UCHT1 Biolegend 3.33 µg/ml
CD3 PerCPCy5.5 UCHT1 Biolegend 5 µg/ml
CD4 Brilliant Violet 421 OKT4 Biolegend 5 µg/ml
CD4 APCh7 RPA-T4 BD 3 µg/test
CD4 PECy7 RPA-T4 Biolegend 10 µg/ml
CD4 APC-eFluor 780 SK3 eBioscience 0.4 µg/ml
CD8 PECy7 RPA-T8 BD 1:20
CD69 PECy7 FN50 Biolegend 6 µg/ml
CCR6 Brilliant Violet 421 G034E3 Biolegend 2.5 µg/ml
CCR6 PECy7 11A9 BD 1:20
CXCR3/CD183 PerCPCy5.5 1C6/CXCR3 BD 1:30
CXCR3/CD183 PerCPCy5.5 G025H7 Biolegend 5 µg/ml
LAG-3 PE 3DS223H eBioscience 0.8 µg/ml

Marker Conjugate Clone Company
Final 
Concentration 
(µg/ml)

ROR-γt PE Q21-559 BD 5 µl/test
T-bet eFluor 660 4B10 eBioscience 8 µg/ml
IL-10 PE JES3-19F1 Biolegend 1.7 µg/ml
IL-17A APC 64DEC17 eBioscience 0.8 µg/ml
IL-17A APC eFluor 780 64DEC17 eBioscience 1.7 µg/ml
IL-22 eFluor 660 22URTI eBioscience 2 µg/ml
IFN-γ FITC B27 BD 5 µg/ml
IFN-γ Brilliant Violet 421 4S.B3 Biolegend 1:30
IFN-γ APC eFluor 780 4S.B3 eBioscience 1 µg/ml
FoxP3 FITC PCH101 eBioscience 6.6 µg/ml
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3 High endothelial venules and lymphoid 
aggregates in the context of colorectal 
cancer 

3.1 Introduction 

HEVs are postcapillary venules specialised in lymphocytic extravasation from 

the blood into lymphoid organs. The presence of PNAds on the surface of 

their endothelial cells allows the specific binding of L-selectin+ cells. Cuboidal 

and plump endothelial cells form the lining of HEVs, which gives them their 

characteristic appearance and thus their “high endothelial venule” name. 

These structures are present in all secondary lymphoid organs within the 

body except from the spleen and support high levels of lymphocytic 

extravasation (Girard and Springer, 1995). A common feature of such 

vessels is the presence of lymphocytes within their walls. MECA-79 is a well-

characterised monoclonal antibody, which allows the detection of PNAds and 

therefore HEVs within LNs.   

Chronic inflammation and development of ectopic lymphoid structures or 

tertiary lymphoid organs has been reported in the context of autoimmune 

diseases such as rheumatoid arthritis amongst others. Often, the presence of 

HEVs is also associated with the presence of such structures (Girard and 

Springer, 1995; Stranford and Ruddle, 2012). Most recently, however, HEVs 

have also been described in the context of human and mouse tumours, 

namely breast, lung, colon and ovarian carcinomas and in melanomas 

(Avram et al., 2013; Martinet et al., 2012; 2011). More in-depth studies 
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carried on melanoma and breast cancer demonstrated a correlation between 

the number of HEVs detected, patient outcome and tumour and metastasis-

free survival (Martinet et al., 2011). The authors suggested that the formation 

of these new specialised blood vessels within the tumour aids infiltrating of 

effector T cells into the tumour site, thus promoting tumour control (Martinet 

et al., 2011). In support of such suggestion, previous studies in our own 

laboratory demonstrated that a high density of T cells within the tumour 

microenvironment is crucial for a successful control of methylcholanthrene 

(MCA)-induced tumours. Additionally, the presence of T cells was associated 

with the presence of HEVs, seen, in this model, only after depletion of Tregs 

(Hindley et al., 2012).        

Surgical removal of the tumour is often the route of treatment for CRC 

patients. However after colectomy around 40-50% of the patients suffer 

relapse. After resection, specimens are histologically classified from Dukes’ 

stage A to D according to the muscle bowel penetration and lymph node 

involvement, leaving patients diagnosed with Dukes’ A tumours at a better 

chance of survival than patients diagnosed with Dukes’ D which represents 

Dukes’ C tumours with distant metastasis. Nonetheless, such prognosis is 

not absolute and in the past years more and more evidence has suggested 

that the extent of T cell infiltration acts as an independent prognostic factor to 

histopathological staging (Galon, 2006; Pagès et al., 2005). It is likely that 

TILs may have an important role in limiting disease progression and also 

disease recurrence after resection of the primary tumour. Our group has 

performed detailed examination of the type of TILs infiltrating colorectal 

tumours at different disease stages (Betts et al., 2012; Scurr et al., 2014).   
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However, although the lymphocyte cellularity of tumours varies markedly, the 

mechanism of cell infiltration remains unclear. 

Based on the mouse studies performed in our lab (Hindley et al., 2012) and 

very initial published findings in human tumours (Martinet et al., 2011), I 

reanalysed the tissue sections from CRC patients to determine whether 

HEVs were present within the tumours and whether these were associated 

with an increased infiltration of T cells into the tumours. This chapter will 

focus on whether presence or absence of HEVs is associated with i) the 

formation of lymphoid structures at the site of the CRC; ii) type of T cell 

present within the tumour mass, iii) clinical stage of disease and iv) patient 

survival.  

3.2 Human colorectal cancers are associated with the 

development of extra-tumoural but rarely intra-tumoural 

HEVs 

In order to ascertain if HEVs were present within colorectal tumour mass 

and/or its adjacent area, formalin-fixed paraffin embedded tumours from 62 

patients were used for immunohistochemistry analysis. From the 62 patients, 

30 were female and 30 were male. There was no available information 

regarding gender for two patients. The mean recruiting age was 69.4 years. 

The cohort included twenty-four and thirty-eight patients diagnosed with early 

(Dukes’ A) and more advanced (Dukes’ C) disease, respectively.  

MECA-79 is a well-characterised antibody that binds to peripheral node 

addressins (PNAds) on HEVs. Thus, MECA-79 was used in 

immunohistochemistry along with the HEV characteristic cuboidal and plump 
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morphology and also the presence of lymphocytes in their vicinity to identify 

HEVs. In order to ascertain that MECA-79 staining was indeed indicatory of a 

blood vessel, sequential sections were also stained with the CD31 antibody 

(pan-endothelial cell marker). Thirteen samples of healthy bowel were also 

analysed for the presence of HEVs in order to compare the existence of 

HEVs in healthy and malignant colon. The MECA-79 antibody positively 

identified HEVs (grey staining in Figure 3.1A), which also stained for CD31 

(brown staining in Figure 3.1B) demonstrating the specificity of the antibody 

and the ability to identify HEVs within CRC through MECA-79 staining. The 

great majority of HEVs detected within CRC presented with the typical 

cuboidal and plump morphology of such structures found in LNs as can be 

observed from Figure 3.2. Figures A-C represent examples of 20x 

magnification images whereas figures 3.2 D-F represent images captured at 

a 40x magnification (examples are from different patients). A rat IgM 

antibody was used regularly as an isotype control to ascertain the MECA-79 

antibody specificity. As observed in Figure 3.3B, incubation of CRC sections 

with rat IgM does not generate any MECA-79-like staining. In order to 

understand if detection of HEVs was a trait only observed within colorectal 

tumours, thirteen samples of healthy bowel were also obtained and stained 

for HEVs. Due to the practical difficulty in obtaining healthy bowel from 

completely disease free donors, the samples were collected from a healthy 

portion of the bowel of CRC patients.  
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Figure 3.1 MECA-79 co-localises with CD31 staining and positively identifies High 
endothelial venules. Sequential formalin-fixed paraffin embedded colorectal tumour 
samples were stained with MECA-79 (A and C) and CD31 (B and D) antibodies. In figures A 
and C grey represents HEVs, brown represents CD3+ cells and pink represents CD20+ cells. 
In figures B and D dark brown represents CD31+ blood vessels. 
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Figure 3.2 HEVs identified within colorectal cancer have the characteristic plump and 
cuboidal shape typical of HEVs found in SLOs. Formalin-fixed paraffin embedded 
colorectal tumour samples were stained with MECA-79, CD3 and CD20 antibodies. A-C 
represent imagines of HEVs captured with a 20 x magnification whereas figures D – F 
represent imagines captured with 40 x magnification. Grey represents HEVs, brown 
represents CD3+ cells and pink represents CD20+ cells.  
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Figure 3.3 HEV staining is absent when staining is performed with isotype controls. 
Sequential sections were stained with CD3 (Brown), CD20 (Purple) and MECA-79 (Grey) 
and isotype controls. A) HEV staining in grey, T cell staining in brown and B cell staining in 
pink. B) Staining performed with isotype controls using exactly the same conditions as in A.
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Such samples were collected the furthest away possible from the tumour. 

HEVs could only be detected within the healthy bowel in the context of gut-

associated lymphoid tissue (GALT) in close proximity to the crypts but in no 

other location (Figure 3.4 A-D). Antibody specificity is demonstrated on figure 

3.5 by the absence of staining in figure 3.5B when staining was performed 

with isotype control antibodies. The lack of HEVs within the healthy 

submucosa was strikingly different to what was observed in CRCs where 

HEVs were present within the extra-tumoural area, positioned ahead of the 

tumour invasive margin. The extra-tumoural area is considered to be the 

tissue directly adjacent to the tumour mass which could be perceived as part 

of the tumour microenvironment but not the tumour epithelium/stroma. In 

Figure 3.6A the superimposed green shape represents the extra-tumoural 

area. Under the microscope such distinction is easily made and the tumour 

invasive margin creates what could be perceived as a physical barrier, which 

separates the tumour epithelium and tumour stroma from the extra-tumoural 

area. HEVs were positively identified within the colorectal tumour 

environment but their presence was mostly confined to the extra-tumoural 

area. They were always detected in association with a concentration of CD3+ 

T and CD20+ B cells (Figure 3.6B). In 49 out of 62 patients HEVs were found 

within the tumour microenvironment, largely within the extra-tumoural area. 

In contrast to what has been reported for melanoma (Martinet et al., 2012) 

and breast cancer (Martinet et al., 2013), HEVs were rarely observed within 

the CRC tumour stroma or epithelium (tumour centre).  
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Figure 3.4 HEVs are only detected within the healthy bowel in the context of gut-
associated lymphoid organs (GALT). 13 samples from the healthy bowel of CRC patients 
were collected and analysed for the presence of HEVs. A) Overview picture of the 
localisation of GALT in relation to the crypts. B-D) Represent different examples of HEVs 
(Grey) detected in the context of GALT in association with crypts. B (Purple) and T (Brown) 
cells were also stained in combination with HEVs. 



 101 

 
 
 
 

 

 

 
Figure 3.5 No T or B cells or HEVs can be detected in GALT with isotype control 
antibodies. A) Representative example of a GALT (gut associated lymphoid tissue) stained 
with CD3 (brown), CD20 (pink) and MECA-79 (grey). b) Sequential section stained with 
Rabbit IgG isotype control, mouse IgB2a isotype and Rat IgM isotype. 
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Figure 3.6 HEVs are identified within the extra-tumoural area of colorectal cancer in 
the context of lymphoid aggregates/follicles. Formalin-fixed paraffin embedded colorectal 
tumour samples were stained with MECA-79, CD3 and CD20 antibodies. Grey represents 
HEVs, brown represents CD3+ cells and pink represents CD20+ cells. A/F, lymphoid 
aggregate/follicle. HEV, high endothelial venule. In figure A the area covered in green 
represents the extra-tumoural area. In figure B the black line represents the tumour invasive 
margin.  
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In the aforementioned tumours, HEVs were described to be present within 

the tumour mass, directly influencing the amount of T cell infiltration 

occurring within the centre of the tumour. In the small number of tumours 

where HEVs were detected within the tumour centre (tumour stroma and/or 

tumour epithelium) (n=8), they did not exhibit typical HEV morphology 

(Figure 3.7A); phenotypic features linked to function. HEVs present within the 

tumour centre were formed by flat endothelial cells and in some cases 

absence of lymphocytic aggregates further supporting the atypical 

characteristics of such HEVs (Figure 3.7B).  

In some tumours binding of MECA-79 to the tumour epithelium was observed. 

This phenomenon only occurred in about one sixth of the tumours and even 

though the pattern of staining did not reflect the structure of HEVs further 

investigation was carried out in order to ascertain the absence of HEVs 

within the tumour mass. Sequential sections were incubated with either 

MECA-79 or CD31 and images were compared side by side at the same 

magnification (Figure 3.8). Alternatively, the exact same section was also 

stained with MECA-79 and CD31 by immunofluorescence which allowed the 

simultaneous use of both antibodies on the same section. Figure 3.9 and 

3.10 show that MECA-79 and CD31 positively identify HEVs through 

immunofluorescence regardless of autofluorescence known to occur with 

fluorescent staining on formalin fixed paraffin embedded sections of human 

tissue.   
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Figure 3.7 HEVs located within the colorectal tumour centre have a flat morphology. 
A) Example of an atypical HEV devoid of lymphoid tissue present within the centre of the 
tumour. B) Example of one of the few HEVs present within the tumour mass surrounded by 
B and T cells but composed of flat endothelial cells. Grey is indicative of MECA-79 staining, 
pink of B cell staining and brown of T cell staining.  
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Figure 3.8 MECA-79 unspecific staining within the tumour epithelium does not co-
localise with CD31 pan-endothelial staining. Consecutive sections were stained with CD3, 
CD20 and MECA-79 and CD31. A-C) Representative examples of MECA-79 unspecific 
staining within the centre of the tumour. D-F) Sequential sections stained with CD31.   
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Figure 3.9 MECA-79 immunofluorescence staining co-localises with CD31 staining. 
Formalin-fixed paraffin embedded tumours obtained from colorectal cancer patients were 
stained with anti-MECA-79 (red) and anti-CD31 (green). A) MECA-79, B) CD-31, C) DAPI 
(Nuclear stain) and D) A, B and C images superimposed. 
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Figure 3.10 Example of an HEV staining by immunofluorescence. Formalin-fixed 
paraffin embedded tumours obtained from colorectal cancer patients were stained with anti-
MECA-79 (red) and anti-CD31 (green). A) MECA-79, B) CD-31, C) DAPI (Nuclear stain) and 
D) A, B and C images superimposed. 
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Figure 3.8 and 3.11 demonstrate that the binding of MECA-79 within the 

tumour epithelium does not co-localise with CD31 staining thus indicating 

that that the MECA-79+ cells are not HEV. This can be observed in 

sequential sections (Figure 3.8) stained by immunohistochemistry or in 

sections stained with both antibodies at the same time by 

immunofluorescence (Figure 3.11). Furthermore, the morphology of the 

MECA-79+ cells within the tumour epithelium does not resemble the structure 

of typical high endothelial cells. 
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Figure 3.11 MECA-79 unspecific staining within the tumour epithelium does not co-
localise with CD31 pan-endothelial staining. Representative examples of MECA-79 (red) 
and CD31 (green) staining by immunofluorescence on colorectal cancer sections. Each row 
represents the staining on different tumours. The first column represents MECA-79 staining, 
the second represents CD31 staining and the third column represents MECA-79 and CD31 
staining superimposed.  
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3.3 HEVs are associated with lymphoid aggregates and 

lymphocyte numbers at the tumour invasive margin 

As mentioned in the previous sections HEVs were almost always identified in 

the presence of an agglomerate of T and B cells. These lymphocytic clusters 

were confined to the extra-tumoural area (represented in green in figure 

3.6A) and ranged from a disperse combination of sometimes only T cells to 

disorganised lymphoid aggregates (Figure 3.12 A-B) to extremely organised 

follicle-like structures (Figures 3.12 C-D), almost resembling ectopic 

lymphoid organs. The follicle-like structures contained distinguishable T and 

B cell areas (indicated by the dashed blue line in Figure 3.12 C-D) thus 

according to Professor Geraint Williams (retired Professor of Pathology, 

University of Wales) such structures are routinely referred to as lymphoid 

follicles. Cell agglomerates in which there is not a clear distinction between T 

and B cells are referred to as lymphoid aggregates.  

Amongst the 62 CRC samples studied a wide variety of lymphoid 

aggregate/follicles of different sizes and levels of organisation were observed. 

A possible relationship between the number of lymphoid aggregates/follicles 

and HEVs within the extra-tumoural area was explored and a highly 

significant correlation observed (Figure 3.13A: p < 0.0001, R2 = 0.442). Of 

note, all the HEVs found within the extra-tumoural area were surrounded by 

lymphocytes forming lymphoid aggregates/follicles. The reciprocal however, 

was not true as lymphoid aggregates/follicles with no detectable HEV were 

observed. This may simply be due to an inability to detect HEVs in all ectopic 

lymphoid structures due to the 2-dimensional nature of the 

immunohistochemical analysis. 
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Figure 3.12 Lymphoid aggregates/follicles arise in a variety of shapes and 
lymphocytic organisation. Formalin-fixed paraffin embedded colorectal tumour samples 
were stained with MECA-79 (Grey), CD3 (Brown) and CD20 (Pink) antibodies. A-B) 
represent lymphoid aggregates and C-D) represent lymphoid follicles found within the extra-
tumoural area. HEVs are present in B and D.  The blue dashed line represent a clear area of 
B cells. 
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The existence of HEVs within the tumour epithelium/stroma was extremely 

rare (8 out of 62 samples studied) and in contrast to the extra-tumoural area, 

no association was observed between these and lymphoid 

aggregates/follicles (Figure 3.13B: p=0.2889, R2 = 0.014873).  

3.4 HEVs are associated with lymphocyte numbers at the 

tumour invasive margin 

Even though HEVs were almost absent from the tumour centre (tumour 

epithelium/stroma) the question of whether the existence of HEVs and 

lymphoid aggregates/follicles in the vicinity of the tumour influenced T cell 

infiltration still remained.     

In order to determine the influence of HEVs on T cell infiltration, total CD3+ T 

cells were enumerated both by the tumour invasive margin and within the 

centre of the tumour (tumour epithelium/tumour stroma). In order to obtain a 

representative sample of the number of T cells within the tumour and 

invasive margin, ten high power fields of view were counted and averaged 

for both the invasive margin and centre of the tumour. The T cell counts by 

the tumour invasive margin were performed according to the dashed line in 

figure 3.14A. There was a highly significant association between the extra-

tumoural HEV density and CD3+ T cells within the tumour invasive margin 

(Figure 3.14B: p = 0.002, R2 = 0.148). However, this association was not so 

strong between the T cells located within the centre of the tumour and HEVs 

located within the extra-tumoural area (Figure 3.14B: p = 0.05, R2 = 0.065). 

Nevertheless, interestingly, such association between T cells and HEVs 
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located within the extra-tumoural area was only observed for more advanced 

disease (Figure 3.14C).  

It has been shown in other malignancies that HEV density correlates with T 

cell infiltration. Therefore CRC sections were stained with antibodies to CD3, 

CD8 and FoxP3 to determine if HEV density controls the number and 

composition of T cells by the tumour invasive margin where HEV density 

correlates with T cell infiltration. The median HEV density was used as a cut 

off point to divide samples into HEVhigh and HEVlow. (Figure 3.15A). 

The ratios of CD3+, CD4+ (CD3+CD8-) or CD8+ T cells to FoxP3+ T cells were 

then calculated according to HEV density both in patients that did (Figure 

3.15B) and did not (Figure 3.15C) survive five years post-surgery. As it can 

be observed in Figures 3.15B and C, HEV density at the extra-tumoural area 

has no influence on the type of T cells surrounding the tumour. Such pattern 

is observed regardless of patient survival time.  

3.5 Colorectal tumours with elevated numbers of HEVs are 

microsatellite stable 

Amongst all the diagnosed CRCs about 15% are microsatellite instable 

(Boland and Goel, 2010). Such instability arises as a consequence of 

mutations within the DNA repair machinery which results in the formation of 

longer or shorter microsatellite repeats. The length of such repeats allows for 

the detection of microsatellite instable (MSI) tumours. Patients with MSI 

tumours tend to have a better prognosis as they respond better to treatment 

and their tumours are often infiltrated with high numbers of T cells (Buckowitz 

et al., 2005).  
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Figure 3.13 Lymphoid aggregates/follicles within the extra-tumoural area correlate 
with the HEV density within the extra-tumoural area but not within the tumour centre. 
The number of lymphoid aggregates per mm2 was enumerated within the extra-tumoural 
area (A) or within the tumour centre (B) and correlated with the number of HEVs per mm2 
within the extra-tumoural area (A) or within the tumour centre (B). A/F, lymphoid 
aggregate/follicle. HEV, high endothelial venule. P < 0.05 was considered significant. 
Correlation analyses was performed using the Pearson method.     
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Figure 3.14 HEVs are associated with lymphocyte numbers at the tumour invasive 
margin. CD3+ T cells were enumerated per 10 high power fields of view and averaged. 
Such counts were performed separately within the tumour centre and by the tumour invasive 
margin as indicated in A. CD3+ T cells counts were associated with the number of HEVs 
found at the extra-tumoural area (B) and according to different disease stages (C). HEV, 
high endothelial venule. P < 0.05 was considered significant. Correlation analyses were 
performed using the Pearson method. The space between the solid and dashed black line in 
figure A corresponds to the area where the CD3+ T cells were enumerated for the tumour 
invasive margin counts. CD3+ cells were enumerated by Dr Emma Jones prior to my arrival.  
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Figure 3.15 HEV density has no influence on the type of T cells accumulating by the 
tumour invasive margin. HEV density at the extra-tumoural area was divided into high and 
low according to the geometric median (A). T cell ratios at the tumour invasive margin of 
HEV low and HEV high tumours in patients that survived more than five years  post 
colectomy (B) and patients that did not survive five years post surgery (C). Conventional T 
cells (Tcon) were considered to be CD4+ and CD8+ T cells combined but excluding FoxP3+ T 
cells. HEV, high endothelial venule. P < 0.05 was considered significant. The Mann-Whitney 
statistical test was used in B and C for comparison of HEV low and HEV high samples. T 
cells were enumerated by Dr Emma Jones prior to my arrival.  
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As HEV density correlates with T cell infiltration at the tumour invasive 

margin and MSI tumours are often enriched with T cells I examined whether 

the presence of elevated numbers of HEV was associated with microsatellite 

instability. In order to understand if elevated numbers of HEV were linked to 

the microsatellite status of the tumour, the samples with the highest HEV 

density within the extra-tumoural area and within the tumour centre for Dukes’ 

A and Dukes’ C were tested for microsatellite instability (For more details on 

how this analysis was performed please refer to the material and methods 

section). Only a small number of Dukes’ A and C tumour samples were 

tested due to the inability to extract usable DNA from most tumours. 

All the samples (including Dukes’ A and Dukes’ C stage tumours) tested 

negative for microsatellite instability (Table 3.1). This was observed in 

tumours that had elevated numbers of HEVs both within the extra-tumoural 

area and within the tumour centre.  

To ascertain that MSI does not drive neogenesis of HEV, four MSI+ tumours 

were subsequently obtained from the University Hospital of Wales archives 

and analysed for the presence of HEVs and lymphoid aggregates/follicles. 

After analysing the number of HEVs and lymphoid aggregates/follicles within 

MSI+ tumours, no striking differences were noted in comparison with the MSI- 

tumours. Non-HEV associated MECA-79 binding within the tumour glands 

was observed in 3 of the 4 MSI+ tumours, and no staining was observed in 

the fourth sample. No evidence of lymphoid aggregates/follicles or HEVs was 

found in 2 of the MSI+ samples (Figure 3.16A). 
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Table 3.1 Colorectal tumours with elevated numbers of HEVs are microsatellite stable. 
Microsatellite status for Dukes’ A and C in tumors with the highest density of HEVs in the 
extra-tumoral area and in tumors with HEVs within the tumor centre. Not all the samples 
tested were usable for MSI testing due to the poor DNA quality. MSS, microsatellite stable.  
 

 

The other two MSI+ tumours that contained lymphoid aggregates/follicles 

followed the pattern observed in MSI- tumours’ pattern i.e. they were located 

within the extra-tumoural area (Figure 3.16B). No HEVs were found within 

the tumour mass (tumour epithelium/stroma) as reported for MSI- tumours 

above suggesting that microsatellite instability is not associated with elevated 

HEV numbers. 

3.6 Lymphoid aggregates are associated with advanced 

disease 

HEVs within the tumour have been associated with a favourable prognosis in 

patients with breast cancer and the same has also been observed in 

fibrosarcoma models of tumour development. This positive association 

seems to be dependent on T cell infiltration into the tumour. 

  Dukes’ A Dukes’ C 

Microsatellite status in tumours 

with the highest HEV density within 

the extra-tumoural area 

MSS (n=3) MSS (n=4) 

Microsatellite status in tumours 

with HEVs within the tumour center 

MSS (n=2) MSS (n=3) 
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Figure 3.16 The location and pattern of expression of PNAds and lymphoid 
aggregates/follicles in MSI tumours is similar to MSS tumours. Four formalin-fixed 
paraffin embedded colorectal tumour samples known to be microsatellite instable were 
acquired from the NHS archives and stained with MECA-79, CD3 and CD20 antibodies. 
Grey represents HEVs, brown represents CD3+ cells and pink represents CD20+ cells. HEV, 
high endothelial venule. A and B represent examples of different microsatellite instable 
tumours.  
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As an association between T cell infiltration and HEV density has been 

observed in more advanced disease (Figure 3.14C) the relationship between 

disease progression and HEV and/or lymphoid aggregates/follicles density 

was also determined. No significant difference between HEV density and 

disease progression or patient survival (Dukes’ A: tumour confined to the 

wall of the bowel, Dukes’ C: spread to adjacent lymph nodes) was observed 

(Figure 3.17A and B). Conversely, there was a significant increase in 

lymphoid aggregates/ follicles in more advanced disease (Figure 3.18A: 

Dukes’ A vs C, p = 0.015. Median number of lymphoid A/ F in Dukes’ A 

tumours: 0.025, interquartile range 0.006 - 0.098. Median number of 

lymphoid A/ F in Dukes’ C tumours: 0.085, interquartile range: 0.039 - 0.179). 

Even though more lymphoid aggregate/follicles are present in more 

advanced disease, their sizes do not reflect disease progression (Figure 

3.18B).    

3.7 Lymphocytic aggregates are not associated with patient 

prognosis 

A greater number of lymphocytic aggregates/follicles was detected in 

patients with more advanced disease, however their association with survival 

was still unknown. I next sought to determine if the presence of these 

structures were associated with a poor outcome. For the purpose of this 

analysis only patients with more advanced disease (Dukes’ C) were 

considered because the great majority of Dukes’ A patients survived five 

years post surgery.  
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Figure 3.17 HEV density does not reflect disease progression or patient prognosis in 
colorectal cancer. HEV density was calculated by the extra-tumoural area and analysed 
according to disease progression (A) or five-year survival (B). P < 0.05 was considered 
significant. The Mann-Whitney statistical test was used to compare different groups.  
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Figure 3.18 Lymphoid aggregate/follicle density but not size reflect disease 
progression. Lymphoid aggregate/follicle density (A) or area (B) was calculated by the 
extra-tumoural area and analysed according to disease progression. P < 0.05 was 
considered significant. The Mann-Whitney statistical test was used to compare different 
groups.  
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Patients with more advanced disease were then divided into two groups 

according to their five year survival after colectomy and the density of 

lymphoid aggregates/follicles evaluated.    

When both survival groups were compared for lymphoid aggregates/follicles 

density, no significant difference was observed in the extra-tumoural area. 

These data suggest that presence or absence of HEVs and / or lymphoid 

aggregates/follicles is not associated with prognosis in patients with Dukes’ 

C tumours (Figure 3.17 and 3.19). 

3.8 Discussion 

This study focused on the identification of HEVs and their surrounding 

microenvironment in the context of CRC. HEVs were primarily identified 

within the extra-tumoural area but not in the tumour centre characterised by 

the tumour epithelium and stroma. Moreover, these venules were 

predominantly detected in association with T and B cells forming lymphocytic 

aggregates/follicles, in agreement with an active role for these structures in 

lymphocyte recruitment (Di Caro et al., 2014; Martinet et al., 2012). The 

density of these lymphoid follicles/aggregates in the extra-tumoural area is 

associated with a more advanced disease. Additionally, HEVs were found to 

correlate with T cell infiltration at the tumour invasive margin but only in more 

advanced stages of disease. TILs play an important role in controlling tumour 

development and growth and also development of metastasis. Numerous 

studies to date have shown a direct correlation between TILs and better 

clinical outcome (Galon, 2006; Pagès et al., 2005). Thus, as imperative 

players in tumour growth control the route of TILs entry into the tumour 

microenvironment is as important as density. 
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Figure 3.19 Lymphoid aggregate/follicle density/size does not predict patient survival 
in more advanced disease. Lymphoid aggregate/follicle density (A) or area (B) was 
calculated by the extra-tumoural area and analysed according to five year survival in Dukes’ 
C patients. P < 0.05 was considered significant. The Mann-Whitney statistical test was used 
to compare different groups.  
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HEVs express post-translational modified sialomucins which serve as ligands 

for L-selectin expressed on naïve and central memory T cells thus allowing 

their infiltration in SLO (Girard et al., 2012; Hayasaka et al., 2010). It was 

initially hypothesised that HEVs within the tumour microenvironment could 

play a similar role allowing the infiltration of more lymphocytes into the 

tumour. Therefore, the presence of HEVs in CRC was investigated to assess 

their role in this malignancy. 

The presence of HEVs in CRC does not appear to be associated with a 

longer survival. On the contrary, even though not significant, a trend for more 

HEVs is observed in patients that died within five years of tumour resection 

compared to patients that survived longer than five years post colectomy. 

Such tendency is not observed when comparing Dukes’ A and Dukes’ C 

patients, the two groups where most correlations were observed in this thesis.  

The findings described herein are different from those of Martinet et al. 

(Martinet et al., 2011). The latter studies of melanoma and breast cancer 

identified HEVs within the tumour epithelium and tumour stroma and their 

density correlated with T cell infiltration and tumour control. However, in the 

present study the great majority of HEVs were identified within the extra-

tumoural area which, albeit part of the tumour microenvironment, is not within 

the tumour centre where lymphocytes would most likely control tumour 

growth. Furthermore, as shown in Figure 3.14B, HEVs located within the 

extra-tumoural area appear to have little effect on the number of T cells 

infiltrating the centre of the tumour. Such observations suggest that HEVs 

located within the extra-tumoral area do not affect T cell infiltration and thus 

are not able to potentiate effective tumour growth control.   
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It could be the case that de novo formation of HEVs within the tumour mass 

is hindered by immunosuppressive mechanisms. This idea is supported by 

the fact that HEV formation in a mouse model of carcinogen-induced 

fibrosarcoma only occurs after depletion of Tregs (Hindley et al., 2012). This 

raises the interesting possibility that Tregs or perhaps other 

immunosuppressive mechanisms including myeloid derived suppressive 

cells present within CRCs actively inhibit HEV neogenesis limiting the extent 

of lymphocyte infiltration into the tumour.  

It is known that patients with inflammatory bowel diseases have a higher 

predisposition to CRC (Dyson, 2012; Karvellas et al., 2007) indicating that 

excessive inflammation may be disadvantageous for patient outcome. Th17 

cells appear to have a pathogenic role in colorectal cancer (Tosolini et al., 

2011), especially in advanced disease (Omrane et al., 2014). Tosolini et al. 

reported a poorer prognosis for patients with tumours exhibiting Th1-low 

Th17-high gene expression signatures (Tosolini et al., 2011). Even patients 

with tumours displaying Th1-high gene signature demonstrated a poor 

prognosis if this was accompanied by a Th17-high gene signature thereby 

demonstrating that the poor outcome associated with a Th17-high signature 

over-rides the beneficial effects of a Th1 high gene signature. Thus having 

elevated numbers of HEVs in colorectal cancer, allowing greater T cell 

infiltration could be detrimental for patient prognosis depending on the T cell 

subset being recruited. If the tumour antigen and cytokine milieu elicits a Th1 

response with increased production of Interferon-γ like observed by Martinet 

et al., having a greater number of HEVs would be beneficial for the patient. 

On the contrary, if a Th17 response is predominantly developed, IL-17A 
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could support cell survival, proliferation and promotion of VEGF formation by 

the tumour cells stimulating tumour growth. 

The present data suggests that HEVs may not be functional at the early 

stages of disease as no correlation is observed between CD3+ T cells and 

HEVs in Dukes’ A patients (Figure 3.14) possibly lacking enough stimuli to 

attract T cells. It was also noted that HEVs influence T cell infiltration in the 

extra tumoural area but not in the tumour centre implying that HEVs only 

have an effect in T cell infiltration in very close proximity but not at distant 

sites. For the exceptional cases where HEVs were found in the tumour mass, 

they did not exhibit their characteristic cuboidal shape implying poor function, 

hence explaining their lack of association with lymphocytic infiltration. Avram 

et al., have also reported cuboidal but not flat HEVs to be surrounded by 

lymphocytes (Avram et al., 2013). 

In a study carried out by Avram et al. an association between the level of 

HEV expression and lymphocytic infiltration was observed. The group 

enumerated HEVs in a similar manner to the present study and calculated 

the HEV density per mm2. They also divided HEVs into venules with a 

cuboidal and flat morphology and a stronger association with lymphocytes 

was observed in the venules with a cuboidal morphology (Avram et al., 2013). 

In the present study HEVs detected within the extra-tumoural area (the great 

majority of them) were always associated with a concentration of B and T 

cells. This pattern of HEV expression is similar to what is observed in 

melanoma metastases and lung cancer where HEVs were also identified 

surrounded by lymphocytes and never in other tumour sites (Cipponi et al., 

2012; de Chaisemartin et al., 2011).  
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In order to understand the relevance of this finding, normal colon was also 

stained for the presence of HEVs, B and T cells. In healthy colon HEVs were 

only found, as expected, in the well-organised gut associated lymphoid 

tissues (GALT), and not in the mucosa and submucosa part of the large 

intestine. In colonic homeostatic conditions lymphocytes aggregate at the 

bottom of the crypts forming a characteristic structure with B/T cells 

compartmentalisation also observed in this study (Bergomas et al., 2012).  

Lymphoid aggregates/follicles were not detected in normal colon in contrast 

to CRC. Such an observation suggests that the constant presence of tumour 

antigens drives the initiation of a local immune response and the de novo 

formation of these structures creating a local inflammatory microenvironment, 

which, as mentioned before, may promote tumour growth.  

Increased concentration of lymphoid aggregates/follicles within the extra-

tumoural area correlates with HEV density and CD3 infiltration at the tumour 

invasive margin increases with the presence of HEVs. Thus, suggesting that 

alongside the presence of lymphoid aggregates/follicles, HEVs may also play 

a role in the recruitment of T cells into the tumour microenvironment. 

However, in the present study, unlike HEVs, lymphoid aggregates/follicles 

appear to be associated with more advanced disease. This suggests that 

lymphoid aggregates/follicles density may be a better indicator of disease 

progression in CRC than HEVs density. In gastric biopsies lymphoid 

aggregates are detected in association with Helicobacter pylori infection and 

strikingly when the infection clears the lymphoid aggregates also dissolve 

reflecting the clearance of the infection (Genta and Hamner, 1994; Genta et 

al., 1993). 
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In the majority of cases formation of lymphoid aggregates/follicles in CRC 

does not produce follicles with clearly distinct B/T cell areas suggesting that 

ectopic lymphoid structures are at their initial stages, similar to what has 

been reported by Cipponi et al. (Cipponi et al., 2012). The presence of 

ectopic lymphoid structures has been reported in cases of chronic infection 

with Helicobacter pylori, chronic graft rejection, ulcerative colitis but also in 

several autoimmune conditions such as rheumatoid arthritis and Hashimoto’s 

thyroiditis (Aloisi and Pujol-Borrell, 2006; Thaunat et al., 2010). In a model of 

influenza infection Moyron-Quiroz and colleagues demonstrated that such 

structures can aid the development of humoural and cellular immune 

responses resembling the function of a secondary lymphoid organ (Moyron-

Quiroz et al., 2004).  

After analysing all the lymphoid aggregates/follicles it was clear that their 

neogenesis predisposes HEV formation as HEVs were always found within 

these structures but these structures were also present without HEVs. The 

organisational level of the lymphoid aggregate/follicle does not appear to be 

relevant for HEV formation, as HEVs appear to form in less well-organised 

aggregates but also in those that are well organised. 

Interestingly, de Chaisemartin et al. have previously shown that these 

lymphoid structures are functionally active in lung cancer. T cells in these 

structures express CD62L unlike the ones present anywhere else in the 

tumour. The expression of lymphoid chemoattractants like CCL19, CCL21 

and CXCL13 was also increased in these structures compared with tumour 

islets (de Chaisemartin et al., 2011). These findings are consistent with a role 

for these structures in actively recruiting naïve and central memory T cells 
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into the tumour microenvironment. The presence of newly formed ectopic 

structures within lung cancer is associated with a favourable prognosis 

(Dieu-Nosjean et al., 2008). A more detailed characterisation of the type of T 

cells populating these ectopic structures would be of utmost interest. 

Understanding the T cell receptor repertoire within these in comparison to 

TILs would also contribute to an understanding of the type of local response 

being generated within such tissues. This would allow us to understand if the 

specificity of the TILs overlaps in any way with the specificity of the T cells 

infiltrating/forming the follicles/aggregates. This information would help 

understand if clonal expansion of antigen-specific T cells is taking place 

within these T cell aggregates. 

Additionally, a key point to address is the state of activation of such 

structures aiming to understand if their development is promoting or 

hindering tumour development. Each individual follicle/aggregate could be 

studied by laser capture microdissection (LCM) allowing RNA extraction from 

individual structures. Analysing individual structures for exhaustion 

associated markers such as PD-1, LAG-3, CD122, TIM-3 and CTLA-4 

amongst others, in different disease stages would provide valuable clues on 

whether these structures are functionally active or not. Additionally, 

functional diversity could be assessed through analysis of transcription 

factors such as T-bet, RORγt and Foxp3, used to identify different T cell 

subsets e.g. Th1, Th17 and Treg, respectively. 

Interestingly, in a study performed by Di Caro et al. the presence of lymphoid 

aggregates was associated with a longer disease free survival for stage II 

CRCs, but this was only observed for tumours without any node involvement 
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(Di Caro et al., 2014). For stage III tumours however no association with 

disease free survival and ectopic structures was noted in agreement with the 

study described herein.  

Elevated levels of Crohn’s like reaction which can be perceived as a high 

level of lymphocytic infiltration has also been reported in less advanced 

disease and microsatellite instable tumours (Väyrynen et al., 2013).  

Collectively these data raise the interesting possibility that the composition of 

these lymphoid aggregates, and therefore their prognostic significance, alters 

with disease progression and according to the inherent immunogenicity of 

the tumour. With this in mind, studies to evaluate T cell activation signals and 

T cell signatures within these ectopic structures at different disease stages 

are necessary. 

In conclusion, this study of CRC-associated HEVs and lymphoid 

aggregate/follicle formation revealed that these ectopic structures rarely form 

in tumors, but accumulate in locations close to the tumor invasive margin. 

These structures form in association with more advanced tumors, suggesting 

they are a reaction to continuous tumor invasion. 
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4 Carcinoembryonic antigen (CEA)-
specific Th1 and Th17 responses in 
colorectal cancer patients 

4.1 Introduction 

Carcinoembryonic antigen (CEA) is a tumour associated antigen that is 

overexpressed on the surface of CRC but its presence, albeit at lower levels, 

is also detected on the surface of healthy bowel (Davidson et al., 1989). 

Thus CEA falls into the “overexpressed in cancer” category of tumour 

antigens. Tumour associated antigens (TAAs) can be degraded into peptides 

which are expressed on the surface of tumour cells in the context of MHCI or 

MHCII complexes.  

IFN-γ-producing T cells specific to TAA have been associated with a better 

prognosis in melanoma patients (Hunder et al., 2008). CD4+ T cell clones 

specific to the melanoma-associated cancer testis antigen (NY-ESO-1) were 

infused into a melanoma patient which completely cleared the disease within 

two months and continued a disease-free recovery for another twenty six 

months at the time of the latest follow-up (Hunder et al., 2008). Before 

infusion, the NY-ESO-1 specific CD4+ T cells were shown to produce IFN-γ 

and IL-2 in vitro (Hunder et al., 2008). In melanoma patients with distant 

metastasis the detection of a MAGE-3 and/or NY-ESO-1 IFN-γ specific 

response was associated with an overall better survival than patients without 

an IFN-γ response (Weide et al., 2012). 
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In order to understand the association between CEA-specific responses and 

patient survival, members of the laboratory in Cardiff previously measured 

the IFN-γ T-cell preoperative responses specific to CEA in peripheral blood 

of a cohort of ~60 colorectal cancer CRC patients. To their surprise, and 

considering the previous type of studies and results eluded to above, they 

observed a statistically significant superior risk of tumour recurrence in 

patients with pre-operative IFN-γ T-cell response to CEA (Figure 4.1A) but 

not to other antigens (oncofetal tumour antigen 5T4, haemagglutinin (HA), 

tuberculin purified protein derivative (PPD)) (Scurr et al., 2015). Even after 

patient stratification according to tumour stage, patients with early stage 

cancer (Dukes’ A), but demonstrating IFN-γ T cell responses to CEA were 

still at greater risk of tumour recurrence, than patients with late-stage disease 

where a CEA response was absent (Figure 4.1B).  

This unexpected observation led me to question why CEA-specific T-cells 

are associated with a detrimental outcome.  

 

Th17 cells are often observed in the tumour microenvironment and have 

been associated with a poor prognosis in CRC: the detrimental effects of 

Th17 cells were shown to overcome the benefit of an IFN-γ producing T cell 

response (Tosolini et al., 2011). One possible explanation is that IL-17A 

production occurs simultaneously with IFN-γ secretion by the same CEA-

specific T cells and neutralises the protective effects of IFN-γ expression, 

favouring tumour growth. IL-17A is thought to promote tumour growth by 

induction of angiogenic factors such as VEGF and PGE2 but also directly via 

STAT3 activation.  
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Figure 4.1 CRC patients that develop an IFN-γ  response specific to CEA are at a 
greater risk of tumour recurrence. PBMCs from CRC patients were obtained before 
surgery and T cell responses to CEA were measured by ex-vivo IFN-γ ELISpot and 
compared with tumour recurrence before (A) and after (B) stratifying the patients into tumour 
stage. CEA, Carcinoembryonic antigen. P < 0.05 was considered significant. All statistically 
tests were two-sided. These data was kindly provided by Dr Gareth Betts and analysed by 
Dr Martin Scurr (Scurr et al. 2015). 
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This Chapter describes the optimisation of IL-17A detection, and the 

transition from ELISpot to FluoroSpot methodology in our laboratory, 

enabling accurate measurements of the concurrent production of IFN-γ and 

IL-17A from the same CEA-specific T cell. Additionally, the prevalence of 

IFN-γ +/- IL-17A T-cell responses specific for CEA in the peripheral blood of 

a second cohort of CRC patients will be described. 

4.2 Enumeration of Th1 and Th17 cells in the tumour of CRC 

patients 

I gained access to five and seven blocks of formalin fixed paraffin embedded 

tumour samples from CEA responders and non-responders, respectively, 

and performed immunohistochemistry staining in order to assess the 

prevalence of Th17 cells. In order to enumerate Th1 and Th17 cells in the 

primary tumour I stained cells using CD3 (surface marker for T cells) and the 

transcription factors T-bet and RORγt (transcription factors for Th1 and Th17 

respectively). An example of Th1 and Th17 staining is shown in Figures 4.2 

A and B, respectively. In order to stain with RORγt and T-bet antibodies the 

sections were submitted to different antigen retrieval methods. Therefore it 

was not possible to enumerate Th1 and Th17 within the same section and 

sequential sections were used instead. In order to calculate the number of 

Th1 and Th17 infiltrating the tissues 10 high power fields of view were 

enumerated and the mean calculated. Most surprisingly I observed a much 

higher number of Th17 cells compared to Th1 cells in both CEA responders 

and non-responders (Figure 4.2). Even though not significant there were 

more Th17 cells in the CEA responders compared to non-responders, and 
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these preliminary data supported the testing of IL-17A-producing CEA-

specific T cells in the blood of CRC patients in a new cohort of patients. 
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Figure 4.2 Enumeration of Th1 and Th17 cells in the primary tumour of CEA 
responders and non-responders. Colorectal tumor sections were stained with anti-CD3, 
anti-T-bet and anti-ROR-γt antibodies. Representative images from (A) CD3+ (Grey) / T-bet+ 
(Brown), and (B) CD3+ (Grey) / RORγt+ (Brown) T cells, with examples of counted cells 
shown by blue arrows. Th1 (CD3+T-bet+) and Th17 (CD3+ROR-γt+) cells were enumerated in 
CEA responders (n=5) and non-responders (n=7) (C), and the Th17: Th1 ratio determined 
(D). (E) and (F) show the Th1 (E) and Th17 (F) cell numbers in CEA responders and non-
responders. One high power field of view is equivalent to 600x magnification. The result of 
an unpaired, two-sided t-test to compare the two groups is shown. NS, not significant. 
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4.3 Optimisation of Th17 cell culture and IL-17 detection 

4.3.1 Stimulation of PBMCs with Candida Albicans (CA), 

Phytohaemagglutinin (PHA) and tuberculin protein purified 

derivative (PPD) 

The ELISpot assay is routinely used in our laboratory to measure IFN-γ 

responses specific to tumour antigens, thus the initial cell number and 

appropriate cytokine concentration necessary to feed the cells for a period of 

12-14 days has been previously optimised. In order to establish a 

methodology for the consistent detection of IL-17A by ELISpot a set of 

parameters needed to be tested including 1) which antigen to use as a 

robust positive control 2) the minimum cell number to use in order to detect a 

consistent response and 3) the ideal cytokine combination necessary to 

expand the cells and support cell growth. 

Candida albicans (CA) is a human host pathogen that is recognised by the 

innate immune system via pattern recognition receptors (PRR) on APCs. 

This initial encounter leads to the secretion of cytokines such as IL-1β, IL-6 

and IL-23 by APCs, which are key cytokines for the development of Th17 

cells (Figure 1.2). Exposure to these cytokines in combination with TCR 

engagement promotes the commitment of a CD4+ T cell to a Th17 lineage 

which in turns secretes IL-17A, IL-17F and IL-22 (Hernández-Santos and 

Gaffen, 2012). Moreover, stimulation of PBMCs with heat-inactivated, but not 

live CA triggers the secretion of IL-17A (Hernández-Santos and Gaffen, 

2012). CA in its heat-inactivated format was then chosen as the ideal 

candidate to test IL-17A secretion from PBMCs. Zielinski et al. also used CA 



 139 

and S. aureus to pulse autologous monocytes and observed the presence of 

antigen-specific proliferating T cells that secreted IL-17 and IL-22 after 12 

days of culture (Zielinski et al., 2012). These cells could not be detected 

when MHC antibodies class II blocking antibodies were included in the 

cultures suggesting the development of a class II-restricted CD4+ T cell 

response (Zielinski et al., 2012).  

In order to detect IL-17A secretion, it was necessary to expand the cells for 

11-14 days until their frequency was high enough to be detected by ELISpot.  

IL-2 is known to be essential for T cell differentiation, proliferation, expansion 

and survival. It is therefore regularly used to maintain T cell growth after 

antigen stimulation in combination with CellKine (CK) media in our laboratory.  

Even though T cell lines are routinely cultured in our laboratory for the 

detection of antigen-specific IFN-γ secreting T cells, the maintenance of cell 

lines to detect and support IL-17A secretion was new.  

IL-23 has initially been suggested as one of the necessary cytokines for 

Th17 development but it has been later understood that even though IL-23 

has a role in maintenance and expansion of already differentiated Th17 cells 

it is not capable of driving naïve T cells into a Th17 lineage commitment 

(Aggarwal et al., 2003; Stockinger and Veldhoen, 2007).  

In order to understand what optimal in vitro conditions should be used to 

generate and maintain a Th17 response after CA stimulation four different 

conditions including different combinations of IL-2, IL-23 and CK media were 

tested (Figure 4.3). 
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Figure 4.3 Combinations of CK media, IL-2 and IL-23 used to expand the cell lines for 
11 days. 2 x 105 PBMCs were used on day 0 to set up the cell lines. Numbers in the top row 
indicate days. R5, RPMI 1640 with 5% AB serum. CK media, CellKine. IL-2, interleukin-2 
(20U/mL). IL-23, interleukin-23 (20ng/mL). 
 

 

Freshly isolated PBMCs from the same donor were stimulated with PHA, 

PPD, two different concentrations of CA or left unstimulated. The cells were 

then expanded by addition of different growth factors as shown in Figure 4.3. 

IL-17A could be readily detected after addition of PHA under every condition 
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specific activation of the cells with such growth factors (Figure 4.4). Apart 

from PHA stimulation, no responses could be observed with condition 2 
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growth and survival. Even though IL-17A could also be detected with CA 

stimulation in all the conditions except condition 2, the responses were weak. 

Moreover, although condition 4 supported the growth and maintenance of IL-

17A secreting cells the detection of such cells in absence of re-stimulation on 

day eleven indicated antigen-non-specific expansion of the cells.  

0	 1 2 3 4	 5	 6 7	 8 9 10	 11	 12	 13	

Condition	
1	

Se
t	u
p	c
ell
	lin

es
	an
d	s
tim

ula
te	
ce
lls
	 CK	

media	
R5	+	
IL-2	

Re
-st
im
ula
tio
n	

EL
ISp

ot
	

Condition	
2	

R5	+	
IL-23	

R5	+	
IL-23	

Condition	
3	

R5	+	IL-2	
+	IL-23	

R5	+	
IL-2	+	
IL-23	

Condition	
4		

CK	
media		
+	IL-23	

R5	+	
IL-23	

Days 



 141 

 

 

 

Figure 4.4 IL-17A secretion can be detected after PBMCs stimulation with Candida 
albicans for 11 days. Freshly isolated PBMCs were assessed for their IL-17A production 
after stimulation with phytohaemagglutinin (PHA), tuberculin protein purified derivative 
(PPD) and different concentrations of Candida albicans, cultured for 11 days in condition 1 
(A), condition 2 (B), condition 3 (C) and condition 4 (D) as shown in figure 4.3 and re-
stimulated with the respective antigens.     
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The same experiment was repeated using a different donor. This time, the 

input number of cells was increased: 5 x 105 PBMCs/test were used instead 

of 2 x 105 PBMCs/test to set up the cell lines. The culture time was also 

prolonged to increase the chance of expanding the relevant cells as shown 

in Figure 4.5. 

  

 

Figure 4.5 Combinations of CK media, IL-2 and IL-23 used to expand the cell lines for 
13 days. 5 x 105 PBMCs were used on day 0 to set up the cell lines. Numbers in the top row 
indicate days. R5, RPMI 1640 with 5% AB serum. CK media, CellKine. IL-2, interleukin-2 
(20U/mL). IL-23, interleukin-23 (20ng/mL). 
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grown for 11 and 13 days it was also clear that condition 2 was not 

supporting a consistent cell growth. In order to ascertain that 11 days of cell 

expansion was not enough to generate a robust IL-17A secretion after 

stimulation with CA, a third donor was tested. Freshly isolated PBMCs were 

stimulated with CA : PBMCs on a ratio of 1:14 and detection of IL-17A was 

measured after 11 days of expansion (Figure 4.7). According to the previous 

results, IL-2 seemed to be absolutely necessary for cell survival; therefore 

conditions 2 and 4 were abandoned. Figure 4.7A and 4.7B represents the 

response observed after 11 days of expansion using R5 and IL-2 and R5+IL-

2+IL-23 to feed cells every 3 days, respectively. It was therefore clear that 

even though weak usage of IL-2 with or without IL-23 to expand the cells 

generated an IL-17A response. Such response was greater when IL-23 was 

absent from the culture (Figure 4.7).  

Therefore it was decided to expand cells for at least 13 days using condition 

1 (Figure 4.5) in order to be able to detect IL-17A responses. Besides, as 

quantification of IFN-γ secretion from the same cells would be the ultimate 

goal, condition 1 seemed ideal as it was routinely used in the laboratory to 

expand and maintain IFN-γ secreting cell lines.  

4.3.2 Detection of ex vivo and cultured IFN-γ  and IL-17A responses 

specific to CEA by ELISpot in CRC patients using two 

commercially available CEA proteins 

In order to test whether IL-17A responses specific to CEA could be detected 

in the blood of CRC patients I examined the frequency of antigen-specific IL-

17A secreting cells directly ex vivo and after culture.  
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Figure 4.6 IL-17A secretion can be readily and robustly detected after PBMCs 
stimulation with Candida albicans for 13 days. Freshly isolated PBMCs were assessed 
for their IL-17A production after stimulation with phytohaemagglutinin (PHA), tuberculin 
protein purified derivative (PPD) and different concentrations of Candida albicans (CA), 
cultured for 13 days in condition 1 (A), condition 2 (B), condition 3 (C) and condition 4 (D) 
and re-stimulated with the respective antigens. 
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Figure 4.7 Expansion of PBMCs for 11 days generates a weak IL-17A response after 
stimulation with C. albicans. 5 x 105 freshly isolated PBMCs were assessed for their IL-
17A production after stimulation with phytohaemagglutinin (PHA) and Candida albicans, 
cultured for 11 days in R5 with IL-2 (A) or R5 with IL-2 and IL-23 (B) and re-stimulated with 
the respective antigens.     
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Given the results obtained in the previous sections with CA, the expectation 

was that the frequency of IL-17A secreting cells would be too low for ex vivo 

detection. Moreover, because the main objective was to determine whether 

CEA-specific T cells secrete both IFN-γ and IL-17A, CEA-specific IFN-γ 

responses were also measured in parallel.  

Blood was collected from CRC patients on the day of surgery and PBMCs 

isolated immediately after collection. 

Two CEA proteins purchased from Calbiochem and Sigma were tested. 

Calbiochem CEA was derived from a human colon adenocarcinoma cell line; 

Sigma CEA derived from human fluids. 

Four patients were tested with these CEA proteins using both ex vivo and 

cultured assays. No IFN-γ and/or IL-17A response specific to CEA could be 

detected in these patients (representative results from one patient shown in 

Figure 4.8). IFN-γ and IL-17A could be detected in all the experiments either 

after stimulation with PHA or one of the recall antigens indicating that the 

inability to detect CEA-specific responses was not due to assay failure. As 

expected, the frequency of antigen-specific responses is greater after culture 

(Figures 4.8A vs 4.8B for IFN-γ; Figure 4.8C vs Fig 4D for IL-17A). An IL-17A 

response specific to PPD was detected in patient DCB12 after culture 

(Figure 4.9). No response was detected prior to culture indicating that even 

though cells specific to PPD were initially present, their frequency was too 

low to be measured by the assay. This shows that cycles of in vitro 

restimulation can successfully expand antigen-specific IL-17A secreting cells 

to a measurable number. 
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Figure 4.8 IFN-γ and IL-17A ex vivo and cultured responses specific to CEA and recall 
antigens in a representative patient. When possible, responses were measured in 
duplicate by ELISpot. (A) IFN-γ secreting cells per 105 PBMCs measured ex vivo or (B) after 
culture. (C) IL-17A secreting cells per 105 PBMCs measured ex vivo or (D) after culture. 
Data shown in A, C and D are means of duplicate measurements ± SEM. CEA C., 
carcinoembryonic antigen from Calbiochem. CEA S., carcinoembryonic antigen from Sigma-
Aldrich. TT, tetanus toxoid. HA, haemagglutinin. PPD, tuberculin purified protein derivative. 
PHA, phytohaemagglutinin. 
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Figure 4.9 The magnitude of IL-17A cultured responses is greater than ex vivo 
responses. Patient DCB12 IL-17A responses were measured in duplicate by ELISpot. (A) 
IL-17A secreting cells per 105 PBMCs measured ex vivo or (B) after culture. Data shown are 
means of duplicate measurements ± SEM. CEA C., carcinoembryonic antigen from 
Calbiochem. CEA S., carcinoembryonic antigen from Sigma-Aldrich. TT, tetanus toxoid. HA, 
haemagglutinin. PPD, tuberculin purified protein derivative. PHA, phytohaemagglutinin.               
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4.3.3 Detection of CEA-specific IL-17A and IFN-γ ex vivo responses by 

ELISpot before and after Treg depletion in CRC patients using a 

commercial available CEA protein 

Our group has previously described that Treg depletion can augment or 

unmask a tumour-antigen specific T cell response to 5T4, in CRC patients 

(Clarke et al., 2006). The same suppression, albeit to a lesser extent, was 

also observed for CEA-specific responses (Betts et al., 2012). The lack of 

detectable CEA-specific responses outlined above may be due to 

suppression by Tregs known to present at high numbers in the blood of CRC 

patients.  

In order to test if Treg cells were suppressing CEA-specific conventional 

responses, MACS CD25-microbeads were used to deplete the CD25hi 

population from PBMCs of six patients. Patient samples were analysed by 

flow cytometry before and after Treg depletion in order to ascertain the 

successful depletion of CD25hi cells (representative FACS plot Figure 4.10). 

As confirmed by flow cytometric analysis the proportion of CD25hi cells was 

significantly reduced after depletion of the CD25hi fraction by microbeads. In 

the example shown in Figure 4.10 the percentage of CD4+CD25hi cells 

changed from 8.25% to 0.51%. The expression of Foxp3 in the CD4+ T cell 

population confirmed that depletion of CD25hi cells was reflected by 

depletion of Foxp3+ cells. Removal of CD25hi cells resulted in a decrease in 

the percentage of CD4+Foxp3+ from 7.07% to 1.4%. 
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Figure 4.10 Confirmation of Treg depletion by flow cytometry. The whole PBMC fraction 
was incubated with MACS CD25 microbeads followed by magnetic selection and depletion 
of CD25+ cells. (A) Gating strategy for identification of regulatory T cells. Lymphocytes were 
identified based on size (FSC) and granularity (SSC) followed by selection of live cells. From 
the live cells the CD4+ population was divided into CD25-, CD25int and CD25hi based on the 
maximum expression of CD25 on the CD4- population indicated by the dashed line. (B) 
Analysis of CD25 and FOXP3 expression on CD4+ cells before and Treg depletion. (C) 
Analysis of CD25 and FOXP3 expression on CD4+ cells after Treg depletion. SSC, side 
scatter. FSC, forward scatter. Treg, regulatory T cell. Hi, high. Int, intermediate.         
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The pattern of IFN-γ and IL-17A responses before and after Treg depletion is 

shown for a representative patient (DCB18, Figure 4.11). As shown in Figure 

4.11 and for all the six patients studied, IFN-γ and IL-17A responses specific 

to HA and PPD were observed before and after Treg depletion indicating that 

these responses were not completely suppressed by Tregs. The HA-specific 

IL-17A response did increase after Treg depletion, indicating that Tregs may 

limit this response, at least partially. Removal of Tregs did not however result 

in detection of either IFN-γ- nor IL-17A- producing CEA-specific T cells.  

4.3.4 Detection of CEA-specific IL-17A and IFN-γ cultured responses 

by ELISpot before and after Treg depletion in CRC patients 

comparing CEA proteins to CEA peptide pools 

The results using whole commercial CEA proteins had proven disappointing 

in my preliminary experiments.  

As well as the CEA proteins described above, I now also used two pools of 

overlapping (by 10 a.a.) 20-mer peptides spanning the entire CEA protein. 

CEA peptide pool 1 (CEA pp1) ranges from peptide 1 to peptide 35 and CEA 

pool 2 (CEA pp2) ranges from peptide 36 to peptide 70 (for detailed 

information, refer to Section 2.4.4.3). 

The frequency of IFN-γ and IL-17A secretion specific to CEA was examined 

in freshly isolated PBMCs from three CRC patients, tested after ≥13 days of 

culture. Responses were measured before and after depletion of CD25hi 

cells. The data shows that an IFN-γ response specific to CEA could be 

detected using CEA pp1 and CEA pp2 but not the whole proteins (Figure 

4.12A).  
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Figure 4.11 IFN-γ and IL-17A responses specific to CEA are absent before and after 
Treg depletion. IFN-γ and IL-17A responses specific to CEA and recall antigens were 
measured in patient DCB18 by ELISpot before and after depletion of regulatory T cells. (A) 
IFN-γ secreting cells per 106 PBMCs measured ex vivo (B) IL-17A secreting cells per 106 
PBMCs measured ex vivo. Data shown are means of duplicate measurements ± SEM. CEA 
C., carcinoembryonic antigen from Calbiochem. CEA S., carcinoembryonic antigen from 
Sigma-Aldrich. TT, tetanus toxoid. HA, haemagglutinin. PPD, tuberculin purified protein 
derivative. PHA, phytohaemagglutinin. Treg, regulatory T cell. 
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This response could be detected in the presence of CD25hi but not after their 

depletion (Figure 4.12B). Figure 4.12 and 4.13 shows a representative 

example out of the three CRC patients tested and in none of them could a 

response specific to whole CEA be detected. These results suggest that 

peptide pools are able to expand CEA-specific T cells more efficiently than 

whole protein. These CEA-specific responses were robust and detectable in 

the presence of CD25hi T cells indicating that in these cultured assays 

CD25hi T cells (e.g. Treg-rich population) do not appear to play a major role 

in suppression of CEA effector responses. Figure 4.12 C represents an 

example of an ELISpot well where an IFN-γ response specific to CEA pp2 

could be detected. A similar pattern, albeit to a less extent, was observed for 

IL-17A-producing CEA-specific T cells. IFN-γ responses to CEA pp2 were 

detected at a frequency of 925 IFN-γ spots/ 5 x 105 PBMCs compared to 265 

IL-17A spots detected per 5 x 105 PBMCs (Figure 4.13). This shows that 

even though an IL-17A response specific to CEA can be detected in the 

blood of CRC patients its cultured magnitude is much lower than the IFN-γ 

response. As this assay was performed in two separate ELISpot plates, it 

was not possible to determine whether IFN-γ and IL-17A CEA-specific 

responses were being produced by the same cells. 

The absence of an IFN-γ and IL-17A response specific to CEA using CEA 

pp1 and CEA pp2 could be a result of the depletion method used. Even 

though only CD25hi cells are being targeted during this essay some 

effector/activated CD25+ cells are also depleted thus possibly removing the 

CEA-specific population. Tregs can also transdifferentiate into different cell 



 154 

subsets. It is also possible that the antigen-specific responses being 

detected by IFN-γ and IL-17A are a result of Tregs that have acquired a Th1 

and Th17-like phenotypes. Depletion of Tregs could therefore prevent the 

formation of antigen-specific Th1 and Th17 like cells capable of responding 

to the antigen. Nonetheless, the absence of Th17-related cytokines during 

expansion would not support such possibility.   
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Figure 4.12 IFN-γ responses specific to CEA can be detected by ELISpot after 13 days 
of culture using synthetic peptides spanning the entire protein. IFN-γ responses 
specific to CEA and recall antigens were measured in three patients by ELISpot before (A) 
and after (B) depletion of regulatory T cells. Representative example of IFN-γ secreting cells 
per 5 x 105 cultured PBMCs from patient DCB21. (C) ELISpot wells representing a IFN-γ 
CEA-specific response. Data shown are means of duplicate measurements ± SEM. CEA C., 
carcinoembryonic antigen from Calbiochem. CEA S., carcinoembryonic antigen from Sigma-
Aldrich. HA, haemagglutinin. PPD, tuberculin purified protein derivative. PHA, 
phytohaemagglutinin. Treg, regulatory T cell. PP, peptide pool.                
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Figure 4.13 IL-17A responses specific to CEA can be detected by ELISpot after 13 
days of culture using synthetic peptides spanning the entire protein. IL-17A responses 
specific to CEA and recall antigens were measured in three patients by ELISpot before (A) 
and after (B) depletion of regulatory T cells. (C) Representative example of IL-17A secreting 
cells per 5 x 105 cultured PBMCs from patient DCB21 showing a IL-17A CEA-specific 
response. CEA C., carcinoembryonic antigen from Calbiochem. CEA S., carcinoembryonic 
antigen from Sigma-Aldrich. HA, haemagglutinin. PPD, tuberculin purified protein derivative. 
PP1 and PP2, peptide pool 1 and 2. PHA, phytohaemagglutinin. Treg, regulatory T cell. 
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4.3.5 Detection of CEA-specific IL-17A and IFN-γ cultured responses 

by FluoroSpot in CRC patients using CEA proteins and CEA 

peptide pools 

ELISpot technology has been widely used to accurately and reliably measure 

the frequency of cytokine-secreting cells at the single-cell level. The 

FluoroSpot technology is an advance of the ELISpot assay as it allows the 

detection of up to three different cytokines in the same assay and from the 

same cell. This is made possible through use of fluorophore-labeled 

antibodies to differentiate and enumerate up to three analytes at the same 

time (for further information, see Section 2.4.7). I used this technology to 

determine whether T cells, specific for CEA, produced IFN-γ and IL-17A 

concurrently. 

Figures 4.14 – 4.16 show representative examples of patients that generated 

IFN-γ and/or IL-17A responses specific to CEA and 5T4 measured by 

FluoroSpot. Green spots indicate IFN-γ secretion, whereas red spots 

represent IL-17A secretion. Secretion of IFN-γ and IL-17A by the same cell is 

shown in yellow (Figures 4.14 – 4.16).  

Figure 4.17 represents the first patient in which a CEA-specific response 

could be detected. An IFN-γ response specific to CEA pp1 (but not CEA 

proteins) was observed (green spots). An IFN-γ but not IL-17A response 

specific to CEA could be detected in the blood of patient DCB27. In this 

patient, an IFN-γ response was not a surrogate marker for an IL-17A 

response. This was the first time I detected an antigen-specific response 

using the FluoroSpot technology; similarly to ELISpot, FluoroSpot was also 

able to determine the magnitude of low frequency responses.  
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Figure 4.14 Examples of IFN-γ and IL-17A secretion after stimulation with CEA peptide 
pools. 5 x 105 PBMCs were stimulated with the indicated peptides, expanded for ≥13 days 
and re-stimulated (+ antigen) or not (- antigen) with the same antigen before detection of 
IFN-γ and IL-17A release. The wells were incubated with 5 x 105 PBMCs. Green and red 
dots represent IFN-γ and IL-17A secretion, respectively. 
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Figure 4.15 Example of IFN-γ and IL-17A being produced by the same cell. 5 x 105 
PBMCs were stimulated with the CEA pp2, expanded for ≥13 days and re-stimulated (+ 
antigen) or not (- antigen) with the same antigen before detection of IFN-γ and IL-17A 
release. The wells were incubated with 5 x 105 PBMCs. Secretion of both cytokines by CEA-
specific cells is represented in yellow like indicated by the blue arrow. 
 

 

+ Antigen 

IFN-γ/IL-17A 
Double producers 

- Antigen 



 160 

 

 

 

Figure 4.16 Examples of IFN-γ and IL-17A secretion after stimulation with 5T4 peptide 
pools. 5 x 105 PBMCs were stimulated with the indicated peptides, expanded for ≥13 days 
and re-stimulated (+ antigen) or not (- antigen) with the same antigen before detection of 
IFN-γ and IL-17A release. (A) IFN-γ and IL-17A secretion specific to 5T4 after stimulation of 
PBMCs from DCB36 patient with 5T4 pp1. (B) IFN-γ (left-hand side) and IL-17A (right-hand 
side) secretion specific to 5T4 after stimulation of PBMCs from DCB42 patient with 5T4 pp2 
and 5T4 pp1, respectively. (C) Example of the same cell secreting IFN-γ and IL-17A specific 
to 5T4 pp2.The wells were incubated with 5 x 105 PBMCs. Green and red dots represent 
IFN-γ and IL-17A secretion, respectively. Cytokines produced by the same cells are shown 
in yellow/orange as indicated by the blue arrows. 
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Figure 4.17 IFN-γ responses specific to CEA can be detected by FluoroSpot after 14 
days of culture using synthetic peptides spanning the entire protein to stimulate 
PBMCs from DCB27. IFN-γ and IL-17A responses specific to CEA and recall antigens were 
measured by FluoroSpot after 14 days of culture. (A) IFN-γ secreting cells per 5 x 105 
cultured PBMCs. (B) IL-17A secreting cells per 5 x 105 cultured PBMCs. (C) FluoroSpot 
wells representing an IFN-γ response specific to CEA. The anti-IFN-γ antibody is labelled 
with FITC. Data shown are means of duplicate measurements ± SEM. CEA C., 
carcinoembryonic antigen from Calbiochem. CEA S., carcinoembryonic antigen from Sigma-
Aldrich. HA, haemagglutinin. PPD, tuberculin purified protein derivative. PP1 and PP2, 
peptide pool 1 and 2. PHA, phytohaemagglutinin. 
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As CD4+ T cells are not the only source of IL-17A (Passos et al., 2010; 

Rachitskaya et al., 2008; Sutton et al., 2009; Tajima et al., 2008), blocking 

antibodies against HLA class II -DR and -DQ molecules, and HLA class I -A, 

-B and C were used in the FluoroSpot assays when enough patient PBMCs 

were available. PBMCs were grown in exactly the same way as described 

before and on the day of re-stimulation cells were incubated with the blocking 

antibodies for 30 – 60 minutes before addition of the antigens/mitogens. As 

demonstrated in Figures 4.18 A and B, CEA pp1 and pp2 -specific responses 

detected by IFN-γ after stimulation are mainly -DR-restricted represented by 

the reduction/absence of response in the presence of -DR blocking 

antibodies. Similarly, CEA-specific cells secreting IL-17A alone or in 

combination with IFN-γ were at least partially -DR-restricted (Figure 4.18 C 

and D).   

4.4 CEA-specific IL-17A and IFN-γ  responses in CRC 

patients 

An initial hypothesis was that the association between tumour recurrence 

and the detection of CEA-specific T cell responses measured by IFN-γ 

secretion was due to secretion of tumour-promoting IL-17A by the same cells. 

In order to test this, I investigated IFN-γ/IL-17A producing cells in a new 

cohort of CRC patients (n=23). FluoroSpot assays were conducted as 

described above and IFN-γ and IL-17A responses specific to the tumour 

antigen 5T4 were also measured in order to determine whether responses to 

this antigen are similar or different to those against CEA.  
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Figure 4.18 IFN-γ and IL-17A responses specific to CEA are DR-restricted. 5 x 105 
PBMCs from donors DCB52 (A and D), DCB53 (B) and DCB46 (C) were stimulated on day 
0 with antigen, cultured for ≥13 days and re-stimulated or not before detection of IFN-γ (A 
and B), IL-17A (C) and IFN-γ/IL-17A (D) double producers. On the re-stimulation day cells 
were incubated with anti-DR, anti-DQ and anti-HLA A,B,C blocking antibodies for 
approximately 30 minutes before addition of antigen. After re-stimulation cells were 
incubated for approximately 48h before cytokine detection by FluoroSpot HA, 
haemagglutinin. C, CEA. Pp1, peptide pool 1. pp2, peptide pool 2. PHA, 
phytohaemagglutinin.   
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In agreement with a previous study from our laboratory, the percentage of 

patients demonstrating IFN-γ specific responses to CEA and 5T4 was 52% 

and 58%, respectively (Scurr et al., 2015) (Figure 4.19). This previous study 

also reported an association between CEA-specific IFN-γ responses and 

tumour recurrence which was even stronger when individuals making both 

CEA- and 5T4-specific responses were excluded from the analysis thereby 

supporting a protective role for 5T4-specific IFN-γ specific cells (Scurr et al., 

2015).  

The IFN-γ and IL-17A responses detected in this study specific to CEA and 

5T4 were then analysed in each patient. Figure 4.20A shows that from the 11 

patients secreting an IFN-γ response specific to 5T4 8 of them also secrete 

IFN-γ specific to CEA at a similar magnitude (Figure 4.20A and C). From the 

4 patients secreting IL-17A specific to CEA, half of them also secrete IL-17A 

specific to 5T4 at slighter higher levels suggesting that IL-17A could indeed 

be responsible for the worse prognosis observed in CEA-responsive patients 

when 5T4 protective role is subtracted from the analysis (Figure 4.20 B and 

D). However, even though the proportion of patients displaying IFN-γ specific 

responses to CEA and 5T4 is similar (Figure 4.21) the percentage of IL-17A 

responders is also similar, even slightly greater for 5T4 and IFN-γ/IL-17A 

double producers are more than twice as frequently observed in 5T4 specific 

responders than CEA responders. This suggests that CEA-responders are 

not more likely to generate IL-17A producing cells than 5T4 responders. 
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Figure 4.19 Percentage of patients secreting IFN-γ specific to CEA and 5T4 in the 
previous study published in the JNCI in 2015 (Scurr et al., 2005) and in the current 
study. Comparison of the percentage of CEA responders (A) and 5T4 responders (B) 
measured by the secretion of IFN-γ after ≥13 days of culture. In the current study CEA and 
5T4 responses were measured in 23 and 19 patients, respectively.  
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Figure 4.20 IFN-γ and IL-17A responses specific to CEA and 5T4 generated by the 
same patients. (A) Venn diagram representing the total number of patients producing an 
IFN-γ response to CEA (blue) that also generate an IFN-γ response specific to 5T4 (blue 
and pink combined) or that only generate an IFN-γ response specific to 5T4. (B) Like in A 
but for IL-17A responses. C and D represent the pattern of the magnitude of IFN-γ 
responses (C) or IL-17A responses (D) for both antigens. In C and D one individual line 
represents one patient. 
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Figure 4.21 A low percentage of CRC patients produce IFN-γ and IL-17A specific to 
CEA and 5T4 by the same cells. (A) The percentage of IFN-γ (n=23), IL-17A (n=24) and 
IFN-γ/IL-17A double producers (n=21) specific to CEA was measured in the blood of CRC 
patients after ≥13 days of culture. (B) Percentage of IFN-γ, IL-17A and IFN-γ/IL-17A double 
producers (n=19) specific to 5T4 detected in the blood of CRC patients after ≥13 days of 
culture. IFN-γ and IL-17A CEA and 5T4 responders represent cytokine secretion by different 
cells.   
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Also, the magnitude of IL-17A responses is lower than the IFN-γ specific 

responses both for CEA and 5T4 thus excluding the fact that maybe a 

greater IL-17A specific response to CEA could explain the tumour recurrence 

(Figure 4.22). The magnitude of the total responses detected by IFN-γ and 

IL-17A is similar for both tumour antigens (Figure 4.23) Taken together this 

suggests that IL-17A secreted by CEA-specific cells is not responsible for the 

tumour recurrence observed by patients secreting IFN-γ specific to CEA. No 

difference in the magnitude of responses was observed in different stages of 

disease both for CEA and/or 5T4 responses (Figure 4.24). Interestingly, 

however, is the fact that whenever an IL-17A response is detected for any of 

the antigens an IFN-γ specific response is also observed either from the 

same cells (double producers) or from distinct cells (Figure 4.25 and Tables 

4.1 and 4.2). IL-17A is therefore a surrogate marker for IFN-γ as whenever 

IL-17A is detected IFN-γ secretion specific to the same antigen is also 

detected.
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Figure 4.22 IFN-γ responses specific to CEA and 5T4 are greater than IL-17A 
responses specific to the same antigens. The total magnitude of CEA (A and B) and 5T4 
(C and D) responses were calculated by combination of responses detected by peptide 
pools 1 and 2 and the mean and the SEM calculated (A and C). B and D represent IFN-γ, IL-
17A and IFN-γ/IL-17A secretion specific to CEA and 5T4 by each individual patient. One line 
represents one patient. IFN-γ CEA responses, n=23. IL-17A CEA responses, n=24. 5T4 
responses, n=19.  
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Figure 4.23 Total magnitude of IFN-γ and IL-17A responses specific to CEA and 5T4. 
The total magnitude of IFN-γ (A) and IL-17A(B) responses specific to CEA and 5T4 was 
calculated by combination of responses detected by peptide pools 1 and 2 and the mean 
and the SEM calculated. IFN-γ CEA responses, n=23. IFN-γ 5T4 responses, n=19. IL-17A 
CEA responses, n=24. 5T4 responses, n=19. Mann Whitney test was used to compare both 
groups. P ≤ 0.05 was considered significant. 
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Figure 4.24 Total magnitude of IFN-γ and IL-17A responses is not associated with 
disease stage for either CEA or 5T4 responders. Total magnitude of IFN-γ responses (A 
and B) and IL-17A responses (C and D) specific to CEA (A and C) and 5T4 (B and D) were 
calculated and grouped according to disease stage. Lines in the graphs represent the mean 
and SEM. Mann Whitney test was used to compare both groups. P ≤ 0.05 was considered 
significant   
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Figure 4.25 Cells secreting IL-17A specifically to CEA or 5T4 always secrete IFN-γ. (A) 
Venn diagram representing IL-17A (orange) or IFN-γ (green) secretion specific to CEA alone 
in orange and green, respectively, or in combination (orange and green superimposed). (B) 
As in A but for 5T4. 
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Table 4.1 Details of IFN-γ and IL-17A responses specific to CEA. PBMCs from CRC 
patients were tested for the presence of CEA responses by secretion of IFN-γ and/or IL-
17A. IFN-γ responses were measured in 23 patients, IL-17A responses were measured in 
the blood of 24 patients and IFN-γ/IL-17A double responses secreted by the same cells 
were measured in 21 patients. IFN-γ exclusive secretion represents cells that only secrete 
IFN-γ but no IL-17A. IL-17A exclusive indicates cells that only secrete IL-17A but no IFN-γ. 
IFN-γ/IL-17A double producers represent cells that secrete both cytokines. IFN-γ secretion 
by DCB23 could not be tested due to an infection in the plate. IFN-γ/IL-17A double 
producers could not be measured in DCB21, 23 and 26 because IFN-γ and IL-17A 
responses for these patients were measured by ELISpot. Background have been subtracted 
from the final responses represented here. Values represent number of spots detected per 5 
x 105 PBMCs.  pp1, peptide pool 1. pp2, peptide pool 2.  

 

Patient	ID pp1 pp2 pp1 pp2 pp1 pp2
DCB21 335 880 0 265 NT NT
DCB23 NT NT 37 222 NT NT
DCB26 0 0 0 0 NT NT
DCB27 49 0 0 0 0 0
DCB29 0 147 0 20 0 9
DCB32 0 0 0 0 0 0
DCB33 0 0 0 0 0 0
DCB35 0 0 0 0 0 0
DCB36 0 0 0 0 0 0
DCB37 0 0 0 0 0 0
DCB39 0 84 0 0 0 0
DCB41 0 224 20 0 0 0
DCB42 282 66 0 0 0 0
DCB44 0 0 0 0 0 0
DCB45 74 103 0 0 0 0
DCB46 0 0 0 16 0 6
DCB48 0 0 0 0 0 0
DCB50 0 0 0 0 0 0
DCB51 80 0 0 0 0 0
DCB52 115 317 0 22.5 0 25
DCB53 0 186 0 0 0 0
DCB54 306 448 17 0 0 0
DCB55 0 56 0 0 0 0
DCB56 0 0 0 0 0 0

IFN-γ	exclusive IL-17A	exclusive
IFN-γ/IL-17A	double	

producers

CEA responses 
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Table 4.2 Details of IFN-γ and IL-17A responses specific to 5T4. PBMCs from CRC 
patients were tested for the presence of 5T4 responses by secretion of IFN-γ and/or IL-17A. 
IFN-γ, IL-17A and IFN-γ/IL-17A double responses secreted by the same cells were 
measured in 19 patients. IFN-γ secretion represents cells that only secrete IFN-γ but no IL-
17A. IL-17A indicates cells that only secrete IL-17A but no IFN-γ. IFN-γ/IL-17A double 
producers represent cells that secrete both cytokines Background have been subtracted 
from the final responses represented here. Values represent number of spots detected per 5 
x 105 PBMCs. pp1, peptide pool 1. pp2, peptide pool 2.  
 

5T4 responses 

Patient	ID pp1 pp2 pp1 pp2 pp1 pp2
DCB32 0 0 0 0 0 0
DCB33 0 0 0 0 0 0
DCB35 0 0 0 0 0 0
DCB36 99 316 0 0 0 18
DCB37 0 0 0 0 0 0
DCB39 0 0 0 0 0 0
DCB41 0 298 0 0 0 0
DCB42 0 293 33 0 0 0
DCB44 0 0 0 0 0 0
DCB45 54 0 0 0 0 0
DCB46 0 0 0 0 0 0
DCB48 0 0 0 0 0 0
DCB50 23.5 342.5 0 88.5 0 14.5
DCB51 0 328 0 0 0 0
DCB52 65 345.5 18.5 113 0 25
DCB53 0 81.5 10 0 0 0
DCB54 29 982 0 39 0 13.5
DCB55 0 228 0 0 0 0
DCB56 354.5 118 12 0 6.5 0

IFN-γ IL-17A
IFN-γ/IL-17A	double	

producers
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4.5 Discussion 

CEA was first described in 1965 and since then it has been widely studied as 

a potential target for tumour treatment as it is overexpressed on 

adenocarcinomas, mainly of the breast, pancreas, lung and colon (Gold and 

Freedman, 1965; Hammarström, 1999). 

A number of studies using CEA transgenic mice (CEA.tg) have shown that 

vaccination with CEA-expressing recombinant viruses induces protective 

immune responses against CEA-expressing tumour cells (Greiner et al., 

2002; Kass et al., 1999).  

The ability to induce a CEA-specific T cell response after immunisation with a 

CEA-loaded vaccine has also been demonstrated in humans (Turriziani et al. 

2012). Zhue et al., detected an HLA class I restricted CEA response in 

patients vaccinated with a recombinant Avipox-CEA vaccine that was able to 

lyse CEA+ autologous tumour (Zhu et al., 2000). In a Taiwanese cohort of 

CRC patients Liu et al., observed a MHC class I restricted response after 

vaccination with dendritic cells loaded with CEA peptides. In this study a 70% 

increase in the number of responses specific to CEA after vaccination was 

reported (K.-J. Liu et al., 2004). All the studies aforementioned were capable 

of eliciting either a cellular or humoural response but what is less clear is the 

correlation between a T cell specific response and long-term patient survival.  

Our group has previously reported the existence of naturally occurring T cells 

specific to tumour antigens, namely CEA and 5T4 in the blood of CRC 

patients (Betts et al., 2012; Clarke et al., 2006) and recently we have also 

reported that detection of a CEA T cell response is associated with tumour 
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recurrence (Scurr et al., 2015); an effect that is even more striking when the 

5T4 responders are removed from analysis (Betts et al., 2012; Clarke et al., 

2006; Scurr et al., 2015).   

This chapter has focused on the investigation into the mechanisms involved 

in tumour recurrence in CRC patients developing a CEA T cell response. It 

was hypothesised that the presence of a CEA T-cell response by ex vivo 

IFN-γ detection by ELISpot could merely be a surrogate marker of an IL-17A 

response. IL-17A is the signature cytokine for Th17 cells and its high 

concentration in the blood and tumour of cancer patients has been 

associated with a poor outcome (He et al., 2011; Li et al., 2014; F. Zhang et 

al., 2008). VEGF and PGE are pro-angiogenic factors that promote tumour 

survival, expansion and vascularity. IL-17A mediates its tumorigenic effects 

by the induction of VEGF, PGE2 secretion and also via indirect activation of 

STAT3 via IL-6 (De Simone et al., 2013; L. Wang et al., 2009). 

In order to test for the concomitant secretion of CEA-specific IFN-γ and IL-

17A a series of experiments were conducted including detection of IFN-γ and 

IL-17A secretion directly ex vivo or after culture post stimulation with the 

whole CEA protein or two peptide pools spanning the entire protein. After 

optimising IL-17A detection by ELISpot using CA as a positive control it was 

observed that a culture of at least 13 days was necessary to detect a robust 

and measurable number of cytokine producing T cells. Zielinski et al. also 

stimulated CD4+ naïve T cells with monocytes pulsed with CA for 12 days in 

order to detect IL-17A secretion. Incubation in the presence of MHC class II 

blocking antibodies inhibited the secretion of IL-17A PBMCs showing this 
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response to be MHC class II specific (Zielinski et al., 2012). Similar findings 

are reported here. 

I found that both IFN-γ and IL-17A responses were more readily detected 

following a 13-day culture period (Figure 4.8 and 4.9). In an approach similar 

to ours, Shimato et al. measured cytokine release by ELISA in three 

glioblastoma patients on day 7 and 14 after PBMC culture. They reported 

that the magnitude of the response was markedly increased due to 

expansion of the cells during the culture period (Shimato et al., 2012). The 

Barker group also measured CEA-specific responses but in healthy donors 

and observed a peak proliferation of CEA-specific T cells around day seven 

(Pickford et al., 2007). 

In our system the detection of CEA-specific T cells was only possible when 

synthetic peptides covering the entire protein were used. This result was 

unexpected, as previously the laboratory had reported detection of CEA-

specific responses using whole CEA purchased from Calbiochem. A number 

of factors could account for this result: 1) as the previous study was 

performed between 2004 and 2007 the protein batch used at the time was 

somehow different from the batch used for the current study, 2) altered 

chemotherapy regime being currently administrated to the patients as 

compared to the 2004-2007 periods. In a phase I/II trial in 2005 Weihrauch et 

al. described that even though absolute CD4+ and CD8+ cell counts were not 

affected by the chemotherapy, three cycles of treatment decreased the 

Epstein-Barr Virus and Cytomegalovirus specific CTL response by 14% 

(Weihrauch, 2005). However this seems unlikely as I was able to detect 
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CEA-specific responses using peptide pools; this may reflect better efficiency 

of antigen presentation as peptides do not require extensive processing.  

The current study was undertaken to understand the impact of IL-17A-

producing CEA-specific T cells on tumour recurrence of CRC patients. To 

study the simultaneous production of IFN-γ and IL-17A by CEA-specific T 

cells cytokine release from the blood of twenty-three patients by ELISpot or 

FluoroSpot was measured after a short-term culture. The percentage of the 

CEA and 5T4 responses observed in this study was slightly higher but similar 

to the previous study (Figure 4.19).  

I report here for the first time the detection of IL-17A-producing CEA- and 

5T4-specific T cells in the blood of patients with CRC. Whilst on a single cell 

level, some T cells secreted IL-17A, IFN-γ-responses to CEA and/or 5T4 

were always detected in the same individual even if secreted by distinct cells. 

The only previous report of Th17 cells specific to a tumour antigen in the 

blood of cancer patients was published by Hamai et al. who screened the 

blood of 38 lung cancer patients and documented the detection of three 

MAGE-A3 Th1 specific responses and one MAGE-A3-specific Th17 

response (Hamai et al., 2012). Similarly to our findings they also described 

the secretion of IL-17A alone or in combination with IFN-γ. They were able to 

identify the same MAGE-A3-specific population in the CCR6+CCR4+ central 

memory and CCR6+CXCR3+ effector memory populations of one patient. 

CD4+ T cells were stimulated with a single peptide and expanded under 

clonal conditions. Molecular analysis of seven clones secreting either IL-17A 

alone and/or IFN-γ showed that all the clones used the TCR beta variable 

gene 20-1, the same complementary determining regions 3β and a unique 
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TCR beta joining gene. The clonotyping data in combination with the 

characterisation of the memory populations suggests that the MAGE-A3-

specific Th1/Th17 population is a transitory population that will later on 

during their developmental stage secrete solemly IFN-γ as the cells become 

Th1 effector cells. (Hamai et al., 2012). If this is true, it provides an 

explanation for why IL-17A secretion is always detected in association with 

IFN-γ whereas IFN-γ responses are often detected without IL-17A secretion. 

The data presented here also indicate that the association between tumour 

recurrence and IFN-γ-producing CEA-specific T cell responses cannot be 

accounted for by concomitant IL-17A-production by the same cells. I 

observed no difference in the pattern of IL-17A and IFN-γ-secretion amongst 

CEA vs 5T4-specific cells. This is important, as 5T4-specific responses were 

not associated with tumour recurrence. 

Tatsumi et al. reported a strongly skewed Th2 phenotype specific to MAGE-6 

epitopes in the blood of melanoma and renal cell carcinoma patients. The 

responses of healthy donors and patients with no remaining disease were 

mainly Th1 or a combination of Th1 and Th2 (Tatsumi et al., 2002). This 

suggests that even though the development of a Th1 response to tumour 

antigens is the dominant phenotype, other subsets of helper T cells can also 

recognise tumour antigens and impact on prognosis. Detection of IL-4 could 

therefore be included in the future analysis of CEA-specific responses. 



 180 

5 Th1/ Th17 cells in the context of CRC 

5.1 Introduction 

Th17 cells were first described in mice in 2005 (Harrington et al., 2005; 

Iwakura and Ishigame, 2006; McKenzie et al., 2006; Park et al., 2005). Since 

then they have been widely studied in the context of human disease, with the 

discovery that these cells are associated with a number of autoimmune 

conditions, previously only linked to the activity of Th1 cells (Brucklacher-

Waldert et al., 2009; Lubberts et al., 2004). 

 Th17 cells have also been linked to tumour development, mainly 

CRC (Li et al., 2014). The colon is of special interest as it is populated by a 

vast number of microorganisms. Segmented filamentous bacteria (SFB) e.g. 

have been shown to induce the development of Th17 cells in the intestinal 

lamina propria of mice (Ivanov et al., 2009). Hyun et al. demonstrated that 

development of colitis associated cancer (CAC) was associated with IL-17A 

secretion as IL-17A KO mice presented less inflammation and less tumour 

development post-dextran sulphate sodium (DSS) treatment in comparison 

to WT animals (Hyun et al., 2012). Th17 cells appear not only to be related to 

the formation of CAC but also sporadic CRC. In a sporadic CRC model 

Grivennikov et al. depleted the APC gene which led to elevated levels of IL-

23 p19 and IL-17A within the tumour. Also, genetic deletion of Il-23, a crucial 

cytokine for the maintenance of the Th17 phenotype, resulted in the 

development of fewer and smaller tumours (Grivennikov et al., 2012).  

Thus, mouse studies indicate that Th17 cells promote disease progression. 

Studies in humans also point to a role for Th17 cells in the promotion of CRC. 
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It has been reported that frequencies of Th17 cells and their associated 

cytokines are elevated in the blood of CRC patients (Li et al., 2014; J. Wang 

et al., 2012). In a study by the Galon group published in 2011 analysing 

three CRC patient cohorts, Th17 cells were significantly associated with a 

poorer survival particularly when Th1 cell numbers were low (Tosolini et al., 

2011). Another characteristic feature of Th17 cells is transdifferentiation; the 

ability to secrete signature cytokines of other T helper subsets (e.g. IL-10 

and IFN-γ) (Gagliani et al., 2015; Zielinski et al., 2012). Current literature on 

CRC suggests that high prevalence of Th1 cells within the tumour correlates 

with a favourable prognosis, contrasting with Th17 cells which correlate with 

a poor prognosis. However it is not understood what role IFN-γ/IL-17A 

double-producing CD4+ T cells play in tumour development and progression. 

I also considered that by studying the chemokine receptors associated with 

each subset e.g. Th1, Th17 and IFN-γ/IL-17A producing cells I would gain a 

better understanding on the recruitment pattern of such cells and their role in 

CRC. 

Thus, this chapter focuses on i) evaluating the frequency and 

phenotype of Th1 and Th17 cells in blood, colon and CRC and ii) exploring if 

the ratios of Th1 : Th17 :Treg cells in these compartments reflect disease 

stage. 

5.2 Results 

In order to evaluate the frequency and phenotype of Th1 and Th17 T cells in 

the context of CRC, IFN-γ and IL-17A secretion from CD4+ T cells was 

determined in three compartments: PBMCs, colon infiltrating lymphocytes 
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(CILs) and TILs. For this purpose, intracellular cytokines as well as the 

percentage of CCR6 and CXCR3 expression, chemokine receptors 

associated with Th17 and Th1 cells, respectively, were measured. As 

PMA/Ionomycin stimulation might cause down regulation of chemokine 

receptor expression, CCR6 and CXCR3 were first assessed in unstimulated 

samples whilst cytokine secretion was assessed post-stimulation (cell 

number permitting) (Figure 5.1). Corroborating other reports, I observed a 

significant increase in the frequency of cells expressing CCR6 and IL-17A in 

the bowel (diseased or healthy) compared to PBMCs, with a trend for the 

highest frequencies of IL-17A-producing cells being within the TILs (Figure 

5.1 A and B) (Li et al., 2014). Similarly, the proportion of CD4+IFN-γ+ cells 

was also significantly increased in CILs and TILs compared to PBMC but this 

was not accompanied by an enrichment of CXCR3+ cells (Figure 5.1 C and 

D).  

Interestingly, for each given patient (represented by an individual line) 

proportions of CXCR3 and CCR6 expressing cells were roughly the same in 

PBMCs and CILs (Figure 5.2 A-B), whereas skewing in favour of CCR6+ 

cells was observed in TILs (Figure 5.2 C), due to a drop in the proportion of 

CXCR3+ cells. Collectively these data suggests that the balance between 

Th1 and Th17 cells is skewed in favour of Th17 cells in the tumour 

environment.
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Figure 5.1 Th17 associated markers are elevated within the bowel. Lymphocytes were 
isolated from the blood (PBMCs), healthy bowel (CILs) and tumour (TILs) of CRC patients 
as described in the Material and Methods section. Some cells were left unstimulated and the 
percentage of CD4+ cells expressing CCR6 and CXCR3 measured by flow cytometry (A and 
C). The remaining cells were stimulated for five hours with phorbol 12-myristate 13-acetate 
(PMA)/Ionomycin in the presence of Brefeldin A, fixed, permeabilised and stained for IL-17A 
and IFN-γ. Lines in the graphs represent the median and interquartile range. Mann Whitney 
test was used to compare groups. P ≤ 0.05 was considered significant. 
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Figure 5.2 Correlation of CD4+CXCR3/CCR6+ cells in PBMCs, CILs and TILs of CRC 
patients. Lymphocytes were isolated from PBMCs, CILs and TILs of CRC patients as 
described in Material and Methods. Cells were left unstimulated and the levels of CCR6 and 
CXCR3 expression measured by flow cytometry. The pattern of CXCR3 to CCR6 expression 
in CD4+ cells was analysed in PBMCs (A), CILs (B) and TILs (C). Every single line 
represents one individual patient. 
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To explore this further, I examined whether there was a correlation between 

CCR6 and IL-17A expression in T cells recovered from PBMC, CILs and 

TILs. Interestingly, whilst no correlation was observed in PBMCs or CILs 

(Figure 5.3 A and B) a positive correlation was observed in TILs suggesting 

that increased IL-17A expression in CRC is due to an enrichment of CCR6+ 

cells, possibly in response to local production of the chemokine CCL20 in the 

tumour microenvironment (Figure 5.3 C, p=0.0253, R2=0.4433). As CCR6-

specific antibodies were also included in the staining of stimulated cells for 

the majority of the patients’ samples, it was possible to analyse the levels of 

CCR6 expression in CD4+IL-17A+ retrospectively. First, levels of CCR6 

expression were evaluated in cells pre- and post-stimulation to determine the 

variation in CCR6 expression. Figure 5.4 represents the gating strategy used 

to identify CD3+CD4+ (Figure 5.4 A-D). Even though the levels of CCR6 do 

decrease upon stimulation, the decrease is minimal in PBMCs (Figure 5.4 E 

– H), CILs and TILs (Figure 5.5). Acknowledging the caveat that some down 

regulation of CCR6 occurred post-stimulation, these data indicate that 

CCR6+IL-17A+ cells are enriched in TILs but not CILs when compared to 

PBMCs (Figure 5.6A), supporting the premise that IL-17A-expressing T cells 

are enriched in CRC possibly due to local production of CCL20.  
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Figure 5.3 CCR6 expression in CD4+ cells correlates with IL-17A expression in TILs. 
Lymphocytes were isolated from PBMCs, CILs and TILs of CRC patients as described in 
Material and Methods. Some cells were left unstimulated and the expression levels of CCR6 
measured by flow cytometry in PBMCs (A), CILs (B) and TILs (C). The remaining cells were 
stimulated for five hours with PMA/Ionomycin in the presence of Brefeldin A, fixed, 
permeabilised and stained for IL-17A. P < 0.05 was considered significant. Correlation 
analyses were performed using the Pearson method. 
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Figure 5.4 Representative example of gating strategy used to analyse CD4+CCR6+ 
cells. PBMCs from patient DCB36 were isolated and stained using CD3, CD4 and CCR6 
antibodies amongst others. The lymphocytic population was isolated using the side scatter 
(SSC) and forward scatter (FSC) measurements representative of granularity and size, 
respectively (A). Single cells were then gated based on the FSC area and height (B) and live 
cells selected based on the inability to incorporate the Aqua dye (C). CD3+CD4+ single live 
lymphocytes were then selected prior to CCR6 analysis (D). E – H represent the expression 
levels of CCR6 on CD4+ cells when staining straight ex-vivo, without any prior manipulation 
(E), after resting overnight in medium containing serum (F), after resting overnight in 
medium containing serum and incubated for five hours with Brefeldin A (G) and after resting 
overnight in medium containing serum and stimulation for five hours with PMA/Ionomycin in 
the presence of Brefeldin A (H). Fluorescence minus one (FMOs) were used in the majority 
of the gating strategies when enough cells were available. 
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Figure 5.5 Representative example of gating strategy used to analyse CD4+CCR6+ 
cells in CILs and TILs. Healthy colon infiltrating lymphocytes (CILs) and TILs from patient 
DCB36 were isolated and stained using CD3, CD4 and CCR6 antibodies amongst others. 
CD3+CD4+ single live lymphocytes were then selected prior to CCR6 analysis like shown in 
figure 5.5. A and C represent the expression levels of CCR6 on CD4+ cells when staining 
straight ex-vivo, without any prior manipulation. B and E represent staining after resting 
overnight in medium containing serum and stimulation for five hours with PMA/Ionomycin in 
the presence of Brefeldin A. D represents staining after resting overnight in medium 
containing serum. A and B represent staining in CILs and C – E represent staining in TILs. 
Fluorescence minus one (FMOs) were used in the majority of the gating strategies when 
enough cells were available. 

CD4 

C
C

R
6 

G
at

ed
 o

n 
C

D
4+

 c
el

ls
 

CILs 

CD4 

C
C

R
6 

CD4 

C
C

R
6 

CD4 

C
C

R
6 

CD4 

C
C

R
6 

A B 

C D 

E 

Ex vivo BFA/PMA/Iono 

TILs 
Media only Ex vivo 

BFA/PMA/Iono 

G
at

ed
 o

n 
C

D
4+

 c
el

ls
 

G
at

ed
 o

n 
C

D
4+

 c
el

ls
 

G
at

ed
 o

n 
C

D
4+

 c
el

ls
 

G
at

ed
 o

n 
C

D
4+

 c
el

ls
 



 189 

IFN-γ/IL-17A double producing cells have been documented in the context of 

CRC but no detailed studies on such population within PBMCs, CILs and 

TILs have been published. Furthermore, CD4+IL-17A+ cells can acquire the 

ability to also express IFN-γ which could theoretically alter their fate in CRC 

development. CD4+IL-17A+ cells within PBMCs are mainly IFN-γ-, however a 

higher percentage of CD4+IL-17A+ cells in the bowel (healthy or diseased) 

secrete IFN-γ suggesting that factors present within the bowel 

microenvironment may contribute to the formation of cell expressing both 

IFN-γ and IL-17A (Figure 5.6B). Given the fact that approximately half of the 

CD4+IL-17A+ cells within the bowel express IFN-γ the proportion of CD4+ 

cells expressing IL-17A+/IFN-γ+ was also assessed in PBMCs, CILs and TILs. 

T cells secreting both cytokines are more prevalent within the bowel and this 

phenotype is even more frequent within TILs (Figure 5.7 A and B). 

 

One of the objectives of this study was to assess the differences in T cell 

populations within the blood, healthy bowel and the tumour in order to 

identify patterns of T cell activity unique to CRC and to determine how well 

relative proportions and phenotype of T cell subsets in blood, reflects the 

tumour microenvironment. For this purpose, ratios of Th1, Th17 and Treg 

were determined within PBMCs, CILs and TILs by examining proportions of 

T cells expressing IFN-γ, IL-17A and FoxP3, respectively.  
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Figure 5.6 Th17 cells within the bowel express a high percentage of CCR6. 
Lymphocytes were isolated from PBMCs, CILs and TILs of CRC patients as described in 
Material and Methods. Cells were stimulated for five hours with PMA/Ionomycin in the 
presence of Brefeldin A, fixed, permeabilised and stained for CCR6, CXCR3, IL-17A and 
IFN-γ amongst others. The percentage of CD4+IL-17A+ cells expressing CCR6 (A) or IFN-γ 
(B) was measured in PBMCs, CILs and TILs of CRC patients. Lines in the graphs represent 
the median and interquartile range. Mann Whitney test was used to compare groups. P ≤ 
0.05 was considered significant. 
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Figure 5.7 CD4+ IFN-γ/IL-17A double producing cells are more prevalent within the 
bowel, especially within the tumour. Lymphocytes were isolated from PBMCs, CILs and 
TILs of CRC patients as described in Material and Methods. Cells were stimulated for five 
hours with PMA/Ionomycin in the presence of Brefeldin A, fixed, permeabilised and stained 
for IL-17A and IFN-γ amongst others. The percentage of CD4+IL-17A+IFN-γ+ was measured 
in PBMCs, CILs and TILs of CRC patients. Lines in A represent the median and interquartile 
range whereas every individual line in B represents one single patient and the pattern of 
CD4+IL-17A+IFN-γ+ existence in the blood, healthy bowel and tumour. Mann Whitney test 
was used to compare groups. P ≤ 0.05 was considered significant.  
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As expected for sites of immune activation, the percentages of all 

differentiated T cells increased in CILs and particularly TILs (Figure 5.8A). 

The ratios are dramatically altered especially in TILs where the enrichment in 

Th17 cells reported above reduced the ratios of Th1:Th17 cells and 

Treg:Th17 cells indicating that CIL and TIL populations are Th17-rich 

compared to blood (Figure 5.8B). Irrespective of the low numbers the same 

pattern was observed for every disease stage (Figure 5.9). 

5.3 CEA responders have fewer IFN-γ-producing cells and 

Tregs within their TILs 

As outlined above CEA-specific T cell responses, measured in blood, were 

associated with a poorer prognosis. I examined whether CEA-responders 

could be distinguished from non-responders by the proportion of Tregs, IFN-γ 

and/or IL-17A-producing cells within TILs. This analysis revealed that CEA-

responders had significantly lower proportions of Th1 cells (IFN-γ+ T cells, 

Figure 5.10E) and Foxp3+ T cells in TILs (Figure 5.10K) compared to non-

responders. No difference was observed in proportions of IL-17A-producing 

cells (Figure 5.10Q) or between 5T4 responders and non-responders (Figure 

5.10 right column).    
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Figure 5.8 The tumour of CRC patients is enriched with Th17 cells. Lymphocytes were 
isolated from PBMCs, CILs and TILs of CRC patients as described in Material and Methods. 
Cells were stimulated for five hours with PMA/Ionomycin in the presence of Brefeldin A, 
fixed, permeabilised and stained for IL-17A and IFN-γ amongst others. The percentage of 
Th1 cells was determined by the percentage of CD4+ cells expressing IFN-γ and Th17 cells 
were determined by the percentage of CD4+ cells expressing IL-17A. Treg cells were 
identified by the expression of Foxp3. The percentage (A) or ratios (B) of Th1, Th17 and 
Tregs were determined in PBMCs, CILs and TILs of CRC patients. The bars represent mean. 
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Figure 5.9 No difference in the percentage of Th1, Th17 and Treg cells or ratios is 
observed in different disease stages. Lymphocytes were isolated from PBMCs, CILs and 
TILs of CRC patients as described in Material and Methods. Cells were stimulated for five 
hours with PMA/Ionomycin in the presence of Brefeldin A, fixed, permeabilised and stained 
for IL-17A and IFN-γ amongst others. The percentage of Th1 cells was determined by the 
percentage of CD4+ cells expressing IFN-γ and Th17 cells were determined by the 
percentage of CD4+ cells expressing IL-17A. Treg cells were identified by the expression of 
Foxp3. The percentage (A-C) or ratios (D-F) of Th1, Th17 and Tregs were determined in 
PBMCs (A and D), CILs (B and E) and TILs (C and F) of CRC patients. The bars represent 
means.    
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Figure 5.10 Analysis of cytokine secretion and transcription factor expression in 
PBMCs, CILs and TILs of CEA and 5T4 responders and non-responders. Patients were 
divided into responders (R) or non-responders (NR) according to their secretion of IFN-γ 
upon CEA or 5T4 stimulation as described in the previous chapter. The levels of IFN-γ, IL-
17A and Foxp3 expression in CD4+ cells in PBMCs (top two graphs), CILs (middle graphs) 
and TILs (bottom graphs) amongst others was analysed for CEA (left column) and 5T4 (right 
column) responders and non-responders.   
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5.4 Discussion 

Inflammation has long been linked to the development of CRC, the 

most obvious example being the increase in CRC cases seen in patients 

suffering from extensive IBD (Munkholm, 2003).  In the past two decades, 

the dual role of lymphocytes in both the development and prevention of 

tumorigenesis has been examined. Tosolini et al. reported in three cohorts of 

CRC patients that not only is the level of intra-tumoural T cell infiltration 

important for patient prognosis but also T cell phenotype: high levels of Th17 

cells in combination with low levels of Th1 cells were associated with a 

shorter disease free survival (Tosolini et al., 2011). Thus, characterising the 

phenotype of infiltrating cells may help understand how different groups of T 

cells impinge on disease progression. The Galon group came to this 

conclusion by analysing the gene expression levels of Th1 and Th17 related 

genes such as IFNG, TAP1, GZMB, and IL17A and RORc, respectively. This 

was validated by tissue microarray using anti-Foxp3, anti-Tbet and anti-IL17 

antibodies (Tosolini et al., 2011). Even though Tosolini et al. studied the 

gene expression of Th1, Th17 and Treg related markers and characterised 

the levels of IL-17A and T-bet in situ, the group did not analyse cytokine-

producing cells. In order to gain a better understanding on the type of T cells 

infiltrating CRC I examined and compared cytokine production and 

chemokine receptor expression by T cell subsets in PBMCs, CILs and TILs.  

The data obtained here revealed that CCR6+IL17-producing T cells were 

enriched in the gut compared to PBMCs, particularly in CRC. Similar findings 

have been reported by others. Wang et al. observed an increase in the 

percentage of Th17 cells in TILs of CRC patients in advanced disease and 
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other groups have reported that more Th17 cells are found within the intra-

tumoural regions than non-tumour regions (Amicarella et al., 2015; Li et al., 

2014; J. Wang et al., 2012). 

  Since the majority of Th17 cells in CRC express CCR6, it is possible 

that the cells migrate and are retained in CRC in response to CCL20, the 

only known ligand for CCR6 (Baba et al., 1997; Greaves et al., 1997; Liao et 

al., 1997; Power et al., 1997). In support of this hypothesis, previous reports 

indicate that CCL20 is highly prevalent within the bowel and is constitutively 

expressed in mucosa-associated lymphatic tissue (MALT) (Schutyser et al., 

2003). Even though expressed at low levels during homeostasis, CCL20 is 

upregulated upon inflammation through TNF-α and IL-1β signalling (Fujiie et 

al., 2001). Indeed, CCL20 is highly expressed by CRC tumour cells in 

comparison to healthy mucosa (Brand et al., 2006). Given the fact that 

CCL20 is the only CCR6 ligand described to date, local blockade of CCL20 

could potentially prevent further pathogenic Th17 cells infiltration into the 

tumour averting tumour progression. Caution should however be taken as 

CCL20 is also important for mucosal immunity and CCL20-/- mice do not yet 

exist to study ablation of such signalling pathway. The CCR6-CCL20 

pathway may also be relevant for other tumours. Yu and colleagues reported 

the recruitment of Th17 cells to cervical cancer via this pathway. They 

observed an increase in CCL20 levels measured by real-time PCR in tumour 

compared to non-tumour tissues, which correlated, with the percentage of 

Th17 cells infiltrating the tumour. Using recombinant chemokines and 

supernatant from cervical cell lines the group also observed the recruitment 

of Th17 cells by CCL20 in a transwell system (Yu et al., 2015).  
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In contrast to Th17 cells, I observed no evidence for selective 

enrichment of CD4+IFNγ+ or CD4+CXCR3+ cells, in TILs compared to CILs. 

As described previously, it is known that Th1 cells are associated with a 

good prognosis in CRC unless Th17 cells are also present (Galon, 2006; 

Tosolini et al., 2011). It is notable therefore that the Th1/Th17 and Treg/Th17 

ratios in CILs and particularly TILs were strikingly different to those observed 

in PBMCs. In a homeostatic setting e.g. healthy bowel, the ratio of Th1 cells 

to Th17 cells is approximately 8:1. In tumours however, this ratio is 

approximately 3:1, reflecting the enrichment of Th17 cells.  

Th17 cells are mainly characterised by secretion of IL-17A which 

signals through the ubiquitously expressed IL-17 receptor A. Engagement of 

IL-17A with its receptor on epithelial cells promotes activation of NFκB and 

the mitogen activated protein kinase (MAPK) pathways leading to epithelial 

cell proliferation and production of pro-inflammatory cytokines such IL-6, IL-

23 and TNF-α (B. Yang et al., 2014). IL-17A also plays a role in shaping the 

tumour vasculature promoting angiogenesis via VEGF stimulation and PGE2 

production as shown by Liu and colleagues (J. Liu et al., 2011). Moreover, 

IL-17A also attracts myeloid derived suppressor cells (MDSCs) into the 

tumour microenvironment promoting an immunosuppressive niche. Th17 

cells also secrete IL-21 and IL-22 albeit to a lesser extent. Engagement of 

the IL-21 and IL-22 receptors on epithelial cells activates STAT3, stimulating 

epithelial cell proliferation and secretion of IL-6 and IL-17A by IL-21R+ 

monocytes (Jiang et al., 2013; Stolfi et al., 2011). Continuous cell 
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proliferation contributes to the generation of additional mutations potentiating 

a synergistic tumorigenic effect.  

The relationship between Tregs and Th17 cells in CRC is unknown. 

There is however evidence to suggest that Tregs may suppress the activity 

of Th17 cells. Rudensky’s group demonstrated that Treg-specific ablation of 

STAT3 caused fatal Th17-driven colitis driven by Th17 cells highlighting the 

regulatory effects Tregs have on Th17 cells (Chaudhry et al., 2009). This 

suppression was later on shown to occur via IL-10 signalling (Chaudhry et al., 

2011). 

Gut microbiota promotes background inflammation and Th17 

differentiation (Goto et al., 2014; Ivanov et al., 2009; van Beelen et al., 2007; 

Y. Yang et al., 2014). Therefore the Th17 population present within CRC 

may be driven to a degree by bacteria mediating tumour progression. 

Another possibility, which may occur along side the above, is that a 

population of tumour antigen-specific Th17 cells expand specifically in 

response to CRC. Indeed a trend for higher prevalence of double IFN-γ/IL-

17A secretors in TILs was observed in this study. Th17 cells specific for C. 

albicans secreted IL-17A and IFN-γ, whilst Th17 cells specific for 

Staphylococcus aureus secrete IL-17A and IL-10 (Zielinski et al., 2012).  

 

As previously described, we have observed that an IFN-γ T cell 

response specific to CEA measured in the blood is associated with a bad 

prognosis in CRC patients. I therefore examined whether the pattern of 

cytokine production by TILs bore any relationship with CEA-responses 

measured in blood as described in Chapter 4. Interestingly two markers 
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showed a significant difference between CEA responders and non-

responders, namely decreased proportions of IFN-γ+ and Foxp3+ cells in the 

TILs of CEA responders. 

However debatable levels of CEA in the serum of patients has been 

associated with a worse prognosis post tumour resection, although there is 

some debate over this (Duffy, 2001; Saito et al., 2016). It could be 

hypothesised that tumours from CEA-responders are more aggressive thus 

the link with a poor outcome. Such aggressiveness could be related to a) 

lack of tumour immunogenicity, b) metastatic potential, c) loss of epithelial 

barrier function or a combination of all three. The findings described herein 

are compatible with the hypothesis that the tumours of CEA-responders are 

poorly immunogenic compared to non-responders. Furthermore, Lee et al. 

recently reported that CEA-overexpressing tumour cells diminish T cell 

activation and proliferation thus further supporting this hypothesis (K.-A. Lee 

et al., 2015). Overexpression of CEA on certain tumours could make the 

tumour less immunogenic by down regulating T cell responses (i.e. Th1 and 

Tregs). Such CEA overexpression would also result on a higher level of CEA 

protein being shed into circulation that could be captured by APCs and 

presented to naïve T cells leading to the expansion of CEA-specific T cells. 

Such scenario would explain the presence of less Th1 and Treg cells in the 

tumours of patients mounting a specific response to CEA.  

As CEA is a glycoprotein involved in cell-cell adhesion and 

agglomeration, its excessive expression may contribute to abnormal 

intercellular bonds and irregular cell contacts which could aid metastases 

formation. Studies performed in athymic nude mice showed that a systemic 
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CEA protein increase coincided with a greater percentage of liver 

metastases (Hostetter et al., 1990). This may suggest that CEA-

responsiveness is a reflection of high CEA serum levels indicative of micro-

metastasis not detectable at the time of diagnosis. It would be extremely 

interesting to fully understand whether detection of CEA-specific responses 

in the blood of CRC patients correlates with high CEA levels in the serum 

and if both phenomena are associated with tumour recurrence. Alternatively, 

CEA-specific T cells secreting IFN-γ could target CEA expression on 

epithelial junctions leading to deregulation of the epithelial barrier 

potentiating microbial translocation into the lamina propria. Commensal 

microbiota sensing by TLRs on myeloid cells could lead to the secretion of 

IL-23 which would in turn promote a Th17-rich environment implicated in 

tumorigenesis as mentioned above (Grivennikov et al., 2012). This 

hypothesis is currently under investigation in our laboratory. 

The small cohort of patients analysed here suggests that tumour 

development is associated with an extensive accumulation of Th17 cells, 

however a higher numbers of patients would need to be assessed if order to 

verify this and also to determine the significance of a Th17 response to 

cancer progression.  
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6 Final Discussion 

CRC is the second and third most diagnosed cancer amongst women and 

men worldwide and it accounts for approximately 600 000 deaths per year. 

Even though curative tumour resection is performed in the majority of 

patients, 40 - 50 % of those still relapse. Therefore, it is imperative to 

develop new therapies capable of successfully treating CRC patients. CRC 

poses specific challenges because of its position within the gut 

microenvironment. The gastrointestinal tract is populated by a vast number 

of bacteria which needs to be taken into account for the creation of future 

therapies. Thus, understanding the relationship between the immune system 

and cancer in the context of this unique environment is of most importance. 

6.1 High endothelial venules, ectopic lymphoid structures 

and Th17 involvement in tumour development 

To begin to understand features of the immune response to CRC, the studies 

described here first focussed on examining CRCs for ectopic HEVs, recently 

shown to be associated with a good prognosis in breast cancer and 

melanoma (Martinet et al., 2012; 2011). In the case of CRC, HEVs could 

barely be detected within the tumour epithelium/stroma. They could however 

be detected in the tumour vicinity, namely extra-tumoural/peritumoural area 

in the context of lymphoid aggregates/follicles which were more prevalent in 

more advanced disease (Dukes’ C) suggesting that these structures develop 

as a consequence of constant exposure to tumour antigen. Important 

questions emerge from these observations. Do CRC associated lymphoid 
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aggregates a) mediate tumour growth by priming pathogenic T cell 

development such as Th17 cells, b) mediate tumour growth by aiding Treg 

cell development and suppression of tumour antigens specific effector 

responses, c) mediate tumour growth by forming a microniche that supports 

the growth and expansion of tumour progenitor cells, d) limit tumour growth 

by priming Th1 and CTLs which may travel to the tumour and elicit anti-

tumour effects or e) develop as a result of disease progression but have no 

impact on disease progression? 

 

Finkin et al. recently showed that hepatocellular carcinoma progenitor 

cells concentrate within ELS prior to independent tumour formation (Finkin et 

al., 2015). The group showed by histology that small clusters of tumour 

progenitor cells agglomerated within ELS prior to their egression from these 

structures. They propose that ELS contain all the survival and growth factors 

necessary to support the expansion of tumour progenitor cells which later 

become self-sufficient, exit the ELS and form a full-blown tumour (Finkin et 

al., 2015).    

 

Tregs can dampen cytotoxic anti-tumour responses in tumour-draining 

LNs (Boissonnas et al., 2010), therefore it is plausible that a similar 

mechanism is taking place in cancer-associated ELS. In an attempt to further 

characterise the role of ELS in tumour development Joshi et al. used a 

mouse model of lung adenocarcinoma in which development of tumour 

associated ELS was observed. Fibroblastic reticular cells (FRCs), follicular 

dendritic cells (FDC), high endothelial venules (HEVs), B and T cells, namely 
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activated Tregs within the T cell zone were all detected within ELS which 

was indicative of a fully functional TLO. Furthermore, in vitro activated 

memory T cells specific to the OVA antigen expressed on the tumour were 

adoptively transferred into the mice and homed to the ELS where they 

interacted with DCs. Systemic depletion of Tregs led to upregulation of co-

stimulatory molecules such as B7.1 and B7.2 on DCs and increased 

lymphocytic proliferation (Joshi et al., 2015). The combined data suggests an 

active role for Tregs in the suppression of anti-tumour responses in ELS 

which could be indicative of what is happening in CRC. 

 

Bacteria such as SFB have been implicated in Th17 differentiation 

(Goto et al., 2014; Ivanov et al., 2009; Y. Yang et al., 2014). In a study 

performed by Lécuyer et al. IL-17A secretion by mesenteric LN cells could be 

detected upon CD3/CD28 activation in mice colonised with SFB even if 

Peyer’s Patches and isolated lymphoid follicles were absent but not in the 

absence of ELS implicating ELS in the development of a local Th17 antigen-

specific response (Lécuyer et al., 2014). 

 

It is therefore reasonable to propose a pathogenic role for the Th17 

cell/axis on two fronts: 1) bacteria such as SFB are detected by APCs which 

drain to the mesenteric LNs via the lymphatics where they present SFB 

antigens in the context of MHC. pMHC interaction with naïve T cells in 

combination with cytokines such as IL-6 promote Th17 differentiation which 

then extravasate into the tissue secreting IL-17A and IL-22 upon a second 

encounter with SFB. IL-17A and IL-22 receptor binding leads to STAT3 
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activation within epithelial cells promoting uncontrolled epithelial cell division 

and tumour growth (L. Wang et al., 2009) (Figure 6.1). 2) Other bacteria, 

such as gram-negative bacteria also interact with epithelial cells promoting 

CCL20 secretion (Bouskra et al., 2008). Elevated levels of CCL20 within the 

inflamed tissue may a) attract more CCR6-expressing cells e.g. Th17 cells 

into the gut and b) bind to the CCR6 receptor on the surface of lymphoid 

tissue inducer cells (LTi). The role of lymphotoxin signalling in the formation 

of cancer-associated ELS is still not clear however studies have shown that 

IL-17A and IL-23 are important for the formation of ELS in the lungs (Rangel-

Moreno et al., 2006). In agreement with this hypothesis the study described 

here indicated a tendency for elevated levels of Th17 cells amongst TILs.  

  

IL-22 has also been implicated in the early development of ELS. 

Barone and colleagues injected replication-deficient adenovirus into the 

salivary glands of mice and studied the formation of ELS in WT and Il-22 

deficient mice. They observed that reduced levels of CXCL12 and CXCL13 

in Il-22-/- mice led to the formation of abnormal ELS in relation to B cell 

organisation and accumulation (Barone et al., 2015).  

 

Laser capture microdissection is a technique that would allow for the 

individual dissection of specific groups of cells. A similar approach could be 

used to determine the inflammatory/regulatory signature of the extra-

tumoural ELS and also to examine the TCR repertoires of ELS-resident 

versus TILs. Such information would be of great value in understanding if T 

cells present within the ELS are travelling to the tumour and possibly 
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influencing tumour growth. Another avenue for future work would be to 

compare the microbiomes in individuals with tumours exhibiting low vs high 

numbers of ELS in order to gain insight into whether certain gut bacteria 

promote an inflammatory environment, driving the formation of ELS and 

tumorigenesis.  

 

Thus far, based on the data obtained on ELS in CRC, it is tempting to 

speculate that therapeutic intervention to prevent lymphoid/aggregate 

formation would be beneficial in the context of CRC. Nonetheless, additional 

information on the exact role of such structures in the tumour development is 

necessary as these could develop as a consequence of tumourigenesis and 

have no impact on disease progression.  
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Figure 6.1 Hypothetical model explaining the involvement of Th17 cells in the formation of ectopic lymphoid structures and CRC progression. 1) 
Microbial flora such as segmented filamentous bacteria (SFB) can be detected in the gut by APC which travel to mesenteric lymph nodes and present SFB 
antigens to naïve T cells (Tn). pMHC:TCR interaction in the presence of IL-6 lead to differentiation and expansion of Th17 cells which a) secrete IL-17A and 
IL-22 upon a second antigen encounter and promote uncontrolled epithelial proliferation via activation of STAT3 and/or b) migrate towards local 
chemoattractants such as CCL19 and CCL21 promoting the formation of ectopic lymphoid structures. 2) Engagement of CCL20 expressed by epithelial cells 
with its receptor on lymphoid tissue inducer (LTi) cells could led to upregulation of lymphotoxinα1β2 which upon engagement with its receptor on lymphoid 
tissue organiser (LTo) cells promotes their activation and expression of RANKL and IL-7 creating a feedback loop through binding to receptors on LTi cells. 
ELS / TLOs may further mature through interactions between FDCs and IL-17A-driven secretion of CXCL13 and CCL19 serving to attract B and T cells.. 
Growth factors not yet understood in cancer promote development of HEVs within ELS which promote further infiltration with naïve and central memory T 
cells. Such T cells may comprise both Th1 and Th17 cells that could be specific to tumour antigens such as CEA or bacterial antigens. Figure created by the 
author based on (Bouskra et al., 2008; Gallimore and Godkin, 2013; Ghadjar et al., 2009; Ivanov et al., 2009; G. W. Jones and S. A. Jones, 2016; Pitzalis et 
al., 2014; Zhou et al., 2007).    
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6.2 CEA and 5T4 specific T cell responses in CRC patients 

Our own group has shown a positive correlation between 5T4-specific IFN-γ 

secreting cells and patient survival supporting the important role of IFN-γ in 

tumour growth control (Betts et al., 2012). Nonetheless, a study performed 

by the lab revealed a correlation between tumour recurrence and the 

detection of IFN-γ-producing CEA-specific T cells in the blood of CRC 

patients (Scurr et al., 2015). This finding was unexpected; therefore this 

study set to investigate whether the release of IFN-γ by CEA-specific T cells 

was merely a surrogate for IL-17A and whether the negative outcome 

observed in CEA-responsive patients was as a result of IL-17A secretion by 

CEA-specific T cells. 

 

The data described in Chapter 4 indicates however that even though 

detected in the blood of CRC patients, IL-17A secretion by CEA-specific IFN-

γ secreting cells is not the main factor influencing the patients’ poor outcome. 

Furthermore, even though IFN-γ is not a surrogate marker for IL-17A, IL-17A 

is a surrogate marker for IFN-γ as the former cytokine is always secreted in 

association with the latter. Moreover, the percentage of IL-17A expressing T 

cells, measured by FACS is similar in the blood, CILs and TILs of CEA 

responders and non-responders, thus neither IL-17A-secretion by CEA-

specific T cells nor the proportion of all T cells expressing IL-17A 

discriminated between CEA responders and non-responders. Other 

explanations must therefore account for why CEA-responders are more likely 

to experience tumour recurrence compared to non-responders. Perhaps 
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tumours from CEA responsive patients are less immunogenic than tumours 

from CEA non-responsive patients. The significant decrease in Treg and Th1 

cells in the tumour of CEA responsive vs non-responsive patients supports 

this hypothesis whereas no difference is observed between 5T4 responsive 

and non-responsive patients. A new cohort of CRC patients should be set up 

to examine whether CEA+ tumours are associated with poorer immune 

responses. It has recently been reported that CEA, mainly the membrane 

bound form, impinges on CD4+ T cell proliferation. Co-culturing of CD4+ T 

cells with mice and human adenocarcinoma cell lines expressing CEA 

decreases T cell activation as shown by decreased expression of IL-2 and 

CD69 (K.-A. Lee et al., 2015). CEA expression also increases during 

transformation of epithelium into adenocarcinoma and is also upregulated in 

liver metastasis (Rao et al., 2013). It is thought to regulate a number of inter 

and intra-cellular functions including polarisation, intercellular matrix 

adhesions, signal transduction and migration of cancer cells (Bajenova et al., 

2014; Blumenthal et al., 2005; Ordoñez et al., 2000). CEA has been directly 

implicated in influencing metastatic potential (Hostetter et al., 1990). Injecting 

CEA directly into mice prior to injection of cancer cells, or up regulating its 

expression on cancer cell lines increases metastasis (P. Thomas et al., 

1995; S. N. Thomas et al., 2008). CEA+ CRCs may therefore metastasise 

more efficiently to other organs whilst also suppressing the anti-tumour T cell 

response through direct immune modulating effects of CEA on T cells. A 

recent study reported that even though serum levels of CEA do not correlate 

with protein expression at the time of initial surgery, they do correlate with 

CEA expression on metastatic tissue (Saito et al., 2016); observations which 
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support the above hypothesis (K.-A. Lee et al., 2015) (Figure 6.2). Moreover, 

Pickford et al. measured CEA-specific responses in the blood of healthy 

donors and reported that after CEA stimulation, T cells from 46% of the 

healthy donors secreted IL-10 resulting in suppression of T cell responses 

(Pickford et al., 2007). IL-10 secretion in response to CEA stimulation 

supports an immunosuppressive role for CEA. 

 

Future therapeutic approaches could include a combination of CEA-

blocking antibodies that would only bind to the shed forms of the protein in 

combination with blockade of immune checkpoints e.g. PD-1/PDL1 signalling 

pathway. This multi-step approach may prevent formation of metastasis by 

inactivating CEA activity whilst simultaneously boosting tumour 

immunogenicity in CEA-responsive patients.  

 

 

Figure 6.2 Model explaining aggressiveness of CEA+ tumours. 
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6.3 Concluding Remarks 

In conclusion, I have shown here that intra-tumoural HEVs are scarce in 

CRC and are not associated with disease progression. HEVs are however 

present within extra-tumoural structures resembling TLOs. Such structures 

appear as a result of T and B cell clustering and are associated with disease 

progression. A more in depth characterisation of such ectopic structures is 

necessary in order to understand the signals which drive their formation and 

their influence on the immune response to CRC. If such structures form as a 

result of tumour progression and act as a site of priming for anti-tumour T 

cells, promoting their formation may be beneficial for patient survival. 

However, if their formation promotes tumour growth, it is extremely important 

to understand how TLO-development can be prevented as part of a 

therapeutic regime.  

 

Furthermore, I show here for the first time the presence of IL-17A 

secreting cells specific for CEA and 5T4 in the blood of CRC patients. The 

IL-17A responses detected in this study specific for tumour antigens were 

always generated in parallel with IFN-γ responses. CEA-responsiveness 

could be used in the future as a biomarker of disease progression as patients 

responsive to CEA may have less immunogenic tumours, thus impinging on 

tumour recurrence.  

 

Overall the data presented herein identify TLOs, IL-17 producing T 

cells and CEA-specific T cells as key features of CRC progression. Future 

work is however required to determine whether TLO formation is associated 
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with a detrimental patient prognosis or merely a consequence of 

tumourigenesis having no impact on disease progression.  

IL-17 producing cells are enhanced in CRC. It is critical that signals 

driving accumulation and proliferation of these cells in CRC are identified in 

order that therapies that inhibit their disease-promoting activities can be 

developed. CEA clearly represents a potential therapeutic target on two 

fronts as blocking CEA may prevent both metastasis and CEA-mediated 

immune-suppression whilst development of CEA vaccines should be 

discouraged.  

 

Current novel immunotherapies have proven disappointing for the 

treatment of CRC. It is clear from the data presented herein that for immune 

interventions for CRC to be successful, the gut microenvironment, which 

profoundly shapes the type of immune response that develops, must be 

taken into account.  
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Figure A Representative example of gating strategy based on fluorescence minus one 
(FMO) and addition of Brefeldin A. The lymphocytic population was isolated using the side 
scatter (SSC) and forward scatter (FSC) measurements representative of granularity and 
size, respectively. Single cells were then gated based on the FSC area and height and live 
cells selected based on the inability to incorporate the Aqua dye. CD4+ single live 
lymphocytes were then selected prior to CCR6 and CXCR3 analysis which was based on 
the FMO gating (top four graphs (A-B)). In order to control for intracellular cytokine staining 
PBMCs were also incubated with Brefeldin A without any other stimuli (bottom two graphs 
(C). 
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Figure B Representative example of gating strategy based on fluorescence minus one 
(FMO) after stimulation with PMA and Ionomycin and addition of Brefeldin A. The 
lymphocytic population was isolated using the side scatter (SSC) and forward scatter (FSC) 
measurements representative of granularity and size, respectively. Single cells were then 
gated based on the FSC area and height and live cells selected based on the inability to 
incorporate the Aqua dye. FMOs represented for CD4-BV421 (A), CCR6-PE-Cy7 (B), IFN-γ-
APC-Cy7 (C), IL-17A-APC (D) and Foxp3-FITC (E).  
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Figure C Representative example of gating strategy for CILs and TILs for IFN-γ and IL-
17A based on the absence of staining following 5 hour incubation with Brefeldin A. 
CILs and TILs were often not extracted in enough quantity to perform FMOs post-stimulation 
therefore incubation with Brefeldin A for 5 hours was used to control for cytokine staining.   

 Brefeldin A 
CILs 

IF
N

-γ
 –

 A
P

C
-C

y7
 

IL
-1

7A
 - 

A
P

C
 

CD4 – BV421 CD4 – BV421 

 Brefeldin A 
TILs 

IF
N

-γ
 –

 A
P

C
-C

y7
 

IL
-1

7A
 - 

A
P

C
 

CD4 – BV421 CD4 – BV421 

A

B



 220 

 
 
 
 
 
 
 
 

 
 
 
Figure D Representative example of gating strategy based on fluorescence minus one 
(FMO) post PMA/ Ionomycin stimulation and incubation with Brefeldin A. The 
lymphocytic population was isolated using the side scatter (SSC) and forward scatter (FSC) 
measurements representative of granularity and size, respectively. Single cells were then 
gated based on the FSC area and height and live cells selected based on the inability to 
incorporate the Aqua dye. CD4+ (A) and CCR6+ (B) cells were then selected based on the 
FMO gating. 
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Participant Information Sheet (09/09/2015 version 1.3) 

 

PART 1 

1. Study title  

The role of leukocytes in the colon and blood 

 

2. Invitation paragraph  

We would like to invite you to take part in a research study. Before you 

decide you need to understand why the research is being done and what it 

would involve for you. Please take time to read the following information 

carefully. Talk to others about the study if you wish. Take time to decide 

whether or not you wish to take part. The person running this study is 

Professor Andrew Godkin who looks after patients with diseases of the colon 

in Cardiff and Vale University Health Board and undertakes research with 

scientific colleagues from Cardiff University.  

 

3. What is the purpose of the study?  

The purpose of the study is to study the role of white blood cells (leucocytes) 

and the way they work in differing diseases of the colon and in people 

without disease of the colon. 

We request samples from four different groups, one of which you fall into: 

 

Group 1 – Samples of blood from healthy people without diseases of the 

colon 
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Group 2 – Samples of blood and normal colon from patients undergoing 

surgery of the colon 

Group 3 – Samples of blood, normal colon and tumour from patients 

undergoing surgery for cancer of the colon 

Group 4 – Samples of blood and bowel from patients undergoing 

gastointestinal endoscopy for clinical reasons 

 

4. Why have I been invited?  

You have been invited to take part as a member of Group [insert 

group]…………….. 

 

5. Do I have to take part?  

It is up to you to decide. We will describe the study and go through this 

information sheet, which we will then give to you. We will then ask you to 

sign a consent form to show you have agreed to take part. You are free to 

withdraw at any time, without giving a reason. This will not affect the 

standard of care you receive. 

 

6. What will happen to me if I take part? 

For all Groups – You will be told by the surgeon or physician who is looking 

after your clinical care about the study and asked if you are interested in 

taking part. If you are interested and agree to take part in the study, samples 

will be taken by staff involved in your clinical care and will be passed to the 

research team at Cardiff University. When the research group get your 

sample, it will have no details that can identify you with it, only a code 
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number. The master copy with your identification details will stay with the 

chief investigator in a locked office, and will not be disclosed to the 

researchers. Where useful to understand the pathology, clinical outcomes 

may be recorded. We will allocate a code number to each person so that the 

clinicians can provide this additional information (e.g. on the outcome of your 

surgery if you are having an operation) at a later date. The data on each 

subject will be retained for 10 years. 

Group 1 - If you agree to participate, we will take a sample of your blood (3-5 

teaspoonfuls) and use it to identify white blood cells and to perform studies in 

the laboratory on how they work. 

 Group 2 - If you agree to participate, we will take a sample from the normal 

part of your colon or bowel when it is removed during surgery and look at 

how the wall of the bowel works. This material would normally be disposed of 

after surgery. We would also like to take a sample of your blood (3-5 

teaspoonfuls), both the bowel and the blood sample will be used to look at 

how the white cells work.  

Group 3 - If you agree to participate, we will take a sample from part of the 

tumour in your colon and the normal part of colon when it is removed during 

surgery. This material would normally be disposed of after surgery. We 

would also take a sample of your blood (3-5 teaspoonfuls), both the normal 

bowel/tumour and the blood sample will be used to look at how the white 

cells work.  

Group 4 - If you agree to take part, we will take two or three additional 

biopsies when you undergo your routine clinical endoscopy. We would also 
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like to take a sample of your blood (3-5 teaspoonfuls), both the bowel and 

the blood sample will be used to look at how the white cells work.  

It is possible you may be approached for an additional blood sample after 4-

8 weeks; you would be asked for repeat consent. 

 

7. What are the possible disadvantages and risks of taking part? 

For Groups 1-3 there are no disadvantages or risks in taking part (other than 

a small bruise from the blood test) 

For Group 4 there is a risk in having additional biopsy samples taken for 

research. In the course of over 25 years of performing endoscopies, in over 

10 000 patients, and taking 1000s of biopsies, the chief investigator is yet to 

witness a significant problem. Guidelines from the British Society of 

Gastroenterology in 2006 stated that an endoscopic biopsy is rarely 

complicated by significant bleeding. In theory, bleeding may occur. 

 

8. What are the possible benefits of taking part? 

Taking part in this study will not help you but the information we get from this 

study will help to improve our understanding of the role of white blood cells in 

the body, and how they react to different diseases. 

 

Part 2 

 

1. Will my taking part in the study be kept confidential?   

Yes. We will follow ethical and legal practice and all information about you 

will be handled in confidence. The data that is sent outside the clinical team 
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will be anonymised so that the research team will not have access to your 

information 

 

2. What will happen to my samples? 

The samples are transferred to the laboratory where they are prepared for 

experiments. These include looking at how white blood cells and other cells, 

and compounds such as proteins function in different tissues. 

 

3. What will happen if I don’t want to carry on with the study?  

You can decide to withdraw from the study at any point. If you want to 

withdraw you can contact the research team and make that request. If any 

samplesare stored they can destroyed at your request. If the results from 

experiments with your sample have been included in an analysis, it will not 

be possible to withdraw it retrospectively. 

 

4. What if there is a problem?  

If you have any concerns about the conduct of this study, you should ask to 

speak to the Chief Investigator who will do his best to answer your questions 

(029 20687129). If you remain unhappy and wish to raise a formal concern 

then you should contact Cardiff University Research and Innovation Service 

via the governance officer (029 20879131). 

If you have a concern about the clinical care you have received, you can do 

this through the Cardiff and Vale Concerns Team (029 21847391).  
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5. Future research  

With your consent, we might store the sample/s you have given us for use in 

future research, we do not yet know what the research might involve but it 

may include collaborators abroad or working for a commercial company. The 

stored samples may include serum and cells including the genetic material in 

the cell i.e. DNA. This will be done in accordance with the Human Tissue Act 

which lays down requirements for the storage and use of all samples. No 

identifiable personal information will be stored with the sample. If you wish, 

you can agree for the sample to be used for the current project but not for 

future research. If so, you should not sign this part of the consent form. 

 

6. Will any genetic tests be done?  

No familial genetic testing will be done on these samples during the current 

study, but genetic material may be stored for future analysis. 

 

7. What will happen to the results of the research study?   

It is intended to submit the results of this study for publication in medical 

journals and to present the results at national and international meetings. 

You will not be identified in any report/publication. 

 

8. Who is organising and funding the research?  

This study is being funded by charitable trusts and scientific grant giving 

bodies. The funding will pay for the salaries of some of the participating 

researchers, for purchasing the reagents required for carrying out these 

studies, and for disseminating the new knowledge gained by these studies. 
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9. Who has reviewed the study?  

All research in the NHS is looked at by an independent group of people, 

called a Research Ethics Committee to protect your safety, rights, wellbeing 

and dignity. This study has been reviewed and given favourable opinion by 

the Research Ethics Committee. 

 

Contact details of the Researcher for further information: 

 

Professor Andrew Godkin 

Henry Wellcome Building, 

Cardiff University 

Heath Park, 

Cardiff. CF14 4XW. 

Tel 029 20687129 

Email: godkinaj@cf.ac.uk 
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Please 

initial 

CONSENT FORM 

The role of leukocytes in the colon and blood 

Chief Investigator Prof Andrew Godkin (Consultant Gastroenterologist and 

Hepatologist) 

1. I confirm that I have read and understand the information sheet 
Version 1.3 for the above study and have had the opportunity to 
ask questions. 

2. I understand that my participation is voluntary and that I am free 
to withdraw at any time, without giving any reason, without my 
medical care or legal rights being affected. 

3. I understand that relevant sections of my medical notes and data 
collected during the study, may be looked at by responsible 
individuals from regulatory bodies, Cardiff University or the 
Cardiff and Vale University Health Board. I give permission to these 
individuals to have access to my records. All information will remain 
confidential. 

4. I agree for blood and/or clinical waste samples to be collected 

and used for the purposes of this study (Groups 1-3) 

5. I agree for additional biopsies and a blood sample to be collected 
and used for the purposes of this study (Group 4 only) 

6. I consent for my anonymised results of this study to be published 
in scientific / medical journals. 

7. I consent for obtained samples to be stored for future research in 
the UK and abroad, I understand the research may involve DNA 
analysis and use by the commercial sector (Please cross out if 
you do not wish your samples to stored) 

8. I agree to take part in the above study 

 

Name of Patient                    Signature       
Date 

Name of Person taking consent                        Signature   

Date 
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When completed make two copies: 1 offered to participant; 1 to be kept in 

medical notes. Original kept and filed by CI. 
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