
Functional Programming Languages
in Computing Clouds

Practical and Theoretical Explorations

A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Joerg Fritsch

June 2016

Cardiff University
School of Computer Science & Informatics





iii

Declaration

This work has not been submitted in substance for any other degree or award at this

or any other university or place of learning, nor is being submitted concurrently in

candidature for any degree or other award.

Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (candidate)

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Statement 1

This thesis is being submitted in partial fulfilment of the requirements for the degree

of PhD.

Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (candidate)

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Statement 2

This thesis is the result of my own independent work/investigation, except where oth-

erwise stated. Other sources are acknowledged by explicit references. The views ex-

pressed are my own.

Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (candidate)

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Statement 3

I hereby give consent for my thesis, if accepted, to be available online in the Univer-

sity’s Open Access repository and for inter-library loan, and for the title and summary

to be made available to outside organisations.

Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (candidate)

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



iv



v

Copyright c© 2016 Joerg Fritsch.

http://www.joerg.cc.

This work is licensed under a Creative Commons ‘Attribution-

ShareAlike 3.0 Unported ’ license.

http://www.joerg.cc
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0


vi



vii

Abstract

Cloud platforms must integrate three pillars: messaging, coordination of workers and data.

This research investigates whether functional programming languages have any special merit

when it comes to the implementation of cloud computing platforms. This thesis presents the

lightweight message queue CMQ and the DSL CWMWL for the coordination of workers that

we use as artefact to proof or disproof the special merit of functional programming languages

in computing clouds. We have detailed the design and implementation with the broad aim to

match the notions and the requirements of computing clouds. Our approach to evaluate these

aims is based on evaluation criteria that are based on a series of comprehensive rationales and

specifics that allow the FPL Haskell to be thoroughly analysed.

We find that Haskell is excellent for use cases that do not require the distribution of the ap-

plication across the boundaries of (physical or virtual) systems, but not appropriate as a whole

for the development of distributed cloud based workloads that require communication with the

far side and coordination of decoupled workloads. However, Haskell may be able to qualify as

a suitable vehicle in the future with future developments of formal mechanisms that embrace

non-determinism in the underlying distributed environments leading to applications that are

anti-fragile rather than applications that insist on strict determinism that can only be guaran-

teed on the local system or via slow blocking communication mechanisms.



viii Abstract



ix

Acknowledgements

Completing this thesis as a part-time student while being a full-time dad and a full-time em-

ployee has easily been one of the most difficult things I have ever undertaken. During the course

of this work, my supervisor Coral Walker has been extremely supportive, and has displayed a

great deal of flexibility in helping me to reach the finishing line. Coral has my sincere gratitude

for her assistance and guidance.

To the Cardiff School of Computer Science & Informatics for making a sizeable AWS account

available to develop and test the software produced for chapter 4. In particular, thanks to my

fellow PhD candidate Ms Neelam Memon for the many conversations about research making

up for the missed out water-cooler talks that I would have undoubtedly had if I had been a

full-time student.

I would also like to thank Wilco van Ginkel for actually reading and critiquing this thesis. My

special thanks goes to David W. Walker for kindly proof reading the three papers that were

extracted from this research.

The second half of this thesis was completed while working at Gartner and I thank them for

their understanding in allowing me to publish outside the Gartner research agenda and the

financial support over the course of two years.

Most of all though, I would like to acknowledge my family. My deepest gratitude goes to my

wife, Nina, who has been nothing but unbelievably patient and encouraging over these years

that I have been a part-time student.



x Acknowledgements



xi

Contents

Abstract vii

Acknowledgements ix

Contents xi

List of Publications xiii

List of Figures xv

List of Tables xvii

List of Algorithms and program Code xix

List of Acronyms xxi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8



xii Contents

1.5 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature Review 17

3 Asynchronous operations and messaging 23

3.1 CMQ Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 cwPush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Petri net verification of cwPush . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 cwPop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.4 The use of cwPush and cwPop . . . . . . . . . . . . . . . . . . . . . . 32

3.1.5 Where is the queue? . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Testbed specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Benchmarking methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Assessment of asynchronous operations and messaging in the functional pro-

gramming language Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 ASM1: Asynchronous I/O or Non-Blocking I/O . . . . . . . . . . . . 41

3.5.2 ASM2: Preventing Deadlocks . . . . . . . . . . . . . . . . . . . . . . 44

3.5.3 ASM3: Support for node-level ’shared nothing’ architectures . . . . . . 45

3.5.4 ASM4: Message passing . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Intermediary result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



Contents xiii

4 Coordination 63

4.1 High level design of Cwmwl PaaS framework . . . . . . . . . . . . . . . . . . 67

4.2 How the DSL CWMWL is implemented . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Tuples and Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Units of scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.3 Map Reduce: a data-oriented example . . . . . . . . . . . . . . . . . . 78

4.3 Testbed specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Benchmarking methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Tuple space performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Assessment of functions as lightweight units of scale for distributed applica-

tions in computing clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7.1 COO1: Entities suitable for coordination . . . . . . . . . . . . . . . . 91

4.7.2 COO2: Mechanism of coordination . . . . . . . . . . . . . . . . . . . 94

4.7.3 COO3: Medium of coordination (Not rated) . . . . . . . . . . . . . . . 95

4.7.4 COO4: Rigorous semantics, rules or protocols can be implemented . . 99

4.7.5 COO5: Degree of decoupling . . . . . . . . . . . . . . . . . . . . . . 105

4.7.6 COO6: Relevance and applicability to the domain computing clouds . . 106

4.8 Intermediary result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



xiv Contents

5 Integration with Data 115

5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.1 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.2 Variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.3 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.4 Data Gravity —the fourth dimension of data . . . . . . . . . . . . . . 118

Agent platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Code mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Fog Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Functional Programming in Map Reduce . . . . . . . . . . . . . . . . . . . . . 121

5.3 Functional Programming in Stream processing and Data flow programming . . 124

5.4 Functions in service platforms for IoT sensor data . . . . . . . . . . . . . . . . 128

5.5 Functions, Messaging and Coordination: Reconsidering the problem with data . 129

5.5.1 CMQ/Cwmwl support for Data with challenging Volume . . . . . . . . 130

5.5.2 CMQ/Cwmwl support for unstructured Data . . . . . . . . . . . . . . 130

5.5.3 CMQ/Cwmwl support for Data with challenging Velocity . . . . . . . 131

5.5.4 CMQ/Cwmwl and Data Gravity . . . . . . . . . . . . . . . . . . . . . 131

5.6 Fixing Data by Eight Dogmas . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6.1 Blueprint for the next-gen computing cloud . . . . . . . . . . . . . . . 132

5.6.2 Challenges and Opportunities . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



Contents xv

6 Conclusion 137

6.1 Critical Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A Time profiling 143

Bibliography 159



xvi Contents



xvii

List of Publications

The work introduced in this thesis has been disseminated in the following publications.

Joerg Fritsch and Coral Walker. Cmq-a lightweight, asynchronous high-performance mes-

saging queue for the cloud. Journal of Cloud Computing, 1(1):1–13, 2012

Coral Walker Joerg Fritsch. Cwmwl, a linda-based paas fabric for the cloud. Journal of Com-

munications, 9(4):286–298, 2014

Joerg Fritsch and Coral Walker. The problem with data. In 7th International Conference on

Utility and Cloud Computing (UCC 2014). IEEE/ACM, 2014

More specifically, these papers draw from this thesis as follows. Understanding and insights

from the implementation of the UDP based message queue CMQ that was gained in [FW12a]

have been used to analyse and assess Asynchronous operations and messaging in Chapter 3.

The integration with actual workloads is described in [JF14] and lead to the assessment criteria

that appear in Chapter 4 Coordination. Finally, the observations concerning the integration with

data in Chapter 5 are based on [FW14b].



xviii List of Publications



xix

List of Figures

1.1 Productive inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Extraction of Evaluation Criteria from Productive Inquiry . . . . . . . . . . . . 7

3.1 Map and PSQ pointer in CMQ. cwPush is called when the key for the recipient

process is not present (a), cwPush is called when the key for the recipient pro-

cess is already present (b), the timeout for a key has been reached (c), cwPush

is called when the key for the recipient process is present and the data length

amounts to qthresh (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 cwPush described as Petri Net . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Logical diagram of the testbed configuration. . . . . . . . . . . . . . . . . . . 35

3.4 Graph for memory usage on the heap. The heap is split into the 20 most prom-

inent cost centres as inserted by the compiler. qthresh was set to 512K and

timeout to 200ms. The maximum length tested was five hours where the pat-

tern could be sustained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Message passing performance on a lossless data center network . . . . . . . . . 54

3.6 Message passing performance on a data center network with 1.4% packet loss . 55

3.7 MessagePack benchmark for 1000 send/receive cycles with 512 byte payload

in a ”lossless” datacenter network . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 MessagePack benchmark for 1000 send/receive cycles with 512 byte payload

in a network with 0.5% loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



xx List of Figures

3.9 CMQ Benchmark of 1000 send/receive cycles with 512 byte payload in a net-

work with 0.5% loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 OS-Level Virtualization Managed by the Docker Daemon (Source: Gartner 2015) 64

4.2 Software stack of a conventional PaaS framework. . . . . . . . . . . . . . . . . 68

4.3 Unified Cwmwl PaaS fabric. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 High level architecture of the Cwmwl PaaS fabric. Workers can consist of any

unit of scale: e.g. plugins, functions. . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 UML diagram of the Cwmwl PaaS fabric. . . . . . . . . . . . . . . . . . . . . 72

4.6 Tuple space used with an algorithmic skeleton that requires sequential execu-

tion (pipelining) and results in a systolic access pattern to the tuple space. . . . 76

4.7 Impact of workload size on throughput for 5, 10, and 15 clients . . . . . . . . . 82

4.8 Benchmark execution time for up to 15 Clients . . . . . . . . . . . . . . . . . 83

4.9 Impact of the number of clients on throughput for 3 B to 12 KB . . . . . . . . 83

4.10 Impact of the number of clients on throughput for 3 B to 12 KB. The bubble

size represents the standard deviation from the mean value. . . . . . . . . . . . 84

4.11 Lewis Carroll Diagram showing how cloud computing offerings (purple area)

overlap with web services, clusters and HPC . . . . . . . . . . . . . . . . . . . 97

5.1 3V Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Resource pooling in computing clouds. . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Evolution of information technology consumption. . . . . . . . . . . . . . . . 121

5.4 Architecture using AWS Lambda functions for data ingestion. Source: AWS . . 128

5.5 Blueprint diagram for a data driven next-gen utility . . . . . . . . . . . . . . . 134



xxi

List of Tables

1.1 The 3(+1) service models of computing clouds . . . . . . . . . . . . . . . . . 3

3.1 CMQ testbed setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Rating of asynchronous operation and messaging in Haskell . . . . . . . . . . 61

4.1 Efficacy of distributed computing architectures . . . . . . . . . . . . . . . . . 70

4.1 Comparison of Haskell Functions and .jar archives when used as units of scale . 93

4.2 DSL operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Eleven requirements of business applications [KDH11] . . . . . . . . . . . . . 107

4.3 Eleven requirements of business applications [KDH11] . . . . . . . . . . . . . 108

4.3 Eleven requirements of business applications [KDH11] . . . . . . . . . . . . . 109

4.4 Rating of Haskell functions as easy access composable lightweight units that

can be coordinated to achieve scalable distributed applications . . . . . . . . . 111

4.4 Rating of Haskell functions as easy access composable lightweight units that

can be coordinated to achieve scalable distributed applications . . . . . . . . . 112

5.1 Eight requirements that a system should meet to excel at a variety of real-time

stream processing applications [SÇZ05] and how they are met by the cwmwl

framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xxii List of Tables



xxiii

List of Algorithms and program Code

3.1 Example of a sending application that uses cwPush. . . . . . . . . . . . . . . . 32

3.2 Example of a receiving application that uses cwPop. . . . . . . . . . . . . . . . 33

3.3 Type signature of the function newRq . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Initializing the asynchronous message queue CMQ . . . . . . . . . . . . . . . 42

3.5 Inserting a new message into the queue . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Pseudo Cwmwl implementation of a pipelined algorithm. . . . . . . . . . . . . 75

4.2 Pseudo Cwmwl implementation of a two non-binding sequences. . . . . . . . . 77

4.3 The mapper code that casts matrices A and B from a csv file into Tuple Space. . 79

4.4 The reducer code that executes matrix multiplication. . . . . . . . . . . . . . . 79

4.5 Linux configuration file \etc\rc.local to modify all systems at boot time . . . . . 81

4.6 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.7 Tuple Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 Lexer without boilerplate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.9 Command line demonstration of the tokenizer . . . . . . . . . . . . . . . . . . 104



xxiv List of Algorithms and program Code



xxv

List of Acronyms

ACP Algebra of Communicating Processes

AppController Apppplication Controller

AppDB Application Database

API Application Program Interface

AS Application Servers

ASCII American Standard Code for Information Interchange

AST Abstract Syntax Tree

AWS Amazon Web Services

CD Continuous Delivery

CI Continuous Improvement

CSP Cloud Service Provider

DDL Dynamic Linked Library

DFG Data Flow Graph

DSL Domain Specific Language

DSM Distributed Shared Memory

EC Evaluation Criteria



xxvi List of Acronyms

FPL Functional Programming Language

GPL General Programming Language

HaLVM Haskell Lightweight Virtual Machine

HVM Hardware Virtual Machine

HPC High Performance Computing

IaaS Infrastructure as a Service

IO Input/Output

IoT Internet of Things

IPC Inter Process Communication

MMOG Massive Multiplayer Online Game

MOM Message Oriented Middleware

NFS Network File System

PaaS Platform as a Service

RDBMS Relational Database Management System

SaaS Software as a Service

SLA Service Level Agreement

TS Tuple Space

UC Utility Computing

UDT UDP based Data Transfer Protocol

UML Unified Modeling Language

VM Virtual Machine

YARN Yet Another Resource Negotiator



1

Chapter 1

Introduction

Cloud computing is a disruptive innovation based on ‘seamless’ scaling multi-tenant infra-

structures. According to the author’s own experience1, since the year 2006 when Amazon Web

Services launched the ‘Elastic Compute Cloud’, the first commercial offering, the notions and

paradigms sold to the end customer have gone through several revisions. Initially cloud com-

puting was marketed based on the vision of simplicity, elasticity and the illusion of indefinite

resources. Cloud Service Providers (CSPs) implemented architectures they had been using in

their own IT that was designed for high efficacy and run by highly skilled staff. For example,

CSPs did away with network subnetting, network firewalls and DMZs and replacing them with

host based access lists. CSPs preferred eventual consistency before the CAP theorem and were

not afraid to use non-deterministic approaches as long as the overall result would ‘eventually

consistent’ [Vog09], and preferring to recover from failure rather than preventing it.

However, it showed very quickly that the new paradigms were asking to much from the en-

terprise clients that CSPs were trying to win as customers. During the following years CSPs

have put considerable effort in using their platforms to emulate features and experiences that

traditional IT had been following ever since. For example, by now it is possible to implement

network firewalls and there is support to deploy traditional monolithic enterprise applications,

1The author of this Thesis has been planing, implementing and researching cloud paradigms for

government and industry since the year 2008.



2 1.1 Background

to name a few. As a result enterprise customers can lift & shift what they have in their tradi-

tional data center into the cloud.

While in the field of cloud computing these adaptations are still ongoing, there are newer ap-

proaches that re-use the initial visions. Examples are micro segmentation such as VMware

NSX or Cisco ACI, stateless micro services deployed on top of Linux containers managed

by Docker, and serverless compute such as AWS Lambda for processing streams and events.

Contrary to first generation offerings of computing clouds, the newer offerings are not geared

towards traditional enterprise customers but towards innovative use cases such as the IoT and

have a high chance to achieve wide spread adoption and understanding. This thesis is focusing

on the key paradigms of computing clouds as they were introduced in the years 2006 - 2012

and re-appeared approximately in the year 2014 onwards.

1.1 Background

CSPs have the requirement to deliver on the promise in the most economic and efficient way.

Tables 1.1 and 4.1 compare the relevance, limitations and efficacy of the currently prevailing

IaaS service model with the industry vision of a fully elastic PaaS (that is not based on an

underlying IaaS infrastructure) and Utility Computing as envisioned by Carr [Car05]. The

coarse granularity of the units of scale and the identified limitations have negative implications

on the elasticity and efficacy that can be achieved (for more information, please read Chapter 4).

The coarse granularity has also negative impacts on the customer who needs to run, maintain

and secure a potentially very large number of virtualized operating systems to instantiate a

clustered application. However, this is an unacceptable overhead to CSPs and their customers

that want to leverage the theoretical promise of cloud computing to run applications or services

in a lean, seamless scaling and high available environment.

The author investigates whether the functional programming language (FPL) Haskell that provides

functions as granular, lightweight and easy access units of scale has special merit to alleviate

the issues and limitations that we currently observe in computing clouds. The FPL Haskell is

chosen as the programming language to be evaluated for the following reasons:



1.1
B

ackground
3

Table 1.1: The 3(+1) service models of computing clouds

Service Model Relevance Elasticity Limitations

Infrastructure as a Ser-

vice

Currently prevailing delivery

model

Large units of scale: VM. Means

of scale: add VMs. Server cent-

ric

Offerings (S, M, L, XL) have

fixed computing power and

RAM and are not elastic. Max-

imum scale (for example RAM)

determined by the underlying

hardware.

Platform as a Service To date lowest adoption rate, but

interest in Linux containers and

Docker sparks interest in PaaS

Small(est) units of scale:

threads, processes. Means of

scale: spawning. ∞ number of

threads or processes thinkable.

Developer centric

Limited by the message passing

performance in distributed archi-

tectures (e.g. MPI, Message

Queues, Erlang).

Uitility Computing In the future IT will be pur-

chased as utility [Car05]

Unknown Cloud and utility computing

eventually lead to concentration

of hardware, services and data in

large Data Center. ‘Cloud scale’

= massive volumes in massively

distributed architectures.



4 1.2 Methodologies

• It supports a wide range of concurrency paradigms [Mar11].

• It is a pure functional programming language that

– Implements all key paradigms of functional programming without alteration lead-

ing to the assumption that it may be justifiable to eventually generalize from

Haskell to other FPLs.

– The impact and merit of composition, currying 2 and functional data models can

be investigated clearly because they are not modified with elements of imperative

programming languages, such as destructive updates to data structures that are

possible with the setcadr functions in List and Scheme.

• It is independent from any third-party platform or runtime (for example Clojure and

Scala are built on top of JVM, F# on top of the .NET platform).

• It is being actively researched and has an ever increasing large research community.

According to the popularity tracking website langpop.com [Unt12d], in 2013, it was

ranked 10th out of the 32 most talked-about programming languages on the Internet.

• It is not developed or backed by a commercial company, such as Erlang, that, in case of

disagreement with the findings of this thesis, could pursue a lawsuit against the author.

1.2 Methodologies

Early on in the research process the author of this thesis realized that it would be impossible to

answer the research question whether FPLs, such as Haskell, have special merit in computing

clouds or not using a qualitative methodology. On the other hand, qualitative methodologies

quickly lead to the result that FPLs are ideal for computing clouds but contradict the observa-

tion that in practice they are of no importance to CSPs and their customers. For an objective

judgment the author of this thesis used a method of inquiry that has two main goals:

1. Producing new knowledge and meaning that can be shared.

2Currying a technique that is related to, but not the same as, partial function application.



1.2 Methodologies 5

2. Include reflection as an important vehicle of investigation.

The devised evaluation methodology is a transitory productive inquiry that is an adaptation of

Kolb’s learning cycle [Kol84] and Dewey’s theory of inquiry [Dew25] as illustrated in figure

1.1. The phases mapped to this research are:

• Observe the implementation of computing clouds, such as large scale commercial public

clouds, the operational and technical requirements, and issues.

• Assume relevant evaluation criteria and fallacies.

• Select categories of evaluation criteria that can be tested through experimentation.

• Experiment and create artifacts that either proof or disproof the selected assumptions.

• Reflect on the achieved results, for example whether they can be further confirmed using

market data.

• Generalization and Interpretation of new knowledge.

Observe

AssumeGeneralize

SelectReflect

Experiment

Figure 1.1: Productive inquiry

Using this methodology the author of this thesis (i) devised the architecture 3 for a perfectly

elastic PaaS that scales tenant code through spawning, and (ii) wrote demonstrator code ad-

3The devised architectures are illustrated in Figures 4.4, 4.5 and 5.5



6 1.2 Methodologies

dressing key issues in the three categories messaging, coordination, and the integration with

data.

To have special merit for computing clouds, FPLs would need to make a significant contribution

to alleviate the limitations identified in Table 1.1. Examples are the use of asynchronous com-

munications and novel messaging paradigms and enhance the elasticity and efficacy of mod-

ern PaaS, for example by striping the units of scale from the virtual system operating system

and eventually decoupling the units of scale in space and time using well-known coordination

paradigms in each of the three categories.

What if cloud computing did not mean to wrap VMs and operating systems that need to be

administered and protected around atomic units of scale, such as processes or threads? What if

cloud computing would have small units of scale that support distribution regardless of bound-

aries and scale of physical hardware? What if cloud computing was not server centric but

developer defined? Since all demonstrators confirmed that FPLs would be a perfect match for

computing clouds, during the reflection phase the author of this thesis decided to base the even-

tual judgment on a set of Evaluation Criteria (EC) extracted from his experimental explorations.

This is illustrated in Figure 1.2 that shows the experimental explorations on the left side of the

flow chart and the corresponding extracted EC on the right side.



1.2 Methodologies 7

Figure 1.2: Extraction of Evaluation Criteria from Productive Inquiry



8 1.4 Motivation

1.3 Problem Statement

IaaS and PaaS frameworks in computing clouds are coded and architected using two units of

scale: Virtual Machines (VMs) and Threads. In the author’s opinion neither is a good solution.

While VMs as units of scale are coarse and not efficient, threads have in practice no portability

beyond the physical system. This study will use a productive inquiry to determine the degree

to which functions as provided by FPLs such as Haskell are suitable units of scale that alleviate

the technical problems and limitations in current implementations of computing clouds.

1.4 Motivation

This research started in the year 2011 when both academia and industry set out to understand

cloud computing and the paradigm changes that came with it. Computer systems and inform-

atics are standing in front of the next sea change. The impact of cloud computing paradigms on

the future of information technology could eventually be far bigger than what we might expect

at this point in time eventually resulting in a significant push towards utility computing (UC).

To date computing clouds use coarse units of scale and elasticity is based on duplication. For

example, IaaS scales tenant application by duplicating VMs and the Operating Systems and ap-

plications installed on top of it. PaaS scales tenant applications by duplicating the language app

servers, such as JVM or Rails, and the tenant application itself. Furthermore, the application

execution engine (that is a part of the PaaS platform) needs to be duplicated when the tenant

application is scaled up. Virtualized or physical load balancers are the glue that re-clusters all

these duplicated units of scale maintaining the illusion that we are facing truly scalable ap-

plication. In most cases concurrency is the required enabler for scalability.–These limitations

prevent cloud computing from being the landmark innovation that is required to put UC into

practice.

When I started this research I asked myself what if cloud computing did not mean to wrap VMs

and operating systems that need to be administered and protected around atomic units of scale,

such as processes or thread? What if cloud computing would have small units of scale that



1.5 Major Contributions 9

support distribution regardless of boundaries and scale of physical hardware? What if cloud

computing was not server centric but developer defined?

In order to produce better computing clouds, units of scale that are not based on VMs and

Threads will need to be used and made compatible with existing cloud computing architectures

and paradigms. The bright idea of this thesis is that functions as provided by FPLs could

very well be a unit of scale that bring cloud computing closer to UC, or at least brings many

improvements to computing clouds, such as quicker instantiation time, better security (because

no underlying OS needs to be administered and secured) and less energy consumption (for

more information read Chapter 4).

In practice network protocols are the most prominent cost center in distributed environments

and traditional protocols will nihilate every advance in optimizing the units of scale across

boundaries of physical systems. Protocols in distributed environments ideally will orchestrate

and coordinate. This is why my research starts out with investigating network protocols and

then continues with investigation of the suitability of FPLs as units of scale for cloud patforms

and tenant applications.

1.5 Major Contributions

This dissertation contributes to the area of cloud computing. Specifically, it introduces novel

thinking and techniques to the fields of inter-process communication, the identification and

coordination of suitable units of scale and the integration with data. The primary objective of

this dissertation is to test the hypothesis that:

1. Cloud computing platforms and applications integrate three pillars: Messaging, Co-

ordination and Data.

2. Functions, as provided by FPLs, can be used as easy access and lightweight units of

scale enhancing the efficacy across all three pillars.

3. FPLs are required for computing clouds to further develop and serve as basis of utility

computing.



10 1.6 Thesis structure

It should be noted that it is not possible to formally prove the correctness or falsehood of this

hypothesis. Instead, this dissertation is limited to providing, hopefully strong, evidence for or

against its validity. It does so by introducing a new optimistic message queue, a tuple-space

based demonstration of coordination and novel thinking about data.

This dissertation makes the following contributions:

1. The question whether FPLs (in particular Haskell) are a suitable programming lan-

guage/paradigm for systems that are distributed by nature like cloud computing has been

answered using solid conclusions based on practical experimentation. With our demon-

strator code and research we showed that Haskell is great for a single/local system, but

not the right choice (unless improvements fto Haskell are made) for cloud computing.

2. The optimistic UDP-based message queue CMQ that uses FPLs to implement an anti-

fragile message queue that matches the notion and underlying paradigms of computing

clouds. The need for an optimistic message queue is motivated by the key paradigms of

computing clouds [Vog08] that is to be prepared to take a loss and quickly recover from

it rather than implementing inefficient guarantees to prevent failure by all means.

3. CWMWL, a small DSL with four primitives that uses a central tuple store to coordinate

functions across the boundaries of physical system.

4. A set of requirements (Evaluation Criteria, EC) deducted from our implementations to

support reflection and decision making whether FPLs really have special merit in com-

puting clouds.

5. Novel thinking concerning the integration with data.

1.6 Thesis structure

The remaining chapters of this thesis can be summarized as follows.

Chapter 3 finds that in computing clouds, the FPL Haskell needs to support node level shared

nothing architectures and provide inter node message passing. We investigate suitable program-

ing paradigms for implementing the inter process communication (IPC) of a cloud-computing



1.6 Thesis structure 11

framework: (1) Remote Procedure Calls (RPC), (2) ‘Erlang-Style’ message passing and (3)

shared memory. We present the lightweight, UDP based message queue CMQ. The concept to

use UDP instead of TCP is motivated by our understanding that, in Cloud Computing, omni-

present off-the-shelf technologies (both in hard and software) are encouraged, and if preventing

errors from occurring becomes too costly, dealing with the errors may be a better solution. Al-

though CMQ is a message queue oriented communication approach, CMQ is different from the

conventional MOM approach because it challenges a number of assumptions under which con-

ventional MOM is built. For instance, in conventional MOM, messages are ‘always’ delivered,

routed, queued and frequently follow the publish/subscriber paradigm. It is often accepted that

this requires an additional layer of infrastructure and software where logic is split from the

application and configured in the additional layer. On the contrary, CMQ does just enough. It

does not offer any guarantees, such as reliable transmission, thus is very light weight with low

overhead and fast speed. Although it does not offer guarantees, it appears to be stable in the

presence of errors.

Chapter 4 assesses whether functions in the FPL Haskell can serve as easy access composable

lightweight units of scale to develop scalable software that executes on computing clouds.

We begin by highlighting the problems with threads as units of scale for the implementation

of scalable software on computing clouds and explain why functions are a better alternative.

This motivates the assessment of functions as easy access lightweight units of scale that can

be coordinated to achieve scalable distributed applications. To make functions available at all

across the boundaries of physical systems we introduce a PaaS framework based on the LINDA

coordination language. This approach is inspired by the works of Lee [Lee06], [Lee07] and

Gelertner [Gel85]4. We find that while the FPL Haskell functions provide easy access units of

scale, the FPL must be extended with a means for coordination.

Our foremost design goal is simplicity by achieving a novel unified platform rather than virtu-

alizing and replicating the implementation of a load balanced web application that has existed

since the end of the 1990s. Multiple times we challenge the academic concept of deterministic

computing arguing that nondeterministic means must be introduced where needed to fit the

4It seems that for his works Lee had scalable software on the local multicore system in mind, while

Gelertner took physically distributed system as starting point



12 1.6 Thesis structure

nature and requirements of computing clouds–without disrupting the essential determinism of

programming languages. In both, Chapter 3 and Chapter 4 we frequently felt as if we turned

back the clock 30 years but in a good way.

In the ‘Details’ section of this chapter we provide more information about the instances, ser-

vices and the logical architecture that we provisioned on Amazon Web Services for our exper-

iments. Furthermore we discuss our coordination language and how it can be used. Our job

here is to assess functions as suitable units of scale and to convince the reader that the approach

via a coordination language has merit.

In Chapter 5, we move the focus from computation to data. We tackle the problem of the

integration with data, a problem that has only recently been added to the feature lists and re-

search agendas of commercial cloud service providers (CSPs). Currently research in cloud

computing and distributed computing commonly investigates the distribution of computation

but seems to forget that computation frequently needs data. Although in academia the under-

lying issue that computation should better be governed by the movement of data rather than by

the ‘von Neuman-style’ program counters has been recognized and investigated by Kahn5 as

early as 1974 [Gil74], data driven programming languages (and architecture) paradigms have

never been put to widespread use. This motivates the investigation of the nature of data and

how data is currently represented in computing clouds. In this chapter we re-apply what we

have learned in Chapter 3 and Chapter 4 and propose a high level framework how a next gener-

ation computing cloud that is optimized for data can be architected. This chapter has a different

structure and is not an evaluation chapter. Our mission here is to evangelize the audience to

open up their mind to give data the importance it deserves. Furthermore, we propagate the term

‘Data Gravity’ that reflects the nature of data to attract computation, not the other way around.

We argue that a distributed in memory Tuple Space (as proposed in Chapter 4) is effective

in serving as backbone for a distributed scalable fabric that acts as an abstraction layer and

virtualizes both data and computation. The exploration of data uncovered some interesting use

cases for functions: serverless computing and the IoT that frequently do not require internode

message passing and coordination. Although out of scope of this thesis, the author finds that

5Kahn processes use functions communicating through FIFO channels; in principal very similar t

our architecture



1.7 Evaluation Criteria 13

the FPL Haskell may be a much better fit for these use cases than for computing clouds.

We conclude that our experimental work and demonstrator code was geared towards compens-

ating that Haskell has been designed with the local system in mind (for more information we

refer to Sections 4.7.1 to 4.7.6 of this thesis). Although Haskell implements all the correct

paradigms and approaches, it is tied to the local system. Haskell is excellent for use cases that

do not require the distribution of the application across the boundaries of (physical or virtual)

systems but not appropriate as a whole for the development of distributed cloud based work-

loads that require communication with the far side and coordination of decoupled workloads.

We argue that interaction of functions, or any other lightweight unit of scale, in computing

clouds need to be dealt with in ways that are intrinsically different from objects that interact

in a single system. However, Haskell may be able to qualify as a suitable vehicle in the future

with future developments of formal mechanisms that embrace non-determinism in the under-

lying distributed environments leading to applications that are anti-fragile [Tal12] rather than

applications that insist on strict determinism that can only be guaranteed on the local system or

via slow blocking communication mechanisms.

1.7 Evaluation Criteria

Users need to know the strengths and deficiencies inherent in a language, and how well a

language applies to a specific domain [How95]. The strengths and deficiencies inherent in

FPLs and how well FPLs apply to the domain of computing clouds is assessed based on a set

of EC. The EC are low level requirements that can be checked, for example, against literature

(we provide the appropriate references) and against our experimental results.

While a programming language could be fully compliant with the evaluation criteria or some

of them, in practice this does not necessarily mean that it truly can work in a cloud environ-

ment that is almost equally determined by the eight fallacies of distributed computing [RGO06]

rather than by strengths and deficiencies inherent in a language only. The fallacies were origin-

ally stated by SUN Microsystems in the year 1994 when it first published the Java programming

language–a lingua franca for the new world of distributed computing and “asserted that pro-

grammers new to distributed applications invariably make a set of assumption ... and these



14 1.7 Evaluation Criteria

assumptions ultimately prove false, resulting either in the failure of the system, a substantial

reduction in system scope, or in large unplanned expenses required to redesign the system to

meet its original goals.” [Wik15c].

The eight fallacies of distributed computing are:

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology does not change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

It can be observed that the seven out of the eight fallacies of distributed computing are net-

work centric 6 and we have reflected the importance of network centric aspects to computing

clouds in the EC of the categories ‘Asynchronous operations and messaging’ and ‘Coordina-

tion’. Although Java has become a huge platform since it first appeared in 1995, it did not (yet)

attempt to abstract the eight fallacies away from the developers and to eventually make them a

non-concern. A possible reason may be that the eight fallacies are rooted in the practice of the

application domain distributed computing while the development of programming languages

is rooted in academic programming language theory. Mitigating the eight fallacies has always

been left up to the developer. To reflect this our evaluation criteria consider both, what the FPL

Haskell inherently provides as part of the language and how it must be used or extended to

match the evaluation criteria.

We are aware that the evaluation criteria can neither be complete nor can the answers to the

question ‘Which programming language is the best?’ be authoritative. However, we attempt to

6Fallacies 1, 2, 3, 4, 5, 7 and 8 are network centric.



1.7 Evaluation Criteria 15

provide a framework for the evaluation of FPLs in computing clouds from that the reader can

draw their own conclusions. We propose three top level categories of application domain cri-

teria that we considers essential for FPLs to have special merit in computing clouds. The three

categories are then subdivided into appropriate requirements (or attributes) that we consider

of equal importance. A rating is given for every evaluation criteria to allow for programming

languages features to partially fulfill the evaluation criteria and to state whether a particular

implementation is ‘Best of Breed’ = 1, ‘Sufficient’ = 2 or ‘Deficient’ = 3.



16 1.7 Evaluation Criteria



17

Chapter 2

Literature Review

Cloud computing is a disruptive innovation that is characterized by Mell [MG11] as having:

• Five key concepts: Self Service, Broad Network Access, Resource Pooling, Rapid

Elasticity and Measured Service

• Three service models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

and Software as a Service (SaaS)

• Four deployment models: Private Cloud, Community Cloud, Public Cloud and Hybrid

Cloud

While most commercial clouds currently focus on IaaS and thus the deployment of dedicated

virtual machines [ABLG10, 95-105], Gartner found that the final ‘prevailing patterns [. . .]

have not been established yet’ and that by the end of 2011, all major vendors had pushed into

the PaaS market (Gartner, 2011). This research is inspired by the vision that eventually utility

computing [Car09] – that is much closer to the idea of PaaS rather than IaaS, will prevail.

Birman et al. recognize that cloud computing has two perspectives [BCvR09, 68-80]:

1. An outward looking perspective that embodies an elastic application executed in a secure



18 1.7 Evaluation Criteria

container1 and accessible over the Internet as seen by developers and end users.

2. An an inward looking perspective that describes the large scale distributed cloud com-

puting platform and its middleware as implemented and operated by the provider.

Thus, in other words, a PaaS framework is a large-scale distributed software framework (the

inside perspective) that should enable the elastic secure execution of tenant applications from a

‘one : many’ ratio up to a ‘many : one’ ratio where the tenant application is eventually a large

scale distributed application itself. Birman et al. reason that cloud computing research must

‘not focus overly narrow’ and that ‘new middleware abstractions that are known to perform

well when scaled out’ and self-healing (autonomic) cloud computing platforms are some of the

emergent research themes.

Although Birman is very determined in his call for a holistic approach and thus proposes a

wide variety of research themes, the importance of the combination of hardware and software,

- or the importance of hardware in general -, that eventually creates ‘the illusion’ of cloud

computing [AFG+10] slipped his attention. However, this is not surprising, since the major-

ity of research attempting to scope cloud computing by contributing introductions, definitions

and preliminary research agendas was not published before 2009 [KHSS10] when it had be-

come clear to researchers that cloud computing would be successful. Some of the newer work

however have taken an approach that goes beyond scoping and that focuses on the synergies

between computer architecture and programming language paradigms [Pat10], [Sin11].

Khajeh-Hosseini groups cloud-computing research (papers) into three focus areas: general in-

troductions, technological aspects of cloud computing and organizational aspects. Although

there seems to be no shortage of (partially shallow) general introductions and research that

focuses on technological aspects of IaaS, comparable research that focuses on technological

aspects of PaaS is clearly lacking. Eventually, there was a total of two papers found that expli-

citly focus on PaaS.

Chohan et al. [CBP+10] describe in their paper about the AppScale project that is an open

source version of the Google App Engine (GAE) PaaS framework [goo]. According to the

1Birman’s research predates the conception of Linux Containers managed by Docker. Birman is not

referring to ‘Docker Containers’ and micro services here.



1.7 Evaluation Criteria 19

authors AppScale should (amongst other purposes) be a framework that scientists can use to

investigate PaaS. Eventually Chohan et al. describe a component based PaaS architecture that

is based on an IaaS foundation. Because components, such as application controllers, load

balancers and tenant processes deployed on top of Chohan’s PaaS architecture frequently can

start, configure and replicate themselves, it is justified to say that the Appscale framework is

acting as an autonomous framework (or autonomous programming language runtime) reflecting

one of the emergent research themes identified by Birman.

While Cohan’s components resemble applications with interfaces and self-organizing capabil-

ities, Kächele et al. [KDH11], [HKDS12] take this approach one step further. Although still

based on an IaaS underlay, in their COSCA PaaS implementation the tenant applications must

be composed of multiple components so that ‘The platform grants isolation between the com-

ponents of different applications by providing a virtual container for each application. Thus, the

platform can arbitrarily mix applications of different users on the available nodes.’ Kächele is

basing his research on (market) requirements and on the analysis of commercial cloud offerings

and does not link his research to any previous scholarly papers. Nor does he give an example

or closer description of a COSCA user application. Although this seems shallow at first, it is

very similar to Birman’s approach who tried to learn about cloud computing from commercial

entities (IBM, eBay, and Microsoft) and is willing to let research follow the market require-

ments rather than force fitting a strictly scientific method onto cloud computing. The overall

design of the COSCA platform, however, seems to be closer to the actual workings of the GAE

than Appscale since, at least for Java Applications that shall be deployed on the GAE, Google

recommends component based approach using Java EE containers [Kri10]. This starting point

for achieving ‘cloud characteristics’ is also supported and further elaborated on by Ramdas and

Srinivas [RS]. While Cohan’s and Kächele’s approach to PaaS is consistent with Mell’s defin-

ition of cloud computing, the resulting cloud computing platform would be limited to elastic

hosting of traditional web applications, components would represent extremely expensive and

heavyweight assemblies of processes and the importance of ‘Big Data’ is not considered at

all. In his famous introduction to cloud computing, Armbrust [AFG+10] however, in a very

detailed analysis based on scholarly research, lists six application types as promising use cases

for cloud computing: mobile interactive applications, parallel batch processing, analytics, ex-

tension of compute intensive desktop applications and ‘earthbound’ applications. A concept



20 1.7 Evaluation Criteria

that industry practitioners would later refer to as ‘Data Gravity’.

As to choosing the right cloud programming model, Foster et al. [FZRL08] in their intro-

duction to cloud computing set cloud computing programming models equal to the more re-

cent parallel programming models MapReduce [DG08a], Hadoop [SKRC10], [VMD+13] and

DryadLINQ [YIFB08] that are used for large scale/elastic batch processing and analytics. In

contrast to Murray [MH10], Foster does not call these programming frameworks ‘coordina-

tion languages’. Foster argues that programming models based on message passing are typical

grid-programming models. Although he sees some overlap between grid computing and cloud

computing, he does not explicitly argue that the message passing paradigm would be suitable

for cloud computing. However, he states that more and more grid applications are developed

as services and gives the Web Services Resource Framework (WSRF) as an example.

Eventually Epstein [EBPJ11] puts together what Haskell ‘brings to the table’ in terms of its

suitability for cloud computing. Epstein compares Haskell to Erlang and finds that Haskell

offers more choices regarding data (e.g. it is up to the implementation to decide whether data

is shared or copied), a wider range of concurrency as well as characteristics like purity, types

and monads.

Moreover Murray [MH10] introduces a new language called Skywriting that is eventually based

on the PythonVM. On the one hand Skywriting acts like a data centric coordination language,

but on the other hand it is ‘turing-powerful’ so that it also can be used to ‘express iterative

computations’. While Murray’s approach leads to the development of a new programming lan-

guage. Lee [Lee07], [Lee06] argues repeatedly that new programming languages would not

be required. Lee writes that ‘We should not replace established languages. We should instead

build on them.’ and stipulates that coordination languages are ‘the right answer’. But the dif-

ferences go even deeper. While Murray apparently sees that non-determinism can potentially

be useful in parallel programming [Mur11], Lee believes that ‘essentially deterministic ‘com-

posable components’ are the key to success. Regrettably Lee’s papers are not backed up by

any experimental validation of his assumptions, while Murray has gone to great length here to

proof the performance of Skywriting.

There are a number of publications with partially contradictory findings and conclusions con-

cerning the feasibility of the DSL development. Some authors encourage to consider DSL



1.7 Evaluation Criteria 21

development more frequently [MH05], whilst Lee recommends to re-use the given and avoid

the high cost of DSL development [Lee07]. Contradictory to this, in yet another paper [Lee]

Lee states that concurrency (and thus multicore problems) are better solved on a component

level rather than on a thread level and suggests to develop coordination languages (a specific

DSL that is) that will address his findings.

Hence, based on requirements implied by the six ‘cloud application groups’ as envisioned

by Armbrust, Foster’s view when setting cloud computing programming models equal to the

paradigms that are shared by, for instance, Hadoop and MapReduce and the future economic

importance of data as an asset class [Ano11]; it is inevitable that the (host) programming lan-

guage for a cloud computing platform (PaaS) has answers, choices and paradigms concerning

data.

Turning back to Mell’s five key concepts and the concept of cloud platforms as shared resource

pools, it is very surprising, that none of the programming paradigms has yet been investigated

for its suitability to securely discriminate and execute code from multiple tenants. The most

applicable research here goes back to Brown [BS99] and his works on SSErl, a prototype

of a safe Erlang. In his papers Brown explained how security would need to be retrofitted

into Erlang so that potentially hostile code from several tenants can be executed on the same

platform.

On the basis of the available information it can be concluded that there are research gaps in

emergent research themes in cloud computing platforms (PaaS) and programming languages

that:

• Match recent advances in hardware (computer architectures) and the user experience of

‘infinite computing’.

• Implements self-healing, for example by behaving anti-fragile.

• Provides new layers of abstraction for task parallelism, data parallelism and security

policies by means of either a coordination language or a new programming language, to

name a few examples.



22 1.7 Evaluation Criteria

• Designs a cloud platform that can run request/response web applications as well as any

application from the six groups proposed by Armbrust [5].

• Implements the cloud platform (the inside perspective) using lightweight autonomic and

parallelizable components.

• Aims to play well with data centric applications and algorithms.



23

Chapter 3

Asynchronous operations and

messaging

In Chapter Literature Review we established the view that cloud computing

has two perspectives:

The outward-looking perspective. The guest systems in clouds often

have to cope with the suboptimal network conditions caused by software devices,

a problem that the VEPA1 standard tried to solve in 2009. The software

devices, such as vswitches and vrouters, are responsible for regulating network

traffic inside the cloud nodes and are guest systems themselves. Depending on

the virtualization ratio, one virtual switch could be responsible for up to 64

guest systems. Guest systems frequently have to cope with packet loss [WN10]

that, when using TCP/IP, costs many CPU cycles on systems that are them-

selves billed according to the available CPU cycles. Packet loss in TCP/IP

can easily cause guest systems to grind to a halt.

1IEEE 802.1Qbg



24 1.7 Evaluation Criteria

The inward-looking perspective. The physical cloud nodes in comput-

ing clouds are organized into ‘Points of Delivery’2 and interconnected via

equipment that either switches at line rate, or uses lossless Ethernet fabric3

technologies. In switched data center networks, all Ethernet (RFC 894) based

networking protocols are switched without discrimination. Congestion and

packet loss are extremely unlikely in such data center networks. The overhead

of TCP/IP in 10Gbps data center fabrics has led to CPU performance issues

([RGAB10], [FBB+05], [RMI+04]) and has given rise to new connectionless

Ethernet protocols, such as RDMA over converged Ethernet (RoCE) and the

Internet Wide Area RDMA Protocol (iWARP). However, both protocols require

specialized hardware (network cards, switching gear) that is not in line with

the trend to build clouds from commodity hardware [BDH03], and accept oc-

casional failures rather than preventing failure at any cost [Vog08].

In this chapter we start with the inner view and investigate technologies for

implementing the inter process communication (IPC) of a cloud-computing

framework and how the FPL Haskell can support these. We create a dis-

tributed middleware platform and investigate three paradigms to implement

the IPC of a cloud computing framework in Haskell (1) Remote Procedure

Calls (RPC), (2) ‘Erlang-Style’ message passing using a well-known message

queuing library and (3) CMQ, a UDP-based inherently asynchronous message

queue that we implemented as Haskell library.

The RPC framework that is used to implement the first paradigm should be lightweight not add

(much) latencies to the process. MessagePack [Fur]) that is available in Haskell and still under

active development. MessagePack supports an interface description language (IDL), is largely

programming language independent and creates the possibility to provide complementary fea-

tures by disjoint languages [Lee07]. For example, in a component based architecture the best

language for each component could be chosen without having to alter the communication pro-

tocol. According to Henning [Hen04], RPC based messaging systems are relatively expensive

and perform better in data driven context than in in contexts where only commands and states

2physical unit of scale in a cloud, e.g. a standardized rack of interconnected servers
3e.g. IEEE 802.3x PAUSE frames or vendor specific technologies



3.1 CMQ Implementation 25

are exchanged. - A problem, that seems to be caused by poorly structured serialization. Mes-

sagePack (-RPC) addresses this problem by using the binary format to represent data structures

and claims to outperform e.g. Google Protocol Buffers or Thrift.

The second route is based on ‘Erlang-Style’ message passing. There are currently two al-

ternatives that implement ‘Erlang-Style’ message passing in Haskell [EBPJ11], [Huc99] and

ZeroMQ (ØMQ) [Untc], [KH]. While Cloud Haskell is a DSL that focuses on Haskell, ØMQ is

a message queuing library that has APIs for many languages and thus, similar to MessagePack,

opens up the possibility to use the benefits of message passing across programming languages.

Cloud Haskell can invoke remote processes whereas ØMQ needs means either inside Haskell

(e.g. using Distributed Haskell as a basis [Huc99]) or outside Haskell (e.g. POSIX pthreads)

to make this possible. Even though, ØMQ seems to be the better alternative since it is pro-

gramming language ‘agnostic’, is harmonized with data (messages are treated as blobs) and

can implement message brokers. For example message brokers can have routing, security and

filtering functions or the message brokers could be one building block towards a ‘cloud service

bus’ that controls the interaction of services, components and applications, somewhat similar

to a SOA-like enterprise service bus.

3.1 CMQ Implementation

According to [BCvR09], “the cloud demands obedience to [its] overarching design goals”, and

“failing to keep the broader principles in mind” leads to a disconnection of cloud computing

research from real world computing clouds. Furthermore, scientists “seem to be guilty of fine-

tuning specific solutions without adequately thinking about the context in which they are used

and the real needs to which they respond”. One overarching design goal however is to avoid

strong synchronization provided by locking services. Wherever possible, all building blocks of

a computing cloud should be inherently asynchronous. CMQ, being designed to meet the real

needs of cloud computing, is strictly asynchronous and is the combined research result from

many different research fields, including network- and data- center design, network protocols,

message-oriented middleware and functional programming languages.

CMQ is a lightweight message queue implemented in Haskell. The code is published on



26 3.1 CMQ Implementation

github.com and available at https://github.com/viloocity/CMQ. CMQ has currently

three primitives: newRq (to initialize the queue and data structures), cwPush (to push a mes-

sage into the queue), and cwPop (to pop a message from the queue).

3.1.1 cwPush

Messages for remote processes are identified by a key tuple consisting of the IP address of the

remote system and an integer which is reserved for future use, for example, it can be used to

specify the PID of the remote process. When a message is pushed with cwPush two things

happen:

• The key-tuple and the data are stored in a map and implemented using the Haskell library

Data.Map (a dictionary that is implemented as a balanced binary tree).

• The key-tuple and the creation time are stored in a priority search queue (PSQ), imple-

mented using the Haskell library Data.PSQueue [Hin01] and used as a pointer to the

corresponding binding in the map.

Figure 3.1 shows how CMQ works on the side of the sender. When cwPush is called to push

a new message, a key-tuple k is built that consists of the IP address of the destination and a

unique identifier (i.e. the PID). If the given key is not already a member of the PSQ, then a

new binding (k, p) is inserted where the priority p is the creation-time of the binding. At the

same time a new key-value pair (k, a) is inserted into the map, where a is a finite list that

contains the pushed messages (Figure 3.1 (a)). Message queues are stored in the map structure

and the map structure stores key-value pairs. The value of each key-value pair is a reference to

a separate queue for a specific destination process.

If at the time when a new message is pushed its key k is already a member of the PSQ, the new

message is appended to the end of the queue that corresponds to k (Figure 3.1 (b)). When the

total amount of messages in a queue (the gross length of all messages) for a specific key-tuple

exceeds a set threshold (qthresh) then the whole queue will be serialized and transmitted to the

recipient (Figure 3.1 (d)). In order to ensure that messages only stay in the queue for a short

https://github.com/viloocity/CMQ


3.1 CMQ Implementation 27

time, a timeout threshold is used. No matter whether the data threshold qthresh is reached or

not, once the timeout threshold is reached, all the messages in the queue will be serialized and

sent once the timeout threshold is reached (Figure 3.1 (c)). The function sendAllTo from the

Haskell library Network.Socket.ByteString is used to bring the UDP datagrams onto the wire.

The function sendAllTo guarantees that all data are successfully brought onto the wire and that

there were no errors on the local network interface.

Since CMQ is implemented in a pure functional programming language (Haskell), and pure

functional data types are immutable, updating a node by writing directly to memory is not

supported. The actual appending operation (++), which appends a new message to the end of a

queue, does not update the tail node by changing its pointer so that it points to the new added

message node, but recreates recursively each node in the queue, so that instead of writing a

small node and a pointer to memory, the function returns, a complete new queue with the

newly-added message returns [Unt09b], [Lip11]. This operation takes O(n) time.

It is observed that, while the appending operation has time complexity O(n), adding an new

message to the head of a queue, by consing (cons :) the new message node directly to the head

of queue, takes O(1) time. So an alternative method for the appending operation is to add a

new message node to the head of a queue instead of the tail. The queue created using such

a method maintains a reverse ordering of a FIFO queue. Before transmission of a particular

queue, a reverse operation is performed on the queue to reverse the queue back to its normal

FIFO form. The reverse operation takes O(n) time.

cwPush is implemented using two parallel threads, where thread1 enqueues messages and

checks the total amount of messages; thread2 surveys whether the timeout for a particular

queue is reached. By using time profiling (see Section on Messaging passing performance)

it was discovered that thread2 was very costly and could use up 70% of the CPU time. As a

result, a function called threadDelay was introduced to control and limit the maximum number

of times that the PSQ is checked.

From the above discussion, we see that CMQ can be tuned using two parameters: qthresh (the

maximum amount of messages in bytes allowed in the queue) and the timeout (the maximum

waiting time a message stays in the queue before it is sent).



28 3.1 CMQ Implementation

All map queries that are used in CMQ, including insertion and deletion, have a complexity of

O(log n). A function called findMin is used to check the PSQ for any queues that have exceeded

the timeout threshold. The findMin function is implemented with a complexity of O(1), which

is an attractive feature, considering it is one of the most frequently used functions.

An alternative design solution is to use a more conventional method. Such a method, instead

of using a map data structure with a PSQ as pointer, uses a sequence [Unt12a] of tuples (cre-

ationtime, message-queue) with each sequence data structure being responsible for a specific

destination of messages. However, this method does not scale well. Although it is possible

to examine the right (viewR) and left (viewL) end of a sequence with O(1) complexity, all

sequence data structures require identification and organization, which will increase the com-

plexity of queries and insertions to up to O(n) time. Thus, this method becomes inefficient

when the number of sequences become very large, which unfortunately is a common case in

cloud or large scale computing environments. Aiming for better scalability, CMQ is implemen-

ted in a way such that the identification information is maintained in the key k that associates

queues with their creation time (in the PSQ) and recipients with their specific queues (in the

map). Using the identification information, the system can quickly identify the queue for a

newly pushed message. Since all map related queries take O(log n) time and all PSQ related

queries take O(1) time, comparing with a sequence based solution, CMQ demonstrates a clear

advantage in terms of its efficiency and scalability.

3.1.2 Petri net verification of cwPush

In this subsection we verify the concurrent and asynchronous implementation of cwPush using

a classical Petri net.

According to Hoare, as cited in Hayman [Hay10], a feature of concurrent [and asynchronous]

systems [such as CMQ and scalable software running on computing clouds] in the physical

world is that they are often spatially separated, operating on completely different resources and

not interacting. When this is so, the systems are independent of each other and therefore it is

unnecessary to consider how they interact. Hayman further argues that Petri nets are an ap-

propriate independence model that correctly describes the effect of events on local components

of state called conditions making it possible to describe how events might occur concurrently,



3.1
C

M
Q

Im
plem

entation
29Figure 3.1: Map and PSQ pointer in CMQ. cwPush is called when the key for the recipient process is not present (a), cwPush

is called when the key for the recipient process is already present (b), the timeout for a key has been reached (c), cwPush is

called when the key for the recipient process is present and the data length amounts to qthresh (d).



30 3.1 CMQ Implementation

how they might conflict with each other and how they might causally depend on each other.

Petri nets are providing a formal model (the ‘semantics’) to developers to proof that a program

is correct.

The semantic model essentially describes the behaviour that is illustrated Figure 3.1 and ex-

plained in Section 3.1.1. The Petri net semantic model gives less insight in the implementation

details, such as the underlying Map and the PSQ, but focuses illustrating parallelization. Figure

3.2 illustrates a marking of the starting situation of cwPush described as a classical Petri net

where the data is still with the application in place p0. The execution of the transMit function

(in place p5) depends on the availability if two resources: data and time whereas the actual

transition onto the network transition t6) depends on the presence of the network as a logical

resource. This highlights and supports our finding that the availability of the network as logical

resource is the most critical resource in play because it is a blocking resource that nihilates the

earlier efforts of creating the two non-blocking threads Thread1 and Thread2 that represent the

actual data operations of the local queue.

The Petri net verification of our assumptions is useful demonstrates our implementation and

our previous findings to be sound. The Petri net shows the parallel operation of the two threads

and correctly identifies the network as most critical resource.



3.1 CMQ Implementation 31

Figure 3.2: cwPush described as Petri Net



32 3.1 CMQ Implementation

3.1.3 cwPop

On the recipient the serialized data structure with all its messages is received, deserialized,

and transferred onto a transactional channel (TChan). TChan is an unbounded FIFO channel

implemented in Software Transactional Memory (STM, [HMJH08]). Once the messages are

transferred into TChan, they are ready to be consumed. The function cwPop is used to pop an

individual message from the queue. cwPop is a non-blocking function that examines the TChan

to check whether there are messages before attempting to read messages from the TChan.

If there are waiting messages they are returned having the type Maybe String whereas in a

blocking implementation the returned messages would have the type String .

Whilst in Erlang processes communicate with each other via mailboxes that are identified by

the PID of the mailbox owner, in Haskell the preferred method for interprocess communication

(IPC) are transactional channels TChan. TChan is created whenever it is needed. It has no

dedicated owner and is not associated with any identifiers or addressing scheme. As a con-

sequence, TChan is created by the developer and its identifier needs to be propagated. There

have been some attempts to add additional layers of abstraction to TChan to make it work sim-

ilar to Erlang mailboxes (e.g., Epass [Untd]) and more applicable to actor-based approaches.

The majority of the attempts that are actually working and publicly available work only in

local environment. Thus, they cannot send messages to a remote TChan . CMQ removes this

imitation by allowing messages to be transmitted to a remote TChan via a CMQ queue.

3.1.4 The use of cwPush and cwPop

Listing 3.1 and Listing 3.2 give a simple example that demonstrates how cwPush and cwPop

are used in a real application. Listing 3.1 shows an example of a sender application which sends

10000 messages each of which is contains a 4-byte string. The message type can be any Haskell

data type that is a member of the Haskell serialize class. The application developer specifies the

UPD port number (here UDP port 4711) to create the socket for UDP data transport. Listing 3.2

shows the example of the receiving application that uses cwPop to retrieve messages.

2 {-# LANGUAGE OverloadedStrings #-}



3.1 CMQ Implementation 33

4 import System.CMQ

import Network.Socket hiding (send, sendTo, recv, recvFrom)

6 import Control.Monad

8 main = withSocketsDo $ do

qs <- socket AF_INET Datagram defaultProtocol

10 hostAddr <- inet_addr ’’192.168.35.84’’

bindSocket qs (SockAddrInet 4711 hostAddr)

12 (token) <- newRq qs 512 200 --initializes the queue with

the desired parameters

--qlength = 512B and max delay time in the queue is 200ms

(minimum is 40ms)

14 --token is the queue identifier where messages are sent

to or poped off

forM_ [0..10000] $ \i -> do

16 cwPush qs (’’192.168.35.69’’, 0) (’’ping’’ :: String)

token --send message ’’ping’’ to

--ipv4 address 192.168.35.69 using the queue specified

in token

Listing 3.1: Example of a sending application that uses cwPush.

2 import System.CMQ

import Network.Socket hiding (send, sendTo, recv, recvFrom)

4 import Control.Monad

import Data.Maybe

6

main = withSocketsDo $ do

8 qs <- socket AF_INET Datagram defaultProtocol

hostAddr <- inet_addr ’’192.168.35.69’’



34 3.2 Testbed specifications

10 bindSocket qs (SockAddrInet 4711 hostAddr)

token <- newRq qs 512 200

12 forever $ do

msg <- cwPop token :: IO (Maybe String)

14 print msg

Listing 3.2: Example of a receiving application that uses cwPop.

3.1.5 Where is the queue?

There are two queues involved for every recipient process: the queue stored in the map on the

sender and the TChan, which is in fact a simple STM-based FIFO queue on the remote recipient

host. However, the detailed implementation is completely hidden from the users, who can see

the CMQ message queuing system as a single distributed queue with two functions cwPush and

cwPop. The function cwPush is called when a message is needed to be sent to a recipient, and

the function cwPop is called when the recipient process reads a message.

3.2 Testbed specifications

The testbed consisted of a cloudstack [Untb] POD implemented on data centre grade hardware

(listed in Table 3.1) analogous to commercial computing clouds. Figure 3.3 shows a logical

diagram of two cloud computing nodes from our POD. The guest virtual machines (VMs) used

for CMQ testing were resident on two separate computing nodes. Direct networking based on

VLAN tagging is configured between the VMs and the physical networking gear. The VMs on

our POD communicate via VLAN ID 2012, which is part of a VLAN trunk terminated on the

computing nodes. The cloudstack (CS) virtual router is used to provide DHCP functionality

and provide IP addressing to the VMs but, in this configuration, does not actually take part in

routing and forwarding of packets.

The code that was used for benchmarking is published on github.com and is available at

https://github.com/viloocity/Haskell-IPC-Benchmarks.

https://github.com/viloocity/Haskell-IPC-Benchmarks


3.3 Benchmarking methodology 35

Figure 3.3: Logical diagram of the testbed configuration.

3.3 Benchmarking methodology

The Haskell benchmarking library Criterion [O’S15] is used for all the tests and a garbage

collection was performed after every test. The CMQ testbed was setup in a client-server model

where at first the client and the server would alternately send and receive messages similar to

the ping pong test of the INTEL MPI benchmarks (IMB) [INT06]. In order to investigate the

benefits of asynchronous message exchange (fire-and-forget messaging) and queuing, CMQ

itself was allowed to use asynchronous non-blocking send operations (which means CMQ was

allowed to send the next message before a reply to the previous message had been received)

similar to the IMB ping ping test.



36
3.3

B
enchm

arking
m

ethodology

Table 3.1: CMQ testbed setup

Hardware Software

2 Server HP DL 580 G5 4 quad core Intel

Xeon E5450 @ 3GHz 32GB RAM

Citrix XEN 5.6

2 Linux VMS on separate XEN Server ARCH Linux 2011.8, Haskell GHC

7.0.4

2 vCPUs @ 2GHz 4GB RAM

2 Fabric extenders Cisco Nexus 2248TP-E

1 Core switch Cisco Nexus 7000 NXOS 5.1(2)



3.4 Evaluation criteria 37

3.4 Evaluation criteria

ASM1 Asynchronous I/O or Non-Blocking I/O

References [Bro11], [OT10]

Rationale Asynchronous I/O, or non-blocking I/O, is a form of input/output pro-

cessing that permits other processing to continue before the transmission

has finished. Input and output (I/O) operations on a computer can be ex-

tremely slow compared to the processing of data. For example, during a

disk operation that takes ten milliseconds to perform, a processor that is

clocked at one gigahertz could have performed ten million instruction-

processing cycles. [Wik15a]

Specifics Typically, we think of I/O as ‘blocking’, for example working with files,

databases or when data is serialized and transmitted to a remote process

using TCP/IP, the process will wait for the transmission to finish before

continuing, as the return value determines whether the transmission was

successful. Blocking behaviour is in the way of scalable programming.

Ratings

1. The programming language does non-blocking I/O by default.

2. The programming model supports asynchronous I/O. An

open/read/write operation on devices and resources (sockets,

filesystem, etc.) does not block the calling thread.

3. There FPL is limited to the synchronous ‘C-like’ model.

ASM2 Preventing Deadlocks

References [Sin89], [Mar12]

Rationale Deadlocks consist of a set of processes each holding a resource and

waiting to acquire a resource held by an other process in the set.



38 3.4 Evaluation criteria

ASM2 Preventing Deadlocks

Specifics The management of locks is important in concurrent, multi-threaded en-

vironments such as computing clouds. While it is difficult to measure

how well a programming languages supports concurrency, it is compar-

atively easy to observe and to judge how deadlocks are prevented.

Deadlock can arise if four conditions hold simultaneously:

1. Mutual exclusion: only one process at a time can use a resource.

2. Hold and wait: holding at least one resource and is waiting to

acquire additional resources held by others.

3. No preemption: a resource can be released only voluntarily by

the process holding it.

4. Circular wait: there exists a set {P0, P1, ..., Pn } of waiting

processes such that: P0 is waiting for a resource that is held by

P1, P1 is waiting for a resource that is held by P2, ..., Pn-1 is

waiting for a resource that is held by Pn, and Pn is waiting for a

resource that is held by P0.

Ratings

1. The programming language implements concurrency models that

prevent deadlocks (make it impossible to occur).

2. The programming language can deal with deadlocks, for example

avoiding deadlocks (careful resource allocation), ignoring dead-

locks (Ostrich algorithm), detect deadlocks (let them occur, de-

tect, recover).

3. Unpredictable or avoiding deadlocks is possible but not practical.



3.4 Evaluation criteria 39

ASM3 Support for node-level shared nothing architectures

References [Hen06], [Sto86]

Rationale Each node is independent and self-sufficient, and there is no single point

of contention across the distributed system. None of the nodes share

memory or disk storage.

Specifics Applications in distributed architectures span across several systems

(physical as well as virtual) or containers. Shared nothing architectures

offer advantages that are sought after in computing clouds, for example

systems clustering, eliminating single points of failure, self healing cap-

abilities, non-disruptive hardware and software upgrades (also called

‘zero downtime upgrades’) but require appropriate communication with

the remote unit of scale, such as processes running on the far system.

Ratings

1. The FPL provides rich and precise means to create shared nothing

architectures, for example by closely integrating with a concur-

rency model that applies to local and remote processes.

2. Node-level shared nothing architectures can be implemented us-

ing third party libraries but they are not cost effective and not

sufficient.

3. There is neither explicit nor implicit support of node-level shared

nothing architectures.

ASM4 Message passing

References [Vin07], [Hew10], [Agh86]

Rationale Inter node messaging is required to transmit data, such as state informa-

tion, and re-synchronize the workloads, such as functions, processes or

micro services in distributed environments.



40
3.5 Assessment of asynchronous operations and messaging in the functional

programming language Haskell

ASM4 Message passing

Specifics Efficient message passing implementations to re-synchronize processes

and transmit data across the distributed environment are required.

Ratings

1. The programming language has built-in support for inter-node

message passing.

2. The programming language has support for message passing

between local processes that can be extended to obtain inter-node

message passing.

3. Third party message queues are the best alternative to obtain

inter-node message passing.

3.5 Assessment of asynchronous operations and mes-

saging in the functional programming language Haskell

Now, Haskell is assessed against the criteria developed in the previous section. The feasibility

is demonstrate using the source code of CMQ, a UDP-based inherently asynchronous message

queue. CMQ has been developed as artefact to verify the feasibility of using Haskell to support

inherently asynchronous designs that perform especially well in modern Layer 2 switches in

data center networks, as well as in the presence of errors. Taking the physical implementation of

computing clouds into account we avoid falling for the eight fallacies of distributed computing

and see whether Haskell abstracts these concerns away from the developer or leaves the issues

up to the developer to solve by using for example external libraries or language extensions.



3.5 Assessment of asynchronous operations and messaging in the functional
programming language Haskell 41

3.5.1 ASM1: Asynchronous I/O or Non-Blocking I/O

Haskell supports asynchronous I/O through 4:

1. Strict separation of I/O and computation.

2. forkIO, a function that creates lightweight ”green threads” that are designated to

handle I/O operations.

3. Software Transactional Memory (STM) that includes for example the atomically

combinator and channels such as TChan that alleviates the composability of asynchron-

ous elements.

Strict separation of I/O and computation

According to [OGS08] "Haskell strictly separates pure code from code that could cause things

to occur in the world. That is, it provides a complete isolation from side-effects in pure code.

Besides helping programmers to reason about the correctness of their code, it also permits

compilers to automatically introduce optimizations and parallelism." I/O and side effects are

considered by encoding them into values of the type IO a, such as the polymorphic identifier

of the read/write queue IO (Cmq a) in listing 3.3.

Values of the type (IO a) cannot be casted into pure values: unsafe :: IO a -> a.

However, this does not hold in practice since many Haskell applications (and modules) make

use of the one or the other work around by using for example a mutable data type such as

IORef to handle state or the function unsafePerformIO create for example global mutual

variables. Furthermore Haskell’s Foreign Function Interfaces (FFIs) that is used to call func-

tions that are provided by imperative languages frequently require developers to make use of

mutual data types or the function unsafePerformIO thus diluting the experience of a pure

4Additionally the package Control.Concurrent.Async provides asynchronous actions

Async a that correspond to threads by providing essentially an allegedly safe wrapper for threads.

This Haskell package has not been investigated within the scope of this thesis where we address the

most prevalent Haskell packages.



42
3.5 Assessment of asynchronous operations and messaging in the functional

programming language Haskell

functional programming language that Haskell aspires to be. The authors of this thesis touch

upon the argument whether a FPL has to be ‘pure’ in various places of this thesis.

From our own observations, we assume that it is much harder to run into issues with asyn-

chronous code and concurrency with an essentially side-effect free programming language like

Haskell than in programming languages with unrestricted side effects.

2 newRq :: Serialize a => Socket -- Socket does not need to be

in connected state.

-> Int -- Maximum Queue length in bytes.

4 -> Rational -- Maximum Queue age in ms.

-> IO (Cmq a) -- Token returned to identify the

Queue.

Listing 3.3: Type signature of the function newRq

Lightweight threads designated to handle I/O operations

Listing 3.4 shows source code of the function newRq, which initializes one instance of the

message queue that sends and receives messages. Users can initialize as many instances as

required, for example, one instance per application or peer. The message queue is instanti-

ated using the forkIO function to create both a sending thread (3.4 line 7) and a receiving

thread (3.4 line 8) demonstrating a basic case of performing two I/O operations in parallel and

continuing those without blocking the main function.

2 newRq s qthresh tdelay = do

q <- atomically $ newTVar (PSQ.empty)

4 m <- atomically $ newTVar (Map.empty)

t <- newTChanIO

6 let cmq = Cmq qthresh tdelay q m t

forkIO $ loopMyQ s cmq q m



3.5 Assessment of asynchronous operations and messaging in the functional
programming language Haskell 43

8 forkIO $ loadTChan s t

return cmq

Listing 3.4: Initializing the asynchronous message queue CMQ

Software Transactional Memory

In the case of CMQ several threads work on the same data structures, a Priority Search Queue

(PSQ) and a Map that are used as message store and to the message store. Haskell Software

Transactional Memory (STM) uses transactions on memory similar to database transactions

[HMPJH05] to provide consistency and isolation of data structures that might be accessed by

several concurrent threads, eventually alleviating the need for locks. It must be stressed that

the atomically combinator can in practice alleviate the need for threads that may otherwise

would have multiple locks and thus become difficult to compose and a risk for the creation of

deadlocks. STM abstracts these concerns away from the developer thus greatly reducing the

burden on the developer.

For example, the atomically combinator, that is part of the Haskell Control.Monad.STM

package, is used in Listing 3.5 line 4 - 9) to isolate the function newTVar from other threads

while it is updating the PSQ and the Map. The update of the queue will only be done if the

whole series of STM actions in the atomic block succeed. Otherwise the transaction will be

rolled back.

insertSglton :: a -> KEY -> TPSQ -> TMap a -> IO ()

2 insertSglton newmsgs key q m = do

time <- getPOSIXTime

4 atomically $ do

qT <- readTVar q

6 mT <- readTVar m

writeTVar q (PSQ.insert key time qT)

8 writeTVar m (Map.insert key [newmsgs] mT)

return ()



44
3.5 Assessment of asynchronous operations and messaging in the functional

programming language Haskell

Listing 3.5: Inserting a new message into the queue

While green threads can be considered as a Haskell default, the use of STM is an optional trade-

off between safety and speed. However, many blocking operations, such as network I/O or file

activity cannot work under the arbitrary. Besides STM, Haskell has for example the already

mentioned mutable data types and mutexes (locks) that are more efficient. The investigation of

the efficacy of for example mutexes vs STM will be touched upon in the following section on

deadlocks but is largely out of scope of this thesis.

Rating: 1. Haskell does non-blocking I/O by default.

3.5.2 ASM2: Preventing Deadlocks

Haskell can deadlock, even when the STM Monad is used. Haskell supports the detection of

deadlocks and avoiding deadlocks through:

1. Deadlock detection, techniques to detect and debug concurrent programs.

2. Careful resource allocation, such as STM.

Deadlock detection

The Haskell platform includes options and packages that contain tools that can find deadlocks

and debug threads, for example the Threadscope tool, functions that are part of the package

GHC.conc and exceptions that are part of the Haskell base package Control.Exception.Base.

The Haskell package GHC.conc provides the function threadStatus that returns the

detailed status of a (blocked) thread, for example: threadBlocked [Blockreason].

However, these functions are not useful for prevention of deadlocks in the control flow of an

application since they break abstractions [Mar12] thus providing out of context exception that

may refer to the implementation of a function or data type rather than staying on the level of

the code that needs debugging.



3.5 Assessment of asynchronous operations and messaging in the functional
programming language Haskell 45

The GHC runtime system can detect deadlocks and send the exception

BlockedIndefinitelyOnSTM if the thread is blocked by an STM transaction or

BlockedIndefinitelyOnMVar if the thread is blocked by a mutex. Rather than hanging

in a deadlock state, in practice the program ends with an error message that can be used for

debugging. Thus, deadlocks can be detected but not recovered.

Careful resource allocation

STM in Haskell prevents deadlocks but is still vulnerable to starvation [OGS08] and can live-

lock. STM is not a silver bullet and, for high concurrency systems, it leaves open many ques-

tions. For example, STM is an optimistic model that has no timeouts and may lead to slow-

downs until a transaction finally goes through after many retries.

Potential alternatives to STM that let developers control thousands of freely interacting objects

and libraries (that are in practice maintained by multiple developers in different corners of the

planet) would be single threaded code, for example node.js. In chapter Coordination, we

will further argue whether the abstractions that threads provide are essential or not. Addition-

ally we also have to consider human dimensions, such as understandability of the software

project and productivity of developers that confirm the feasibility of STM in high concurrency

environments.

Rating: 2. The programming language can deal with deadlocks, for example avoiding

deadlocks (careful resource allocation), ignoring deadlocks (Ostrich algorithm), detect

deadlocks (let them occur, detect and recover).

3.5.3 ASM3: Support for node-level ’shared nothing’ architectures

Shared nothing architectures for database systems have been under research since the year 1986

when Stonebraker [Sto86] found that node-level SN architectures have special merit compared

to shared disk and shared memory architectures. Shared Nothing (SN) architectures mitigate

the consequences of distribution, for example synchronization issues. Distribution has con-

sequences on the following levels:



46
3.5 Assessment of asynchronous operations and messaging in the functional

programming language Haskell

1. Thread-level, for example using STM instead of shared memory so that by design no

thread can crash the other.

2. Process-level, for example Inter Process Communication (IPC).

3. Node-level, for example IPC, Message Queues, APIs (such as REST APIs) or Protocols

(such as TCP/IP).

Node-level (server clusters) Share Nothing architectures help developers accounting for failures

and mitigating failures by design. For more information on the importance of accounting for

failure in computing clouds read also Section 3 Subsection The outward-looking perspective

earlier in this chapter. It is possible of course that features that implement SN architectures at

process-level or thread-level also implicitly implement SN architectures on node-level.

For example, the actor model 5 is often credited to implement a SN model on programming

language level as well as in distributed environments. Examples of the actor models are Er-

lang/OTP message passing or the Akka library for the programming language Scala, a multi-

paradigm programming language that includes functional elements.

However, Tasharofi et al [TDJ13], examines sixteen popular Scala programs published on Git-

hub that use actors, finds that only three programs use remote actors to implement distributed

computation and concludes that “developers tend to use other ways than remote actors for im-

plementing distributed computations”. According to Tasharofi developers frequently choose

other ways to implement distributed computations because the absence of a means of coordin-

ation (of actors at large scale) and inadequacies in supporting asynchronous IO. Elements that

the authors of this thesis have identified as essential for a FPL to have special merit in comput-

ing clouds.

Haskell supports node-level Shared Nothing architectures with:

1. Elimination of mutual data and state.

2. Third party message queues that developers can use to implement concurrency models

across systems.

5The actor model is a concurrency model



3.5 Assessment of asynchronous operations and messaging in the functional
programming language Haskell 47

3. Cloud Haskell, a proof of concept.

Elimination of mutable data and state

Haskell is a pure functional language where data is by default immutable. Copies of the data

are shared rather than the data itself. This makes distributed programming cleaner and safer.

When bindings in functional data structure, such as a Map or a PSQ6 are inserted, deleted

or modified, strictly speaking, the returned data structure is not the original data structure but

a data structure that is identical with the previous data structure but containing the alteration.

Their insert, update and delete operations involve some degree of copying as opposed to typical

mutable data structures where changes are written directly to the memory. To be more precise,

a Map or PSQ insertion involves the copy of O(log n) amount of data for a data structure

with n elements [Oka99] plus some additional logarithmic overhead [BJDM97]. It remains

to be shown by future research whether or not a pure lazy language (e.g., Haskell) and its

data types can retain the same asymptotic memory use as an impure strict one (e.g., Erlang)

in all situations. However, in return functional data structures make it easier to keep multiple

modified versions of the same data structure without storing whole copies.

Third party message queues

Several third party message queues provide Haskell bindings but they are not cost effective.

Because protocols and message queues are at the center of distributed systems, we investigate

message queues separately in Section 3.5.4 of this thesis.

Cloud Haskell

Cloud Haskell, proposed in [EBPJ11], aimed to further develop Haskell as a programming lan-

guage for developing distributed applications. It was influenced by Erlang, and was intended

to provide support for the actor model, message passing, and the mobility (with limitations) of

6Priority Search Queue



48
3.5 Assessment of asynchronous operations and messaging in the functional

programming language Haskell

functions with co-located data (closures). It must be noted however, that, based on the experi-

ence of the authors, the ability to allow the migration of both, code and execution state from one

executing unit to a different system (that is called ‘code mobility’) has to date no importance in

cloud computing environments. Code mobility must not be mixed up with concurrency models

that can cross the system boundaries, such as the actor model. These concurrency models are

migrating data and not code.

Cloud Haskell, targeting language-level support for distributed applications, explores a lower,

compiler-level implementation, while message queues and middleware are intended for a higher-

level support. The benefit of a higher-level implementation is the flexibility that the approach

is language-independent7, can be easily adapted to other languages and environments, and thus

serve the ultimate goal: finding appropriate communication approaches for cloud computing

and the ubiquitous computing paradigm.

Cloud Haskell is currently still in proof of concept stage and most likely not ready for the

adoption in large scale mission critical systems, such as computing clouds.

Rating: 2. Node-level shared nothing architectures can be implemented using third party

libraries but they are not cost effective and not sufficient.

3.5.4 ASM4: Message passing

The relevance of message passing for computing clouds stems from the distributed program-

ming model that is chosen to code either the cloud platform or the guest application. [Hew10]

sees the Actor concurrency model [Agh86] as the foundation of cloud computing. The Actor

model enables “asynchronous communication and control structures as patterns of passing mes-

sages” [Hew77]. Two well-known implementations of the actor model are e.g. the functional

programming language Erlang [AVW93] and the Akka toolkit [Unta].

It may seem odd that this assessment talks about the benefits of UDP as message passing

protocol when the focus of the evaluation is the merit of FPLs in the context of computing

7Actors could be written in a variety of languages while using the same message queue that is used

to implement for example the actor framework



3.5 Assessment of asynchronous operations and messaging in the functional
programming language Haskell 49

clouds. However, the design of the UDP protocol fits the already-mentioned notion of cloud

computing well, that is, to accept occasional failure and manage it, rather than struggling to

prevent it.

The increasingly wide adaptation of the UDP protocol indicates the suitability of the UDP

protocol as an efficient transport protocol for supporting distributed applications. For example,

UDP is used for data transportation in Network File System (NFS) and for state and event trans-

portation in Massive Multiplayer Online Games (MMOGs) [WCC+09], [Net]. EverQuest, City

of Heroes, Asheron’s Call, Ultima Online, Final Fantasy XI, etc. are among many MMOGs

that use UDP as its transport protocol. The fact that MMOG applications are by nature of

large, but elastic scale make them ideal customers for IaaS and PaaS offerings. By using cloud

computing and storage facilities, not only cost and risks, that are usually linked to building

new MMOGs, reduced [Sun10], but also over-provisioning MMOG hardware to be on standby

for peak times will be avoided [MFD10]. However, whether computing clouds can fulfil the

stringent real-time requirements of MMOGs is still an open issue [NPFI09].

In contrast to MMOGs that are largely event driven where the size of individual messages is ex-

pected to be small [Hen04], NFS is data driven with larger packet sizes and higher throughput.

NFS, according to [KWW94], the most successful distributed application ever, has been using

UDP as underlying transport protocol for more than two decades and was a stateless protocol

up to NFSv38. Compared with a large-scale cloud environment, NFS is arguably designed for a

limited scale. The UDP based Data Transfer Protocol (UDT), described in [GG07], has showed

the applicability of using the UDP-based UDT protocol for “cloud span applications” and won

the bandwidth challenge at the International Conference for High Performance Computing,

Networking, Storage, and Analysis 2009 (SC09). Furthermore, [RTLQ09] also discovers that

reliable transport protocols that outperform TCP transport protocols can be designed in the

basis of UDP.

While a UDP message queue for Actors is a new idea, UDP-based MOM (Message-Oriented

Middleware) is not. The open source Light Weight Event System (LWES) [Unt09a] is a UDP-

based MOM that is described as having a strong position in large scale, real-time systems that

8NFSv4 preserves state and is no longer built to deal with packet loss, thus requires the TCP pro-

tocol.



50
3.5 Assessment of asynchronous operations and messaging in the functional

programming language Haskell

need to be non-blocking and is also described by Yahoo! as part of US Patent 2009/0094073

”Real Time Click (RTC) System and Methods”. LWES is also described as being useful

(for transporting large data to computing nodes) for parallel batch processing with Hadoop

[BCC12], which is an open source implementation of Google’s Map Reduce [DG08a]. In fact,

MapReduce and Hadoop are posited, in [FZRL08], as the right cloud computing programming

models.

Haskell has message passing support; such message passing channels (read also section Care-

ful resource allocation). However, these means are implemented to exploit multi core architec-

tures9 on the node and have no built-in support for physically distributed environments such

as computing clouds. The Haskell Wiki[Has12], that is the main source for documentation of

the Haskell FPL, gives a ‘trivial chat server’ as an example to show how inter-node message

passing with multiple connected users can be obtained using channels. The authors of this

thesis extend on this example to evaluate if Haskell has special merit for obtaining an efficient

lightweight inter-node message queue for communicating processes.

We find that Haskell has moderate merit for creating an efficient lightweight inter-node message

queue with the following features:

1. Serialization libraries.

2. Resilience under error conditions.

Serialization libraries

Time and space profiling of the CMQ message queue indicated that serialization is the

major concern. The heap profile Figure 3.4 is split into the 20 most prominent cost centres

as inserted by the compiler (qthresh was set to 512K and timeout to 200ms. The maximum

length tested was five hours where the pattern could be sustained). The memory consumption

of 80K is lean and we find that the memory consumption related to serialization cost (the band

labelled as ‘PINNED’) is the most prominent feature. In CMQ a message queue that consists

9or streaming data from files



3.5 Assessment of asynchronous operations and messaging in the functional
programming language Haskell 51

of multiple messages is serialized, but these efforts do not seem to significantly alleviate the

overhead of serialization.

The nominal performance of the Haskell serialization libraries depends on the functional data

structure that needs be be serialized for example, serialization of polymorphic data struc-

tures or maps is slower than the serialization of simple data structures. The messages used

in our performance tests are composed of only 8-bit ASCII characters and the Haskell library

Data.Bytestring.Char8 is used for the serialization. For messages or objects with other

character encodings, the Haskell Data.Bytestring library or non-native serialization lib-

raries that provide Haskell bindings, such as MessagePack, may be used for the serialization.

Although for the performance tests we send messages composed of 8-bit ASCII characters,

CMQ is internally built with polymorphic functions and can transfer arbitrary Haskell Data

Types under the condition that they can be serialized. In order to achieve polymorphism, CMQ

must compare the queue length to qthresh when the queue is serialized, since functions that can

determine the length of an ASCII based queue do not fire any more under these circumstances.

Thus, more serialization activities are necessary compared to an implementation that would be

limited to the data type String . Overall, there was no evidence of space leaks that is a measure

of code quality.

Message passing performance. It is difficult to make generalized statements whether the

native serialization libraries in Haskell are competitive with for example serialization in other

programming languages.

To get a quantitative indication we used the same Haskell in a cloud computing test bed (il-

lustrated in Section 3.2, Figure 3.3 and Table 3.1) to benchmark three message passing ar-

chitectures and paradigms. MessagePack [Unt12b] and 0MQ [Untc] are chosen in the CMQ

performance evaluation. MessagePack and 0MQ are two IPC systems that provide Haskell

bindings. MessagePack is a library that is based on RPC and focuses on object serialization.

0MQ provides a framework that focuses solely on message passing and queuing.

MessagePack uses RPC to transfer messages that, in fact, are all serialized objects, and was

initially described as IPC to ”pass serialized objects across network connections” [Unt12c].



52
3.5

A
ssessm

entofasynchronous
operations

and
m

essaging
in

the
functional

program
m

ing
language

H
askell

heap_cmq +RTS -h 582,823 bytes x seconds Sat Aug 18 10:50 2012

seconds0.0 2.0 4.0 6.0

by
te

s

0k

20k

40k

60k

80k

OTHER
(268)cwPop/collectPong/run...
(255)runTest/main/Main.CAF
(256)newRq/runTest/main/Ma...
(274)sendPing/runTest/main...
(244)Main.CAF
(260)loopMyQ/newRq/runTest...
(279)cwPush/sendPing./sen...
(176)GHC.IO.Encoding.CAF
(246)main/Main.CAF
(216)Data.IP.Addr.CAF
(149)GHC.Conc.Signal.CAF
(129)SYSTEM
(173)GHC.IO.Handle.FD.CAF
(504)>>=..ks’/ensure./en...
(287)appendMsg/cwPush/send...
(245)CMQ.CAF
(276)sendPing./sendPing/r...
(476)getListOf.go/getListO...
(125)PINNED

Figure 3.4: Graph for memory usage on the heap. The heap is split into the 20 most prominent cost centres as inserted by the

compiler. qthresh was set to 512K and timeout to 200ms. The maximum length tested was five hours where the pattern could

be sustained..



3.5 Assessment of asynchronous operations and messaging in the functional
programming language Haskell 53

Although the most recent descriptions of MessagePack focus mainly on its outstanding object

serialization capabilities, it serves also as a general message passing mechanism.

Mean performance. By and large, the story of our efforts revolves around qualitative

measurements of the networking and serialization performance of different implementations

and bindings in Haskell. Our benchmarks address raw message passing performance where

serialization is tested implicitly. Other test data and code may yield different results. However,

our results give a raw estimation of serialization performance.

Figure 3.5 presents the mean performance of UDP Sockets, MessagePack, 0MQ and CMQ

for exchanging 1000 messages with message sizes between 4 B and 16 KB. UDP Sockets

are not included in Figure 3.6 for the reason that the benchmarking application used for UDP

sockets supports only synchronous operations in lossless environments. The test results show

that when message sizes are less than 1 KB UDP sockets perform comparable to TCP-based

messaging queues; when message sizes are larger than 1 KB, UDP sockets outperform all tested

TCP queuing methods. As for CMQ, it, in general, outperforms all other messaging queuing

methods. CMQ demonstrates a clear advantage for small to medium sized messages up to

4KB. It shows a speed increase of up to 100 times for the transmission of small messages such

as integers (e.g. error codes), flags or applications that need only a single request - response

[Pes06], since TCP messaging requires the establishment of a TCP connection which would

incur a 60% overhead for a small sized message. From the tests it was discovered that CMQ

achieves its best performance with a qthresh of 512B (a value that is also used by the DNS

protocol) and a queue timeout threshold of 200ms.

Figure 3.5 shows that this optimisation makes invoking CMQ to send messages from Haskell

faster than simply sending UDP packets from Haskell provided that the message size is less

than approximately 8KB. However, the length of time taken to send UDP datagrams appears

to be extraordinarily high. This leads me to be concerned that the numbers are telling us more

about the benefits of avoiding the implementation or API to UDP in Haskell rather than the

benefits of the CMQ design and implementation in general.



54
3.5

A
ssessm

entofasynchronous
operations

and
m

essaging
in

the
functional

program
m

ing
language

H
askell

Figure 3.5: Message passing performance on a lossless data center network



3.5
A

ssessm
entofasynchronous

operations
and

m
essaging

in
the

functional
program

m
ing

language
H

askell
55

Figure 3.6: Message passing performance on a data center network with 1.4% packet loss



56
3.5 Assessment of asynchronous operations and messaging in the functional

programming language Haskell

Reality-check. To give a more nuanced flavour of the sorts of problems we encountered,

we have chosen to share a few in more detail.10.

Figure 3.5 shows sending 1000 messages using UDP sockets (no CMQ) taking between 1.0

seconds and 1.2 seconds for messages of size 4 bytes through 1Kbytes. This gives a packet-send

time of about 1 ms. Testing on consumer-grade hardware (a T400 Thinkpad and an Intel Q4800

4-core PC) using fast Ethernet connectivity, wireless connectivity and localhost connectivity,

we get packet-send times of between 10 times and 100 times less than that. For example, using

the open source network benchmarking program nutccp over 100 Mbps Ethernet gives UDP

send times of 6.8 µs for 5-byte messages rising steadily to 46.2 µs for 512-byte messages to

87.2 us for 1024 bytes. At 512-byte packets, for wireless (limited to about 14 Mbps for my

network), I get 280 µs and for localhost (avoiding most of the networking stack and all the

physical network but leaving the network API latency) we get 7.14 µs per packet.

Although nutccp is compiled code, it remains unanswered whether the increased latency

displayed in Figure 3.5 can be best explained with the use of a high-level language, the over-

head of serialization (as indicated in our findings) or other inefficacies that are inherent to the

underlying Haskell UDP API.

A quick experiment using Perl as a high-level language to send 100000 UDP datagrams over

the above wireless network and receive them using netcat and awk gives the same figure of

280 µs per packet. This is using the following receiver on the PC:

% nc -lu 1234 | awk ’{n++}($1 == "start"){s = systime();

print "start=",s}($1 =="end"){e = systime();

print "end=",e,"delta=",e-s,"count=",n;exit}’

and sending with the following Perl commands, that can in practice be expressed as one-liner:

% perl -MIO::Socket::INET -le ’$msg = "a"x511;

$s =IO::Socket::INET->new(PeerAddr => "10.0.0.1", PeerPort => 1234,

Proto =>"udp");

10These measurements have been contributed by an anonymous reviewer



3.5 Assessment of asynchronous operations and messaging in the functional
programming language Haskell 57

print $s "start";

for($i=0;$i<100000;$i++){print $s $msg} print $s "end"’

This produces the output:

start= 1343748860

end= 1343748888 delta= 28 count= 100002

This verifies the 280µs per packet and a tcpdump showed the required 512-byte UDP data-

grams being sent. The majority of that 280 µs is from the slow speed of the network medium

and indeed the same experiment done on just the Thinkpad pointing at localhost show packet

times of 13us (with 0.9% packet-drop). Since Figure 3.5 shows 512-byte UDP messages taking

1100 µs rather than times such as 13-280 µs that we measured (albeit simplistically and not in

our cloud computing testbed), our concern was that the actual subset of that time taken up with

the UDP implementation is a very small proportion of the overall times measured.

More detailed measurements, such as the heap and time profiles (for more details see also Fig-

ure 3.4) were done to show the difference between the times spent in implementation-specific

UDP wrapper code and the times spent in unavoidable (or not easily avoidable) network APIs

and network send times. All findings indicated that serialization, that is unavoidable for com-

plex data types, was the most prominent performance bottleneck requiring further expert dia-

gnosis.

In spite of these difficulties, we are satisfied with the performance we have achieved to date.

Resilience and temporal predictability

The need to investigate resilience stems from two considerations:

1. ”The network is reliable” is the first fallacy of distributed computing–for more informa-

tion read the section Testbed specifications of this thesis.

2. More recent and immediately related to computing clouds Birman and Chockler [BCvR09]

state that currently “Not enough is known about stability of large-scale event notification



58
3.5 Assessment of asynchronous operations and messaging in the functional

programming language Haskell

platforms, management technologies, or other cloud computing solutions” and identifies

the development of testing methods that can validate the relevance and demonstrate the

scalability of any new solution . . . without working at some company [e.g. Yahoo,

Google, Amazon] that operates a massive but proprietary infrastructure” as an item on

the cloud computing research agenda.

TCP is a reliable protocol that provides reliable, connection-oriented delivery of data. It detects

for example packet loss, delay, congestion and replays lost packets when required. However,

the reliability causes a significant overhead, especially for messages of small sizes. This is

one of the disadvantages of using TCP. More seriously, when delay or packet loss are detec-

ted, TCP assumes congestion and slows down the rate of outgoing data [Pes06]. [MSMO97]

and [SW08] propose formula to calculate the effective bandwidth of TCP connections in the

presence of errors where, for example, a 0.2% packet loss eventually slows down and limits

the effective connection speed to 52.2Mbps irrespective of the nominal bandwidth. In practice,

retransmitting packets is very costly since it also involves queuing and reordering packets that

arrive until the re-transmit is complete, thus stopping time-sensitive data from going through in

the meantime [Fie09]. Furthermore CPU usage spikes when TCP retransmissions are needed

and applications frequently become unresponsive.

We measured the Ping–Pong message passing performance using message sizes of 4 byte, 128

byte, 512 byte, 1Kb, 2Kb, 4Kb, 8Kb and 16Kb in a loss less data center network built with

state of the art data center hardware (for more information abut the testbed read Section 3.2 of

this thesis) and in an unreliable network based on the same architecture where the packet loss

is simulated with iptables [Unte] (see command listed below) on one of the Linux VMs to drop

incoming packets with 0.5% probability.

Figures 3.5 and 3.6 illustrate that the impact of packet loss on different message passing

paradigms –except for UDP based messaging– brings about unacceptable delays and con-

sequences for the operation of computing clouds and the deployed applications.

i p t a b l e s −A INPUT −m s t a t i s t i c −−mode random −−p r o b a b i l i t y 0 .050 − j

DROP



3.5 Assessment of asynchronous operations and messaging in the functional
programming language Haskell 59

We found that CMQ is largely unaffected and produces the same performance results (within

the standard deviations) as if there were no errors on the network. All other benchmarked

queuing methods show an overall delay of approximately a factor of 4 and became largely

unpredictable. It was also discovered that in the presence of errors the benchmark results

of CMQ still show a narrow standard deviation. For example, for a message of 512 Bytes,

the standard deviation of CMQ stayed at 52ms whilst the standard deviation of MessagePack

increased from 54ms (with no simulated data loss) to 820ms.

Figures 3.7, 3.8 and 3.8 are Criterion micro benchmarks that depicture the raw measurements

on the right and on the left a kernel density estimate (KDE) [Wik15d] of time measurements.

Measurements are displayed on the y axis in the order in which they occurred. This graphs the

probability of any given time measurement occurring. A spike indicates that a measurement

of a particular time occurred; its height indicates how often that measurement was repeated

[O’S15]. Both parts of the graphs show that in unreliable networks the UDP based CMQ has

much higher temporal predictability. The associated graphs are sharper bounded, that means

it gives only a small set of possible outcomes, which could be a few possible results or results

within a small range.

Figure 3.7: MessagePack benchmark for 1000 send/receive cycles with 512 byte

payload in a ”lossless” datacenter network.



60
3.5 Assessment of asynchronous operations and messaging in the functional

programming language Haskell

Figure 3.8: MessagePack benchmark for 1000 send/receive cycles with 512 byte

payload in a network with 0.5% loss.

Figure 3.9: CMQ Benchmark of 1000 send/receive cycles with 512 byte payload

in a network with 0.5% loss.

In this category Haskell does not have enough merit to achieve higher ratings. The extension

of the local support of message passing into physically distributed environments is possible but

less feasible than the use of state of the art message passing libraries and frameworks.

Rating: 3. Third party message queues are the best alternative to obtain inter-node mes-

sage passing.



3.6 Intermediary result 61

3.6 Intermediary result

Table 3.2 summarizes the ratings of the Haskell programming language in the evaluation cri-

teria category Asynchronous operations and messaging.



62
3.6

Interm
ediary

result

Table 3.2: Rating of asynchronous operation and messaging in Haskell

Requirement Rating Details

ASM1 Asynchrounous,

non-blocking IO

1 The programming lan-

guage does non-blocking

IO by default.

Strict separation of IO and

computation

Lighweight ‘green’

threads for IO operations

Alleviating composability

of asynchronous elements

ASM2 Preventing Dead-

locks

2 The programming

language can deal with

deadloacks, for example

avoiding deadlocks (care-

ful resource allocation)

Deadlock detection, tech-

niques to debug dead-

locks, no runtime recov-

ery

Careful resource alloca-

tion, such as STM

ASM3 Support for node-

level shared nothing ar-

chitectures

2 Node-level shared noth-

ing architectures can be

implemented using third

party libraries but they are

not cost effective and not

sufficient.

Elimination of mutual

data and state

Third party message

queues

Cloud Haskell not pro-

duction ready, no ongoing

development

ASM 4 Message passing 3 Third party message

queues are the best altern-

ative to obtain inter-node

message passing.

Serialization libraries not

very effective. Needs ex-

pert debugging.

Resilience under error

conditions up to de-

veloper or third party

frameworks.



3.7 Summary 63

3.7 Summary

We find that in computing clouds, the FPL Haskell needs to support node level shared nothing

architectures and provide inter node message passing. We present the lightweight, UDP based

message queue CMQ. The concept to use UDP instead of TCP is motivated by our under-

standing that, in Cloud Computing, omnipresent off-the-shelf technologies (both in hard- and

software) are encouraged, and if preventing errors from occurring becomes too costly, dealing

with the errors may be a better solution. This chapter has demonstrated the capability of us-

ing UDP for message queuing in the presence of errors, and has shown the stability of UDP

messaging in such conditions. Methods that deal with packet loss at the application level are

also discussed. The implementation of CMQ is a Haskell Module that utilizes pure functional

data structures. The implementation of CMQ is available as module System.CMQ from the

hackageDB11, and also can be installed automatically via the Haskell package manager cabal

on the Haskell Platform.

Although CMQ is a message queue oriented communication approach, CMQ is different than

the conventional MOM approach because it challenges a number of assumptions under which

conventional MOM is built. For instance, in conventional MOM, messages are ‘always’ de-

livered, routed, queued and frequently follow the publish/subscriber paradigm. It is often ac-

cepted that this requires an additional layer of infrastructure and software where logic is split

from the application and configured in the additional layer. On the contrary, CMQ does just

enough. It does not offer guarantees, thus is very lightweight with low overhead and fast speed.

Although it does not offer guarantees, such as reliable transmission, it appears to be stable in

the presence of errors.

11http://hackage.haskell.org/packages/hackage.html

http://hackage.haskell.org/packages/hackage.html


64 3.7 Summary



65

Chapter 4

Coordination

In this chapter we assess whether functions in the FPL Haskell can serve as

easy access composable lightweight units of scale to develop scalable software

that executes on computing clouds. We introduce a new PaaS environment that

combines the LINDA coordination language, an in-memory key-value store,

with functional programming to preserve state and facilitate execution and co-

ordination of functions. In our architecture a tuple space is a central element

to support deterministic services for basic parallel programming, including

message passing, persistent infinite message pools and transactions. Redis, a

key-value store, serves as the in-memory tuple space that glues together par-

allel constructs (i.e. skeletons) of formerly monolithic business applications to

form an elastic distributed application.

Traditionally scalable software deployed on computing clouds is developed and implemented

using two units of scale:

1. Virtual Machines and Containers generally consisting of one JVM, Rails, or some other

runtime system per container in which the guest code is deployed [VRMB11], [CBP+10].1

1Under rare circumstances, such as with the execution in the Apache MESOS platform, this can

also be a Java archive.



66 3.7 Summary

to achieve scalability and fault tolerance across multiple virtual or physical systems. Ap-

plications provisioned into VMs or containers is portable between physical systems but

as units of scale they are still coarse and not efficient.

2. Threads to achieve parallelism and scalability across multiple CPU cores on the (guest)

system. Amongst other issues, threads have in practice no portability beyond the phys-

ical platform.

Virtual Machines and Containers scale guest code through replicating the VM or container

and subsequently create the illusion of seamless scaling by clustering the replicas with a load

balancer. It must be noted, that although both VMs and containers scale software by replicating

coarse units of scale, VMs and containers are not the same. Containers are a light weight

operating system virtualization technology the provisioned software shares the same kernel

and, depending on the configuration, large parts of the OS (illustrated in Figure 4.1). Table

4.1 compares the efficacy of different virtualization paradigms, IaaS (that is VMs) are in the

second row whereas OS virtualization (that is Containers) are in the third row. It is visible

that containers have less overhead, and in practice they can be instantiated within milliseconds

whereas instantiating a VM may take minutes.

© 2014 Gartner, Inc. and/or its affiliates. All rights reserved.

Figure 2. OS-Level Virtualization Managed by 
the Docker Daemon

2

Containers

Abstraction Layer

Host OS Userland

Lib A

App

A

App

B

App

C

Lib B

OS Kernel

dockerd

lib-
container

Server

Figure 4.1: OS-Level Virtualization Managed by the Docker Daemon (Source:

Gartner 2015).



3.7 Summary 67

Considering that at least one instance of every guest application must be running 2 and that fre-

quently additional components such as the host operating system and the application execution

engine need to be replicated as well, it becomes clear that modern PaaS clouds have a huge

footprint and the size of the infrastructure is still dictated by the number of clients and their

running instances rather than by the actual load [SK12]. Table 4.1 compares six distributed

computing architectures and the resources required, such as number of deployed operating sys-

tems, to deploy three application instances. Linux containers running without systemd need

the least resources to deploy three application instances and have thus a higher efficacy than for

example IaaS or hardware load balancing.

Threads are the prevailing parallel execution paradigm, also in functional programming lan-

guages that have recently adopted new runtime technologies to achieve parallel execution.

Threads are a very small unit of scale that commonly has no mobility beyond the physical

platform where it is started and there is no obvious way to match functions and threads. Lee

[Lee07] is generally sceptical about threads as an effective means to support parallelism and

argues in favour of coordination languages instead. He writes:

If we expect concurrent programming to be mainstream, and if we demand reli-

ability and predictability from programs, then we must discard threads as a pro-

gramming model. Concurrent programming models can be constructed that are

much more predictable and understandable than threads.

Lee argues further:

The message is clear. We should not replace established languages. We should

instead build on them. However, building on them using only libraries is not

satisfactory. Libraries offer little structure, no enforcement of patterns, and few

composable properties. I believe that the right answer is coordination languages.

Coordination languages do introduce new syntax, but that syntax serves purposes

2Starting a ‘legacy’ application instance in a cloud takes 30 seconds to one minute, making a ‘start

on demand’ paradigm unfeasible. OS-less instances, such as Linux containers, can be started within

milliseconds using coordination languages or a coordination service.



68 3.7 Summary

that are orthogonal to those of established programming languages. Whereas a

general-purpose concurrent language like Erlang or Ada has to include syntax

for mundane operations such as arithmetic expressions, a coordination language

needs not specify anything more than coordination.

While Lee investigates threads and coordination, he does not investigate suitable units of scale

and keeps his research in this area rather generic using ‘processes’ as the underlying unit of

scale for his investigation. We extend Lee’s research by combining our idea of functions being

an appropriate unit of scale for software in computing clouds with Lee’s findings, therefore we

assess if the FPL Haskell can be used to obtain a shallow embedded domain specific coordina-

tion language that provides a set of primitives for coordination 3. A shallow embedded domain

specific language4 is chosen to fulfil Lee’s requirements to:

• Build on existing programming languages rather than replacing them.

• Go beyond the capability of programming language libraries.

• Avoid threads as units of scale.

• Provide a set of primitives for coordination.

Elastic and scalable software in computing clouds requires additional tools for dynamic ser-

vice registration and service discovery. Well known tools, for example Apache ZooKeeper

[HKJR10] , serf [ser15], etcd [etc15] or the use of a traditional DNS based infrastructure as

described by Spotify Labs [spo15], are commonly referred to as ‘coordination services’. Co-

ordination services have workloads (also referred to as ‘services’) determine the IP address,

port and capabilities of services in the distributed environment so that they can interact. Co-

ordination Services are not in scope of this research.

3resulting in a distributed architecture that is concurrent and non-deterministic
4 An alternative to a DSL could be for example a well structured API that is implemented with / on

top of the coordination mechanism. However, APIs follow an imperative design, for example, a REST

API would need to be called in an imperative manner and hardly make use of any of the functional

paradigms that we are investigating in this thesis. Strictly speaking, the DSL we implemented during

our research represents an API.



4.1 High level design of Cwmwl PaaS framework 69

Efficacy is a concern in computing clouds. Corporations, service developers and end users

are not interested in information technology [Car05]. Their goals are, for example, to run

a business process that requires certain resources (e.g. computation and storage), to use an

existing application or service, or providing them for third parties. With the advent of vir-

tualization technology and Infrastructures-as-a-Service (IaaS) corporations began to eliminate

overcapacity in terms of available computing power. Platform-as-a-Service (PaaS) is the cloud

computing layer that further reduces redundant functionality–and, allegedly resources. Table

4.1 contrasts and compares the efficacy of the available virtualisation technologies for three

deployed application instances. It is visible that IaaS, the currently prevailing technology is at

the same time one of the least efficient technologies5.

To date improvements in efficacy are generally sought in reducing the Power Usage Effect-

iveness (PUE)6 by improving of for example data center hardware and cooling. Efficacy of

software and application (architectures) is not considered. While it is undoubtedly true that

data centers must be built ‘green’ and that local legislation frequently limits the data center

PUE to a very low maximum, efficient software would certainly help a lot to reduce the overall

footprint of applications and data centers by increasing the application density per server.

4.1 High level design of Cwmwl PaaS framework

The Cwmwl PaaS framework is a flat fabric that unifies the traditional data-tier, messaging, and

computation. We share the views of Shalom [Sha06] who states that the emulation of tier-based

computing in the cloud or in PaaS platforms does not scale effectively enough to the cloud

scale. A unified PaaS fabric scales more predictably than traditional web applications (e.g. a

LAMP stack) that need a mix of technologies and protocols to scale each tier separately. In our

approach a single unified communication protocol is used to store data, coordinate computation,

and exchange information about state. Static (partially hierarchic) relationships between web-

frontend servers, application servers, message buses and database servers are removed.

5Definition and underlying architecture of SaaS offerings are not clear cut and out of scope of this

assessment.
6The Power Usage Effectiveness is defined as the total facility energy divided by the IT equipment

energy. Regulations may require PUEs of data centers to be close to 1.2 or smaller.



70 4.1 High level design of Cwmwl PaaS framework

The key differences between a conventional PaaS framework and the unified Cwmwl PaaS

fabric can be observed from Figures 4.2 and 4.3. A conventional PaaS framework scales hori-

zontally through replication of the runtime containers for applications, while the Cwmwl PaaS

fabric scales through distribution of the application instances.

Figure 4.2: Software stack of a conventional PaaS framework.

Figure 4.3: Unified Cwmwl PaaS fabric.

Cwmwl is developed to exploit distributed systems in cloud data centers by leveraging the

strengths of coordination that we find in commodity cluster management tools (e.g. Clustrx

[clu], parallel Gaussian [FTS+]) and commercial space-based PaaS frameworks (e.g. Gigaspaces

XAP [Gig]).



4.2 How the DSL CWMWL is implemented 71

4.2 How the DSL CWMWL is implemented

The term ‘coordination language’ was coined in the year 1992 by Gelertner [GC92] to describe

the LINDA programming language that he had proposed in the year 1985 [Gel85]. Since then

coordination languages have first influenced distributed computing and HPC, and later Jini/A-

pache River and web services. The LINDA coordination uses a matching based mechanism.

The LINDA model consists of a tuple space and a library that implements four primitives,

rd(), in(), out() and eval(), as extensions to virtually any (non parallel) programming

language.

• rd() retrieves a tuple that matches the given template.

• in() retrieves a tuple that matches the given template and permanently removes the

retrieved tuple from the tuple space.

• out() stores a tuple into a tuple space.

Because remote execution not being in scope of our research (for more information on remote

execution also read Section 4.7.1, we did not include the LINDA eval() primitive that spawns

a new process in our investigation.

The LINDA primitives manipulate and store tuples, which are key-value pairs, in the tuple

space acting as distributed shared memory (DSM). The sender publishes a tuple to the DSM and

the receiver queries the DSM without the need to maintain knowledge from where to receive

or what process to send to.

Cwmwl is a PaaS fabric that consists of:

• Messaging and serialization based on the UDP protocol.

• Secure and elastic workers.

• A means to identify and communicate with workers and processes.



72 4.2 How the DSL CWMWL is implemented

Table 4.1: Efficacy of distributed computing architectures
Virtualization

(either 1: many

or many:1)

Hardware

Platforms

Operating

Systems

Instantiated

Operating

Systems

Admin-

istered

Deployed

application

Instances

Example

Hardware Virtu-

alization

1 3 3 3 IBM z/VM

Hypervisor

(IaaS)

1 4 (in-

cluding

hypervisor

OS)

3 3 KVM, VM-

Ware

OS Virtualization 1 1 0 - 3* 3 Linux

Containers

("Docker")

PaaS (current) 1 4 0 3 App-scale

PaaS (ideal**) 1 1 0 3

Clustering 3 3 3 3 Hardware

load-

balancing
* systemd containers that are entered with ssh need to be administered like a VM,

containers that are entered with nsenter do not require OS administration

**A PaaS that does not wrap VMs and operating systems that need to be administered

and protected around atomic units of scale, such as processes or threads.



4.2
H

ow
the

D
SL

C
W

M
W

L
is

im
plem

ented
73

Figure 4.4: High level architecture of the Cwmwl PaaS fabric. Workers can consist of any unit of scale: e.g. plugins, functions..



74
4.2

H
ow

the
D

SL
C

W
M

W
L

is
im

plem
ented

Figure 4.5: UML diagram of the Cwmwl PaaS fabric.



4.2 How the DSL CWMWL is implemented 75

Figure 4.4 illustrates a high-level overview of the Cwmwl structure. Cwmwl consists of a cent-

ral tuple space (TS) and several application servers (AS). For a distributed application that uses

the master-worker skeletons developers will need to write a worker process, upload the code

package to an application server and start it. To interact with the worker the developer uses the

Cwmwl primitives to query the TS for tuples that have been published by a worker process.

The TS serves as DSM, IPC and in-memory data grid, thus collapsing traditional multi-tier

applications. To scale the distributed application more workers must be deployed 7. This is

merely a replication and does not require the implementation of an application load balancer

that would represent additional overhead, to make use of the added computation power. The

TS and the AS nodes are instances of guest virtual machines in commercial clouds. Cwmwl

script is a means of coordinating and imposing constraints on a large pool of workers that, on

large scale with hundreds or thousands of worker instances, will otherwise quickly become

unmanageable. Whilst, for example, in commodity cluster management tools the coordinating

middleware and the executed application are separate layers of software, Cwmwl script is part

of the distributed application itself. Figure 4.5 depicts a UML deployment diagram of the Cw-

mwl fabric. The upper part of the UML diagram illustrates a developer accessing the platform

to upload the application (code) to the application database (AppDB). An application controller

(AppController) is in charge of deploying the user’s applications from the AppDB to the avail-

able guest virtual machines. The lower part of the UML diagram illustrates a client accessing

the deployed application through an intermediary web server (here lighttpd) using HTTP GET

requests to the tuple store as a replacement for the LINDA rd() primitive.

4.2.1 Tuples and Templates

The syntax of the LINDA primitives that are used in Cwmwl has been kept similar to the

original formulation of tuple spaces. Although the host language Haskell is strongly typed,

Cwmwl does not use Haskell data types and tuple matching is purely syntactic. As proposed

by Wells [Wel05], data-type conversions are handled by Cwmwl to create a truly heterogeneous

system that is not limited to any (type of) programming language.

7Application (auto) scalers are currently a field of ongoing research (for example Calcavecchia et al

[CCDN+12]) to which Cwmwl does not contribute at this time.



76 4.2 How the DSL CWMWL is implemented

A limited number of types (that could easily be extended) are currently inferred by the Cwmwl

parser. The abstract syntax tree (AST) of the Cwmwl interpreter is built for the types string,

integer and some other types (identifier, query, operation) that implement the domain abstrac-

tions that are required to model the LINDA functionalities. Strong typing can be achieved

by segmenting the tuple space where every segment is created to store only a specific type

[vdGSW97]. A further option to preserve types is encapsulation, for example using JSON or

ByteString.

Tuples stored in the key-value store (or in any tuple space) are accessed using a method that is

called associative lookup, which matches tuples based on templates (also called anti-tuple). A

template is similar to a tuple, except some of its fields may be replaced by a NULL 8; for ex-

ample (isFib, ) value for wildcard matching. A template is said to match a tuple provided

the following two conditions are met [Atk08]:

• The template is the same length as the tuple.

• Any values specified in the template match the tuple’s values in the corresponding fields.

There are two kinds of matches between a template value and a tuple value: exact match

where the two values are exactly the same, or wildcard match where a NULL template

value matches any tuple value.

For example, the template (isFib, NULL)will match the tuples (isFib, 20365011074)

and (isFib, 11021972), but not the tuple (isFib, 20365011074, ‘true’). The

example shows that a given template can match several tuples so the matching between tem-

plate and tuple is not always unique. In Cwmwl, the interpreter uses the tuple template as a

key to the Redis set data type, which is an unordered collection of strings. Since the interpreter

cannot forecast if the key to a new key-value pair will always represent a unique mapping or

if additional key-value pairs that reduce to the same key will follow, all new entries must start

out as a Redis set with a single member. Tuples can be added to a set or removed from a set in

O(1) constant time. Sorted sets are available and could, for example, be used to queue tuples

8The wildcard NULL can be omitted. To keep the key unambiguous the tuple delimiters must be

retained.



4.2 How the DSL CWMWL is implemented 77

that represent tasks or workers using a FIFO strategy. Identical work tasks need to be saved

only once, and can be executed several times, either in parallel or sequentially.

4.2.2 Units of scale

A tuple space matches the master-worker scheme quite naturally. Campbell [Cap97] argues

that the LINDA model is particularly natural for implementing some cases, such as task queues

and recursive partitions. As for other skeletons he states that the segmentation of the tuple store

(a technique that is frequently used in commercial tuple space implementations) and a degree

of coordination would be beneficial to harness the evolving complexity. In the following we

give two examples that are based on ACP:

1. Sequential (pipelined) execution processes.

2. Non-binding sequences.

Sequential (pipelined) execution of processes with data flowing between them, featuring

systolic access patterns (see Figure 4.6), if implemented using a tuple space, would have each

stage consuming the tuple from the previous stage and produces the tuple for the next stage.

This is inefficient, considering that in order for tuples to pass between stages, the developer

would have to index, track, and modify the tuples at each stage. An example of such tuple could

be out (myWorker, prev_state, next_state, data). The wildcard NULL. As

a possible solution, Campbell proposes to segment the tuple space and let the segments repres-

ent queues similar to pub/sub channels. For example, a sequential process may consist of the

stages (abcd) where stage (a) produces a tuple in its result tuple space (segment) for stage (b).

Stage (b) reads the next tuple from there and writes its output to its own result tuple space. The

resulting tuple space segments are comparable to pub/sub channels and reduce the amount of

state and control information that needs to be passed around with every tuple, thus increasing

the overall efficiency.

import language.CWMWL

2

main :: IO()



78 4.2 How the DSL CWMWL is implemented

main::IO

Sequence

Tuple Space T1S1 T2S2 T3S3 T3S3

Figure 4.6: Tuple space used with an algorithmic skeleton that requires sequential

execution (pipelining) and results in a systolic access pattern to the tuple space..

4

runCWMWL[

6 while (data) {

in (myWorker, NULL) ;

8 --reads a tuple that belongs to a

--sequential computation

10

out (myWorker, data) ;

12 --writes back a tuple and updates

--the state of the computation

14 }

]

Listing 4.1: Pseudo Cwmwl implementation of a pipelined algorithm.

An application that is run in our DSL may involve multiple execution instances that must be

executed within the constraints that are specified by the DSL operators and the axioms of the

ACP. The subset of the ACP that is illustrated in Table 4.2 and Equation 4.2 is implemented

in the DSL interpreter through storing the running state of each sequential instance in a tuple

template rather than in the tuple itself. A key is used for tracking a particular state and has the

form of (myWorker, NULL):$id where $id is an integer that represents the current state

of the instance myWorker. It can be incremented and queried to make sure communication



4.2 How the DSL CWMWL is implemented 79

take place at the right state. Redis commands are used in manipulating, incrementing and

tracking state keys.

A (non-binding) sequencing operator ‘&’ is implemented for all computations where there is

a choice as to what operand is evaluated first. The execution results of the instances involved

are stored in the Redis set datatype. For commutative sequencing which task is to end when all

instances have signalled a certain state, the Redis scard query is used to return the number of

elements in the set containing the results of the computations. Each instance must succeed (i.e.,

store a result in the set) to let the parallel commutative composition succeed. The number of

elements in the set determines whether this is the case or not. This can be used for a barrier op-

eration by requiring (ready) signals from all the involved processes before the next processing

stage. In addition to the two sequencing operators the DSL supports a choice operator ‘|’ that

succeeds if any of the operands succeeds.

1 import language.CWMWL

3 main :: IO()

5 runCWMWL[

in (myWorker, NULL, NULL) & 2

7 --And parallelism coordinated with

--a non-binding sequencing operator

9 --valid if two tuples are present

11 in (myWorker_a, NULL, NULL)

& (myWorker_b, NULL, NULL)

13 --And parallelism of two different

--workers, valid if both

15 --computations have finished

]

Listing 4.2: Pseudo Cwmwl implementation of a two non-binding sequences.



80 4.2 How the DSL CWMWL is implemented

4.2.3 Map Reduce: a data-oriented example

Programs 4.3 and 4.49 give a data-oriented example of how the Cwmwl TS can be used to

support distributed computations by providing DSM and a channel for interprocess communic-

ation. The programs implement a data intensive map-reduce algorithm for matrix multiplica-

tion [Nor11] that partitions Matrix A and Matrix B into sub-matrices, and then performs the

multiplications in parallel. Deploying this small distributed application involves the creation

of the Redis Tuple Space and corresponding computing nodes - a mapper node and multiple

reducer nodes. A mapper node loads two sparse matrices from a csv file into the Cwmwl tuple

space. The reducer nodes carry out the multiplication. Currently, AWS EC2 (and many other

large commercial clouds) does not support IP multicast, thus the tuple space must be registered

to the computing nodes by means of a configuration file.

Depending on the available network bandwidth and speed, the performance of the mapper may

benefit from the fact that loading data into key-value stores is much faster than casting data into

a relational database [PPR+09]. Since the Cwmwl TS is based on a key-value store, the tuple

(template) must contain all information required to address the matrices and their cells. In this

example, we work with tuples of the format (a: i :k, value), in which a, i, k denote the matrix,

row and column, respectively.

The reducer function multiplies, depending on the configuration of the indices, one or more

sub-matrices and sums the results. It would be possible to introduce an intermediary mapper

by, for example, splitting the multiplication from the addition and have the reducer sum up the

results only.

There are two problems involved in extending Haskell with the Cwmwl tuple space. Firstly, ac-

cess to a tuple space involves network communication, and any communication over a network

is placed in Haskell in the IO Monad, which makes all its subsequent computation (such as the

multiplications in our example) ‘impure’. This is a problem unique to Haskell, while in some

other functional languages, such as Erlang, communications are untyped. Secondly, Haskell

uses a static type system, which requires the two processes that use a tuple space as DSM to

use the same data type. Cwmwl can work around this problem using JSON Frames (see also

9The reducer function has been contributed by Aaron Stevens



4.2 How the DSL CWMWL is implemented 81

Section 4.2.1 of this paper) or Scoped Type Variables [JS04].

The map reduce example shows that Cwmwl can easily connect multiple processes that reside

on different physical nodes and provides a means for distributed programs to access data in

a way similar to accessing data locally. Using the Cwmwl TS, interprocess communication,

and DSM is abstracted away from the developer. Accessing data, memory or inter-process

communication are three distinct tasks in most state-of-the-art distributed applications that each

require distinct efforts to implement, but in Cwmwl, they are merged into one simple task -

accessing tuples in Cwmwl TS.

2 import qualified language.CWMWL as cwmwl

4 mapper = do

6 do csv <- getContents

case parse csvFile "(stdin)" csv of

8 Left e -> do putStrLn "Error in csv file

import:"

print e

10 Right r -> do

(key, value) <- castTpl r

12 --e.g. (a:i:k, value) ... (b:k:j

, value)

cwmwl.out (key, value)

Listing 4.3: The mapper code that casts matrices A and B from a csv file into

Tuple Space..

2 reducer = do

let indices = [(i, j, k) | i <- [0..rowsA],

4 j <- [0..colsB],

k <- [0..colsA]]



82 4.3 Testbed specification

6

-- Since ‘cwmwl . in‘ returns a value in the IO monad,

8 -- we can’t just multiply the values returned.

r1 <- mapM (\(i, j, k) -> (cwmwl . in) (a, i, k)) indices

10 r2 <- mapM (\(i, j, k) -> (cwmwl . in) (b, k, j)) indices

12 -- We can multiply r1 and r2 together though,

-- since they are values extracted from the IO monad

14 return $ sum $ zipWith (*) r1 r2

Listing 4.4: The reducer code that executes matrix multiplication.

4.3 Testbed specification

The main goal of the experimental design was to approximate the environment as seen by

real applications and to assess the impact of bandwidth and latency on the measured mean

performance.

All of the experiments were conducted in the Amazon EC2 cloud. The central tuple store used

a Cluster Compute instance so that throughput would not be limited by the available network

bandwidth, application memory or computing capacity. Since Redis is single threaded and is

best deployed on bare metal hardware without hypervisor [SN], an AWS EC2 Cluster Com-

pute instance is the best available match for these requirements. AWS EC2 Cluster Compute

instances are based on Hardware Virtual Machines (HVM) where the guest VM runs as if it

were on a native hardware platform [Incb].

AWS EC2 Cluster Compute instances have 60.5GB RAM, 8 physical cores 10 and 10-Gigabit

Ethernet connectivity. The clients C1...C20 were on separate instances of the type M1 Large.

M1 Large instances have 7.5GB RAM, 2 virtual cores (4 EC2 compute units) and high I/O

performance with unspecified network speed.

1088 EC2 compute units that equals 11 EC2 compute units per core as opposed to the usual 2.5 EC2

compute units per virtual core



4.4 Benchmarking methodology 83

Before the benchmarks were executed, the systems were modified to reuse and recycle TCP

connections. Additionally the default range for TCP source ports was changed to the maximum

port range: 1024 - 65535 (see Program 4.5).

1

sudo bash -c ’echo 1 > \

3 /proc/sys/net/ipv4/tcp_tw_reuse’

5 sudo bash -c ’echo 1 > \

/proc/sys/net/ipv4/tcp_tw_recycle’

7

sudo bash -c ’echo 1024 65535 > \

9 /proc/sys/net/ipv4/ip_local_port_range’

Listing 4.5: Linux configuration file \etc\rc.local to modify all systems at boot

time.

4.4 Benchmarking methodology

Two scenarios have been tested in our benchmarks: one with a simple tuple structure with

changing payload, and the other with a large set of different tuple structures.

The first scenario involves a simple data tuple (‘someData’, PAYLOAD) with payload

sizes ranging from three bytes to 12KB. Regardless of the payload size, all tuples map to the

same template (‘someData’, NULL), which is used as the key in the Redis key-value store

and consequently are stored in the same Redis set. Such a usage pattern eventually reduces to

the Redis SADD command that works in O(N) time where N is the number of tuples to be

added to the set [SN]. However, in our test, only one tuple is added at a time, and thus the time

complexity for each addition is O(1).

In the second scenario, a series of tuples with different structures of the format

(‘someData00001’, PAYLOAD) are involved. ‘somedata00001’ ranges from

‘somedata00001’ to ‘somedata10000’, for the reason that the tuple space must easily



84 4.5 Tuple space performance

0 

5000 

10000 

15000 

20000 

25000 

0 2000 4000 6000 8000 10000 12000 14000 

Th
ro

ug
hp

ut
 (O

pe
ra

tio
ns

/s
ec

on
d)

 

Workload Size (Byte) 

5 Clients 10 Clients 15 Clients 

Figure 4.7: Impact of workload size on throughput for 5, 10, and 15 clients

fit into the memory of an EC2 Cluster Compute instance, even with the largest tuple payload.

This usage pattern eventually reduces to the creation of a new Redis set with a single member.

To further simulate the environment as seen by real applications, prior to testing in each of

the scenarios, the Cwmwl tuple space was aged with one million tuples with an automatically

generated payload of the same payload size.

4.5 Tuple space performance

The initial state of the tuple space, which was simulated by tuple space ageing, had no impact

on the performance results. The results confirm that both operations, inserting a new key-value

pair and adding an additional value to an existing set, work in O(1) time. Figure 4.7 shows a

nearly logarithmic relation of the tuple workload size (measured in bytes) on the tuple space

throughput (measured in operations per second) for 5, 10 and 15 concurrent clients. The tuple



4.5 Tuple space performance 85

0 

20 

40 

60 

80 

100 

120 

140 

0 2000 4000 6000 8000 10000 12000 14000 

B
en

ch
m

ar
k 

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

) 

Workload size (Byte) 

Figure 4.8: Benchmark execution time for up to 15 Clients

0 

5000 

10000 

15000 

20000 

25000 

30000 

0 5 10 15 20 25 

Th
ro

ug
hp

ut
 (O

pe
ra

tio
ns

/s
ec

on
d)

 

Number of Concurrent Clients 

3 B 512 B 1 KB 3 KB 6 KB 12 KB 

Figure 4.9: Impact of the number of clients on throughput for 3 B to 12 KB



86 4.5 Tuple space performance

0 

5000 

10000 

15000 

20000 

25000 

30000 

0 5 10 15 20 25 

Th
ro

ug
hp

ut
 (O

pe
ra

tio
ns

/s
ec

on
d)

 

3 B 512 B 1 KB 3 KB 6 KB 12 KB 

Figure 4.10: Impact of the number of clients on throughput for 3 B to 12 KB. The

bubble size represents the standard deviation from the mean value..

space throughput drops logarithmically with the workload size. The standard deviation of the

measurements for the benchmark with 20 concurrent clients were very high (see also Figure

4.10) and this benchmark is thus not included in this diagram.

Figure 4.8 shows that the gross benchmark execution time for up to 15 clients is (within the

standard deviation) constant and proportional to the workload size of the tuple. Figure 4.9

shows that within the boundaries of our experimental design the tuple space throughput keeps

increasing with the number of concurrent clients executing the same benchmark. Obviously,

the performance limits of our tuple space implementation could not be reached within our

experimental design. On the other hand, the large standard deviations (Figure 4.10) of the

benchmarks with 20 concurrent clients and the ‘knee’ at 15 concurrent clients in Figure 4.9 may

imply that there is a performance boundary between 15 and 20 concurrent clients. Interestingly

this is in line with Fiedler [FWR+05] who also finds a ‘knee’ around 15 concurrent clients

executing the same benchmark on JavaSpaces.



4.5 Tuple space performance 87

The Cwmwl rd() primitive produced a constant benchmark execution time of around 6.5s

that was not influenced by the size of the payload or by the number of concurrent clients.

However, we had the impression that the rd() was altogether less scalable and locked the

system network queues significantly longer than the out() primitive that in turn leads to

undesirable exhaustions of the connection pools.

The overall results were very consistent and predictable giving a good basis to understand the

impact of the Cwmwl tuple space on application performance and scalability. The repeatab-

ility of the benchmarks for up to 15 concurrent clients confirms the validity of our findings

within the expressed range. Spot checks show that the absolute values (operations / second)

are approximately half the performance of the redis-benchmark tool that is included in a

Redis installation. The difference could be caused by differences in serialization, sources and

exploitation of randomness to generate the tuple payloads or the Redis bindings for Haskell.

The gross throughput with 15 clients was around 1.8 Gbps, slightly higher than the nominal

throughput of SATA 1.0 (1.5Gbps).

It is natural to question the performance advantages of the Cwmwl Paas fabric over the current

PaaS frameworks. However, most of the current PaaS frameworks are based on a complex soft-

ware stack and computation speed or IO alone cannot measure their performance. According

to Zhang et. al. [ZHC+12], the performance of current PaaS frameworks may be assessed tier

by tier. In practice, PaaS performance is often discussed qualitatively in terms of the time and

effort required to deploy a new (web) application or to do a major application upgrade. Also,

it is often discussed to what extent, and with what effort, it is possible to elastically ‘right-

size’ (scale up and down) a deployed application. Frequently this is supported by additional

middleware that must be subscribed (e.g. Rightscale [Cla10]) and not by the cloud computing

platform itself. Map Reduce is frequently sold outside PaaS frameworks as a separate capability

that must be configured using workflows and storage, showing again the lack of harmonization

of computation, data, applications and web applications in computing clouds.

Cwmwl is intended to rethink PaaS design and to merge brute replication and re-clustering

(which is the current methodology to implement PaaS) with distributed computing to improve

efficiency and cost. Our foremost design goal is simplicity by achieving a novel unified plat-

form rather than virtualizing and replicating the implementation of a load balanced web applic-



88 4.6 Evaluation criteria

ation that has existed since the end of the 1990s. The performance Figures of the Cwmwl TS

that is accessed with the Cwmwl primitives support our claim that this can be done. After all,

achieving a performance close to SATA 1.0 is a good start.

4.6 Evaluation criteria

Our evaluation criteria are based on Papadopoulos [PA98] who discriminates coordination lan-

guages according to seven main characteristics:

1. Entities being coordinated (COO1).

2. Mechanisms of coordination (COO2,–read ASM4).

3. Medium of coordination (COO3,–not scored).

4. Semantics / rules protocols (COO4).

5. Degree of Decoupling (COO5,–read ASM3).

6. Range of programming languages supported (not in scope of this thesis).

7. Application domain (COO6).

COO1 The PL provides entities suitable for coordination

References [GC92] , [PA98]

Rationale Elasticity and scalability beyond the platform where the application is

started requires to decompose applications into units of scale the can be

distributed and scaled independently.

Specifics Coordination languages require easy access to entities suitable for co-

ordination, such as functional skeletons, nodes, processes, sequential

tasks or web services.



4.6 Evaluation criteria 89

COO1 The PL provides entities suitable for coordination

Ratings

1. Applications in the FPL are comprised of portable, inter oper-

able and self-contained computational entities.

2. Applications in the FPL are comprised of entities that miss one

or more characteristics or they are not easily accessible.

3. The FPL does not provide entities suitable for coordination.

COO2 The PL provides a mechanism for coordination

References [PA98] , [CJLL02]

Rationale The (host) language must provide a component interaction mechanism

that can be used for coordination.

Specifics [PA98] recognizes the following mechanisms:

• Events and channels (for example message passing).

• Function application and composition (as used in functional skel-

etons).

• (Remote) Method invocation.

• Tuple exchange.

• Specialized mechanisms, such as chemical reaction.



90 4.6 Evaluation criteria

COO2 The PL provides a mechanism for coordination

Ratings

1. The programming language provides an interaction mechanism

for distributed units of scale (or components).

2. The programming language provides an interaction mechanism

for units of scale on the local system that is easy accessible and

can be extended for distributed environments.

3. The programming language must be extended to implement the

required mechanism.

COO3 Medium of Coordination can be provisioned and accessed (Not

scored)

References [RC90]

Rationale Almost all coordination models use a Shared Dataspace. Roman [RC90]

as quoted in Papadopoulos [PA98] explains: “A Shared Dataspace is a

common, content-addressable data structure. All processes involved in

some computation can communicate among themselves only indirectly

via this medium. In particular, they can post or broadcast information

into the medium and also they can retrieve information from the medium

either by actually removing this information out of the shared medium

or merely taking a copy of it.”

Specifics Performance and scalability are crucial for the usefulness of a Shared

Dataspace. Distributed shared memory [GHW12a], [GHW12b] has

been successfully implemented and commercialized 11 demonstrating

the feasibility.

Ratings

11For example by the company RNA Networks, which was acquired by Dell Inc. in the year 2011.



4.6 Evaluation criteria 91

COO4 Rigorous semantics, rules or protocols can be implemented

References [Gel85] [CGW91]

Rationale The semantics of the subset / coordination language need to be suffi-

ciently to allow logic reasoning about coordination.

Specifics Formal reasoning supports static code analysis and benefits the devel-

opment of compilers. Well-defined DSLs can be better understood and

support the development of quality software.

Ratings

1. The General Programming Language (GPL) supports the imple-

mentation of a DSL / Coordination language independently from

a third party platform or runtime (e.g. , Clojure and Scala are

built on top of JVM, F# on top of the .NET platform).

2. The General Programming Language (GPL) supports the imple-

mentation of a DSL / Coordination language but has further de-

pendencies on third party platforms.

3. The GPL is inherently limited and cannot serve as base language

for a DSL.

COO5 Degree of decoupling

References

Rationale Direct coupling between client and server, as is the case with remote

invocations, should be avoided. This property is assessed in Section

3.5.3 of this thesis.

Specifics Indirect communication paradigms seek a level of uncoupling. For ex-

ample, uncoupling of entities in space and time where the coordination

medium and the medium’s contents are independent of the life history

of the processes involved.



92 4.6 Evaluation criteria

COO5 Degree of decoupling

Ratings

1. The FPL provides rich and precise means to create shared nothing

architectures, for example by closely integrating with a concur-

rency model that applies to local and remote processes.

2. Node-level shared nothing architectures can be implemented us-

ing third party libraries but they are not cost effective and not

sufficient.

3. There is neither explicit nor implicit support of node-level shared

nothing architectures.

COO6 Relevance and applicability to the domain computing clouds

References [KDH11]

Rationale The obtained coordination language needs to have special merit (be ‘rel-

evant’) to the development of applications in computing clouds.

Specifics

Ratings

1. The programming language is relevant for the application domain

computing clouds.

2. The programming language needs to be extended in order to be

relevant for the application domain computing clouds.

3. The programming language is not relevant for use in computing

clouds.



4.7 Assessment of functions as lightweight units of scale for distributed applications
in computing clouds 93

4.7 Assessment of functions as lightweight units of scale

for distributed applications in computing clouds

Now, Haskell is assessed against the criteria developed in the previous section.

4.7.1 COO1: Entities suitable for coordination

Haskell is a pure functional programming language. Application source code written in Haskell

is composed of functions (frequently also referred to as ‘expressions’). Functions as units of

scale of scalable applications for computing clouds have the following strengths and weak-

nesses:

Strengths

• Functions always evaluate to the same value for a given argument (”free of side effects”).

• Variables are assigned once.

• The order of function execution can be re-arranged. For example, Functions can be

composed, curried, etc..

• All pure functions can be executed in parallel.

• Function evaluation can be cached.

The strengths support the assumption that functions can be decoupled in space and time, provid-

ing strong support for coordination models where deterministic entities (here functions) are

composed into a deterministic outcome using explicitly non-deterministic mechanisms.

Weaknesses

• Functions need to be part of a program. A main function is required as entry point into

a Haskell program. The use of Haskell Plugins [PSSC04] can abstract the need for a



94
4.7 Assessment of functions as lightweight units of scale for distributed applications

in computing clouds

main function away from the developer. A (cloud) service provider could for example

maintain a platform where client code is dynamically loaded as plug-ins.

• Haskell extensions for parallel and concurrent programming are designed to exploit

multicore CPUs on the local system. At the time of writing this thesis Haskell does

not support remote execution / remote method invocation such as Java RMI. Accord-

ing to Marlow [Mar12] there are efforts (such as ‘Cloud-Haskell’, now called ‘remote’)

under way to eventually support remote execution. However, Marlow perceives non-

deterministic means as “a little unfortunate”, while the authors of this thesis argue that

non-deterministic means must be introduced where needed to fit the nature and require-

ments of computing clouds–without disrupting the essential determinism of program-

ming languages.

It is a wide spread misconception that distributed software for computing clouds requires mo-

bility of code or objects, such as available in Java RMI or partially in the Haskell smallremote

package. The authors of this thesis believe that there are not many use cases that mandate code

mobility. Scalable applications for computing clouds require self-contained workloads that can

use indirect communication and coordination to ‘glue’ together the eventual application.

Self-contained workloads can be (partially) dynamically linked Haskell binaries or for example

containers that consist of the Haskell binary and the required libraries. Popular options to

deploy containers are Linux Containers managed by Docker or by Apache Mesos [HKZ+11].

Docker containers fit well into DevOps driven environments where constant integration and

constant deployment paradigms are sought. Docker containers can share DLLs with the under-

lying operating system somewhat reducing the size of the required Haskell binary. Resource

management requires additional frameworks, such as Kubernetes or Apache Mesos.

Apache Mesos fit better to environments with very large scale where the emphasis is on the

separation and management of workloads and resources. But there is one more issue. While

networking plays a key role in data center infrastructure, distributed applications and coordin-

ation models that decouple in space and time, networking is, for now, beyond the scope of



4.7 Assessment of functions as lightweight units of scale for distributed applications
in computing clouds 95

Docker or Mesos.

[[[function+ entrypoint]Haskell binary+DLLs]Container+ResourceManager]+Networking

(4.1)

Equation 4.1 illustrates the components required to build a PaaS framework around Haskell

functions. In summary, a framework that is using Haskell functions as units of scale would

consist of:

• Haskell Binary.

• Required DLLs, for example packaged together with the binary into a Linux container

or shared between multiple Linux containers.

• Data Center Operating System to manage resources and deploy workloads, such as

Apache Mesos is out of scope of this Thesis. The authors of this thesis were using the

Ansible [RH16] configuration management tool to distribute the workloads in a semi-

automated way. But this does not provide resource management.

• Networking is in this research achieved through bindings to a coordination language in

the main function.

Item Haskell Java

Archive Hasekll Binary .jar file

Supporting Code DLLs or PlugIn loader JVM12

Resource Manager Required Required

Networking Required Required

Table 4.1: Comparison of Haskell Functions and .jar archives when used as units of

scale

12Generally one JVM needs to be deployed per container, since multiple applications per JVM rep-

resent operational challenges that must again be resolved with appropriate frameworks, such as OSGi



96
4.7 Assessment of functions as lightweight units of scale for distributed applications

in computing clouds

Table 4.1 compares the effort and adjunct features required to use Haskell functions and Java

.jar archives as portable units of scale considering the limitations explained above. On the one

hand we see that both programming languages are sufficiently similar in their requirements and

cannot easily deduct a special merit of FPL Haskell. On the other hand, based on the results

of our practical evaluations, the authors of this thesis believe that the strengths listed earlier in

this chapter cannot easily reproduced by for example Java processes or objects and that large

scale function executing services, such as AWS Lambda [Inca], can be achieved using Haskell

Plugins. The size of this infrastructure would however still be dictated by the number of clients

and their running functions rather than by the actual load.

FPLs are also a good basis to build unikernels. Besides containers and data center operating

systems, such as Apache Mesos, unikernels have started to gain some traction because they

allow building scalable systems in a very efficient way. Unikernels such as Mirage [MMS+10],

Erlang on Xen (Ling) [SK12] and the Haskell Lightweight Virtual Machine (HaLVM) [hal15]

show that it is possible to convert high-level functional language source code into a kernel (also

called exo kernel) that runs directly on the XEN hypervisor that is used in most commercial

public clouds such as Amazon EC2. The instantiation time of a system based on unikernels

is in the ms range. Hence, it is possible13 to build PaaS frameworks that reduce the required

footprint to the absolute minimum (see also Table 4.1). Furthermore, all three aforementioned

unikernels are single threaded that makes them good candidates for coordination models, and

a stable coordination layer based on a tuple space could be an ideal basis to glue both OS-less

applications and OS-equipped legacy VMs to a hybrid elastic cloud platform.

Rating: 2. Applications in the FPL are comprised of entities that miss one or more char-

acteristics or they are not easily accessible.

4.7.2 COO2: Mechanism of coordination

Papadopoulus [PA98] lists five mechanisms of coordination (for a complete list of the five

mechanisms read Subsection COO2 in Section 4.6). Haskell can use the following two mech-

anisms of coordination that are generally limited to the local system:

13Unikernels have not been evaluated in our cloud computing test bed.



4.7 Assessment of functions as lightweight units of scale for distributed applications
in computing clouds 97

• Events and channels.

• Function application and composition.

It must be noted that functional skeletons in Haskell have been investigated [Col04], frequently

as they relate to Eden [Loo12], a Haskell extension for parallel functional programming. How-

ever, similar to events and channels, functional skeletons are generally focusing on the local

system and do not support distributed environments.

Section 3.5.4 evaluates Haskell for support of message passing to transmit data, such as state

information, and re-synchronize the workloads, for example, functions, processes or micro

services in distributed environments and we align the rating of this requirement with Section

3.5.4.

Rating: 3 The programming language must be extended to implement the required mech-

anism.

4.7.3 COO3: Medium of coordination (Not rated)

It would not be appropriate to expect that a data store, such as a tuple space, must be a first class

citizen of a programming language. Although before the advent of relational databases, there

have been programming languages and operating systems that merged programming language

and data stores, for example, the Clipper Compiler [Spe91] dBase [Wik15b] , FoxPro [www15],

the IBM Application System 400 (AS/400) or PickBasic [Sis87], such close couplings for

programming languages have lost popularity a long time ago. To date it is the databases that

encapsulate the programming language such as SQL or PL/SQL.

Although it would have been possible to co-locate the mechanism of coordination with the

programming language Haskell by using for example a Binary Search Tree (BST) or making

better use of the Haskell Type System for the creation and matching of tuples; for the proof of

concept of this thesis we have selected to implement the mechanism of coordination based on



98
4.7 Assessment of functions as lightweight units of scale for distributed applications

in computing clouds

an existing data store 14 that has

1. Relevance and popularity in the application domain of computing clouds.

2. Advantages for the implementation of a medium of coordination.

Relevance to computing clouds. Key-value stores, noSQL and Big Data, all of which

are strongly linked to cloud computing, have increasingly gained pace in recent years. Cwmwl

suggests a promising cloud infrastructure through combining these new paradigms with a high

performance tuple space, living outside the web services world, and obtaining its applicability

by simply using tuple spaces and LINDA-based coordination languages. In the Cwmwl infra-

structure a key-value store is used to serve application needs, store Big Data, and as a tuple

space, which, if employed wisely, can greatly reduce the software stack, complexity and foot-

print of applications in the cloud. The reduction of the software stack, complexity, and footprint

makes Cwmwl a flat PaaS fabric that differs from the more common hierarchical or tier-based

PaaS paradigms.

Regarding the implementation of key-value stores, two seemingly opposing trends have been

observed: in-memory data grids and distributed key-value stores. In-memory data grids, where

all data is kept in memory, provide fast access to data with low latency and high performance.

They are frequently used for near real time (BIG) Data analytics. The Lewis Carroll Diagram

in 4.11 shows how popular cloud computing offerings (purple shaded areas) overlap with use

cases from the application domains web services, clusters, distributed computing and HPC.

Key-Value stores are relevant in the categories web services (for example, the implementation

of failure tolerant shopping carts or session stores), distributed computing (for example, search)

and HPC (for example, storage and analysis of log data).

The corresponding commercial offerings for this market segment are ‘bare metal clouds’ that

allocate dedicated servers and offerings based on hardware-virtualization where one single in-

14Additional reasons for not integrating the data store with the programming languages are reduced

lock-in and the use of well-defined APIs as de-facto standard that allows access to data in a common

way, regardless of programming language, data store / database or schema (as is the case with NoSQL

databases).



4.7 Assessment of functions as lightweight units of scale for distributed applications
in computing clouds 99

Figure 4.11: Lewis Carroll Diagram showing how cloud computing offerings

(purple area) overlap with web services, clusters and HPC.

stance can have more than 200GB RAM 15. Distributed key-value stores that may involve map

reducing 16 and additional delays through vector clocks before a query is responded to. Dabek

and Peng [PD10] introduce the Google development called Percolator, which is a combination

of both types of key-value stores.

We believe that the next generation of cloud computing platforms will embrace upcoming peta-

and exa-scale mainstream systems and shift in focus from a technology that mainly delivers

web services (Figure 4.11 bottom left) to a more abstract service that leverages distributed

computing to support non-web-service applications, or rather common business applications

(Figure 4.11 top right).

Special merit for implementation of a coordination medium. Tuple spaces are a

lightweight means of memory virtualization and consequently very similar to persistent storage

memory with the added value that tuple spaces can easily scale across the physical boundaries

of nodes. An in-memory key-value store was chosen as the basis for the Cwmwl tuple space 17

15For example, the AWS HPC offerings or the Storm bare metal servers
16For example RIAK [ria] or the Amazon Dynamo [DHJ+07a]
17Transient tuple spaces appeared first in JavaSpaces. The focus however was on volatility of tuples

at the time of system reset rather than creating an optimal in-memory data grid.



100
4.7 Assessment of functions as lightweight units of scale for distributed applications

in computing clouds

in order to make it suitable for the implementation of in-memory data grids as well as for the

virtualization of (application) memory, data storage, and interprocess communication (IPC)

across computer or network architectures. The in-memory key-value store Redis [SN] was

chosen for the following reasons:

• It is very fast and lightweight, which makes it ideal for frequent random access with

very low latency as required by tuple space implementations. The expected speed gain

compared to a disk based key-value store is approximately 1:100000 [Los10].

• It supports persistent tuple spaces (if data and tuples are long lived) and preserves state

across restarts if required.

• It supports atomic operations. Most key-value stores do not support transactions and

use, for example, vector clock schemes [BR02] to detect and resolve conflicts.

• It supports a number of data structures (for example sets, lists, and ordered sets) that

can be used to support functions such as tuple matching and advanced coordination (see

Section 4.2.1 of this document).

• It supports key-value pair expiry times which are used to release expired tuples.

• It supports persistence. Regarded as a less important feature of an in-memory tuple store,

in practice, it cannot be underestimated as a source for debugging information.

There are two problems involved in extending Haskell with the medium of coordination.

1. Access to a remote medium of coordination involves network communication, and any

communication over a network is placed in Haskell in the IO Monad, which makes all its

subsequent computation ‘impure’. This is a problem unique to Haskell, while in some

other functional languages, such as Erlang, communications are untyped.

2. Haskell uses a static type system, which requires the two processes that use a tuple space

as DSM to use the same data type. Cwmwl can work around this problem using JSON

Frames (see also Section 4.2.1 of this paper) or Scoped Type Variables [JS04].



4.7 Assessment of functions as lightweight units of scale for distributed applications
in computing clouds 101

The above issues are consequences of the control the Haskell (developers) have over effects

and can also bee seen as an advantage of the FPL Haskell over other programming languages

that have not the same strict control over effects. Furthermore it is natural that the types of an

EDSL need to be more limited then the types of the host language itself. For more information

where the increased control over effects is helpful read also Subsection 4.7.4.

4.7.4 COO4: Rigorous semantics, rules or protocols can be imple-

mented

We used Haskell as base programming language to implement a Domain Specific Language

(DSL) that has the primitives of the LINDA coordination language and to define custom oper-

ators and priorities to achieve the required semantics.

We make three operators available that express sequences and parallelism (see Table 4.2 for

a description of the DSL script operators) enabling the interpreter to automatically maintain

the computation states and thus abstracting the need to manually maintain state and control in-

formation away from the developer. The operators of our DSL are aligned with the Algebra of

Communication Processes (ACP) [BK86], among which there is a strong binding sequence op-

erator ‘;’ that is used to express the sequential execution of processes, a non-binding sequence

operator‘&’ that is used for barrier execution of processes and an exclusive choice operator

‘|’ that performs eureka execution. Furthermore our DSL adopts the axioms and the process

algebra as defined by the ACP. Equation 4.2 reprints the ACP axioms using the Cwmwl script

operators in the notation. ACP is defined by more axioms that are not relevant to our use case

and thus not reprinted in this paper.

a&b = b&a

(a&b)&c = a&(b&c)

a&a = a

(a&b); c = a; c&b; c

(a; b); c = a; (b; c)

(4.2)



102
4.7 Assessment of functions as lightweight units of scale for distributed applications

in computing clouds

Table 4.2: DSL operators

Operator Description

; strongly binding sequence

& non-binding sequence (commutative),

and ‘parallelism’, barrier network

| exclusive choice, succeeds if any

of the operands does so, heureka

network

We found that Haskell supports the creation of our DSL with:

• Type system.

• Syntax flexibility.

Type system. We used the Haskell Type system to create an Abstract Syntax Tree (AST)–

illustrated in Listing 4.6 that limits and operations that are supported by our DSL. The abstract

syntax tree (AST) of the our DSL is built for the types string, integer, and some other

types (identifier, query, operation) that implement the domain abstractions that are

required to model the LINDA functionalities. Strong typing can be achieved by segmenting the

tuple space where every segment is created to store only a specific type [vdGSW97]. A further

option to preserve types is encapsulation, for example using JSON or ByteString.

1 {-# LANGUAGE DeriveDataTypeable #-}

{-# LANGUAGE DeriveGeneric #-}

3

5

module AST where

7



4.7 Assessment of functions as lightweight units of scale for distributed applications
in computing clouds 103

import Data.Serialize (Serialize)

9 import GHC.Generics (Generic)

11 import Data.Typeable

13 -- import Data.Serialize

15 data AST

-- = Number Double

17 = Number Integer

| Identifier String

19 | String String

-- | Operation BinOp AST AST

21 | Query String

deriving (Show, Eq, Generic)

23

data Tuple = Tuple {cmd :: String,

25 cid :: AST,

argumentList :: [AST],

27 queryList :: [AST]} deriving (Show, Eq,

Generic)

29 data ACPop = Plus | Minus | Mul | Div

deriving (Show, Eq, Enum, Typeable)

31

type CWLANG = AST

33

instance Serialize AST

35 instance Serialize Tuple

Listing 4.6: Abstract Syntax Tree



104
4.7 Assessment of functions as lightweight units of scale for distributed applications

in computing clouds

Although the host language Haskell is strongly typed, we do not use Haskell data types and

tuple matching is purely syntactic. As proposed by Wells [Wel05], data-type conversions are

handled by our DSL to create a truly heterogeneous system that is not limited to any (type of)

programming language. 18

Since the coordination of workloads in distributed environments, such as computing clouds,

requires network IO, our computations are not pure and the types used in our DSL need to be

in the IO Monad (such as the matrix multiplication in Listings 4.3 and 4.4) . In the IO monad,

side effects are allowed, and we needed to give up control over effects that is frequently seen

as one of the key advantages of Haskell over other programming languages.

Syntax flexibility Haskell allows DSLs to use nearly arbitrary syntax via Quasi Quotes

[Mai07] and via the Haskell parsing library Parsec [LM01]–we give our DSL the look & feel

/ syntax based on the language specification published by Gelertner [Gel85] (read also Sub-

section 4.7.2 for an overview of the required syntax). Listing 4.7 shows the parsers that we

developed for the implementation of LINDA primitives. Together with the AST and lexer that

reserves the new primitives (listing 4.8 shows the lexer without the required biolerplate code)

the parsers can be used as a compiler frontend to tokenize the new primitives (listing 4.9).

Rating: 1 The General Programming Language (GPL) supports the implementation of a

DSL / Coordination language independently from a third party platform or runtime (e.g.

, Clojure and Scala are built on top of JVM, F# on top of the .NET platform).

1

module Parser where

3

import Control.Monad (liftM)

5 import Control.Applicative hiding (many, (<|>))

import Text.Parsec

7 import Text.Parsec.String (Parser)

import Lexer

18Andres Loeh contributed an example of a typed LINDA where a list is used as medium of coordin-

ation. The example is reprinted in the appendix of this thesis.



4.7 Assessment of functions as lightweight units of scale for distributed applications
in computing clouds 105

9 import AST

11 acomma = lexeme comma

13 aparens = lexeme (symbol ")")

15 baldString = lexeme . fmap String $

(:) <$> noneOf "? ,)"

17 <*> many (noneOf " ,)") -- problematic - see comment

below

<* acomma

19

number = lexeme . fmap Number $

21 read <$> many1 digit

<* acomma

23

niceTuple = Tuple <$> lexeme resvd_cmd <* lexeme (char ’(’)

25 <*> lexeme ident <* acomma

<*> many ( number <|> baldString )

27 <*> many queries

29 ident = liftM Identifier identifier <?> "WorkerName"

31 queries = lexeme . fmap Query $

(:) <$> oneOf "?"

33 -- <*> many letter

<*> many (noneOf " ,)")

35 <* ( aparens <|> acomma )

37 resvd_cmd = do { reserved "rd"; return ("rd") }

<|> do { reserved "eval"; return ("eval") }



106
4.7 Assessment of functions as lightweight units of scale for distributed applications

in computing clouds

39 <|> do { reserved "read"; return ("read") }

<|> do { reserved "in"; return ("in") }

41 <|> do { reserved "out"; return ("out") }

<?> "LINDA-like Tuple"

Listing 4.7: Tuple Parser

module Lexer (

2 identifier, reserved, operator, reservedOp,

charLiteral, stringLiteral,

natural, integer, float, naturalOrFloat, decimal,

hexadecimal, octal,

4 symbol, lexeme, whiteSpace, parens, braces, angles

, brackets, semi,

comma, colon, dot, semiSep, semiSep1, commaSep,

commaSep1

6 )where

8 import Text.Parsec

import qualified Text.Parsec.Token as P

10 import Text.Parsec.Language (haskellStyle)

12 lexer = P.makeTokenParser ( haskellStyle

{P.reservedNames = ["rd", "in", "

out", "eval", "take"]}

14 )

Listing 4.8: Lexer without boilerplate

ubuntu@ip-10-244-148-6:~$ ghci Parser.hs

2 GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

4 Loading package integer-gmp ... linking ... done.



4.7 Assessment of functions as lightweight units of scale for distributed applications
in computing clouds 107

Loading package base ... linking ... done.

6 [1 of 3] Compiling AST ( AST.hs, interpreted )

[2 of 3] Compiling Lexer ( Lexer.hs, interpreted )

8 [3 of 3] Compiling Parser ( Parser.hs, interpreted )

Ok, modules loaded: Lexer, Parser, AST.

10 *Parser> parseTest niceTuple "rd (isFib, test2, 100, 200, ?

STRING)"

Loading package bytestring-0.9.2.1 ... linking ... done.

12 Loading package transformers-0.2.2.0 ... linking ... done.

Loading package mtl-2.0.1.0 ... linking ... done.

14 Loading package array-0.4.0.0 ... linking ... done.

Loading package deepseq-1.3.0.0 ... linking ... done.

16 Loading package text-0.11.2.3 ... linking ... done.

Loading package parsec-3.1.3 ... linking ... done.

18 Tuple {cmd = "rd", id = Identifier "isFib", argumentList = [

String "test2",Number 100,Number 200], queryList = [Query "

?STRING"]}

*Parser> parseTest niceTuple "rd (isFib, test2, 100, 200, ?

STRING, ?BOOL)"

20 Tuple {cmd = "rd", id = Identifier "isFib", argumentList = [

String "test2",Number 100,Number 200], queryList = [Query "

?STRING",Query "?BOOL"]}

Listing 4.9: Command line demonstration of the tokenizer

4.7.5 COO5: Degree of decoupling

For an evaluation of this requirement read Section 3.5.3 of this thesis.



108
4.7 Assessment of functions as lightweight units of scale for distributed applications

in computing clouds

4.7.6 COO6: Relevance and applicability to the domain comput-

ing clouds

Computing clouds are workload agnostic. Programming language must either support a wide

variety of application domains–making them essentially general purpose programming lan-

guages or they can support specific domains but must not hamper the key features and paradigms

of computing clouds.

Kachele [KDH11] has published eleven requirements of typical business applications that

should be supported by cloud computing platforms but found that “none of the current plat-

forms support a majority of these requested features”. The requirements of Kachele’s study are

compatible to a large extent with our objective in this thesis. As the requirements are still of

significant importance these days, and the chosen cloud computing model is PaaS, we consider

it as an appropriate starting point for the assessment of Haskell together and the LINDA-based

coordination language that we obtained.

Table 4.3 lists and compares how Haskell and our LINDA-based coordination model match

Kachele’s eleven requirements for business applications in computing clouds.

Rating: 2 The programming language needs to be extended in order to be relevant for the

application domain computing clouds.19

19This finding is in line with the findings of Epstein [EBPJ11] and [Mar11] (p. 244ff.). While both

aim to extend Haskell capabilities that have been designed for parallel and concurrent computing on the

local system to make them fit for distributed environments such as computing clouds, we buy into Lee’s

argumentation that we examine at the start of this chapter.



4.7
A

ssessm
entoffunctions

as
lightw

eightunits
ofscale

fordistributed
applications

in
com

puting
clouds

109

Table 4.3: Eleven requirements of business applications [KDH11]

Application Requirement

Explanation Haskell Haskell based DSL

Application-centric

approach

Developers only need to focus on

core application development and

functional aspects

Well-standardized GPL. Large

number of libraries available

Simple, high level communications

model.

Application-independent

approach

Applications executed on PaaS

must not be limited to web services

GPL appropriate for many use

cases.

Separation of concerns achieved in-

dependent of how computation is

performed. Associative memory

and generative communication are

inter-operable.

Elasticity Platform should be elastic and

ideally preserve application state

during scaling

No support for elasticity in distrib-

uted environments.

Application state is preserved in the

central tuple store, elasticity de-

pending on unit of scale. Tasks and

Workers run decoupled, in parallel

and at virtually any scale.

Virtual addressing Location is irrelevant, customers

must be able to reach their applic-

ation from everywhere

Virtual addressing not supported.

Developers need to maintain for ex-

ample ’call graphs’.

Associative addressing specifies

what data, message or worker is

requested rather than an address.



110 4.7
A

ssessm
entoffunctions

as
lightw

eightunits
ofscale

fordistributed
applications

in
com

puting
clouds

Table 4.3: Eleven requirements of business applications [KDH11]

Application Requirement

Explanation Haskell Haskell based DSL

Cloud-independent

programming-model

Software should be able to run

on both cloud computing platforms

and local systems

Possibility to have a local tuple

store

Updating and bug fixing,

Native support for modu-

larity,

Adaptable design

On the fly updating to achieve high

SLAs, preserve application state

during updating

Uncoupling of agents in space and

time. No direct communication that

could be broken, state is preserved

by tuple store

Multi tenancy Isolation and confidentiality inher-

ent in the platform

Multiple security architectures

thinkable e.g. plugins for tenant

code execution in Safe Haskell

[TMPJM12], application execution

in light weight VMs, Rusello et al.

show that confidentiality of tuples,

data and state therein is possible

[RDD+08]



4.7
A

ssessm
entoffunctions

as
lightw

eightunits
ofscale

fordistributed
applications

in
com

puting
clouds

111

Table 4.3: Eleven requirements of business applications [KDH11]

Application Requirement

Explanation Haskell Haskell based DSL

Dynamic placement Platform chooses where exactly to

deploy a worker, re-balancing in

case of changes in load

Consumption based cost

tracking



112 4.8 Intermediary result

4.8 Intermediary result

Table 4.4 summarizes the ratings of the Haskell programming language in the evaluation cri-

teria category Coordination.



4.8
Interm

ediary
result

113

Table 4.4: Rating of Haskell functions as easy access composable lightweight units that can be coordinated to achieve scalable

distributed applications

Requirement Rating Details

COO1 Entities suitable

for coordination

2 Applications in the FPL

are comprised of entities

that miss one or more

characteristics or they are

not easily accessible.

Functions are entities

suitable for decoupling

and parallelizing software

on the local system only.

Plugin architectures can

abstract away the need for

a main function

Functions do not reduce

the size of the required in-

frastructure.

COO2 Mechanisms of co-

ordination

3 The FPL must be exten-

ded to implement the re-

quired mechanism.

Read ASM4 Read ASM4 Read ASM4

COO3 Medium of co-

ordination

0 Not scored

COO4 Semantics / rules

protocols

1 The FPL supports the

implementation of a co-

ordination language inde-

pendently from a third

party platform or runtime

Type safety, algebraic

data types, generaliza-

tions

Syntax flexibility with in-

dustry grade lexer and

parser.



114
4.8

Interm
ediary

result

Table 4.4: Rating of Haskell functions as easy access composable lightweight units that can be coordinated to achieve scalable

distributed applications

Requirement Rating Details

COO5 Degree of Decoup-

ling

2 Node-level shared noth-

ing architectures can be

implemented using third

party libraries but they are

not cost effective and not

sufficient.

Read ASM3 Read ASM3 Read ASM3

COO6 Application do-

main

2 The FPL needs to be

extended in order to be

relevant for the applic-

ation domain computing

clouds.

The features designed to support parallel and concurrent computing on the

local system need to be extended to work across physical boundaries or new

means, for example a coordination language that by default supports uncoup-

ling in space and time needs to be implemented.



4.9 Summary 115

4.9 Summary

In this chapter we answer the questions:

1. What if cloud computing did not mean to wrap VMs and operating systems that need to

be administered and protected around atomic units of scale, such as processes or thread?

2. What if cloud computing would have small units of scale that support distribution re-

gardless of boundaries and scale of physical hardware?

3. What if cloud computing was not server centric?

We have investigated functions as small units of scale for computing clouds and have demon-

strated domain abstractions to achieve a functional tuple space implementation based on an

in-memory key-value store. We follow Lee’s argumentation [Lee07] that “We should not re-

place established languages. We should instead build on them.” and agree that under these

circumstances coordination languages have special merit. Consequently, we have introduced

the EDSL Cwmwl script that virtualizes (application) memory, data storage, and IPC, and de-

taches them from physical servers and operating systems. We have increased the expressive

power of coordination languages by the use of ACP and demonstrated that undesirable tuple

space access patterns, resulting for example from sequential algorithms, can be abstracted away

from the resulting coordination language.

In our current implementation, Cwmwl uses a centralized tuple space that on the one hand

creates the problem of a single point of failure, but on the other hand makes the Cwmwl tuple

space more capable in terms of migration than a distributed implementation. The elasticity of

the Cwmwl tuple space itself is left up to the capabilities of the Redis key-value store. Unlike,

for example RIAK, [ria] or the Amazon Dynamo key-value store [DHJ+07b], the distributable

version of Redis (named “Redis cluster”) is currently under development, and distribution over

multiple instances (e.g. via sharding) is left up to the developer. In an industrial-grade PaaS

fabric, the question what use cases the benefits of a portable tuple store outweigh the benefits

of a distributed tuple store will need to be investigated.



116 4.9 Summary



117

Chapter 5

Integration with Data

Computing clouds focus on the five key concepts as defined by NIST [MG11]:

self-service, broad network access, resource pooling, rapid elasticity and meas-

ured service, thereby paying no attention to the importance of data. Instead,

about the same time when computing clouds became popular, data took on a

life of its own, giving rise to the map reduce computing framework and data

locality, NoSQL data stores and the notion of ‘Big Data’, resulting in two

disparate paradigms: Computing Clouds and Big Data. For example, large

Cloud Service Providers (CSPs) sell map reduce workflows as an application

service that is separate from their IaaS or PaaS offerings.

The lack of harmonization of data and computation is holding back comput-

ing clouds from evolving further into utility clouds. Data gravity is perceived

as gravity pull associated with data volume. Data of large volume develop

large gravity that pulls computation to it, which, somehow, contrasts with the

computation-centred principle of current computing clouds, where computa-

tional resources is centralized and fixed.

In the previous chapter, we implemented a PaaS architecture that combines the

LINDA coordination language, an in-memory key-value store, with functional

programming to preserve state and facilitate execution and coordination of



118 5.1 Data

functions. In this chapter we discuss whether our architecture, findings and

paradigms from the previous two chapters can help to bridge the gap between

computing clouds and big data.

5.1 Data

Data is an emerging asset class with the term "Big Data" being the first widely adopted medi-

aspeak to describe this phenomenon. Laney [Lan01] described data as having the three dimen-

sions Volume, Velocity and Variety, which gives an adequate description of the attributes and

challenges found in ‘Big Data’.

5.1.1 Volume

Data is perceived as big because of its impressive volume. The Map Reduce framework,

with one of its core components being the Hadoop File System (HDFS), was the first step to

make parallelized analytics on cheap multicore commodity hardware feasible for programmers.

HDFS does not require data to be casted into any fixed schema before it is written to disk, and

thus outperforms traditional RDBM in storing data [PPR+09]. The actual Map Reduce query

framework used on top of HDFS vastly outnumbers traditional RDBM in the number of CPU

cores that can be utilized to run distributed queries over the data at hand [Rea09, OM09].

5.1.2 Variety

The variety of data reflects the range of data types and sources. For example, Hadoop Frame-

work is designed to ingest and work schemaless with any type and format of data. Data that

is free from constraints is often referred to as ‘unstructured data’. It is not unusual that, at the

time of ingestion, the structure of the data has not yet been specified or discovered.

The Redis key/value store goes even further and dissolves the notion of data types by providing

binary safe key/value pairs that can store any data type. Data Mashups that combine data

of different provenance and formats to extract new wisdom are a further expression of the



5.1 Data 119

Velocity

Variety

Volume

real-time

batch

unstructuredRDBM

MB

PB

Figure 5.1: 3V Data.

importance of data variety. The internet of things, that is basically an internet of sensors, will

certainly provide a plethora of interesting mashups of varying data.

5.1.3 Velocity

High velocity data as it occurs in social networking feeds and media data, such as video and

audio, are the first qualities of high velocity data that come to mind. However, streaming data

with various velocity is omnipresent. According to Intel [Int13], in the year 2013 the internet

consisted of 640TB of data in motion per minute. Finally, the only way to analyse "offline"

static data, for example on the HDFS file system or stored in an RDBM, is by transforming it

into a stream and bringing it into the main memory of the computing node bit by bit. However,

while traditional programming models and programming languages show no flexibility in alter-

ing the query or computation once a loop that loads data bit by bit into main memory has been

started, stream processing frameworks are expected to be flexible and allow ad-hoc changes of

the computation.



120 5.1 Data

5.1.4 Data Gravity —the fourth dimension of data

In 2011, McCrory described in a meanwhile famous Blog Post [mcc] the qualitative character-

istics of data that he called "Data Gravity". Since then these principles have resonated in the

commercial communities dealing with 3V data. "Data Gravity" is a metaphor describing the

economics of data. Data is better to stay where it is and not to be shipped around, no matter

how big or small the amount of data may be. A finding that is supported by Jim Gray [Pat03],

who stated that compared to the cost of moving data, everything else would be negligible. Con-

sequently, McCrory stated that data must have something that is comparable to a gravitational

pull that pulls services and applications to it rather than the other way around: Data Gravity.

This blends with the Map Reduce programming model where computations, for example, batch

jobs written in Java or Python, are brought close to the data rather than the other way around
1. Under the assumption that Data Gravity exists, it seems reasonable to question whether

computing clouds, where computation resources, expected to be mobile under the sense of data

gravity, are centralized and rationalized (illustrated in Figure 5.2), are the landmark innovation

that is required to put utility computing into practice.

There following approaches bring computation to data and mitigate data gravity:

• Agent platforms, such as Java RMI2 or CORBA.

• Code mobility as implemented in ML5 [VCH07].

• Fog Computing.

Agent platforms

The authors of this thesis define agent platforms as frameworks that allow developers to launch

code/agents into a network of nodes. State and data is communicated between agents using

1Exemptions exist where no resource close to the required data can be scheduled. In these cases

YARN transfers data over the network to the computational resource.
2For a preliminary discussion how Java RMI relates to distributed processing in computing clouds

read section 4.7.1 of this thesis.



5.1
D

ata
121

Figure 5.2: Resource pooling in computing clouds.



122 5.1 Data

messages, otherwise this approach is stateless. Over the past years, a number of promising

imperative agent platforms have evolved and been abandoned again, for example, Aglets, Con-

cordia and Objectspace Voyager [PK98]. The platforms differ in, for example inter-agent com-

munication or whether there is a central agent and service directory or not.

It must be noted that agent platforms and their general architectures are similar to function

service platforms and thus to the architecture that we have been using to investigate coordina-

tion (Figure 4.4). A key difference that we observe is whether the administrative tool set that

must be used to launch the agents is decoupled from the agents and possibly their programming

language or not. While modern function service platforms strictly decouple the administrative

tool set from the functions/agents that are being launched, traditional agent platforms such as

Aglets and our cwmwl framework do not decouple agents and tool set making the framework

admittedly complex.

Code mobility

The authors of this thesis define code mobility as migrating a running program (including all

data and state) from one system to another. Examples are the FPLs ML5, LuaTS (based on a

Tuple Space) as well as the imperative sPickle Python library. According to the observation of

the authors of this thesis, there is not a single approach that has been consistently maintained

and used in operational business applications—also not in imperative programming languages.

Fog Computing

Data Gravity is further amplified by the increase of the number of powerful heterogeneous

mobile devices and the internet of things (IoT). IoT specialists have recognized that on the long

term it may not be feasible to transport all (sensor)data from the edge to the cloud (read also

Section 5.4 and Illustration 5.4) for the implementation of advanced analytics and feedback

loops. IoT specialists are currently researching architectures where data is kept at the edge

and analysed close to its origin. Figure NN illustrates a general IoT architecture with the

three elements IoT Edge, IoT Gateways and IoT Platform (that is frequently based in a public

cloud). IoT architectures that consider data gravity and bring computation close to the edge



5.2 Functional Programming in Map Reduce 123

Figure 5.3: Evolution of information technology consumption.

are called "Fog Computing" [BMNZ14]. As with data gravity, fog computing is currently

still in its infancy. During a literature review, we could identify [HLR+13] and [LGL+15]

researching appropriate programming models as part of their research. However, the described

programming models are not yet detailed enough and not supported by experimentation.

5.2 Functional Programming in Map Reduce

The Map Reduce programming model as proposed by Google [DG08b] is currently the pre-

vailing model to analyse voluminous data sets that are offline on disks. Map Reduce is a batch

oriented computational model that works in approximate parallelized polynomial time com-

plexity: O(Nm/k) 3. Although Map Reduce excels in ad-hoc queries over unstructured offline

data, it is not a good fit for recursive computations that are prevailing in Machine Learning

[ZCF+10].

3Where N is the number of data records, m an exponent specific for the algorithm and k the number

of CPU cores or computation nodes.



124 5.2 Functional Programming in Map Reduce

The most popular implementation of Map Reduce is Hadoop [apab]. Yet Another Resource

Negotiator (YARN) [VMD+13], frequently referred to as "Hadoop 2", is the most recent ver-

sion of Hadoop that implements some trade-offs and changes to better support, for example,

recursion and programming models that are neither based on the Map Reduce programming

model nor interpreted into on the Map Reduce programming model, such as the initial SQL-

like data platforms for Hadoop. With YARN Hadoop started to evolve from the Map Reduce

programming model into a High Performance Computing (HPC) Platform and shares some of

the advantages and constraints of HPC.

Map Reduce and Functional Programming are closely related because:

• Map Reduce and FPL paradigms are closely related.

• Next generation compute over HDFS is an implementation of the actor model.

• FPLs are declarative.

Map Reduce and FPL are closely related. The Hadoop Map Reduce model has some

similarity to the Map Reduce model that is the mandatory basis of recursion schemes for list

processing in Haskell. Lämmel [Läm08] provides an in-depth discussion of how deeply the

Hadoop Map Reduce model is related to the Haskell Map Reduce programming model and

gives many examples written in Haskell notation. Lämmel concludes that “MapReduce and

Sawzall must be regarded as an impressive testament to the power of functional programming–

to list processing in particular. Google has fully unleashed the power of list homomorphisms

and friends for massive, simple and robust parallel programming. The original formulations

of the models for MapReduce and Sawzall slightly confuse and hide some of the underlying

concepts”.

Example: Close relation of the Hadoop Map Reduce paradigm and the Haskell functions

map and fold

In the Hadoop Map Reduce paradigm Map operates on a list of values in order to produce

a new list of values, by applying the same computation to each value. Reduce operates on



5.2 Functional Programming in Map Reduce 125

a list of values to collapse or combine those values into a single value by applying the same

computation to each value.

In Haskell, we can use the functions map and fold. Similar to the Hadoop Map Reduce

paradigm, the Haskell map function operates on a list of values in order to produce a new list

of values: map (+4) [1,6,4,10] or map (\x -> x + 4) [1,6,4,10] where the

result will be:

ghci> map (\x -> x + 4) [1,6,4,10]

[5, 10, 8, 14]

Similar to the Hadoop Map Reduce paradigm, the Haskell fold function operates on a list of

values to collapse or combine those values into a single value by applying the same computa-

tion to each value: sum’ :: (Num a) => [a] -> a

sum’ xs = foldl (\acc x -> acc + x) 0 xs using the function sum’ gives the

following results:

ghci> sum’ [1,6,4,10]

21

Next generation compute over HDFS is implementing the actor model. Apache

Spark [ZCF+10] is an in-memory engine for data processing based on an implementation of

the actor model for parallelization. Apache Spark can be added to Hadoop and other distributed

data stores such as HBase or Cassandra.

The actor model for parallelization can work locally and across physical nodes in distributed

environments. The actor model is an inherent part of Erlang. Currently, no mature Haskell

library implements the actor model. Haskell certainly has equivalents for parallelization, such

as forkIO to create lightweight processes, the par monad, MVar or STM, but these imple-

mentations focus on parallelization on the local system and not over large distributed compute

farms. For more information how the actor model relates to FPLs we refer to section ASM3:

Support for node-level ’shared nothing’ architectures earlier in this thesis.

FPLs are declarative FPLs are declarative programming languages. The Structured Query

Language (SQL) is also a declarative programming language. Declarative languages specify



126 5.3 Functional Programming in Stream processing and Data flow programming

what result should be produced, but not (like imperative programming languages) how to put

this into practice, in theory giving the compiler the freedom to re-arrange and optimize the code

and arrive at a better result than a software developer would.

But why is a declarative language important for the support of data analytics at scale? De-

clarative languages, such as SQL, are strongly linked to modern relational databases and data

manipulation use cases. SQL allows the database to do algebraic optimizations, such as pick-

ing the sequence of joints (in complex queries) that needs the least execution time. In practice

we must consider that the compiler is also written by a human only; compilers cannot look at

code, understand its meaning and do the best optimization. This may change in the future when

compilers are based on Artificial Intelligence. We must admit however that compiler based op-

timization for SQL and FPLs work very well for the majority of use cases that the implementer

did foresee; not for edge cases, of course.

However, HDFS and Hadoop are written in the Java programming language and not in a FPL.

While FPLs contribute a number of valuable paradigms developers that really need to get some-

thing done seem to be better off by implementing the required paradigms in a a mainstream

imperative programming language, such as Java. The authors of this thesis are aware that any

conclusion would be not constructive. The rating below is based on the above observations,

rather than on speculation about what the reasons for this may be.

5.3 Functional Programming in Stream processing and

Data flow programming

There seems to be a substantial gap between audiences as to how they understand data flow

programming. While traditional research focuses on data flow programming as abstraction to

model (parallel) programs as data flow graphs, there has recently been more attention to the use

of the data flow programming paradigm in stream processing. While the one does not exclude

the other, cloud computing and 3V data have considerably changed the perception of data and

streams.



5.3 Functional Programming in Stream processing and Data flow programming 127

Stream processing models that operate on real-time data with approximate linearithmic time

complexity O(N log N) are increasingly gaining importance for the following reasons:

• They operate on real-time and temporal data as it occurs, for example, in online advert-

ising, elimination of online advertising fraud, sensors or social media streams 4.

• Their time complexity formula O (N log N) is not influenced by number of computing

nodes while the Map Reduce framework draws its strength from its scalability over

1000s of nodes and cores.

• Their use can significantly reduce the required hardware base and energy.

• They support recursive algorithms and machine learning.

• They are not invasive and developers are not forced to change their algorithms into map

and reduce phases. These phases come with an overhead due to the unnecessary addition

of tasks (such as shuffle and sort) both in computing and in programming. [TSLZ12].

Johnston [JHM04] described the history of data flow programming languages from the 1970s to

approximately the year 2000, and discussed in depth the inherent parallelism of data flow lan-

guages as well as their close relation to FPLs. Stonebraker [SÇZ05] states eight requirements

that "a system should meet to excel at a variety of real-time stream processing applications",

that are listed in Table 5.1. In spite the fact that Stonebraker had not foreseen the NoSQL move-

ment and stipulated that SQL would be the only viable query language, nearly a decade later,

most of his requirements are still applicable to processing high velocity data. Stonebraker’s

requirements are listed in Table 5.1, along with the features supported by FPLs and Tuple

Space, to indicate that a system combining FPLs with Tuple Space, as reflected in the section

"Blueprint for the next-gen computing cloud" of this paper, would meet most of Stonebraker’s

requirements.

The attention to data parallel programming has somewhat increased since 2007, when Mi-

crosoft research developed Dryad [IBY+07], a general purpose framework for data parallel

4According to IAB Internet Advertising Revenue Report conducted by PricewaterhouseCoopers

(PWC) the total revenue of online advertising for the first half year 2013 was $ 20.1 billion with a year

over year growth higher than 15% [IAB13].



128
5.3

FunctionalProgram
m

ing
in

Stream
processing

and
D

ata
flow

program
m

ing

Table 5.1: Eight requirements that a system should meet to excel at a variety of real-time stream processing applications

[SÇZ05] and how they are met by the cwmwl framework..

Requirement FPL Tuple-space

Keep the data moving In memory tuple space.

SQL on streams FPL are declarative, some aspects

similar to SQL

Handle Stream imper-

fections

Decoupling in space and time.

Predictable outcome Immutability of data. Lazy evalu-

ation. Evaluation eventually ends.

High-availability

Stored and Streamed

Data

Supports Lambda Architecture to

combine for example Map Reduce

data and streaming data.

Distribution and

Scalability

Instantaneous response,

Work pushing rather

than work stealing



5.3 Functional Programming in Stream processing and Data flow programming 129

programming. The framework exposes an API to describe acyclic DFGs that are eventually

parallelized and ran by the execution engine. Many authors have subsequently implemented

the Dryad API structure and execution model.

Tran [TSLZ12] proposed AROM, a framework for processing Big Data with DFGs and FPLs.

AROM aiming to provide a Dryad-like API that allows jobs to be expressed as DFGs, was

implemented in Scala5 and built on top of the Akka toolkit6. Tran argued that FPLs provided

an ideal basis to implement the required generic and reusable operators because they support

higher order functions. Tran recognized the importance of highly scalable message passing

services for the performance of distributed data driven systems.

The dependency between data flow systems and the underlying protocol that is used to propag-

ate either data or control information in the system has been recognized and partially invest-

igated. For example, Li [LTS+08] described a high performance architecture that supports

out of order processing of streams; Murray [MMI+13] also addressed the issue in more depth

and concluded that a specialized protocol would provide better performance. The findings of

Tran, Li and Murray are in line with our previous research into inter-process communication

for computing clouds [FW12b].

Furthermore, real time processing of high velocity data is of commercial interest where it sup-

ports, for example, Impact of workload size on throughput , online advertising and fraud detec-

tion. Yahoo S4 [NRNK10], the Storm project7 [Cha13], Amazon Web Services Kinesis8 and

IBM Infosphere Streams9 are examples for successful stream processing frameworks that are

either commercial products or open source software developed by a commercial company.

Map Reduce and Big Data Stream analytics share many commonalities such as the shared noth-

ing architecture. Marz [Mar13] proposed what he calls a "Lambda Architecture" to integrate

both batch processing (Map Reduce) over high volume data and real-time processing of high

5Scala - http://www.scala-lang.org
6Akka - Toolkit and runtime for building highly concurrent, distributed, and fault tolerant event-

driven applications. - http://akka.io
7The Storm Project - http://storm-project.net
8AWS Kinesis - http://aws.amazon.com/kinesis/
9IBM Infosphere Streams - http://www.ibm.com/developerworks

/bigdata/streams/



130 5.4 Functions in service platforms for IoT sensor data

velocity data by presenting a data mashup that is the combined result from both its speed layer

(real-time processing) and its batch layer (Map Reduce).

5.4 Functions in service platforms for IoT sensor data

Function service platforms, such as AWS Lambda [Inca], Google Cloud Functions [Inc16],

Iron Worker [Iro16] or IBM Bluemix OpenWhisk are key architectural elements of cloud

based Internet of Thing (IoT) platforms10. Function service platforms are also referred to

as Event-driven application platform (EDAP), zero infrastructure platform services or event-

driving compute service. AWS Lambda defines functions as stateless programs that have no

affinity to the underlying platform. Functions maybe written in Java, Node.js or Python, the

code size may not exceed 250MB and the execution time is limited to 300 seconds. Functions

are triggered by events when, for example, when a new message is written to an AWS S311

bucket.

Figure 5.4 illustrates an architecture where a message that is written to an S3 bucket triggers an

AWS Lambda functions that fans out to multiple functions, a message queue and a traditional

system that is using a REST API. The message response is then written to a shared storage, for

example, an RDBM or a Hadoop cluster. Applications, such as analytics platforms or portals,

can then access the result sets and visualize them or, in case of the IoT, trigger a response in

the real world, to name a few examples.

The fact that end customers cannot (yet) use functional programming languages to write func-

tions for AWS Lambda and the like seems irritating at first. However, the market penetration

of Erlang and Haskell is admittedly low and commercial players must offer products and fea-

tures suitable for mainstream at first. However, the programming model that is required to

use function service platforms is very close to what functions in for example Haskell deliver.

The authors of this thesis believe that functional programming languages such as Erlang and

Haskell are ideal for these use cases and thus have direct and indirect merit for the IoT that is

now just at the start.

10An IoT platform can be build or rented, in all cases the maintainer will need functional services.
11Object storage offered by the AWS cloud computing platform



5.5 Functions, Messaging and Coordination: Reconsidering the problem with data131

Figure 5.4: Architecture using AWS Lambda functions for data ingestion. Source:

AWS.

It should also be noted that the example architecture of an application that is using AWS

Lambda functions (Figure 5.4) is similar to the architecture that we have been using to invest-

igate coordination (Figure 4.4). Our design is using a central tuple store to fan out functions

and to store the results. In addition, the tuple store can track state without requiring the fan-out

into a bolt on message queue.

5.5 Functions, Messaging and Coordination: Recon-

sidering the problem with data

Fixing data requires a large vision with a sequence of small steps that lead to it. In this section

we reconsider our statements about data and apply them to the CMQ/Cwmwl architecture.

Based on our research we have identified eight dogmas for the next-generation (”next-gen”)

cloud computing platform that, according to Figure 5.3, may very well be similar to a future

UC platform. In the following subsections we introduce qualitative evidence illustrating the



1325.5 Functions, Messaging and Coordination: Reconsidering the problem with data

integration of our architecture with data.

In order to make a significant contribution to fix data our architecture will need to

• Support for (analytics of) Data with challenging Volume.

• Support for a Variety of Data.

• Support for Data with challenging Velocity.

• Overcoming Data Gravity.

5.5.1 CMQ/Cwmwl support for Data with challenging Volume

Evidence that an architecture can support data with challenging volume is when the platform is

• Scalable. The CMQ/Cwmwl architecture is scalable because it is a distributed shared

nothing architecture that is decoupled in time and space. It is inherently asynchronous.

• Resilient. The CMQ/Cwmwl architecture is resilient because the UDP based CMQ

paradigm provides error resiliency on communication level. Functions are stateless and

lean units of scale that can be wrapped in containers and invoked within milliseconds.

• Fast. Optimistic UDP based messaging that is faster than traditional TCP based mes-

saging.

• Cost Effective. Cost effectiveness has not been assessed.

The remaining challenge is that the Redis based tuple store used in our test bed is centralized

and not distributed. In the following criteria we will show that it is better to implement a

number of smaller tuple stores at the edge rather than having a distributed resilient tuple store

at the core of the architecture.



5.6 Fixing Data by Eight Dogmas 133

5.5.2 CMQ/Cwmwl support for unstructured Data

Evidence that an architecture can support unstructured data is when unstructured data —that is

data where the format is not yet known at the time of ingestion, can be ingested without tradi-

tional transformation as applied during traditional Extract-Transform-Load (ETL) processes.

This issue has not been investigated during our research.

5.5.3 CMQ/Cwmwl support for Data with challenging Velocity

Evidence that an architecture can support data with challenging velocity is the availability of

techniques that can implement analytics or filters on data from streams, such as social network-

ing streams. By default tuple spaces, as used in the Cwmwl architecture, use associative lookup

that is also used in data flow programming. Our investigation showed the FPLs and Data Flow

Programming are closely related. We refer to Section 5.3 earlier in this chapter in that regard.

5.5.4 CMQ/Cwmwl and Data Gravity

Evidence that an architecture minimizes data gravity is:

• Minimization of data transfers (volume, frequency). The CMQ/Cwmwl architecture

consists of a message queue that queues smaller messages until they have reached certain

volume or age.

• Implementation of edge computing/fog computing. Functions are stateless units of scale

that can also be invoked at the edge, given that the edge implements sufficient means of

computation and coordination.

5.6 Fixing Data by Eight Dogmas

1. Associative lookup should be preferred.

As used, for example, in Dataflow programming, Content Addressable Memory (CAM)



134 5.6 Fixing Data by Eight Dogmas

tables of network switches 12 and Tuple Spaces.

2. The fabric must be a dynamic, scalable distributed system.

Achieve an inherently asynchronous framework for the required computations using a

shared-nothing paradigm.

Support elasticity and large scale operations, by providing, for instance, suitable pro-

gramming language abstractions, error resiliency, modularity and flexibility.

3. Next-gen platforms must handle stored data and streamed data.

4. A global name space to virtualize data objects and apps must be provided by the next-gen

platform.

5. Transmission protocols are the main.

Data transfer and message passing should be optimistic and based on the UDP protocol
13 preserving the asynchronous character of all components and communications.

6. Declarative programming, such as in SQL and FPLs should be preferred.

7. The emulation of traditional tier-based computing needs to be removed from computing

clouds and replaced with a unified fabric.

8. Next-gen cloud computing platforms need to deliver abstract services, not limited to web

services.

In order to match abstract services and data, an interface description language (IDL),

similar to Thrift IDL [SAK07] or Avro IDL [apaa] may be needed.

5.6.1 Blueprint for the next-gen computing cloud

The authors of this thesis argue that a distributed in-memory Tuple Space should serve as

backbone for a distributed scalable fabric that acts as an abstraction layer and virtualizes both

12Notably, high speed data centers already moved from being routed environments to layer 2 data

center network fabrics that are based on CAM. This has also advantages in fault tolerance, the support

for data center virtualization and migration of workloads.
13The use of UDP is explained and supported with facts and measurements in our previous research

[FW12b]



5.6 Fixing Data by Eight Dogmas 135

data and computation. Applications and services are encapsulated in lightweight containers,

such as Docker [web15], and define data flows as flows that connect and flow through the

encapsulated services (hereafter ‘app’). To manage the flow of computations and events, we

use the principle of data gravity and distinguish between streamed data and stored data:

• Streamed data, like events, that need to find an encapsulated app to be processed. In

this case the encapsulated app, that is data as well, has the higher gravitational pull and

attracts event data.

• Stored data, like larger (file) objects, that have high gravitational pull and bring services

temporary close to them for the time needed to be processed.

Figure 5.5 is a blueprint diagram for a data oriented next-gen utility that implements the eight

dogmas. The eight dogmas are matched by seven architectural steps:

1. Distributed Shared Memory is used to implement associative lookup. Data and compu-

tations are matched and routed based on what they are rather than what the assigned IP

address is.

2. An in-memory Tuple Space is used to provision a means of coordination of data and

computation. Policies, such as Constraint Handling Rules (CHRs) [Frü95], are a funda-

mental aspect to determine what level of storage is required, such as the time (length)

data should remain in the low gravity segment or what type of app can access particular

data in the fabric (security)[Lin14].

3. A site global name space makes data storage transparent to the (application) developer.

4. The Tuple Space is deployed on servers and networking devices.

5. Declarative programming based on, for example, functional programming is preferred.

6. Apps are considered to be data as well and flow according to the principles of gravity.

The Tuple Space makes tier-based architectures obsolete [web] [FW14a].

7. IDLs should be integrated with inter-process communication based on the User Data-

gram Protocol (UDP).



136 5.6 Fixing Data by Eight Dogmas

Figure 5.5: Blueprint diagram for a data driven next-gen utility

5.6.2 Challenges and Opportunities

Van Lingen [Lin14] states that it is unlikely that there will be one next-gen data fabric. Instead

there will probably be multiple fabrics managed by multiple companies and entities similar

to modern IP networks. Next-gen data fabrics should therefore be connected to each other

through gateways creating a fabrics-to-fabrics connection where needed. The fabric needs to be

capable to support multiple protocols, transportation layers, and mappings to data and services;

questions arise concerning the data security and privacy.

Tuple Spaces have been around for a long time with relatively moderate adoption rates. On the

one hand modern in memory key-value stores such as Redis are in a way very similar to tuple

spaces. On the other hand, tuple spaces have much more to offer than a simple key-value store.

For example, values can be part of distributed hash tables, information for routing algorithms,

references to stored data, apps and workflow scripts layers can be built on top of Tuple Spaces

to provision the next-gen cloud computing platform.

Similar, Dataflow Programming and Functional Programming have also been around for a long

time, but we now observe a significant uptake. Many mainstream programming languages

are now extended with functional elements and it needs to be assessed separately whether this

meets the spirit and requirements of functional programming that traditionally adheres strictly



5.7 Summary 137

to its paradigms, like the immutability of data.

Eventually the innovation in architecture needs to be matched and supported by the silicon on

the same level as the innovation in hypervisors. Asa result core functionalities, such as curating

low gravity and high gravity data and provisioning of a unified namespace, can become part of

the infrastructure rather than of the software.

The integration of data remains difficult and with the advent of Big Data we are just at the

doorstep in understanding the role, dimensions and implications of data. If we expect current

computing clouds to move forward and assume a new role as real utilities we must harmonize

computation and data. Clearly this affects a number of research communities that are involved

in distributed computing, data, networking and, not to forget, security and privacy. Clearly, the

importance of data will further increase and poses tremendously interesting research questions

and opportunities.

5.7 Summary

Due to our interest in data, we have included this Chapter in our evaluation that is based on

literature research and the authors’ experience with data. We argue that a distributed in memory

Tuple Space (as proposed in Chapter 4) is effective in serving as backbone for a distributed

scalable fabric that acts as an abstraction layer and virtualizes both data and computation. We

introduce the principle of data gravity that reflects the nature of data to attract computation,

not the other way around. The exploration of data uncovered some interesting use cases for

functions, such as IoT service platforms that do not require internode message passing and

coordination. Although out of scope of this thesis, the authors find that the FPL Haskell may

be a much better fit for these use cases than for computing clouds.



138 5.7 Summary



139

Chapter 6

Conclusion

This research was set out to explore FPLs and computing clouds. When we started, in the

year 2011, the general academic literature was sparse and we could only identify three aca-

demic authors (Armbrust [AFG+10], Birman [BCvR09] and Foster [FZRL08]) that had recog-

nized cloud computing as new paradigm that is difficult to understand for academic researchers.

Birman writes, “hot research topics seem to be of limited near-term importance to the cloud

builders, while some of their practical challenges seem to pose new questions to . . . research-

ers.” The authors on this subject achieved an academic consensus as to what cloud computing

is and what new questions and paradigms need to be added in future academic research. This

thesis is based on the authors’ commercial experience with computing clouds, experimental

work, and literature research. The thesis sought to answer two questions:

1. What are the new paradigms and questions of cloud computing builders?

2. Do FPLs fit with the new paradigms, and do they offer special merit in alleviating the

new questions and challenges?

We conclude that our experimental work and demonstrator code was geared towards com-

pensating that Haskell has been designed with the local system in mind (for more information

we refer to Sections 4.7.1 to 4.7.6 of this thesis). Although Haskell implements all the right

paradigms and approaches, it is tied to the local system. Haskell is excellent for use cases that



140 6.1 Critical Assessment

do not require the distribution of the application across the boundaries of (physical or virtual)

systems but not appropriate as a whole for the development of distributed cloud based work-

loads that require communication with the far side and coordination of decoupled workloads.

We argue that interaction of functions or any other lightweight unit of scale in computing clouds

need to be dealt with in ways that are intrinsically different from objects that interact in a single

system. However, Haskell may be able to qualify as a suitable vehicle in the future with future

developments of formal mechanisms that embrace non-determinism in the underlying distrib-

uted environments leading to applications that are anti-fragile [Tal12] rather than applications

that insist on strict determinism that can only be guaranteed on the local system or via slow

blocking communication mechanisms.

6.1 Critical Assessment

The main findings are chapter specific and were summarized within the respective evaluation

chapters: Chapter 3 ‘Asynchronous operations and messaging’ and Chapter 4 ‘Coordination.

To help with assessing Haskell a set of evaluation criteria based on the new paradigms and chal-

lenges of computing clouds was proposed and scrutinized using real-world implementations

and artefacts. The evaluation criteria and implementation details highlighted that our contri-

butions are in the connection of the new paradigms, questions, and challenges with existing

academic research. Within the discourse we frequently find the need to challenge established

paradigms.

Chapter 3 finds that in computing clouds, Haskell needs to support node level shared nothing

architectures and provide inter-node message passing. We present the lightweight, UDP based

message queue CMQ. The concept to use UDP instead of TCP is motivated by our under-

standing that, in Cloud Computing, omnipresent off-the-shelf technologies (both in hard and

software) are encouraged, and if preventing errors from occurring becomes too costly, deal-

ing with the errors may be a better solution. Although CMQ is a message queue oriented

communication approach, CMQ is different from the conventional MOM approach because it

challenges a number of assumptions under which conventional MOM is built. For instance,

in conventional MOM, messages are ‘always’ delivered, routed, queued and frequently follow



6.1 Critical Assessment 141

the publish/subscriber paradigm. It is often accepted that this requires an additional layer of

infrastructure and software where logic is split from the application and configured in the ad-

ditional layer. On the contrary, CMQ does just enough. It does not offer any guarantees, such

as reliable transmission, thus is very light weight with low overhead and fast speed. Although

it does not offer guarantees, it appears to be stable in the presence of errors.

At the given time, the implementation status of CMQ remains basic and it is left up to the

end user or developer to detect message loss and replace (rather than resend) lost messages

with newer messages if required. Further research into byzantine fault tolerance is required to

illustrate the feasibility of the new paradigm even when multiple errors occur at the same time.

In Chapter 4 we answered the questions:

1. What if cloud computing did not mean to wrap VMs and operating systems that need to

be administered and protected around atomic units of scale, such as processes or thread?

2. What if cloud computing would have small units of scale that support distribution re-

gardless of boundaries and scale of physical hardware?

3. What if cloud computing was not server centric?

We follow Lee’s argumentation [Lee07] that “We should not replace established languages.

We should instead build on them.” and agree that under these circumstances coordination lan-

guages have special merit. We find that while Haskell functions provide easy access units of

scale, it must be extended with a means for coordination. We present the PaaS framework

CWMWL, which is intended to rethink PaaS design and to merge brute replication and re-

clustering (which is the current methodology to implement PaaS) with distributed computing

to improve efficiency and cost. Our foremost design goal is simplicity by achieving a novel

unified platform rather than virtualizing and replicating the implementation of a load balanced

web application that has existed since the end of the 1990s. Multiple times, we challenge

the academic concept of deterministic computing arguing that nondeterministic means must be

introduced where needed to fit the nature and requirements of computing clouds–without dis-

rupting the essential determinism of programming languages. In both, Chapter 3 and Chapter

4 we frequently felt as if we turned back the clock 30 years but in a good way.



142 6.2 Future directions

After literature research, we decided early on in our research to look for solutions on pro-

gramming language level and engaged into development and experimentation. Especially in

this chapter there is the question whether coordination needs to be part of the programming

language or can better be delivered via an external coordination service. Rather than going

ahead and implementing primitives for coordination, we could have taken an approach similar

to Chapter 3 where we evaluate external coordination services first.

Overall, the question what needs to be part of a programming language or DSL vs. what can

be consumed as external service, could have been investigated in more depth.

Due to our interest in data, we included literature research and the authors’ experience with data

in Chapter 5. This chapter is not backed by experimentation because the importance of data

became only evident towards the end of this project. We argue that a distributed in memory

Tuple Space (as proposed in Chapter 4) is effective in serving as backbone for a distributed

scalable fabric that acts as an abstraction layer and virtualizes both data and computation. We

introduce the principle of data gravity that reflects the nature of data to attract computation,

not the other way around. The exploration of data uncovered some interesting use cases for

functions: serverless computing and the IoT that frequently do not require internode message

passing and coordination. Although out of scope of this thesis, the authors find that the FPL

Haskell may be a much better fit for these use cases than for computing clouds.

The findings in this chapter are qualitative and, given that data gravity, edge computing and fog

computing are still in their infancy we could not contribute quantitative measures suitable to

assess the suitability of a programming language.

6.2 Future directions

This thesis has made a substantial step in describing the paradigms and questions of cloud

computing builders that are driven by practical challenges. With the advent of stateless micro

service architectures based on Docker and the IoT many paradigms have gained importance for



6.2 Future directions 143

application deployments on premise1. We have validated the assumption that the FPL Haskell

has special merit for computing clouds and find that while this is true in theory, in practice it

does not hold because Haskell’s powerful (parallelization) features have been designed for a

single system. Our work opens up a variety of interesting possibilities for future work. In par-

ticular there are three directions: (i) exploiting light and robust communication protocols for

distributed environments, (ii) study of the integration of functions with third party communic-

ation services, such as etcd [Incc], and (iii) investigate the potential role of FPLs in serverless

compute and the IoT where currently functions are used that are not based on FPLs.

Clear applications lie in the development of anti-fragile applications with stateless micro ser-

vice architectures, serverless compute and in the IoT. The findings of Chapter 3 inform new pro-

tocol design in distributed environments where anti-fragile applications will need anti-fragile

communication protocols. Otherwise, the fallacies of distributed computing (see Section 1.7)

cannot be mitigated.

While the approaches to coordination presented in this thesis are able to coordinate functions

in distributed environments, a comprehensive coordination mechanism would require much

more than we have implemented and make the final product a huge platform. The authors

of this thesis believe that trying to hide complexity in one-size-fits-all platform such as Java

Application Servers will not be the right way to go. At this point in time the authors of this

thesis believe that the integration of functions with modern third party coordination services

such as Google Kubernetes or Apache Mesos, that were not available prior to this thesis, must

be investigated before standing up yet another coordination framework. On the other hand, we

can also envisage a composable serverless runtime operating system for functions.

The concept of ‘Data Gravity’ that we have adopted in Chapter 5 needs more investigation as to

its overall implications on compute at the edge, as well as its benefits concerning data privacy

and other data residency issues. It must be noted that the NoSQL movement has adopted the

key paradigms of computing clouds. For example, it questions the CAP theorem and, where

appropriate, favours eventual consistency before expensive guarantees that are hardly needed.

1Application developers would most likely choose the term ‘application delivery’ instead of ‘ap-

plication deployment’ because Linux containers managed by Docker are frequently used for Continuous

Improvement (CI) and Continuous Delivery (CD)



144 6.2 Future directions

Also, there the clock has been turned back 30 years but in a good way.

While commercial pressure has meanwhile forced IaaS providers to abstract away their key

paradigms from the enterprise customer making the overall experience similar to legacy com-

pute environments for monolithic applications, in deployments and runtime environments of

newer applications the paradigms that we describe in this thesis will undisputedly find their

way into academic research agendas.



145

Appendix A

Time profiling



146
6.2

Future
directions

Thu Aug 23 14:22 2012 Time and Allocation Profiling Report (Final)

timeprof_cmq +RTS -p

total time = 7.47 secs (7475 ticks @ 1000 us, 1 processor)

total alloc = 3,542,023,928 bytes (excludes profiling overheads)

COST CENTRE MODULE \%time \%alloc

collectPong Main 34.9 18.8

cwPop CMQ 15.1 0.1

append Data.Serialize.Builder 9.4 5.6

encodeListOf.\ Data.Serialize.Put 7.9 6.6

sendPing.\ Main 3.2 3.6

unsafeLiftIO.\ Data.Serialize.Builder 2.6 0.1

writeN Data.Serialize.Builder 2.5 3.2

withSize.\ Data.Serialize.Builder 2.5 0.0

writeNBuffer Data.Serialize.Builder 2.2 8.3

appendMsg CMQ 1.9 1.3

cwPush CMQ 1.8 0.5

put Data.Serialize 1.7 1.0

putWord64be.\ Data.Serialize.Builder 1.6 0.0

execPut Data.Serialize.Put 1.4 0.0

putWord8 Data.Serialize.Put 1.2 0.0

tell Data.Serialize.Put 1.0 2.3

newBuffer Data.Serialize.Builder 0.3 45.7



6.2
Future

directions
147

individual inherited

COST CENTRE MODULE no. entries \%time \%alloc \%time \%alloc

MAIN MAIN 123 0 0.1 0.0 100.0 100.0

main Main 257 0 0.0 0.0 94.2 93.3

runTest Main 258 0 0.0 0.0 94.2 93.3

sendPing Main 275 0 0.1 0.0 46.4 76.2

sendPing.\ Main 278 0 0.0 0.0 46.3 76.2

cwPush CMQ 279 0 1.8 0.4 46.3 76.2

transMit CMQ 451 593 0.1 0.1 2.1 1.9

transMit.mT’ CMQ 517 593 0.0 0.0 0.0 0.0

transMit.qT’ CMQ 516 593 0.0 0.0 0.0 0.0

encode Data.Serialize 455 593 0.0 0.0 1.6 1.8

put Data.Serialize 461 0 0.0 0.0 0.7 0.6

putListOf Data.Serialize.Put 462 0 0.0 0.0 0.7 0.6

tell Data.Serialize.Put 467 24906 0.0 0.0 0.0 0.0

encodeListOf Data.Serialize.Put 463 0 0.0 0.0 0.6 0.6

encodeListOf.\ Data.Serialize.Put 464 24906 0.2 0.3 0.6 0.6

put Data.Serialize 493 97252 0.0 0.0 0.2 0.2

putWord8 Data.Serialize.Put 495 0 0.0 0.0 0.2 0.2

tell Data.Serialize.Put 499 97252 0.0 0.1 0.0 0.1

singleton Data.Serialize.Builder 496 97252 0.0 0.0 0.1 0.1

writeN Data.Serialize.Builder 497 97252 0.1 0.1 0.1 0.1

unsafeLiftIO Data.Serialize.Builder 506 97252 0.0 0.0 0.0 0.0

append Data.Serialize.Builder 498 97252 0.0 0.0 0.0 0.0

put.c Data.Serialize 494 97252 0.0 0.0 0.0 0.0

execPut Data.Serialize.Put 477 146471 0.1 0.0 0.1 0.0

sndS Data.Serialize.Put 478 146471 0.0 0.0 0.0 0.0



148
6.2

Future
directions

putWord64be Data.Serialize.Put 472 24906 0.0 0.0 0.1 0.0

tell Data.Serialize.Put 476 24906 0.0 0.0 0.0 0.0

putWord64be Data.Serialize.Builder 473 24906 0.0 0.0 0.0 0.0

writeN Data.Serialize.Builder 474 24906 0.0 0.0 0.0 0.0

unsafeLiftIO Data.Serialize.Builder 486 24906 0.0 0.0 0.0 0.0

append Data.Serialize.Builder 475 24906 0.0 0.0 0.0 0.0

append Data.Serialize.Builder 466 146471 0.0 0.0 0.0 0.0

mappend Data.Serialize.Builder 465 24906 0.0 0.0 0.0 0.0

runPut Data.Serialize.Put 456 593 0.0 0.0 0.9 1.2

sndS Data.Serialize.Put 460 593 0.0 0.0 0.0 0.0

toByteString Data.Serialize.Builder 457 593 0.0 0.0 0.9 1.2

append Data.Serialize.Builder 459 593 0.3 0.2 0.9 0.6

put Data.Serialize 468 0 0.0 0.0 0.6 0.4

putListOf Data.Serialize.Put 469 0 0.0 0.0 0.6 0.4

encodeListOf Data.Serialize.Put 470 0 0.0 0.0 0.6 0.4

encodeListOf.\ Data.Serialize.Put 471 0 0.0 0.0 0.6 0.4

put Data.Serialize 500 0 0.0 0.0 0.4 0.3

putWord8 Data.Serialize.Put 501 0 0.0 0.0 0.4 0.3

singleton Data.Serialize.Builder 502 0 0.0 0.0 0.4 0.3

writeN Data.Serialize.Builder 503 0 0.0 0.0 0.4 0.3

ensureFree Data.Serialize.Builder 511 0 0.0 0.0 0.1 0.0

withSize Data.Serialize.Builder 512 0 0.0 0.0 0.1 0.0

withSize.\ Data.Serialize.Builder 513 72939 0.0 0.0 0.0 0.0

ensureFree.\ Data.Serialize.Builder 514 72939 0.0 0.0 0.0 0.0

unsafeLiftIO Data.Serialize.Builder 507 0 0.0 0.0 0.2 0.3

unsafeLiftIO.\ Data.Serialize.Builder 508 97252 0.1 0.0 0.2 0.3

flush.\ Data.Serialize.Builder 515 593 0.0 0.0 0.0 0.0

writeNBuffer Data.Serialize.Builder 509 97252 0.2 0.3 0.2 0.3

writeNBuffer.\ Data.Serialize.Builder 510 97252 0.0 0.0 0.0 0.0



6.2
Future

directions
149

putWord64be Data.Serialize.Put 479 0 0.0 0.0 0.2 0.1

putWord64be Data.Serialize.Builder 480 0 0.0 0.0 0.2 0.1

writeN Data.Serialize.Builder 481 0 0.0 0.0 0.2 0.1

unsafeLiftIO Data.Serialize.Builder 487 0 0.0 0.0 0.1 0.1

unsafeLiftIO.\ Data.Serialize.Builder 488 24906 0.0 0.0 0.1 0.1

putWord8 Data.Serialize.Put 504 0 0.0 0.0 0.0 0.0

singleton Data.Serialize.Builder 505 0 0.0 0.0 0.0 0.0

writeNBuffer Data.Serialize.Builder 489 24906 0.0 0.1 0.1 0.1

writeNBuffer.\ Data.Serialize.Builder 490 24906 0.0 0.0 0.1 0.0

putWord64be.\ Data.Serialize.Builder 491 24906 0.1 0.0 0.1 0.0

shiftr_w64 Data.Serialize.Builder 492 174342 0.0 0.0 0.0 0.0

ensureFree Data.Serialize.Builder 482 0 0.0 0.0 0.1 0.0

withSize Data.Serialize.Builder 483 0 0.0 0.0 0.1 0.0

withSize.\ Data.Serialize.Builder 484 49219 0.0 0.0 0.1 0.0

ensureFree.\ Data.Serialize.Builder 485 49219 0.0 0.0 0.0 0.0

newBuffer Data.Serialize.Builder 458 0 0.0 0.5 0.0 0.5

transMit.(...) CMQ 454 593 0.0 0.0 0.0 0.0

transMit.a CMQ 453 593 0.0 0.0 0.0 0.0

sendq CMQ 452 593 0.3 0.0 0.3 0.0

put Data.Serialize 301 24942 0.0 0.0 0.0 0.0

putListOf Data.Serialize.Put 302 24942 0.0 0.0 0.0 0.0

encodeListOf Data.Serialize.Put 305 24942 0.0 0.0 0.0 0.0

appendMsg CMQ 287 24349 1.9 1.3 41.9 73.7

appendMsg.env CMQ 448 24348 0.1 0.0 0.4 0.1

getQthresh CMQ 450 0 0.3 0.1 0.3 0.1

appendMsg.(...) CMQ 348 24349 0.2 0.0 0.2 0.0

appendMsg.messages’ CMQ 347 24349 0.0 0.0 0.0 0.0

appendMsg.l CMQ 289 24349 0.1 0.0 36.8 48.2

encode Data.Serialize 290 24349 0.1 0.0 36.7 48.2



150
6.2

Future
directions

put Data.Serialize 303 0 0.6 0.0 17.6 12.0

putListOf Data.Serialize.Put 304 0 0.8 0.0 17.0 12.0

tell Data.Serialize.Put 310 535565 0.2 0.4 0.2 0.4

encodeListOf Data.Serialize.Put 306 0 0.5 0.0 16.1 11.7

encodeListOf.\ Data.Serialize.Put 307 535565 7.2 6.1 15.6 11.7

put Data.Serialize 353 2044861 1.5 0.9 5.1 4.6

putWord8 Data.Serialize.Put 357 0 1.1 0.0 3.6 3.7

tell Data.Serialize.Put 361 2044861 0.5 1.4 0.5 1.4

singleton Data.Serialize.Builder 358 2044861 0.3 0.0 2.0 2.3

writeN Data.Serialize.Builder 359 2044861 1.3 2.3 1.7 2.3

unsafeLiftIO Data.Serialize.Builder 374 2044861 0.0 0.0 0.0 0.0

append Data.Serialize.Builder 360 2044861 0.4 0.0 0.4 0.0

put.c Data.Serialize 354 2044861 0.0 0.0 0.0 0.0

execPut Data.Serialize.Put 320 3091642 1.2 0.0 1.2 0.0

sndS Data.Serialize.Put 321 3091642 0.0 0.0 0.0 0.0

putWord64be Data.Serialize.Put 315 535565 0.1 0.0 1.0 1.0

tell Data.Serialize.Put 319 535565 0.2 0.4 0.2 0.4

putWord64be Data.Serialize.Builder 316 535565 0.1 0.0 0.7 0.6

writeN Data.Serialize.Builder 317 535565 0.5 0.6 0.6 0.6

unsafeLiftIO Data.Serialize.Builder 340 535565 0.0 0.0 0.0 0.0

append Data.Serialize.Builder 318 535565 0.1 0.0 0.1 0.0

append Data.Serialize.Builder 309 3091642 1.1 0.0 1.1 0.0

mappend Data.Serialize.Builder 308 535565 0.0 0.0 0.0 0.0

runPut Data.Serialize.Put 291 24349 0.0 0.0 19.1 36.1

sndS Data.Serialize.Put 300 24349 0.0 0.0 0.0 0.0

toByteString Data.Serialize.Builder 292 24349 0.3 0.0 19.1 36.1

append Data.Serialize.Builder 299 24349 7.1 5.1 18.6 13.5

put Data.Serialize 311 0 0.0 0.0 11.6 8.3

putListOf Data.Serialize.Put 312 0 0.0 0.0 11.6 8.3



6.2
Future

directions
151

encodeListOf Data.Serialize.Put 313 0 0.0 0.0 11.6 8.3

encodeListOf.\ Data.Serialize.Put 314 0 0.0 0.0 11.6 8.3

put Data.Serialize 362 0 0.0 0.0 6.8 6.2

putWord8 Data.Serialize.Put 363 0 0.0 0.0 6.8 6.2

singleton Data.Serialize.Builder 364 0 0.0 0.0 6.8 6.2

writeN Data.Serialize.Builder 365 0 0.3 0.0 6.8 6.2

ensureFree Data.Serialize.Builder 379 0 0.2 0.0 2.3 0.0

withSize Data.Serialize.Builder 380 0 0.5 0.0 2.1 0.0

withSize.\ Data.Serialize.Builder 381 1533645 1.5 0.0 1.7 0.0

ensureFree.\ Data.Serialize.Builder 382 1533645 0.2 0.0 0.2 0.0

unsafeLiftIO Data.Serialize.Builder 375 0 0.5 0.0 4.2 6.2

unsafeLiftIO.\ Data.Serialize.Builder 376 2044861 1.9 0.0 3.7 6.2

flush.\ Data.Serialize.Builder 386 24348 0.0 0.1 0.0 0.1

writeNBuffer Data.Serialize.Builder 377 2044861 1.6 6.0 1.8 6.0

writeNBuffer.\ Data.Serialize.Builder 378 2044860 0.2 0.0 0.2 0.0

putWord64be Data.Serialize.Put 322 0 0.0 0.0 4.7 2.2

putWord64be Data.Serialize.Builder 323 0 0.0 0.0 4.7 2.2

writeN Data.Serialize.Builder 324 0 0.1 0.0 4.7 2.2

unsafeLiftIO Data.Serialize.Builder 341 0 0.2 0.0 2.9 2.2

unsafeLiftIO.\ Data.Serialize.Builder 342 535565 0.5 0.0 2.7 2.2

putWord8 Data.Serialize.Put 370 0 0.0 0.0 0.0 0.0

singleton Data.Serialize.Builder 371 0 0.0 0.0 0.0 0.0

writeNBuffer Data.Serialize.Builder 343 535565 0.3 1.6 2.2 2.2

writeNBuffer.\ Data.Serialize.Builder 344 535565 0.3 0.6 1.8 0.6

putWord64be.\ Data.Serialize.Builder 345 535565 1.5 0.0 1.6 0.0

shiftr_w64 Data.Serialize.Builder 346 3748955 0.1 0.0 0.1 0.0

ensureFree Data.Serialize.Builder 334 0 0.3 0.0 1.8 0.0

withSize Data.Serialize.Builder 335 0 0.3 0.0 1.5 0.0

withSize.\ Data.Serialize.Builder 336 1046781 0.9 0.0 1.2 0.0



152
6.2

Future
directions

ensureFree.\ Data.Serialize.Builder 337 1046781 0.3 0.0 0.3 0.0

newBuffer Data.Serialize.Builder 295 0 0.2 22.6 0.2 22.6

appendMsg.l’ CMQ 288 24349 0.1 0.1 2.6 24.0

encode Data.Serialize 387 24348 0.1 0.0 2.5 24.0

put Data.Serialize 393 0 0.0 0.0 1.1 0.5

putListOf Data.Serialize.Put 394 0 0.0 0.0 1.1 0.5

tell Data.Serialize.Put 399 24348 0.0 0.0 0.0 0.0

encodeListOf Data.Serialize.Put 395 0 0.0 0.0 1.0 0.5

encodeListOf.\ Data.Serialize.Put 396 24348 0.5 0.2 1.0 0.5

put Data.Serialize 425 97392 0.1 0.0 0.4 0.2

putWord8 Data.Serialize.Put 427 0 0.1 0.0 0.3 0.2

tell Data.Serialize.Put 431 97392 0.0 0.1 0.0 0.1

singleton Data.Serialize.Builder 428 97392 0.0 0.0 0.1 0.1

writeN Data.Serialize.Builder 429 97392 0.1 0.1 0.1 0.1

unsafeLiftIO Data.Serialize.Builder 438 97392 0.0 0.0 0.0 0.0

append Data.Serialize.Builder 430 97392 0.0 0.0 0.0 0.0

put.c Data.Serialize 426 97392 0.0 0.0 0.0 0.0

execPut Data.Serialize.Put 409 121740 0.0 0.0 0.0 0.0

sndS Data.Serialize.Put 410 121740 0.0 0.0 0.0 0.0

putWord64be Data.Serialize.Put 404 24348 0.0 0.0 0.1 0.0

tell Data.Serialize.Put 408 24348 0.0 0.0 0.0 0.0

putWord64be Data.Serialize.Builder 405 24348 0.0 0.0 0.1 0.0

writeN Data.Serialize.Builder 406 24348 0.0 0.0 0.0 0.0

unsafeLiftIO Data.Serialize.Builder 418 24348 0.0 0.0 0.0 0.0

append Data.Serialize.Builder 407 24348 0.0 0.0 0.0 0.0

append Data.Serialize.Builder 398 121740 0.0 0.0 0.0 0.0

mappend Data.Serialize.Builder 397 24348 0.0 0.0 0.0 0.0

runPut Data.Serialize.Put 388 24348 0.0 0.0 1.3 23.4

sndS Data.Serialize.Put 392 24348 0.0 0.0 0.0 0.0



6.2
Future

directions
153

toByteString Data.Serialize.Builder 389 24348 0.2 0.0 1.2 23.4

append Data.Serialize.Builder 391 24348 0.4 0.2 0.9 0.8

put Data.Serialize 400 0 0.0 0.0 0.5 0.5

putListOf Data.Serialize.Put 401 0 0.0 0.0 0.5 0.5

encodeListOf Data.Serialize.Put 402 0 0.0 0.0 0.5 0.5

encodeListOf.\ Data.Serialize.Put 403 0 0.0 0.0 0.5 0.5

put Data.Serialize 432 0 0.0 0.0 0.3 0.4

putWord8 Data.Serialize.Put 433 0 0.0 0.0 0.3 0.4

singleton Data.Serialize.Builder 434 0 0.0 0.0 0.3 0.4

writeN Data.Serialize.Builder 435 0 0.0 0.0 0.3 0.4

ensureFree Data.Serialize.Builder 443 0 0.0 0.0 0.1 0.0

withSize Data.Serialize.Builder 444 0 0.0 0.0 0.1 0.0

withSize.\ Data.Serialize.Builder 445 73044 0.0 0.0 0.1 0.0

ensureFree.\ Data.Serialize.Builder 446 73044 0.0 0.0 0.0 0.0

unsafeLiftIO Data.Serialize.Builder 439 0 0.0 0.0 0.1 0.4

unsafeLiftIO.\ Data.Serialize.Builder 440 97392 0.1 0.0 0.1 0.4

flush.\ Data.Serialize.Builder 447 24348 0.0 0.1 0.0 0.1

writeNBuffer Data.Serialize.Builder 441 97392 0.0 0.3 0.0 0.3

writeNBuffer.\ Data.Serialize.Builder 442 97392 0.0 0.0 0.0 0.0

putWord64be Data.Serialize.Put 411 0 0.0 0.0 0.2 0.1

putWord64be Data.Serialize.Builder 412 0 0.0 0.0 0.2 0.1

writeN Data.Serialize.Builder 413 0 0.0 0.0 0.2 0.1

unsafeLiftIO Data.Serialize.Builder 419 0 0.0 0.0 0.2 0.1

unsafeLiftIO.\ Data.Serialize.Builder 420 24348 0.0 0.0 0.1 0.1

putWord8 Data.Serialize.Put 436 0 0.0 0.0 0.0 0.0

singleton Data.Serialize.Builder 437 0 0.0 0.0 0.0 0.0

writeNBuffer Data.Serialize.Builder 421 24348 0.0 0.1 0.1 0.1

writeNBuffer.\ Data.Serialize.Builder 422 24348 0.0 0.0 0.1 0.0

putWord64be.\ Data.Serialize.Builder 423 24348 0.1 0.0 0.1 0.0



154
6.2

Future
directions

shiftr_w64 Data.Serialize.Builder 424 170436 0.0 0.0 0.0 0.0

ensureFree Data.Serialize.Builder 414 0 0.0 0.0 0.1 0.0

withSize Data.Serialize.Builder 415 0 0.0 0.0 0.1 0.0

withSize.\ Data.Serialize.Builder 416 48696 0.1 0.0 0.1 0.0

ensureFree.\ Data.Serialize.Builder 417 48696 0.0 0.0 0.0 0.0

newBuffer Data.Serialize.Builder 390 0 0.1 22.6 0.1 22.6

cwPush.m CMQ 284 24350 0.0 0.0 0.3 0.1

getTMap CMQ 286 0 0.3 0.1 0.3 0.1

insertSglton CMQ 283 1 0.0 0.0 0.0 0.0

cwPush.q CMQ 280 24350 0.1 0.0 0.3 0.1

getTPsq CMQ 282 0 0.2 0.1 0.2 0.1

collectPong Main 267 0 32.7 15.8 47.7 15.9

inc Main 594 10003 0.0 0.0 0.0 0.0

cwPop CMQ 269 0 15.1 0.1 15.1 0.1

newRq CMQ 259 0 0.0 0.0 0.0 1.2

get Data.Serialize 527 0 0.0 0.0 0.0 1.1

getListOf Data.Serialize.Get 528 0 0.0 0.0 0.0 1.1

getListOf.go Data.Serialize.Get 547 61009 0.0 0.1 0.0 0.1

return Data.Serialize.Get 588 10374 0.0 0.0 0.0 0.0

>>= Data.Serialize.Get 548 50635 0.0 0.0 0.0 0.0

>>= Data.Serialize.Get 529 91390 0.0 0.0 0.0 1.0

>>=.\ Data.Serialize.Get 530 335179 0.0 0.2 0.0 1.0

getWord8 Data.Serialize.Get 564 0 0.0 0.0 0.0 0.6

getPtr Data.Serialize.Get 565 0 0.0 0.0 0.0 0.6

getBytes Data.Serialize.Get 571 0 0.0 0.0 0.0 0.6

ensure Data.Serialize.Get 573 0 0.0 0.0 0.0 0.6

ensure.\ Data.Serialize.Get 574 40508 0.0 0.0 0.0 0.6

>>=.\.ks’ Data.Serialize.Get 575 293683 0.0 0.4 0.0 0.6

getBytes.rest Data.Serialize.Get 587 40261 0.0 0.0 0.0 0.0



6.2
Future

directions
155

getListOf.go Data.Serialize.Get 586 0 0.0 0.0 0.0 0.0

return Data.Serialize.Get 589 0 0.0 0.0 0.0 0.0

return.\ Data.Serialize.Get 590 10374 0.0 0.0 0.0 0.0

finalK Data.Serialize.Get 591 247 0.0 0.0 0.0 0.0

getPtr.k Data.Serialize.Get 584 40508 0.0 0.0 0.0 0.0

getBytes.consume Data.Serialize.Get 583 40508 0.0 0.0 0.0 0.0

return Data.Serialize.Get 578 202540 0.0 0.0 0.0 0.1

return.\ Data.Serialize.Get 579 202540 0.0 0.0 0.0 0.1

get Data.Serialize 585 0 0.0 0.0 0.0 0.0

fmap Data.Serialize.Get 580 0 0.0 0.0 0.0 0.1

fmap.\ Data.Serialize.Get 581 0 0.0 0.0 0.0 0.1

fmap.\.ks’ Data.Serialize.Get 582 40508 0.0 0.1 0.0 0.1

put Data.Serialize.Get 576 40508 0.0 0.0 0.0 0.0

put.\ Data.Serialize.Get 577 40508 0.0 0.0 0.0 0.0

fmap Data.Serialize.Get 567 0 0.0 0.0 0.0 0.0

fmap.\ Data.Serialize.Get 568 40508 0.0 0.0 0.0 0.0

get Data.Serialize 556 0 0.0 0.0 0.0 0.0

get.getByte Data.Serialize 559 0 0.0 0.0 0.0 0.0

getWord64be Data.Serialize.Get 533 0 0.0 0.0 0.0 0.1

getBytes Data.Serialize.Get 536 0 0.0 0.0 0.0 0.1

ensure Data.Serialize.Get 538 0 0.0 0.0 0.0 0.1

ensure.\ Data.Serialize.Get 539 10374 0.0 0.0 0.0 0.1

>>=.\.ks’ Data.Serialize.Get 540 41496 0.0 0.0 0.0 0.1

getBytes.rest Data.Serialize.Get 553 10374 0.0 0.0 0.0 0.0

getListOf.go Data.Serialize.Get 549 0 0.0 0.0 0.0 0.0

getBytes.consume Data.Serialize.Get 546 10374 0.0 0.0 0.0 0.0

shiftl_w64 Data.Serialize.Get 545 72618 0.0 0.0 0.0 0.0

return Data.Serialize.Get 543 20748 0.0 0.0 0.0 0.0

return.\ Data.Serialize.Get 544 20748 0.0 0.0 0.0 0.0



156
6.2

Future
directions

put Data.Serialize.Get 541 10374 0.0 0.0 0.0 0.0

put.\ Data.Serialize.Get 542 10374 0.0 0.0 0.0 0.0

loadTChan CMQ 263 0 0.0 0.0 0.0 0.1

write2TChan CMQ 592 246 0.0 0.0 0.0 0.1

write2TChan.\ CMQ 593 10086 0.0 0.0 0.0 0.0

receiveMessage CMQ 265 0 0.0 0.0 0.0 0.0

decode Data.Serialize 522 247 0.0 0.0 0.0 0.0

runGet Data.Serialize.Get 523 247 0.0 0.0 0.0 0.0

loopMyQ CMQ 261 0 0.0 0.0 0.0 0.0

loopMyQ.tdelay CMQ 519 248 0.0 0.0 0.0 0.0

getDelay CMQ 521 0 0.0 0.0 0.0 0.0

loopMyQ.duetime CMQ 518 248 0.0 0.0 0.0 0.0

CAF CMQ 245 0 0.0 0.0 0.0 0.0

getDelay CMQ 520 1 0.0 0.0 0.0 0.0

getQthresh CMQ 449 1 0.0 0.0 0.0 0.0

getTMap CMQ 285 1 0.0 0.0 0.0 0.0

getTPsq CMQ 281 1 0.0 0.0 0.0 0.0

getTChan CMQ 271 1 0.0 0.0 0.0 0.0

CAF Main 244 0 0.0 0.0 5.7 6.7

get Data.Serialize 550 1 0.0 0.0 0.0 0.0

getListOf Data.Serialize.Get 551 1 0.0 0.0 0.0 0.0

>>= Data.Serialize.Get 552 1 0.0 0.0 0.0 0.0

put Data.Serialize 350 1 0.0 0.0 0.0 0.0

putListOf Data.Serialize.Put 351 1 0.0 0.0 0.0 0.0

encodeListOf Data.Serialize.Put 352 1 0.0 0.0 0.0 0.0

$cStrlen Main 252 1 0.0 0.0 0.0 0.0

$tStrlen Main 249 1 0.0 0.0 0.0 0.0

strlen Main 247 1 0.0 0.0 0.0 0.0

gunfold Main 253 1 0.0 0.0 0.0 0.0



6.2
Future

directions
157

toConstr Main 251 4 0.0 0.0 0.0 0.0

gfoldl Main 250 1 0.0 0.0 0.0 0.0

dataTypeOf Main 248 1 0.0 0.0 0.0 0.0

main Main 246 1 0.0 0.0 5.7 6.7

main.diff Main 595 1 0.0 0.0 0.0 0.0

runTest Main 255 1 0.0 0.0 5.7 6.7

sendPing Main 274 1 0.2 0.1 3.5 3.7

sendPing.\ Main 276 24350 3.2 3.6 3.3 3.6

cwPush CMQ 277 24350 0.0 0.0 0.0 0.0

collectPong Main 266 1 2.2 3.0 2.2 3.0

cwPop CMQ 268 1 0.0 0.0 0.0 0.0

cwPop.mtch CMQ 270 1 0.0 0.0 0.0 0.0

getTChan CMQ 272 0 0.0 0.0 0.0 0.0

newRq CMQ 256 1 0.0 0.0 0.0 0.0

get Data.Serialize 524 1 0.0 0.0 0.0 0.0

getListOf Data.Serialize.Get 525 1 0.0 0.0 0.0 0.0

>>= Data.Serialize.Get 526 1 0.0 0.0 0.0 0.0

newRq.cmq CMQ 273 1 0.0 0.0 0.0 0.0

loadTChan CMQ 262 1 0.0 0.0 0.0 0.0

receiveMessage CMQ 264 1 0.0 0.0 0.0 0.0

loopMyQ CMQ 260 1 0.0 0.0 0.0 0.0

strlen Main 254 0 0.0 0.0 0.0 0.0

CAF System.Console.CmdArgs.Default 243 0 0.0 0.0 0.0 0.0

CAF System.Console.CmdArgs.Implicit.Global 237 0 0.0 0.0 0.0 0.0

CAF System.Console.CmdArgs.Implicit.Reader 235 0 0.0 0.0 0.0 0.0

CAF System.Console.CmdArgs.Annotate 231 0 0.0 0.0 0.0 0.0

CAF System.Console.CmdArgs.Explicit 230 0 0.0 0.0 0.0 0.0

CAF Data.Generics.Any.Prelude 227 0 0.0 0.0 0.0 0.0

CAF System.Console.CmdArgs.Explicit.Help 224 0 0.0 0.0 0.0 0.0



158
6.2

Future
directions

CAF Data.IP.Addr 216 0 0.0 0.0 0.0 0.0

CAF Network.Socket 215 0 0.0 0.0 0.0 0.0

CAF Data.Serialize 195 0 0.0 0.0 0.0 0.0

get Data.Serialize 560 1 0.0 0.0 0.0 0.0

get Data.Serialize 554 1 0.0 0.0 0.0 0.0

get.getByte Data.Serialize 557 1 0.0 0.0 0.0 0.0

>>= Data.Serialize.Get 558 1 0.0 0.0 0.0 0.0

>>= Data.Serialize.Get 555 1 0.0 0.0 0.0 0.0

put Data.Serialize 355 1 0.0 0.0 0.0 0.0

put Data.Serialize 325 0 0.0 0.0 0.0 0.0

putListOf Data.Serialize.Put 326 0 0.0 0.0 0.0 0.0

encodeListOf Data.Serialize.Put 327 0 0.0 0.0 0.0 0.0

encodeListOf.\ Data.Serialize.Put 328 0 0.0 0.0 0.0 0.0

mempty Data.Serialize.Builder 383 1 0.0 0.0 0.0 0.0

empty Data.Serialize.Builder 384 1 0.0 0.0 0.0 0.0

mappend Data.Serialize.Builder 349 1 0.0 0.0 0.0 0.0

putWord64be Data.Serialize.Put 329 0 0.0 0.0 0.0 0.0

putWord64be Data.Serialize.Builder 330 0 0.0 0.0 0.0 0.0

writeN Data.Serialize.Builder 331 0 0.0 0.0 0.0 0.0

ensureFree Data.Serialize.Builder 332 1 0.0 0.0 0.0 0.0

ensureFree.\ Data.Serialize.Builder 338 0 0.0 0.0 0.0 0.0

empty Data.Serialize.Builder 339 1 0.0 0.0 0.0 0.0

withSize Data.Serialize.Builder 333 1 0.0 0.0 0.0 0.0

CAF Data.Serialize.Put 194 0 0.0 0.0 0.0 0.0

putWord8 Data.Serialize.Put 356 1 0.0 0.0 0.0 0.0

singleton Data.Serialize.Builder 366 0 0.0 0.0 0.0 0.0

writeN Data.Serialize.Builder 367 0 0.0 0.0 0.0 0.0

ensureFree Data.Serialize.Builder 368 1 0.0 0.0 0.0 0.0

ensureFree.\ Data.Serialize.Builder 372 0 0.0 0.0 0.0 0.0



6.2
Future

directions
159

empty Data.Serialize.Builder 373 1 0.0 0.0 0.0 0.0

withSize Data.Serialize.Builder 369 1 0.0 0.0 0.0 0.0

CAF Data.Serialize.Get 193 0 0.0 0.0 0.0 0.0

getWord8 Data.Serialize.Get 561 1 0.0 0.0 0.0 0.0

getPtr Data.Serialize.Get 562 1 0.0 0.0 0.0 0.0

getBytes Data.Serialize.Get 569 1 0.0 0.0 0.0 0.0

ensure Data.Serialize.Get 572 1 0.0 0.0 0.0 0.0

>>= Data.Serialize.Get 570 1 0.0 0.0 0.0 0.0

fmap Data.Serialize.Get 566 1 0.0 0.0 0.0 0.0

>>= Data.Serialize.Get 563 1 0.0 0.0 0.0 0.0

getWord64be Data.Serialize.Get 531 1 0.0 0.0 0.0 0.0

getBytes Data.Serialize.Get 534 1 0.0 0.0 0.0 0.0

ensure Data.Serialize.Get 537 1 0.0 0.0 0.0 0.0

>>= Data.Serialize.Get 535 1 0.0 0.0 0.0 0.0

>>= Data.Serialize.Get 532 1 0.0 0.0 0.0 0.0

CAF Data.Serialize.Builder 192 0 0.0 0.0 0.0 0.0

flush Data.Serialize.Builder 385 1 0.0 0.0 0.0 0.0

defaultSize Data.Serialize.Builder 296 1 0.0 0.0 0.0 0.0

defaultSize.overhead Data.Serialize.Builder 298 1 0.0 0.0 0.0 0.0

defaultSize.k Data.Serialize.Builder 297 1 0.0 0.0 0.0 0.0

toByteString Data.Serialize.Builder 293 0 0.0 0.0 0.0 0.0

newBuffer Data.Serialize.Builder 294 1 0.0 0.0 0.0 0.0

CAF GHC.IO.Encoding 176 0 0.0 0.0 0.0 0.0

CAF GHC.IO.Handle.FD 173 0 0.0 0.0 0.0 0.0

CAF Text.Printf 165 0 0.0 0.0 0.0 0.0

CAF GHC.Event.Internal 163 0 0.0 0.0 0.0 0.0

CAF GHC.Event.Thread 162 0 0.0 0.0 0.0 0.0

CAF GHC.Conc.Sync 160 0 0.0 0.0 0.0 0.0

CAF Data.Typeable.Internal 155 0 0.0 0.0 0.0 0.0



160
6.2

Future
directions

CAF System.CPUTime 154 0 0.0 0.0 0.0 0.0

CAF GHC.Conc.Signal 149 0 0.0 0.0 0.0 0.0

CAF GHC.Float 147 0 0.0 0.0 0.0 0.0

CAF GHC.IO.Encoding.Iconv 146 0 0.0 0.0 0.0 0.0

CAF GHC.Integer.Logarithms.Internals 131 0 0.0 0.0 0.0 0.0



161

Bibliography

[ABLG10] Arnold Aumasson, Vincent Bonneau, Timo Leimbach, and Moritz Gödel.

Economic and social impact of software & software-based services. Cordis

(Online), BE: European Commission. Available online: http://cordis. europa.

eu/fp7/ict/ssai/docs/study-sw-report-final. pdf, 2010.

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A

view of cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems

(Mit Press Series in Artificial Intelligence). The MIT Press, Cambridge, Mas-

sachusetts, 1986.

[Ano11] Personal Data: The Emergence of a New Asset Class. World Economic Forum,

pages 1–40, January 2011.

[apaa] Avro. http://avro.apache.org/. Online; accessed 26 September 2015.

[apab] hadoop. http://hadoop.apache.org/. Online, accessed 26 September

2015.

[Atk08] Alistair Atkinson. Tupleware: A distributed tuple space for cluster computing.

In Parallel and Distributed Computing, Applications and Technologies, 2008.

PDCAT 2008. Ninth International Conference on, pages 121–126. IEEE, 2008.

[AVW93] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent Programming

in Erlang. Prentice Hall, March 1993.

[BCC12] A Bialecki, M Cafarella, and D Cutting. Hadoop: a framework for running ap-

plications on large clusters built of commodity hardware. Technical report, 2012.

[BCvR09] Ken Birman, Gregory Chockler, and Robbert van Renesse. Toward a cloud com-

puting research agenda. SIGACT News, 40(2):68–80, 2009.

http://avro.apache.org/
http://hadoop.apache.org/


162 Bibliography

[BDH03] LA Barroso, J Dean, and U Holzle. Web search for a planet: The Google cluster

architecture. IEEE Micro, 23(2):22–28, March 2003.

[BJDM97] R. Bird, G. Jones, and O. De Moor. More haste, less speed: lazy versus eager

evaluation. Journal of Functional Programming, 7(05):541–547, 1997.

[BK86] JA Bergstra and Jan Willem Klop. Algebra of communicating processes. CWI

Monograph series, 3:89–138, 1986.

[BMNZ14] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog comput-

ing: A platform for internet of things and analytics. In Big Data and Internet of

Things: A Roadmap for Smart Environments, pages 169–186. Springer, 2014.

[BR02] Roberto Baldoni and Michel Raynal. Fundamentals of distributed computing: A

practical tour of vector clock systems. IEEE Distributed Systems Online, 3(2):12,

2002.

[Bro11] Neil Christopher Charles Brown. Communicating Haskell Processes. PhD thesis,

Citeseer, 2011.

[BS99] Lawrie Brown and Dan Sahlin. Extending erlang for safe mobile code execution.

In International Conference on Information and Communications Security, pages

39–53. Springer, 1999.

[Cap97] DKG Capmbell. Implementing algorithmic skeletons for generative communic-

ation with linda. REPORT-UNIVERSITY OF YORK DEPARTMENT OF COM-

PUTER SCIENCE YCS, 1997.

[Car05] N G Carr. The end of corporate computing. MIT Sloan Management Review,

46(3):67–73, 2005.

[Car09] Nicholas Carr. The Big Switch: Rewiring the World, from Edison to Google. W.

W. Norton & Company, reprint edition, January 2009.

[CBP+10] N Chohan, C Bunch, S Pang, C Krintz, N Mostafa, S Soman, and R Wolski.

Appscale: Scalable and open appengine application development and deploy-

ment. Cloud Computing, pages 57–70, 2010.

[CCDN+12] Nicolo M Calcavecchia, Bogdan A Caprarescu, Elisabetta Di Nitto, Daniel J

Dubois, and Dana Petcu. Depas: a decentralized probabilistic algorithm for auto-

scaling. Computing, 94(8-10):701–730, 2012.



Bibliography 163

[CGW91] WJ Cullyer, SJ Goodenough, and BA Wichmann. The choice of computer lan-

guages for use in safety-critical systems. Software Engineering Journal, 6(2):51–

58, 1991.

[Cha13] Thibaud Chardonnens. Big data analytics on high velocity streams. 2013.

[CJLL02] FH Carvalho Jr, Ricardo Massa Ferreira Lima, and Rafael Dueire Lins. Co-

ordinating functional processes with haskell#. In Proceedings of the 2002 ACM

symposium on Applied computing, pages 393–400. ACM, 2002.

[Cla10] Tim Clark. Quantifying the benefits of the rightscale cloud manage-

ment platform. Rightscale [en línea] Available at: http://www. rightscale.

com/info_center/white-papers. php (Accessed August 12, 2013), 2010.

[clu] Clustrx. http://massivesolutions.co.uk/clustrx.html. Online; ac-

cessed 14 February 2013.

[Col04] Murray Cole. Bringing skeletons out of the closet: a pragmatic manifesto for

skeletal parallel programming. Parallel computing, 30(3):389–406, 2004.

[Dew25] John Dewey. Logic: The theory of inquiry (1938). The later works, 1953:1–549,

1925.

[DG08a] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, 2008.

[DG08b] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[DHJ+07a] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-

lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter

Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value

store. In ACM SOSP, volume 7, pages 205–220, 2007.

[DHJ+07b] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-

lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter

Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value

store. In ACM SIGOPS Operating Systems Review, volume 41, pages 205–220.

ACM, 2007.

[EBPJ11] Jeff Epstein, Andrew P Black, and Simon Peyton-Jones. Towards Haskell in the

cloud. In Proceedings of the 4th ACM symposium on Haskell, pages 118–129,

New York, NY, USA, 2011. ACM.

http://massivesolutions.co.uk/clustrx.html


164 Bibliography

[etc15] etcd – A high-available key value store for shared configuration and service dis-

covery. https://coreos.com/etcd/, 2015. Online; accessed Sep 26, 2015.

[FBB+05] W Feng, P Balaji, C Baron, L N Bhuyan, and D K Panda. Performance char-

acterization of a 10-Gigabit Ethernet TOE. In High Performance Interconnects,

2005. Proceedings. 13th Symposium on, pages 58–63, August 2005.

[Fie09] Glenn Fiedler. Reliability and Flow Control. http://gafferongames.

com/networking-for-game-programmers/reliability-and-flow-

control/, 2009. accessed May 2012.

[Frü95] Thom Frühwirth. Constraint handling rules. In Constraint programming: Basics

and trends, pages 90–107. Springer, 1995.

[FTS+] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant,

J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,

G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,

K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken,

C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,

R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,

P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels,

M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.

Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B.

Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J.

Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe,

P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople.

Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, CT, 2004.

[Fur] Sadayuki Furuhashi. Messagepack: It’s like json. but fast and small, 2014. http:

//msgpack.org.

[FW12a] J Fritsch and C Walker. CMQ-A lightweight, asynchronous high-performance

messaging queue for the cloud. Journal of Cloud . . . , 2012.

[FW12b] Joerg Fritsch and Coral Walker. Cmq-a lightweight, asynchronous high-

performance messaging queue for the cloud. Journal of Cloud Computing,

1(1):1–13, 2012.

[FW14a] Joerg Fritsch and Coral Walker. Cwmwl, a linda-based paas fabric for the cloud.

Journal of Communications, 9(4):286–298, 2014.

https://coreos.com/etcd/
http://gafferongames.com/networking-for-game-programmers/reliability-and-flow-control/
http://gafferongames.com/networking-for-game-programmers/reliability-and-flow-control/
http://gafferongames.com/networking-for-game-programmers/reliability-and-flow-control/
 http://msgpack. org
 http://msgpack. org


Bibliography 165

[FW14b] Joerg Fritsch and Coral Walker. The problem with data. In 7th International

Conference on Utility and Cloud Computing (UCC 2014). IEEE/ACM, 2014.

[FWR+05] Daniel Fiedler, Kristen Walcott, Thomas Richardson, Gregory M Kapfhammer,

Ahmed Amer, and Panos K Chrysanthis. Towards the measurement of tuple space

performance. ACM SIGMETRICS Performance Evaluation Review, 33(3):51–62,

2005.

[FZRL08] I Foster, Yong Zhao, I Raicu, and S Lu. Cloud Computing and Grid Computing

360-Degree Compared. In Grid Computing Environments Workshop, 2008. GCE

’08, pages 1–10, November 2008.

[GC92] David Gelernter and Nicholas Carriero. Coordination languages and their signi-

ficance. Commun. ACM, 35(2):96–, February 1992.

[Gel85] David Gelernter. Generative communication in linda. ACM Transactions on

Programming Languages and Systems (TOPLAS), 7(1):80–112, 1985.

[GG07] Y. Gu and R.L. Grossman. UDT: UDP-based data transfer for high-speed wide

area networks. Computer Networks, 51(7):1777–1799, 2007.

[GHW12a] Kartik Gopalan, Michael Hines, and Jian Wang. Centralized adaptive network

memory engine, October 16 2012. US Patent 8,291,034.

[GHW12b] Kartik Gopalan, Michael Hines, and Jian Wang. Distributed adaptive network

memory engine, October 2 2012. US Patent 8,280,976.

[Gig] Gigaspaces XAP. http://www.gigaspaces.com. Online; accessed 26

September 2015.

[Gil74] KAHN Gilles. The semantics of a simple language for parallel programming. In

Information Processing, 74:471–475, 1974.

[goo] google.com. Google app engine - google developers.

[hal15] The haskell lightweight virtual machine (halvm): Ghc running on xen. http:

//halvm.org, 2015. Online; accessed 26 September 2015.

[Has12] HaskelWiki - Multicore. https://wiki.haskell.org/Haskell_for_

multicores#Examples_2, 2012. Online; accessed 5 June 2015.

[Hay10] Jonathan Mark Hayman. Petri net semantics. PhD thesis, University of Cam-

bridge, 2010.

[Hen04] M Henning. Massively multiplayer middleware. Queue, 1(10):38, 2004.

http://www.gigaspaces.com
http://halvm.org
http://halvm.org
https://wiki.haskell.org/Haskell_for_multicores#Examples_2
https://wiki.haskell.org/Haskell_for_multicores#Examples_2


166 Bibliography

[Hen06] Cal Henderson. Building scalable web sites. " O’Reilly Media, Inc.", 2006.

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing messages. Artificial

intelligence, 8(3):323–364, 1977.

[Hew10] Carl Hewitt. Actor Model of Computation: Scalable Robust Information Sys-

tems. arXiv.org, cs.PL, August 2010.

[Hin01] Ralf Hinze. A simple implementation technique for priority search queues. In

Proceedings of the sixth ACM SIGPLAN international conference on Functional

programming, pages 110–121, New York, NY, USA, 2001. ACM.

[HKDS12] Franz J Hauck, Steffen Kächele, Jörg Domaschka, and Christian Spann. The

cosca paas platform: on the way to flexible and dependable cloud computing.

In Proceedings of the 1st European Workshop on Dependable Cloud Computing,

page 1. ACM, 2012.

[HKJR10] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. Zoo-

keeper: Wait-free coordination for internet-scale systems. In USENIX Annual

Technical Conference, volume 8, page 9, 2010.

[HKZ+11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D

Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for

fine-grained resource sharing in the data center. In NSDI, volume 11, pages 22–

22, 2011.

[HLR+13] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder,

and Boris Koldehofe. Mobile fog: A programming model for large-scale applic-

ations on the internet of things. In Proceedings of the second ACM SIGCOMM

workshop on Mobile cloud computing, pages 15–20. ACM, 2013.

[HMJH08] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Compos-

able memory transactions. Commun. ACM, 51(8):91–100, 2008.

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Com-

posable memory transactions. In Proceedings of the tenth ACM SIGPLAN sym-

posium on Principles and practice of parallel programming, pages 48–60. ACM,

2005.

[How95] James Howatt. A project-based approach to programming language evaluation.

ACM SIGPLAn Notices, 30(7):37–40, 1995.



Bibliography 167

[Huc99] F Huch. Erlang-style distributed haskell. In Draft Proceedings of the 11th In-

ternational Workshop on implementation of functional languages, September 7th

10th 1999, 1999.

[IAB13] Price Water House Coopers IAB. Internet advertising revenue report 2013 first

six months’ results, 2013.

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.

Dryad: distributed data-parallel programs from sequential building blocks. ACM

SIGOPS Operating Systems Review, 41(3):59–72, 2007.

[Inca] Amazon Web Services Inc. http://aws.amazon.com/lambda/. Online; ac-

cessed 10 October 2015.

[Incb] Amazon Web Services Inc. High performance computing (hpc) on aws. http:

//aws.amazon.com/hpc-applications/. Online; accessed 20 April 2013.

[Incc] CoreOS Inc. Distributed reliable key-value store for the most critical data of a

distributed system.

[Inc16] Google Inc. https://cloud.google.com/functions/, 2016. Online; ac-

cessed 23 April 2016.

[INT06] INTEL GmbH. Intel R©MPI Benchmarks, June 2006.

[Int13] Intel. What happens in an internet minute? http://www.intel.

com/content/www/us/en/communications/internet-minute-

infographic.html, 2013. Online; accessed 26 September 2015.

[Iro16] Iron.io. https://www.iron.io/platform/ironworker/, 2016. Online;

accessed 23 April 2016.

[JF14] Coral Walker Joerg Fritsch. Cwmwl, a linda-based paas fabric for the cloud.

Journal of Communications, 9(4):286–298, 2014.

[JHM04] Wesley M Johnston, JR Hanna, and Richard J Millar. Advances in dataflow

programming languages. ACM Computing Surveys (CSUR), 36(1):1–34, 2004.

[JS04] Simon Peyton Jones and Mark Shields. Lexically scoped type variables. Submit-

ted to ICFP, 2004.

[KDH11] Steffen Kächele, Jörg Domaschka, and Franz J Hauck. COSCA: an easy-to-use

component-based PaaS cloud system for common applications. In CloudCP ’11:

Proceedings of the First International Workshop on Cloud Computing Platforms,

page 4. ACM Request Permissions, April 2011.

http://aws.amazon.com/lambda/
http://aws.amazon.com/hpc-applications/
http://aws.amazon.com/hpc-applications/
https://cloud.google.com/functions/
http://www.intel.com/content/www/us/en/communications/internet-minute-infographic.html
http://www.intel.com/content/www/us/en/communications/internet-minute-infographic.html
http://www.intel.com/content/www/us/en/communications/internet-minute-infographic.html
https://www.iron.io/platform/ironworker/


168 Bibliography

[KH] NR Keetha and K He. HiPerFS: A Framework for High Performance Financial

Services using Advanced Message Queuing. cs.columbia.edu.

[KHSS10] Ali Khajeh-Hosseini, Ian Sommerville, and Ilango Sriram. Research challenges

for enterprise cloud computing. arXiv preprint arXiv:1001.3257, 2010.

[Kol84] David A Kolb. Experiential learning englewood cliffs. NJ: Prentice-Hall. Lord,

RG, & Emrich, CG (2001). Thinking outside the box by looking inside the box:

Extending the cognitive revolution in leadership research. Leadership Quarterly,

11(4):551–579, 1984.

[Kri10] Navaneeth Krishnan. Building Java Apps on the Google App Engine.

http://java-appengine.blogspot.com/2010/10/google-cloud-

vs-amazon-cloud.html, 2010. Online, accessed May 2012.

[KWW94] SC Kendall, J Waldo, and A Wollrath. A Note on Distributed Computing, Sun

Microsystems. Inc., 1994.

[Läm08] Ralf Lämmel. Google’s mapreduce programming model—revisited. Science of

computer programming, 70(1):1–30, 2008.

[Lan01] Doug Laney. 3d data management: Controlling data volume. Velocity, and Vari-

ety, Application Delivery Strategies published by META Group Inc, 2001.

[Lee] Edward A Author Lee. The Problem with Threads. Electrical Engineering and

Computer Sciences University of California at Berkeley.

[Lee06] Edward A Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[Lee07] EA Lee. Are new languages necessary for multicore? 2007 International Sym-

posium on Code Generation and Optimization, 2007.

[LGL+15] Tom H Luan, Longxiang Gao, Zhi Li, Yang Xiang, and Limin Sun. Fog com-

puting: Focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815,

2015.

[Lin14] Frank Van Lingen. Data driven platforms to support iot, sdn, and cloud.

http://blogs.cisco.com/perspectives/data-driven-platforms-

to-support-iot-sdn-and-cloud/, January 2014. Online; accessed 26

September 2015.

[Lip11] Miran Lipovača. Learn You a Haskell for Great Good! A Beginner’s Guide. No

Starch Pr, April 2011.

http://java-appengine.blogspot.com/2010/10/google-cloud-vs-amazon-cloud.html
http://java-appengine.blogspot.com/2010/10/google-cloud-vs-amazon-cloud.html
http://blogs.cisco.com/perspectives/data-driven-platforms-to-support-iot-sdn-and-cloud/
http://blogs.cisco.com/perspectives/data-driven-platforms-to-support-iot-sdn-and-cloud/


Bibliography 169

[LM01] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators

for the real world. 2001.

[Loo12] Rita Loogen. Eden–parallel functional programming with haskell. In Central

European Functional Programming School, pages 142–206. Springer, 2012.

[Los10] Tim Lossen. Redis – memory as the new disk. In NOSQL Europe Conference,

April 20-22 2010., 2010.

[LTS+08] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-

son, and David Maier. Out-of-order processing: a new architecture for high-

performance stream systems. Proceedings of the VLDB Endowment, 1(1):274–

288, 2008.

[Mai07] Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for haskell. In

Proceedings of the ACM SIGPLAN workshop on Haskell workshop, Haskell ’07,

pages 73–82, New York, NY, USA, 2007. ACM.

[Mar11] S Marlow. Parallel and concurrent programming in haskell. 2011.

[Mar12] Simon Marlow. Parallel and concurrent programming in haskell. In Central

European Functional Programming School, pages 339–401. Springer, 2012.

[Mar13] Nathan Marz. Big Data: Principles and best practices of scalable realtime data

systems. O’Reilly Media, 2013.

[mcc] Data gravity - in the clouds.

[MFD10] M. Marzolla, S. Ferretti, and G. D’Angelo. Dynamic scalability for next gener-

ation gaming infrastructures. Proc. 4th ACM/ICST International Conference on

Simulation Tools and Techniques (SIMUTools 2011), pages 1–8, 2010.

[MG11] Peter Mell and Tim Grance. The nist definition of cloud computing. 2011.

[MH05] M Mernik and J Heering. When and how to develop domain-specific languages.

ACM Computing Surveys (CSUR), 2005.

[MH10] Derek G Murray and Steven Hand. Scripting the cloud with skywriting. In

HotCloud’10: Proceedings of the 2nd USENIX conference on Hot topics in cloud

computing. USENIX Association, June 2010.

[MMI+13] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martin Abadi. Naiad: a timely dataflow system. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 439–

455. ACM, 2013.



170 Bibliography

[MMS+10] A Madhavapeddy, R Mortier, R Sohan, T Gazagnaire, S Hand, T Deegan,

D McAuley, and J Crowcroft. Turning down the LAMP: software specialisation

for the cloud. 2010.

[MSMO97] M Mathis, J Semke, J Mahdavi, and T. Ott. The macroscopic behavior of the TCP

congestion avoidance algorithm. ACM SIGCOMM Computer Communication

Review, 27(3):67–82, 1997.

[Mur11] DG Murray. Non-deterministic parallelism considered useful. HotOS XIII, 2011.

[Net] Networking for Game Programmers. http://gafferongames.com/

networking-for-game-programmers/. Online; accessed May 2012.

[Nor11] John Norstad. A mapreduce algorithm for matrix multiplication. http://www.

norstad.org/matrix-multiply/, 2011. Online; accessed 10 August 2013.

[NPFI09] V Nae, R Prodan, T Fahringer, and A Iosup. The impact of virtualization on the

performance of Massively Multiplayer Online Games. Network and Systems Sup-

port for Games (NetGames), 2009 8th Annual Workshop on, pages 1–6, October

2009.

[NRNK10] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Dis-

tributed stream computing platform. In Data Mining Workshops (ICDMW), 2010

IEEE International Conference on, pages 170–177. IEEE, 2010.

[OGS08] Bryan O’Sullivan, John Goerzen, and Donald Bruce Stewart. Real world haskell:

Code you can believe in. " O’Reilly Media, Inc.", 2008.

[Oka99] Chris Okasaki. Purely Functional Data Structures. Cambridge Univ Pr, June

1999.

[OM09] Owen O’Malley and Arun Murthy. Hadoop sorts a petabyte in 16.25 hours and

a terabyte in 62 seconds. http://developer.yahoo.com/blogs/hadoop/

hadoop-sorts-petabyte-16-25-hours-terabyte-62-422.html,

2009. Online; accessed 26 September 2015.

[O’S15] Bryan O’Sullivan. The criterion package. http://hackage.haskell.org/

package/criterion, 2015. Online; accessed 26 September 2015.

[OT10] Bryan O’Sullivan and Johan Tibell. Scalable i/o event handling for ghc. In ACM

Sigplan Notices, volume 45, pages 103–108. ACM, 2010.

[PA98] George A Papadopoulos and Farhad Arbab. Coordination models and languages.

Advances in computers, 46:329–400, 1998.

http://gafferongames.com/networking-for-game-programmers/
http://gafferongames.com/networking-for-game-programmers/
http://www.norstad.org/matrix-multiply/
http://www.norstad.org/matrix-multiply/
http://developer.yahoo.com/blogs/hadoop/hadoop-sorts-petabyte-16-25-hours-terabyte-62-422.html
http://developer.yahoo.com/blogs/hadoop/hadoop-sorts-petabyte-16-25-hours-terabyte-62-422.html
http://hackage.haskell.org/package/criterion
http://hackage.haskell.org/package/criterion


Bibliography 171

[Pat03] Dave Patterson. A conversation with jim gray. ACM Queue, 1(4):53–56, 2003.

[Pat10] David Patterson. The trouble with multicore: Chipmakers are busy designing

microprocessors that most programmers can’t handle. IEEE Spectrum, 2010.

[PD10] Daniel Peng and Frank Dabek. Large-scale incremental processing using distrib-

uted transactions and notifications. In Proceedings of the 9th USENIX Symposium

on Operating Systems Design and Implementation, 2010.

[Pes06] Yaniv Pessach. UDP DELIVERS: Take Total Control Of Your Networking With

.NET And UDP. Microsoft MSDN Magazine, pages 56–65, 2006.

[PK98] Vu Anh Pham and Ahmed Karmouch. Mobile software agents: an overview.

Communications Magazine, IEEE, 36(7):26–37, 1998.

[PPR+09] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J Abadi, David J DeWitt,

Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-

scale data analysis. In Proceedings of the 2009 ACM SIGMOD International

Conference on Management of data, pages 165–178. ACM, 2009.

[PSSC04] André Pang, Don Stewart, Sean Seefried, and Manuel MT Chakravarty. Plugging

haskell in. In Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,

pages 10–21. ACM, 2004.

[RC90] Gruia-Catalin Roman and H Conrad Cunningham. Mixed programming meta-

phors in a shared dataspace model of concurrency. Software Engineering, IEEE

Transactions on, 16(12):1361–1373, 1990.

[RDD+08] Giovanni Russello, Changyu Dong, Naranker Dulay, Michel Chaudron, and

Maarten Van Steen. Encrypted shared data spaces. In Coordination Models and

Languages, pages 264–279. Springer, 2008.

[Rea09] Monash Reasearch. ebay‚s two enormous data warehouses. http://www.

dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/,

2009. Online; accessed 26 September 2015.

[RGAB10] M J Rashti, R E Grant, A Afsahi, and P Balaji. iWARP redefined: Scalable

connectionless communication over high-speed Ethernet. In High Performance

Computing (HiPC), 2010 International Conference on, pages 1–10, December

2010.

[RGO06] Arnon Rotem-Gal-Oz. Fallacies of distributed computing explained. URL

http://www. rgoarchitects. com/Files/fallacies. pdf, page 20, 2006.

http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/
http://www.dbms2.com/2009/04/30/ebays-two-enormous-data-warehouses/


172 Bibliography

[RH16] Inc Red Hat. Ansible is simple it automation. https://www.ansible.com/,

2016. Online; accessed 14 May 2016.

[ria] Riak homepage. http://docs.basho.com/. Online; Accessed 15 February

2013.

[RMI+04] G. Regnier, S. Makineni, I. Illikkal, R. Iyer, D. Minturn, R. Huggahalli,

D. Newell, L. Cline, and A. Foong. TCP onloading for data center servers. Com-

puter, 37(11):48–58, 2004.

[RS] J. Ramdas and J. Srinivas. Extend Java EE containers with cloud characteristics.

[RTLQ09] Y. Ren, H. Tang, J. Li, and H. Qian. Performance comparison of UDP-based

protocols over fast long distance network. Information Technology Journal,

8(4):600–604, 2009.

[SAK07] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable cross-

language services implementation. Facebook White Paper, 5, 2007.

[SÇZ05] Michael Stonebraker, Ugur Çetintemel, and Stan Zdonik. The 8 requirements of

real-time stream processing. ACM SIGMOD Record, 34(4):42–47, 2005.

[ser15] Serf by HashiCorp. http://serfdom.io, 2015. Online; accessed Sep 26,

2015.

[Sha06] Nati Shalom. Space-based architecture and the end of tier-based computing

[pdf document]. retrieved february 14, 2013. http://www.gigaspaces.com/

WhitePapers, 2006.

[Sin89] Mukesh Singhal. Deadlock detection in distributed systems. Computer,

22(11):37–48, 1989.

[Sin11] Satnam Singh. Computing without processors. Communications of the ACM,

54(8):46–54, 2011.

[Sis87] Jonathan E Sisk. Pick Basic: a programmer’s guide. Tab Books, 1987.

[SK12] Viktor Sovietov and M. Kharchenko. Erlang on XEN. http://www.

erlangonxen.org, 2012. Online; accessed 26 September 2015.

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. In Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

https://www.ansible.com/
http://docs.basho.com/
http://serfdom.io
http://www.gigaspaces.com/WhitePapers
http://www.gigaspaces.com/WhitePapers
http://www.erlangonxen.org
http://www.erlangonxen.org


Bibliography 173

[SN] Salvatore Sanfilippo and Pieter Noordhuis. Redis. http://redis.io. Online;

accessed 15 February 2013.

[Spe91] Rick Spence. Clipper programming guide. Microtrend Books, 1991.

[spo15] In praise of ”boring” technology. https://labs.spotify.com/2013/02/

25/in-praise-of-boring-technology/more-104, 2015. Online; ac-

cessed 26 September 2015.

[Sto86] Michael Stonebraker. The case for shared nothing. IEEE Database Eng. Bull.,

9(1):4–9, 1986.

[Sun10] Mark Sung. From Cloud Computing To Cloud Computing. Network and Systems

Support for Games (NetGames), 2010 9th Annual Workshop, pages 1–48, 2010.

[SW08] Peter Seveik and Rebecca Wetzel. Improving Effective WAN Throughput for

Large Data Flows. NetForecast Report 5095, pages 1–8, November 2008.

[Tal12] Nassim Nicholas Taleb. Antifragile: Things that gain from disorder, volume 3.

Random House Incorporated, 2012.

[TDJ13] Samira Tasharofi, Peter Dinges, and Ralph E Johnson. Why do scala developers

mix the actor model with other concurrency models? In ECOOP 2013–Object-

Oriented Programming, pages 302–326. Springer, 2013.

[TMPJM12] David Terei, Simon Marlow, Simon Peyton Jones, and David Mazières. Safe

haskell. In Proceedings of the 2012 symposium on Haskell symposium, pages

137–148. ACM, 2012.

[TSLZ12] Nam-Luc Tran, Sabri Skhiri, Arthur Lesuisse, and Esteban Zimányi. Arom: Pro-

cessing big data with data flow graphs and functional programming. In Cloud

Computing Technology and Science (CloudCom), 2012 IEEE 4th International

Conference on, pages 875–882. IEEE, 2012.

[Unta] Akka (toolkit and runtime for building highly concurrent, distributed and fault

tolerant event-driven applications on the jvm). http://akka.io. Online; ac-

cessed May 2012.

[Untb] cloudstack. http://cloudstack.org. Online; accessed May 2012.

[Untc] ØMQ. http://www.zeromq.org/. Online; accessed May 2012.

[Untd] The epass package. http://hackage.haskell.org/package/epass. On-

line; accessed May 2012.

http://redis. io
https://labs.spotify.com/2013/02/25/in-praise-of-boring-technology/more-104
https://labs.spotify.com/2013/02/25/in-praise-of-boring-technology/more-104
http://akka.io
http://cloudstack.org
http://www.zeromq.org/
http://hackage.haskell.org/package/epass


174 Bibliography

[Unte] The netfilter.org project. http://www.netfilter.org/. Online; accessed

May 2012.

[Unt09a] Light Weight Event System. http://www.lwes.org/, 2009. Online; accessed

May 2012.

[Unt09b] Stackoverflow. http://stackoverflow.com/questions/1435359/why-

can-you-only-prepend-to-lists-in-functional-languages, 2009.

Online; accessed May 2012.

[Unt12a] Data.Sequence. http://hackage.haskell.org/packages/archive/

containers/0.4.2.1/doc/html/Data-Sequence.html, 2012. Online;

accessed May 2012.

[Unt12b] MessagePack. http://msgpack.org/, 2012. Online; accessed May 2012.

[Unt12c] MessagePack Blog. http://msgpack.wordpress.com/, 2012. Online; ac-

cessed May 2012.

[Unt12d] Programming Language Popularity. http://www.langpop.com, 2012. On-

line; accessed May2012.

[VCH07] Tom Murphy Vii, Karl Crary, and Robert Harper. Type-safe distributed program-

ming with ml5. In Trustworthy Global Computing, pages 108–123. Springer,

2007.

[vdGSW97] Roel van der Goot, Jonathan Schaeffer, and Gregory V Wilson. Safer tuple

spaces. In Coordination Languages and Models, pages 289–301. Springer, 1997.

[Vin07] Steve Vinoski. Concurrency with erlang. Internet Computing, IEEE, 11(5):90–

93, 2007.

[VMD+13] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, et al. Apache hadoop yarn: Yet another resource negotiator. In Proceedings

of the 4th annual Symposium on Cloud Computing, page 5. ACM, 2013.

[Vog08] Werner Vogels. Keynote: Uncertainty, The Next Web Conference. April 2008.

[Vog09] Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–

44, 2009.

[VRMB11] L M Vaquero, L Rodero-Merino, and R Buyya. Dynamically scaling applications

in the cloud. ACM SIGCOMM Computer Communication Review, 41(1):45–52,

2011.

http://www.netfilter.org/
http://www.lwes.org/
http://stackoverflow.com/questions/1435359/why-can-you-only-prepend-to-lists-in-functional-languages
http://stackoverflow.com/questions/1435359/why-can-you-only-prepend-to-lists-in-functional-languages
http://hackage.haskell.org/packages/archive/containers/0.4.2.1/doc/html/Data-Sequence.html
http://hackage.haskell.org/packages/archive/containers/0.4.2.1/doc/html/Data-Sequence.html
http://msgpack.org/
http://msgpack.wordpress.com/
http://www.langpop.com


Bibliography 175

[WCC+09] Chen-Chi Wu, Kuan-Ta Chen, Chih-Ming Chen, Polly Huang, and Chin-Laung

Lei. On the challenge and design of transport protocols for MMORPGs. Multi-

media Tools and Applications, 45(1-3):7–32, 2009.

[web] Gigaspaces xap. http://www.gigaspaces.com. Online; accessed 2014.

[web15] Docker, build ship and run any app anywhere. https://www.docker.com,

2015. Online; accessed 26 September 2015.

[Wel05] George Wells. Coordination languages: Back to the future with linda. In Pro-

ceedings of the Second International Workshop on Coordination and Adaption

Techniques for Software Entities (WCAT05), pages 87–98, 2005.

[Wik15a] Wikipedia. Asynchronous i/o — Wikipedia, the free encyclopedia. https:

//en.wikipedia.org/wiki/Asynchronous_I/O, 2015. Online; accessed

22 July 2015.

[Wik15b] Wikipedia. dbase. https://en.wikipedia.org/wiki/DBase, 2015. On-

line; accessed 20 October 2015.

[Wik15c] Wikipedia. Fallacies of distributed computing — wikipedia, the free encyclope-

dia. http://en.wikipedia.org/wiki/Fallacies_of_distributed_

computing, 2015. Online; accessed June 5, 2015.

[Wik15d] Wikipedia. Kernel density estimation. https://en.wikipedia.org/wiki/

Kernel_density_estimation, 2015. Online; accessed 17 August 2015.

[WN10] Guohui Wang Guohui Wang and TSE Ng. The Impact of Virtualization on Net-

work Performance of Amazon EC2 Data Center. IEEE INFOCOM. Proceedings,

pages 1–9, 2010.

[www15] The history of foxpro. http://www.foxprohistory.org/, 2015. Online;

accessed 20 October 2015.

[YIFB08] Y Yu, M Isard, D Fetterly, and M Budiu. DryadLINQ: A system for general-

purpose distributed data-parallel computing using a high-level language. In Pro-

ceedings of the 8th . . . , 2008.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. Spark: cluster computing with working sets. In Proceedings of the 2nd

USENIX conference on Hot topics in cloud computing, pages 10–10, 2010.

http://www.gigaspaces.com
https://www.docker.com
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/DBase
http://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
http://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_density_estimation
http://www.foxprohistory.org/


176 Bibliography

[ZHC+12] Wenbo Zhang, Xiang Huang, Ningjiang Chen, Wei Wang, and Hua Zhong. Paas-

oriented performance modeling for cloud computing. In Computer Software and

Applications Conference (COMPSAC), 2012 IEEE 36th Annual, pages 395–404.

IEEE, 2012.


	Abstract
	Acknowledgements
	Contents
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms and program Code
	List of Acronyms
	Introduction
	Background
	Methodologies
	Problem Statement
	Motivation
	Major Contributions
	Thesis structure
	Evaluation Criteria

	Literature Review
	Asynchronous operations and messaging
	CMQ Implementation
	cwPush
	Petri net verification of cwPush
	cwPop
	The use of cwPush and cwPop
	Where is the queue?

	Testbed specifications
	Benchmarking methodology
	Evaluation criteria
	Assessment of asynchronous operations and messaging in the functional programming language Haskell
	ASM1: Asynchronous I/O or Non-Blocking I/O
	ASM2: Preventing Deadlocks
	ASM3: Support for node-level 'shared nothing' architectures
	ASM4: Message passing

	Intermediary result
	Summary

	Coordination
	High level design of Cwmwl PaaS framework
	How the DSL CWMWL is implemented
	Tuples and Templates
	Units of scale
	Map Reduce: a data-oriented example

	Testbed specification
	Benchmarking methodology
	Tuple space performance
	Evaluation criteria
	Assessment of functions as lightweight units of scale for distributed applications in computing clouds
	COO1: Entities suitable for coordination
	COO2: Mechanism of coordination
	COO3: Medium of coordination (Not rated)
	COO4: Rigorous semantics, rules or protocols can be implemented
	COO5: Degree of decoupling
	COO6: Relevance and applicability to the domain computing clouds

	Intermediary result
	Summary

	Integration with Data
	Data
	Volume
	Variety
	Velocity
	Data Gravity —the fourth dimension of data
	Agent platforms
	Code mobility
	Fog Computing


	Functional Programming in Map Reduce
	Functional Programming in Stream processing and Data flow programming
	Functions in service platforms for IoT sensor data
	Functions, Messaging and Coordination: Reconsidering the problem with data
	CMQ/Cwmwl support for Data with challenging Volume
	CMQ/Cwmwl support for unstructured Data
	CMQ/Cwmwl support for Data with challenging Velocity
	CMQ/Cwmwl and Data Gravity

	Fixing Data by Eight Dogmas
	Blueprint for the next-gen computing cloud
	Challenges and Opportunities

	Summary

	Conclusion
	Critical Assessment
	Future directions

	Time profiling
	Bibliography

