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   ABSTRACT 

Heterogeneous wireless mesh networks (WMN) provide an opportunity to secure higher 

network capacity, wider coverage and higher quality of service (QoS). However, 

heterogeneous systems are complex to configure because of the high diversity of 

associated devices and resources. This thesis introduces a novel cognitive network 

framework that allows the integration of WMNs with long-term evolution (LTE) networks 

so that none of the overlapped frequency bands are used. The framework consists of 

three novel systems: the QoS metrics management system, the heterogeneous network 

management system and the routing decision-making system. The novelty of the QoS 

metrics management system is that it introduces a new routing metric for multi-hop 

wireless networks by developing a new rate adaptation algorithm. This system directly 

addresses the interference between neighbouring nodes, which has not been addressed 

in previous research on rate adaptation for WMN. The results indicated that there was a 

significant improvement in the system throughput by as much as to 90%. The routing 

decision-making system introduces two novel methods to select the transmission 

technology in heterogeneous nodes: the cognitive heterogeneous routing (CHR) system 

and the semantic reasoning system. The CHR method is used to develop a novel 

reinforcement learning algorithm to optimise the selection of transmission technology on 

wireless heterogeneous nodes by learning from previous actions. The semantic 

reasoning method uses ontologies and fuzzy-based semantic reasoning to facilitate the 

dynamic addition of new network types to the heterogeneous network. The simulation 

results showed that the heterogeneous network outperformed the benchmark networks 

by up to 200% of the network throughput. 
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Introduction 

 

 Introduction to Communication Networks 

Communication networks can be categorised based on whether the transmission 

medium is a wired or wireless network. The wired network connects devices to other 

networks using cables; one of the most well-known example of this type is the local area 

network that known as the Ethernet. The wireless network is defined as a network that 

uses radio frequency bands to connect devices such as smartphones to the Internet or 

to a private business network. The frequency bands in telecommunications are defined 

as a specific range of frequencies in the radio spectrum. Because the simultaneous use 

of the same frequency band can cause interference and result in data loss, frequency 

usage is regulated by the International Telecommunication Union (ITU). 

Among many of the successfully deployed wireless networks, cellular and multi-hop Wi-

Fi-based networks are two of the most promising technologies. cellular network is led by 

ITU and the 3rd Generation Partnership Project (3GPP), which focuses on delivering 
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high quality services to mobile users. The other is led by the Institute of Electrical and 

Electronics Engineers (IEEE), which emphasises the ease of access to the network. 

Cellular networks include a set of terrain areas called cells, each of which is served by 

at least one fixed base station (BS). Each cell uses different frequency bands to avoid 

interference and guarantee the bandwidth. A cellular network provides large coverage to 

fixed and mobile devices, such as mobile phones, laptops, tablets, etc. The concept of 

cellular networks follows gradual trends, which started with the first generation (1G) and 

led to the current fourth generation (4G). Long-term evolution advanced (LTE-A) (3GPP 

TS 36.211 V8.7.0 2009) is considered the real 4G network. LTE-A was standardised by 

3GPP and approved by the ITU. LTE-A networks consist of two main parts: the LTE base 

station, or evolved Node B (eNodeB or eNB) base station, and the evolved packet core 

(EPC). The eNB provides cell coverage, radio resource management and connection 

mobility management. The purpose of the EPC, which was first introduced by 3GPP in 

Release 8 of the standard, is to handle the network data traffic efficiently from the 

perspective of cost and performance. 

Multi-hop wireless networks employ Wi-Fi to establish a network without a centralised 

infrastructure. The data unit, which is known as a packet, is transmitted by forwarding 

data from one node to another until they reach their destination; each node represents 

one hop count. A wireless mesh network (WMN) is a multi-hop wireless network that 

establishes a metropolitan area network. The WMN consists of three types of nodes: 

gateway, mesh and client. The gateway node has a high-speed wired connection to the 

Internet; mesh nodes are used as relay nodes to propagate data to and from the 

gateway; client nodes are devices that seek a connection to the Internet, such as mobile 

devices, laptops, etc. The packets are transmitted from one mesh node to another until 
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they reach the gateway. In WMN, routing algorithms are developed to calculate the path 

for transmitting data from the source to the destination that optimises the network’s 

performance. 

Another important part of computer networks comprises the communication protocols, 

which use a set of rules to enable computer-based devices to communicate with each 

other. These protocols work as a set of network layers that are known as a network 

protocol stack to enable network capabilities. The protocols at each layer are mutually 

agreed on the format of performing functions. Figure 1.1 shows a block diagram of two 

nodes that use the transport control protocol / internet protocol (TCP/IP) network layers 

to communicate with each other. The application layer handles the details of the 

particular application. The hypertext transfer protocol (HTTP) and file transfer protocol 

(FTP) are examples of application layer protocols. The transport layer provides the end-

to-end data transfer by delivering data from one application to its remote peer. The most 

frequently used transport layer protocol is TCP. The network layer, also known as the 

Internet layer, is responsible for routing data packets and forming the network; it shields 

the upper layer from the physical network. The Internet protocol (IP) is the most important 

protocol in this layer. The last layer is the physical layer, which is the actual interface with 

the physical hardware that is responsible for sending data through the network. 
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Figure 1-1:  TCP/IP network layers 

 Motivation 

Over the next three years, Internet traffic is expected to increase three to five times 

because of the growing number of connected mobile devices. Within the next decade, a 

more advanced Internet infrastructure will be required to support this increase in Internet 

traffic (Huawei 2014).  

Next-generation wireless networks must overcome several challenges, including the cost 

to cover high-density areas, crowded events and large areas and to respond to 

temporary fluctuations in demand, for example, at a large sporting event. The cost 

estimation depends on the number of required base stations and the cost to rent 

frequency bands. Interoperability is another challenge as many devices use different 

operating systems, protocols and access technologies. Network reliability is also an 
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important issue that needs to be addressed to ensure that systems are able to tolerate 

faults or interruption to the service in case of disasters (IWPC 2014). 

The use of heterogeneous technologies, such as cellular and Wi-Fi networks improves 

the overall network performance by distributing the load across different network 

technologies (Hu et al. 2012; Yang et al. 2013; Hagos and Kapitza 2013), which provides 

an opportunity for higher network capacity, wider coverage and higher quality of service 

(QoS). However, the process of developing heterogeneous wireless networks is a very 

challenging task because each network type uses a different radio access network 

(RAN), has different standards and depends on various QoS parameters. Furthermore, 

routing packets through a heterogeneous network requires a new mechanism to 

exchange control messages among the different networks. The design of heterogeneous 

systems is highly complex because of the diversity of associated devices and resources, 

as well as the dynamic form of the network (Liu et al. 2013). 

The internetworking of different wireless technologies, particularly the LTE network and 

the IEEE 802.11-based wireless mesh network (WMN), is one of the key opportunities 

involved in developing the next-generation wireless networks. The use of a WMN 

increases the network capacity by utilising unlicensed frequency bands, which reduce 

the cost of buying more LTE licensed frequency. The LTE network is used to avoid low-

quality Wi-Fi links and it can connect island nodes if a link failure occurs. 

LTE networks provide wide coverage and a peak transmission rate ranging from 100–

326.4 Mbps on the downlink (from base station to user equipment) and 50–86.4 Mbps 

on the uplink (from user equipment to base station) depending on the antenna 

configuration and modulation depth. Due to the advanced technologies employed in the 

LTE networks, they can be used by major mobile operators around the world to cope 
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with the high traffic demands. However, LTE networks use licensed frequency bands, 

which means that costs are incurred to provide more bandwidths through buying more 

frequency bands (which may not be available in all regions) or through investing in a 

higher density of base stations. 

The WMN is a paradigm that was developed to provide wide network coverage without 

using the centralised infrastructure (Akyildiz et al. 2005). Therefore, WMNs are a feasible 

choice to provide a backbone network for metropolitan area networks (MANs). 

Gateways, which are wireless nodes that have a high-speed wired connection to the 

external Internet, are used to connect the WMN to the Internet. This architecture offers 

a cost-effective, ubiquitous wireless connection to the Internet in large areas through 

multi-hop transmissions to and from the gateway. However, the major drawbacks of 

using WMNs are their limitations in terms of capacity, system performance and 

guaranteed wireless link quality. The causes of these limitations originate from the multi-

hop nature of the network. When data packets traverse a greater number of hops in a 

large WMN, either they can fail to reach their destination or they consume too many 

network resources. Moreover, in the case of a link or node failure, some nodes become 

isolated from the network because of the lack of a path to the destination or gateway, 

and form an island node. 

One possible way to simplify the complexity of heterogeneous wireless networks is to 

employ cognitive networks. A cognitive network utilises network characteristics as input 

and extends network services by developing reasoning mechanisms for simplifying the 

complexity of managing modern wireless networks and enhancing network performance 

(Thomas 2007). The general issue with cognitive networks is finding the actions that 

move the network from a current situation to a desired situation, which tends to be a non-



   

   7 
 

 

deterministic polynomial-time (NP) hard problem (Facchini 2011). The problem that the 

cognitive network model faces in heterogeneous WMNs is challenging because of the 

need to secure the QoS characteristics of multiple network architectures and to find the 

optimal solution using reasoning mechanisms. 

The use of semantic technologies as a part of the cognitive network could establish a 

method to describe, annotate and create relationships of various QoS parameters and 

network characteristics. The integration of different artificial intelligence (AI) algorithms 

in the reasoning system would allow the automatic processing of the network operations, 

including optimisation, configuration and management. The introduction of AI-based 

systems in self-organised mobile networks offers an effective way toward developing 

smart future mobile networks (Wang et al. 2015). The use of a semantic based system 

enables each node in the heterogeneous network to be self-configured and aware of the 

surrounding environment and any additionally installed transmission devices. 

 Aim and Objectives 

The aim of this research is to develop a novel heterogeneous wireless mesh networks 

architecture based on using LTE and WMN to improve the overall network capacity, link 

quality and coverage. This is achieved by developing a smart system for configuring, 

optimising and managing heterogeneous wireless mesh networks autonomously and 

facilitating the process of extending this network automatically. The project aims to build 

a framework that models the various network architectures using semantic based system 

and establishes a technique to develop reasoning systems using AI algorithms. 

The specific objectives necessary to achieve the aim are identified as: 
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 Creation of a cognitive network framework based on a semantic system to 

optimise, configure and manage heterogeneous wireless mesh network.  

 Building a rate adaptation technique for WMN to mitigate the impact of 

interference.  

 Creation of routing metric based on the transmission rate that reflects the quality 

of the shared transmission channel. 

 Building a novel heterogeneous wireless mesh network architecture of WMN and 

LTE that overcomes the drawbacks of each transmission technology utilised in 

the network. 

 Development and validation of a new heterogeneous wireless mesh routing 

protocol that prescribes the required control messages and routing tables to 

enable the communication of heterogeneous transmission devices. 

 Development of a new route selection algorithm to select transmission device to 

optimise the heterogeneous network performance.  

 Development of a new semantic knowledge base system that simplifies the 

process of capturing the parameters of the heterogeneous systems from different 

layers of the network protocol stack through the use of ontologies and semantic 

rules.  

 Establishing a semantic inference engine to configure different communication 

systems automatically and optimise the network performance without a need to 

customise the software of the transmission device or update other layers of the 

Internet protocol stack. 

 Thesis Outline 

 This thesis is organised into the following structure: 
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Chapter 1 has provided an introduction to the work. 

Chapter 2 has introduced a state of the art review of wireless network architectures and 

discusses related work in the field. It also reviews the relevant literature in the area of 

rate adaptation algorithms in wireless local network, the related work in the scope of 

heterogeneous wireless networks, reinforcement learning and fuzzy inference, semantic 

web and ontologies.   

Chapter 3 has proposed a cognitive network framework for optimising, configuring, and 

managing the heterogeneous wireless mesh network. 

Chapter 4 has introduced a new rate adaptation algorithm for wireless mesh networks.         

Chapter 5 has proposed a novel heterogeneous wireless mesh network architecture that 

utilises WMN and LTE networks; it also has introduced a new heterogeneous routing 

protocol and routing selection algorithm based on reinforcement learning. 

Chapter 6 has used the developed heterogeneous WMN architecture to define an 

ontology based system to model and represent the heterogeneous wireless mesh 

network and also developed a reasoning system based on fuzzy controller to facilitate 

the process of configuring and optimising other wireless network architectures. 

Chapter 7 highlights the contributions, limitations, and conclusions of this thesis, and 

proposes further work. 
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Literature Review 

This chapter reviews the state of the art in the research areas relevant to the work 

presented in this thesis. Initially, the wireless technologies and network architectures 

utilised in this research are discussed with detailed examples in Section 2.1. Section 2.2 

highlights the existing work on WMNs; section 2.3 examines the rate adaptation 

algorithms in wireless local network; section 2.4 discusses the related work in the scope 

of heterogeneous wireless networks. Section 2.5 discusses the cognitive network, which 

is followed by a review about employing semantic web and ontologies for wireless 

networks in section 2.6. Then the reviews of the concepts related to reinforcement 

learning and fuzzy interference are presented in section 2.7 and 2.8 respectively. Finally, 

Section 2.9 summarises the findings and concludes the Chapter.   

 Wireless Networks 

This section introduces the communication systems that this research utilises to create 

the proposed heterogeneous network architectures. 
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 IEEE 802.11 Wireless LANs 

IEEE 802.11 is a set of standards that was developed by IEEE standard committee (802) 

(Std, IEEE Committee 1990). The IEEE 802.11 standard defines a medium access 

control (MAC) layer and multiple physical layer specifications. The MAC defines the 

addressing and channel access mechanisms to make it possible for several network 

nodes to communicate with each other. The MAC layer acts as an interface between the 

physical layer that is responsible to set frequency bands, transmission power and the 

upper layers. The channel access mechanism in IEEE MAC is based on carrier-sense 

multiple access with collision avoidance (CSMA/CA) and a distributed coordination 

function (DCF). The transmission medium is shared among multiple nodes. CSMA/CA is 

used to prevent collisions before they occur. When the station has a packet to be sent, 

it checks the transmission medium. If the link is busy, it defers the transmission for a 

random period and then checks the link again. The DCF function specifies a random 

waiting time for each node, and then the node transmits a request to send message 

(RTS), and if it is cleared to send (CTS) the node transmits its packet. This approach 

minimises the possibility that more than one node checks the channel simultaneously. 

IEEE 802.11, commonly known as Wi-Fi, provides low-cost, convenient and high 

transmitting speed technology. It has already been deployed in many hotspots, including 

airports, libraries, coffee houses and hotels. Wi-Fi uses unlicensed frequency bands, 

which means it is not necessary to pay for bandwidth; however, this attribute also 

increases the possibility of interfering with other neighbouring networks. Wi-Fi provides 

good indoor coverage. Moreover, the chipset price of Wi-Fi is dropping continuously, 

making it an economical networking option that is included in an increasing number of 

devices. Wi-Fi offers a data rate up to 780 Mbps in the IEEE 802.11ac, and the bandwidth 
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is device-to-device transmission, which means that all the available bandwidth is 

allocated to the Wi-Fi node to transmit the incoming traffic. For example, if the available 

bandwidth for a Wi-Fi node is 54 Mbps, then the Wi-Fi node will utilise the entire 

bandwidth during the transmission without sharing it with neighbouring nodes. 

IEEE 802.11 defines a number of different physical layer technologies. The first version 

operates in 2.4 GHz industrial, scientific and medical (ISM) bands and achieves 1 and 2 

Mbps transmission. Several extensions were developed to provide a higher rate. The 

following are examples of the most common IEEE 802.11 extensions: 

 IEEE 802.11b (IEEE Std 802.11b 1999) operates in a 2.4 GHz ISM band and 

achieves up to 11 Mbps. 

  IEEE 802.11a (IEEE Std 802.11a 1999) operates in a 5 GHz ISM band with a 

data rate up to 54 Mbps. 

 IEEE 802.11g (IEEE Std 802.11g 2003) achieves up to 54 Mbps in a 2.4 GHz 

ISM band. 

 IEEE 802.11n operates at 2.4 and 5 GHz and increase transmission rate to more 

than 100 Mbps. 

 IEEE 802.11ac (IEEE Std 802.11ac 2013) was developed based on the IEEE 

802.11n to provide very high throughput that reaches 1 Gbps and is operated at 

frequencies lower than 6GHz. 

Another approved standard is IEEE 802.11p, which adds wireless access in vehicular 

environments (WAVE) (IEEE Std 802.11p 2010). The standard is intended to support 

wireless access in vehicular ad hoc networks (VANETs), which exchange and broadcast 

safety-related service application data between moving vehicles, vehicle-to-vehicle 
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(V2V) units, or to roadside units, which is known as vehicle-to-infrastructure (V2I) 

communication. IEEE 802.11p operates in a dedicated short-range communication 

(DSRC) band of 5.85–5.92 GHz. In this band, one control channel (CCH) is used to 

transmit safety and control information, while up to six other service channels (SCH) are 

employed to exchange service information (IEEE Vehicular Technology Society 2006). 

Each vehicle periodically sends short messages (beacon) over CCH. Beacon signals are 

employed to announce the presence of the node to the neighbouring nodes and to 

provide the location and speed information. Figure 2.1 shows an example of a VANET 

multi-hop network. 

 

Figure 2-1: VANET network example 

 Long-term Evolution (LTE) 

LTE (3GPP TS 36.211 V8.7.0 2009) was evolved from the 3G standard to improve the 

architecture of 3G cellular standards, such as UMTS and HSPA. It provides wide 

coverage and a peak transmission rate ranging from 100 to 326.4 Mbps on the downlink 

(from the base station to user equipment) and 50 to 86.4 Mbps on the uplink (from the 

user equipment to base station), depending on antenna configuration and modulation 
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depth. The initial release (Release 8) was finished in 2007; currently, 4G is used to refer 

to this network. 

The LTE network architecture involves an Internet protocol (IP) network architecture to 

provide low latency networks. The LTE network consists of two main parts: the evolved 

Node B (eNodeB /eNB) base station, which provides the cell coverage; and the evolved 

packet core (EPC), which connects the network to the Internet. Figure 2.2 shows a 

comprehensive illustration of the LTE network architecture. The EPC consists of three 

nodes: the protocol data network gateway (P-GW), the serving gateway (S-GW) and the 

mobility management entity (MME). The P-GW is the gateway to external IP networks, 

such as the Internet. The S-GW connects and routes the packets between the user 

equipment (UE). The MME is the signalling system that handles the node’s mobility and 

security in the Internet (Amate 2014). 

The bandwidth in the LTE network is represented by the total number of resource blocks 

(RB) that are available for the user equipment in the network. The basic unit in each RB 

is the resource element (RE). RE represents one symbol by one subcarrier, which 

usually carries two, four or six physical channel bits, depending on the utilised modulation 

scheme. Each UE could allocate more than one RB based on the available bandwidth of 

the LTE network. 

Because of the advanced technologies employed in LTE networks, they are used by 

major mobile operators around the world to cope with high traffic demands. However, 

because LTE networks operate licensed frequency bands, to provide greater bandwidth, 

an additional cost is introduced to buy additional frequency bands (which may not be 

available in all regions) or to invest in a higher density of base stations.



   

   15 
 

 

 

Figure 2-2: LTE network architecture (Firmin and 3GPP MCC 2014) 

 Wireless Mesh Network 

The WMN paradigm was developed to provide broad network coverage without using a 

centralised infrastructure (Akyildiz et al. 2005). In such networks, nodes are used as 

relays to propagate data from the source to the destination using multi-hop paths to 

provide service to users. A mesh node can obtain Internet connectivity through a multi-

hop path from a mesh gateway, which results in congestion at both the gateway and the 

nodes close to the gateway. 
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The mesh network provides an appropriate choice to create the infrastructure for 

metropolitan area networks (MAN). WMNs typically employ IEEE 802.11 to provide an 

economical approach to indoor and outdoor broadband wireless networks. This network 

architecture has been deployed in many cities and rural areas worldwide, such as New 

Orleans, Seattle, Ghana and Zambia (Zhao 2011). Figure 2.3 shows an example of WMN 

architecture. 

Routing protocols and routing metrics have a significant impact on the performance of 

WMNs. Therefore, this section discusses related works on different routing protocols and 

metrics in WMNs. 

 

 

Figure 2-3: WMN architecture 
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 Routing Protocols in WMNs 

There are two types of routing protocols in WMNs. The first type consists of reactive 

routing protocols in which the route is created on demand by flooding the network with 

route requests. The route selection is maintained only for nodes that transmit traffic to a 

particular destination. Examples of this type of routing are ad hoc on-demand distance 

vector (AODV) (Perkins et al. 1999) and dynamic source routing (DSR) (Johnson et al. 

2001). Reactive routing causes some delays because a route is created only when there 

are data ready to be sent. Three types of packets are employed in reactive routing, which 

use the following: 

 Route request packet (RREQ) floods the network when a node has data packets 

that need to be sent. 

 Route response packet (RREP) is unicasted to the originator node that contains 

the full path to the destination. 

 Route error packet (RERR) is sent when a route to the destination fails. 

The second type of routing protocol consists of proactive or table-driven routing 

protocols. They maintain a table of the entire destination in the network by periodically 

distributing an update of the routing table to all nodes. Destination-sequenced distance 

vector (DSDV) (Perkins and Bhagwat 1994) and optimised link state routing (OLSR) 

(Jacquet et al. 2001) are examples of this type of routing protocol. The route table 

maintains the route to each destination; transmission begins with no delay if packets are 

ready to be sent. However, some overhead is added to distribute routing table 

information among the nodes in the network. Hybrid routing protocols combine reactive 

and proactive routing to reduce the overhead of route discovery by employing proactive 

routing to nearby nodes and generating routes to distant nodes by using on-demand 
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routing (Abolhasan et al. 2003). The zone routing protocol (Haas and Pearlman 1983) 

and distance routing effect algorithm for mobility (DREAM) (Stefano et al. 1998) are 

examples of hybrid routing protocols. 

 Routing Metrics in WMNs 

The most widely utilised metrics in WMNs routing protocols select the shortest path to 

the gateway based on the hop count. Many ad hoc routing protocols, such as AODV 

(Perkins et al. 1999), DSR (Johnson et al. 2001) and OLSR (Jacquet et al. 2001), employ 

this routing metric to find the shortest path from the source to the destination. This 

approach considers the minimum number of hops from the sender to the receiver. 

However, prior research has recognised a shortcoming in hop count metrics in WMNs: 

the shortest path metric results in a congested path (Mogaibel and Othman 2009). 

Moreover, a smaller number of hops may lead to a poor-quality link because the metric 

does not consider QoS parameters such as delay, bandwidth, link quality or transmission 

rate (Ahmeda and Esseid 2010; Zhao and Al-dubai 2012). Therefore, many researchers 

have employed quality-aware metrics, which dynamically evaluate link quality 

characteristics to improve network performance. Some of these metrics employ a link 

loss ratio to select the path to the gateway. One of the most widely cited measures is the 

expected transmission count (ETX) (De Couto et al. 2003), which estimates the required 

number of transmissions for the successful data delivery between two nodes. However, 

ETX does not consider the bandwidth, the packet size, or the link interference; therefore, 

the metric does not perform well on a network that has a high transmission rate and a 

large packet size. The ETX value can be calculated as follows: 
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 𝐸𝑇𝑋 =
1

𝑑𝑓 ∗ 𝑑𝑟
, (2.1) 

where df is the measured probability that a data packet is successfully received by the 

receiver, and dr is the likelihood of receiving an acknowledgement by the sender. 

Expected transmission time (ETT) (Draves et al. 2004) enhances ETX by considering 

the packet size and the link bandwidth in calculating the metric. However, this metric 

does not consider the load and link interference. Equation (2.2) is used to calculate ETT 

value: 

 𝐸𝑇𝑇 = 𝐸𝑇𝑋 ∗
𝑆

𝐵
, (2.2) 

where S is the packet size and B is the available bandwidth. The interference and 

channel switching (MIC) metric (Yang et al. 2005) was proposed as an alternative to the 

ETT. MIC is topology-dependent and selects paths with a minimum number of nodes 

that share the wireless channel. However, MIC fails to indicate whether the interferer 

node has data to transmit, as the interferer cannot cause interference when there is no 

transmission. MIC is calculated using the following equation: 

 𝑀𝐼𝐶(𝑝) =
1

𝑁∗min⁡(𝐸𝑇𝑇)
∑ 𝐼𝑅𝑈𝑙 + ∑ 𝐶𝑆𝐶𝑖𝑛𝑜𝑑𝑒⁡𝑖∈𝑝𝑙𝑖𝑛𝑘⁡𝑙∈𝑝 , (2.3) 

where p is a path in the network, IRU is interference aware resource usage for link l on 

the path p, and CSC is the channel switching cost for node i that belongs to path p. 

Another routing metric is used to estimate the available bandwidth on the network. 

Bandwidth can be defined as the amount of data that flows through the network (Zhao 
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2011). Determining the available bandwidth on IEEE 802.11 medium access control 

(MAC) is challenging because the channel is shared among the neighbouring nodes, 

and the surrounding environment changes frequently (Peng et al. 2013). One method 

that is used to estimate the available bandwidth is to listen passively to the channel in 

order to determine the busy time and the idle time (Chen and Heinzelman 2005; 

Ramadhan 2010; Peng et al. 2013). When the channel state changes from idle to busy 

(i.e., the channel is sending or receiving), the node computes the busy time and the idle 

time during period T. The available bandwidth is calculated using the following equation: 

 
𝐵(𝑘) = 𝐶𝑟𝑎𝑤(𝑘) ∗

𝑇𝑖𝑑𝑙𝑒

𝑇
, 

(2.4) 

where B(k) is the estimated available bandwidth, Craw(k) is the physical capacity of 

channel k, and Tidle is the calculated idle time during time slot T. 

Another approach to estimating the available bandwidth is to exchange hello messages 

among the neighbouring nodes containing information that could be used to determine 

the available bandwidth on the network (Chen and Heinzelman 2005). 

In WMN, gateways are employed to connect the network to the Internet. Gateway 

selection is one of the major problems in WMN because the majority of the traffic goes 

through the gateway, which causes congestion at these points. Some routing metrics 

consider gateway selection in calculating the routing path. An example of this parameter 

is employing a centralised online gateway selection to provide load balancing on the 

gateways (Galvez et al. 2012). The calculation of this metric consists of two stages: 1) 

the hop count metric is employed to measure the path cost to the gateway by setting a 

threshold for the distance to the gateway, and each node maintains a list of valid 



   

   21 
 

 

gateways; 2) the load on the gateway is computed using a central controller that could 

be any gateway in the network. The gateways collect network parameters and send them 

to the controller to perform the gateway selection algorithm. However, the central 

controller requires a wired network of gateways and the central controller. This wired 

network results in increasing the complexity of building the infrastructure to connect the 

gateways, which are usually located too far from each other to provide Internet 

connections in large areas. 

Another key link characteristic is the transmission rate. IEEE 802.11 supports multiple 

transmission rates; for each rate, there is a different transmission range and a different 

interference range. Changing the transmission rate could improve the network 

performance to exploit scarce wireless resources optimally under unstable channel 

conditions. The rate adaptation algorithms are reviewed in the next section. 

 Transmission Rates in IEEE 802.11 

IEEE 802.11 supports multiple transmission rates; for each rate, there is a different 

transmission range and a different interference range. The physical layer of IEEE 802.11 

employs different modulation and coding techniques, which results in providing multiple 

transmission rates. By applying a higher transmission rate, the node sends data packets 

faster, which shortens the necessary transmission time and increases the throughput. 

However, a higher transmission rate requires a higher signal-to-interference-to-noise 

ratio (SINR) at the receiver in order to decode the packet successfully due to the utilised 

modulation scheme. Therefore, employing a higher transmission rate requires higher 

transmission power to meet the SINR needed on the receiver. In turn, this results in 
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higher interference among other nearby nodes and thus reduces the overall network 

throughput. 

Rate adaptation involves two main tasks: estimation of the channel condition and 

selection of the most applicable transmission rate. This section reviews existing rate 

adaptation techniques according to the metrics employed to adjust the transmission rate. 

 Rate Adaptation Based on Frame Loss Statistics 

The first category is based on gathering transmission failure statistics on the sender side 

to estimate the interference level of the receiver side. If the transmission failure exceeds 

a given threshold, this means that the channel suffers from high interference, and the 

transmission rate is reduced. 

The earliest rate adaptation of this category is auto rate fall-back (ARF) (Kamerman and 

Monteban 1997). This mechanism was developed for WaveLan II to enhance the 

application throughput. Each node starts with the basic rate (2 Mbps) and then sets a 

timer. If either the timer expires or N (a given threshold) consecutive successful 

transmissions take place, the node increases the transmission rate and resets the timer. 

If the new rate fails directly, or if there are two consecutive fails, the node decreases the 

rate. 

Recent work in this area has proposed improving the performance of ARF by avoiding 

updating the transmission rate when the cause of transmission failure is not due to 

interference. Adaptive ARF (AARF) (Lacage et al. 2004) improves ARF by changing the 

threshold for switching the data rate adaptively. ONOE (MADWIFI, 2013) assigns credits 

to the rates based on the network statistics and selects a transmission rate with a loss 
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ratio of less than 50%. Collision-aware rate adaptation (CARA) (Kim et al. 2006) enables 

requests to send/clear to send (RTS/CTS) handshaking messages of distributed 

coordination function (DCF) only when the number of transmission failures exceeds a 

certain threshold. Adaptive multi-rate ARF (AMARF) (Xi et al. 2006) assigns different 

success threshold for each data rate and uses these numbers as a criterion to switch the 

transmission rate. 

The limitation of all these approaches of rate adaptation is that they do not distinguish 

between channel error and packet collision when there is a transmission failure. 

Moreover, these techniques do not take into account the competing nodes accessing 

shared channels in WMN and the congestion in those nodes. 

 Rate Adaptation Based on Traffic Estimation 

These types of rate adaptation algorithms consider the traffic at the sending node and 

whether the current transmission rate can meet the traffic demand. Traffic-aware active 

link rate adaptation (TA-ARA) (Ao et al. 2010) and the method proposed in (Du et al. 

2013) estimate the load on nodes by measuring the buffer length of each node and 

update the transmission rate based on the load in the node. The former updates the 

transmission power with the transmission rate while the latter keeps the transmission 

power constant. This type of rate adaptation can cause high interference in networks like 

WMN as it suffers from high congestion, especially in the nodes close to the gateway. 

Therefore, these approaches increase the transmission rate of nodes with high traffic 

loads, which results in high interference to the other nodes in the WMN. 
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  Throughput-Aware Rate Adaptation 

Throughput-aware rate adaptation algorithms predict throughput gain by updating the 

transmission rate and mitigating the bad impact of interference on the network. Relative 

fairness and optimised throughput (REFOT) (Benslimane and Rachedi 2014) achieves 

fairness among nodes in mobile ad hoc networks (MANET) while maintaining network 

throughput. Throughput-aware rate adaptation (TARA) (Ancillotti et al. 2009) selects the 

best transmission rate to provide higher throughput through estimating packet 

transmission times and network activity. 

  Receiver-Based Rate Adaptation 

In receiver-based rate adaptation, the receiver station measures the channel state and 

sends feedback to the sender node to adjust the transmission rate according to the 

received feedback. Mutual-feedback rate adaptation (MutFed) (Khan and Mahmud 2010) 

measures the received signal power on the receiver node and selects the suitable 

transmission rate. Then, it sends the suggested transmission rate as a feedback to the 

sender. Upon receiving the feedback message, the transmitter may accept or decline the 

suggested transmission rate. 

 Heterogeneous Wireless Networks 

This section discusses wireless networks that utilise different types of transmission 

technologies. The wireless networks are reviewed according to the way of employing 

heterogeneous transmission technologies in the network. 

The first type of heterogeneous network in which the client is capable of using vertical 

handover. The vertical handover is the process of switching from one network to a 
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different network to avoid congestion, poor channel quality, or to improve the QoS. Media 

independent handover (MIH) is proposed by the IEEE group (802.21) to provide a 

seamless vertical handover between different RAN (IEEE 802.21 Working Group 2009). 

IEEE 802.21 standard provides the link layer and other network information to the upper 

network layer to improve the handover in the heterogeneous networks. MIH is employed 

to provide handover between IEEE 802 family of standards, such as Wi-Fi and Wi-Max 

(Tamijetchelvy et al. 2012; Hamaydeh et al. 2013) or 3GPP network (Chu and Kim 2013). 

The decision of selecting the transmission technology is a crucial part of vertical 

handover; some work considers the user preferences as the most important parameter 

in selecting the network to carry out the communication (Gupta and Rohil 2013). While 

other algorithms consider QoS parameters in choosing the best network, for example, 

solving the problem of network congestion (Walid et al. 2014). Vertical handover in ad-

hoc networks is another way to utilise different radio technology (such as Wi-Fi, Bluetooth 

and ZigBee) to improve frequency utilization, reduce interference and increase network 

capacity (Stuedi and Alonso 2005; Waheed and Karibasappa 2008; Le et al. 2010; 

Fujiwara et al. 2012). 

Other types of heterogeneous networks split data among broadband and Wi-Fi wireless 

networks to increase network capacity. One approach is to distribute traffic among 

networks fairly (Yang et al. 2013) by employing load-balancing algorithms. Other 

architectures employ wireless characteristics to distribute data among networks. For 

instance, networks with better wall penetration are utilised for indoor communication 

such as Wi-Fi network while networks with higher frequency bands are employed for 

outside communication such as LTE or WiMAX (Hu et al. 2012; Hagos and Kapitza 

2013). Traffic priority is employed to manage packets flow in heterogeneous networks 



   

   26 
 

 

(Chen et al. 2010) in which only sensitive packets from the Wi-Fi network are forwarded 

through the cellular network to avoid weak links.  

A cellular network is a mobile network that distributed over land areas called cells. A new 

architecture that combined cellular network with multi-hop Wi-Fi architecture is proposed 

to relay data packets for clients that suffer from low channel quality, or to offload a 

congested cell by forwarding the traffic to other non-congested cells (Wu et al. 2001; Li 

et al. 2002; Luo et al. 2003; Dixit and Yanmaz 2005). These networks utilise the multi-

hop Wi-Fi network as an auxiliary network to redirect traffic from one cell to another.  

IEEE 802.11-based vehicular ad hoc networks (VANETs) and LTE networks are 

employed to form a hybrid network in which some nodes in VANET are elected to work 

as a gateway to forward traffic demands to the LTE base stations (Tabbane et al. 2015; 

Taleb et al. 2015). The access network is selected based on a set of QoS parameters to 

improve the network performance throughout the mobile path of vehicles. 

Other recent research aims to improve cellular networks by employing a mixture of macro 

cells and small cells, such as microcells, pico-cells, and femto-cells (Pantisano et al. 

2012; Zhang 2012; Soh et al. 2013; Palanisamy and Nirmala 2013; Lin and Feng 2014; 

Soret and Pedersen 2015). The use of small cells improves the frequency reuse by 

employing lower transmission power, which produces less interference and increases 

the data rate of cellular networks. Wi-Fi access points are also utilised to create pico-

cells to offload congested cells in cellular networks (Himayat et al. 2014).     

A promising approach is to equip cellular base stations with different wireless access 

technologies and frequency bands to reduce the interference between neighbouring cells 

(Suga and Tafazolli 2013). The coverage of each base station is divided into a number 
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of regions based on the modulation and coding scheme (MCS) utilised by each wireless 

technology in the base station. 

 Cognitive Networks 

The cognitive network is a network paradigm that was recently developed to reduce 

network complexity and enhance network performance. Based on the literature, the 

cognitive networks have the following characteristics: 

 Extensibility, flexibility, and proactivity; 

 Their ability to use network metrics as input and produce an action to the network 

as output; 

 The ability to improve network performance compared with traditional networks  

(Facchini 2011). 

In cognitive networks, it is difficult to determine the actions that move the network from 

a current situation to a desired situation, which tends to be a non-deterministic 

polynomial-time (NP) -hard problem (Facchini 2011). The problem that a cognitive 

network model faces in heterogeneous WMNs is challenging because of the need to 

secure the quality of service (QoS) characteristics of multiple network architectures and 

to find the optimal solution using reasoning mechanisms. 

The cognitive network process, which is known as a cognition loop, is represented in 

Figure 2.4 (Fortuna and Mohorcic 2009). The cognitive loop consists of six modules: 

Sense, Learn, Plan, Decide, Act and Environments. The network collects, gathers and 

pre-processes parameters to sense the environment (Sense). The information gathered 

by the Sense module is further used in planning the network functions (Plan) and then is 
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Figure 2-4: The cognition loop (Facchini 2011) 

fed to learning stage (Learn) to aid the decision maker (Decide) in future actions. The 

planning module determines potential actions, such as selecting next hop in WMN or 

updating transmission power for the network based on observations. The decision 

module decides the possible moves based on the available actions and experience 

learned from previous actions. Then the Act module performs the selected action in the 

environment. The learning module is well connected with multiple modules (Sense, Plan, 

Decide and Act), so it can perform reasoning based on the knowledge acquired from 

different stages in the cognition loop. 

Several studies (Thomas et al. 2006; Uchida et al. 2011; Li et al. 2013; Bennis et al. 

2013; Lee et al. 2007; Rovcanin et al. 2014) showed examples of how the cognition loop 

is used to assess the current network conditions, and then to apply learning and artificial 

intelligence (AI) algorithms to decide future actions. For example, Uchida et al. (2011) 
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proposed a cognitive network for disaster situations in which a transmission device was 

used as a control device to exchange the network QoS parameters, and then an 

algorithm was developed based on the analytic hierarchy process (AHP) to select the 

most suitable link for handling traffic transmission. Other studies used reinforcement 

algorithms to create a cognitive process to mitigate the impact of interference in wireless 

networks (Li et al. 2013; Bennis et al. 2013; Rovcanin et al. 2014). For example, 

reinforcement learning can be employed in macrocells to collaborate and learn from 

other cells to reduce the power required by a macrocell base station and to enhance the 

coordination of inter-cell interference (Li et al. 2013; Bennis et al. 2013). Another study 

used reinforcement algorithms to create cooperation between different networks to avoid 

interference, such as activating or deactivating some services (Rovcanin et al. 2014).  

 Semantic Technologies  

This part of the review introduces the principles of semantic technologies and ontologies 

and then discusses the use of these technologies in the wireless communication field, 

before highlighting the research gap in this area.  

 Ontology  

As defined in (Gruber 1993), ontology is ‘a specification of a representational vocabulary 

for a shared domain of discourse’. It specifies the formal representation of types, 

properties and relationships among data in a given domain. Ontologies are used to 

create relationships between technology-dependent features. Inference engines, or 

reasoners, utilise the instances of ontologies in a knowledge base to infer the appropriate 

action to be taken based on a set of predefined rules. The data in the ontology are 

defined as a set of relationships between resources, whereas the reasoner infers new 
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relationships based on the data and the rules. Figure 2.5 shows an example of using 

ontology classes and properties to represent network nodes. It shows Net class as the 

root class that represents the network and Node as a subclass of Net. Wi-Fi is a subclass 

of Node that has three properties: has_Neighbour, has_Address and has_DataRate. 

This example shows how ontologies use classes and properties to create relationships 

between different network components. Reasoning could be used to infer new 

relationships; for example, the “has_Neighbour” property could be used in a routing 

protocol to infer the one-hop count away from the node. 

Standard ontology languages define a set of classes, subclasses, properties and 

relationships. The ontology is then employed to create an abstraction model for different 

classes and properties and create domain knowledge base. The most well-known 

languages are the resource description framework (RDF) (Klyne and Carroll 2004), RDF 

 

Figure 2-5: Ontology graph example 
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schema (Brickley and Guha 2000) and ontology web language (OWL) (McGuinness and 

Harmelen 2004). 

RDF defines a set of assertions, or statements, which consist of three parts: subject, 

predicate and object. The subject is the thing being described, and the predicate is the 

relationship between the predicate and the object. RDF provides the ability to describe 

metadata and how they relate. RDFS defines the schema of the ontology, and it defines 

classes and properties to build the ontology schema. RDFS semantics (Hayes and 

Mcbride 2004) introduce some inference capabilities to the documents. OWL is a 

powerful ontology language that defines classes and different types of properties and 

allows for reasoning and consistency checking on the ontology. OWL inference (Patel-

Schneider et al. 2004) provides powerful inference operations based on classes, 

subclasses, object and data properties. OWL 2 (W3C OWL Working Group 2012) is the 

extended version of OWL, and it has been standardised by the W3C group. OWL 2 

extended OWL by providing the following features: property chains; richer data types, 

data ranges; qualified cardinality restrictions; asymmetric, reflexive, and disjoint 

properties; and enhanced annotation capabilities. OWL 2 is a very expressive 

computational language and is therefore very difficult to implement (Taylor 2014). OWL 

can be used to describe web services, and an extension to OWL was developed for the 

semantic web service (OWL-S) (Martin et al. 2004) used to describe web services. OWL-

S is a computer-interpretable language that was developed to describe the web service. 

OWL-S is expected to enable automatic web service discovery, automatic web service 

invocation, and automatic web service composition and interoperation. 

In this study, a light extensible mark-up language (XML) (Bray et al. n.d.) is employed to 

create the classes, subclasses, data and object properties, domains and ranges. XML is 
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used for two reasons: First, XML is platform independent, which enables the use of the 

reasoning system proposed in this study on any smartphone, personal computer or 

computerised object. The second reason is that the ontology proposed in this work is 

relatively simple and does not need the extent of expressiveness that is provided by 

other standard ontology languages. XML is a simple, lightweight ontology system that 

can work on wireless nodes with limited processing resources. Figure 2.6 shows an 

example of an XML code that represents the ontology classes on a wireless node. 

 

Figure 2-6: XML excerpt of a network ontology 
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The XML file represents the ontology classes and properties using XML tags, such as 

hasIPAddress property, to represent the IP address of the node class that is equipped 

with a Wi-Fi device. 

 Semantic Reasoning 

Semantic reasoning consists of sets of facts and rules that infer local consequences. The 

data in the ontology are defined as a set of relationships between resources. The 

reasoner infers new relationships based on the data and the rules. Some reasoning 

systems have been developed to validate the ontology design, check the consistency of 

the relationships between ontology classes and regenerate these relationships 

(Horrocks and Voronkov 2006). This type of reasoning has been embedded as a plug-in 

in ontology designing tools, such as Protégé (Protégé 2003) and OilEd (Bechhofer et al. 

2001).  

 Semantic Technologies for Wireless Networks   

This section reviews advanced approaches to employing ontologies and knowledge 

engineering in wireless networks. It highlights the use of semantic technologies and 

ontologies in networking and wireless communication.   

A number of studies (Kim et al. 2008; Jabeur et al. 2009; Iqbal et al. 2009; Ren and Jiang 

2011; Liu and Xiong 2013; Xiong et al. 2014) used ontologies in wireless sensor networks 

(WSNs) by observing data from sensor nodes and using that data to build the ontology 

knowledge base. For example, ontologies and semantic reasoning are employed in 

routing algorithms for WSNs (Jabeur et al. 2009; Xiong et al. 2014) to select the next hop 

and forward data based on the data observed by sensors. For instance, if a heat sensor 



   

   34 
 

 

observes high temperature, the node adds semantic information, such as the location of 

the high-temperature area, to the feedback message. The reasoner in the neighbouring 

nodes uses the location information to avoid forwarding the data through the high-

temperature area since there is a possibility of fire (Jabeur et al. 2009). Another routing 

algorithm utilises ontologies to describe node information, including node position, 

residual energy, communication distance, and detection distance, to understand the 

status of neighbouring nodes. If more than one node is available to perform the same 

task, then the node closest to the sink with the highest residual energy is selected to do 

the required work (Xiong et al. 2014). 

Ontologies and semantic reasoning were also used to automatically find and access the 

services in WSNs (Kim et al. 2008; Iqbal et al. 2009; Ren and Jiang 2011; Liu and Xiong 

2013). Examples include monitoring the service type of each node by collecting the data 

and service type in a cluster head node (Iqbal et al. 2009) or generating an abstraction 

model for the resource specification in the WSNs to present the characteristics of the 

network (Ren and Jiang 2011). Accessing the services in WSNs requires a semantic 

annotation of the available services, as well as binding these services with such network 

properties as service properties (temperature), location properties (the sensor node 

location), and physical properties (processor type and memory size), which aids the 

search and retrieval of the services requested by the end user (Kim et al. 2008; Liu and 

Xiong 2013).  

Ontologies and semantic reasoning systems have also been used to assist with the 

management, specifically the topology discovery, of a heterogeneous, multi-tier network 

(Frye and Cheng 2010; Frye et al. 2014). If an ontology is developed for WSN, ad hoc, 

and wired networks, then another ontology can map the concepts from each ontology 
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into a single common ontology. For example, network nodes can utilise different address 

types, such as an Internet protocol (IP) or node ID, and the address in each ontology can 

be mapped to a property in the common ontology. The properties of the network devices 

are retrieved by standard network management systems to create the instances in the 

knowledge base. Another research has used ontology web language (OWL)-S to 

develop network management systems (Vergara et al. 2005; Xu and Xiao 2006;Xu and 

Xiao 2007; Zhang et al. 2010). OWL-S specifies the data type using ontology classes to 

assign semantic meanings to the data retrieved from the network management system. 

The network manager can then deal with the ontology classes to indicate the network 

status using standard reasoning and querying systems. 

Another use of ontology and semantic reasoning was in cognitive radio communication 

(Wang et al. 2003; He et al. 2010; Bahrak et al. 2012). The concept is to create wireless 

nodes that are capable of understanding the content of the information to be transferred, 

as well as the abilities of the node itself, the destination, and the environment. In this 

case, the node utilises ontology instances in the knowledge base to express 

understanding of its capabilities to meet the transmission needs, which helps to deduce 

the optimal operating parameters. 

Although ontologies and semantic reasoning have been used in wireless communication 

systems, research on managing and optimizing heterogeneous networks using cross-

layer parameters from different network architectures is still limited. Current 

communication systems utilise ontologies to represent information from the application 

layer to define a set of relationships and classes that could be used to improve network 

performance. 
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 Reinforcement Learning 

Reinforcement learning is a machine learning technique that aims to find the perfect 

action to perform in a dynamic environment (Kaelbling et al. 1996; Sutton and Barto 

1998). It employs trial and error to evaluate the selected action and find the perfect action 

through a mathematical formulation. The Q-learning algorithm is one of the most well-

known approaches to the reinforcement learning applied to wireless networks (Watkins 

and Dayan 1992). It does not need a model of its environment; instead, it predicts the 

future rewards for taking an action. In Q-learning, each time (ti) an action is executed, a 

reward R(ti) is calculated based on feedback from the environment. Using (2.4), the agent 

Then re-computes the Q-value, which is subsequently used to re-estimate the best 

action. In Q-learning, each time (ti) an action is executed, a reward R(ti) is calculated 

based on feedback from the environment. Equation (2.4) (Watkins and Dayan 1992) re-

computes the Q-value, which is subsequently used to estimate the best action. 

 𝑄(𝑡𝑖) = (1 − 𝛼)𝑄(𝑡𝑖−1) + 𝛼[𝑅(𝑡𝑖) + 𝛾𝑄(𝑖𝑖+1) − 𝑄(𝑡𝑖−1)], (2.4) 

where α is the learning rate (0 ≤ α ≤1), ti is the current time, ti-1 is the previous time for i 

>1, and γ is the discount value. If α = 0, then there is no learning in the algorithm; if γ = 

0, the reinforcement learning is opportunistic, which maximises only the immediate, short 

term reward. 

The Q-learning algorithm is one of the most well-known approaches to the reinforcement 

learning applied in wireless networks. In the present work, it is considered the best 

learning approach for the following reasons: 
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 The learning is based on trial and error, and no model of the environment is 

required. 

 Reinforcement learning works well in distributed systems where the learning 

approach is based on local observation only. 

The reinforcement learning model (Kaelbling et al. 1996; Jiang 2011) is presented in 

Figure 2.4. 

The learning agent interacts with the outside world, which is called the environment. 

Each time slot t, the agent receives the state of the environments st ϵ S. Then based on 

st the agent takes an action at ϵ A(st), where A(st) is the set of available actions for state 

st at time slot t. In the next time slot t+1, the environment is moved to state st+1 and the 

agent receives a reward rt. The agent develops an optimisation policy to maximise the 

reward at state S. 

 

Figure 2-7: Standard reinforcement learning model (Kaelbling et al. 1996; Jiang 2011) 
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 Fuzzy Interference 

Practical networking systems have many complex and dynamic characteristics that 

involve some uncertainty and result in inaccurate information. The complexity of such 

systems increases with the number of heterogeneous networking devices that require 

autonomous and intelligent decision-making abilities. Mathematical models that 

accurately capture and model all these characteristics and attitudes are either not easily 

attainable or they are too complicated. Fuzzy logic (Zadeh 1965) provides the necessary 

mechanism to measure the degree of network parameters in the fuzzy membership 

functions. 

The fuzzy logic concept was introduced by L. A. Zada at the University of California at 

Berkeley in 1965 (Zadeh 1965) as a method for implementing systems that accept noisy 

and imprecise inputs in order to improve efficiency and possibly provide design simplicity. 

Fuzzy logic is a problem-solving control system that is feasible in implementing a simple, 

embedded microcontroller or even a complex extensive system of different networking 

systems. In set theory, the classical (non-fuzzy) crisp set assigns the value of either 0 or 

1 in the universal set. Thus, the membership function μ of input in the set A maps any 

value x ϵ A to one in the crisp set [0, 1]. The following equation illustrates the membership 

function of the crisp set: 

 𝜇𝐴: 𝑥 → [0,1], (2.5) 

where x either belongs to the membership function and has value 1 or does not belong 

to the membership and has value 0. Fuzzy logic is used to generalise the membership 

function of the crisp set by considering the values between 0 and 1. It maps the input 
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value to the names and degrees of membership functions. Each membership function 

introduces a curve that represents the possible degrees for each input value; this process 

is known as fuzzification. The same value could simultaneously have a degree of more 

than one membership functions. For example, the load on a wireless network could have 

a degree of low-load equal to 0.1 and a degree of high-load equal to 0.9. Figure 2.8 

shows some examples of commonly used fuzzy membership functions. 

The next typical block in the fuzzy model is the rules base. The fuzzy rules consist of two 

parts that formulate the conditional statement of fuzzy logic. The “IF” part, which is known 

as the antecedent or promise, involves fuzzifying the input and applying the necessary 

fuzzy operator to obtain a fuzzy set value between 0 and 1. The “THEN” part consists of 

the consequent or conclusion, which results in an entire fuzzy set that is then defuzzified 

to obtain crisp output value. General linguistic IF-THEN statements are shown in the 

following equation: 

 𝐼𝐹 < antecedent > ⁡𝑡ℎ𝑒𝑛 < consequent >. (2.6) 

There are two major implementations of fuzzy inference systems: the Mamdani 

(Mamdani 1974) inference system and Takagi-Sugeno (Takagi and Sugeno 1985) fuzzy 

reasoners. In this study, the Mamdani inference system is used because it is intuitive 

and it is widely accepted. 

The Mamdani inference system is composed of the following blocks: 

 The fuzzification process maps the crisp values into a fuzzy set using predefined 

membership functions; 
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Figure 2-8: Various shapes of commonly used membership functions. 

 The set of rules and the strength of each rule are defined based on the fuzzy 

input set; 

 The fuzzified values are employed to evaluate the rules base to obtain the output 

fuzzy set; and 

 The output fuzzy set is defuzzified to obtain a crisp value. 

The fuzzy rules utilise the concept of “and”, “or” and sometimes “not “operator. Although 

there are many ways to compute the “and” operator in a fuzzy set, the most common is 

the following: 
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 𝑀𝑖𝑛(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), (2.7) 

where μA is the membership function of fuzzy set A and μB is the membership function 

of the fuzzy set. This technique is known as Zadeh, which is the name of its inventor 

(Zadeh 1965). Like the fuzzy operator “and”, the “or” operator has many definitions, the 

most common of which is the Zadeh definition shown in the equation below: 

  𝑀𝑎𝑥(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)). (2.8) 

The final step is defuzzification, which is the process of mapping the output fuzzy set to 

a crisp value. The most commonly used method is the centroid or centre of gravity, which 

was developed by Sugeno in 1985. The only problem with this approach is that it is 

computationally difficult for complex membership functions. However, in this research, 

the membership functions have a simple trapezoid shape. Hence, the centroid 

defuzzification is calculated using the following equation: 

 
𝐶𝑟𝑖𝑠𝑝𝑜𝑢𝑡𝑝𝑢𝑡 =

∫𝜇𝐶(𝑥)𝑥𝑑𝑥

∫𝜇𝐶(𝑥)𝑑𝑥
, 

(2.9) 

where Crisp output is the defuzzified value of the output fuzzy set, and μ is the 

aggregated membership function for the output fuzzy set C. Figure 2.6 shows an 

example of Mamdani rules used in the centroid defuzzification method. 
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Figure 2-9: The two inputs, two rules Mamdani fuzzy inference system with a centroid defuzzification result. 

 Summary 

This chapter has provided a review of the state of the art literature related to the research 

presented in this thesis. The review revealed that the transmission rate of IEEE 802.11 

is an essential link characteristic of wireless local area networks. IEEE 802.11 supports 

multiple transmission rates, and for each rate, there is a different transmission and 

interference range. The advanced rate adaptation algorithms were developed for 

infrastructure-based wireless networks. Because of the nature of WMNs, in which 

wireless nodes compete to access shared channels, it is not easy to adapt existing rate 

adaptation algorithms. 

The review indicated that combining different wireless technologies, such as LTE and 

WMN is a key opportunity for developing future wireless networks. Although these 

wireless networks have been used in many communication systems, the research on 

their integrated use is still limited. The use of heterogeneous networks in existing 

systems does not manage the heterogeneous radio access technologies as a part of a 
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single virtual network, which does not optimise the bandwidth of each network. The 

design of heterogeneous systems is highly complex because of the high diversity of 

associated devices and resources, as well as the increasingly dynamic formation of 

networks. 

A potential method for simplifying the complexity of wireless networks is to use the 

cognitive networks paradigm. In cognitive networks, a general issue is finding the actions 

that move the network from a current situation to a desired situation, which tends to be 

a non-deterministic polynomial-time (NP) -hard problem. The problem that a cognitive 

network model faces in heterogeneous WMNs is challenging because of the need to 

secure the quality of service (QoS) characteristics of multiple network architectures and 

to find the optimal solution using reasoning mechanisms. 

The advances in semantic reasoning and ontologies provide an opportunity to overcome 

the limitations of cognitive network systems. Semantic technologies employ an external 

knowledge base that provides a mechanism for representing different wireless networks 

and creating relationships between heterogeneous network characteristics. 

In the context of managing wireless networks, semantic reasoning based on ontologies 

has shown significant enhancement in advertising network services and managing 

wireless networks. However, the review of the literature revealed a gap in the use of 

ontologies and semantic reasoning in representing parameters in cross layers of the 

network protocol stack to manage and optimise heterogeneous wireless networks. 

The cognitive network model employs AI mechanisms to simplify the complexity of 

managing modern wireless networks and to enhance network performance. 
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Reinforcement learning and fuzzy inference have been shown to enhance wireless 

networks significantly. 

Standard management systems and optimising algorithms in wireless networks have 

been utilised in the past to manage single network architecture or to switch transmission 

from one network to another either to offload a congested network or to avoid bad 

channels. A new network architecture is required to utilise the available non-overlapped 

frequency band in the different heterogeneous networks as a single virtual network and 

to optimise the performance of the resulting system using the parameters of different 

architectures and cross layers in the network protocol stack. 
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Cognitive Network Framework and 

System Modelling 

 

This chapter introduces and discusses the cognitive network framework proposed in this 

study. The main novelty of the new framework is its provision of a basis for building an 

intelligent framework that captures network parameters and represents the fundamental 

relationships among different wireless devices, which can be understood by machines. 

The proposed framework employs ontologies and reasoning to establish an abstraction 

model of the various heterogeneous wireless devices. This model enhances the 

interoperability and integration of different and complex communication and networking 

systems by enabling reasoning, classification and other types of assurance and 

automation. This chapter is organised as follows: section 3.1 introduces the cognitive 

network framework, section 3.2 defines the modelling system employed in this research 

and section 3.3 summarises the chapter. 
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 Cognitive Network Framework 

For the purpose of this research, the proposed cognitive network framework is defined 

as an intelligent system that collects QoS parameters from different layers in the network 

protocol stack and establishes an interface between different wireless network 

architectures. In other words, this framework facilitates the process of using, managing, 

and combining different wireless network architectures by separating the heterogeneous 

networks infrastructure from the control system. It establishes an extendable, smart 

middleware that automatically manages, configures and optimises the performance of 

various networks. Figure 3.1 shows a block diagram of the proposed cognitive 

framework, which has three main parts: QoS metrics management system, 

heterogeneous network management system and a routing decision-making system. 

 

Figure 3-1: Cognitive network framework 
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Figure 3.2 provides a detailed description of the cognitive framework parts. The QoS 

management system provides a shared boundary between the proposed framework and 

the network protocol stack, which represents the different layers of the computer 

networking system that are shown in Figure 3.1. The QoS metrics management system 

obtains node configuration parameters and various network characteristics, such as 

load, quality of the communication channel, resource block (RB), channel quality 

indicator (CQI) and the transmission rate of the Wi-Fi device (a new rate adaptation 

algorithm is proposed in Chapter 4). This framework controls the transmission rate on 

WMN and optimises the use of RB in the LTE network. The heterogeneous network 

management system manages the process of exchanging information between 

neighbouring nodes using different network architectures. It introduces a new 

heterogeneous network architecture and a heterogeneous routing protocol that 

prescribes the process of exchanging the required information between the neighbouring 

nodes of different network architectures, which is described in Chapter 5. The third part 

is the decision-making system, which obtains the input parameters from the 

heterogeneous routing system and performs the process required to send the decision 

to the corresponding layer of the network protocol stack. This part of the framework is 

implemented using two novel approaches. The decision system is first implemented 

using cross layers of QoS parameters from each network type, and a reinforcement 

learning algorithm is developed to select the transmission technology in heterogeneous 

network; this part is described in Chapter 5. The second approach introduces a semantic 

decision system that uses ontologies and a fuzzy reasoner to manage and optimise the 

heterogeneous networks and facilitate the dynamic addition of new network types. Figure 

3.2 shows a block diagram of this approach. 
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Figure 3-2: Detailed description of the cognitive framework. 
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The QoS parameters are received from different layers of the network protocol stack. 

The fuzzification process then converts these values into fuzzy sets and stores them in 

a fuzzy knowledge base using ontology classes and properties. The reasoner and rule 

base use the data in the fuzzy knowledge base to perform actions on the network, such 

as changing the transmission rate of Wi-Fi device in MAC layer, through sending them 

to the network layers. 

The routing decision-making system uses, manages and adds different wireless network 

architectures. It consists of a semantic knowledge base that uses the ontology and rule 

base to optimise and control the heterogeneous wireless network, in addition to a 

semantic inference engine that uses a fuzzy-based reasoner to infer a set of actions to 

optimise the heterogeneous network. During the functioning of the cognitive network 

framework, the QoS metrics management system collects local parameters from the 

network protocol stack and passes these data to the heterogeneous network 

management system. The heterogeneous network management system stores the local 

parameters and the data obtained from the neighbouring nodes in a database. A fuzzifier 

system then processes the data in this database to obtain the fuzzy set of heterogeneous 

network parameters, which are stored as instances of the ontology classes and 

properties in the fuzzy-based knowledge base. A fuzzy-based reasoner then uses the 

instances of the ontology in the knowledge base and the set of rules in the rule base to 

infer the next actions in the heterogeneous wireless network and to select the network 

architecture that can handle the transmission. This fuzzy-based reasoner is based on 

the Mamdani reasoner (Mamdani 1974). A centroid method, or centre of gravity, of 

defuzzification is used in this phase. The reasoner then sends the decision to the layer 

in the IP stack that is responsible for performing the required action. The semantic 
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knowledge base system, semantic inference and fuzzy-based reasoner are explained in 

Chapter 6. 

 System Modelling 

In this research, simulation is utilised to validate and evaluate the different types of 

wireless networks and communication systems. Shannon (1998) defined simulation as 

“the process of designing a model of a real system and conducting experiments with this 

model for the purpose of understanding the behaviour of the system and /or evaluating 

various strategies for the operation of the system”. Simulation tools allow the modelling 

of complex systems in detail. 

In this work, a computer network simulation tool is employed, which is an event-driven 

simulation. This type of simulation tool is utilised to model computing devices that are 

connected by communication links. The communication devices are usually based on 

random actions. For example, if the radio access network detects a collision, it waits for 

a random time before it starts the retransmission process. Computer network simulators 

are employed to provide a modelling application program interface (API), data analysis 

capabilities, libraries of various network models and standard protocols to support the 

task of modelling and experimenting modern complex networks. The many examples of 

network simulators include the Network Simulator 2 (ns-2) (ns-2 n.d.), Network Simulator 

3 (ns-3) (ns-3 n.d.), QualNet (QualNet n.d.), OMNeT++ (OMNETST n.d.), SSFNet 

(Renesys n.d.), NetSim (TETCOS n.d.) and the OPNET Modeller (Riverbed n.d.). 

In this work, ns-3 is employed to model and validate the research. The reason that this 

simulator was selected is that it has a modular architecture, and it supports a broad range 

of network types, such as ad hoc, mesh network, vehicular networks, Wi-Max and LTE. 
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The ns-3 simulator allows researchers to perform systems that are complex or not easy 

to conduct in the real world. The simulator allows researchers to analyse network 

performance in a very controlled and reproducible environment. The simulator is used to 

show the function of IPs and networks. In brief, the simulator is used to introduce a model 

that describes the work and the performance of data networks and creates a simulation 

engine that can be used to conduct simulation experiments. 

The ns-3 simulator is open-source software that provides the ability to extend the existing 

modules to support more functionalities. It is used by a wide community of researchers 

worldwide because of its many features and the large number of various wired and 

wireless networks included in the simulator. The ns-3 is an object-oriented simulator, and 

is mainly written in C++ and Python. 

In this research, the ns-3 was selected as the simulation tool because of its design. The 

ns-3 was developed as a set of libraries that can be combined with external libraries to 

establish a complex system that can be analysed carefully. This work utilises three 

different types of network models in ns-3. The first network type is WMNs, in which ns-3 

implements various routing protocols for the network layer and provides the 

specifications for the medium access layer and multiple physical implementations 

including IEEE 802.11 a, b, g, and n. The second network type is the vehicular ad hoc 

network (VANET), which the simulator implements as an approved amendment to the 

IEEE 802.11 standard to add wireless access in vehicular environments (WAVE). The 

third type of network architecture that this work utilises is long-term evolution (LTE). In 

this research, the LTE-EPC network simulator (LENA) (Baldo et al. 2011) is used to build 

the LTE network. LENA is an open-source LTE network modular system that was based 

on ns-3 to implement the Internet system. LENA allows researchers to build LTE 
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networks with small and macro cells, and it evaluates network performance, radio 

resource management algorithms, inter-cell interference coordination solutions, load 

balancing, mobility management, heterogeneous network (HetNets) solutions and 

cognitive LTE systems. Figure 3.3 shows an overview of the LENA model. 

 

Figure 3-3: Overview of the LENA model (LENA n.d.). 
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The EPC model in LENA supports the following features: 

 Network packets are type IPv4; 

 SGW/PGW are implemented in a single node; and  

 Multiple eNB node communication are supported over IP networks. 

 Summary 

This chapter has introduced the new cognitive network framework that works as an 

adaptor to heterogeneous transmission technologies and enables the interaction and 

management of various network architectures. It facilitates integration among 

heterogeneous network architectures that employ different radio access networks by 

creating relationships among technology-dependent parameters and storing them as an 

instance of heterogeneous network ontology in a knowledge base. The proposed 

framework could be used to develop different services through the use of an inference 

engine by adding new rules for reasoning based on the knowledge base and the 

ontology. The ontology determines the relationships between technology-dependent 

parameters in the network protocol stack and enables, through the use of inferences, the 

utilisation of the observed data from the network. The proposed model provides the 

foundation for further exploration of the use of semantic technologies in representing 

various wireless transmission technologies to support nodes with limited resources and 

in developing smart and self-configured network applications for the next-generation 

networks, such as smart homes and smart cities.  
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Multi-Rate Medium Access Protocol 

Based on Reinforcement Learning 

This chapter introduces a new QoS parameter for estimating the channel and link quality 

of wireless nodes that utilise Wi-Fi networks. The novelty of this approach is described 

by considering the characteristics of wireless mesh networks in which the channel 

condition of neighbouring nodes is used to calculate the transmission rate. A new 

reinforcement learning algorithm is developed for the rate adaptation algorithm, in which 

each wireless node selects the transmission rate by learning from previous actions. 

This chapter is organised as follows. Section 4.1 introduces the transmission rates in 

IEEE802.11 and their impact on the wireless networks performance. Section 4.2 

introduces the proposed rate adaptation algorithm based on reinforcement learning 

(RARE). Section 4.3 describes the simulation scenarios and discusses the results 

obtained from each scenario. 
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 IEEE 802.11 Transmission Rates 

WMNs typically employ IEEE 802.11 to provide a cost-effective approach to indoor and 

outdoor broadband wireless networks. The IEEE 802.11 standard defines a medium 

access control (MAC) layer and a physical layer. The MAC is based on carrier-sense 

multiple access with collision avoidance (CSMA/CA) and a distributed coordination 

function (DCF). The physical layer employs different modulation and coding techniques, 

which results in providing multiple transmission rates. By applying a higher transmission 

rate, the node sends data packets faster, which shortens the required transmission time 

and increases the throughput. However, to decode the received packets, the power of 

the signal in the receiver should be higher than a predefined value known as signal-to-

interference-to-noise ratio (SINR). SINR is the ratio of the desired signal power to the 

power of interference and noise. Because of the utilised modulation scheme, a higher 

transmission rate requires a higher SINR in the receiver in order to decode the packet 

successfully. Therefore, employing a higher transmission rate requires higher 

transmission power in order to meet the SINR needed in the receiver, which results in 

greater interference among other nearby WMN nodes and thus reduces the overall 

network throughput. The use of different transmission rates results in different coverage 

ranges that depend on several factors, such as environment, power level and antenna 

gain. Figure 4.1 shows the different transmission ranges of each transmission rate for 

IEEE 802.11b (Florwick et al. 2011) in which the higher rate covers a smaller area. For 

example, the range of a rate of 11 Mbps rate is about 390 feet.  

WMNs suffer from high interference among the communicating nodes. Thus, the 

adaptation of WMN transmission rate can improve network performance by mitigating 

the severe impact of interference on the network. Moreover, congestion in WMNs, 
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especially in the nodes close to the gateway, is one of the main reasons for reducing the 

throughput. Thus, controlling the transmission speed of each node could lower the 

impact of congestion on the network. 

 

Figure 4-1: Data rate compared with coverage (Florwick et al. 2011). 

 Rate Adaptation Based on Reinforcement Learning 

In this work, a new reinforcement learning algorithm, named rate adaptation based on 

reinforcement learning (RARE), is proposed. RARE is an agent-based algorithm where 

each node acts as an intelligent agent. Each agent calculates the probability of accessing 

the communication medium based on the number of unsuccessful transmissions and the 

current transmission rate. In addition, each node receives a “hello” message periodically 

from its neighbours containing the transmission rate, the probability of accessing the 

channel and the estimated traffic load. Reinforcement learning is utilised by each node 

to calculate whether the likelihood of accessing the channel has improved since the last 

transmission message. Thus, it learns from previous actions whether it is necessary to 
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update the transmission rate. It mitigates the negative impact of updating the 

transmission rate when the throughput degradation is caused by channel error, not 

interference. Moreover, each agent estimates the load on its node by calculating the 

average queue  length  and then uses  this information to decide  whether to  increase, 

decrease or keep its transmission rate. The flowchart of RARE algorithm is shown in 

Figure 4.2.  

The reinforcement algorithm utilised in this work is based on Q-Learning (WATKINS and 

Dayan 1992) and the general equation of this learning algorithm is calculated using the 

following: 

 𝑄(𝑡𝑖) = (1 − 𝛼)𝑄(𝑡𝑖−1) + 𝛼[𝑅(𝑡𝑖) + 𝛾𝑄(𝑖𝑖+1) − 𝑄(𝑡𝑖−1)], (4.1) 

where α is the learning rate (0≤α≤1), ti is the current time, ti-1 is the previous time and γ 

is the discount value. If α = 0 then there is no learning in the algorithm; if γ=0 the 

reinforcement learning is opportunistic, which maximises only the current reward. 

The reinforcement learning algorithm consists of two parts, the exploration stage in which 

the algorithm starts to initialise the parameters used in the algorithm. Then, the learning 

phase begins by evaluating each action performed by the network nodes. 

The algorithm explores the network environment by setting the data rate to the maximum 

value that the physical device can support. Then, it initialises other parameters to zero 

as shown in Figure 4.2. In order to estimate the load on each node, equation (4.2) 

(Senthilkumaran and Sankaranarayanan 2013) is employed to calculate the average 

queue length. 

 𝑄𝑙𝑒𝑛𝑑(𝑡𝑖) = (1 − 𝑤)𝑄𝑙𝑒𝑛𝑑(𝑡𝑖−1) + 𝐼𝑄𝑑(𝑡𝑖) ∗ 𝑤, (4.2) 
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Figure 4-2: RARE flowchart. 
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where Qlend(ti) is the average queue length of node d ϵ Φ and Φ is the set of all available 

nodes in the network, ti represents the current time and ti-1 is the previous time, IQd(ti) is 

the queue length at time ti and w is the queue length weight (0≤w≤1, w = 0.5 is selected 

empirically). Next, the algorithm classifies the load on the node to either low or high. It 

employs two thresholds to evaluate whether the node is congested. These are the 

minimum queue length (MinQthr) as shown in equation (4.3) (Senthilkumaran and 

Sankaranarayanan 2013) and maximum queue threshold (MaxQthr) as shown in 

equation (4.4) (Senthilkumaran and Sankaranarayanan 2013). If Qlend(ti) is below 

MinQthr, the load on the node is assessed as low; if it is above MaxQthr, then the load 

is considered to be high. 

 𝑀𝑖𝑛𝑄𝑡ℎ𝑟 = 0.25 ∗ 𝑀𝑎𝑥𝑄𝐿, (4.3) 

 𝑀𝑎𝑥𝑄𝑡ℎ𝑟 = 3 ∗ 𝑀𝑖𝑛𝑄𝑡ℎ𝑟, (4.4) 

where MaxQL is the physical maximum queue length of the Wi-Fi device. RARE uses 

equation (4.1) to maximise the probability of accessing the wireless channel (LP) by 

learning from the previous updates of the transmission rate. The reward function of Q-

learning employs both LP (Benslimane and Rachedi 2014) and reward weight (RW). RW 

is either a positive value, to improve the chance of increasing the transmission rate, or a 

negative value, to increase the probability of reducing the transmission rate. The values 

used in the simulations are 0.2 and -0.2. RARE does not consider the future state of the 

network (γ=0) as the network estimate the probability of accessing the channel based 

current and previous actions. Equation (4.5) shows how Q-learning (WATKINS and 

Dayan 1992) is incorporated in the proposed RARE algorithm. 
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 𝑄𝑑(𝑡𝑖) = 𝑄𝑑(𝑡𝑖−1)+∝ [𝐿𝑃𝑑(𝑡𝑖−1, 𝑡𝑖) + 𝑅𝑊 − 𝑄𝑑(𝑡𝑖−1)], (4.5) 

where Qd(ti) represents the wireless channel condition at time ti, α is the learning rate 

(0.4 is used in the experiments). In order to estimate LP, each node calculates failure 

rate during the time interval ti-1 to ti (FRd(ti-1, ti)) using equation (4.6) (Benslimane and 

Rachedi 2014). 

 𝐹𝑅𝑑(𝑡𝑖−1, 𝑡𝑖) =
𝑀𝑖𝑠𝑠𝑒𝑑𝑃𝑘𝑡𝑑(𝑡𝑖−1, 𝑡𝑖)

𝑆𝑒𝑛𝑑𝐷𝑎𝑡𝑎𝑑(𝑡𝑖−1, 𝑡𝑖)
, (4.6) 

where MissedPktd(ti-1,ti)  is the number of unsuccessful transmissions from ti-1 until ti, a 

value which is obtained from the MAC layer of the IEEE 802.11 device on wireless node 

d by counting the number of missed acknowledgments for each transmission; and 

SendDatad(ti-1,ti)  is the total number of transmissions for node d using Wi-Fi from ti-1 to 

ti. 

Then, equation (4.7) (Benslimane and Rachedi 2014) utilises (4.6) to measure the link 

quality during the time interval ti-1 to ti (LQd(ti-1, ti)). The communication link is shared 

among a set of nodes that compete to access the channel. Therefore, the calculation of 

LQd(ti-1, ti) considers FR and the current data rate of node d (Rated) of the set of nodes 

V that share the transmission link. LPd(ti-1, ti) is computed by equation (4.8) (Benslimane 

and Rachedi 2014). 

 
𝐿𝑄𝑑(𝑡𝑖−1, 𝑡𝑖) =

∑ 𝐹𝑅𝑗(𝑡𝑖−1) ∗ 𝑅𝑎𝑡𝑒
𝑗(𝑡𝑖)𝑗∈𝑉

∑ 𝑅𝑎𝑡𝑒𝑗𝑗∈𝑉
, 

(4.7) 

 
𝐿𝑃𝑑(𝑡𝑖−1, 𝑡𝑖) =

1 − 𝐿𝑄𝑑(𝑡𝑖−1, 𝑡𝑖)

∑ 1 − 𝐿𝑄𝑗(𝑡𝑖−1, 𝑡𝑖)𝑗∈𝑉
, 

(4.8) 
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Next, when a MAC protocol data unit (MDPU) is available, the node sends the data 

through the wireless channel. Then based on whether the transmission fails or not, 

RARE updates the transmission rate in order to reduce the interference on the 

neighbouring nodes and increase LP. In case of a successful transmission, if the number 

of consecutive successful transmissions (S) is higher than a given threshold (3 is 

selected empirically), then RW is set to a positive value and the status of the wireless 

channel is recalculated using equation (4.5). If the wireless link shows improvement 

since the last transmission and the load in the nodes that share the wireless channel is 

not high, then the transmission rate is increased. Conversely, if the transmission fails, 

and the number of consecutive transmissions failure (F) exceeds a given threshold (4 is 

selected empirically) then RW is set to a negative value, and Q(ti) is recalculated using 

equation (4.5). Then, if the Q(ti) is smaller than Q(ti-1) and the load on the node is low, 

then RARE decreases the transmission rate. 

Finally, RARE updates Qlend(ti), Q
d(ti) and LPd(ti) based on the ‘hello’ messages that 

each node receives periodically, and proceeds with the next available MDPU. 

 Performance Evaluation 

In this section, the RARE algorithm is evaluated using the ns-3 simulator, which is a 

widely used tool for evaluating and validating wireless networks. The RARE algorithm is 

compared in terms of average throughput with three state-of-the-art algorithms. 

 Simulation Setup 

Table 4.1 shows the network parameters used in the simulation. A realistic grid scenario 

similar to the configuration used in (Salem and Hubaux 2005; Allen et al. 2012) is utilised 
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to evaluate this work. Figure 4.3 illustrates the scenario employed in this Chapter in which 

the gateway is in the centre of the network and four different numbers of nodes are 

utilised during the simulation (8, 16, 24 and 32). Each node has a transmission range set 

to 100 metres, and a constant bit rate (CBR) transmission is sent to the mesh gateway, 

which is in the middle of the grid. In order to analyse the performance of RARE, various 

amounts of transmission load are applied to the network. In addition, various numbers of 

transmission nodes are employed to transmit simultaneously to the mesh gateway. 

 Evaluating and Validating Results 

The performance of the RARE algorithm is compared with three of the most widely cited 

schemes that are already implemented on many commercial devices. These schemes 

are the ARF, AARF and ONOE algorithms. An Analysis of Variance (ANOVA) statistical 

test is utilised to verify that there is a systematic enhancement in the network that causes 

the throughput improvement. Fisher’s Least Significant Difference (LSD) is employed to 

assess if the proposed RARE achieves higher throughput than the other methods. The  

Table 4-1: Simulation setup. 

Simulation Parameters Assigned Value 

Topology Grid 

Number of nodes 32 

Propagation Two ray ground reflection  

MAC  802.11b 

Transmission range 100 metres 

Number of flows Varies between 3-17 

Packet size 500 bytes 
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simulations are run using five different scenarios. In each scenario, a different number 

of nodes (3, 10, 13, 15, and 17 nodes) are randomly selected from different circles in 

Figure 4.3 to transmit simultaneously toward the gateway and demonstrate how the 

proposed system reacts to different loads. 

In view of the fact that the distance of the mesh node from the gateway has a notable 

effect on the WMN performance, each scenario is repeated 10 times where the nodes 

positions are randomly selected in order to show how the proposed system behaves 

under different node positions. In order to show that the proposed RARE algorithm is 

statistically different from the benchmark algorithms, the Analysis of Variance (ANOVA) 

statistical test is conducted on the results of each scenario. The ANOVA is a statistical 

test that compares groups of data and indicates that at least one of the group differs from 

the rest. Equation (4.9) (Scheffe 1959) is used to determine whether the algorithms are 

statistically different. 

 𝐹 > 𝐹𝐶𝑟𝑖𝑡, (4.9) 

where F is the ANOVA test statistic and FCrit is the critical value extracted from the F-

distribution table. If F is larger than FCrit then at least one of the compared data is statically 

different from the rest. Another parameter is P, which is the probability of differences that 

occur purely by chance; P should be less than 0.05. 

Packet generation rate  Varies between 0.5-3.5 Mbps 

Topology covered area 1000 X1000 metres 

Transmission rates 1, 2, 5.5, 11 Mbps 

Mobility  Static (none) 
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Figure 4-3: Wireless mesh network grid configuration. 

Then, in order to check that the proposed algorithm is performing better than the 

benchmark algorithms, the results from each scenario are submitted to the LSD test. Ten 

different throughput results are generated in each scenario for each algorithm. The 

average value of these results is calculated for each algorithm and as the following: 

 RAREavr – is the average value of the results for RARE algorithm; 

 ONOEavr - is the average value of the results for ONOE algorithm; 

 AARFavr - is the average value of the results for AARF algorithm; and 

 ARFavr is the average value of the results for ARF algorithm; 
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Then, the different between each average value is calculated using the 

following(Williams and Abdi 2010) : 

 ⁡|⁡Avagerage1⁡ − ⁡Average2⁡| ⁡> ⁡LSD (4.10) 

where Average1 and Average2 could be RAREavr, ONOEavr, AARFavr or ARFavr, if 

the result is higher than the calculated LCD then the two averages are statistically 

different.  

Table 4.2 and 4.3 shows the ANOVA and LSD results for each scenario respectively. 

Both ANOVA and the LSD tests show that the proposed algorithm significantly improves 

the average throughput. Table 4.2 shows two important results, namely, the F values for 

all the scenarios are larger FCrit which indicates that the throughput results are statically 

different.  Secondly, the results are not obtained by chance as the P values are smaller 

than 0.05. Then, Table 4.3 shows the LSD results which proves that the throughput 

results are statically different using equation (4.10). For instance, the average throughput 

results of the scenario with 10 nodes transmitting are 2344 and 1230.1 for RARE and 

ONOE respectively, while the LSD value for this situation is 809.02. The performance of 

RARE algorithm is significantly higher than ONOE because the different between the 

average results is greater than the LSD. 

Figures 4.3, 4.4, 4.5, 4.6 and 4.7 show the average throughput for each algorithm in five 

scenarios; the results are represented by a box and whisker graph in which the lower 

box represents the average throughput quartile lower than the median and the upper box 

represents the average throughputs higher than the median. The upper and lower 

whiskers represent the highest and lowest value of the results, respectively. For 

example, Figure 4.5 shows  that 50% of the  throughput results for RARE  are  between  
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Table 4-2: ANOVA test results. 

 
 
 
 
 
Table 4-3: LCD test results. 

 
3300 and 4000 Kbps while the benchmark protocols achieve throughput between 1400 

and 2400 Kbps for ONOE, 1300 and 2600 Kbps for AARF and ARF achieves between 

110 and 2100 Kbps. RARE achieves up to 36% higher throughput when the median of 

the results is compared. Moreover, the results indicate that RARE performs better when 

the load on the network is high, unlike other rate adaptation algorithms, which suffer from 

throughput degradation in highly congested networks. Figure 4.3 shows that the 

proposed rate adaptation algorithm outperforms the benchmarks with about 17% when 

Number 
Transmission Nodes 

ANOVA Test 

F Fcrit P MSE 

3 nodes 2.98 2.87 0.04 325826.3 

10 nodes 5.8 2.87 0.0019 964887.4 

13 nodes 4.79 2.87 0.0071 637264.6 

15 nodes 8.38 2.87 0.0003 682446 

17 nodes 8.8 2.87 0.0002 811294.2 

Number 
Transmi
ssion 
Nodes 

Throughput Average for the 
Four Algorithms Compared 

LSD RARE Improvement  

RARE ONOE ARF AARF ONOE ARF AARF 

3 nodes 1489.2 1213.7 896.6 947.5 450.6 275.4 592.5 541.6 

10 nodes 2344 1230.1 935.09 869.44 809.0 1113.8 1408.9 1474.5 

13 nodes 3453.9 2564.9 2178.5 2264.7 767.5 889.002 1275.5 1189.2 

15 nodes 3406 1949.1 1694.7 1830.5 794.3 1456.9 1711.3 1575.5 

17 nodes 3267.6 2026.1 1578.7 1221.5 866.0 1241.51 1688.9 2046.1 
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only three nodes are transmitting while Figure 4.7 indicates that RARE algorithm 

achieves about 90% higher throughput in which 17 nodes are transmitting 

simultaneously.  

Another scenario is presented to demonstrate how the network performs when a different 

amount of traffic demands is applied to the network. Figure 4.8 shows the average 

throughput for the network with nine different loads. The results indicate that the 

proposed rate adaptation algorithm significantly improves the network performance. 

 

 

Figure 4-4: Throughput average of 3 nodes transmitting simultaneously. 
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Figure 4-5: Throughput average of 10 nodes transmitting simultaneously. 

 

Figure 4-6: Throughput average of 13 nodes transmitting simultaneously. 
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Figure 4-7: Throughput average of 15 nodes transmitting simultaneously. 

 

 

Figure 4-8: Throughput average of 17 nodes transmitting simultaneously. 
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Figure 4-9: Average throughput for network with 9 different loads. 

 Summary 

This chapter introduced a new reinforcement algorithm that adaptively updates the 

transmission rate in order to increase the success rate of accessing the channel without 

interfering with the other nodes in WMN. The algorithm learns from previous updates to 

avoid unnecessary changes in the transmission rate (e.g., due to channel error rather 

than interference), which causes packet loss. The proposed algorithm considers the 

transmission rate of the other nodes that compete to access the transmission channel 

as well as the traffic load. The simulation results showed that the proposed algorithm 

achieved higher throughput under different transmission loads and numbers of 

contending nodes compared with three other state of the art algorithms. 
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This chapter also introduced a new routing metric that employs the transmission rate of 

the proposed rate adaptation algorithm to estimate the transmission link quality of 

WMNs. The proposed rate adaptation algorithm sets the transmission rate based on the 

link quality of the neighbouring nodes and the load on the Wi-Fi device. Thus, the 

transmission rate estimates the amount of interference and collision with other nodes 

and the load on the node. Thus, the best link quality provides the highest transmission 

rate. 
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Heterogeneous Wireless Mesh 

Networks 

 

This chapter introduces a heterogeneous metropolitan area network architecture that 

combines an IEEE 802.11 wireless mesh network with a long-term evolution (LTE) 

network. The proposed heterogeneous network overcomes the problems in sending 

packets over long paths, island nodes and interference in wireless mesh network. The 

proposed network increases the overall capacity of the combined network by utilising 

unlicensed frequency bands of Wi-Fi networks instead of buying additional licensed 

frequency bands for LTE. The novelty of this network architecture is that its establishes 

a new architecture derived from various network architectures to create a single network 

and develop a novel routing protocol that prescribes how the heterogeneous devices 

communicate with each other. 

The Chapter is organised as follows. Section 5.1 introduces the system architecture. 

Section 5.2 describes the proposed heterogeneous routing protocol, which is then 
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experimentally verified using simulation in section 5.3. Finally, section 5.4 offers 

summarise the Chapter. 

 System Architecture 

The proposed heterogeneous wireless mesh network (HetMeshNet) considers the 

coexistence of multiple wireless technologies as well as a wired network. It employs the 

following types of nodes:  

 NetNodes: The heterogeneous node portion of the WMN that forms the network 

infrastructure. These nodes are equipped with both Wi-Fi (IEEE 802.11n) and 

LTE capabilities.  

 ClientNodes: The heterogeneous node portion of the WMN that represents the 

end users and employs Wi-Fi (IEEE 802.11) and LTE capabilities. 

 Mesh Gateway: Nodes with Wi-Fi (IEEE 802.11) and wired connections that 

connect the WMN to the Internet through the Internet Gateway.  

 LTE Base Stations: Also known as evolved Node B (eNodeB or eNB). 

 Internet Gateway Nodes: Nodes that connect the different networks to the 

Internet using a high-speed wired network.  

Figure 5.1 shows an example of the proposed HetMeshNet architecture. It comprises 

several types of network components. Firstly, the LTE network consists of a number of 

cells distributed in the region. An LTE base station is located in each cell. Secondly, a 

number of NetNodes is deployed in the network, each of which is capable of utilising 

multiple transmission technologies. The heterogeneous nodes (NetNodes) are equipped 



   

   74 
 

 

 

Figure 5-1: Heterogeneous mesh network. 

with Wi-Fi and LTE network interface cards. The Mesh Gateway nodes are the third type 

of nodes, which connect the WMN to the Internet Gateway. The Internet Gateway acts 

as a server; it provides Internet connection to both the LTE and WMN networks. Finally, 

the Client Nodes could be a human using a mobile phone, a laptop, or any other device 

connected to the Internet (e.g., a sensor sending data to the Internet).  

Each heterogeneous node in this architecture transmits data to the Internet using either 

Wi-Fi or LTE. For example, if a NetNode sends the packet to a neighbouring node via 

Wi-Fi, the neighbouring node forwards the packet using LTE or Wi-Fi. Thus, both 

technologies are employed to mitigate the disadvantages of each technology, including 

overloaded nodes or poor-quality wireless channels. By contrast, if a node receives 

packets from the Internet (downlink), the Internet Gateway decides whether to forward 

data via LTE or WMN. Note that in contrast to uplink, if Wi-Fi is selected for the downlink 
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transmission, the intermediate nodes cannot switch back to LTE because the 

intermediate nodes could use a LTE network to transmit to the eNB base station (uplink 

only). 

In this chapter, an urban hotspot scenario is considered, such as a crowded city centre, 

in which many users wish to access the Internet simultaneously. No interference is 

assumed among the networks because different frequency bands are employed by the 

wireless networks. Each cell in the network employs the same architecture, as shown in 

Figure 5.1. Therefore, this work is focused on a single cell in the LTE network. 

 Heterogeneous Routing Protocol 

The proposed routing protocol employs metrics from both networks to switch dynamically 

between transmission technologies. The proposed protocol consists of two main 

components: the heterogeneous routing tables and a routing algorithm. In a 

heterogeneous wireless network, the routing protocols need to employ metrics from all 

the technologies that might be utilised by a node. 

 Heterogeneous Routing Tables 

Each type of node uses different transmission technologies and each transmission 

technology employs a different network address. In order to route packets between these 

different networks, each type of node maintains a routing table to forward data packets 

from different networks just as if they were coming from the same network. Firstly, the 

Internet Gateway node needs a routing table in order to forward data packets to and from 

the Internet for both WMN and LTE networks. Secondly, each heterogeneous node 

maintains a table of routes to the other heterogeneous nodes in the network as well as 
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a list of available Mesh Gateways and the default Mesh Gateway to forward 

heterogeneous node data. In order to create the routing table, an OLSR routing protocol 

(Jacquet et al. 2001) is utilised to determine the route table for the Wi-Fi mesh network 

and employ the hop count as a metric. OLSR is a proactive routing protocol that, based 

on the hop count metric, selects the route from source to destination. An extension to 

the OLSR is then added to support the use of the mesh gateway in the WMN. The 

extended OLSR employs two metrics to select the Mesh Gateway: the number of hops 

to the Mesh Gateway and the number of nodes connected to it. In order to achieve this, 

a control message is transmitted to the neighbouring nodes from each Mesh Gateway to 

advertise its load in terms of the number of nodes associated with it. Each node selects 

the Mesh Gateway with the shortest path and if more than one Mesh Gateway has the 

same number of hops, then the node selects the Mesh Gateway with lower load. The 

use of shortest path to select the route to Mesh Gateway using OLSR will avoid the 

occurrence of the routing loops and route oscillations problem. Another route table is 

used in the Mesh Gateway that lists the addresses of the heterogeneous nodes 

associated with it. Figure 5.2 shows the flowchart of creating the routing tables for each 

type of node. 

The flowchart starts by checking the node type and then a set of control messages are 

exchanged to maintain the routing table on each node. In the case of a client node with 

either LTE and Wi-Fi devices or NetNode, OLSR is employed to create a routing table 

for the WMN; then, it selects the default Mesh Gateway based on two parameters: the 

distance to the Mesh Gateway in terms of hop counts and the number of heterogeneous 

nodes associated with the Mesh Gateway. 



   

   77 
 

 

Wi-Fi devices in client nodes or NetNodes send control messages to the Internet 

Gateway that piggyback the node IP address of the Wi-Fi network and the LTE network 

using the LTE transmission technology to transmit the control message to the Internet 

Gateway through LTE eNB base station. The Internet Gateway employs this information 

to create a table of the Wi-Fi IP addresses and the corresponding LTE IP addresses. 

This table enables the Internet Gateway to forward Wi-Fi packets using the LTE network 

and vice versa.  

 

Figure 5-2: Flowchart of creating routing tables. 
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In the case of Mesh Gateway nodes, the routing table maintains a list of the 

heterogeneous nodes for which it is responsible in order to connect them to the Internet. 

Each Mesh Gateway receives request messages from NetNodes and updates the table 

of NetNodes associated with it. The Mesh Gateways send update messages to the 

Internet Gateway about their new list of NetNodes. Finally, nodes of type Internet 

Gateway employ this information to maintain a table to store the available Mesh 

Gateways and the heterogeneous nodes associated with each Mesh Gateway. The LTE 

base station forwards all the Internet packets to the Internet Gateway. In client nodes 

that are equipped with either LTE or Wi-Fi device, no additional routing tables are 

required. The LTE device communicates directly with the eNB base station while the Wi-

Fi device utilises OLSR to select the Mesh gateway based on hop counts and load on 

the Mesh Gateway.  

 Cognitive Heterogeneous Routing Algorithm 

The second part of the proposed routing protocol is the new algorithm developed, 

referred to here as Cognitive Heterogeneous Routing (CHR), which selects the most 

suitable transmission technology based on parameters from both of the utilised 

transmission technologies. CHR employs the generated routing tables to choose the best 

route to send the traffic demands. The CHR is responsible for selecting the best radio 

access network while the routing tables maintained by each node find the route to the 

Internet. In case a NetNode selects Wi-Fi device, it uses the routing table to send the 

packets to the next hop on the path of the selected Mesh Gateway. CHR adopts the 

multi-rate medium access control (MAC) protocol for 802.11 that proposed in Chapter 4. 

This rate adaptation protocol is developed for a WMN environment to consider the 

collision and interference in the neighbouring nodes. It employs the transmission rate as 
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a metric to measure the quality of the Wi-Fi channel. RARE reduces the transmission 

rate when interference is identified on the link and increases it when the interference is 

low. Thus, the algorithm infers that the wireless channel quality is good when the 

transmission rate is high. This work employs IEEE 802.11a, which supports eight 

different transmission rates: 6, 9, 12, 18, 24, 36, 48, and 54 Mbps. 

A core element of CHR is a new algorithm that is developed to estimate which 

transmission technology is the best for sending traffic. It is based on reinforcement 

learning and Q-learning (Watkins and Dayan 1992), in which Q(ti) is used subsequently 

to estimate the best action by considering a reward R(ti) each time an action is taken. 

The equation of this learning algorithm is calculated as follows:: 

 )],()()([)()1()( 111   iiiii tQtQtRtQtQ   
(5.1) 

where α is the learning rate (0 ≤ α ≤1), ti is the current time, ti-1 is the previous time for i 

>1, and γ is the discount value. If α = 0, then there is no learning in the algorithm; if γ = 

0, the reinforcement learning is opportunistic, which maximises only the immediate, short 

term reward.  

CHR, the algorithm proposed in this study, is based on Q-learning to calculate whether 

the selected transmission technology is improving the network performance by learning 

from previous actions. It selects an appropriate transmission technology based on 

parameters from both Wi-Fi and LTE networks. The algorithm has two parts. The first 

part is the uplink routing algorithm, which is responsible for sending data packets from 

the heterogeneous nodes to the Internet. The second part is the downlink, which is in 

charge of transmitting data packets from the Internet to the heterogeneous nodes. 
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Reinforcement learning is employed in both uplink and downlink transmissions, to 

estimate the probability of transmitting data packets through each transmission 

technology. For uplink transmission, each heterogeneous node utilises CHR to select 

either the LTE or Wi-Fi network. In the downlink communication, the CHR algorithm is 

utilised by the Internet Gateway node only. 

The LTE network employs both the load and the probability of successful transmissions 

of packets through the network as metrics to measure link quality. The load of the LTE 

network is estimated by measuring the buffer length of each node. This value is obtained 

from the radio link control (RLC) protocol layer in the eNB and the heterogeneous node. 

The RLC is located on top of the MAC layer and is responsible for maintaining the length 

of transmission buffer and transferring packets from upper layers to the MAC layer using 

the acknowledgement or un-acknowledgement mode and error correction. Two types of 

transmission buffers are maintained by the LTE network: one for downlink transmissions 

and one for uplink transmissions. Thus, the length of the buffer on each node represents 

its load level. Equation (5.2) (Yang et al. 2013) is utilised to estimate the load on each 

NetNode. 

 ,
)(

)(
maxBufL

tBufL
tLL i

d

i
d   (5.2) 

where LLd(ti) is the estimated LTE load on heterogeneous node d at time ti, BufL d(ti) is 

the number of packets in the LTE transmission buffer for node d at time slot ti, and BufLmax 

is the maximum number of packets that the transmission buffer can accept. The higher 

LLd(ti) is (0 < = LLd(ti) < =1), the more congested the node is. 

In WMN, CHR employs both the transmission rate that each node utilises to transmit its 

packets during time slot ti and the probability to access the channel as metrics to 
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calculate the wireless channel quality. Equation (5.3) (Benslimane and Rachedi 2014) is 

employed to measure the Wi-Fi channel quality. 

 ,
)(

)(
maxRW

tRW
tCQW i

d

i
d   (5.3) 

where CQWd(ti)
 is the Wi-Fi channel quality for node d at time ti and RWd(ti)

 is the 

transmission rate for the Wi-Fi device at node d at time ti. According to RARE, the rate 

adaptation algorithm proposed in the previous Chapter and employed by CHR, the node 

increases the transmission rate if the estimated interference in the neighbouring nodes 

is low. Thus, a higher transmission rate means lower interference on the node and higher 

probability of sending the packets successfully. RWmax is the maximum transmission rate 

that the WiFi transmission technology can support. 

In order to route the packets from the heterogeneous nodes to the Internet and vice 

versa, the CHR algorithm is utilised for both uplink and downlink transmission. A new 

algorithm based on reinforcement learning is utilised to estimate the probability of 

transmitting data packets through each transmission technology. Figure 5.3 shows the 

flowchart of the CHR algorithm. 

The flowchart shows the steps of employing CHR algorithm to utilise information 

maintained by each routing table generated using the proposed routing protocol. The 

flowchart is divided into two parts. The first part is exploration, in which the algorithm 

initialises the parameters employed in the algorithm. Then, the learning stage starts by 

evaluating each action performed by the network nodes. 
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Figure 5-3: Flowchart of CHR routing algorithm. 
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In particular, the algorithm begins by setting the network parameters to their defaults 

values, as shown in the flowchart. The exploration stage involves sending a specific 

number of packets using the Wi-Fi network and the LTE network. A flag variable (FlagW) 

is used to indicate whether the Wi-Fi or the LTE device is being used during the 

exploration stage. Then a counter variable (Expcount) is employed to control the number 

of exploration required to be done in this stage.  The length of the exploration does not 

have a great impact on the system throughput, as the algorithm will converge during the 

reinforcement learning cycles. After finishing the exploration stage, the algorithm starts 

the learning stage in which each node calculates the probability of transmitting data 

successfully for each transmission technology by learning from previous actions using 

Q-learning.  

Equation (5.4) shows how Q-learning equation (5.1) (WATKINS and Dayan 1992) is 

adapted for WMN and incorporated in the CHR algorithm to calculate the probability of 

transmitting data successfully. 

 )],()()([)()1()( 111   i
d

i
d

ii
d

i
d

i
d tQWtCQWttSRWtQWtQW 

 
(5.4) 

where QWd (ti) represents the probability of accessing the Wi-Fi channel for node d at 

time ti,, α is the learning rate (α=0 there is no learning in the algorithm), SRWd(ti-1-ti)
 is the 

success rate of node d since the last update of the transmission rate, calculated using 

equation (5.5) (Benslimane and Rachedi 2014). CQWd(ti) is the Wi-Fi channel quality for 

node d at time ti and is calculated using equation (5.3). 
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where STWd(ti-1-ti)
  is the number of successful transmissions from ti-1 until ti a value which 

is obtained from the MAC layer of the IEEE 802.11 device on heterogeneous node d by 

counting the number of received acknowledgements for each transmission; and TTWd(ti-

1-ti)
  is the total number of transmissions for node d using Wi-Fi from ti-1 to ti. 

Q-learning equation (5.1) (WATKINS and Dayan 1992) is adopted by the CHR algorithm 

equation (5.6) to estimate the probability of transmitting data successfully using the LTE 

network.  

 )],()))(1()([()()1()( 111   i
d

i
d

ii
d

i
d

i
d tQLtLLttSRLtQLtQL   (5.6) 

where QLd (ti) represents the probability of accessing the LTE channel for node d at time 

ti, α is the learning rate, SRLd(ti-1-ti)
 is the success rate in LTE device of node d since the 

last update of the probability to access LTE network, which is calculated using equation 

(5.7), and LLd(ti) is the estimated load in LTE device on node d at time ti and is calculated 

using equation (5.2). 
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(5.7) 

where STLd(ti-1- ti) is the number of successful transmissions for node d during a period 

(ti-1, ti) using LTE network and this information is obtained from RLC layer using 

acknowledgement mode, TTLd(ti-1- ti) is the number of transmissions using LTE during a 

period (ti-1, ti). After finishing the exploration stage, each node waits for new packets ready 

for transmission and then updates the probability to select the transmission technology 

(QLd(ti) or QWd(ti)). Thereafter, the algorithm selects the transmission technology with 

the higher probability to send the packets successfully (i.e. higher Q-value). Then, CHR 

updates all the parameters and waits for the next packets. 
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 Performance Evaluation  

In this section, the heterogeneous wireless mesh network is evaluated using the ns-3 

simulator (ns-3 n.d.), which is a widely used tool for evaluating and validating wireless 

networks. In particular, this work uses the LENA NS-3 LTE Module model. The proposed 

network is compared in terms of throughput with LTE-only networks, Wi-Fi-only 

networks, and a random network (R) that randomly allocates LTE or Wi-Fi network for 

each node. 

 Simulation Setup 

Table 5.1 shows the network parameters used in the simulation. Two types of scenarios 

are employed in order to evaluate and validate the proposed network. The first scenario 

consists of grid topologies in which NetNodes are distributed in a grid with 100 meters 

between each node. The second scenario consists of random topologies in which all 

nodes are distributed randomly in 1000 by 1000 meters area. In both scenarios, there 

are five Mesh Gateways distributed in the network and the LTE eNB is allocated in the 

centre. In order to analyse the performance of the proposed network, different loads are 

applied to the network using 19 and 30 nodes transmitting simultaneously for both uplink 

and downlink transmissions. 

 Evaluating and Validating Results 

The performance of HetMeshNet is compared with LTE-only and random networks, 

using different numbers of radio resource blocks (RB), and Wi-Fi-only networks.  

Two types of scenarios are employed to evaluate the proposed system: one to test the 

uplink and one to test the downlink. In the uplink scenarios, the nodes (except the Mesh  
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Table 5-1: Simulation setup. 

 

Gateway nodes) generate user datagram protocol (UDP) traffic with the same rate and 

the sole destination is the Internet. This simulates the uplink traffic from customer 

terminals to the Internet. Grid and random topologies are employed in the simulation and 

two different loads are applied to the network using 19 and 30 nodes transmitting 

simultaneously to the Internet. A second scenario is utilised to show how the algorithm 

adapts to the change of the load amount during the simulation. 

The simulation results for the uplink scenarios indicate a significant improvement in 

system throughput for the proposed heterogeneous system compared with the 

benchmark networks. Figure 5.4 – 5.8 show the throughput results for the adopted uplink 

scenarios compared with LTE-only network, Wi-Fi-only network, and random networks. 

Simulation Parameters Assigned Value 

Topology Grid and random 

Number of Mesh Gateways 5 

Number of LTE eNB 1 

Number of heterogeneous nodes 30 

IEEE 802.11 MAC 802.11a 

Number of flows 19 and 30 

Packet size 1500 bytes 

Packet generation rate 0.1 second 

Topology-covered area 1000 *1000 

Transmission rates for Wi-Fi networks 6, 9, 12, 18, 24, 36, 48, 54Mbps 

Mobility Static (none) 
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Each figure shows the average throughput for each network; the results are represented 

by a box and whisker graph, where the lower box represents the average throughput 

quartile lower than the median and the upper box represents the average throughputs 

higher than the median. The upper and lower whiskers represent the highest and lowest 

value of the results, respectively. In LTE-only and random networks, two different 

bandwidths are employed in the evaluation of the proposed network model. The 

bandwidth in LTE network is represented by the total number of RBs available for the 

user equipment in the network. In the evaluation, 25 and 50 RBs are utilised by LTE 

network and the HetMeshNet in the simulation.  

The same scenarios are employed to evaluate the downlink communication in the 

HetMeshNet. In downlink scenarios, UDP traffic is generated from the Internet and the 

destination is the heterogeneous nodes in the networks. The purpose of simulating 

downlink traffic is to show how the proposed algorithm acts when the data are coming 

from the Internet. In downlink, if Wi-Fi is selected, the intermediate nodes cannot switch 

back to LTE while in the uplink transmission intermediate nodes could switch from Wi-Fi 

to LTE. The simulation results show a significant improvement in system throughput. 

Figure 5.9 – 5.13 show the throughput results for the downlink algorithm while Figure 5.8 

and 5.13 apply different amounts of load on the network for uplink and downlink 

transmission respectively to show how the network adapts to different traffic demand 

during the simulation. Moreover, another set of scenarios is employed to evaluate the 

system performance with a different value of α (learning rate in reinforcement learning). 

If α is zero, it means the system utilises only the current state of the network with no 

learning in the system. The simulation results indicate that the network with no learning 

shows the worst performance in terms of throughput compared with other values of α 

(learning is presented). Figure 5.14 and 5.15 show the throughput results of CHR using 
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different values of α to demonstrate how the network works without learning, from the 

results, α with a value higher than 0 (learning is presented in the algorithm) indicates 

better throughput results compared to the network with no learning (α=0). These results 

indicate that considering previous network parameters in selecting the radio access 

technology improve the network performance. Figure 5.16 shows the behaviour of the 

network throughput at different times with different numbers of transmission nodes. In 

this scenario, it shows how the proposed algorithm reacts to the change of load on the 

network. The results indicate that the proposed algorithm outperforms the benchmark 

networks; for example, when the number of transmitting nodes is 15, the average 

throughput of the CHR is about 1.7 Mbps with a bandwidth of 25 RB, while the LTE only 

network with a bandwidth of 50 RB is 1 Mbps (increase with 70%) and with a bandwidth 

of 25 RB is 0.5 Mbps (an increase of 240%).  Figure 5.17 shows the behaviour of the 

network with a constant number of client nodes, which are allocated to different 

NetNodes with a mobility of client nodes in order to demonstrate how the learning 

algorithm react to a change in the bandwidth request. This scenario employs random 

walk mobility model to simulate the movements of client nodes in 1000 * 1000 meters 

area. The results indicate the learning algorithm adapts very well with the change in the 

load demands in the network compared with the benchmark networks in term of network 

throughput. For example, the average network throughput of CHR with a bandwidth of 

25 RB is around 2 Mbps while LTE and random networks with as twice bandwidth as 

CHR achieve around 1 and 1.5 Mbps, respectively. 
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Figure 5-4: Uplink grid scenario with 19 nodes. 

 

Figure 5-5: Uplink random scenario with 19 nodes. 
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Figure 5-6: Uplink grid scenario with 30 nodes. 

 

Figure 5-7: Uplink random scenario with 30 nodes. 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

CHR25 CHR50 Wi-Fi LTE25 LTE50 FN25 FN50 RN25 RN50

Median < Results

Median > Results
Th

ro
u

gh
p

u
t 

(K
b

p
s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

CHR25 CHR50 Wi-Fi LTE25 LTE50 FN25 FN50 RN25 RN50

Median < Results

Median > Results

Th
ro

u
gh

p
u

t 
(K

b
p

s)



   

   91 
 

 

 

Figure 5-8: Different amount of load during the simulation on uplink. 

 

Figure 5-9: Downlink grid scenario with 19 nodes. 
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Figure 5-10: Downlink random scenario with 19 nodes. 

 

Figure 5-11: Downlink grid scenario with 30 nodes. 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

CHR25 CHR50 Wi-Fi LTE25 LTE50 R25 R50

Median < Results

Median > Results
Th

ro
u

gh
p

u
t 

(K
b

p
s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

CHR25 CHR50 Wi-Fi LTE25 LTE50 R25 R50

Median < Results

Median > Results

Th
ro

u
gh

p
u

t 
(K

b
p

s)



   

   93 
 

 

 

Figure 5-12: Downlink random scenario with 30 nodes. 

 

Figure 5-13: Different amount of load during the simulation on downlink. 
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Figure 5-14: HetMeshNet performance with different value of α in grid scenario (0 ≤ α ≤ 1). 

 

Figure 5-15: HetMeshNet performance with different value of α using different amount of load during the 

simulation (0 ≤ α ≤1). 
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Figure 5-16: Average network throughput over time with different number of transmission nodes. 

 

Figure 5-17: Average network throughput with constant number of nodes and mobility. 
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ANOVA statistical test was performed on the results from each scenario to verify that 

there is a systematic enhancement in the network that causes the throughput 

improvement. Equation (5.8) (Scheffe 1959) is employed to confirm that the algorithms 

are statistically different. 

 
,CritFF   5-8 

where F is the ANOVA test statistics and FCrit is the critical value extracted from the F-

distribution table. Another parameter from the ANOVA test is p, which is the probability 

of having differences that happen purely by chance, and the preferred value is smaller 

than 0.05. Thereafter, in order to verify that the HetMeshNet has produced higher 

throughput than the benchmark algorithms, the results from each scenario are submitted 

to the Fisher's LSD test. In each scenario, there are 19 or 30 throughput results for each 

type of network. The average throughput value of these results is calculated for each 

network (LTE25avr, LTE50avr, Wi-Fiavr, CHR25avr, and CHR50avr). Next, if |CHR25avr – 

LTE25avr| > LSD, then the two averages are statistically different. Table 5.2 and 5.3 show 

the ANOVA and LSD results for each scenario, respectively. 

The results show that the average throughput of the HetMeshNet outperforms the LTE 

network even when the LTE network utilises twice as much bandwidth as CHR, while the 

Wi-Fi networks may suffer from high loss due to interference and collision. In Figure 5.4, 

the CHR algorithm with LTE bandwidth of 25 RB achieves average uplink throughput 

between 1.6 and 2.3 Mbps for 50 % of the results, while the LTE network with 50 RB 

achieves between 0.7 and 1.2 Mbps, which shows how the CHR outperforms LTE only 

network with about 183% by employing less bandwidth (half of the bandwidth) and in 

Figure 5.8 the CHR25 increases the network throughput with about 200%.   
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In the downlink transmission, the throughput improvement in some scenarios is lower 

than that in the uplink due to the fact that in downlink the LTE network employs multiple 

input and multiple output (MIMO) antenna which increases the total throughput of a 

connection in the LTE networks. For instance, Figure 5.9 shows the average throughput 

of the CHR with 50 RB with about 1.7 Mbps while the LTE network with 50 RB achieves 

around 1.3 Mbps (the improvement is about 26%). This method improves the network 

performance and also reduces the cost of buying more licensed frequencies (LTE 

frequency) by utilising unlicensed Wi-Fi frequencies instead. The results obtained from 

the HetMeshNet mitigate the poor performance of the Wi-Fi network through the use of 

the LTE network, as Wi-Fi-only networks suffer from interference. Finally, Figure 5.17 

shows the number of transmission packets on each transmission device and also the 

number of packets that initially started with Wi-Fi and then switched back to the LTE 

network after one or more hops for example, in node 4 about 45% of the packets are 

switched from Wi-Fi network to LTE network. This figure shows how the networks 

dynamically switch between the transmission technologies. 

Table 5-2: Analysis Of Variance test results. 

Network Scenario F Fcrit P 

Uplink 19 Nodes Grid 50.5 2.3 p < 0.001 

Uplink 19 Nodes Random 21.5 2.3 p < 0.001 

Uplink 30 Nodes Grid 33.2 2.9 p < 0.001 

Uplink 30 Nodes Random 28.8 2.9 p < 0.001 

Uplink Different Number of Nodes Transmitting during the Simulation 60.2 2.4 p < 0.001 

Downlink 19 Nodes Grid 15.4 2.4 p < 0.001 

Downlink 19 Nodes Random 15.2 2.4 p < 0.001 

Downlink 30 Nodes Grid 14.3 2.4 p < 0.001 
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Table 5-3: LSD test results. 

 

The HetMeshNet improves the overall network throughput compared to the LTE network 

that utilises twice as much bandwidth. Furthermore, Figure 5.18 shows that many of the 

nodes utilise Wi-Fi bandwidth, which is cheaper than LTE because Wi-Fi frequencies are 

unlicensed. The simulation experiments show that the proposed model enhances nodes 

throughput by up to 200% on the uplink and downlink compared with the LTE and Wi-Fi 

networks and also overcomes the problem of throughput degradation in WMNs under 

high traffic density. 

Downlink 30 Nodes Random 17.8 2.4 p < 0.001 

Downlink Different Number of Nodes Transmitting during the Simulation 6.0 2.4 p < 0.001 

Network Scenario 

Throughput Average for the Networks 
(Kbps) 

LSD 
LTE2
5 

LTE5
0 

Wi-Fi 
CHR2
5 

CHR50 

Uplink 19 Nodes Grid 663.5 1027.2 703.9 1967.9 2315.4 268.9 

Uplink 19 Nodes Random 366.2 570.2 1057.5 1734.0 2134.2 413.6 

Uplink 30 Nodes Grid 379.6 600.9 739.9 796.3 1111.5 117.8 

Uplink 30 Nodes Random 355.6 562.3 679.5 1022.3 1331.5 177.4 

Uplink Different Number of Nodes 
Transmitting during the Simulation 

420.8 668.6 673.2 1357.2 1839.7 208.4 

Downlink 19 Nodes Grid 658.2 1468.2 732.9 1597.2 2273.2 470.3 

Downlink 19 Nodes Random 558.1 846.9 725.3 1644.3 2233.5 502.9 

Downlink 30 Nodes Grid 418.6 873.9 485.0 1113.5 1577.3 347.5 

Downlink 30 Nodes Random 346.5 524.2 471.5 1078.6 1557.9 333.2 

Downlink Different Number of Nodes 
Transmitting during the Simulation 

1120.5 2334.5 1566.4 2357.1 2965.5 516.4 
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Figure 5-18: Number of transmitting packets for each wireless technology. 

 Summary 

This chapter introduces a new heterogeneous network architecture in which LTE and 

Wi-Fi wireless devices are utilised in order to benefit from the bandwidth of each 

transmission technology. In addition, a new routing protocol for heterogeneous wireless 

mesh networks is developed, which selects dynamically the transmission technology in 

order to increase the overall network capacity and enhance the average throughput. 

Moreover, a new routing algorithm is proposed for the needs of the routing protocol, 

which estimates the cost of transmitting the traffic through each network. The proposed 

algorithm considers the traffic load on the LTE network as a metric in order to estimate 

the cost of transmission over LTE, and it uses the transmission rate as a metric for the 

Wi-Fi mesh network. The simulation results showed that the proposed network achieved 

up to 200% more throughput compared with Wi-Fi-only networks and LTE-only networks. 
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The heterogeneous network architecture managed the different wireless devices as a 

part of a single virtual network. The LTE network can be utilised to avoid congested Wi-

Fi nodes and high interference paths in the WMN. The WMN offloads the load of the LTE 

network, reduces the cost of using additional licensed frequency bands and forwards the 

data to another node when the LTE throughput is degrading. 
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Semantic Reasoning System for 

Heterogeneous WMNs 

 

 

This chapter advocates the use of semantic reasoning based on ontologies in cognitive 

networks to abstract the network infrastructure from the control system and improve the 

performance of heterogeneous wireless mesh networks (WMN). The proposed semantic 

reasoning establishes an extendable smart middleware that automatically manages, 

configures and optimises the performance of various networks 

The novelty of the proposed middleware is that it uses semantic reasoning with 

parameters from LTE and WMN architectures to enable each node in the heterogeneous 

network to self-configure and be aware of the surrounding environment and any 

additionally installed transmission devices. Semantic reasoning simplifies the process of 

managing different radio access networks by using ontologies to capture network 
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parameters and representing the fundamental relationships among the different wireless 

devices, which can be understood by machines. 

This chapter is organised in four sections. Section 6.1 introduces the network layout 

utilised in this chapter. Section 6.2 describes the proposed semantic system, which is 

then experimentally evaluated in section 6.3. Finally, section 6.4 summarises the 

chapter. 

 Network Layout 

This Chapter extends the heterogeneous mesh network model proposed in the previous 

Chapter by three different architectures, WMN, VANET, and LTE, to use the different 

frequency bands of each network.  WMNs and VANETs utilise IEEE 802.11n and IEEE 

802.11p, respectively. For this study, two scenarios were proposed to evaluate the 

semantic reasoning system on heterogeneous wireless networks. The first scenario was 

the urban heterogeneous network scenario in which different amounts of traffic demands 

were applied to the system. The second scenario was the VANET heterogeneous 

network scenario, which used several network architectures to demonstrate how the 

proposed semantic reasoning system could be extended to control other network types. 

In the first scenario, the client nodes consider the coexistence of WMN and LTE networks 

and transmit data to the Internet using one of the available radio access networks (RAN) 

(IEEE 802.11n or LTE) in the heterogeneous network while the second scenario 

introduces the use of VANET network in which a roadside base stations uses three RANs 

(LTE, 802.11n and 802.11p). Figure 6.1 shows an example of how the heterogeneous 

networks architecture presented in Chapter 5 is extended using VANET network.  
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Figure 6-1: VANET heterogeneous network scenario. 

The heterogeneous network in this Chapter utilises multiple LTE network cells to show 

how the network function with more than one LTE cell.  

The heterogeneous network model extends the network architecture in Chapter 5 with 

the following node types: 

 802.11pCars: Cars that are part of the VANET network and employ only IEEE 

80211p  

 HetCars: Cars that are part of the VANET network and are equipped with both 

IEEE 802.11p and LTE radio access networks. 
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 HetRSide: Roadside units that employ IEEE 802.11p, 802.11n, and LTE radio 

access networks. These nodes connect the cars on the road to the WMN and 

LTE networks. 

In this network model, the ClientNodes connect to the Internet through IEEE 802.11n or 

the LTE network. The HetCars connect to the Internet either through IEEE 802.11p or 

the LTE radio access network. 802.11pCars connect to the Internet through IEEE 

802.11p RAN. The NetNodes are responsible for forwarding client data to and from the 

Internet using either LTE or IEEE 802.11n based on QoS parameters. The HetRSides 

communicate with 802.11pCars and HetCars through the IEEE 802.11p, then forward 

the data using either LTE or IEEE 802.11n to the Internet. 

The proposed reasoning system allows ClientNodes to forward the data from other 

clients to the Internet and gain some credit in return. Enabling ClientNodes to participate 

in the network infrastructure will reduce the load on the network backbone and will also 

allow users to gain credits by forwarding data.  

The selection of transmission technology to forward the data is determined based on 

QoS parameters described in the next section. 

 Semantic System for Heterogeneous Network 

This section provides a detailed description of the semantic system, which is part of the 

proposed cognitive network model. It consists of a semantic knowledge base and a 

semantic inference engine. An ontology of heterogeneous networks and a rule base are 

developed as part of the semantic knowledge base, while the semantic inference engine 
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contains the instances of the ontology in the knowledge base and the fuzzy-based 

reasoner. 

Ontologies are used to define the binding properties, types, and relationships which is 

used to build the heterogeneous network knowledge base. Cross-layer properties from 

each device are used to create relationships between the different networks 

architectures using various RAN. 

 Heterogeneous Network Ontology 

The QoS parameters of each network in the heterogeneous network are stored using 

ontology classes, properties, and relationships. Standard ontology languages define a 

set of classes, subclasses, properties, and relationships, such as OWL (W3C OWL 

Working Group 2012), and resource description framework (RDF) or RDF schema 

(Hayes and Mcbride 2004).   

This study used extensible markup language (XML) as a platform to create ontology 

classes of heterogeneous wireless networks. XML is platform independent, which 

enables the proposed semantic reasoning system to be used with any smartphone, 

personal computer, or computer-based object. Moreover, the ontology suggested in this 

work is relatively simple and does not need all the expressiveness that is provided by 

other standard ontology languages. Using an XML-based approach resulted in a simple, 

lightweight knowledge base system that could work on wireless nodes with limited 

processing resources.  

The proposed ontology generated a set of classes and properties to represent the 

heterogeneous network characteristics as shown in Tables 6-1 and 6-2, respectively. 



   

   106 
 

 

Figure. 6.2 shows the ontology graph of the proposed heterogeneous wireless network 

in which the classes, subclasses, and properties are shown. 

Table 6-1: Ontology classes. 

Class name Parent Class Description 

HetNet - Heterogeneous wireless network 

Node HetNet Wireless and wired nodes 

LTENode Node Nodes equipped with LTE device 

NetNode Node Nodes equipped with LTE and IEEE 802.11n 

VanetNode Node Nodes equipped with IEEE 802.11p 

HetCars VanetNode Wireless nodes equipped with LTE and IEEE 802.11p 

IEEE802.11pCars VanetNode Wireless nodes equipped with IEEE 802.11p 

RAN HetNet Radio access network type 

LTENet RAN LTE radio access network 

Wi-FiNet RAN Wi-Fi radio access network 

IEEE802.11nNet Wi-FiNet Wireless devices of type IEEE 802.11n 

IEEE802.11pNet Wi-FiNet Wireless devices of type IEEE 802.11p 

 

Table 6-2: Ontology properties. 

Property Description 

hasLTELoad Define the load on the LTE network 

hasLTEChannelQuality Define the channel quality of the LTE network 

hasWi-FiSucRate Wi-Fi network success rate of transmitting data packets 

hasWi-FiChannelRate Wi-Fi network transmission rate  

hasLTESW Strength weight to select LTE; this property is inferred from the rule-
base 

hasWi-FiWeight Strength weight to select Wi-Fi network 

hasRAND Decision to select the radio access network 

hasNeigh One-hop neighbours of wireless node; this value is obtained from the 
routing table 

hasShortestPath Next hop node with the shortest path to the Mesh Gateway; this value 
is obtained from the routing table 
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SelectNextHop Decision of selecting the node as a next hop 

hasHops Defines the number of hops from the node to the Mesh Gateway 
along the shortest path; this value is obtained from the routing table 

hasLCD Defines the link connectivity duration (LCD) between two 
neighbouring nodes in VANET 

 

 

Figure 6-2: Ontology graph of the heterogeneous wireless mesh network. 

 Fuzzy-based Knowledge Base 

The network characteristics and node configuration parameters are stored in the fuzzy-

based knowledge base as instances of the heterogeneous network ontology. The QoS 

parameters of each RAN are transformed from crisp points (x) to fuzzy sets [x, μ(x)] in 
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U, where μ is the membership function U ϵ [0 − 1]. In this model, the QoS parameters 

provided by each RAN are fuzzified using predefined membership functions as shown in 

Figure 6.3 - 6.6. The fuzzification process maps the input value to names and degrees 

of membership functions.  

Each membership function presents a curve that represents the possible degrees for 

each input value. For example, the input value of LTE load is transformed to the degree 

in the membership figure according to the coordinate of this value on the curve. These 

values will be assigned to the ontology property for each RAN. A set of rules uses these 

fuzzified values to select the transmission technology for the network. 

The fuzzification step is performed on the QoS parameters for each transmission 

technology. The LTE network employs two parameters to estimate the quality of the 

network. The first parameter is the load on the network, which is calculated based on the 

number of resource blocks (RBs) (Yang et al. 2013) assigned to each node using the 

following: 

 *100%,
d

d t

t

RB
LTEL

RBMax
  (6.1) 

where LTELd
t is the load on the LTE network for node d at time t, RBd

t represents the 

number of allocated resource blocks for node d at time t, and RBMax is the number of 

available resource blocks for the LTE cell. LTELd
t is mapped to a fuzzy set using the 

membership function in Figure 6.3. The second parameter for the LTE network is the 

channel quality indicator (CQI), which is collected by the eNB base station. CQI provides 

information on the quality of the communication channel, while the eNB selects the 

appropriate modulation and coding method based on the CQI feedback from the user  
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Figure 6-3: LTE load membership function (in %). 

 
 
 

 
Figure 6-4: CQI membership function (in db). 
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Figure 6-5: Wi-Fi transmission rate membership function (in rate index value). 

 
Figure 6-6: The success rate for Wi-Fi device (SRW) membership function (in %). 

equipment (UE). In this work, the channel quality value is mapped to the corresponding 

fuzzy degree in the membership function as shown in Figure 6.4. The CQI information is 
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between 0 and 15, where 15 is a standard value for the best channel quality while 0 

means it is out of range. 

In this chapter, the rate adaptation algorithm proposed in Chapter 2 is used to measure 

the link quality. RARE employs both the load and the interference to calculate the 

transmission rate. The node with the highest transmission rate has the best link quality 

because RARE decreases the transmission rate when the transmission link suffers from 

interference and high packet loss.   

The WMN also uses two parameters to estimate the channel quality, the transmission 

rate of each node during time slot ti, and the probability of accessing the channel. The 

membership function in Figure 6.5 defines eight fuzzy degrees for the transmission rates 

in IEEE 802.11n (15, 30, 45, 60, 90, 120, 135, and 150 Mbps) and eight fuzzy degrees 

in IEEE 802.11p (6, 9, 12, 18, 24, 36, 48, and 54 Mbps). The second parameter is the 

success rate of the Wi-Fi device in accessing the wireless channel on the node, which is 

estimated using (6-2) (Benslimane and Rachedi 2014).  

 %,100*
)(

)(
)(

1

1
1

ii
d

ii
d

ii
d

ttTTW

ttSTW
ttSRW









  (6.2) 

where SRWd(ti-1 – ti) is the success rate for the Wi-Fi device on node d since the last 

update of the transmission rate (ti-1 – ti). STWd (ti-1 – ti) is the number of successful 

transmissions for node d from the interval of the last rate update. STW is calculated by 

counting the number of received acknowledgments on the Wi-Fi medium access layer 

(MAC). TTWd(ti-1 – ti) is the total number of transmissions for the Wi-Fi device on node d 

since the previous transmission rate update.   
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For the heterogeneous networks using VANET, the LCD (Tabbane et al. 2015) is utilised 

in selecting the next hop. The link connectivity duration (LCD) metric reflects the lifetime 

of a communication link between two nodes. Equation (6.3) (Tabbane et al. 2015) is 

employed to calculate the LCD. 

 
2 2 2 2

, 2 2

( ) R ( ) ( )
i jLCD

     

 

    



, 

(6.3) 

where α = vi cos θi − vj cos θj, γ = vi sin θi − vj sin θj, and vi and vj are the velocities of 

moving cars for nodes i and j, respectively. θi and θj are the inclination with x-axes (0 < 

θi, θj < 2Π). β = xi – xj and δ = yi – yj, where xi, yi and xj, yj are the Cartesian coordinates 

of nodes i and j. R is the transmission range of the IEEE 802.11p.  The LCD parameter 

is calculated for adjacent nodes to calculate the lifetime of the wireless link. Figure 6.7 

shows an example of an ontology instance for a NetNode using fuzzy logic to weight 

each RAN parameter. The instances of the ontology are stored in the knowledge base 

using fuzzy member functions defined in Figure. 6.3–6.6. For example, the value of the 

hasLTELoad  property is 0.55,  which  is the fuzzy  membership  value of  the LTE  load 

calculated using Figure 6.3, where 0.55 corresponds to 45% of the available resources 

being allocated to the node. A similar method is applied to compute 

hasLTEChannelQuality, hasWiFiChannelRate, and hasWi-FiSuccessRate using the 

membership functions in Figure 6.4, 6.5, and 6.6, respectively. 
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Figure 6-7: Graph of knowledge base instance for NetNode. 

 Semantic Rule-base and Fuzzy-based Reasoning System 

This section defines a set of rules that were created based on the classes, subclasses, 

and relationships in the ontology. The fuzzy-based reasoning system uses these rules, 

in addition to the instances of the ontology in the knowledge base, to control the different 

network architectures and obtain the best RAN on the node for packet transmission. The 

reasoning system is developed to control the three networks (WMN, VANET, and LTE) 

and each network type uses a different RAN (IEEE 802.11n, IEEE 802.11p, and LTE). 

The fuzzy-based reasoning system uses a set of rules to obtain the RAN with the best 

link quality. The rule base is responsible for checking whether the ClientNodes accept 

other nodes packets to relay. The users of the ClientNodes can set them to participate 
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in the network infrastructure or not. By participating in the network infrastructure, the 

ClientNodes can reduce the load on the heterogeneous network and the user could 

obtain some benefits, such as getting a discount.  

The fuzzified values obtained from the QoS parameters of each RAN are employed to 

evaluate the set of rules using the fuzzy-based reasoning system. The proposed fuzzy-

based reasoner utilises the rule base and the instances of the ontology in the knowledge 

base to infer the best RAN. The rules, which are defined below, were formed in semantic 

web rule language (SWRL) (W3C 2004). The Pellet reasoner (Sirin et al. 2007) was used 

to check the consistency of the ontology. 

Rules: Select the Radio Access Network 

𝐿𝑇𝐸𝑁𝑒𝑡(? 𝐼𝑃) ∧𝑊𝑖𝐹𝑖𝑁𝑒𝑡(? 𝐼𝑃) ∧ ℎ𝑎𝑠𝐿𝑇𝐸𝐿𝑜𝑎𝑑(? 𝐼𝑃, ? 𝐹𝐿𝐿) ∧

ℎ𝑎𝑠𝐿𝑇𝐸𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑄𝑢𝑎𝑙𝑖𝑡𝑦(? 𝐼𝑃, ? 𝐹𝐿𝐶)⁡ℎ𝑎𝑠𝐿𝑇𝐸𝑄(? 𝐼𝑃, ? 𝐿𝑆𝑊)  

𝐿𝑇𝐸𝑁𝑒𝑡(? 𝐼𝑃) ∧𝑊𝑖𝐹𝑖𝑁𝑒𝑡(? 𝐼𝑃) ∧ ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑆𝑢𝑐𝑅𝑎𝑡𝑒(? 𝐼𝑃, ? 𝐹𝑊𝑆) ∧

ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑅𝑎𝑡𝑒(? 𝐼𝑃, ? 𝐹𝑊𝐶)⁡ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(? 𝐼𝑃, ?𝑊𝑆𝑊)  

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(ℎ𝑎𝑠𝐿𝑇𝐸𝑊𝑒𝑖𝑔ℎ𝑡(? 𝐼𝑃, ? 𝐿𝑇𝐸𝑊), ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(? 𝐼𝑃, ?𝑊𝑖𝐹𝑖𝑊)) →

ℎ𝑎𝑠𝑅𝐴𝑁𝐷(? 𝐼𝑃, ? 𝑅𝐴𝑁𝐷)  

Rules: Select Next hop for ClientNodes and NetNodes  

ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? 𝐼𝑃1) ∧ 𝑁𝑒𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1)⁡⁡𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? ⁡𝐼𝑃1) ∧ 𝐶𝑙𝑖𝑒𝑛𝑡𝑁𝑜𝑑𝑒(𝐼𝑃1) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1)⁡⁡𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  
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ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? ⁡𝐼𝑃1) ∧ 𝑁𝑒𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1)⁡⁡𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

ℎ𝑎𝑠𝑁𝑖𝑔ℎ⁡(? 𝐼𝑃, ? 𝐼𝑃1) ∧ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? 𝐼𝑃2) ∧ 𝑁𝑒𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧ 𝐶𝑙𝑖𝑒𝑛𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃2) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑒𝑞𝑢𝑎𝑙(ℎ𝑎𝑠𝐻𝑜𝑝𝑒𝑠(? 𝐼𝑃1, ?𝐻𝑜𝑝𝑠), ℎ𝑎𝑠𝐻𝑜𝑝𝑒𝑠(? 𝐼𝑃2, ?𝐻𝑜𝑝𝑒𝑠)) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(hasWiFiWeight(? 𝐼𝑃1, ?𝑊𝑆𝑊), hasWiFiWeight(? 𝐼𝑃2, ?𝑊𝑆𝑊)) →

𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

ℎ𝑎𝑠𝑁𝑖𝑔ℎ⁡(? 𝐼𝑃, ? 𝐼𝑃1) ∧ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? ⁡𝐼𝑃2) ∧ 𝑁𝑒𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧ 𝐶𝑙𝑖𝑒𝑛𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃2) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑒𝑞𝑢𝑎𝑙(ℎ𝑎𝑠𝐻𝑜𝑝𝑒𝑠(? 𝐼𝑃1, ?𝐻𝑜𝑝𝑒𝑠), ℎ𝑎𝑠𝐻𝑜𝑝𝑒𝑠(? 𝐼𝑃2, ?𝐻𝑜𝑝𝑒𝑠)) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑒𝑞𝑢𝑎𝑙(ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(? 𝐼𝑃1, ?𝑊𝑆𝑊), ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(? 𝐼𝑃2, ?𝑊𝑆𝑊)) →

𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

where IP, IP1, and IP2 represent the Internet protocol (IP) addresses of the different 

nodes, FLL is the fuzzy set of the LTE load, and FLC is the fuzzy set of the LTE channel 

quality. LSW is the strength weight for selecting the LTE device and is computed from 

the minimum of FLL and FLC (the fuzzy “and” operator). FWS is the fuzzy set of the Wi-

Fi success rate; this value is obtained from the MAC layer of the IEEE 802.11(n or p) 

device by counting the number of received acknowledgments using equation (6.2). FWC 

is the fuzzy membership degree for the Wi-Fi channel transmission rate, and the value 

is obtained from the RARE rate adaptation algorithm. The minimum of FWC and FWS 

(the fuzzy “and” operator) represents the strength weight to select the Wi-Fi device 

(WSW).  
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In the VANET heterogeneous network scenario, three types of nodes are included in the 

heterogeneous network. The first two types are vehicles equipped with both IEEE 

802.11p and LTE (HetCars) and vehicles equipped with only IEEE 802.11p 

(802.11pCars). These moving nodes are sending data to the roadside units (HetRSide). 

This study considers the V2I communication. The rule base for the VANET 

heterogeneous network is shown below. 

Rules: Select next hop for HetCars and 802.11pCars 

ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? 𝐼𝑃1) ∧ 𝑅𝑜𝑎𝑑𝑆𝑖𝑑𝑒𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1)⁡⁡𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? 𝐼𝑃1) ∧ 𝑉𝐴𝑁𝐸𝑇𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1)⁡⁡𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

ℎ𝑎𝑠𝑁𝑖𝑔ℎ⁡(? 𝐼𝑃, ? ⁡𝐼𝑃1) ∧ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(𝐼𝑃, 𝐼𝑃2) ∧ 𝑉𝐴𝑁𝐸𝑇𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧

𝑉𝐴𝑁𝐸𝑇𝑁𝑜𝑑𝑒(? 𝐼𝑃2) ⁡⁡∧ 𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃2, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑒𝑞𝑢𝑎𝑙(ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃1, ?𝐻𝑜𝑝𝑠), ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃2, ?𝐻𝑜𝑝𝑠))⁡∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(𝐼𝑃1,𝑊𝑆𝑊), ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(𝐼𝑃2,𝑊𝑆𝑊)) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1) → 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

ℎ𝑎𝑠𝑁𝑖𝑔ℎ⁡(? 𝐼𝑃, ? ⁡𝐼𝑃1) ∧ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(𝐼𝑃, 𝐼𝑃2) ∧ 𝑉𝐴𝑁𝐸𝑇𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧

𝑅𝑜𝑎𝑑𝑆𝑖𝑑𝑒𝑁𝑜𝑑𝑒(? 𝐼𝑃2) ∧ 𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃2, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧
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𝑠𝑤𝑟𝑙𝑏: 𝑒𝑞𝑢𝑎𝑙(ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃1, ?𝐻𝑜𝑝𝑠), ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃2,𝐻𝑜𝑝𝑠)) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1) → 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

ℎ𝑎𝑠𝑁𝑖𝑔ℎ⁡(? 𝐼𝑃, ? ⁡𝐼𝑃1) ∧ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(𝐼𝑃, 𝐼𝑃2) ∧ 𝑅𝑜𝑎𝑑𝑆𝑖𝑑𝑒𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧

𝑅𝑜𝑎𝑑𝑆𝑖𝑑𝑒𝑁𝑜𝑑𝑒(? 𝐼𝑃2) ∧ 𝑅𝑜𝑎𝑑𝑆𝑖𝑑𝑒𝑁𝑜𝑑𝑒(? 𝐼𝑃2) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃2, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑒𝑞𝑢𝑎𝑙(ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃1, ?𝐻𝑜𝑝𝑠), ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃2, ?𝐻𝑜𝑝𝑠)) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(𝐼𝑃1,𝑊𝑆𝑊), ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(𝐼𝑃2,𝑊𝑆𝑊)) →

𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

Rules: Select next hop for HetRSide 

ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? 𝐼𝑃1) ∧ 𝑁𝑒𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1)⁡⁡𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? ⁡𝐼𝑃1) ∧ 𝐶𝑙𝑖𝑒𝑛𝑡𝑁𝑜𝑑𝑒(𝐼𝑃1) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝐼𝑃, 𝐼𝑃1)⁡⁡𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, 𝐼𝑃1)  

ℎ𝑎𝑠𝑁𝑖𝑔ℎ⁡(? 𝐼𝑃, ? ⁡𝐼𝑃1) ∧ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(𝐼𝑃, 𝐼𝑃2) ∧ 𝑁𝑒𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧ 𝑅𝑜𝑎𝑑𝑁𝑜𝑑𝑒(? 𝐼𝑃2) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃2, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑒𝑞𝑢𝑎𝑙(ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃1, ?𝐻𝑜𝑝𝑠), ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃2, ?𝐻𝑜𝑝𝑠)) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1) → 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  
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ℎ𝑎𝑠𝑁𝑖𝑔ℎ⁡(? 𝐼𝑃, ? ⁡𝐼𝑃1) ∧ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(𝐼𝑃, 𝐼𝑃2) ∧ 𝑅𝑜𝑎𝑑𝑆𝑖𝑑𝑒𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧

𝑅𝑜𝑎𝑑𝑆𝑖𝑑𝑒𝑁𝑜𝑑𝑒(? 𝐼𝑃2) ∧ 𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃2, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑒𝑞𝑢𝑎𝑙(ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃1, ?𝐻𝑜𝑝𝑠), ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃2, ?𝐻𝑜𝑝𝑠)) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(𝐼𝑃1,𝑊𝑆𝑊), ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(𝐼𝑃2,𝑊𝑆𝑊)) →

𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃1)  

ℎ𝑎𝑠𝑁𝑖𝑔ℎ⁡(? 𝐼𝑃, ? 𝐼𝑃1) ∧ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? 𝐼𝑃2) ∧ 𝐶𝑙𝑖𝑒𝑛𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧ 𝐶𝑙𝑖𝑒𝑛𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃2) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃2, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑒𝑞𝑢𝑎𝑙(ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃1, ?𝐻𝑜𝑝𝑠), ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃2, ?𝐻𝑜𝑝𝑠)) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(? 𝐼𝑃1, ?𝑊𝑆𝑊), ℎ𝑎𝑠𝑊𝑖𝐹𝑖𝑊𝑒𝑖𝑔ℎ𝑡(? 𝐼𝑃2, ?𝑊𝑆𝑊)) ∧

→ 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃2)  

ℎ𝑎𝑠𝑁𝑖𝑔ℎ⁡(? 𝐼𝑃, ? ⁡𝐼𝑃1) ∧ ℎ𝑎𝑠𝑁𝑒𝑖𝑔ℎ⁡(? 𝐼𝑃, ? 𝐼𝑃2) ∧ 𝐶𝑙𝑖𝑒𝑛𝑡𝑁𝑜𝑑𝑒(? 𝐼𝑃1) ∧ 𝑅𝑜𝑎𝑑𝑁𝑜𝑑𝑒(? 𝐼𝑃2) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃1, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑎𝑛(ℎ𝑎𝑠𝐿𝐶𝐷(? 𝐼𝑃2, ? 𝐿𝐶𝐷), ? 𝐿𝐶𝐷𝑡ℎ𝑟) ∧

𝑠𝑤𝑟𝑙𝑏: 𝑒𝑞𝑢𝑎𝑙(ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃1, ?𝐻𝑜𝑝𝑠), ℎ𝑎𝑠𝐻𝑜𝑝𝑠(? 𝐼𝑃2, ?𝐻𝑜𝑝𝑠)) ∧

ℎ𝑎𝑠𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(? 𝐼𝑃, ? 𝐼𝑃1) → 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑥𝑡𝐻𝑜𝑝(? 𝐼𝑃, ? 𝐼𝑃2)  

The HetCars nodes use Rules: Select the RAN to select either the LTE or the IEEE 

802.11p. If the LTE is selected, then the data are directly transmitted through the LTE 

network. For HetCars nodes that select IEEE 802.11p, as well as for 802.11pCars, the 

Rules: Select Next Hop for HetCars and 802.11pCars are used to choose the next hop 
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node to the Mesh Gateway. The next hop node could be HetCars, 802.11pCars, or 

HetRSide. The node selects the next hop with the LCD that is greater than LCDthr (in this 

study, LCDthr is equal to 30 s) that has the shortest path to the Mesh Gateway. If more 

than one node has the same hop count, then the next node is selected based on the 

node type. HetRSide nodes are selected before HetCars and 802.11pCars, and HetCars 

nodes are selected before 802.11pCars.  

Figure 6.8 shows a flowchart of the Fuzz-Onto reasoning. The process of selecting a 

transmission technology starts if the node type is of the class HetNet. Then LSW and 

WSW are calculated. LSW is the weight of the LTE device, and it is the result of a fuzzy 

“and” operation of a fuzzy set of the LTE load (FLL) and a fuzzy set of the LTE channel 

quality (FLC), which are obtained in Figures 6.3 and 6.4, respectively. Similarly, the 

weight of the Wi-Fi device (WSW) is calculated using a fuzzy “and” operation of a fuzzy 

set of the Wi-Fi success rate (FWS) and a fuzzy set of the Wi-Fi channel transmission 

rate (FWC), which are computed in Figures 6.5 and 6.6, respectively. Mamdani fuzzy 

inference is then used to select the RAN. Mamdani fuzzy inference consists of three 

main modules: the fuzzifier, the rule base and the defuzzifier. The fuzzifier obtains the 

QoS parameters for each RAN and stores the fuzzy set as an instance of the ontology 

in the knowledge base. The fuzzified values are used to evaluate the rule base to obtain 

the radio access network decision (RAND). The final step is defuzzification, which is the 

process of mapping the output fuzzy set back to a crisp value. The most commonly used 

method is the centroid method, which was developed by Sugeno in 1985. The only 

problem with this method is that it is difficult to compute in complex membership 

functions. However, in this work, the membership functions have a simple trapezoid 

shape. The centroid defuzzification is calculated using the following equation (Sugeno 

1985): 
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Figure 6-8: FuzzOnto reasoning flowchart 

 
( )

,
( )

i

i

x xdx
RAND

x dx







  

(6.4) 

where RAND is the defuzzified value of the output fuzzy set and μ is the aggregated 

membership function for the output value. The value of RAND is used to select the 

transmission technology. If LTE is selected, the traffic demand is transmitted directly to 

the eNB base station. If Wi-Fi is selected, Rules: Select Next Hop for ClientNodes and 

NetNodes are used to select the next node to forward the traffic demands. These rules 

determine the shortest path to the mesh gateway, and they are used to choose the net 

node or client node with the shortest path in terms of hop count. If two nodes have the 

Start

HetNet

Calculate LSW and WSW

Calculate RAND using centroid

Select the next hop with shortest 
path and higher WSW

Select 
WiFi

Select HRS, HetCar or 802.11pCar 
with shortest path and better LCD

ClientNodes
or NetNodes

HetCars or 
802.11pCars

Transmit packets using Wifi

Transmit packets using LTE

End

Yes

Yes

Yes

No

No

NoNo

Yes



   

   121 
 

 

same number of hops to the mesh gateway, then the node with the highest WSW is 

selected to forward the packets. If two nodes have the same WSW, then net nodes are 

selected over client nodes to reduce the load on the latter. 

If the node is of type HetCar or 802.11pCar, the algorithm selects the next hop with the 

shortest path to the mesh gateway and has an LCD greater than LCDthr (in this study, 

LCDthr is equal to 30 s). If more than one node has the same hop count, then the next 

node is selected based on the node type. HetRSide nodes are selected before HetCars 

and 802.11pCars, and HetCars nodes are selected before 802.11pCars. 

In the VANET heterogeneous network scenario, three types of nodes are included in the 

heterogeneous network. The first two types are vehicles equipped with both IEEE 

802.11p and LTE (HetCars) and vehicles equipped with only IEEE 802.11p 

(802.11pCars). These moving nodes send data to the roadside units (HetRSide). This 

study considers the V2I communication.  

 Performance Evaluation 

For this study, the heterogeneous WMN using the proposed cognitive network framework 

was evaluated using Network Simulator version 3 (ns-3) (ns-3 n.d.), which is a widely 

used simulator for networking systems. The LENA module (Baldo et al. 2011) was 

employed by the ns-3 simulator to simulate the LTE network. The proposed cognitive 

network framework, called FuzzOnto, was compared in terms of throughput and packet 

delivery fraction (PDF) with LTE-only network, Wi-Fi-only network, and a number of 

networks that used different wireless technologies. These networks are listed below: 
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 Balance: This network distributes the traffic evenly between the LTE and 

IEEE 802.11n wireless networks; 

 Rand: This network randomly selects the transmission technology;  

 VH: This wireless network performs vertical handover between the LTE and 

Wi-Fi networks; it consists of ClientNodes and WMN that uses the Wi-Fi 

network, and the client can choose between sending through the LTE or the 

WMN as two separate networks; and 

 Learning: This heterogeneous network, proposed in Chapter 5 uses 

reinforcement learning, but does not employ fuzzy logic to represent the 

QoS parameters of the networks. 

In the VANET network, VanetMobiSim 1.1 (VanetMobiSim) was used to simulate vehicle 

mobility in the VANET heterogeneous WMN. The bandwidth in the LTE network is 

represented by the total number of RBs available for the user equipment in the network. 

In this work, 100 and 75 RB were used in FuzzOnto compared with 100 RB that are used 

in benchmark networks.  

 Urban Heterogeneous Network 

This scenario involved a random number of ClientNodes distributed in a 1000 m2 area, 

three eNB base stations, and 100 NetNodes that formed the backbone of the 

heterogeneous network. Three different scenarios were used to evaluate the proposed 

network. In each scenario, 30 ClientNodes were randomly distributed, while different 

loads were applied to the network (low, medium, and high). The simulation results for 

each scenario showed that the heterogeneous network that used the proposed cognitive 
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network framework outperformed the benchmark networks in terms of throughput and 

PDF. Figure 6.8 through 6.13 show the network performance for the FuzzOnto network 

compared with the benchmark networks. Box and whisker graphs are employed to 

visualise the results. Each chart has four quartiles; the lower box shows the results that 

were less than the median while the upper box represents the results that were greater 

than the median. The upper and lower whiskers represent the highest and lowest values 

of the results.  

The results indicate that FuzzOnto performed better when the load on the network was 

high. In Figure 6.8, the traffic demands were not high, and FuzzOnto did not show a 

significant improvement in throughput compared with the LTE, Wi-Fi, Learning, Balance, 

and Rand networks. In Figure 6.9 and 6.10, the load was higher, and the results indicate 

that FuzzOnto performed better than the benchmark networks. For instance, in Figure 

6.9, FuzzOnto achieved average throughput with up to 46% higher than the other 

networks when the median of the results was compared. The PDF for the urban 

heterogeneous network is shown in Figure 6.11-6.13; the results indicate that FuzzOnto 

outperformed the benchmark networks. For example, Figure 6.13 shows that 50% of the 

PDF results for the FuzzOnto network were between 0.3 and 0.4 while the other networks 

performed lower than 0.34.   
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Figure 6-9: Average throughput for urban heterogeneous network with low load. 

 

 

Figure 6-10: Average throughput for urban heterogeneous network with medium load. 
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Figure 6-11: Average throughput for urban heterogeneous network with high load. 

 

Figure 6-12: Packet delivery fraction of urban heterogeneous network with low load. 
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Figure 6-13: Packet delivery fraction of urban heterogeneous network with medium load. 

 

Figure 6-14: Packet delivery fraction of urban heterogeneous network with high load. 
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 VANET Heterogeneous Network 

In the VANET heterogeneous network, the simulation scenario considered a multi-lane 

highway and used the VanetMobiSim 1.1 mobility simulation tool to simulate vehicle 

mobility. The ns-3 simulator used the mobility traces generated by VanetMobiSim 1.1 to 

simulate the heterogeneous network. Each vehicle was equipped with a global 

positioning system (GPS) receiver and, therefore, it was possible to determine the 

position and velocity of each vehicle.  

The proposed cognitive network was compared in terms of throughput and PDF with the 

same benchmark networks used in the urban heterogeneous network scenario. Figure 

6.14 through 6.19 show the network performance in terms of throughput and PDF. 

Similar to the urban heterogeneous network, the FuzzOnto network performed better 

when the load on the network was high. Figure 6.16 shows that the median achieved 

throughput for FuzzOnto with a LTE bandwidth of 100 RB was around 2.6 Mbps, while 

the LTE network achieved around 1.2 Mbps. Even when the FuzzOnto used only 75 RB, 

it outperformed the LTE network with 100 RB by about 80%. Finally, the FuzzOnto 

network achieved an average throughput with an increase of more than 40% compared 

with the other networks. FuzzOnto also achieved a higher PDF compared with the other 

networks. For example, in Figure 6.18, the FuzzOnto network achieved a PDF around 

0.45 while the best benchmark network achieved a PDF around 0.29.  

To verify that the proposed model was significantly improving the network throughput, 

ANOVA statistical test was performed on each scenario. This test verified that the 

difference between the results in each scenario was systematic. Equation (6.5) (Scheffe 

1959) was used to check whether the results were statistically different. 
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 ,CritFF   (6.5) 

 

where F is the ANOVA test statistic and FCrit is the critical value obtained from the F-

distribution table. Another parameter in the ANOVA test is the probability (p) of having 

the improvement where the preferred value is < 0.05. To verify that the heterogeneous 

network employing FuzzOnto produced better throughput, Fisher’s least significant 

difference (LSD) test was performed on the results from each network. The average 

throughput of each network type (LTEavr, FuzzOntoavr, Randavr, VHavr, Balanceavr, and Wi-

Fiavr) was calculated and if | FuzzOntoavr − LTEavr | > LCD, then the two averages were 

statistically different. Table 6-3 and 6-4 show the ANOVA and LCD results for each 

scenario. 

 

Figure 6-15: Average throughput for VANET heterogeneous network with low load. 
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Figure 6-16: Average throughput for VANET heterogeneous network with medium load. 

 

Figure 6-17: Average throughput for VANET heterogeneous network with high load. 
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Figure 6-18: Packet delivery fraction for VANET heterogeneous network with low load. 

 

Figure 6-19: Packet delivery fraction for VANET heterogeneous network with medium load. 
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Figure 6-20: Packet delivery fraction for VANET heterogeneous network with high load. 

The results of the ANOVA test showed that the throughput results of each network were 

not obtained by pure chance since p was smaller than 0.001, and the LSD results proved 

that the throughput results were statistically different. 

 

Table 6-3: ANOVA test results. 

Network Scenario F Fcrit p 

Urban Low Load 11.5 2 p < 0.001 

Urban Medium Load 8.83 2 p< 0.001 

Urban High Load 7.79 2 p< 0.001 

VANET Low Load 1.3 2 p<0.001 

VANET Medium Load 3.8 2 p < 0.001 

VANET High Load 5.1 2 p < 0.001 
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Table 6-4: LSD results. 

Network 
Scenario 

Throughput Average for the Networks (Kbps) 
LSD 

Onto LTE Learn VH Bal Wi-Fi Rand 

Urban Low Load 2710.4 2476.3 2468.9 2643 2305.9 677 2141.3 538.5 

Urban Medium 
Load 

3939.1 2784.8 3102.0 2593.6 2842 854.5 2596.9 807.7 

Urban High Load 4611.4 2883.3 3483.1 3329.8 2946.5 1001.3 2152.3 1044.1 

VANET Low Load 1992.4 1142.1 1707.6 1915.1 1665.6 1222.4 1670.5 748.22 

VANET Medium 
Load 

4197 1236.5 2274 2514.3 2120 1962.2 2172.6 1353 

VANET High Load 5338.1 1250.2 2234.3 1789.8 2408.1 2206.9 2465.4 1535.2 

 Summary 

This chapter introduced a novel semantic reasoning system for heterogeneous wireless 

networks to create a middleware that facilitates the process of managing and optimising 

various network architectures. The semantic reasoning system consists of two new 

semantic-based systems. The first one is a semantic knowledge base in which ontologies 

and a semantic rule base are employed to specify the QoS parameters and different 

network characteristics. The second system is a semantic inference engine that utilises 

fuzzy logic to create instances of the heterogeneous network ontology in a knowledge 

base and develop a fuzzy reasoner to utilise the knowledge base and the semantic rule 

base to infer the best action to optimise the network performance. The simulation results 

showed that the heterogeneous network outperformed the benchmark networks using 

two scenarios: the first utilised LTE and WMN, and the second included VANET. The 

proposed cognitive network enhanced network throughput by as much as 70% even 

when the LTE network utilised high bandwidth. The proposed semantic reasoning 
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system could be used to represent parameters from upper layers in the networking 

protocol stack and provide a smart platform to integrate applications in smart homes or 

smart cities with the infrastructure for next-generation wireless networks. 
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Conclusions and Future Work 

 

This chapter concludes the thesis. Section 7.1 highlights the main contributions of the 

research work. Section 7.2 provides a conclusion to the work that has been described in 

this thesis;. Section 7.3 discusses the limitations and makes recommendations for future 

research.    

 Contributions 

The main contributions of this thesis are as follows: 

 A cognitive network framework obtains cross-layer information from each 

transmission device installed on the wireless node. This model is designed to 

create a self-optimised, self-configured and self-managed heterogeneous 

wireless mesh network to assist network operators in utilising non-overlapping 

frequency bands and to enhance network performance. It abstracts the network 

control system from the infrastructure, which simplifies the process of managing 

and optimising networks. The system receives information from multiple layers of 
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the network protocol stack and develops a reasoning system to improve network 

performance and establish a self-organised network. 

 A new rate adaptation algorithm based on reinforcement learning (RARE) is 

proposed to minimise the impact of the interference on the WMN. The algorithm 

optimises the transmission rate for the dynamic environment of WMNs. It 

considers the condition of the communication links on the neighbouring link to 

mitigate the negative impact of updating the transmission rate unnecessarily 

when the transmission failure is caused by channel error rather than interference. 

The results showed that the new algorithm achieve throughput that was as much 

as 90% higher than other state of the art rate adaptation algorithms. 

 A new routing metric employs the transmission rate of the RARE algorithm to 

estimate the transmission link quality of WMNs. The proposed rate adaptation 

algorithm sets the transmission rate based on the link quality of the neighbouring 

nodes and the load on the Wi-Fi device. Thus, the transmission rate estimates 

the amount of interference and collision with other nodes and the load on the 

node. Thus, the best link quality provides the highest transmission rate. 

 A novel heterogeneous wireless mesh network architecture overcomes the 

drawbacks of each transmission technology utilised in the network. The use of 

WMN increases the network capacity by utilising unlicensed frequency bands, 

which reduces the cost of buying additional LTE licensed frequencies. The LTE 

network is utilised to avoid low quality Wi-Fi links or connect island nodes when 

link failure occurs. 

 A new routing algorithm is developed for the heterogeneous wireless mesh 

network architecture, which prescribes how the heterogeneous devices 

communicate with each other. The purpose of the proposed protocol is to create 
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the required routing tables in order to allow the heterogeneous wireless devices 

to send packets between LTE and WMN. The routing protocol specifies the set 

of routing tables that each node needs to maintain and the set of control 

messages that the heterogeneous nodes exchange among each other. It also 

specifies the type of transmission technology to be used to transmit these control 

messages. 

 A new routing selection algorithm based on reinforcement learning named 

cognitive heterogeneous routing (CHR) is developed. CHR defines the steps 

required to select the transmission device at nodes that have both LTE and Wi-

Fi devices. Reinforcement learning is employed to understand the previous 

actions and optimise the network performance. The simulation results showed 

that the proposed network and routing algorithm increased network performance 

by up to 200% compared with Wi-Fi-only networks and LTE-only networks. 

 A new semantic knowledge-based system uses an extensible mark-up language 

(XML), which is a platform-independent technology that enables the ontology 

system to be processed and installed on any operating system. The ontology 

system simplifies the process of capturing the parameters of the heterogeneous 

systems from different layers of the network protocol stack and creates a high-

level description of the heterogeneous wireless mesh network. 

 A new semantic reasoning system controls different network architectures and 

selects RAN by employing ontology relationships between the cross-layer 

parameters of each network device. It abstracted the control of heterogeneous 

networks from the infrastructure. The use of semantic technologies and different 

reasoning systemssss enables the heterogeneous wireless network to operate 

and coordinate the different network architectures automatically and minimise the 
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need for human interaction. The use of the semantic reasoning system with 

heterogeneous network optimised the performance by up to 70% of the network 

throughput.  

  Conclusions 

The main aim of this study was to develop a heterogeneous WMN by developing a smart 

framework to create middleware to facilitate the process of optimisation, configuration 

and management this network automatically. In this thesis, this main aim and the 

individual research objectives have been achieved. 

The first objective of this research was to develop a cognitive network framework for 

heterogeneous WMN that works as an adaptor between various transmission 

technologies. The framework was designed to facilitate the integration among different 

wireless and wired transmission technologies by creating a relationship between 

technology-dependent parameters and storing the parameters in an ontology knowledge 

base. The proposed framework uses multiple network architectures and optimises their 

performances as a single virtual network.  

For mitigating the negative impact of interference on a WMN, a new rate adaptation 

algorithm based on reinforcement learning (RARE) was developed to overcome the 

limitation of recent rate adaptation algorithms that were developed for infrastructure-

based wireless networks. The transmission rate was used in this study as a metric to 

estimate the WMN channel quality; the node with a higher transmission rate had the 

better link quality. The algorithm learned from previous updates to avoid unnecessary 

changes in the transmission rate (e.g., due to channel error rather than interference), 

which caused packet loss. The proposed algorithm considered the transmission rate of 
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the other nodes that compete to access the transmission channel, as well as the traffic 

load.  

The next objective was to develop a new network architecture that utilised the non-

overlapped frequency bands of different network types. For this purpose, a novel 

heterogeneous network architecture was proposed that combined LTE and WMN 

architectures to work as part of a single network. The LTE network was used to avoid 

congested Wi-Fi nodes and high interference paths in the WMN, while the WMN 

offloaded the load of the LTE network, which reduced the cost of using more license 

frequency bands and forwarded the data to another node when the LTE throughput was 

degrading. 

To route the traffic between the different network architectures, a new heterogeneous 

WMN routing protocol was developed. The proposed routing protocol introduced a set 

of control messages. These control messages are exchanged using the available 

technologies on the nodes; for example, the LTE network could be used to send an IP 

address of the Wi-Fi network and the LTE network to the Internet Gateway in the 

proposed architecture. The heterogeneous routing protocol created and maintained 

routing tables on the heterogeneous nodes to forward data packets from the different 

networks just as if they were coming from the same network. 

The next objective of this research was to develop decision-making algorithms to 

estimate the cost of transmitting the traffic through each network. A novel cognitive 

heterogeneous routing (CHR) algorithm was proposed to dynamically select the 

transmission technology in order to increase the overall network capacity and enhance 

the average throughput. The proposed algorithm considered the traffic load on the LTE 
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network as a metric to estimate the cost of transmission over LTE and used the 

transmission rate as a metric for the Wi-Fi mesh network.  

Finally, the last objective was to develop a mechanism to automatically configure 

different communication systems and to forward traffic demands through suitable 

transmission devices without the need to customise the software of the transmission 

devices or update the other layers of the Internet protocol stack. A novel semantic 

decision system was proposed, which used semantic reasoning with cross-layer 

parameters from the heterogeneous network architectures to manage and optimise the 

performance of the networks. This system obtained the required parameters from the 

routing protocol and employed these data to create relationships among technology-

dependent parameters, which were then stored in an ontology knowledge base. This 

work introduced the use of ontologies and inference engines in managing, controlling 

and adding more network types to the heterogeneous WMN. The ontologies provided 

an abstract representation of heterogeneous networks, while fuzzy logic was used to 

represent the degree of QoS parameters in the ontology knowledge base. The semantic 

reasoning system utilised parameters from cross layers on each transmission 

technology to dynamically choose the RAN and avoid bad channel quality or a 

congested network. The reasoner in this study used the load and the channel quality 

indication (CQI) on the LTE network as metrics to estimate the cost of transmission over 

a LTE network, and used the transmission rate and success rate as metrics for the Wi-

Fi mesh network, and LCD in addition to transmission rate for VANET network.  
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 Limitations and Future Work 

The scope of this work involved heterogeneous WMN with a cross-layer design. Although 

benefits have been demonstrated using data from the lower layers, the cognitive network 

framework can easily be extended to represent parameters from the upper layers in the 

networking protocol stack. This is particularly relevant in view of the latest trends in the 

Internet of things (IoT), Industry 4.0 and big data. It could also be used to provide a smart 

platform to integrate applications from smart homes or smart cities using the 

heterogeneous network to create an infrastructure for the next-generation wireless 

networks.  

In future work, the security of the heterogeneous network architecture should be 

considered by including security protocols in the cognitive network framework. A 

reconfigurable and self-adaptive security mechanism is required to insure clients’ privacy 

and service integrity.  

The proposed framework could also be used to develop different services using an 

inference engine by adding new rules for reasoning using the knowledge base. The 

proposed model provides the foundation for the future exploration of the use of semantic 

technologies in wireless transmission technologies, such as wireless personal area 

network (802.14.5/ZigBee and Bluetooth), to support nodes with limited resources and 

to develop smart and self-configured network applications for the next-generation 

networks.  

A potential research direction is the software defined network (SDN). SDN allows 

administrators to manage network services separately from the network infrastructure 

and enables the network to be programmable. The use of the proposed semantic 
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reasoning system to abstract the infrastructure from the control system provides the 

foundation for further research on integrating it with an SDN. It is possible to allow 

network administrators to extend networks services by using customised ontology 

classes and to integrate ontology classes with SDN architecture. 

Another potential research path is the use of high frequency bands, 3–300 GHz, in the 

heterogeneous network architectures. This part of the spectrum is not widely utilised, 

which means that it offers very high data rates, but does not suffer from high interference. 

However, these bands do suffer from a higher propagation loss; they also have a poor 

ability to penetrate objects, and any moisture in the air from rain and fog can significantly 

reduce the range due to the high attenuation in the signal. Heterogeneous WMN could 

utilise these bands to transmit at a very high data rate by adding new rules to the 

semantic reasoning system.   
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