
i

REPLICA PLACEMENT IN PEER-TO-PEER SYSTEMS

Thesis submitted for the degree of Doctor of Philosophy

By:

WAN SURYANI WAN AWANG

School of Computer Science & Informatics

Cardiff University

2016

iii

ACKNOWLEDGEMENTS

First and foremost I would like to thank Allah (SWT), for the strength and enables me

in completing this thesis. Warmest gratitude to my supervisor, Professor Omer F.

Rana, for the support, constructive comments, guidance and patience throughout my

study. I would like to extend my gratitude and acknowledgements to Dr Andrew C.

Jones, Professor Stuart M. Allen, Professor David W. Walker, Dr Ioan Petri, Professor

Mustafa Mat Deris, Associate Professor Dr Fadhilah Ahmad, Dr Mona Ali, Dr Asma

Saidi, Dr Izan Jaafar, Dr Ahmad Nazari Mohd Rose and Dr. Zarina Mohamad for their

insightful comments and constructive criticisms of the work. I am very thankful to

Mrs Helen Williams for the administrative problems I have been putting her through.

This dissertation is dedicated to my husband Mohd Yusoff Mustafa and my daughters

Yasmin Syauqina, Yasmin Syahirah, Yasmin Suraya, Yasmin Syafiqah and Maryam

Aqilah for their patience and support during the time of hardship and for constantly

inspiring me in the quest of knowledge. Without the support and security from my

family members, it would be impossible for me to complete this work. This

dissertation is also dedicated to the memory of my beloved parents. Their memories

gave me the nourishment to fulfill my dreams.

I am indebted to my University, University Sultan Zainal Abidin (UniSZA) and my

Faculty, Faculty of Informatics and Computing (FIK), for entrusting me with the

opportunity to pursue this study. I thank the Malaysian government for funding my

PhD in Cardiff University. Last but not the least, I thank everyone who has contributed

in the completion of this thesis, directly or indirectly.

iv

ABSTRACT

In today’s distributed applications, replica placement is essential since moving the data

in the vicinity of an application will provide many benefits. The increasing

requirements of data for scientific applications and collaborative access to these data

make data placement even more important. Until now, replication is one of the main

mechanisms used in distributed data whereby identical copies of data are generated

and stored at various distributed sites to improve data access performance and data

availability. Most work considers file’s popularity as one of the important parameters

taken into consideration when designing replica placement strategies. However, this

thesis argues that a combination of popularity and affinity files are the most important

parameters which can be used in decision making whilst improving data access

performance and data availability in distributed environments. A replica placement

mechanism called Affinity Replica Placement Mechanism (ARPM) is proposed

focusing on popular files and affinity files. The idea of ARPM is to improve data

availability and accessibility in peer-to-peer (P2P) replica placement strategy. A P2P

simulator, PeerSim, was used to evaluate the performance of this dynamic replica

placement strategy. The simulation results demonstrated the effectiveness of ARPM

hence provided a proof that ARPM has contributed towards a new dimension of replica

placement strategy that incorporates the affinity and popularity of files replicas in P2P

systems.

v

Table Of Contents

DECLARATION ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES ix

LIST OF TABLES xi

CHAPTER 1 INTRODUCTION

1.1 Background Study 1

1.2 Problem Statements 5

1.3 Research Hypothesis and Questions 7

1.4 Research Objectives 8

1.5 The Scope of the Research 9

1.6 Contributions of the Study 10

1.7 The Structure of the Thesis 11

CHAPTER 2 REPLICA PLACEMENT IN P2P SYSTEMS

2.1 Introduction 13

2.2 Grid Topologies 17

 2.2.1 The Hierarchical Topology 17

2.2.2 The Peer-to-Peer Topology 19

2.2.3 The Hybrid Topology 21

2.3 Data Replication Strategies 23

2.4 Issues Related to Data Replication in Distributed Systems 29

vi

2.5 Replica Placement in Peer-to-Peer Systems 29

2.5.1 Owner Replication 30

2.5.2 Path Replication 31

2.5.3 Random Replication 31

2.5.4 Uniform replication 31

2.5.5 Proportional Replication and Square-root replication 32

2.6 Replica Selection 32

2.7 The Affinity Concept 33

 2.7.1 Affinity implemented in Desktop Grids 34

 2.7.2 Affinity in Self-Immune Systems 36

 2.7.3 Affinity Replica Location Policy 38

2.8 Popularity Driven Replica Placement Algorithm 38

2.9 PeerSim Simulator 40

2.10 Summary 44

CHAPTER 3 AFFINITY REPLICA PLACEMENT

3.1 Introduction 45

3.2 The Affinity 50

3.3 Access Frequency 55

3.4 Replica Selection Decisions 56

3.5 Access Frequency as Dominant Factor 57

 3.5.1 Case 1: Single-Query to Single-File 58

 3.5.2 Case 2: Single-Query to Multiple-Files 59

 3.5.3 Case 3: Multiple-Query to Single-File 60

 3.5.4 Case 4: Multiple-Query to Multiple-Files 63

3.6 Number of Replicas 66

3.7 Affinity Degree as Dominant Factor 67

3.7.1 Case 1: Single-Query to Single-File 68

 3.7.2 Case 2: Single-Query to Multiple-Files 68

 3.7.3 Case 3: Multiple-Query to Single-File 71

 3.7.4 Case 4: Multiple-Query to Multiple-Files 73

vii

3.8 ARPM System Model 74

3.9 ARPM Algorithms 76

3.10 Summary 79

CHAPTER 4 SIMULATION BASED AFFINITY

4.1 Introduction 80

4.2 System Parameters 81

4.3 Simulation Parameters 81

4.4. ARPM Implementation 83

4.4.1 The Topology Layer 83

 4.4.2 The Discovery Layer 84

 4.4.3 ARPM Replica Placement Layer 85

4.5 Fundamental Decision in Replica Placement 87

4.6 System Testing 89

4.7 Experiments of Affinity Replica Placement Mechanism (ARPM) 89

4.7.1 Case 1: Single-Query to Single-File 90

 4.7.2 Case 2: Single-Query to Multiple-Files 90

 4.7.3 Case 3: Multiple-Query to Single-File 90

4.7.4 Case 4: Multiple-Query to Multiple-Files 91

4.8 Summary 92

CHAPTER 5 EVALUATION AND EXPERIMENTAL RESULTS

5.1 Experimental and Simulation Platforms 93

5.2 Simulation Results 92

 5.2.1 Access Frequency 94

 5.2.2 Affinity Degree 94

 5.2.3 Number of Replicas 95

5.3 Discussions 95

5.4. Summary 102

viii

CHAPTER 6 CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion 104

6.2 Contributions 106

6.3 Practical Applications 107

6.4 Issues and Limitations 108

6.5 Future Directions 108

REFERENCES 111

ix

LIST OF FIGURES

1.1 An example of correlated data for single and multi-transactions 4

2.1 Data requirements for scientific applications 14

2.2 A hierarchical model 18

2.3 A Peer-to-Peer topology 19

2.4 P2P model for scientific data grid 20

2.5 A hybrid model 22

2.6 A hybrid topology 22

2.7 Replication strategy taxonomy 27

2.8 The taxonomy of the file models 28

2.9 BitDew software architectecture 36

2.10 Propitiate Multi Agent System (PMAS) created
between six agents based on keyword similarity 37

2.11 An example of access history and node relation 39

2.12 A PeerSim architecture 42

3.1 The Venn diagram of selecting affinity files
 from the popular files in the system 48

3.2 The Venn diagram of selecting popular files
 from the affinity files in the system. 48

3.3 Affinity Replica Placement Mechanism (ARPM) 3 tier architecture 76

3.4 Algorithm for access frequency 77

3.5 Algorithm for affinity degree 78

3.6 Algorithm for path affinity 78

x

4.1 ARPM 3-tier architecture 83

4.3 ARPM screenshot for random queries in PeerSim 87

4.4 The ARPM screenshot simulated in PeerSim 91

5.1 The relationship between Access Frequency (AF) and time interval (T) 98

5.2 Files replication based on the degree of Affinity 101

xi

LIST OF TABLES

2.1 Replica placement strategies in P2P 30

3.1 The affinity degree indicator 52

3.2 Example of affinity degree 52

3.3 Dominant factors which file to replicate 55

3.4 Dominant factors which file to replicate in Boolean representation 56

3.5 The single query and multiple query scenarios 58

3.6 An example of access frequency for Single-Query to Multiple-Files
 at time interval t=1 60

3.7 An example of access frequency for Single Query to Multiple-Files

at time interval t=2 60

3.8 An example of access frequency for 61
 Multiple-Query to Single-File at time interval t=1

3.9 An example of access frequency for 61
 Multiple-Query to Single-File at time interval t=2

3.10 An example of access frequency for 61
 Multiple-Query to Single-File at time interval t=2

3.11 An example of access frequency for
 Multiple-Query to Single-File at time interval t=2 62

 3.12 An example of access frequency for
 Multiple-Query to Single-File at time interval t=2 62

3.13 An example of access frequency for
 Multiple-Query to Single-File at time interval t=2 62

xii

3.14 An example of access frequency for
 Multiple-Query to Multiple-Files at time interval t=1 63

3.15 An example of access frequency for
 Multiple-Query to Multiple-Files at time interval t=2 63

3.16 An example of access frequency for
 Multiple-Query to Multiple-Files at time interval t=3 63

3.17 An example of access frequency for
 Multiple-Query to Multiple-Files at time interval t=4 64

3.18 An example of NodeId and FileId 67

3. 19 An example of Success Hit 68

4.1 Simulation parameters 82

4.2 The single query and multiple query scenario 86

5.1 An example of calculated Access Frequency (AF) 96

5.2 An example of calculated Access Frequency (AF)
 and Affinity Degree (AD) 98

5.3 An example of calculated affinity degree 100

1

CHAPTER 1

INTRODUCTION

This chapter presents an introduction of this thesis. It starts with the general area of

the key concepts related to the research problem addressed. Then the fundamental

motivation behind this research is stated and the proposed solutions to address the

research challenges are briefly presented. The chapter ends with a discussion on the

research contributions and the structure of the thesis.

1.1 Background Study

In distributed systems, data-intensive scientific computations have been quite

common in many disciplines such as high energy particle physics, climate

simulation, genomics, molecular docking, and bioinformatics (Chervenak et al.,

2000; Ranganathan et al., 2002; Cohen and Shenker, 2002, Wang et al., 2013). The

data in the distributed systems is organised as collections or datasets that are stored

on mass storage systems or repositories. These datasets are accessed by users in

2

different locations who may create local copies or replicas of the datasets with the

intention of reducing the latency involved in wide-area data transfer. A complete

copy of the original dataset is referred as a replica.

Further on, the massive datasets in data-intensive scientific applications are been

shared, generated, and accessed by a community of thousands of researchers located

around the world. These researchers may need to transfer large subsets of the datasets

to local sites or remote resources for processing. They may create local copies or

replicas to reduce wide area network data transfer latencies. In most situations, the

datasets requested by a user’s job cannot be found at the local nodes. In this case,

high latency is incurred since data has to be fetched from other nodes in the

distributed systems. Until now, the data requirements in these applications continue

to increase drastically every year. The increase of the scientific dataset has escalated

from Terascale (1012) to Petascale (1015) and towards Exascale (1018) systems in

years to come (Reed et al., 2015; Parsons, 2013).

The problem is not only the massive needs of the input-output scientific data

applications, but more importantly, the number of users, ranging from hundreds to

thousands, who access and share the same datasets. Moreover, these users and the

datasets are geographically distributed. Thus, there is an urgent need to obtain

solutions to manage, distribute and access large sets of raw and processed data

efficiently and effectively in the distributed environments (Deris et al., 2008).

An important technique to speed up access in data distributed systems is to replicate

data at multiple locations, so that a user can access the data from a nearby site

3

(Venugopal et al., 2009; Abawajy and Mat Deris, 2014). One of the primary goals of

data replication is to ensure data availability which is deemed essential in some

applications such as in distributed systems, database, cloud networks and mobile

systems (Goel and Buyya, 2013; Zhang et al., 2010). Creating additional copies at

more than one site, not only cut down the probability of loss of all copies of data on

a single site, but also brings down the bandwidth use and access latency (Chang and

Chang, 2008). In addition, creating replicas can reroute client requests to the data

with the closest proximity to the site where the request originated. Consequently, it

will increase the system performance and provide higher access speed than a single

server (Tang et al., 2005).

A replication mechanism suggested by (Chang and Chang, 2008; Zhao et al., 2008;

Fadaie and Rahmani, 2012; Abawajy and Mat Deris, 2014) must always consider

three important decisions pertaining to replica strategy. Firstly which file should be

replicated, secondly when to replicate and thirdly where the new replicas should be

placed. Then (Grace and Manimegalai, 2014) followed-up the discussion on the

important decisions by identifying two important challenges in data replication. The

first challenge in data replication technique is replica placement and the second

challenge is replica selection.

Replica placement decides when to replicate and where the new replicas should be

placed whilst replica selection decide which file needs to be replicated. Both replica

placement and replica selection are equally important in proposing a dynamic

replication strategy in distributed environments.

4

Several research works addressing data replica placement issues in distributed

systems used the access pattern as guidelines in deciding the dynamic replica

placement (Mansouri and Dastghaibbyfard, 2012; Rahman, 2006; Chen et al., 2002;

Ranganathan and Foster, 2001). Most of these access frequency based solutions are

assuming that files are independent of each other. In contrast, distributed systems

such as peer-to-peer, files may be dependent or correlated to one another. Correlated

or affine files refer to the files that are accessed by the same transaction or more than

one transaction accessing the same files. For example, a client or a query accessing

multiple queries accesses the same data. Figure 1.1 shows the correlated data

accessed by the same transaction (C1) and two transactions (C1 and C2) accessing

the same data.

Figure 1.1: An example of correlated data for single and multi-transactions

As mentioned earlier, files that have correlated transactions are also known as affined

files. In this thesis, the concept of affined files or simply affinity is used to make

decisions to replicate the correlated files in solving the replica placement problems.

Affinity not only refers to the relationship, but also refers to the linking between two

or more people or elements. For example, a group of people sharing the same

5

hobbies, liking the same music, and graduated from the same university. This

scenario creates affinity because the people have the same interest and work together.

The interesting logic of an affinity concept inspires us to develop replica placement

strategy in peer-to-peer systems that enable us to replicate files that have correlation

with one another. Thus, in this thesis affinity is considered as one of the most

important parameters in designing dynamic replica placement strategy.

Equally important, the second parameter that is taken into consideration in designing

replica placement strategy is data popularity. Herein, both popularity and affinity are

applied to address replica placement problems in peer-to- peer (P2P) systems. Our

aim is to develop a technique to improve data access performance through

minimizing the access time and to ensure data availability in P2P systems. The idea

is that, given certain access pattern and affinity files, three important decisions can

be made on which files to replicate, how many to replicate and where to place the

replicas in P2P systems.

 1.2 Problem Statement

Availability and efficient accesses are critical requirements in many data intensive

applications. As discussed in the previous section of this thesis, the benefit of

adopting affinity notion in replica placement is apparent when research collaboration

among peers is required. The existing methods (Yang et. a., 2011; Madi et al., 2011)

assumed that files are independent of each other. However, in fully-distributed

systems such as peer-to-peer network, files may be dependent or correlated to one

6

another. These correlated files; referred as affinity files are required together by a

query or a set of queries. Normally queries tend to access related files residing across

multiple locations. Similarly, a file is often requested and accessed by multiple users.

A set of files accessed by one user is also likely to be accessed together by other

users.

In research collaboration environment, researchers in different regions with similar

research interest may require data from other researchers. Suppose that in order to

complete the research project, the researchers may request a set of files from servers

at different locations. If the files belong to multiple owners in disperse locations, it

requires a large amount of data and the task is time consuming. This is due to the

need to find, access, analyse, and visualize data which will greatly affect the

productivity of the researchers. Hence, data replication is strongly needed and further

improvements on new algorithms, protocols, replication schemas, and placement

strategies are critical. Despite this, file replicas must be managed intelligently and

dynamically so that data is shared and replicated in the network with the objective of

not just to merely fulfil the request but most importantly to have trusted transactions

via the affinity relationship between the sender and the requester.

Currently, there are hardly any literature exploring the notion of affinity in creating

and disseminating file replicas in file sharing distributed systems. There is a similar

study (Abawajy, 2004) conducted on affinity replica location policy. However this

policy only focused on the location of replicas to be replicated without considering

affinity files. Some studies were conducted in other areas such as desktop grid, data

7

mining, self-immune systems, biology, and chemistry (Fedak et al., 2009; Bakhouya

and Gaber, 2006; Gilson et al., 2016; Shi et al., 2015; Dallakyan and Olson, 2015).

Therefore, this research aims to improve replica placement technique by exploring

the aspect of affinity files. This is achieved through formulating the affinity degree

of the related files in the systems.

This research focuses on replica placement issues. As identified by Grace and

Manimegalai (2014), Rasool et al., (2009), Fadaie and Rahmani (2012), the overall

replication problems evolve around these issues; (1) Which files should be replicated;

(2) How many replicas should be created; (3) Where the replicas need to be placed

in the system. The central point of the research is on the popularity and the notions

of affinity to improve data availability and accessibility in peer-to-peer replica

placement strategy.

1.3 Research Hypothesis and Questions

This thesis argues that a combination of popularity and affinity can be used to

improve availability and accessibility in replica placements. The research hypothesis

is been verified through simulation. Some keywords in the hypothesis are defined as

below:

 Availability in replica placement context means that the placement of

replicas can ensure the service continuity for the requested file by

8

guaranteeing the existence of a replica in another site when it is not available

in a given site.

 Accessibility refers to the characteristics of being able to access when the

data is required.

 Popularity in this hypothesis refers to how many times the data is requested

by a client or the system site and it indicates the importance of the data.

 Affinity can be defined as correlated file, similarity, dependency,

relationship, linking between two or more people or elements, and natural

liking.

Reflecting upon the problem described in Section 1.2, the following research

questions are formulated:

 Which files to replicate?

 How many replicas are required?

 Where these replicas should be placed in the system?

These decisions on P2P replica placement are very important in order to get the

utmost benefit from the replication process.

1.4 Research Objectives

This thesis started with the subject of the common themes and differences in replica

placement strategies in distributed systems. The concept of affinity in the setting of

9

file relationship and user access patterns was used to produce a simple model that

supports the replication in P2P systems. A user can send a query to access the

required file existing in any nodes in the network using an affinity placement

mechanism. This research specifically aims to achieve the following objectives:

1. To propose a model for replica placement in peer-to-peer systems

identifying the three research questions in section 1.3.

2. To propose an efficient strategy that incorporates affinity and the popularity

of the files.

3. To measure the improvement of data access performance through

simulation.

1.5 The Scope of the Research

This research focuses on combining the popularity and affinity files as two most

important parameters in designing replica placement strategy in distributed systems.

Given these two parameters, replica placement and replica selection for data

replication can be constructed. The problem of file updates and synchronization are

not addressed in this research with files are regarded as being read-only. This is due

to the fact that certain characteristics of datasets are specific to the applications for

which they are targeted. For example, in astrophysics or high energy physics

experiments, the principal instrument such as a telescope or a particle accelerator is

the single site of data generation.

10

This means that all data is written at a single site, and then replicated to other sites

for read access only. Updates to the source are propagated to the replicas either by

the replication mechanism or by a separate consistency management service

(Shorfuzzaman, 2012).

1.6 Contributions of the Study

This thesis highlights several contributions towards improving the understanding of

replication in distributed systems, focusing in the area of replica placement in peer-

to-peer network.

There are four major contributions in the thesis as follows:

 ARPM has been proposed and it has successfully contributed to the

improvement of data access performance through minimizing the access

time.

 ARPM has successfully avoided the over replication of the unnecessary

replicated files in the distributed system.

 The formula for access frequency is adapted mathematically to calculate the

file popularity whilst the formula for affinity degree was established.

 The hybrid of the popularity and relatedness (affinity) of the files demanded

by the clients in the network has been incorporated in our replica placement

strategy

11

1.7 The Structure of the Thesis

This thesis is comprised of six chapters including this introductory chapter. The

remainder of the thesis is organized as follows:

Chapter 2 describes the overview of replica placement in distributed systems. This

includes the related works on replica placement strategy under different and similar

topologies, and also exploring the concept of popularity and affinity. Finally this

chapter discusses some important research in distributed systems which further

focuses on the mechanism that we proposed in this thesis.

Chapter 3 discusses the methodology of the proposed model of Affinity Replica

Placement Mechanism (ARPM). The notion of affinity in ARPM is defined as the

relationship between two or more correlated files in peer-to-peer (P2P) systems. The

replica placement strategy in ARPM considers popular files and affinity degree in

deciding which file to replicate and when to replicate the files. The replica placement

is presented and proved analytically. The objective of the proposed model is to

minimize access latency and optimize availability by allowing files to be replicated

based on their high popularity and strong affinity.

Chapter 4 describes the implementation of the proposed ARPM based on simulation.

The performance of the proposed model presented here considers scenarios in single

query and multiple queries from the source node that initiate the request to the

destination node that hold the requested file.

12

Chapter 5 presents the evaluation and the experimental results of the proposed

Affinity Replica Placement Mechanism (ARPM). Detailed discussions on the

simulations results are presented. How queries in a fixed number of cycles and in a

set of time intervals contribute to the replica placement performance is discussed in

this chapter.

Chapter 6 summarizes the contributions of this thesis and discusses future direction

of the research. The discussion allows further exploration of significant research

areas which are closely related to the focus of this thesis.

13

CHAPTER 2

REPLICA PLACEMENT IN P2P SYSTEM

This chapter provides general overview of data replication in distributed systems,

and presents a comparison of several replication strategies in peer-to-peer file sharing

networks and data grids in distributed environment. Specifically, the emphasis is on

the replica placement decisions for providing scientific communities with better

availability and efficient access to massive data. Following the replica placement

decisions, a broader discussion regarding the data access pattern and the affinity data

for which ARPM would be used is also been discussed.

2.1 Introduction

In data scientific applications such as high energy particle physics, climate

simulation, genomics, bio-medicals, and bioinformatics large datasets from

simulations or experiments were generated (Abdullah et al., 2008; Mansouri et al.,

2013). The amount of data in these scientific applications was in the order of a couple

of hundred terabytes or petabytes per year. In addition, with the success of

14

generations of high performance computing (HPC) systems, the next generation of

e-Science infrastructures predicts that HPC will generate data at a very high rate

(terabytes) per year (Chen et al., 2014; Palaniswamy, 2010). The effect is that, by

the year 2020, hundreds of exabytes distributed data are expected to be available

through heterogeneous storage resources for access, analysis, post-processing and

other scientific activities across several centres (Soosai et al., 2012). Figure 2.1

shows the scientific applications predicted by the year 2029. Adding up all the data

from other scientific applications, the total amount of data to be processed is hard to

estimate and is inapprehensible.

Figure 2.1: Data requirements for scientific applications (Palaniswamy, 2010)

The explosive growth of these large data will eventually impact many applications

and collaborations in the research world. In data scientific applications, the

placement of data can have significant impact on the performance of scientific

computations and the availability of the datasets. In addition, the new generation of

15

applications like business intelligence, Web 2.0, social networking requires

distributed processing of terabytes and even petabytes of data (Bakshi K., 2012).

However, relational databases are found to be inadequate in distributed processing

involving very large number of servers and handling Big Data applications. As a

result, major web companies such as Amazon, Facebook and Google, developed their

own, inherently distributed, lightweight solution to act as a database back-end for

their services (Hecht and Jablonski, 2011). These developments spun interest in the

open source world and numerous products appeared under the term NoSQL which

means not only SQL (Dobos et al., 2014). NoSQL systems replicate data over many

servers and support a large number of simple read/write operations per second.

Therefore, the need for efficient data management in distributed system is

imperative. Foster et al., (2001) stated that the most critical requirements in many

data scientific applications are availability and efficient access. Delayed accesses

due to availability problems or non-responsiveness may cause undesired results. To

effectively address these challenges, the need for data replication is apparent. In fact,

data replication is a well-known technique and has been extensively used within the

context of other distributed data intensive paradigms such as in the World Wide Web,

peer-to-peer file sharing networks and mobile database (Shorfuzzaman, et al., 2014;

Yang et al., 2011; Rasool et al., 2009).

Data replication is defined as the creation and maintenance of copies of data at

multiple peers. Creating replicas at a suitable site based on data replication strategy

can increase data availability and ensures efficient data access. Since the similar data

can be found at multiple peers, availability of data is assured in case of peers’ failure.

16

In addition, data replication can provide increased fault tolerance, improved

scalability, reduced bandwidth consumption and improved response time

(Devakirubai and Kannamal, 2013).

Currently many replication strategies have been proposed in distributed

environments (Hamdeni et al., 2016; Luo et al, 2015; Chettaoui and Charrada, 2014;

Sivakumar et. al, 2013; Amjad et al., 2012; Mansouri and Dastghaibbyfard, 2012;

Sashi and Thanamani, 2011; Liu et al., 2006a, 2006b; Rahman et al., 2006; Tang et

al., 2005; Ranganathan and Foster, 2001). Replication strategies can either be in the

form of centralised or distributed. In centralised replication, the replica placement

decisions will be taken by a centralised node. Whilst in distributed replication, all

the nodes in the system participate in decision making (Shen et al., 2010).

As the demand for data increases, these centralised replication strategies are liable to

a single point of failure and become a bottleneck when dealing with huge amount of

data trying to access the same data simultaneously. However, the single point of

failure problem has been solved with the deployment of decentralised replication

strategies (Spaho et al., 2015; Amjad et al., 2012; Mat Deris et al., 2007; Weil et al.,

2006; Wan Awang et al., 2004). According to Grace and Manimegalai (2014) when

developing a data replication protocol, the selection of which files should be

replicated, the number of replicas to be used and the sites where the replicas will be

hosted are the three important decisions to be made such that the aims of data

replications are achieved. These decisions led to the proposed of dynamic replica

placement strategies in major topologies used in a data grid environment (Rahman et

al., 2006; Ranganathan et al., 2002).

17

2.2 Grid Topologies

A data grid topology represents the manner in which data sources are organised in

the grid. Numerous topologies are available for data grid operations (Venugopal et

al., 2009; Rasool et al., 2007, 2008; Tang et al., 2005). Figure 2.2 to Figure 2.5

present the most common topologies established in data grid environments namely:

hierarchical, peer-to-peer and hybrid. In this thesis, the term hierarchical, tree, and

multi-tier refer to the same topology.

2.2.1 The Hierarchical Topology

The replica placement in hierarchical topology has been studied intensively by

(Ranganathan et al., 2002; Abawajy et al., 2004; Tang et.al., 2005; Lin et al., 2006;

Liu et. al, 2006a, 2006b). A hierarchical topology is used when there is a single

source for data and the data has to be distributed among collaborations worldwide.

The architecture of hierarchical or multi-tier data grid is shown in Figure 2.2. As an

example, the LHC (The Large Hadron Collider) application, a project in CERN

(European Organization for Nuclear Research) is hierarchical and is organised in tier.

Each tier refers to a different region namely, local nodes, regional nodes, national

nodes, and international nodes (Chang and Chang, 2008; Goel and Buyya 2013).

All of the leaf nodes represent the clients, and each client can only access the replicas

from its ancestor. Tier-0 represents the main node located at CERN, where all data

are produced. The data is distributed to regional centres at Tier-1. Regional centres

18

further distribute the data to Tier-2 centres which in turn distributed data to

processing institutes at Tier-3. The data is then finally distributed to the end users at

Tier-4. The rate of data transfer from Tier-0 to Tier-1, Tier-1 to Tier-2 and Tier-2 to

Tier-3 is ≈ 622 Mb/sec. Data transfer between Tier-3 and Tier-4 ranges from 10-100

Mb/sec (Goel and Buyya, 2013).

Figure 2.2: A hierarchical model (Venugopal et al., 2006)

A hierarchy model in data grid allows scientific community to access the resources

in a common and efficient way. More importantly, the massive amounts of data

resided in the sites motivate the need for robust data distribution mechanism

(Venugopal et al., 2009). However, achieving this target is difficult especially when

new nodes connect to the hierarchy and performance of the systems becomes

degraded. This situation occurs because the hierarchical model cannot transfer data

among sibling nodes or nodes situated on the same tier. Nevertheless, in a

19

hierarchical model, it is easier to maintain data consistency as all data are kept in a

single source (root or Tier-0).

2.2.2 The Peer-to-peer Topology

A peer-to-peer system has managed to overcome the limitations of hierarchical and

centralised server approaches from network congestion, scalability and fault

tolerance limitations. The term “peer-to-peer” (P2P) refers to a class of systems and

applications that employs distributed resources to perform a function in a

decentralized manner. Figure 2.3 shows the pure decentralised peer-to-peer topology.

The pure decentralized P2P topology allows more complex dependencies between

computing resources in a fully distributed behaviour. Some of the benefits of a P2P

approach include: improving scalability by avoiding dependency on centralized

points; eliminating the need for costly infrastructure by enabling direct

communication among clients; and enabling resource aggregation.

Figure 2.3: Peer-to-peer topology (Steinmetz and Wehrle, 2005)

20

Figure 2.4 shows P2P model for a scientific data grid that will support scientific

collaboration proposed by Abdullah et.al, (2009). This model is specified as

unstructured P2P model, where peers could be any network devices such as PCs,

servers and even supercomputers. The analogy of the proposed model is similar to

electrical power grid. The users or scientists (peers) can access their required datasets

without knowing which peers deliver the datasets. This means that the users can

execute their applications, obtain the remote datasets and then wait for the results.

This will be done by the discovery service. Each peer operates independently and

asynchronously from all other peers and it can be self-organized into a peer group.

Peer group contains peers that have agreed upon a common set of services, and

through this peer group, peer can discover each other on the network.

Figure 2.4: P2P model for scientific data grid (Abdullah et al., 2009)

Once a peer joins a group it uses all the services provided by the group. Peers can

join or leave the group anytime that they want. In this model, once a peer joins the

21

group, all the datasets that are shared by other peers in the group will be available to

him. Peers can also share any of their own datasets with other peers within the group.

A peer may belong to more than one group simultaneously. The focus of the research

in Abdullah et.al, (2009) is to propose a decentralized discovery strategy for

Scientific Data Grid that addresses the scalability problem and also reliability

problem.

The attractive features of P2P systems are the high availability and reduced query

latency towards user request (Karun and Jayasudha, 2013). These are achieved

because of the inherent redundancy in the system through replication where peers

replicate each other‘s data so that when one peer is offline the other can serve the

request. Many studies in P2P networks consider the replica placement problem i.e.

how to place replicas in proper locations so that the overall performance of the system

is improved.

2.2.3 The Hybrid Topology

The hybrid topology is a new emerging topology as data grids mature and widely

used in industries (Garmehi et. al, 2014; Lahemahedi et al., 2002). This topology

combines all the centralised, hierarchical, and P2P topologies. Figure 2.5 shows a

hybrid topology of a hierarchical data grid and peer linkages at the edges. Another

hybrid topology model in Figure 2.6 shows the peers and super-peers connections.

A Super-peer is responsible for returning results to the queries posed by their

neighbouring leaf-nodes.

22

Figure 2.5: A hybrid model (Venugopal et al., 2006)

Figure 2.6: A hybrid topology (Steinmetz and Wehrle, 2005)

The overall file replication problem consist of making the following decisions:

which files should be replicated; how many replicas should be created; and where

the replicas should be placed. Depending on those answers, various different

replication strategies are proposed (Hamdeni et al., 2016; Rasool et al., 2011;

Abawajy et al., 2008; Weil et al., 2006)

23

2.3 Data Replication Strategies

This section provides several recent studies on data replication focused on ensuring

data availability, improving fault tolerance and reducing file access time (Garmehi

and Mansouri 2007; Amjad et al., 2012). Data replication as one of the best known

strategies used to achieve high level availability and fault tolerance as well as

minimizing the access times in distributed systems are emphasized by Garmehi and

Mansouri (2007). They proposed an algorithm to find optimal placement of k replicas

of an object over data grid systems such that the overall cost of storage and read is

minimised.

Three types of user access patterns (random access, temporal locality, geographical

and temporal locality) were identified by Ranganathan et al., (2001) and they

suggested six replica strategies which include: No Replica, Best Client, Cascading

Replication, Plain Caching, Caching plus Cascading Replica and Fast Spread. The

simulation results show that matching replica strategy with suitable access pattern

would save bandwidth and reduce access latency. In the geographical locality

pattern, Cascading can have best performance in response time.

The problem of placing a new replica in proper place by considering its priority list

was addressed by Lin et al., (2008). Herein, the proposed replica placement algorithm

find out the minimum number of replicas when the maximum workload capacity of

each replica is given. The authors extended the tree architecture to the Sibling Tree

model. In this model, if the requested data is not present in sibling ring then the

parent ring is searched. Furthermore, the logical connection between the siblings and

24

all connections from one sibling to another physically involves the parent at most

two hops. This means that the actual time taken to serve a request is infected more

than it is presented, as this logical connection is assumed physical and already the

time complexity is too high. The drawback in this proposed replica placement

algorithm is the problem of network congestion or bandwidth consumption which is

not considered.

In 2004, Abawajy proposed a heuristic algorithm called Proportional Share Replica

(PSR) Policy to improve on the cascading technique proposed by Ranganathan et al.,

(2001). PSR puts the data replica at the best site in which the numbers of sites and

total replicas to be distributed are already known. This technique starts with

calculating the distribution ideal load. Subsequently, replicas will then be placed at a

candidate site that has the ability to serve a request for replica at better rate or equal

to the calculated ideal load. Ideal load is calculated using the following formula:

Load = Totalrequest / (Originalcopy + Replicas) (2.1)

TWR (Two Way Replication strategy) was proposed in 2009 by Rasool et al. The

strategy is an updated version to the multi-tier sibling tree architecture presented by

Ranganathan et al., (2002) and Lin et al., (2006, 2008). In TWR, the most popular

data is identified and placed to its proper host in a bottom up manner in which they

are closer to the clients. In a top down manner the less popular files are identified and

are placed to one tier below the root node, so that it is closer to the root. In this

approach, replica selection is done by using the closest policy that tries to provide

25

the data from the nearest sites. The drawback of the research is that it only considers

the homogenous data grid nodes and cannot be applied to heterogeneous nodes.

Abdullah et al., (2008) proposed a P2P model for higher availability, reliability and

scalability. They developed their own data grid simulator to test the replication

strategy, taking response time, number of hops and average bandwidth consumption

as basic parameters for evaluation. In this research, four replication strategies have

been studied. Two of the existing strategies: requester node placement strategy and

path node placement strategy and two new replication strategies are proposed: path

and requester node placement strategy and N-hop distance node placement. In the

requester node placement strategy, the required file is placed only if the file is found.

Whilst in the path requester node, the requested file is copied to all the nodes on the

path from the requester node to the provider node.

The new proposed strategy path and requester node placement strategy actually is the

combination of the two existing strategies. In N-hop distance node placement, a file

is replicated to all providers’ node neighbours within N-hop distance. The result

shows that the new strategies have shown better performance than the existing one

in terms of performances, success rates and response time. However, the proposed

strategies use more bandwidth than the existing strategies. Besides, the storage loads

of replica servers are not considered in their strategies. This is due to the file being

replicated to all the nodes on the path from the requester node to the provider node.

A modified form of Bandwidth Hierarchy Replication (BHR) has been presented by

Sashi et al., (2011) as a way in overcoming the limitations of the replication strategy

26

proposed by Abdullah et al., (2008). In the modified BHR model, a network region

is defined as a network topological space where sites are located closely. Whenever

the required replica is present in the same region, the job completion will be fast.

BHR model is based on tree structure which is not really suitable in a real data grid

environment.

Figure 2.7 shows the replication strategy taxonomy which determines when and

where to create a replica of the data. These strategies are guided by factors such as

the number of user requests, network conditions and cost transfer. Method is the first

classification that is based on whether the strategies are static or dynamic. In static

strategy, the replica remains in the system waiting to be removed by the user or if it

reaches its expiration limit. The static replication strategies are simple to implement

but not frequently used because they do not support replication during job execution.

In comparison, dynamic strategies can adapt changes based on user requests, storage

capacity and bandwidth. Dynamic strategies are capable of making decisions to place

data in P2P systems based on storage and node availability. In addition, dynamic

replication automatically builds and removes replicas according to the changes of

access patterns. This is to ensure the benefits of replication continue regardless of

users' behaviour changes to form popular data (Lamehamedi et al., 2002; 2003,

Kawasaki et al, 2006). The second classification is the granularity which relates to

the level of subdivision of data that the strategy works with. Replication strategies

that deal with multiple files at the same time work at the granularity of datasets. The

next level of granularity is the individual files while there are some strategies that

deal with smaller subdivisions of files such as objects or fragments.

27

Objective Function is the third classification deals with the objective function of the

replication strategy. Possible objectives of a replication strategy are to maximise the

locality or move data to the point of computation. By exploiting the popularity file

or most requested datasets, the update costs can be minimised. A taxonomy of file

modes is shown in Figure 2.8 (Ma et al., 2013). The file taxonomy considers file

types, file access pattern, file access permissions and file origin.

Figure 2.7 Replication strategy taxonomy (Venugopal et al., 2006)

28

Figure 2.8: The taxonomy of the file models (Ma et al., 2013)

As stated by (Abawajy, 2004), a strategic replica placement is the key to get the

maximum benefit out of replication. Each strategy aims at different goals and

optimizes various aspects of the system. Furthermore, replica placement as an

approach for making replication decisions has the advantages of improving the

efficiency of data access and the capability of fault tolerance (Zhao et al., 2008).

More importantly, replica placement is one of the important factors to improve

performance in scientific research collaboration distributed systems. Therefore, the

next section in this chapter discusses the different replica placement strategies in

peer-to-peer (P2P) network systems.

29

2.4 Issues related to Data Replication in Distributed Systems

Although the necessity of replication in distributed systems is evident, its

implementation involves issues such as replica placement, resource discovery and

management, selecting suitable replicas, the impact of replication on the performance

of job scheduling, and replica consistency maintenance. However this thesis focused

more on the replica placement issue. The following fundamental issues in replica

placement are identified:

a) Replica Selection: Identification of which files to replicate. The strategic

 placement of selecting replicas is very important to obtain maximum gains

 from replication based on the objectives of applications.

b) Replica Allocation: The degree of replication must be selected to use the

 minimum possible number of replicas without excessively reducing the

 performance of applications and user request.

c) Replica Placement: The component of a distributed system architecture that

 decides where the file replicas should be placed in the system.

In general, replication strategies depend on when, where, and how replicas are

created and destroyed. A detailed discussion of existing work in replica placement

focusing on peer-to-peer systems is presented in the next section of this chapter.

2.5 Replica Placement in Peer-to-Peer Systems

Replica placement strategies in unstructured P2P systems can be classified using two

criteria techniques related with site selection and techniques related with replica

30

distribution. Table 2.1 shows some of the replica placement techniques that belong

to these two groups.

Table 2.1 Replica placement strategies in P2P (Spaho et al., 2014)

Strategy Site Selection/

Replica

Distribution

Advantage Limitation

Owner Site Selection No storage
Consumption

Large amount of time
needed

Path Site Selection Good search
performance

Large time for
recovery

Random Site Selection Small search delay Hard to implement
Uniform Replica

Distribution
Reduce search traffic Replica placement

where peers do not
access the files

Proportional Replica
Distribution

Reduce search traffic Difficult to find not
popular data

Square Root Replica
Distribution

Reduce the number
of hops to find an

object

Requires knowledge
of the query rate for

each item

2.5.1 Owner Replication

Owner replication and Path replication were evaluated by Lv et al., (2002), whereby

in the owner replication, a file or an object is replicated at the requester node only

whenever a search is successful. As a result, the number of replicas will increase in

proportion to the number of requests for the service. Since the number of replicas

generated in P2P is limited to one replica at each data exchange, the time taken to

propagate replicas over the P2P network is increased. Consequently, the search

performance for the requested data is slightly decreased. Owner replication is an

example of non-active replication.

31

2.5.2 Path Replication

Path replication is an active replication whereby the file is replicated to all the nodes

along the path between the source and the destination nodes (Lin et al., 2008). In this

technique, the peer with a high degree of neighbours forward much more data than

the peer with a low degree. The number of replicas produced per query is

proportional to the number of search. If the system fails due to overload, recovery

will take longer time. Nevertheless, Path Replication has been used in many

distributed systems due to its good search performance and ease of implementation.

2.5.3 Random Replication

This technique distributes the replicas in a random order. Random replication is the

most effective approach for achieving both smaller search delays and smaller

deviations in searching. Random replication is harder to implement, but the

performance difference between the random and the path replication highlights the

topological impact of path replication.

2.5.4 Uniform Replication

Uniform replication strategy replicates everything equally. The replicas in this

technique are distributed uniformly through the network. For each data object, the

same number of replicas is created. While this controls the overhead of replication,

replicas may be found in places where peers do not access the files.

32

2.5.5 Proportional Replication and Square-root replication

In the proportional replication, the number of replicas is proportional to their

popularity. This replication is used for reducing search traffic. In Square-root

replication, the number of replicas of a file is proportional to the square root of query

distribution. This technique reduces the number of hops needed for finding an object.

The major features of replication algorithms for P2P systems are the criteria for the

selection of suitable objects for replication and selection of suitable sites for hosting

new replica. These two important aspects have a direct impact on the performance of

the system. If a node decides to replicate all the objects present in its shared directory

to other nodes, it will increase the overhead in the network. The replica should be

maintained in sites which are close to the source nodes to increase the search

performance. The site selection policy of a replication technique decides where the

replica should be stored. The number of sites may vary based on the replication

scheme being employed. For example, if popular files are not replicated

appropriately, overwhelming requests from peers can cause network congestions and

slow download speed.

2.6 Replica Selection

A system that includes replicas also requires a mechanism for selecting the right files

based on the data access patterns. Choosing and accessing appropriate replicas are

very important to optimize the use of P2P resources. Replica selection criteria might

include access time as well as the source node that initiate the request, and the number

33

of accesses. Slow network access hinders the efficiency of data transfer regardless

of client and server implementation.

Correspondingly, an optimization technique to select the best replica from different

physical locations is by examining the available bandwidth between the requesting

nodes and the node that hold the replicas. To transport the replica to the requested

site would be the one that has the least transfer time required. Although network

bandwidth plays a vital role in selecting the best replica, additional characteristics of

data transfer (most notably, latency), replica host load, and disk I/O performance are

other important factors as well (Shorfuzzaman, 2010).

2.7 The Affinity Concept

The word affinity in general refers to the close similarity, likeness, relationship or

correspondence. In peer-to-peer systems, we defined an affinity as the correlated

files, similarity, dependency or the linking between two or more files. Whereas, in

Chinese culture, the word affinity means “luck” by which people are brought

together. An affinity also means a meeting between friends with the same hobbies,

various relationships with people such as friend to friend, parent to offspring,

employee to boss and so on. These are some examples in relationship and social

behaviour of an affinity (Larbani and Chen, 2009; Chen et al., 2006; 2009). Inspired

by the ancient social systems and human behaviour, Larbani and Chen (2009) explore

the concept of affinity further in fuzzy and rough set framework, data mining and

other applications.

34

Different affinities according to various relationships with people can be defined and

developed. For example a group of people sharing the same hobbies, liking the same

music, or an institution that created affinity because they work together.

Affinity does not only refers to the relationship, but more importantly refers to the

linking between two or more people or elements. In chemistry, for example, the

elements of molecules can be a set because of similar affinities that bind them

together. Depending on how affinity is defined, it can be used to examine, describe

and predict the behaviour of access pattern or data similarity in placing replica in

distributed organizations. Different measurement systems lead to various affinity

degrees and more importantly may lead to the dynamic decision or strategy in replica

placement environment. Therefore, in this thesis the concept of affinity has been

explored further as a mechanism to select the popular files for data copies and to

assess to what extent the affinity components can improve the access performance

and availability of data replicas in peer-to-peer systems. In the next sub sections,

affinity in different applications is discussed further.

2.7.1 Affinity implemented in Desktop Grids

Data-intensive applications require secure and coordinated access to large datasets,

wide-area transfers and broad distribution of TeraBytes of data while keeping track

of multiple data replicas. This data grid aims at providing an infrastructure and

services to enable data intensive applications. In comparison, desktop grids is a

specific class of grid that use computing, network and storage resources of idle

desktop PCs distributed over multiple LANs or the Internet. The aim of desktop

35

grids is to compute a large variety of resource demanding distributed application.

BitDew proposed by (Fedak et al., 2009) is a programmable environment for

automatic and transparent data management on computational Desktop Grids. It is a

subsystem which could be easily integrated into Desktop Grid systems. Bitdew

offers programmers (or an automated agent that works on behalf of the user) a simple

API for creating, accessing, storing and moving data with ease, even on highly

dynamic and volatile environments.

Afinity is used in BitDew as the placement dependency between data and it indicates

that data should be scheduled on a node where other data have been previously sent.

Affinity drives movement of data according to the dependency rules (Fedak et al.,

2008a, 2008b, 2009). In BitDew, the programmer can specify a replication level of

an object. (E.g. 5 copies) leaving the run-time system to determine the placement of

the file replicas. One of the disadvantages of Bitdew is that a programmer has no

possible basis for choosing five replicas, since availability does not vary

proportionally with the number of replicas. The placement fails to take into account

the reliability, the performance or failure interdependences of the nodes on which the

replicas are placed. Furthermore, the reliability of individual nodes and their failure

interdependencies are parameters that cannot be controlled and must be monitored

so that their effects can be accounted for in replica placement strategy.

Figure 2.9 shows the three-tier schema adopted by BitDew as its software

architecture. The uppermost level is the API which offers a programmer a simplified

view of the system. The programmer or user is allowed to create data and manage

their repartition and distribution over the network of nodes. The intermediate level is

36

the service layers which implements the API: data storage and transfers, replicas and

volatility management. The lowermost level is composed of a suite of backend.

Figure 2.9: The BitDew software architecture (Fedak et al., 2009)

2.7.2 Affinity in Self-Immune Systems

In many pervasive applications such as information sharing, a user is much more

likely to communicate with other users having similar interests (Bakhouya and

Gaber, 2006). Thus based on this concept of communities composed of users with

similar preferences and interests, an approach called Propitiate Multi Agent System

(PMAS) is proposed by Bakhouya and Gaber (2006). The aim of PMAS is to

reinforce the learning based approach by imitating the human immune systems

behaviour.

37

Agents together with their affinity relationship as a whole form a propitiate multi

agent system (PMAS) based on the self-immune system behaviour. In PMAS,

affinity corresponds to the adequacy with which two services could bind to share

common interest attributes. The affinities are adjusted by users’ satisfaction

regarding their interaction and dynamic work condition changes. User interests or

services are represented by agents that establish a relationship based on affinities to

create a spontaneous PMAS. The concept of affinity based on self-immune system is

perhaps can be investigated further as an alternative or an extended approach to apply

affinity in P2P data placement in future. Figure 2.10 shows Propitiate Multi Agent

System (PMAS) describing affinity network between six agents based on keyword

similarity.

Figure 2.10: Propitiate Multi Agent System (PMAS) created between six agents

based on keyword similarity (Bakhouya and Gaber, 2006)

38

2.7.3 Affinity Replica Location Policy

The affinity replica placement algorithm replicates data near the user nodes where

the file is accessed most (Abawajy, 2004). A file is copied and placed near to the

user that generates access traffic the most. The algorithm is similar to the cascading

replica placement algorithm discussed in Ranganathan et al., (2001).

2.8 Popularity Driven Replica Placement Algorithm

In the real world, some files may be popular than others and data access pattern may

change over time. The popularity of a file is determined by its recent access rate.

Therefore, any dynamic replica placement strategies must keep track of file access

histories to decide on when, what and where to replicate. The dynamic replication

algorithm proposed by (Tang et al., 2006; Chang and Chang, 2008; Shorfuzzaman,

2010; Madi et al., 2011) determines the popularity of a file by analysing data access

history. Figure 2.11 is an example of access history for two files, X and Y and the

node relation. Nodes N1, N2, and N3 are siblings and their parent is P1. In the figure,

the records indicate the state that N1 and N3 have accessed file X 5 and 9 times whilst

node N2 has accessed file Y 10 times. If the threshold is assumed to be 10, file Y will

be replicated at node P1 because the number of request exceeds the threshold value

according to Simple Bottom Up (SBU) algorithm (Ranganathan et al., 2001, 2002).

However, file X is accessed 14 times by node N1 and N3 and thus is more popular

than file Y. The better solution is to replicate file X to P1 first then replicate file Y to

P1.

39

NodeId FileId Number of
Accesses

N1 X 5
N2 Y 10
N3 X 9

Figure 2.11: An example of access history and node relation

The replication strategy based on file popularity based on the calculation of the

number of accessed has been proposed by a number of researchers (Tang et al., 2006,

Chang et al., 2008, Shorfuzzaman, 2010, Madi et al., 2011). The Latest-Access-

Largest Weight (LALW) proposed by Chang (2008) calculates the Access Frequency

(AF) to represent the importance of access histories in different time intervals.

The AF for file X is calculated as:

Access Frequency =        1,2 t
tNt

Nt FffafAF t (2.2)

Assume TN is the number of time interval passed, F is the set of files that have been

requested and t
fa indicates the number of accesses for file f at time interval t. The

above formula is calculated in the first phase after collecting all access records from

the cluster headers. In the second phase, the average of AF per time interval for the

popular file (assuming p represent popular file) and all files in F are calculated as:

)(pAFavg
 =

TN

pAF)(
) and (2.3)

P1

N

N

N

40

)(fAFavg
 =

TF xNN

sumfAF))((
 (2.4)

where)(pAF is the AF for the popular file p, TN is the number of time intervals

passed, FN F  is the number of different files that have been queried, and

sumfAF))((indicates the sum of AF for all file queries.

In the third phase, the number of replicas needed for the popular file to ensure a better

network performance and to achieve a load balance is calculated. The number of

replicas is calculated as follows:

R_number (p) =












)(

)(

fAF

pAF

avg

avg =












sumavg

Favg

fAF

NpAF

))((

))((
 (2.5)

The approach in LALW proposed Chang, (2008) has been studied by other

researchers (Shofurzaman; 2010, Madi et al., 2011, Ming et al., 2012)

2.9 PeerSim Simulator

PeerSim is partly developed within the BISON project and is under the General

Public Licence (GPL) open source license (Jelasity et al., 2004, 2009; Jamal et al.,

2014). BISON project is a three-year Shared-Cost Project (IST-2001-38923) funded

by the Future & Emerging Technologies initiative of the Information Society

41

Technologies Programme of the European Commission. The project runs from

January 2003 until April 2006. BISON explores the use of ideas derived from

complex adaptive systems (CAS) to enable the construction of robust and self-

organizing information systems for deployment in highly dynamic network

environments. Consequently, a network simulator, PeerSim is developed within the

BISON project. PeerSim is written in Java language and has been designed to be

both dynamic and scalable.

The scalable simulation environment are the contributing factors to the important

features in P2P: scalability and dynamism. In PeerSim, interaction protocols

between peers may either be implemented using a predefined PeerSim API or they

can be embedded into a real implementation (Jelasity, 2009). PeerSim provides a

number of pre-developed modules that can be combined in different ways and

provides the flexibility to support a variety of different system configurations. The

P2P network is modelled as a collection of nodes, where each node has a list of

associated protocols. The overall simulation is regulated through initialisers and

controllers that allow either events to be introduced into the simulation or to enable

a particular capability to be added at predefined simulation time points (Petri et al.,

2012, 2014). The component architecture of PeerSim is shown in Figure 2.12.

42

Figure 2.12: PeerSim architecture

PeerSim works in two different modes: cycle-based or event-based. The cycle based

engine is built on a very simple time scheduling algorithm and is very efficient and

scalable. However, it has some limitations. PeerSim can achieve a network consisting

of 106 nodes using the cycle-based engine. As an example it does not model the layer.

The event-based engine is based on a more complex but more realistic approach.

However, the event based mode is not well documented and its performances are

quite unknown.

Further on, the key features of peer-to-peer (P2P) systems are scalability and

dynamism. Often the evaluation of a P2P protocol in complex scenarios cannot

feasibly be carried out using realistic environments due to issues of scale, cost and

availability. It is also difficult to do performance evaluation in a repeatable and

control manner due to the dynamic nature of P2P environments. However, PeerSim

as one of the P2P simulators could provide an extremely scalable simulation

43

environment that supports dynamic scenarios. Protocols need to be specifically

implemented for the PeerSim Java API, but with a reasonable effort the protocols can

be evolved into a real implementation. Then again, PeerSim provides a number of

pre-developed modules that can be combined in different ways and provides the

flexibility to support a variety of different system configurations. In this thesis,

PeerSim is chosen as the P2P simulator to evaluate the performance of replica

placement of ARPM algorithms. The basic architecture in PeerSim has been

discussed in chapter 2. In the next section, the detailed configurations set up in

PeerSim is explained.

44

2.10 Summary

Data replication is very important in data intensive distributed applications. A

number of replica placement strategies are proposed for distributed environments.

Most of the work done in the literature discussed in this chapter aimed at increasing

the availability and improving data access performance which are the most important

factors for replica placement in distributed systems. Replication strategies can be

centralised or distributed. In centralised systems, the replica placement decisions are

done in a centralised node whilst in the decentralised replication; all the nodes

participate in taking decision. The replica placement algorithms may assume

different topologies for placement environment. However, in grid, most replica

placement algorithm assumed a tree topology whereby the requests can only be

forwarded upwards towards the root node. In this chapter, the replica placement

algorithms can be popularity based whereby the highest popularity will be selected

to be replicated. Some algorithms are threshold based where the files with the access

rate higher than the threshold value is considered as popular and will be replicated.

Most importantly, the notion of affinity is discussed in this chapter is to highlight the

importance of the affinity concept in decision making and replica placement strategy.

The next chapter proposes a method for replica placement mechanism in peer-to-peer

distributed system. The proposed Affinity Replica Placement Mechanism (ARPM)

aimed to improve data access performance through minimizing the access time and

to ensure data availability in P2P distributed systems. Two dominant factors namely

affinity and access frequency are formulated in this thesis and as part of the thesis

contributions.

45

CHAPTER 3

AFFINITY REPLICA PLACEMENT

This chapter presents a model for P2P replica placement called Affinity Replica

Placement Mechanism (ARPM). The ARPM selects popular files and affinity files

for replication, calculates sufficient number of copies and place the replicas on the

source node. The objective of this ARPM is to improve data access performance

through minimizing the access time and to ensure data availability in P2P systems.

In this thesis, the access time is minimised by replicating the popular and affinity

files to the requesting node(s). Likewise, to ensure data availability in the P2P

network system, sufficient number of replicas is maintained in the system.

3. 1 Introduction

A replication mechanism has three important decisions that affect strongly the

performance of the replication strategies. The decisions include which file should be

replicated, how many to replicate and where to replicate. In this thesis, the first

decision, which file should be replicated, is referred as replica selection phase. The

46

second decision is referred as replica allocation phase whilst the third decision is

referred as replica placement or replica location phase.

In the first phase, replica selection is the problem of selecting files to be replicated.

Most of the current dynamic approaches in designing replica placement strategies,

focus more on the popularity of the files (Chang et al., 2008; Rasool et al., 2007;

shorfuzzaman, 2014). Undeniably, data popularity is considered as a key feature at

several levels, namely replication decision strategies (Bsoul et al., 2012), selection

strategies (Thampi and Sekaran, 2009), placement strategies (Rasool et al., 2007),

replacement strategies (Soosai et al., 2012), load balancing strategies (Senhadji et al.,

2013), and update propagation strategies (Wantanabe et al., 2009). In the real world,

some files will be more popular than others (e.g. current or “hot” areas of

experimentation in ATLAS or CMS). It is worth noting that data in distributed

systems may be an object of file, a file or a set of files. It may be also an object of a

database table, a database table or a database. Herein, data is also referred as the term

dataset.

The second phase refers to the allocation of how many replicas should exist in the

P2P distributed systems. The number of replicas should be sufficient enough to

ensure data availability in the systems. If the number of replicas selected is too small,

data availability decreases. However, if there are too many replicas in the system,

data may be overloaded with unnecessary files. This is particularly undesirable

toward the beginning of the network lifetime when most nodes are very reliable.

Therefore, a good balancing of replicas is required in the P2P distributed systems.

47

The third phase refers to the placement of replicas. To maximize the potential gain

from file replication, a replica placement strategy is also important. A replica

placement phase decides where a new file replica should be placed in the system. In

this thesis the new replicas will be copied from the destination node (the node that

has the requested file) to the source node (the node that initiates the query).

Figure 3.1 and Figure 3.2 show a Venn diagram of the possible scenarios in replica

selection phase proposed in this thesis. Selecting files to be replicated can be done

by choosing the affinity files out of the popular files in the system or choosing the

popular files after finding the affinity files in the system. In this thesis, the affinity

files were chosen out of the popular files as shown in Figure 3.1. If affinity is chosen

first followed by popularity, the set of files may be the same but the order in which

the files would be considered would be different. In many cases, files popularity can

change over time. If we just take popularity as a measure a system may over replicate.

In addition, there will be lots of replicas which may not be needed. Thus, taking

affinity into consideration reduces the number of replicas. One of the primary goals

in this thesis is to reduce over replication.

The popular and affinity files were the two dominant factors proposed in ARPM

whereby both dominant factors are calculated and discussed in the next section. The

access frequency determines the popularity of the access files whilst the affinity

degree determines the binding feature between two nodes.

48

Figure 3.1: The Venn diagram of selecting affinity files from the popular files in the
system.

Figure 3.2: The Venn diagram of selecting popular files from the affinity files in the
systems.

We present Affinity Replica Placement Mechanism (ARPM) in P2P systems to

decide which files to replicate, how many replicas needed to ensure availability of

the systems and where to place the new replicas. Herein, replicas are defined as files

All files

Popular files

Affinity
files

All files

Affinity files

Popular
 files

49

instead of objects. The focus is on the file replica placement strategies regardless of

what the files contain.

In this thesis, it is assumed that the recent popular files will tend to be accessed more

frequently than others in the near future. Thus, an average access frequency threshold

on access counts was calculated to determine popularity. If some files have access

counts greater than or equal to the threshold, they will be considered to be popular.

Next, an affinity degree is proposed in the replica selection phase. Herein, the notion

of affinity represents the degree that the files are intersecting with one another.

Normally, a set of files accessed by one user is also likely to be accessed together by

other users. This set of files has common features that bind or stick them together.

The binding feature, or we defined it as affinity is explicitly exploited in this thesis.

An Affinity Replica Placement Mechanism (ARPM) was proposed to highlight the

importance of affinity relationship to improve file access performance and assist

replica placement decisions. In this thesis a single query and multi queries scenarios

were considered. The files in the P2P system were randomly broadcasted.

50

3.2 The Affinity

The proposed data affinity in this thesis is defined as the similarity between two or

more correlated data. The affinity set is a set of any data that creates an affinity

between files. Thus, the affinity between sets A and B is the set consisting of the

intersection of elements between A and B plus the requested file in the destination

node, and is not a null set.

Definition 1: Let A = { f 1a , f 2a ,....f an } and B = { f 1b , f 2b ,....f bn },
jkf is a

file from the source node j to destination node k. The sets A and B are said to have

affinity denoted by 𝑎𝑓𝑓𝐴𝐵:

 𝑎𝑓𝑓𝐴𝐵 = { 𝑥|𝑥 ∈ (𝐴 ∩ 𝐵 +)(Bfqid) ≠ ∅} (3.1)

where)(Bfqid is the requested file in B.

Definition 2: The affinity degree between A and B with respect to A, A
ABaff , is

defined as

)(||

)(||

BfA

Bfaff
aff

qid

qidABA
AB 


 (3.2)

where the symbol | ABaff | is the cardinality of affinity set A and B over A including

)(Bfqid which refers to the number of requested files in B.

The value of A
ABaff as shown in Equation 3.2, expressing the degree of affinity

between the dataset A and the affinity sets AB with respect to A. The affinity function

is defined as the cardinality of the affinity dataset between A and B over the

cardinality A. Likewise the degree of affinity between B and A with respect to B is

defined as the cardinality of the affinity set A and B over B.

51

Example 1 below shows how the proposed affinity degree is calculated.

Example1:

let A = { 1514131211 ,,,, fffff } and B = { },,,,,,,, 282726151413232221 fffffffff , and the

requested fileId is 28f . Therefore the affinity degree over A

 =
281514131211

28151413

|},,,,{|

|},,{|

ffffff

ffff





 = 4/6

 = 0.67 (moderate)

Table 3.1 shows a categorisation of affinity correlation adapted from Dancey and

Reidy (2004). The correlation of an affinity degree indicates that not every

correlation deserves to investigate and some filtering mechanisms can be adopted to

remove those files with weak correlation. In general, the higher the absolute value

of affinity correlation coefficient, the stronger the relationship between the two nodes

in the P2P network. For example, in Table 3.1, if the value of the A
ABaff is equal to

0.49 or below, this indicates that the degree of the affinity files is weak and thus can

be ignored. In this case, the file has weak affinity and will not be replicated.

52

Table 3.1: The affinity degree indicator (Adapted from Dancey and Reidy, 2004)

Value of the
A

ABaff The Degree of the affinity files

0.9  x < 1.0 Very Strong

0.7  x < 0.9 Strong

 0.5  x < 0.7 Moderate

0.1  x < 0.5 Weak

x < 0.1 Zero

Likewise, if the value of the affinity degree is either moderate, strong or very strong,

then the file will be replicated. The explanation is detailed in the next paragraph. The

representations of the affinity files are as follows:

Table 3.2: Example of affinity degree

A B

qidf (A ∩ B)+

qidf)(||

)(||

BfA

Bfaff
aff

qid

qidABA
AB 




Affinity

Indicator

{1,2,3,4} {1,2,3,4,5,6} 6 5 5/5 = 1.0 Very strong

{1,2,3,9} {1,2,3,4,5,6,7,

8}

5 4 4/5 = 0.8 Strong

{1,2,3,4,7, 9,10,

}

{1,2,3,4,5} 5 5 5/8 = 0.61 Moderate

{1,2,3,4,5,6,7,8,

9,10,11,12}

{1,13} 13 2 2/13 = 0.15 Weak

#500 #1000 #20 300 300/520=0.58 Moderate

#1000 #5000 #50 300 300/1050

= 0.29

Weak

is the number of files

53

If the value of A
ABaff is near to 1, we can say that the affinity set between files is

very strong whilst if the value of A
ABaff is near to zero, we can say that the degree of

affinity set between files is very weak or zero affinity. Through the affinity

indicators, we can predict on how strong or high and how weak or low the affinity

set between files in the nodes. This means that if the strength of similarity files is

high, and if the average frequency of the access number of the file requested is also

high, ARPM will choose the file to be replicated. This answers the issue of which

file to replicate in replica placement problems. Despite this, if the degree of the

affinity set is weak or zero, ARPM will NOT consider the file to be replicated

regardless of how high the value of the file access frequency. The decision of replica

placement depends on the affinity degree and the average number of access

frequency. In the next section, the access frequency as another criteria for replica

selection is discussed.

3.3 Access Frequency

ARPM only consider affinity and popular files to replicate (deciding which file to

replicate). An access frequency, AF is calculated to represent the importance of

access histories in different cycle number. Assume tN is the cycle number passed,

F is the set of files that have been requested and t
fa indicates the number of accessed

files in each cycle. Then AF is adapted from the calculation of AF in (Chang and

Chang, 2008):

Access Frequency =        1,2 t
tNt

Nt FffafAF t (3.3)

54

For example, if an affinity file has been accessed 7 times and 10 times in the first

cycle and second cycle, respectively, then AF (f) is (7 x 2 -1) + (10 x 2 0). AF assigns

different weights to access files for a different cycle number. The highest or largest

AF is chosen as the popular files. Next we compare the average AF per cycle number

of the popular files. The average AF is calculated as:

Average Access Frequency =)(fAF average
Nc

 =
cN NfAF

c
/)( , ∀f ∈ F (3.4)

NF = | F | is the number of different files that have been requested by any nodes. The

threshold value of access frequency is considered as the average of access

frequencies in the systems. If the access frequency is above or equal to the average

access frequency, then we categorise it as "high" or "popular". Likewise, if the access

frequency is below than the average frequency, then we categorise it as "low" or

"unpopular". Table 3.3 shows which file to replicate based on the two dominant

factors proposed in this thesis.

55

Table 3.3 Dominant factors which file to replicate

Affinity Indicator #Average Access

Frequency

Replicate Not Replicate

Very Strong
High 1

Low 0

Strong
High 1

Low 0

Moderate
High 1

Low 0

Weak
High 0

Low 0

Zero
High 0

Low 0

 Note: 1 = Yes 0 = No

The primary goal of the algorithm is to increase data access performance from the

perspective of the clients by dynamically creating replicas for “popular” files. In the

real world, some files will be more popular than others and data access patterns may

change over time, so any dynamic replication strategy must keep track of file access

histories to decide on when, what and where to replicate. The “popularity” of a file

is determined by its recent access rate by the clients. Identifying popular files is thus

one of the dominant factors of ARPM. In ARPM, popular data files are identified by

analysing file access histories. The replica placement algorithm is invoked at regular

intervals and it processes the access histories and affinity degree to determine new

replica locations based on file popularity and affinity.

56

3.4 Replica Selection Decisions

This section focuses on the decisions in replica selection phase. In this section, the

affinity property from Table 3.3 has been transformed into Table 3.4 in Boolean-

valued data. In Boolean-valued data, the dominant factor is holding either a value 0

or 1. In this Boolean representation, the aim is to qualify the different importance of

linguistic terms of vague terms of affinity factors which include very strong, strong,

moderate, weak and zero.

Table 3.4 Dominant factors which file to replicate in Boolean representation

Affinity Indicator #Average Access Frequency Replicate Not Replicate

1
1 1

0 0

1
1 1

0 0

1
1 1

0 0

0
1 0

0 0

0
1 0

0 0

Definition 3: Let affinity and average access frequency be two dominant factors for

replica placement. The replica placement occurs when both dominant factors are

equal to 1 respectively.

The Boolean representations in Table 3.4 are used as indicators to decide whether to

replicate or not. The replica placement occurs when both dominant factors are equal

to 1. Indeed, if the affinity degree is high and the access frequency exceeds the

57

threshold value of the average number of accesses, or if both values are equal to1,

then the decision to replicate is made.

3.5 Access Frequency as Dominant Factor

This section describes four cases considered in this thesis in selecting popular data

files and calculating the files affinity degree. Case-1: Single-Query to Single-File,

Case-2: Single-Query to Multiple-Files, Case-3: Multiple-query to Single-File and

Case-4: Multiple-query to Multiple-Files. Based on these various queries, both

dominant factors play important roles in influencing the decision of replica

placement. Table 3.5 shows the single and multi-queries scenarios between the

requestor/source node(s) and the query file (s). During experimentation, the number

of cycles and files are increased whilst the number of nodes simulated is up to 10000

nodes.

58

 Table 3.5: The single query and multiple query scenarios

Cycle Number
Requestor

NodeId
FileId

0 3 28
1 39 23 Case-1
2 92 31
3 67 25
4 97 15
5 63 6
6 42 19
7 69 25
8 31 3
9 1 29

10 97 17
11 50 21
12 54 8
13 32 12
14 46 12
15 71 3
16 25 22
17 31 6
18 14, 15, 37 9, 27,33
19 91 30
20 28 19

3.5.1 Case 1: Single-Query to Single-File

In Table 3.4 during cycle1, a NodeId 39 requests for a FileId23. This is a case of a

Single-Query to Single-File request whereby only one client node is requesting for

one file in the systems during a period of time. This refers to the cycle number

between cycle0 to cycle20. This is the case of no replication.

Case- 2

Case- 3

Case- 4

59

3.5.2 Case 2: Single-Query to Multiple- Files

In cycle4 and cycle10, the same NodeId 97 is requesting two different files, FileId15

and FileId17. This is the case of the same client node requesting two files in the

systems during a period of cycles. Table 3.6 and Table 3.7 show an example of

historical records of the NodeId97 during the first and the second time interval

respectively. Assume TN is the number of time interval passed, F is the set of files

that have been requested and t
fa indicates the number of accesses for file f at time

interval t.

In the first time interval, t = 1, FileId15 have been requested by NodeId4 times and

10 times during the second time interval, t =2. Then The Access Frequency (AF) for

each file can be calculated as:

Access Frequency =        1,2 t
tNt

Nt FffafAF t

Thus for FileId15, Access Frequency =        1211 21024  fAF
tN

 = 12

60

Table 3.6: An example of access frequency for Single-Query to Multiple-Files at

time interval t=1

t
fa Requestor

NodeId
FileId

Number of
Access

Frequency

4 97 15 4
10 97 17 10
2 97 21 2

Table 3.7: An example of access frequency for Single-Query to Multiple-Files at
time interval t=2

t
fa

Requestor
NodeId

FileId
Number of

Access Frequency

10 97 15 5
5 97 17 2.5
3 97 21 1.5

Based on equation 3.3, number of access frequency for File15, FileId17, and

FileId21 were 5, 2.5, and 1.5 respectively. Therefore, the threshold of the average

access frequency in the period of cycle can be calculated as in 3.4. The average

threshold is 4.17. Therefore two files with FileId15 and FileId17 are above the

threshold value that is considered as popular files. These files will be selected to be

replicated if the affinity degree for these files is moderate, strong, or very strong.

3.5.3 Case 3: Multiple-Query to Single-File

In cycle13 and cycle14, two different node ids, NodeId32 and NodeId46 request the

same FileId12. This is the case of different client nodes requesting the same file in

the systems during a period of time. Table 3.8 until 3.13 below show an example of

the Multiple-Query to Single-File case whereby many nodes request a single file.

61

Table 3.8: An example of access frequency for Multiple-Query to Single-File at

time interval t=1

t
fa Requestor

NodeId
FileId

Number of Access
Frequency
(popular)

5 32 17 5
8 46 17 8

10 25 17 10

Table 3.9: An example of access frequency for Multiple-Query to Single-File at
time interval t=2

t
fa

Requestor
NodeId

FileId
Number of Access

Frequency

10 32 17 5
12 46 17 6
5 25 17 2.5

 Aggregate AccessFrequency for FileId17 = 18.25

Table 3.10: An example of access frequency for Multiple-Query to Single-File at

time interval t=2

t
fa Requestor

NodeId
FileId

Number
of Access
Frequency

10 32 15 4
8 46 15 4

10 25 15 5

62

Table 3.11: An example of access frequency for Multiple-Query to Single-File at
time interval t=2

t
fa Requestor

NodeId
FileId

Number
of Access
Frequency

5 32 15

2.5

12 46 15 6
5 25 15 2.5

Table 3.12: An example of access frequency for Multiple-Query to Single-File at
time interval t=2

t
fa Requestor

NodeId
FileId

Number
of Access
Frequency

2 32 21 2
8 46 21 4
2 25 21 2

Table 3.13: An example of access frequency for Multiple-Query to Single-File at
time interval t=2

t
fa Requestor

NodeId
FileId

Number
of Access
Frequency

3 32 21 1.5
12 46 21 6
5 25 21 2.5

The average Threshold for access frequency calculated is 12.5. Thus, the popular

file in this case is FileId17. The file is selected to replicate in the next phase. Another

two files, FileId15 and FileId21 below the threshold average access frequency and

these files are less popular.

63

3.5.4 Case 4: Multiple-Query to Multiple-Files

In cycle18, different NodeIds 14, NodeId15 and NodeId37 are requesting multi

different files (FileId9, FileId27, FileId33) in the systems. This is the case of multiple

queries requesting multiple files in the same cycle or at that point of time. Table

3.14 until Table 3.17 show an example of Multiple-Query to Multiple-Files case.

Table 3.14: An example of access frequency for Multiple-Query to Multiple-Files at
time interval t=1

t
fa Requestor

NodeId
FileId

Number
of Access
Frequency

5 32 15 5
8 46 17 8

10 25 21 10

Table 3.15: An example of access frequency for Multiple-Query to Multiple-Files at

time interval t=2

t
fa Requestor

NodeId
FileId

Number
of Access
Frequency

4 14 15 2
10 15 17 5
2 37 21 6

Table 3.16: An example of access frequency for Multiple-Query to Multiple-Files at
time interval t=3

t
fa Requestor

NodeId
FileId

Number
of Access
Frequency

10 14 15 2.5
5 15 17 1.5
5 37 21 1.5

64

Table 3.17: An example of access frequency for Multiple-Query to Multiple-Files at
time interval t=4

t
fa Requestor

NodeId
FileId

Number
of Access
Frequency

10 14 15 1.3
10 15 17 1.3
7 37 21 0.9

(a) The first time interval

)2(0
1t - Aggregated Records

FileId
Average
Number

AF

15 30
17 27
21 15

Phase 1

AF (15) = 30 x 02 =30

AF (17) = 27 x 02 =27

AF (21) = 15 x 02 =15

Phase 2: (Popular is FileId15)

)(pAFavg
 = 30/1=30

)(allAFavg
 = (30 + 27 + 15)/(3*1) = 72/3 = 24

65

(b) Case involving Two Time Intervals

)2(0
1t - Aggregated Records

FileId
Average
Number

AF

15 30
17 27
21 15

)2(1
2

t - Aggregated Records

FileId
Average
Number

AF

15 10

17 15

21 12

Phase 1

AF (15) = 30 x 02 + 10 x 12 = 35

AF (17) = 27 x 02 + 15 x 12 = 34.5

AF (21) = 15 x 02 + 12 x 12 = 21

Phase 2: (Popular is FileId15)

)(pAFavg
 = 35/2=17.5

)(allAFavg
 = (35 + 34.5 + 21)/(3*2) = 90.5/6 = 15.08

66

3.6 Number of Replicas

In order to have better network performance, the number of replicas (adapted from

Chang, 2008) needed for the popular file is been calculated. The number of replicas is

calculated as follows:

Number Of Replicas (p) = ceiling












)(

)(

fAF

pAF

avg

avg

= ceiling












sumavg

Favg

fAF

NpAF

))((

))((

(3.5)

where)(pAFavg is the average access frequency of the popular file p, and)(fAFavg

is the average access frequency of other files in the system. The number of replicas

acts as a threshold checker to determine sufficient replicas exist in the system.

As an example, from section 3.5.4 above, at the first time interval, FileId15 is the

popular file. Thus, from the formula in 3.5, the number of replicas is calculated as

follows:

Number Of Replicas (p) = ceiling












)(

)(

fAF

pAF

avg

avg
= ceiling













sumavg

Favg

fAF

NpAF

))((

))((

= ceiling(30/ 24) = 2

At the second time interval, the number of replicas is calculated as follows:

67

Number of Replicas (p) = ceiling












)(

)(

fAF

pAF

avg

avg
= ceiling













sumavg

Favg

fAF

NpAF

))((

))((

= ceiling(17.5/15.08) = 2

This indicates that two replicas of popular FileId15 need to be created in the system

at both time intervals. The next phase of our proposed ARPM is finding an affinity

degree of the correlated files.

3.7 Affinity Degree as Dominant Factor

The second dominant factor will be calculated based on the affinity degree between

the source node and the destination node. Table 3.18 shows the NodeId and the FileId

whilst Table 3.19 shows the discovery layer where the file requested by the source

node is found in the destination node. This also refers to the success hit whenever a

query file is found in the destination node.

Table 3.18: An example of NodeId and FileId

NodeId FileId

40 23, 6, 34, 36, 17, 30, 15, 29, 19, 22
26 29, 39, 42, 27, 23, 21, 6, 5
39 10, 44, 43, 40, 21, 48
25 10, 44, 43, 40, 18, 3, 6
46 42, 1, 41, 14, 3, 31, 13
27 31, 26, 25, 4, 28, 37
11 6, 43, 38, 24, 19, 23, 7, 32
24 19, 12, 15, 28, 2, 25, 37, 27
97 30, 48, 25, 7, 22, 19
14 23, 17, 36, 34, 40, 29, 51
32 40, 10, 44, 48, 43, 31,13

68

Table 3.19: An Example of Success Hit

SourceNode FileId DestinationNode

14 15 24,40
40 1 46
18 1 46
32 21 39
16 23 11,26
10 3 25
97 17 40
25 21 26,39
46 21 26,39
97 15 24,40
18 21 26,39

In section 3.2, the definition of affinity and how to calculate the affinity degree has

been discussed in detail. In this section, the affinity degree is calculated based on the

formula from 3.1 and 3.2. The affinity degree as the second denominator will be

calculated using similar four cases as in section 3.5.

3.7.1 Case 1: Single-Query to Single-File

In a case of a Single-Query to Single-File request, only one client node is requesting

one file in the system during a period of time. There is no replication and thus affinity

degree is will not be calculated in this case.

3.7.2 Case 2: Single-Query to Multiple-Files

In this case, the same node is requesting two or more files in a fixed time interval.

Prior to this, an average access frequency has been calculated in section 3.5 and the

popular files were found. As calculated in section 3.5, only FileId15 and FileId17

69

are popular whereas FileId21 is below average frequency threshold and therefore is

considered as less popular. Next, the affinity degree is calculated between the source

node, NodeId97 and the destination node, NodeId40, as shown in Table 3.9. The

affinity degree is calculated as below:

Example 1:

Let source/Query node be 97S and the destination node be 40D . The query file is

FileId17.

97S = {30, 48, 25, 7, 22, 19} and

 40D = {23, 6, 34, 36, 17, 30, 15, 29, 19, 22}

The affinity is

 97

4097

S
DSaff = 97S  40D + Requested File in 40D

 = {22, 30, 19, 17} = 4

From equation in 3.2, the affinity degree over 97S ,

|)(|

)(||

4097

404097

DfS

Dfaff

qid

qidDS






= 4 / 7
 = 0.57 (Moderate affinity)

Example 2:

Let source node be 97S and the destination nodes be 24D and 40D . The query file is

FileId15.

97S = {30, 48, 25, 27, 22, 19} and

 24D = {19, 12, 15, 28, 2, 25, 37, 27}

97

2497

S
DSaff = 97S  24D + Requested File in 24D

70

 = {15, 19, 27, 25} = 4

From equation in 3.2, the affinity degree is

= 4/ 7

 = 0.57 (Moderate Affinity)

By calculating the affinity degree of the files between the source nodes and the

destination nodes using the proposed affinity formula, the affinity degree in example

1 indicates that the relation is strong. Therefore we can conclude that, FileId17 is a

popular file and the nodes (the source node and the destination node) has strong

relation. Not only FileId 17 will be replicated but also all the intersection files that

represent the affinity data, will be replicated as well to the source node. However, in

example 2, the affinity degree calculated indicates "weak affinity". The FileId15 will

not be replicated since the affinity degree is "low" despite of the file is popular.

The rationale is that, when a user generates a request for a file, large amount of

bandwidth could be consumed to transfer the file from the server to the client.

Furthermore, the popular files tend to be accessed more frequently than less popular

files in the near future. Therefore to select a popular file in the replica placement

strategy is very important. In the real world most of the files have affinity with one

another. A user searching for one song from "The Beatles", may search for another

song from the same music group. A researcher from a university may need more

than one related journal or research file from other university. These two examples

of searching and accessing files need to be done repeatedly. As a consequence, not

only the total access cost is increased but also the total communication cost in

71

accessing the files. However, the increase of both costs can be reduced if related

files are copied instead of just one file per request from the client.

Therefore, the idea behind ARPM is to create a set of replicas where affinity and

popularity are equally important and significant criteria in replica placement strategy.

Besides, ARPM place the new replicas as close as possible to those clients that

frequently request the corresponding files, subject to storage availability. The

effectiveness of this ARPM algorithms also depend on the number of accesses

threshold value and the proximity threshold value that were used herein to determine

the placement of replicas in the P2P systems.

3.7.3 Case 3: Multiple-Query to Single-File

This is the case of different client nodes requesting the same file in the systems during

a period of time. Table 3.7 and 3.8 show example of Multiple-Query to Single-File

case whereby many nodes request a single file. As mentioned in 3.5.3, only one file

is requested by multiple source nodes. In the example in 3.5.3, the affinity degree

for popular FileId21 can be calculated as below:

Example 1:

Let source node be 32S and the destination node be 39D . The query file is FileId21.

32S = {40, 10, 44, 48, 43, 31, 51, 13} and

39D = {10, 44, 43, 40, 48, 31, 34, 54, 21}

32S  39D +)(39Dfqid = {40, 10, 44, 43, 48, 31, 21} = 7

72

From equation in 3.2, the affinity degree

= 7/ 8
 = 0.86 (Strong Affinity)

Example 2:

Let source node be 46S and the destination node be 39D . The query file is FileId 21.

 46S = {42, 1, 41, 14, 3, 31, 13} and

39D = {10, 44, 43, 40, 48, 21}

46S  39D +)(39Dfqid = {21} = 1

From equation in 3.2, the affinity degree

= 1 / 8
= 0.13 (Weak Affinity)

Let source node be 25S and the destination node be 39D . The query file is fileId 21.

25S = {10, 44, 43, 40, 18, 3, 6} and

39D = {10, 44, 43, 40, 48, 21}

32S  39D +)(39Dfqid = {10, 44, 43, 40, 21} = 5

From equation in 3.2, the affinity degree

= 5/ 8
= 0.63 (Moderate Affinity)

In the above examples, the requested file(s) from the destination node 39D will be

replicated to the source node NodeId32 and NodeId25. The relatedness of these

source nodes with the destination nodes are "high" as indicated by their affinity

degree of the files between the source nodes and the destination nodes. In contrast,

example 2 indicates that the relation is “weak”. Therefore, the requested File21,

73

although it is popular, but the file will not be replicated to the source node due to its

weak or "low" affinity degree.

3.7.4 Case 4: Multiple-Query to Multiple-Files

This is the case of multi queries from many source nodes request many files in the

system in during a certain time intervals. The affinity degree can be calculated for

each source nodes that request popular files. For example, FileId15 is the popular

file requested by the source NodeId14, thus the affinity degree can be calculated as

below:

Example 1:

Let source node be 14S and the destination node be 40D . The query file is FileId15.

 14S = {23, 17, 36, 34, 40, 29, 51} and

 40D = {23, 6, 34, 36, 17, 30, 15, 29, 19, 22}

14S  40D +)(4015 Df = {23, 17, 36, 34, 15} = 6

From equation in 3.2, the affinity degree

= 6 / 8
= 0.75 (Strong Affinity)

The affinity degree in example 1 above indicates that the relation is strong. Therefore

we can conclude that, FileId15 is a popular file and the nodes (the source node and

the destination node) has strong relation. Therefore, all the intersection files will be

replicated to the source node.

In the Multiple-Query to Multiple-Files case, for each source node that request a file,

if the file is popular and the affinity degree calculated is "high", then all the affinity

files will be replicated to the source nodes, subject to the storage availability.

74

3.8 ARPM System Model

The P2P network system model considered in this thesis consists of a set of N storage

nodes or simply called nodes. Herein, the nodes are interconnected with one another

and each node at most is linked to three neighbouring nodes (k). On these nodes

replicas of files (r) are stored representing data aggregates such as documents, web

directories, or research materials.

In the network systems, users generate read accesses to the files located on the

servers. Herein, it is assumed that at least one file exist. Until now, in any replica

placement strategies, three important decisions which affect strongly the

performance of the replication strategies proposed are:

i. Which file to replicate? Replica selection. Selecting target replicas depends on

the popularity and importance of the relatedness of the files or their affinity

degree. This can be gained by tracing users’ access history and finding the

affinity degree of the queried files. This thesis focus on read-only access as the

file access type and consistency issue is not considered in this thesis.

ii. How many to replicate? - Replica allocation. In addition to the popularity and

the affinity degree, the access bandwidth of peers affect strongly the decision

of the number of replicas. In this thesis, the number of replicas threshold is

calculated after the threshold of the average number of access frequency is

calculated in each cycle numbers. The number of replicas threshold ensures

that sufficient replicas exist in the systems.

75

iii. Where to place the replicas? - Replica location. The location of replicas in the

ARPM services tier decides where the created replicas should be placed.

Herein, the threshold proximity is set in the configuration text file. It is

assumed that if the number of hop or distant between the source node and the

destination node exceeds the proximity threshold, the new replicas will be

replicated to the nearest neighbours and not the source node. The proximity

threshold is an indicator whether the distant of the source node is closer or far

from the destination node. This indicator is very important to place replicas

in appropriate locations so as to reduce access latency.

Figure 3.3 shows the Affinity Replica Placement Mechanism (ARPM) for 3 tier

architecture. The concept of affinity is used to model the framework to make

decisions of selecting which files to replicate based on the correlated files receive

from a source node. In ARPM model, there are three important components namely:

Affinity, Placement and Replication. Replication is executed after the selection of

popular and affinity files in the affinity component and after deciding where should

the new replicas be placed in the placement component.

76

Applications

ARPM Tier

ARPM Services

Discovery Tier

P2P Topology

Internet

Figure 3.3: Affinity Replica Placement Mechanism (ARPM) 3 tier architecture

 3.9 ARPM Algorithms

Under the ARPM algorithm, file(s) will be replicated if the affinity indicator value is

moderate, strong, or very strong and only if the number of access frequency during

that cycle is high. These affinity indicator values and the selected value of popular

files show that only qualitative files are chosen to be replicated instead of quantitative

files in a large dataset. Further on, the demand of large scale of data in P2P networks

is likely to increase in future. However, the large scale of data makes it impractical

to replicate all the data on every node that request the files. Hence, for efficient

access, a sustainable mechanism to decide which files to replicate according to its

Placement Affinity Assessments

File

Retrieval

Cycle

Driven

Linkable

Nodes

NodeId

Assignmen

Nodes

Communication

Query Processing

Replication

77

common interest or relatedness (affinity) and the file's popularity (number of access

frequency) is highly recommended. The results of better access performance has been

shown in chapter 5.

Without loss of generality, lets assume there are a set of files in each node. Lets

further assume that at least there is one R replica in the network. Figure 3.4 to Figure

3.6 show the algorithm of the proposed ARPM. The algorithm takes the data file (

if), the query id of a node q (nodeid, fileid) that holds the node that request a file(s)

in the network systems as the input.

Algorithm 3.1 : CalculateAccessFreq

 Function accessfreq (NodeId, FileId, NumberOfAccess) {
a. Calculate accessfrequency
b. Calculate average accessfrqeuency //threshold
c. If accessfrequency >= threshold

 calculate number of replicas
Tabulate popular file
Call Function CalculateAffinityDegree()

else

 file will not be selected
} End function

Figure 3.4: Algorithm for access frequency

78

Algorithm 3.2 : CalculateAffinityDegree

 Function CalculateAffinityDegree {
a. compare the file in sourcenode and destination node
b. Calculate affinitydegree

if the affinitydegree == 1
callPathAffinity

else

do not replicate //(Number of replicas are sufficient)
 } End function

Figure 3.5: Algorithm for affinity degree

Algorithm 3.3 : PathAffinity

Function PathAffinity(HopCount){
a. Calculate the distance from the source node (requestor node) to the

destination node (hopCount)
b. Replicate the file to the requester node

} End Function

Figure 3.6: Algorithm for path affinity

79

3.10 Summary

The model of ARPM is proposed for the replica placement in P2P systems. The

primary objective of ARPM is to improve data access performance through

minimizing the access time and to ensure data availability in P2P systems. In this

thesis, the access time is minimised by replicating the popular and affinity files to the

requesting node(s). Likewise, to ensure data availability in the P2P network system,

sufficient number of replicas is maintained in the system. The replica placement

approaches addressed the fundamental issues in replica placement: which file to

replicate, how many to replicate and where to replicate. The access frequency and

the affinity degree were proposed as the two dominant factors and formulated in

ARPM. On the contrary, most of the replica placement algorithms are based on the

popularity of the files to replicate data.

In the next chapter, the implementation of the proposed ARPM based on simulation

will be discussed. The performance of the proposed model presented here is not

limited to single query but also to multiple queries request from source node to the

destination nodes.

80

CHAPTER 4

SIMULATION BASED AFFINITY

This chapter presents the implementation of replica placement in the proposed

Affinity Replica Placement Mechanism (ARPM) for P2P systems. In this thesis,

simulation is chosen to assess the effectiveness of ARPM replica placement

algorithms. The performance of ARPM was validated and evaluated through

experimentation in PeerSim, a peer-to-peer simulator.

4.1 Introduction

When a user generates a request for a file, large amounts of bandwidth could be

consumed to locate the appropriate node that has the file and to transfer that file to

the requester node. In general, one request may lead to another file request that is

correlated to the file that has been requested earlier. A set of files accessed by one

user is also likely to be accessed together by other users. Similarly, a set of related

files is often requested and accessed by multiple users.

81

The degree that these set of files are referencing together in multiple queries scenario

is computed through affinity algorithm proposed in this thesis. The proposed ARPM

highlighted the importance of popular files and its affinity relationship to improve

file access performance and assist replica placement decisions. Moreover, the

performance of the proposed model presented here is not limited to a single query

but also to multiple query from requester or source nodes to the destination nodes.

In this thesis, to simplify the requirements, we assumed that file is read only. How

these queries in a fixed number of cycles contribute to the replica placement

performance is also discussed in this chapter.

4.2 System Parameters

In this thesis, PeerSim is chosen as the P2P simulator to evaluate the performance of

replica placement of ARPM algorithms. The basic architecture in PeerSim has been

discussed in Section 2.7, Chapter 2. Table 4.1 shows the simulation parameters. In

this simulation, a range of P2P random topology composed of 20, 50, and 1000 nodes

were tested. The number of cycles was maintained to 50 cycles.

The next section describes the implementation of the simulation environment of the

ARPM model.

4.3 Simulation Parameters

Replica placement in ARPM is done in cycle-based mode that runs in a sequential

order. In each cycle, each protocol can run its behaviour. ARPM three tier

architecture as explained in chapter 3, section 3.8 is simplified in Figure 4.1. Figure

82

4.1 shows ARPM tiers which were divided into three layers namely: the topology

layer, the discovery layer, and the ARPM Replica Placement layer. The next section

describes the implementation of the simulation environment of the ARPM model.

Table 4.1 Simulation parameters

Parameter Value Description

Simulation
Cycles

50 Number of cycles in the simulation

Network
Size

20, 50, 1000 Number of peers in the network

Access
Frequency

Depends on the
access frequency
calculated for each
time interval

The value calculated in the formula
indicates the access frequency
whether the file is popular or less
popular.

Affinity
Degree

Depends on the
affinity degree
calculated for each
time interval

(1) is the value that indicates the
dataset of files has moderate to strong
affinity degree and (0) is the value that
indicated the affinity degree between
two datasets is weak.

k 3 Number of neighbours is initialised to
3

TTL
(Time-to-
Live)

7 Time to Live for forwarding query

Replica
Threshold

Depends on the
value calculated in
the formula

The threshold as a checker to a number
of replicas allowed in the network.

Proximity
Threshold

3 The threshold as a checker to the
distance between source node to the
destination node in hop count.

83

4.4 ARPM Implementation

Replica placement in ARPM is done in cycle-based mode that runs in a sequential

order. In each cycle, each protocol can run its behaviour. ARPM three tiers

architecture is as explained in chapter 3, section 3.7 is simplified in Figure 4.1. The

Figure 4.1 shows ARPM tiers which were divided into three layers namely: the

topology layer, the discovery layer, and the ARPM Replica Placement layer.

Distributed Applications

Replication Placement
Affinity

Popularity

Discovery

P2P Network Topology

Figure 4.1 ARPM 3-tier architecture

4.4.1 The Topology Layer

In the topology layer, each node has a list of associated protocols. The overall

simulation is regulated through initializers and controllers. The topology layer

defines the configuration of P2P overlay network and provides an interface to the

discovery layer. This layer involves building a topology of the P2P network

including the number of nodes, how they are connected from one node to another,

and the distribution of files across the nodes in the network.

Layer 1 - Topology

Layer 2 - Discovery

Layer 3 - Replica
 Placement

84

PeerSim.init.WireKOut is used as the first initializer to perform the wiring of the

static overlay network having the specified degree (k) parameter which is set to 3.

The parameter k represents the maximum number of neighbouring nodes. In this

simulation, each node has 3 neighbouring nodes linked to the node.

4.4.2 The Discovery Layer

The files in the discovery layer were disseminated among nodes randomly in the

peer-to-peer networks. The storage for all nodes is assumed unlimited and all the files

were considered to have the same size. In this simulation, each node is connected to

3 neighbours and the order in which the files are requested follow random walk

Gaussian distribution. In the discovery layer, a node sends a query to its

neighbouring nodes to find the queried data file. If the neighbour has the data file, it

responds to the source node. Otherwise, the source node sends the query message to

the neighbours until the queried data file is found or the TTL (Time-To-Live) is

expired. The TTL is used to control the number of hops propagated. In this thesis, a

single query and multi queries were considered. In a single query, a node can request

a single file and a node can also request a number of files in one cycle. Whereas, in

the multi queries, many nodes can either request a single file or request for multiple

files in a number of cycles.

Table 4.2 is similar to Table 3.6 in chapter 3 which shows an example of a simple

single query and multiple query scenarios for 20 nodes. For example, in cycle0,

NodeId3 requests a FileId28 (Single query). In cycle4 and cycle10, NodeId97

85

requests a FileId15 and FileId7 respectively (Single-Query to Multiple-Files). An

example of Multiple-Query to Single-File is in cycle5 and cycle17, where two

different nodes request the same file. Lastly, in the case of Multiple-Query to

Multiple-Files, different nodes requesting different files in the system. This reflects

the real scenarios in the P2P collaborating research group, but with larger picture

whereby multi queries node or clients requesting multi files in the network.

4.4.3 ARPM Replica Placement Layer

This layer is divided into three phases: Replica Selection, Replica Allocation and

Replica Placement. The configuration file is read at the beginning of the simulation.

Each node maintains an access record of the files. The record is in the format <Cycle

number, NodeId, FileId>. Files shared here were assumed to be read only. The

number of requests for file should not exceed the maximum query (maxQueries)

which acts as an upper bound threshold in a period of cycle, this is to control a

maximum number of queries that node can emit. Both minimum query (minQueries)

and maximum query in this experiment were set in the DataInitializer. The proposed

ARPM solution for replication is based on popularity of files and the affinity degree.

If both dominant factors are high, then a set of intersections files are copied to the

source node, subject to storage availability. Figure 4.5 below shows a screen shot of

ARPM random queries in PeerSim.

86

Table 4.2: The single query and multiple query scenarios

Cycle Number Requestor NodeId FileId

0 3 28
1 39 23 Case-1

2 92 31
3 67 25
4 97 15
5 63 6
6 42 19
7 69 25
8 31 3
9 1 29

10 97 17
11 50 21
12 54 8
13 32 12
14 46 12
15 71 3
16 25 22
17 31 6
18 14, 15, 37 9, 27,33
19 91 30
20 28 19

Case- 2

Case- 3

Case- 4

87

Figure 4.3: ARPM screenshot for random queries in PeerSim

4.5 Fundamental Decisions in Replica Placement

As mentioned in chapter 3, the important decisions for the replication models to get

the upmost benefits are:

1) What to replicate? - The decision refers to the replica selection phase.

Selecting target replicas depends on the popularity and the affinity degree of

files, which can be gained by tracing users’ access history and calculating the

affinity degree between the files in the source and destination nodes. A precise

metric to determine popular file for replication is used by calculating the

88

number of access frequency (AF) for the file at time interval t. File with

maximum AF is a popular file. Next, the average access frequency for the

popular files is calculated and compared with all other requested files. Then

an affinity degree, AD, is calculated. If both AF and AD values are "high", a

set of files will be replicated.

2) How many to replicate? - This decision refers to the replica allocation. The

threshold is based on the number of average accesses frequency calculated in

each case scenarios. The threshold acts as a checker to ensure that sufficient

replicas exist in the system. The formula of this threshold and few examples

were explained in chapter 3, section 3.5. The number of replicas needed for

the popular files is calculated as the average access frequency of the popular

file divided by the average access frequency for all other files. Table 4.3

shows some examples of the output.

3) Where to place the replicas? - This refers the replica placement phase to

determine replica location. If the decision is not to replicate, the file will be

read remotely. This refers to Case 1 – Single-Query to Single-File as

mentioned in chapter 3, section 3.1. No replication indicates that the access

file was less popular. In other cases, the access frequency and the affinity

degree were calculated and if the value for both dominant factors are high. In

this experiment, the replica is copied to the requester node from the

destination node. A proximity threshold was set to a certain value which acts

as a checker in hop count. If the hop count from a source node to the

destination node exceed the proximity threshold, then we assumed that the

89

distant between the nodes are far. On the other hand, if the hop count from

the source node to the destination node is less than the proximity threshold,

we assumed that the distant between the nodes are closer.

4.6 System Testing

The objective of system testing is to ensure that the developed system performs as

specified by the requirements. The output results from the PeerSim simulator were

shown in Figure 4.3 to Figure 4.5. The output demonstrates the creation of random

query table running in Cycle Driven (CD) mode. The table consists of the number

cycles, the source nodes that request the files and the queried files. These results

show that the simulations for system testing have been successfully executed. The

simulations were tested on the P2P random topology composed of 50 nodes and 100

nodes and 1000 nodes in the network.

4.7 Experiments of Affinity Replica Placement Mechanism (ARPM)

In this section, the implementation and results of ARPM simulation in PeerSim will

be discussed. The first step in the simulation is to read the configuration file which

include all the simulation parameters objects in the experiment. Then the simulator

sets up the network initializing the nodes and the protocols in the system.

In this experiment, there are four initializers namely DataInit, RequestInit,

DataNeiInit, and RequestRoutingIndicesInit. These initializers set up the initial state

90

of each protocol in this experiment. Six protocols were implemented including

DataProtocol, QueryFileProtocol, QueryProtocol,RequestProtocol,

PlacementProtocol and PlacementFileProtocol.

4.7.1 Single-Query to Single-File

In Single-Query to Single-File, only one node request a single file. This case is

considered as a basic case with no file replication.

4.7.2 Single-Query to Multiple-Files

In Single-Query to Multiple-Files case, the same node request for many different

files. Herein, average access frequency and affinity degree were calculated. The

selected file and its correlated files were replicated to the requester node. Table 4.2

shows example of Single-Query to Multiple-Files from the experiment.

4.7.3 Multiple-Query to Single-File

In Multiple-Query to Single-File, different nodes request for the same file. Herein,

average access frequency and affinity degree were calculated. The selected file and

its correlated files were replicated to the requester node. Table 4.2 shows example

of Multiple-Query to Single-File from the experiment.

91

4.7.4 Multiple-Query to Multiple-Files

In Multiple-Query to Multiple-File, different nodes request for many different files.

The average access frequency and affinity degree were calculated. The selected file

and its correlated files were replicated to the requester node. Table 4.2 shows an

example of Multiple-Query to Multiple-File from the experiment.

Figure 4.4: The ARPM screenshot simulated in PeerSim

92

4.8 Summary

In ARPM, the threshold value varies depends on the number of file queries and the

time intervals. PeerSim is a peer-to-peer simulator to evaluate the algorithm of

replica placement mechanism. In this thesis four cases have been discussed and

successfully tested in ARPM. In each case, the number of access frequency and

affinity degree were calculated and tabulated. The results act as the finding towards

evaluating the performance metrics to find the popular and affinity files.

93

CHAPTER 5

EVALUATION AND EXPERIMENTAL RESULTS

In this chapter, the performance results of ARPM are presented and discussed. The

studied performance metrics include Access Frequency (AF), Affinity Degree (AD),

and the number of replicas created.

5.1 Experimental and Simulation Platforms

PeerSim simulator is used as the simulation platform in this research to measure the

replica placement performance of the proposed system and to validate the affinity

notion introduced as mechanism in supporting data placement. All simulations were

implemented in cycle driven mode. In this cycle driven mode, it is assumed that

communications and processing delays can be neglected. In general, the fundamental

concept of ARPM is to place replicas based on Access Frequency (AF) which

indicates that the queried files are popular. Popularity is a very important factor to

avoid unnecessary replication in the P2P networks.

94

Another important factor and a core of the approach proposed in this thesis is an

affinity degree between dataset of files. The affinity degree reflects the real scenarios

in collaborating research environments. A dataset of files may have affinity with

another dataset of files in dispersed locations. Therefore ARPM is proposed to place

affinity files together to improve data access performance through minimizing the

access time and to ensure data availability of files in P2P replica placement decision.

5.2 Simulation Results

In this section, the performance results of ARPM algorithms are presented and

discussed. The studied performance metrics include access frequency (popularity),

affinity degree (relatedness), and the number of replicas created.

5.2.1 Access Frequency

 One of the main objectives of the algorithm is to increase data access performance

from the perspective of the clients by dynamically creating replicas for “popular”

files. As mentioned in chapter 3 section 3.1, in the real world, some files will be

more popular than others and data access patterns may change over time, so any

dynamic replication strategy must keep track of file access histories to decide on

when, what and where to replicate. The “popularity” of a file is determined by its

Access Frequency (AF) from the clients or the requester node.

95

5.2.2 Affinity Degree

The metric of Affinity Degree (AD), denotes the relatedness between files that were

requested by the nodes in the system. The formula of AD was discussed in chapter 3

section 3.2. The calculation of AD reflects the category of affinity between files

whether the files have zero affinity, weak, moderate, strong or very strong. Only

categories for moderate, strong and very strong were chosen to be replicated,

provided that the files were popular as calculated in section 3.1. Chapter 4 is the

continuity from chapter 3 whereby the tables in chapter 4 were the outputs from the

experiment simulated in PeerSim.

5.2.3 Number of Replicas

The metric of number of replicas represents the total number of replicas created for

all data accesses requested by the clients in a simulation session. An increased

number of replicas implies a higher replication frequency which is the value of how

many replications occur per data access. Therefore, the frequency of replication

operations must be controlled to avoid heavy network and server load. In this thesis,

not all file queries will be replicated. The decision whether to replicate depends on

the calculation of the access frequency and the affinity degree.

5.3 Discussions

Table 5.1 shows the access frequency of the queried files as calculated in the

proposed formula explained earlier in 3.3, chapter 3. Duration of 10 times intervals

96

are chosen to tabulate access frequency that indicates the number of files that have

been queried. Then the average access frequency were calculated to find a threshold

value for the establishment of the popular files. Figure 5.1 illustrates the popular

files from time interval 1 to time interval 6 whilst the data from time interval 7 to

time interval 10 from Table 5.1 were filtered since the data indicates the unpopular

files. The graph is decreasing towards the end of the intervals. The result indicates

that the access frequency that pass the average access frequency threshold were

between interval T1 to T6, where from interval T5 onwards, the files queried were

less popular. This result illustrates that the files over the time intervals were

decreased and the files became less popular. In real scenarios, this reflects that the

popularity of files increased in the first dissemination and became less popular after

a period of time.

Further on, the results reflect the dynamic replication which takes into consideration

changes in the peer-to-peer environments and creates new replicas for referenced

data files or moves the replicas to other sites as needed to improve performance.

When a request is found in any node, the node will become further reference for file

access. Thus no new replication is needed. The usefulness of this replication strategy

is evident and can be seen in the new technology communication products or in

fashions trend. The communication technology depreciate rapidly whenever new

technology coming in. Similarly Fashion nowadays become trendy in the current

time situation and will depreciate over a period of time and thus become less popular.

97

Table 5.1: An example of calculated Access Frequency (AF)

A
C

C
E

S
S

 F

R
E

Q
U

E
N

C
Y

TIME INTERVAL

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
2.000

0
2.000

0
0.750

0
0.250

0
0.500

0
0.188

0
0.046

9
0.046

9
0.011

7
0.003

9
3.000

0
3.000

0
0.500

0
0.250

0
0.250

0
0.010

0
0.046

9
0.031

3
0.011

7
0.005

9
3.000

0
1.000

0
1.000

0
0.750

0
0.125

0
0.004

0
0.062

5
0.046

9
0.031

3
0.005

9
4.000

0
2.500

0
0.750

0
0.125

0
0.187

5
0.006

0
0.046

9
0.078

1
0.015

6
0.005

9
7.000

0
0.500

0
1.250

0
0.625

0
0.250

0
0.012

0
0.031

3
0.078

1
0.027

3
0.005

9
3.000

0
2.500

0
1.250

0
0.625

0
0.437

5
0.006

0
0.031

3
0.062

5
0.015

6
0.003

9
3.000

0
1.500

0
1.000

0
0.375

0
0.062

5
0.004

0
0.078

1
0.046

9
0.007

8
0.009

8
3.000

0
2.500

0
0.500

0
0.625

0
0.250

0
0.006

0
0.031

3
0.031

3
0.003

9
0.003

9
2.000

0
0.500

0
0.250

0
0.250

0
0.312

5
0.008

0
0.015

6
0.015

6
0.011

7
0.005

9
5.000

0
2.500

0
1.000

0
0.625

0
0.375

0
0.006

0
0.046

9
0.031

3
0.015

6
0.007

8
6.000

0
1.000

0
0.750

0
0.750

0
0.187

5
0.004

0
0.078

1
0.046

9
0.019

5
0.005

9
1.000

0
1.500

0
1.000

0
0.875

0
0.187

5
0.006

0
0.062

5
0.046

9
0.007

8
0.005

9
4.000

0
2.000

0
1.250

0
0.125

0
0.187

5
0.004

0
0.078

1
0.093

8
0.003

9
0.005

9
3.000

0
1.000

0
0.500

0
0.375

0
0.250

0
0.002

0
0.078

1
0.062

5
0.007

8
0.011

7
5.000

0
1.500

0
1.250

0
0.375

0
0.250

0
0.006

0
0.078

1
0.109

4
0.011

7
0.009

8
2.000

0
0.500

0
1.250

0
0.500

0
0.062

5
0.010

0
0.062

5
0.046

9
0.011

7
0.005

9
3.000

0
1.000

0
0.250

0
0.375

0
0.187

5
0.004

0
0.046

9
0.015

6
0.011

7
0.005

9
3.000

0
2.500

0
0.500

0
0.250

0
0.250

0
0.006

0
0.062

5
0.046

9
0.007

8
0.003

9
3.000

0
2.500

0
1.000

0
0.250

0
0.187

5
0.010

0
0.015

6
0.031

3
0.003

9
0.003

9
4.000

0
2.000

0
0.750

0
0.375

0
0.187

5
0.006

0
0.046

9
0.031

3
0.011

7
0.007

8
4.000

0
3.000

0
0.500

0
0.125

0
0.125

0
0.006

0
0.031

3
0.015

6
0.007

8
0.005

9
1.000

0
0.500

0
1.250

0
0.125

0
0.250

0
0.004

0
0.046

9
0.031

3
0.007

8
0.003

9
3.000

0
1.000

0
1.250

0
0.625

0
0.125

0
0.010

0
0.031

3
0.031

3
0.015

6
0.003

9
3.000

0
1.000

0
1.250

0
0.375

0
0.125

0
0.004

0
0.015

6
0.062

5
0.023

4
0.005

9
1.000

0
1.000

0
0.500

0
0.125

0
0.062

5
0.002

0
0.046

9
0.062

5
0.003

9
0.002

0
2.000

0
1.500

0
0.500

0
0.250

0
0.125

0
0.006

0
0.015

6
0.078

1
0.003

9
0.002

0
2.000

0
1.000

0
0.250

0
0.250

0
0.062

5
0.008

0
0.046

9
0.031

3
0.023

4
0.002

0

98

2.000
0

1.500
0

1.000
0

0.250
0

0.250
0

0.004
0

0.015
6

0.015
6

0.003
9

0.003
9

2.000
0

1.000
0

0.500
0

0.125
0

0.125
0

0.004
0

0.015
6

0.046
9

0.007
8

0.005
9

2.000
0

1.500
0

0.500
0

0.250
0

0.062
5

0.006
0

0.031
3

0.062
5

0.011
7

0.009
8

1.000
0

1.000
0

0.250
0

0.500
0

0.062
5

0.004
0

0.015
6

0.062
5

0.003
9

0.002
0

3.000
0

1.000
0

0.250
0

0.125
0

0.062
5

0.004
0

0.015
6

0.015
6

0.007
8

0.003
9

Figure 5.1: The relationship between Access Frequency (AF) and time interval (T)

Table 5.2 shows the calculated Access Frequency (AF) and Affinity Degree (AD) as

proposed in this thesis. The excerpted data in Table 5.2 shows that, only popular files

were considered to be replicated in the P2P networks. The Affinity Degree (AD) were

calculated based on these popular files to find the files relatedness or affinity. The

shaded region in the table indicates the unpopular files, and hence were filtered from

the table.

0

100

200

300

400

500

600

700

800

T1 T2 T3 T4 T5 T6

N
u

m
b

e
r

o
f

A
cc

e
ss

 F
il

e

Time interval

Access Frequency for File Replication

99

Table 5.2: An example of calculated Access Frequency (AF) and Affinity Degree
(AD)

A
F

F
IN

IT
Y

D

E
G

R
E

E

TIME INTERVAL

T1 T2 T3 T4 T5 T6

AF AD AF AD AF AD AF AD AF AD AF AD
2.000

0
0.330

0
2.000

0
0.181

8
0.750

0
0.578

9
0.250

0
0.571

4
0.500

0
0.375

0
0.188

0
0.647

1
3.000

0
0.270

0
3.000

0
0.600

0
0.500

0
0.312

5
0.250

0
0.363

6
0.250

0
0.545

4
0.010

0
0.538

5
3.000

0
0.280

0
1.000

0
0.444

4
1.000

0
0.181

8
0.750

0
0.437

5
0.125

0
0.318

1
0.004

0
0.300

0
4.000

0
0.750

0
2.500

0
0.555

6
0.750

0
0.250

0
0.125

0
0.636

3
0.187

5
1.000

0
0.006

0
0.684

2
7.000

0
0.473

7
0.500

0
0.423

1
1.250

0
0.444

4
0.625

0
0.444

4
0.250

0
0.350

0
0.012

0
0.500

0
3.000

0
0.555

6
2.500

0
0.272

7
1.250

0
0.333

3
0.625

0
0.571

4
0.437

5
0.400

0
0.006

0
0.400

0
3.000

0
0.500

0
1.500

0
0.125

0
1.000

0
0.357

1
0.375

0
0.428

6
0.062

5
0.450

0
0.004

0
3.000

0
0.555

6
2.500

0
0.272

7
0.500

0
0.428

6
0.625

0
0.400

0
0.250

0
0.357

1
0.006

0
2.000

0
0.500

0
0.500

0
0.400

0
0.250

0
0.304

3
0.250

0
0.538

5
0.312

5
0.533

3
0.008

0
5.000

0
0.533

3
2.500

0
0.411

8
1.000

0
0.466

7
0.625

0
0.500

0
0.375

0
0.500

0
0.006

0
6.000

0
0.333

0
1.000

0
0.500

0
0.750

0
0.411

8
0.750

0
0.714

3
0.187

5
0.004

0
1.000

0
0.500

0
1.500

0
0.235

3
1.000

0
0.666

7
0.875

0
0.285

7
0.187

5
0.006

0
4.000

0
0.785

7
2.000

0
0.454

5
1.250

0
0.428

6
0.125

0
0.625

0
0.187

5
0.004

0
3.000

0
0.636

3
1.000

0
0.625

0
0.500

0
0.470

6
0.375

0
0.285

7
0.250

0
0.002

0
5.000

0
0.388

9
1.500

0
0.545

5
1.250

0
0.416

7
0.375

0
0.500

0
0.250

0
0.006

0
2.000

0
0.076

9
0.500

0
0.500

0
1.250

0
0.578

9
0.500

0
0.538

5
0.062

5
0.010

0
3.000

0
0.533

3
1.000

0
0.578

9
0.250

0
0.357

1
0.375

0
0.187

5
0.004

0
3.000

0
0.571

4
2.500

0
0.416

7
0.500

0
0.333

3
0.250

0
0.250

0
0.006

0
3.000

0
0.250

0
2.500

0
0.500

0
1.000

0
0.384

6
0.250

0
0.187

5
0.010

0
4.000

0
0.294

1
2.000

0
0.347

8
0.750

0
0.466

7
0.375

0
0.187

5
0.006

0
4.000

0
0.454

5
3.000

0
0.538

5
0.500

0
0.333

3
0.125

0
0.125

0
0.006

0
1.000

0
0.611

1
0.500

0
0.555

6
1.250

0
0.384

6
0.125

0
0.250

0
0.004

0
3.000

0
0.307

7
1.000

0
0.200

0
1.250

0
0.600

0
0.625

0
0.125

0
0.010

0
3.000

0
0.588

2
1.000

0
0.416

7
1.250

0
0.411

8
0.375

0
0.125

0
0.004

0
1.000

0
0.555

6
1.000

0
0.545

5
0.500

0
0.153

8
0.125

0
0.062

5
0.002

0
2.000

0
0.200

0
1.500

0
0.500

0
0.500

0
0.357

1
0.250

0
0.125

0
0.006

0
2.000

0
0.461

5
1.000

0
0.200

0
0.250

0
0.375

0
0.250

0
0.062

5
0.008

0
2.000

0
0.588

2
1.500

0
0.500

0
1.000

0
0.250

0
0.250

0
0.250

0
0.004

0
2.000

0
0.555

6
1.000

0
0.142

9
0.500

0
0.333

3
0.125

0
0.125

0
0.004

0
2.000

0
0.375

0
1.500

0
0.571

4
0.500

0
0.750

0
0.250

0
0.062

5
0.006

0
1.000

0
0.562

5
1.000

0
0.375

0
0.250

0
0.473

7
0.500

0
0.062

5
0.004

0

100

3.000
0

0.461
5

1.000
0

0.666
7

0.250
0

0.181
8

0.125
0

0.062
5

0.004
0

2.000
0

0.434
7

0.500
0

0.312
5

0.600
0

0.125
0

0.062
5

0.006
0

1.000
0

0.428
5

0.500
0

0.500
0

0.312
5

0.062
5

The result from Table 5.2 were excerpted into Table 5.3. In Table 5.3, the affinity

degree were calculated based on the popularity files which exceed or equal to the

threshold of average access frequency calculated earlier. Only access frequency and

affinity degree files that complied with the rules proposed in this thesis will be

selected to be replicated. The shaded region indicates the data that has been filtered

from Table 5.2. This suggests that the relatedness of the files were weak in

comparison with the unshaded region that shows the moderate, strong and very

strong affinity degree in Table 5.3.

Table 5.3: An example of calculated affinity degree

A
F

F
IN

IT
Y

 D
E

G
R

E
E

TIME INTERVAL

T1 T2 T3 T4 T5 T6

0.7500 0.6000 0.5789 0.5714 1.0000 0.6471

0.5556 0.5556 0.6667 0.6363 0.5454 0.5385

0.5000 0.5000 0.5789 0.5714 0.5333 0.6842

0.5556 0.6250 0.6000 0.5385 0.5000 0.5000

0.5000 0.5455 0.7500 0.5000

0.5333 0.5000 0.7143

0.5000 0.5789 0.6250

0.7857 0.5000 0.5000

0.6363 0.5385 0.5385

0.0769 0.5556

0.5333 0.5455

0.5714 0.5000

0.6111 0.5000

0.5882 0.5714

0.5556 0.6667

101

0.5882 0.5000

0.5556

0.5625

No. of

files 18 16 5 9 4 4

Referring to the Affinity Degree Formula 3.2 in chapter 3

Figure 5.2 Illustrates the affinity degree calculated based on the files that exceed or

equal to the access frequency threshold and the affinity degree that have strong files

relatedness. In time interval 4 (T4), there was a slight increase in the number of the

replicated files. The replicated files over a period of time in T3 were decreased but

gained back in T4 before the pattern is repeated. The graph in Figure 5.2 verified

that there is a certain access pattern and relatedness of the requested files by the

clients in the network.

The demand for the popular and correlated files are high during the first

dissemination and then decreased after certain period. Consequently it will gain

popularity and correlativity before it decreases hence this pattern will be repeated. In

real scenario, in research collaboration for example, a new found technology or

research will initially expected to be highly demanded and therefore the number of

replicas is increased and copied to the trusted or affine clients. However, this data

will decrease over a certain period of time and whenever newer technology is found,

the pattern will be repeated.

102

.

Figure 5.2: Files replication based on degree of affinity

0

2

4

6

8

10

12

14

16

18

20

T1 T2 T3 T4 T5 T6

N
u

m
b

e
r

o
f

F
il

e
s

(1
0

3
)

Time Interval Number of Files

103

5.4 Summary

In order to evaluate the performance of the proposed replica placement strategy, an

affinity and access frequency were chosen as the two dominant factors in this thesis.

The results were explained and illustrated in this chapter. At constant time intervals,

the dynamic Affinity Replica Placement Mechanism (ARPM) calculates the files

access frequency that denotes the popularity of the file queries and calculate the

affinity degree that reflects the relatedness or the dependency of the files between the

source node and the destination node. More importantly, by calculating the affinity

degree, more precise metrics are found to indicate the affinity between files in the

nodes. The files that complies with the two dominant factors were replicated to the

source nodes that initiate the request. Thus, the network performance is increased

since more than one replicas exist in the systems. Additionally, the number of file

replicas calculated is to ensure availability by having sufficient numbers of replicas

in the network.

104

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This chapter concludes the thesis followed by the discussion of contributions and

future directions. In this thesis, we proposed Affinity Replica Placement Mechanism

(ARPM) which is encapsulated in three layers: (1) Peer-to-peer topology layer, (2) a

discovery layer and (3) an ARPM services. We have addressed the problem of

replica placement in peer-to-peer (P2P) systems to improve the performance of data

availability and accessibility.

6.1 Conclusion

Would you open your front door to a stranger? Would you share a copy of your

document or files with an unknown person who is neither your relative nor your

friends or colleague simply because they request a copy of the files? Why molecules

bind with certain molecules? Is it because of its strong chemistry or perhaps affinity?

These are some of the analogies that were the turning point in this thesis, a study of

the affinity notion in replica placement strategies.

105

Popularity and affinity are two most important parameters in replica placement

strategy which aims to improve the performance of data availability and accessibility.

The idea behind ARPM as proposed in this study is to create replicas based on files’

popularity and affinity. Popularity refers to how many times the file is required by a

client or a system site and it indicates the importance of the file. The performance of

replication strategies in distributed systems closely depend on the popularity

parameter precision. Indeed, for a given datasets, the closer is the popularity

prediction to the reality; the better is the satisfaction of the client needs.

Consequently, the data popularity parameter is one of the key factors to decide which

files have to be accessed, replicated or even deleted.

Equally important parameter to address replica placement problems is affinity.

Affinity refers to the correlated files, similarity, dependency or the linking between

two or more files in the P2P systems. The affinity parameter will replicate file only

to trusted sites and therefore replicating sufficient quality research file. Generally,

other replica placement strategies deal with the quantity data dissemination.

However, ARPM in this thesis deals with the quality over quantity data replication

strategy. If we just take popularity as a measure, a system may over replicate.

Moreover, in many cases, popularity does not continue. There will be lots of replicas

which may not be needed. Therefore, taking affinity into consideration as another

measure is very significant to reduce the number of replicas in the P2P network

systems.

Combining both popularity and affinity parameters in replica placement will finally

strengthen our primary goals to improve data availability and accessibility whilst

106

reduce over replication. Up until now, there are not many literatures combining

popularity and affinity in designing dynamic replica placement strategies in

distributed systems. Furthermore, the adapted access frequency and proposed

affinity mathematical formulations have been established and taken into account for

both single query and multiple queries scenarios of requesting file(s) from any nodes

in the peer-peer systems. Then again, different replication policies under different

topologies are complicated to compare due to the diverse nature of assumptions made

regarding the topology, data access patterns and policy objectives. Thus, the

decisions of replica placement are very important to improve the performance of any

replication scheme effectively.

6.2 Contributions

Based on the results of this study the following contributions can be drawn:

1) ARPM has been proposed and it has successfully contributed to the

improvement of data access performance through minimizing the access time.

2) ARPM has successfully avoided the overflow of the unnecessary replicated

files in the distributed system.

3) The formula for access frequency is adapted mathematically to calculate the

files popularity whilst the mathematical formula for affinity degree was

established.

4) The hybrid of the popularity and relatedness of the files demanded by the

clients in the network has been incorporated in our replica placement strategy.

107

6.3 Practical Applications

This section discusses the applicability of real situations where ARPM can be applied

namely: media affinity and file sharing. By its nature, audio and video streaming in

media affinity has a linkage to be recorded or played back at its real time rate. Both

media can be written into the system or copied with certain chunk sizes or in a

sequence of related frames. Since frames are delivered in sequence in video/audio

streaming, a request for frame one will likely require frames two … n. Later when

the data is accessed in the file system, it has already been optimised for the way the

system will be read or written based upon the data’s affinity for real time use.

Another practical application is file sharing. In distributed file sharing such as the

aspects of temporal/spatial locality, files in a common repository often will be

requested together. Hence, request for one file potentially also leads to other files in

the repository. For example, a High Energy Physics (HEP) device called the Large

Hadron Collider (LHC), at CERN will produce roughly 15 Petabytes (15 million

Gigabytes) of data annually, which thousands of scientists around the world will

access (Shorfuzzaman, 2012). The data distribution model for the CERN (LHC)

experiments where datasets were first generated and stored at CERN, and later copied

to different distribution and regional centres. From these centres the data is then

distributed to different labs worldwide to give access to scientists from around the

world.

108

6.4 Issues and Limitations

There are several issues with consistency, storage and file deletion which are not

highlighted in this study. The issues of consistency deals with concurrent updates

made to multiple replicas of a file. When one file is updated, all other replicas have

the same contents and thus provide a consistent view. Consistency and

synchronization problems associated with replication in P2P systems are not

addressed in this research with files are regarded as being read-only. Next is the

storage issue which is one of the limitations in this thesis. A better replica placement

strategy would distribute replicas over many storage peers in the system and balance

the access load among the peers. Another limitation is file deletion in P2P

environments. Due to the dynamic nature in P2P environment, the replication

strategy should be more adaptive in deleting replicas which is least important or not

popular anymore.

In the simulations, the connection between sites is assumed to be reliable throughout

the simulations. As future research, ARPM can be extended further to include sites

that can join or quit the P2P network besides ARPM capable of handling fault

tolerance issue.

6.5 Future Directions

The combination of popularity and affinity files in replica placement strategies have

open up to other significant contributions in distributed systems and other

applications. The possibility of combining affinity files, affinity path and affinity

109

nodes can bring the performance of replication strategies to another level. By

understanding the patterns of interactions in the peer-to-peer network and who is

connected to whom, shed up the new dimensions in replica placement strategies,

social networks, and E-science and non E-science applications in big data driven

environment.

This thesis has investigated the properties that are unique to peer-to-peer

environment. However, the research can also be applied to other environment such

as hierarchical data grids, federated data grid, and hybrid distributed systems.

Currently, scientific collaborations that need to manage volumes of shared data.

Some of the tools developed within distributed environments may find applicability

to areas outside of scientific computing such as in enterprises with similar

requirements for resource sharing and data access. This would require taking into

account more strict reliability and security requirements. Another challenge would

be to extend existing techniques to work with technologies within enterprises such

as NoSQL databases. In addition, ARPM copies data across multiple servers, so each

bit of data can be found in multiple places. Besides read operation, ARPM should

allow writes operation as well to any node and synchronize their copies of the data.

Another extension would be to modify ARPM algorithms to determine replica

placement in the hybrid topology instead of pure P2P topology. This would broaden

the scope of applicability of ARPM algorithms across various grid and distributed

environments that require both non-hierarchical and hierarchical network structures.

110

This thesis has reached the initial fixed goals; however that much still needs to be

investigated. The work done in this thesis contributes to some understanding of

replica placement in peer-to-peer environments and advances the state-of-the-art

through its contributions. The thesis finishes with the idea of popularity and affinity

in replica placement as the base to pursue with various opened directions in the

future.

111

REFERENCES

ABAWAJY, J., and Mat Deris, M., 2014. Data Replication Approach with

Consistency Guarantee for Data Grid, IEEE Transactions on Computers,
vol.63, no. 12, pp. 2975-2987.

ABAWAJY, J., 2004. Placement of File Replicas in Data Grid Environments.

Springer Verlag, Berlin Heidelberg, 3038, 66 – 73.

ABDULLAH, A., OTHMAN, M., IBRAHIM, H. SULAIMAN, M.N. and

OTHMAN, A.T. 2008. Decentralized replication strategies for P2P based
scientific data grid. Information Technology, ITSim 2008, International
Symposium, 3, 1 – 8.

AMJAD, T., SHER, M., DAUD, A. 2012. A survey of dynamic replication strategies

for improving data availability in data grids. Future Generation Computer
Systems, Volume 28, 337 – 349.

BAKHOUYA, M., GABER, J. 2006. Self-organizing Approach for Emergent Multi-

agent Structures”, copyright 2006 ACM 1-59593-186-4/06/0007.

BAKSHI, K. (2012, March). Considerations for big data: Architecture and approach.

In Aerospace Conference, IEEE (pp. 1-7).

BARREFORS, B., 2015. Dynamic Data Management In A Data Grid Environment.

Master thesis: The University of Nebraska.

BSOUL, M., Al-KHAWSANEH, A., KILANI, Y. and OBEIDAT, I., 2012. A

threshold-based dynamic data replication strategy. The Journal of
Supercomputing, 60(3), pp.301-310.

CHANG, R.S. and CHANG, H.P. 2008. A dynamic data replication strategy using

access-weights in data grids. J Supercomput, 45, 277 – 295.

CHEN, M., MAO, S. and LIU, Y. 2014. Big data:a survey. Mobile Networks and

Applications, Volume 19(2), 171-209.

112

CHEN, Y.W. and LARBANI, M. 2006. Developing the Affinity Set (Guangxi Set)
Theory and Its Applications In ICPADS, 465-474, IEEE Computer Society.

CHEN, Y. W., LARBANI, M., HSIEH, C. Y., & CHEN, C. W. (2009). Introduction

of affinity set and its application in data-mining example of delayed
diagnosis.Expert Systems with Applications, 36(8), 10883-10889.

CHEN, Y., KATZ, R. H., & KUBIATOWICZ, J. D. (2002). Dynamic replica

placement for scalable content delivery In Peer-to-peer systems 306-318.
Springer Berlin Heidelberg.

CHERVENAK, A., FOSTER, I., KESSELMAN, C., SALISBURY, C. and

TUECKE, S. 2000. The Data Grid: Towards and architecture for the
distributed management and analyss of large scientific datasets. Journal of
Network and Computer Applications, 23, (3), 187.

CHETTAOUI, H. AND CHARRADA, F.B., 2014. A new decentralized periodic

replication strategy for dynamic data grids. Scalable Computing: Practice and
Experience, 15(1).

COHEN, E. and SHENKER, S. 2002. Replication strategies in unstructured peer-to-

peer networks. In: Proceedings of the conference on Applications,
technologies, architectures and protocols for computer communications. ACM
Press: New York, 2002, 177 – 190.

DALLAKYAN, S. AND OLSON, A.J., 2015. Small-Molecule Library Screening by

Docking with PyRx. Chemical Biology: Methods and Protocols, pp.243-250.

DANCY, C.P. AND REIDY, J., 2004. Statistics without maths for

psychology.Harlow: Pearson Education Limited.

DERIS, M.M., ABAWAJY, J.H. AND MAMAT, A., 2008. An efficient replicated

data access approach for large-scale distributed systems. Future Generation
Computer Systems, 24(1), pp.1-9.

DEVAKIRUBAI, N. AND KANNAMMAL, A., 2013. Optimal replica placement in

graph based data grids. The International Journal of Engineering and Science
(IJES), 2(3), pp.95-103.

113

DOBOS, L., PINCZEL, B., KISS, A., RÁCZ, G., & EILER, 2014. A Comparative
Evaluation Of NoSQL Database Systems. Annales Univ. Sci. Budapest., Sect.
Comp. 42, pp 173–198.

FADAIE, Z. and RAHMANI, A.M. 2012. A new Replica Placement in Data Grid”,

International Journal of Computer Science Issues (IJCSI), 9 (2).

FEDAK, G, et al.,. 2009. “BitDew: A data management and distribution service with

multi-protocol file transfer and metadata abstraction. J.Network Computer
Applications, doi:10.1016/j.jnca.2009.04.002

FEDAK, G., HE, H., CAPELLO, F. 2008. BitDew: A programmable Environment

for Large-Scale Data Management and Distribution. Grand-Large/INRIA-
Saclay Laboratorie de Recherche en Informatique : France.

FEDAK, G., He, H. and CAPELLO, F. 2008. A File Transfer Service with

Client/Server, P2P and Wide Area Storage Protocols, LNCS, 1-11, Springer.

FOSTER, I., KESSELMAN, C., and TUECKE, S. 2001. The anatomy of the grid:

Enabling scalable virtual organizations. International Journal of High
Performance Computing Applications, 15 (3), 200 – 222.

GARMEHI, M., ANALOUI, M., PATHAN, M. AND BUYYA, R., 2014. An

economic replica placement mechanism for streaming content distribution in
Hybrid CDN-P2P networks. Computer Communications, 52, pp.60-70.

GARMEHI, M. AND MANSOURI, Y., 2007, December. Optimal placement

replication on data grid environments. In Information Technology,(ICIT 2007).
10th International Conference on (pp. 190-195). IEEE.

GILSON, M.K., LIU, T., BAITALUK, M., NICOLA, G., HWANG, L. AND

CHONG, J., 2016. BindingDB in 2015: A public database for medicinal
chemistry, computational chemistry and systems pharmacology. Nucleic acids
research, 44(D1), pp.D1045-D1053.

GOEL, S. and BUYYA, R. 2013. Data replication strategies in wide area distributed

systems. Business and Information. Bali, July 7 – 9.

GRACE, R.K. and MANIMEGALAI, R. 2014. Dynamic replica placement and

selection strategies in data grids – A comprehensive survey. J. Parallel Distrib.
Computing, 74(2), 2099-2108.

114

HAMDENI, C., HAMROUNI, T., & CHARRADA, F. B. 2016. Data popularity
measurements in distributed systems: Survey and design directions. Journal of
Network and Computer Applications.

HECHT, R and JABLONSKI, S. (2011). Nosql evaluation. In International

conference on cloud and service computing (pp. 336-41). IEEE.

JAMAL, A. A., AWANG, W. S. W., KADIR, M. F. A., AZIZ, A. A., & TEAHAN,

W. J. 2014. Implementation of Resource Discovery Mechanisms onto PeerSim,
The Third International Conference on Informatics and Conference (ICIA
2014) Malaysia.

JELASITY, M., MONTRESSOR A., JESI G., and VOULGARIS S. 2009. PeerSim:

A scalable P2P simulator, In. Proc.of the 9th Conference on Peer-to-peer
(P2P’09),99-100, Seattle, WA, Sept.

JELASITY, M., MONTRESSOR, A., JESI, G., and S.Voulgaris. 2004. PeerSim: A

peer-to Peer Simulator. http://PeerSim.sourceforge.net

KAWASAKI, Y., MATSUMOTO, N., & YOSHIDA, N. (2006). Popularity-based

content replication in peer-to-peer networks. In Computational Science–ICCS
2006 . pp. 436-443. Springer Berlin Heidelberg.

LARBANI, M., CHEN, Y. W. (2009). A Fuzzy Set Based Framework for Concept

of Affinity. Applied Mathematical Sciences, 3(7), 317-332.

LAMEHAMEDI, H., SHENTU, Z., SZYMANSKI, B. 2003. Simulation of dynamic

data replication strategies in data grids. In Proceedings of the International
Parallel and Distributed Processing Symposium. Washington, D.C. : IEEE
Computer Society.

LAMEHAMEDI, H., SZYMANSKI, B.K., SHENTU, B., DEELMAN, Z. 2002.

Data Replication Strategies in Grid Environments In: proceedings of 5th Int’l
Conference on Algorithms and Architecture for Parallel Processing, IEEE
Computer Society Press, 378-383.

LIN Y.F., LIU P. and WU, J.J. 2008. Optimal replica placement in hierarchical data

grids with locality assurance. Journal of Parallel and Distributed Computing,
12, 1517 – 1538.

http://peersim.sourceforge.net/

115

LIN Y.F., LIU P., WU, J.J. 2006a. Optimal Placement of Replicas in Data Grid
Environments with Locality Assurance. In ICPADS, 465-474, IEEE Computer
Society.

LIU, P., LIN, YI-F.and Wu, J.J. 2006b. Optimal Replica Placement Strategy For

Hierarchical Data Grid Systems. International Symposium on Cluster
Computing and the Grid -CCGrid’06.

LUO, X., XIN, G., WANG, Y., ZHANG, Z. AND WANG, H., 2015. Superset: a

non-uniform replica placement strategy towards perfect load balance and fine-
grained power proportionality. Cluster Computing, pp.1-14.

MA, J., LIU, W., & GLATARD, T. (2013). A classification of file placement and

replication methods on grids. Future Generation Computer Systems, 29(6),
1395-1406.

MADI, M., YUSOF, Y., HASSAN, S. AND ALMOMANI, O., 2011. A Novel

Replica Replacement Strategy for Data Grid Environment. In Software
Engineering and Computer Systems (pp. 717-727). Springer Berlin Heidelberg.

MANSOURI, N., DASTGHAIBYFARD, G.H. AND MANSOURI, E., 2013.

Combination of data replication and scheduling algorithm for improving data
availability in Data Grids. Journal of Network and Computer
Applications, 36(2), pp.711-722.

MANSOURI, N., & DASTGHAIBYFARD, G. H. (2012). A dynamic replica

management strategy in data grid. Journal of network and computer
applications, 35(4), 1297-1303.

MOKADEM, R. AND HAMEURLAIN, A., 2014. Data replication strategies with

performance objective in data grid systems: a survey. International Journal of
Grid and Utility Computing, 6(1), pp.30-46.

PALANISWAMY, A. Accelerating HPC. Symposium on Application Accelerators

in High-Performance Computing (SAAHPC'10), July 13-15, 2010 University
of Tennessee Conference Center Knoxville, Tennessee

PARSONS, M. 2013. Petascale to Exascale: The Hardware and Software

Challenge”, HPC Finance Conference, May 13, 2013 Tampere University of
Technology, Finland.

116

PETRI, I., RANA, O. F., REZGUI, Y., & SILAGHI, G. C. (2012). Risk assessment

in service provider communities. In Economics of Grids, Clouds, Systems, and
Services (pp. 135-147). Springer Berlin Heidelberg.

PETRI, I., RANA, O. F., SILAGHI, G. C., & REZGUI, Y. (2014). Risk assessment

in service provider communities. Future Generation Computer Systems, 41,
32-43.

RAHMAN, M.R., BARKER K. and ALHAJJ R. 2006. Replica Placement Design

With Static Optimality and Dynamic maintainability. International Symposium
on Cluster Computing and the Grid -CCGrid’06.

RANGANATHAN, K., LAMNITCHI, A. and FOSTER, I. 2002. Improving data

availability through model-driven replication for large peer-to-peer
communities. In Proceedings of Global and Peer-to-peer Computing on Large-
Scale Distributed Systems Workshop, Berlin, Germany. IEEE.

RANGANATHAN, K., and Foster, I. (2001). Identifying dynamic replication

strategies for a high-performance data grid. In Grid Computing—GRID
2001 Springer Berlin Heidelberg. 75-86.

RASOOL, Q., LI, J., ZHANG, S. 2009. Replica placement in multi-tier data grid.

Eighth IEEE International Conference on Dependable, Automatic and Secure
Computing, 103 – 108.

RASOOL, Q., JIANZHONG, L., GEORGE, S.K. and EHSAN, U.M. 2007. A

comparative study of replica placement strategies in data grids. Springer-
Verlag Berlin Heidelberg, LNCS, 4537, 135 – 143.

RASOOL, Q., LI, J., ZHANG, S. 2008. On P2P and Hybrid Approaches for Replica

Placement in Grid Environment. Information Technology Journal 7 (4):590-
598.

REED, D.A. AND DONGARRA, J., 2015. Exascale computing and big data.

Communications of the ACM, 58(7), pp.56-68

SASHI, K., & THANAMANI, A. S. (2011). Dynamic replication in a data grid using

a modified BHR region based algorithm. Future Generation Computer
Systems, 27(2), 202-210.

117

SENHADJI, S., KATEB, A. and BELBACHIR, H., 2013. Increasing Replica
Consistency Performances with Load Balancing Strategy in Data Grid
Systems. World Academy of Science, Engineering and Technology,
International Journal of Computer, Electrical, Automation, Control and
Information Engineering, 7(1), pp.153-158.

SHI, C., LIN, Q. AND DENG, C., 2015. Preparation of on-plate immobilized metal

ion affinity chromatography platform via dopamine chemistry for highly
selective isolation of phosphopeptides with matrix assisted laser
desorption/ionization mass spectrometry analysis. Talanta, 135, pp.81-86.

SHORFUZZAMAN, M., 2014, DECEMBER. Access-Efficient QoS-Aware Data

Replication to Maximize User Satisfaction in Cloud Computing Environments.
In Parallel and Distributed Computing, Applications and Technologies
(PDCAT), 2014 15th International Conference on (pp. 13-20). IEEE.

SHORFUZZAMAN, M. 2010. Placement of Replicas in Large-Scale Data Grid

Environments. Phd thesis: The University of Manitoba.

SHEN, H. 2010. An efficient and adaptive decentralized file replication algorithm in

P2P file sharing systems. IEEE Transactions on parallel and distribution
systems, 21, 6, 827 – 840.

SIVAKUMAR, A., RAO, S. AND TAWARMALANI, M., 2013. D-tunes: self

tuning datastores for geo-distributed interactive applications. ACM SIGCOMM
Computer Communication Review, 43(4), pp.483-484.

SOOSAI, A.M., ABDULLAH, A. and OTHMAN, M., LATIP, R., SULAIMAN, M.

N., IBRAHIM, H. 2012. Dynamic replica replacement strategy in data grid. In
Computing Technology and Information Management (ICCM), 2012 8th
International Conference on Vol. 2, pp. 578-584. IEEE.

SPAHO, E., BAROLLI, A., XHAFA, F. AND BAROLLI, L., 2015. P2P Data

Replication: Techniques and Applications. In Modeling and Processing for
Next-Generation Big-Data Technologies (pp. 145-166). Springer International
Publishing.

SPAHO, E., BAROLLI, L. AND XHAFA, F., 2014, September. Data Replication

Strategies in P2P Systems: A Survey. In Network-Based Information Systems
(NBiS), 2014 17th International Conference on (pp. 302-309). IEEE.

118

STEINMETZ, R., WEHRLE, K. 2005. Peer-to-peer Systems and Applications. ,
Springer, Library of Congress Control Number: 2005932758, Springer-Verlag
Berlin Heidelberg 2005.

THAMPI, S.M. and SEKARAN, K.C., 2009. Review of replication schemes for

unstructured P2P networks. arXiv preprint arXiv:0903.1734.

TANG, M., LEE, B.S., YEO, C.K., TANG, X. 2005. Dynamic Replication

Algorithms for the Multi-tier Data Grid, Future Generation Computer System,
Elsevier , 775-790.

TANG, M., LEE B.S., YAO, C.K. and TANG X.Y. 2005. Dynamic replication

algorithm for performance data grid. In proceedings of the International
Computing Workshop. Denver, Colorado, USA, 2001.

TU, M., MA, H., XIAO, L., YEN, I.L, BASTANI, F. and XU, D. 2013. Data

placement in P2P data grids considering the availability, security, access
performance and load balancing. J Grid Computing, 11, 103 – 127.

VENUGOPAL, S., BUYYA, R. and RAMAMOHANARAO, K. 2009. A Taxonomy

of data grids for distributed data sharing, management and processing. ACM
Computing Surveys, Vol. 38, March 2006, Article 3.

WAN AWANG, W.S., MAT DERIS, M., HITAM, M.S., MOHAMMAD, Z., and

ZAKARIA, A. 2004. Data Replication Scheme based on Neighbour Replica
Distribution Technique for Web Server Cluster. WSEAS Transactions on
Systems, 3, 4,1779-1785.

WANG, L., TAO, J., RANJAN, R., MARTEN, H., STREIT, A., CHEN, J., &
 CHEN, D. 2013. G-Hadoop: MapReduce across distributed data centers
 for data-intensive computing. Future Generation Computer Systems, 29(3),
 739-750.

WATANABE, T., KANZAKI, A., HARA, T. and NISHIO, S., 2009, April. Update

Propagation Strategies Considering Degree of Data Update in Peer-to-peer
Networks. In International Conference on Database Systems for Advanced
Applications (pp. 328-333). Springer Berlin Heidelberg.

WEIL, S.A., Brandt, S.A. and Miller, E.L. 2006. CRUSH: Controlled, Scalable,

Decentralized Placement of Replicated Data,SC ’06 Proceedings of the 2006
ACM/IEEE Conference on Supercomputing.

119

YANG, Z., TIAN, J., ZHAO, Y., CHEN, W. and DAI, Y. 2011. Protector: A
Probablistic Failure Detector for Cost-effective Peer-to-peer Storage, IEEE
Transactions on Parallel and Distributed Systems, 22, 9, 1514 – 1527.

ZHANG, Q., CHENG, L. AND BOUTABA, R., 2010. Cloud computing: state-of-
 the-art and research challenges. Journal of internet services and
 applications,1(1), pp.7-18.

ZHAO, W., XU, X., XIONG, N., and WANG, Z. 2008. A Weight-Based Dynamic

Replica Replacement Strategy in Data Grids, Proceedings of the 3rd IEEE
Asia-Pacific Services Computing Conferences, Taiwan.

