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Abstract—This article analyzes two classes of job selection
policies that control how a network of autonomous aerial vehicles
delivers goods from depots to customers. Customer requests
(jobs) occur according to a spatio-temporal stochastic process
not known by the system. If job selection uses a policy in which
the first job (FJ) is served first, the system may collapse to
instability by removing just one vehicle. Policies that serve the
nearest job (NJ) first show such threshold behavior only in some
settings and can be implemented in a distributed manner. The
timing of job selection has significant impact on delivery time and
stability for NJ while it has no impact for FJ. Based on these
findings we introduce a methodological approach for decision-
making support to set up and operate such a system, taking into
account the trade-off between monetary cost and service quality.
In particular, we compute a lower bound for the infrastructure
expenditure required to achieve a certain expected delivery time.
The approach includes three time horizons: long-term decisions
on the number of depots to deploy in the service area, mid-
term decisions on the number of vehicles to use, and short-term
decisions on the policy to operate the vehicles.

I. INTRODUCTION

Small unmanned aerial vehicles (UAVs) have successfully

found their way to civil applications. A broad variety of UAV

models has been developed and commercialized in the past

few years and is available today for end users. UAVs fly

routes in an autonomous manner, carry cameras for aerial

photography, and may transport goods from one place to

another. The range of applications is broad, including aerial

monitoring of industrial plants and agriculture fields as well

as support for first time responders in case of disasters (see

[1]–[4]). Delivering goods via a network of UAVs becomes an

option if classical means of transportation, like trucks, trains,

and planes are inappropriate. First, this comes about if roads,

railway tracks, or landing facilities do not exist, if natural

disasters make it impossible to use them, or if their use is too

dangerous or time-consuming. In this context, a compelling

service would be the delivery of medicine, vaccinations, or

laboratory samples for patients in remote areas and crisis
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regions. Second, such a service is also worthwhile in densely

populated metropolitan areas, when congestion makes roads

nearly impassable.

The main objective of this article is to provide theoretical

insight for the architectural setup and control of such a UAV-

based delivery system. We analyze policies that control how

an interconnected team of UAVs resolves service requests that

are randomly distributed in space and time. The entities of the

system are goods, customers, vehicles, and depots. Customers

request goods that are stored in depots and delivered by

vehicles. Service requests, also denoted as jobs or customer

demands, are not known in advance and arrive over time on

certain locations according to a space-time stochastic process.

We analyze both centralized and distributed policies. In the

latter, the system’s “intelligence” is literally embedded into

each vehicle, meaning that each vehicle decides by its own

as to which job to select next, thus raising the autonomy of

vehicles to a level that goes beyond autonomous flying.

If the vehicles are capable of consecutively serving several

customers before they return to a depot, e.g., if goods are

lightweight and total distances are small, the problem of

selecting customer requests to be served falls into the domain

of dynamic vehicle routing with stochastic demands, dating

back to [5]–[7]. In contrast to this, vehicles in our system

serve no more than one customer per trip for capacity reasons,

and we use the term job selection to emphasize the difference

to routing. By focusing on non-partitioning job selection for

delivery, we complement research that focused on partitioning

routing policies for wide-area surveillance (see [8]–[12]).

Our performance measure is the delivery time, i.e., the

time it takes for a customer from requesting to obtaining

a good. The stability of such a supply service is linked to

the queuing of jobs, i.e., customers may have to wait until

other customers have received the goods they requested. The

system becomes unstable if the average number of waiting

customers persistently increases over time. We show features

of distributed non-partitioning job selection policies that are

found by simulation for M/G/K queues, with K > 1, and

described in terms of delivery time, which is related to system

stability ( [5]–[7]). Based on a comprehensive simulation-

based analysis, we deduce some results of general validity

on the system behavior. A key insight is that the timing of

job selection matters for distributed non-partitioned policies

and has no impact on the centralized non-partitioned policies.

If, for example, a policy is applied in which the job that first

comes in is first served, denoted as FJ-policy, the selection

can occur as soon as possible (just after the service of the last



cutomer) or as late as possible (just before loading a good).

If, in contrast, a policy is applied in which vehicles decide

that the currently nearest job is first served, denoted as NJ-

policy, the decision on job selection should be made as early

as possible. Moreover, we find that a shift in the timing of job

selection even alters the structure of the policy in case of NJ-

policies (altering also its vulnerability with respect to changes

in customer demand).

These insights into system behavior are accompanied by

findings about the relation between job selection policies and

system setup, the total volume of demand, and system perfor-

mance. It is known, for example, that FJ-policies outperform

NJ-policies for low system loads, while the opposite is true for

higher loads, e.g., caused by higher customer arrival rates or a

smaller number of vehicles ( [5]). So far, it is not emphasized

in the literature that a system operating according to a FJ-

policy will literally collapse all of a sudden and tip into

instability if the vehicle fleet is reduced by a single entity.

We highlight this threshold effect, as it is essential for both

system implementation and operation.

Based on these findings, we derive decision making support

for the investment in such a delivery system and its operation.

In particular, the infrastructure of depots is subject of a long-

term decision, the number of vehicles can be modified in mid-

term and the job selection policy is a short-term choice. The

set-up of the system (number of depots and vehicles) shapes

its monetary costs and, in conjunction with the job selection

policy, the service quality provided to the customers for which

they are willing to pay for. Hence, for investing in such a

delivery system an interesting question is which minimum

expenditure is required to provide a certain service quality. For

this, we compute a lower bound for the expenditure necessary

to set up a stable system as a function of the targeted service

quality in terms of average delivery time and exemplarily

illustrate the application of this service-possibility-frontier for

parameters reported by the company Matternet.

II. RELATED WORK

A. Types of Vehicle Routing Problems (VRPs)

The framework of the model to be presented in this paper

dates back to the work of [13], who introduced their formula-

tion of the vehicle routing problem (VRP) as a generalization

of the traveling salesman problem ( [14]). Ever since then, the

operations research community has intensively studied how a

central planner determines optimal sets of routes for fleets of

homogeneous vehicles, supplying given sets of geographically

dispersed customers with goods ( [15]). In the context of a

“classical VRP”, such an optimal set of routes accomplishes

that (i) all customers are supplied with the demanded products,

(ii) none of the vehicles exceeds its capacity traveling along its

route, (iii) no customer is visited more than once, (iv) all routes

start and end at a central depot, and (v) the overall routing cost

is minimized. In practical applications, VRPs have a broad

diversity of additional requirements and operational constraints

affecting the construction of the optimal set of routes. Among

these are periodic VRPs ( [16]), VRP with pickup and delivery

( [17]), VRP with split deliveries ( [18]), and VRP with time

windows within which customers have to be served ( [19]),

to mention but a few. For reviews of exact and approximate

methods of solving the classical VRP, we refer to [20]–[26],

and, for an exhaustive bibliography on vehicle routing to [27].

VRPs are classified according to the nature of system

input information. If all system input is known before the

vehicles leave the depot(s) and does not change during mission

execution, the problem of concern is like the one described

in the paragraph above, and said to be both static and de-

terministic. For many real-world applications, at least some

input information, like customer arrivals, behaves according

to a probability distribution rather than being known a priori.

These VRPs are denoted as stochastic. If some input informa-

tion appears or changes during missing execution, which has

to be immediately integrated into decision-making, the VRP

is called dynamic ( [28], [29], or, for a recent review, [30]).

Then, designing sets of routes has to be replaced by designing

routing policies, which describe the evolution of motion paths

as a function of newly arriving input.

B. Stochastic and Dynamic Vehicle Routing in Robotics and

Aeronautics

[5]–[7] are the first to comprehensively analyze the stochas-

tic and dynamic VRP. A generalization of the VRP is the

pickup and delivery problem (PDP). [31] investigate the

stochastic and dynamic PDP for one vehicle. [32] extend

the problem to multiple vehicles under different information

structures. While the VRP was originally investigated for

applicability in classical forms of transportation and logistics,

there has been a shift towards applications in robotics and

aeronautics in the last decade. Particular attention was devoted

to the motion coordination of mobile robots, which includes,

among others, a VR-based development of spatially-distributed

(surveillance) policies for UAVs that are adaptive to network

changes ( [8]–[12]). Strategies are, moreover, developed in

this context that ensure that a certain fraction of stochas-

tically generated service requests is served before the jobs

expire ( [33]), that account for service priorities ( [34]) and

translating demands ( [35]), and that accomplish an effective

system management without explicit communication ( [36]).

Altogether, these approaches utilize partitioning policies to

find ways to operate a distributed system that are scalable

to large-vehicle networks (see, in particular, [11]). Note that

these partitioning policies applied to the control of dynamic

and stochastic VRPs methodologically differ from distributed

partitioning algorithms, like shown by [37], that analyze how

to partition the service area prior to applying a control rule.

We deviate from both of above approaches and seek to

find policies that are adaptive in an alternative way. For our

application, not partitioning the service area (since depots are

fixed) allows for greater system adaptability if vehicles need

to endogenously pool in “hot spot” regions of the service area,

e.g., whenever disasters or diseases shift demands to certain

regions, and if depots run out of goods. Especially in the

latter case, non-partitioning job selection policies allow for

regarding fixed depots as “customers” that have to be supplied

with whatever it is that is needed.



III. SYSTEM MODEL

A. Entities of a UAV Delivery System

The system is composed of K vehicles moving in a bounded

and convex service area A ⊂ R
2 of size A := ∥A∥, where ∥ ·∥

is the Euclidean norm and K∈N. A vehicle is denoted by vk
with identifier k∈{1, . . . ,K}. The current position of vehicle

vk at time t is vk(t)∈A with t ≥ 0. All vehicles travel at

the same constant velocity ν∈R
+ and are equipped with a

battery, whose level at time t is represented by bk(t)∈ [ 0, 1].
The fact that batteries have to be recharged or exchanged is

quantified by the parameter α ∈ (0, 1], which is the air-time

ratio, i.e., α = air time/(air time + charge time).
The arrival of customer demands, i.e., delivery requests for

goods within A, is generated by a Poisson process with finite

intensity λ∈R
+, where λ is the customer arrival rate. The

demands, also called jobs, are indexed by the job identifier

n ∈ N, which indicates the order of request arrivals. The

corresponding customer is called cn; his or her position is

denoted by cn ∈ A and assumed to be independently and

uniformly distributed in A. Customer demands do not only

differ with respect to timing and locations but also with respect

to the goods that are requested to be delivered.

Goods are, in general, different but have the same expiration

date and are treated with identical priority. There are L∈N

depots in the system, which store the goods. The depots are

interconnected and provide a sufficient number of all goods

and service activities, like recharging batteries. We assume

that, for capacity reasons, a vehicle cannot serve more than

one customer demand per trip (see [6, p. 71]). The depots are

set up at locations d=[d1 d2 ... dL]∈AL, where d is chosen

such that the expected distances between a random point

q∈A (potential demand) generated according to a uniform

distribution over A and the closest depot are minimal:

HL(d,A) :=
1

A
·

∫

A

min
l:l∈{1,...,L}

∥dl−q∥dq. (1)

This corresponds to the solution of the continuous multimedian

problem known from geometric optimization (see [38] or

[39]), which is given by

d∗ = arg min
d∈AL

HL(d,A), (2)

with

H∗

L(A) := HL(d
∗,A). (3)

A depot is a storage but not a permanent home base for

particular vehicles. Whenever a vehicle has delivered a good,

it either approaches the nearest depot or another one that

is more appropriate to handle the next customer demand.

Appropriateness is determined by the job selection rule that is

implemented (see Section IV). This non-restricted movement

of all K vehicles to all corners of an L-depot system is a

major difference to related work in [5]–[12].

B. Service Operations and Delivery Time

For an arbitrary customer, denoted by cn (n ∈ N), his or

her delivery time, represented by the stochastic variable Tn,

d
2 

cn-  

cn  

0 
τ

d
22
dd

-

4 

1 

3 

d
1 

5 6 

10 

9 

8  

τ

τ

τ

τ τ

τ

τ

τ

ret
urn

ing

cha
rgi
ng

(if
nec

.)

loa
din

g
tra

vel
ing

un
loa

din
g

ret
urn

ing

cha
rgi
ng

(if
nec

.)

loa
din

g
tra

vel
ing

un
loa

din
g

tτ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

Wn Rn Sn

Tn

Fig. 1: Time intervals involved in a customer service: delivery

time T , waiting time W , return time R, and service time S.

is always made up of waiting time Wn, service time Sn, and

return time Rn, i.e.,

Tn = Wn +Rn + Sn . (4)

Fig. 1 illustrates all operations involved in the service of cn
from hypothetical request arrival at t=τ0 to supposed service

completion at t=τ10. We define waiting time as the period that

elapses between request arrival and the moment the previous

demand is satisfied. In Fig. 1, customer cn’s waiting time

is, therefore, Wn=τ5−τ0. The return time depends on the

position of the customer cn− being served before cn and on the

number of waiting customers at the point in time when cn’s job

occurs. The return time is null if the vehicle is already at the

depot and ready to serve this job. The return time is maximum

(denoted as R′

n) if the vehicle did not complete the previous

service. If the vehicle is on the way to a depot, the return

time is a fraction of R′

n. In Fig. 1, we have Rn=τ7−τ5. We

determine the service time as the period that elapses between

the instance immediately before uploading the goods at the

depot and the moment when they have been delivered to the

customer. That is, the service time of job n in Fig. 1 is equal

to Sn=τ10−τ7. Note that our notion of service time differs

from Bersitmas and van Ryzin’s on-site service time [5]–[7]

which corresponds to the time a vehicle is “unloading” goods

at a customer. It also differs from the notion of service time

Bn in classical queuing theory; we have Sn = Bn −Rn.

C. Queuing Phenomena and Stability

A job selection policy, denoted by π=(π1,π2, ...,πK),
has to restrain the outstanding jobs ( [5]–[12]). Then a job

selection policy π is said to be stabilizing if the expected

number of pending jobs (customers waiting for service) stays

confined over time, i.e., if there exists an arbitrary constant

κ<∞ such that

N̄π
:= lim

t→∞

E[N(t)|π] ≤ κ, (5)



where N(t) denotes the number of pending jobs at time t. We

have N(t)= |N(t)|, where N(t) is the set of customers waiting

for service at time t. We assume that no customer is waiting

for service at t = 0, i.e., N(0)={ }. Applying a stabilizing

policy π, (5) is equal to the expected delivery time under this

policy multiplied by the customer arrival rate λ [40], i.e.,

N̄π = λ· lim
n→∞

E[Tn|π] =: λ·T̄π. (6)

Note that this result, known as Little’s law, does not require

independent service times. Serving stochastic customer de-

mands such that the quality of service is optimized is thus

equivalent to minimizing the expected time a customer has to

wait before he or she will receive the requested goods, i.e.,

minπ stabilizing T̄π .

The return and service times are crucial for the stability of

the system. A necessary condition for stability is [6, p. 63]:

D̄

ν
≤ K

λ
(7)

if the on-site service time is null. Here, D̄ is the average

Euclidean distance between two customers served in sequence,

λ is the arrival intensity, and ν is the vehicle speed. This

condition applies to our problem with two modifications:

First, the Euclidean distance becomes the distance function

customer-depot-customer, which divided by the speed gives

R̄′+S̄ (Fig. 1), where R̄′ is the average return time in high load

and steady state and S̄ is the average service time in steady

state. Secondly, the effective number of vehicles employed

in the system is on average αK with the airtime ratio α.

Therefore, our stability condition is

R̄′ + S̄ ≤ αK

λ
. (8)

The problem analyzed in this paper can be modeled as an

M/G/K queue with interdependent service times Bn. M
indicates customer arrivals Poisson distributed, G indicates

service times distributed according to a generic distribution,

and K is the number of servers. For M/G/K queues with

independent service times [41], the load factor is defined as

ρ :=
λB̄

αK
. (9)

The system is said to be in light load condition if ρ→0 and

in heavy load condition if ρ→ 1. A necessary condition for

the stability of the system is ρ < 1. In case of stability, ρ can

be interpreted as the expected value of the fraction of busy

servers. This definition does not apply to our case because B̄
depends on the system state [41], which includes the number

of waiting customers. Nevertheless, the condition of stability

is still valid: B̄ approaches R̄′+S̄ for ρ → 1, leading to (8). In

words, to stabilize the system, it is necessary that the average

time between two successfully completed service requests is

not larger than the average time between two customer arrivals

multiplied by the average number of available vehicles.

IV. JOB SELECTION POLICIES

Job selection goes beyond merely picking the next demand.

It has to specify all decisions needed to operate a delivery

system, including which customer demand to serve first, which

vehicle to let serve the next customer demand, at which depot

to let vehicles load up goods, which paths to let vehicles

follow, and where to let vehicles return to if no customers

are waiting. We analyze two classes of job selection policies:

nearest job first (NJ) and first job first (FJ). NJ-policies select

jobs based on the location of the customer; FJ-policies select

jobs based on the arrival time of the customer’s job. By

comparing these two policies, we seek to gain insight to

the following question: Is it worth to delay the decision on

job selection to obtain more information about new customer

requests in order to reduce the delivery time? For both classes

we evaluate two extreme cases: when selection is made as soon

as possible (just after the previous service), and when selection

is made as late as possible (just before loading the good).

A first important issue in this context is whether the vehicles

consider the arrival order of customers in the waiting queue.

A second important issue is the timing of job selection. In

particular, it seems plausible to assume that decisions should

be made “as late as possible” to utilize the most recent

information about the system status, basically postponing the

individual job selection until loading goods in the depot. Such

delayed decisions could also have a negative effect, even if

all depots are sufficiently supplied with goods to never be

short of stock. This relates to the fact that, for L≥2, one of

the most important decisions to be made is where a vehicle

should return to after satisfying a customer demand. If a non-

postponed decision about the next job includes a “clever”

selection of the depot to travel to, while a postponed decision

leads to being at a suboptimal place at the moment of job

selection, the advantage gained by processing more recent

information is counteracted by the disadvantage of the extra

distance traveled to the customer to be served next. The choice

of this customer is highly policy dependent. We expect this

“being at a suboptimal place” effect to be more pronounced if

the number of depots increases, and will thus investigate this

effect in Section VI.

A third important issue is the coordination of job selections

to avoid that more than one vehicle selects the same job. Such

a scenario where a particular customer, say cn̂, is selected

by K ′ vehicles with 2≤K ′≤K, can easily happen if the

system is not fully utilized, i.e., for ρ→0. FJ-policies are

centralized, i.e. there is an inherent coordination mechanism

among vehicles. We refer to this mechanism as assortative:

a central entity selects the next job and assigns it to the

nearest vehicle. Hence, the selection is based on time arrival

and positions of waiting customers, positions of depots, and

positions of all vehicles. NJ-policies are distributed. Every

vehicle makes selections based on its own position with respect

to the positions of customers and depots, and whenever a

vehicle selects a job this is removed form the list of waiting

jobs. Every vehicle only knows its own position, the positions

of depots, and the positions of waiting customers. For these

policies, the coordination mechanism is randomized: every

time that more than one vehicle has the same time of job

selection, a random priority order is assigned to the vehicles

involved. The randomize mechanism corresponds to a real case

where vehicles are not coordinated at all and the connection



delay to the list of waiting customers is not predictable because

it depends on the network conditions.
Table I shows the job selection policies used in this article

and classifies them according to three features: the order

of jobs to be done, the timing of job selection, and the

coordination of jobs in case of ambiguous selection.

• Policies in which vehicles select jobs according to their

current distance from the customer can be named “nearest

job first served” and are called NJ-policies. Policies

in which vehicles select the smallest n with cn∈N(t)
(where t indicates the instance of job selection) are named

“first job first served” and are called FJ-policies.

• If vehicles make their individual job selection immedi-

ately after completion of a service, the policy is marked

with subscript +. If vehicles make their job selection later

in time, when they are ready to upload goods at a depot,

the policy is marked with a subscript −.

• The subscripts r and a correspond to random and as-

sortative job coordination in case of an ambiguous job

selection process, respectively.

The following four policies are used as reasonable combina-

tions: πNJ
+r , πNJ

−r , πFJ
+a, and πFJ

−a. A feature included in all

policies is the effect of a vehicle vk’s battery level, bk(t),
on whether or not a vehicle selects a job at time t at all. In

particular, if at the instance of job selection the battery level

is less than 30% the vehicle approaches the nearest depot to

recharge and does not select a job until its battery level has

again reached 80%. If there is no newly upcoming service

request, vk goes on with charging until the battery is full.
Raising the question of vehicle failures, the following

statements can be made. The only source of randomness in

our system model is the job arrival process. It is thus always

possible for the policy to compute the energy required to serve

a certain customer and ensure that the vehicle can go back to

a depot. Non-systematic failures are possible in more realistic

scenarios, and these events can be taken into account in the

model by over-dimensioning the number of vehicles for a

given failure rate.

A. NJ-Policies With Randomized Job Coordination

Policy πNJ
+r is called Do Nearest Job. After completion of

a service, the vehicle vk selects the next customer such that

the travel distance to this customer via an arbitrary depot is

smaller than the travel distance to other waiting customers. In

other words, each vehicle chooses the job with the minimum

travel distance. In mathematical terms, we solve

min
l:l∈{1,...,L}
n:cn∈N(τ)

∥vk(τ)− dl∥+ ∥dl − cn∥ , (10)

where τ is the time instant of completion of the previous job,

which is here equal to the time instant of the new job selection.

Such selection is made if the battery level at time τ is large

enough, i.e., bk(τ)≥0.3; otherwise a vehicle will return to the

nearest depot. Every vehicle has to make L ·N(τ) comparisons

to conclude individual job selection. If a job minimizes the

traveling distance for more than one vehicle, according to

the random coordination described above, only one vehicle

randomly chosen will serve the job.

Policy πNJ
−r is called Rush to Depots. After completion of

a service, the vehicle vk first travels to the closest depot. The

vehicle then selects the nearest customer, i.e., it solves:

min
n:cn∈N (τ+R)

∥vk(τ+R)− cn∥, (11)

where τ+R is the time instant vk arrives at the depot. The

vehicle remains in the depot if there is no waiting customer.

If a job minimizes the traveling distance for more than one

vehicle, the supplying vehicle is determined randomly. This

policy requires L+N(τ +R) comparisons.

B. FJ-Policies With Assortative Job Coordination

Following a first come first served (FCFS) policy, a central

unit always selects the “oldest” demand request still unad-

dressed, i.e., the smallest n with cn∈N(t), where t indicates

the instance of job selection. Let this demand be denoted by

n(t). In particular, policy πFJ
+a (also called FCFS by Nearest

Vehicle; see Tab. I) implies that whenever one or more than one

vehicles complete a service, at time t=τ , a central controller

selects the next customer in line, i.e., demand n(τ), and

chooses the vehicle vk∗ and the path through the depot, dl∗ ,

that minimizes the total distance between its current position

vk(τ), a depot’s position dl, and the customer’s position cn(τ),

i.e.,

min
l:l∈{1,...,L}

k:k∈K′

∥vk(τ)− dl∥+ ∥dl − cn(τ)∥, (12)

where K′ is the number of vehicles ready for the service.

Obeying (12) a total of K ′ ·L computations is necessary to

come up with a vehicle’s individual selection of whom to next

serve.

Obeying the rules of policy πFJ
−a (or FCFS by First Vehicle

at Depot; see Tab. I), whenever one or more than one vehicle

is available to a depot, the central unit selects the demand

n(τ + R) and performs K ′ computations to determine the

vehicle nearest to that job. Subsequently L computations are

performed to find the depot nearest to the selected customer

where the vehicle has to return to after the delivery:

min
k:k∈K′

∥vk(τ +R)− cn(τ+R)∥+ min
l:l∈{1,...,L}

∥cn(τ+R) − dl∥.
(13)

V. SIMULATION SETUP

For π ∈ {πNJ
+r,π

NJ
−r,π

FJ
+a,π

FJ
−a}, we simulate the movement

of K∈{1, . . . , 24} vehicles in a square area of A=16 km2.

The L∈{1, 4, 9, 16} depots are located such that they min-

imize the average distance of any potential demand in A
from the nearest depot. Customer demands are assumed to

randomly arrive over time at a rate λ=0.65 requests/minute.

We consider the non-variation of λ as feasible, since with K
we vary λ’s counterpart in affecting the load factor, defined by

(9), so to derive sufficient information about the performance

of the system for varying levels of resource utilization.

All vehicles travel at a constant velocity of ν = 30 km/h,

neglecting acceleration and deceleration phases and neglect-

ing the extra time for starting and landing. A vehicle’s air

time is limited due to the finite capacity of its battery,



TABLE I: Features of Job Selection Policies

Features Do Nearest

Job (πNJ
+r)

Rush to Depots

(πNJ
−r)

FCFS by

Nearest Vehicle

(πFJ
+a)

FCFS by First

Vehicle at

Depot (πFJ
−a)

Jobs are selected in first come first served (FCFS) order from a shared queue. - - Yes Yes
There is no specific selection order of jobs. Yes Yes - -

Decisions are made at a customer, just after completing a service. Yes - Yes -
Decisions are made at a depot, just before loading goods. - Yes - Yes

If more than one vehicle seeks to select a job, a random one does. Yes Yes - -
If more than one vehicle seeks to select a job, the nearest one does. - - Yes Yes
If there are no jobs a vehicle goes to the nearest depot. Yes Yes Yes Yes

If a vehicle’s battery level is less that 30% the vehicle approaches the nearest depot. If due
to recharging a vehicle’s battery reaches a level higher than 80% the vehicle is ready again to
serve a customer. If there is no customer the vehicle fully recharges its battery.

Yes Yes Yes Yes

which is assumed to be full at t = 0, i.e., bk(0)=1 ∀k ∈
{1,...,K}. We choose the ratio between air time and charge

time as being 1/3, i.e., α=0.25. Moreover, we assume that

at t = 0 every vk is placed at one of the depots, i.e.,

∃ l̂ : vk(0)=d
l̂
∀k∈{1,. . . ,K}. Finally, we neglect the load-

ing time.

In our simulations, the system presented in Section III

is observed at discrete time steps. Interarrival times are,

therefore, generated by a geometric distribution with the

probability of a customer arriving during a time interval of

length δ being equal to λ ·δ. Then, the number of customer

arrivals per time unit follows a binomial distribution with

parameters h = 1/δ and p = λ · δ. For h→∞, p→0, and

h·p=λ, this binomial converges towards a Poisson distribution

with intensity λ. According to [42], we consider the Poisson

as a sufficient approximation of the binomial distribution if

p ≤ 0.08 and h≥1500·p. To meet these requirements, for

all of our simulation runs, we choose δ such that it satisfies

δ≤min{0.08/λ, 1/
√
1500·λ} time units.

The data collected from the simulations are used to compute

the average delivery time. Specifically, we firstly estimate the

length of the warm-up phase using Welch’s method [43].

Secondly, we compute the average delivery time with the

replication/deletion method [44], which is equivalent to the

independent replications method [43]. These methods are used

for statistical analysis of data and enable us to estimate

expected values and confidence intervals.

For every parameter setup, we perform 10 simulations and

a minimum of 4,000 customer requests for every simulation.

If it is not possible to evaluate whether the system reaches the

steady state within this period, we simulate 10,000 customers

requests, corresponding to more than 10 days of continuous

operation of the delivery system.

VI. SIMULATION RESULTS

A. Warm-Up Phase

We discuss and illustrate the computation of the warm-up

phase for the policies Do Nearest Job (see Fig. 2a) and FCFS

by Nearest Vehicle (see Fig. 2b) for K ∈ {11, 12, 14, 16}
vehicles. For both policies, the number of depots is equal

to L=16. Using Welch’s method, the choice of the corre-

sponding simulation parameters depends on the choice of

the system parameters. Fig. 2a reveals that the length of

the transient phase decreases with an increasing number of

vehicles, i.e., with a decreasing load factor. We can conclude

that delivery systems provided with fewer vehicles have to be

simulated for a longer period to reach steady state conditions,

corresponding to a higher number of simulated demand ñ.

Being conservative, we estimate that the length of the warm-

up phase is equal to ñwu=3000 for the former case, while

being ñwu= 2000 for the case K = 12, and ñwu= 500 for

all other cases.

Moreover, Figs. 2a and 2b introduce a result addressed when

discussing Fig. 3d below: FCFS by Nearest Vehicle (πFJ
+a)

can yield a substantially better system performance than Do

Nearest Job (πNJ
+r). The only drawback observed is that, while

πFJ
+a gets very close to the minimum average delivery time

T̄min for K∈{12, 14, 16}, it is incapable of stabilizing the

system for K=11.

B. Evaluating Job Selection Policies

Fig. 3 shows the average delivery time T̄ for different job

selection policies as a function of the number of vehicles K
and the number of depots L. The shaded areas indicate

“impossible regions,” i.e., all ordered pairs (K, T̄ ) for which

either ρ> 1 or T̄ < T̄min or both. Depot numbers are in the

set {2n; n = 0, 1, 2, 4} so that the multimedian problem has

traceable mathematical solution for a squared service area:

The area is divided into L identical squares, and the depots

are located in the centroids of the squares. Vehicle numbers are

chosen starting from a value where the system is in light load

and are decreased until the system clearly shows instability.

The following basic phenomena can be observed.

a) Tipping Point Behavior: Increasing the number of

vehicles K has no effect on system performance once K
exceeds a certain threshold K̃, i.e., |∆T̄ /∆K|=0 ∀K>K̃.

This observation holds for all studied policies. It results from

the fact that, for any K larger than K̃, there is a vehicle in

the chosen depot ready to serve a new demand, such that the

overall delivery time T just consists of the service time S. In

such light load conditions, FJ-policies (πFJ
+a and πFJ

−a) yield

better system performance than NJ-policies (πNJ
+r and πNJ

−r).

Such policy-specific differences in system performance are

known from [5], [6], and they are amplified by the differences

in job coordination in case of ambiguity.

Decreasing the number of vehicles K improves resource uti-

lization but in turn increases the load factor, which eventually

implies system instability. The delivery time of Do Nearest Job

(πNJ
+r) increases slowly with a decreasing K, i.e., the system

shows a gradual transition from the region of system underuse
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Fig. 2: Delivery time averaged over s̃=10 simulation runs for 2w̃ + 1 = 1001 demands vs. demand n for K∈{11, 12, 14, 16}
vehicles; L=16, A=16 km2, λ=0.65 requests/minute, ν=30 km/h, and α=0.25.

to the region of instability. In contrast to this, for all other

investigated policies, the system tips into instability all of a

sudden. This tipping point behavior of πNJ
−r, πFJ

+a, and πFJ
−a

can be explained by the fact that these policies resemble the

behavior of the K stochastic queue median (K-SQM) policy

introduced by [6, p. 65], while πNJ
+r in heavy load behaves

similar to the nearest neighbor (NN) policy presented by [5,

p. 612]. We will return to this issue below.

A policy with the tipping point being located further to the

left (fewer vehicles) is more robust in terms of stability than a

policy with the tipping point further to the right (more vehicles

needed). We find that Rush to Depots (πNJ
−r) is the least robust

among the policies considered. Since also its average delivery

time is considerably higher than T̄min for L>1, we conclude

that it is the least useful policy for the delivery system.

b) Timing Matters: The timing of the job selection

decision has an impact on delivery time and system stability.

Let us compare two extreme cases for both FJ and NJ-policies:

the decision is made as soon as possible (just upon the service

at the previous customer), or the decision is made as late as

possible (just before loading the good at the depot).

Using FJ-policies, timing has no effect on delivery time

and system stability (see Fig. 3). In contrast to this, using NJ-

policies, an early decision is beneficial for stability, i.e., Do

Nearest Job πNJ
+r is more robust than Rush To Depots πNJ

−r.

The positive effect of more recent information outweighs the

negative effect of returning to a depot located sub-optimally

(on average) for the next job. The gap between the two NJ-

policies widens with an increasing number of depots, i.e., the

effect of “being at a suboptimal place” is more pronounced

in systems with many depots. This happens because, in heavy

load conditions, randomized job coordination is rarely neces-

sary (if at all), and πNJ
+r behaves similar to a NN policy (as

mentioned above), which serves the nearest demand available

after every service completion.

In summary, the timing of job selection has fundamental

impact on the qualitative behavior of NJ-policies: it changes

the vulnerability with respect to variation in customer demand.

This phenomenon does not occur for our FJ-policies: both

maintain structurally equivalent to K-SQM policies.

C. Decision Making Support

We have seen that the number of depots must be chosen

in relation to the size of the service area, and that this long-

term choice on depot infrastructure must be coordinated with

the mid-term choice on vehicles and the short-term choice

on the job selection policy. For company-specific parameter

values, a diagram like Fig. 4 translates the insights derived in

the subsection above into the monetary domain. It relates a

company’s expenditure I for depots and vehicles to average

delivery time T̄ . The purpose of such a plot is to provide

decision making support for companies that set up an airborne

delivery system equipped with small UAVs.

To give a specific example, Fig. 4 is produced based on the

assumption that the cost of a UAV suitable to deliver two-

kilogram packages is 1,000 US$ plus a maintenance cost of

100 US$ per annum, and the cost of a depot is 15,000 US$

plus a maintenance cost of 500 US$ per annum. Operating

the system over ten years, the costs per vehicle and depots

are Cv = 2,000 US$ and Cd = 20,000 US$, respectively.

These parameter values are those assumed by the company

Matternet [45].

A lower bound on the expenditure required to build a stable

system, denoted by Imin, is derived in the Appendix and is

given by (20). Fig. 4 plots this bound for the given parameters,

where all values below the bound are shown as a shaded area.

The bound has a “staircase” shape with tread levels being the

minimum average delivery time achievable with a particular
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Fig. 3: Average delivery time (with a confidence of 90%) vs. the number of vehicles for L∈{1, 4, 9, 16} depots; A=16 km2,

λ=0.65 requests/minute, ν=30 km/h, and α=0.25.

number of depots. No operable system exists for parameters in

this area, while every combination of I and targeted T̄ located

above fulfills ρ<1 and T̄ >T̄min. The bound corresponds to

a service possibility frontier; it gives a necessary but not a

sufficient condition for infrastructure expenditure. The actual

performance is, policy depended, and more financial resources

than Imin may be needed to operate the system in a stable

manner and to meet the targeted performance.

A company that wants to operate a delivery service and

serve a customer within a certain average delivery time can

employ such a diagram in the following way: If the average

delivery time should be no more than τ , the company has to

look for feasible combinations of infrastructure and stabilizing

policies, i.e., squares and triangles, that are located as close

as possible to the origin and below the (T̄ = τ)-line. If the

customers’ willingness to pay for several levels of service

quality is given, it is possible to quantify the company’s

marginal revenues of increasing performance. From Fig. 4 we

know the marginal cost of decreasing delivery time. Then,

we are able to determine the combination of infrastructure

and job selection policy that maximizes the company’s profit.

For the parameters of Matternet we find, for example, that a

system with L=1 depot can serve a customer in about three

minutes on average in an area of 16 km2, which comes at a

cost of 60,000 US$. This time can be reduced, for example,

to less than 1.5 minutes if the company spends more than

100,000 US$ for infrastructure (associated with L = 4 depots).

If the company’s marginal revenue of reducing delivery time

by 1.5 minutes (50 %) is larger than approximately 40,000

US$, the four-depot configuration is better than the one-

depot configuration. In other words, Fig. 4 informs about the

financial resources required for achieving a certain quality
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of service with a certain policy and about the volume of

additional monetary resources obligatory to “buy” a shorter

delivery time.

VII. CONCLUSIONS

This article investigates the architectural setup and mecha-

nisms of self-control in network of unmanned aerial vehicles

for delivery of goods. We combine short-term decisions (e.g.,

job selection policy), mid-term decisions (e.g., number of

vehicles), and long-term decisions (e.g., number of depots)

into an integrated decision making model.

Taking into account the short and mid-term horizons, the

delivery time of such a networked system experiences a

threshold behavior: a stable system could lead to instability all

of a sudden if one vehicle fails; adding vehicles has almost no

positive influence on delivery time once the number of vehicles

exceeds a certain threshold. The timing of job selection has

significant impact on delivery time and stability for NJ-policies

while it has no relevance for FJ-policies.

Finally, we introduce a methodological approach for de-

cision making support to set up a stable delivery system

for efficiently resolving the tradeoff between expenditure and

service quality. This approach reflects all three time horizons.

It includes an analytically derived service possibility frontier.

We conjecture that job selection policies without parti-

tioning of the area are somehow more robust to unexpected

shortages in vehicles than policies that employ partitioning.

This hypothesis needs to be verified in future work.

APPENDIX

EXPENDITURE FOR MINIMUM INFRASTRUCTURE

We start to derive the minimum expenditure for infrastruc-

ture necessary to build a stable system as a function of system

performance by deriving a lower bound on average delivery

time, T̄ . Obviously, average delivery time cannot be less than

minimum service time, i.e., T̄ ≥ S̄min, where the latter can

be expressed in terms of the multimedian function (3), i.e.,

S̄min=H∗

L(A)/ν. From [39] we know that H∗

L(A) can be

bounded by 2
√
A/3

√
πL, which implies that

T̄min≥
H∗

L(A)

ν
>

2

3ν
·

√

A

πL
. (14)

By rephrasing (14) we derive a condition for the minimum

number of depots necessary to yield a certain average delivery

time (larger than minimum time), i.e.,

L ≥ 4A

9πν2T̄ 2
min

. (15)

From the definition of the load factor (given by (9)) and in

consideration of S̄, R̄ ≥ T̄min together with ρ < 1, we derive

a condition for the minimum number of vehicles necessary to

yield a certain average delivery time, i.e.,

K >
2λ

α
·T̄min. (16)

For Cv and Cd denoting the costs of a vehicle and a depot,

respectively, total infrastructure expenditure is determined by

C(K,L) = Cd ·L+ Cv ·K. (17)

With the necessary conditions for a “stabilizing” infrastructure

required to yield a particular delivery time, given by (15) and

(16), we use (17) to compute an auxiliary function, i.e.,

g(T̄min) = Cd ·
4A

9πν2T̄ 2
min

+ Cv ·
2λ

α
·T̄min, (18)

and intend to develop a lower bound for total infrastructure

expenditure as a function of T̄ . In this context, it is important

to make aware that the values of T̄min in (18) are contained in

a countable set: one value for every L, i.e., T̄min = T̄min(L).
If we changed T̄min into a continuous variable, τ̄ ∈ R, the

auxiliary function g would have a minimum at

τ̄∗ = 3

√

4αA·Cd

9πλν ·Cv
. (19)

Assume that there exists an L=L′ for which the corresponding

minimum delivery time is larger than the one defined by (19),

i.e., T̄ ′

min := T̄min(L
′)> τ̄∗. Then, the configuration L=L′,

with L′ < L′′ but T̄ ′

min>T̄ ′′

min, may lead to a higher total

expenditure for infrastructure than the configuration L=L′′.

I.e., decreasing the number of depots increases minimum

delivery time and may, therefore, increase the number of

vehicles necessary to stabilize the system. Depending on the

ratio between Cd and Cv this may increase total infrastructure

expenditure necessary to build a stable system, denoted by

Imin. Yet, Imin has to be a non-increasing function of T̄ . By

construction this is accomplished in the following way:

For any two configurations of depots with L′ < L′′,

T̄ ′

min > T̄ ′′

min, and g(L′) > g(L′′), we are able to obtain delivery

time T̄ ′

min and reduce total expenditure by employing L=L′′

instead of L=L′ depots alongside delaying any delivery by

T̄ ′

min−T̄ ′′

min time units. This makes Imin a piecewise constant



function. Additionally, our construction of Imin has to account

for 2λ·T̄min/α being an integer. Altogether, this yields

Imin(T̄ ) = min
l:l∈{L,...,∞}

Cd ·
4A

9π(H∗

l (A))2
+ Cv ·

⌈

2λH∗

l (A)

αν

⌉

for

{

H∗

L(A)

ν
≤ T̄ <

H∗

L−1(A)

ν
L = 2, 3, . . .

H∗

L(A)

ν
≤ T̄ L = 1

(20)

which constitutes the minimum infrastructure expenditure nec-

essary for building a stable system that meets a targeted

performance T̄ . Note that (20) does not constitute the amount

of financial resources sufficient to guarantee system stability

because the bound on delivery time is not tight for ρ → 1, and,

in general, policies do not stabilize the system for all ρ < 1.
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