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Abstract 

This thesis presents a modern method to evaluate spur gears based on the transient 

elastohydrodynamic lubrication (EHL) emulation of the full meshing cycle, evaluating 

elastic stresses in the gear flanks, collecting the stress history and applying stress and 

strain-life methods to calculate fatigue parameters and cumulative fatigue damage, i.e. 

predicting the fatigue life taking measured surface roughness into account. 

The EHL model is formulated as the coupled system of the hydrodynamic Reynolds 

equation and the elastic deflection equation. These are solved simultaneously 

including the transient effect by incorporating the squeeze film term of the Reynolds 

equation with a Crank-Nicolson discretization of time. The finite difference 

discretisation of the elastic deflection equation utilises the differential form first 

formulated at Cardiff to allow coupling of the equations. The Reynolds equation can 

be discretised either by a finite difference or by a finite element method. The coupled 

system is solved simultaneously either by a narrow bandwidth Gaussian elimination 

or a Gauss-Seidel iterative method. 

The elastic stresses due to the superimposed discrete values of the EHL pressure and 

shear stress at the EHL mesh nodes are evaluated by carrying out the necessary 

convolution of the stresses by a Fast Fourier Transform method. The weighting 

functions required have been calculated analytically. The stresses are obtained on the 

EHL solution mesh and are interpolated to meshes fixed in the pinion and the gear 

flanks. They are then sorted and stored efficiently to enable fatigue life prediction 

algorithms to be applied. 

A detailed description of the EHL and the stress evaluation models are provided as 

well as a brief description of some fatigue life theories and calculations. The results of 

the complete analysis are provided for test gears obtained from the NASA Glenn 

laboratory fatigue tests and the Newcastle University Design Unit micro-pitting 

investigation. The analyses were carried out for real operating conditions from gear 

testing under extreme conditions. The surface roughness profiles used were real 

measured profiles taken from the test gears after initial running-in. The simulations 

reported are therefore as realistic as can be achieved and represent the true mixed 

lubrication conditions occurring in heavily loaded gears. The research also shows the 

importance of precise alignment of the roughness profiles in these conditions.
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Chapter 1 

 

Introduction and 

literature review 

 
 

1.1. Introduction 

This Chapter provides a brief history of gear design and Tribology, placing emphasis 

on transient elastohydrodynamic lubrication (EHL) numerical models of spur gear 

contact. Due to the thesis structure, the overview of stress evaluation theory and its 

development are presented in Section 4.2 as an essential part of the mathematical 

formulation of the technique. The evolution of fatigue methods is exploited as a 

justification of the choice of the fatigue life prediction procedures in Chapter 4. 

The thesis aims and structure are provided in the last section of this chapter for the 

reader’s convenience and to help them navigate through the document.  

 

1.2. History of Gearing 

The use of gear technology can be traced back to fourth century b.c. in Greece and 

China, although there is some indirect evidence that they existed even earlier than that. 

There are relatively few publications on the history of gears, partly because the gears 

were overlooked for centuries due to unavailability of powerful engines, and therefore, 

the early development of the subject is not properly documented. The fact that the 

history of modern gears only extends over only two centuries and is tied together with 

the development of new manufacturing methods and the Industrial revolution is the 

other reason. 
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The ancient history of the gears is related to clocks, watches and mechanical calendar 

computational devices. Price (1959 and 1974) provides some examples of ancient gear 

based mechanisms. Field and Write (1985), inspired by the arrival of Early Byzantine 

gearing to the Science Museum, London, summarised the early years of history of 

gearing. The most comprehensive document describing the evolution of the cogwheel 

contact was written by Dudley (1969) and a comprehensive summary is provided in 

NASA-RP-1152 and NASA contribution to gearing in AVRADCOM 82-C-16 by Coy. 

Whilst, the fundamental principles of gearing have not changed and ancient cog-

wheels served the same purposes, they have very little in common with modern gears. 

Initially the shape of teeth was either not important or just flat, for example in power 

transmissions like the Vitruvius’ watermills dated back to 40 b.c. in Figure 1.1, or a 

precision of contact was achieved by manual adjustment of each pair of gears in 

contact as for the Antikythera mechanism. 

 

 

Figure 1.1 – Transmission of the Nether Alderley Mill dates from the 12th century 

as an example of the Vitruvius’ watermills design 
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The history of modern gears started in 1525 when Albrecht Durer discovered the 

epicycloidal shape, but it was not until 1694 that Phillip de la Hire suggested the 

involute shape for gear flanks. However, the revolution in gear design dates from 1754, 

the year in which Leonard Euler formulated the conjugate action law, which allows a 

steady speed ratio to be maintained. Since then the fundamental design of gear 

geometry has not been changed significantly. During the Industrial Revolution, gear 

design and manufacturing rapidly evolved and was properly documented. The most 

important development over that period is the formulation of the gear tooth stress 

evaluation method by Lewis (1893). This method is still widely used with some 

limitations. For example, BS ISO 6336-3:2006 ‘Calculation of load capacity of spur 

and helical gears. Calculation of tooth bending strength’ states a modified Lewis 

formula, which only differs by the number of correction factors incorporated into the 

formula. Finally, Grant (1899) published a comprehensive manual for gear design and 

manufacturing. 

The Technological Revolution set new standards and requirements for gear 

transmissions. Precision, durability and noise became the crucial limiting factors. 

Some problems were resolved by the invention of new types of gearing, novel 

materials and a significant improvement of the manufacturing processes, which is not 

the focus of interest of this work. For conventional types of gears, such as spur, helical 

and bevel gears, the traditional design approach cannot meet the demand for new areas 

of application, for instance in the aerospace industry, characterised by high transmitted 

speeds and loads, and the critical importance of weight. The robust solution to the 

problem can only be achieved by the use of the finite-element analysis, which takes 

into account all major parameters, such as roughness, lubricant, load variation etc. 
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1.3. History of Tribology 

Etymologically the word ‘tribology’ originated from the Greek root ‘τριβ-’, tribo-, 

translating as ‘rubbing’ and the suffix -λογία’, -logia, meaning ‘study of’. Jost (1966) 

introduced the term ‘tribology’ in the report on the financial losses to the UK economy 

due to friction and wear. The current definition of the word ‘tribology’, according to 

the Oxford dictionary, is ‘The study of friction, wear, lubrication, and the design of 

bearings; the science of interacting surfaces in relative motion’. 

Tribology is multidisciplinary in nature, and includes mechanical engineering, 

especially machine elements such as gears, journal and roller bearings, materials 

science with research into wear resistance, surface technology with surface topography 

analysis and coatings, and the chemistry of lubricants and additives.  

As stated above, tribology as a science was established in 1966, but the problems it 

covers were known from the dawn of the human civilization. The chronicler of 

tribology, Dowson (1998), published a comprehensive history of Tribology from the 

beginning of humanity to that time. The evidence of the first very basic tribological 

studies goes back to the Paleolithic period. According to Furon (1963) and Forbes 

(1967), humanlike creatures such as Pithecanthropus, Sinanthropus, Atlanthropus and 

the later Heidelburg, Swanscombe, Fontechevade and Neanderthtal man were familiar 

with fire, stone tools and weapons, which is direct evidence of tribological skills from 

that period. Percussion of flint stones and friction of wood were recognised as a cause 

of frictional heating. There are some serious gaps in the historical data over Mesolithic 

and Neolithic periods, but Singer et al. (1954) mentioned that stone and wood bearings 

for door-posts and hand-held bearings of antler, bone and stone for drills were invented 

and developed over that period of time. In contrast to these simple tools, the Early 

Civilisations invented wheeled vehicles and potter’s wheels that used bearings and 

were lubricated either by water or by bitumen. The first recorded tribologist, painted 

in an Egyptian fresco of transporting the statue of Ti dated back to 2400 b.c., poured 

lubricant in front of a sledge. Due to a poor quality of that painting, another fresco 

dated back to 1880 b.c. and shown in Figure 1.2 is used as an example of lubricant 

application. 
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The Greek and Roman period brought us new technologies and materials as well as 

scientific research into tribological matters. Herodotus (484-425 b.c.) described 

ancient methods of producing bitumen and a lighter oil from petroleum. Aristotle (384-

322 b.c.), in his Questiones Mechanicae, recognised the force of friction and its 

relation to the shape of the objects in contact. The use of rolling elements to reduce 

friction becomes a common practice as well as an utilisation of bronze. 

 

 

Figure 1.2 – Transporting an Egyptian colossus, 

Tomb of Tehuti-Hepter, El-Bersheh, 1880 b.c. 

 

The Medieval Ages are characterised by an evolutionary development of lubricants 

and structural materials. Vegetable oils and animal fats were used as lubricants. Iron 

and brass become popular bearing materials. The source of the power over that time 

was water and wind, which were employed, for example, in mills. The quintessential 

example of the design level is the invention of the mechanical escapement clock that 

replaced an hourglass and a water clock. 
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Over the Renaissance period, while Columbus was on his way to the undiscovered 

land of America, da Vinci was conducting his studies of friction. The sketches of his 

experiments from the Codex Atlanticus and the Codex Arundel are shown in 

Figure 1.3. He formulated the first two laws of friction, namely: 

1. The force of friction is directly proportional to the applied force; 

2. The force of friction is independent of the apparent area of contact. 

This is the first recorded scientific study of friction. 

 

 

Figure 1.3 – Leonardo da Vinci’s studies of friction, the Codex Atlanticus 

 

In the Codex Madrid I da Vinci continued his study of friction and proposed some 

rolling-element bearing designs including an early version of a ‘cage’ to prevent 

contact between the balls. He considered some lubrication systems and tribological 

aspects of gears and screw-jacks. However, an intensive description of mining 

technology in De re Metallica by Agricola (1494-1555) demonstrates that there were 

no significant developments in tribological applications since the Greek and Roman 

ages. 
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Due to the increasing demand for mechanical power during the seventeenth century 

and, consequently, the urge to decrease wear of moving machine elements, led to a 

considerable development in the science of tribology by Hooke, Newton and 

Amontons. Hooke (1635-1703) studied hardness of materials and rolling friction, 

which resulted in a series of concepts on bearing design, seals and lubrication. In 1737 

Desaguliers published the first table of friction stating values that can be converted 

into coefficients of friction with a respect to the material of the surfaces in contact and 

lubrication. In Berlin, the famous mathematician Euler (1707-1783) defined the force 

required to move a weight up a slope of inclination to the horizontal and introduced 

the term ‘coefficient of friction’. He also showed the distinction between kinetic and 

static friction, followed by a recognition of differences between sliding and rolling 

friction stated by Leibnitz (1646-1716). In 1706 Newton (1642-1757) conducted a 

study of viscous flow. Section IX of Book II of his Principia Mathematica 

Philosophiae Naturalis (1687), which covers the ‘Circular Motion of Fluids’, opens 

with a statement now described as Newton’s law of viscous flow. The ‘defectus 

lubricitatis’ in his words is nowadays known as viscosity.  

The rapid change of technology during the First Industrial revolution induced scientific 

research in general, including tribological studies. Charles Augustin de Coulomb 

defined friction formulas based on his own experimental studies. The basics of the 

fluid mechanics were formulated by Euler, Bernoulli, Poiseuille etc. Newton’s law of 

flowing fluids was elaborated by Claude-Louis Navier by including the viscous terms. 

At the same time Stokes defined the basics of viscous flow. Subsequently, the 

equations formulated in this way became known as the Navier-Strokes equations. The 

first distillation of mineral-oil based lubricant was conducted in Prague in 1812 and 

the first graphite-containing lubricant was patented in the United Kindom in 1835. 

According to Mang, Bobzin and Bartels (2011), during the Second Industrial 

revolution the cornerstone of the tribological study was laid by numerous scientists, 

including: studies of rolling friction by Reynolds (1875); Hertz’s analysis of contact 

between elastic materials (1881); Petrov’s studies on unloaded journal bearings 

(1883); the development of viscometers by Engler, Saybolt and Redwood (1884-

1886); the hydrodynamic theory of Tower and Reynolds (1865); friction 

measurements on journal bearings by Stribeck (1902); the analytical solution of 

Reynolds equation by Sommerfeld (1904); further investigations on Stribeck’s results 
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and defining the major source of dry friction by Gumbel (1914-1925); Langmuir’s 

studies of thin surface films (1917); continuous improvements of the journal bearing 

by Tower, Kingsbury, Michell and Rayleigh (1915-1925). 

In the beginning of the twentieth century, tribological studies branched out according 

to the subject of interest. The research aims of this thesis are mainly associated with 

the field of Elastohydrodynamic Lubrication (EHL), therefore, only the timeline of 

major development in this particular area is covered in the next section. 

 

1.4. History of Elastohydrodynamic Lubrication (EHL) 

According to the Encyclopedia of tribology (2013), Elastohydrodynamic Lubrication 

(EHL) is a mode of fluid-film lubrication in which hydrodynamic action is 

significantly enhanced by surface elastic deformation and lubricant viscosity increases 

due to high pressure. A comprehensive discussion of the EHL history was published 

by Zhu and Wang (2011) and reprinted with minor alterations in the Encyclopedia of 

tribology (2013), which complemented reviews by Dowson and Ehret (1999), Gohar 

(2001) and Spikes (2006). 

Although, EHL was established as a discipline and separated from the other 

tribological studies in 1930s, the first idea that lubricants do not just fill the gaps 

between surfaces in contact caused by roughness, but separates them was suggested 

by Rennie (1829). The presence of fluid films in journal bearings was discovered at 

the same time by Petrov (1883) of the Moscow Politechnical Society and Tower (1883) 

of the Institution of Mechanical Engineers. Both experiments shown a substantial 

pressure in the oil films. Petrov concentrated on the development of the friction 

function formula, but Tower investigated the fluid film in a variety of different 

lubricated contacts, which led a second report, published in 1885, presenting the 

variation of pressure in a journal bearing. Tower’s research provided the experimental 

basis and conceptual stimulus for the milestone theoretical lubrication analysis of a 

journal bearing conducted by Reynolds (1886). The Reynolds equation that governs 

fluid film lubrication was derived and the approximate solutions shown to be in good 

agreement with Tower’s results. The Reynolds equation has since become a 

cornerstone of hydrodynamic lubrication theory. However, the results were only 
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obtained for conformal contact. In a conformal contact, the surfaces in contact have a 

very similar shape; therefore, the area of contact is comparable to the dimension of the 

mechanical elements. A non-conformal contact involves surfaces whose form is very 

different, thus, the contact area is small either in both principal dimensions, and is 

either an elliptic contact, or in the one dimension case, a line contact. Examples of 

conformal and non-conformal contact from Hamrock and Anderson (1983) are shown 

in Figure 1.4. 

The first analytical solution for frictionless dry non-conformal contact of smooth 

surfaces was developed by Hertz (1881), which was combined with the results of the 

experiments and explained the Newton’s rings phenomena. Martin (1916) solved the 

Reynolds equation for line contact in spur gears applying following assumptions: a 

pair of gear teeth can be approximated as two parallel cylinders in contact; the elastic 

deflection of the gear flanks can be neglected, i.e. rigid; the lubricant can be considered 

incompressible, i.e. isoviscous and, therefore, Newtonian. However, the predicted film 

thickness was extremely small, in some cases even smaller than the average roughness 

that can be achieved by manufacturing processes, although, gears operated 

successfully and showed only moderate traces of surface damage or wear. 

 

(a)    (b)  

 Figure 1.4 – Examples of (a) conformal and (b) non-conformal contact, Hamrock 

and Anderson (1983) 

 

 



1-10 
 

Starting from 1930s, there were some attempts to develop a robust EHL analysis that 

takes into account either the localised elastic deformation (Peppler, 1938, 

Meldahl, 1941, etc.) or the real behaviour of a lubricant (Gatcombe, 1945, Blok, 1950, 

etc.). Grubin and Vinogradova (1949), based on Ertel’s (1939) experimental results, 

derived a theory, which incorporated the effect of the elastic deformation and the 

viscous response to the pressure simultaneously. The dramatic life of Alexander 

Mikhailovich Mohrenstein-Ertel and his contribution to Tribology was presented by 

Popova and Popov (2014). Two assumptions were made to overcome an unavailability 

of sufficient computing resources: 

1. The shape of the elastic deformation is not affected by the presence of the 

lubricant and it is identical to the dry contact conditions, i.e. Hertz (1881) 

contact theory. 

2. The hydrodynamic pressure tends to infinity at the inlet boundary of the 

Hertzian contact. 

The pressure-viscosity relation was defined by the Barus (1893) equation, where the 

viscosity depends on the pressure according to 

 pe  

0    (1.1) 

 

Based on those assumptions, Grubin numerically integrated a simplified Reynolds 

equation at the inlet zone to the Hertzian contact area. This was done in terms of the 

reduced pressure, q, where for the Barus viscosity formula (1.1) 

  peq  1 
1 



  and  qp 


 1ln 
1

 (1.2) 
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And the Reynolds equation for the reduced pressure in the isoviscous form 

 
dx

dh
u

dx

dq
h

dx

d
0

3 12 







, i.e. 

3

*

012
h

hh
u

dx

dq 
   (1.3) 

 

When q reaches a value of 1/α the corresponding pressure becomes infinite. 

Grubin numerically integrated equation (1.3) for q = 0 at x =-∞ and obtained the value 

of q at x/a = 1 for a series of values of constant of integration h*. A curve fitting to 

these data allowed the contradiction q = 1/α at x/a = 1 to be stated and this was 

developed to obtain the film thickness formula. The predicted values of clearance 

between the surfaces in contact were over an order of magnitude greater than the ones 

calculated according to the Martin’s theory and were plausible for limited practical 

applications. 

Petrusevich (1951) produced the sets of results for different speed, the same load by 

combining the full Reynolds piezoviscous equation and the Grubin inlet formula. The 

resultant pressure distribution and film thickness are presented in Figure 1.5. (Note 

that entrainment is in the negative axis direction here) 

 

Figure 1.5 – Graphs of resultant pressure distributions (upper) for three line-contact 

Petrusevich cases and film thickness (lower), Petrusevich (1951) 
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It is apparent that the magnitudes of the pressure distribution are similar to the Hertzian 

contact results for the larger part of the contact length of all three cases with a 

significant discrepancy at the inlet and outlet zones. The later studies confirmed the 

characteristic build-up of pressure with a sharp spike, named the ‘Petrusevich Spike’, 

corresponding to the beginning of film constriction at the outlet area. Considering the 

insufficient statistical sampling size, he formulated an analytical relation between the 

film thickness and the entrainment velocity, which describes the nature of the process 

quite accurately.  

The Petrusevich research was shortly followed by a new formulation and algorithm 

proposed by Dowson and Higginson (1959), which allowed converged solutions to be 

obtained for a larger variety of operating conditions in a small amount of iterative 

steps. This was an innovative development that solved the Reynolds equation in an 

inverse way where the film thickness was obtained for a given pressure distribution. 

The pressure distribution thus led to two different film thickness curves, one a solution 

to the elastic equation and one a solution to the Reynolds equation. The method 

proceeded to assume an initial approximate pressure distribution (a modified Hertzian 

pressure) and then adjusted it so as to obtain agreement between the two film thickness 

curves. The first solutions were obtained with some manual intervention by the authors 

in the iterative process. This was then developed to be an automatic algorithm by 

Dowson, Higginson and Whitaker (1962). 

A curve fit to a set of results was used to produce a formula for predicting line contact 

EHL minimum film thickness by Dowson and Higginson (1961). Another formula was 

also presented by Dowson and Higginson (1966). The predicted values of film 

thickness were highly dependent on the rolling speed and almost unresponsive to the 

load conditions. This showed a good agreement with numerous experimental studies 

of line contact such as Crook (1961, 1963) and Dyson et al. (1966) using the 

capacitance technique, and Sibley and Orcutt (1961) employing the X-ray transmission 

method. The book ‘Elastohydrodynamic lubrication’ by Dowson and Higginson 

(1966) has been considered the foundation of the smooth line-contact EHL theory. 

Later on, by application of thin-film transducers onto a test disc the EHL pressure 

distribution was measured and the existence of the Petrusevich spike was confirmed 

by Kannel (1966) and Hamilton and Moore (1971). Further contributions to the 
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prediction of minimum film thickness were made by Moes (1966), Theyse (1966), 

Archard (1968), Greenwood (1969), Johnson (1970), Moes and Bosma (1972), etc. 

At the same time, some experimental measurements of the heavy loaded point contact 

formed by two crossed cylinders were conducted by Archard and Kirk (1961) using 

an electrical capacitance technique. Shortly after that the optical interferometry 

method was developed, which allowed observing of the film thickness distribution 

rather than an average or central film thickness, or an estimate of minimum film 

thickness provided by the electrical capacitance and x-ray methods respectively. Zhu 

and Wang (2011) refer to Gohar and Cameron (1963) as the original developers of the 

optical interferometry method, however, Kirk (1962) and Archard and Kirk (1963) 

used white light to study the influence of the materials on the film produces by brining 

Perspex and glass cylinders into a contact. The first effective use of optical 

interferometry was presented by Cameron and Gohar (1966), which led to a rapid 

growth in popularity of this technique. It was further developed and modified by Foord 

et al. (1969-1970), Gohar and Cameron (1967), Wedeven (1970). More recently 

Johnson, Wayet and Spikes (1991) made a significant advance by combining an optical 

spacer layer, introduced by Westlake and Cameron (1967), and a spectrometer. In this 

way modern interferometers can measure film thickness down to one nm overcoming 

an obvious physical limit due to the wavelength. 

The first simplified analytical solution was obtained only about two decades after 

Grubin’s line contact elucidation by Archard and Cowking (1966) and Cheng (1970). 

The implementation of the numerical analysis for point contact by Ranger et al. (1973) 

followed more than two decades later and this delay was principally due to the 

computational resources available to researchers. 

The later period of the EHL history can be characterised as a rapid development and 

branching of the EHL studies, therefore, only the subjects, relative to this research will 

be reviewed in the next sections. 
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1.5. Development of a full numerical solution in line contact 

The EHL problem is formulated as a system of two governing equations: the elastic 

deflection, which maintains the load balance, and Reynolds equation that describes the 

pressure distribution and film thickness, equations. The latter one incorporates density 

and viscosity that are heavily dependent on pressure. This system exhibits strong 

nonlinear behaviour predominantly due to the elastic deformation and the rise of 

viscosity at high pressure. Therefore, it causes severe numerical difficulties and makes 

a traditional direct integration method, for example, Ranger et al. (1973), Hamrock 

and Dowson (1976a, 1976b, 1977a, 1977b), Evans and Snidle (1981) ineffective, 

especially under heavy loading conditions. Over the years four major numerical 

techniques to find the EHL solution were developed. 

The Inverse Solution was first put together by Dowson and Higginson (1959) for the 

line contact and Evans and Snidle (1981) and Hou et al. (1987) for the point contact 

problem. Initially, the pressure distribution is assumed; therefore, the two film 

thickness distributions are obtained by integration of the Reynolds equation and by 

solving the elastic deflection equation. Then those two functions are compared and the 

difference is used to modify the initial pressure shape. The calculations loop until the 

difference between the hydrodynamic and elastic deflection functions complies with 

the convergence criteria. However, this procedure involves some manual adjustment 

manipulations based on professional expertise and knowledge and it is quite unstable 

for light loads. 

The Newton-Raphson Iterative Procedure was first applied by Rohde and Oh (1975) 

for line contact problems and Oh and Rhode (1977) for point contacts. Some 

formulation improvements were performed by Okamura (1982). The method involves 

a simultaneous solution of the elastic deflection and Reynolds equations, which are 

coupled in the solution scheme. It only takes a few iterations to converge, but it 

requires a good initial guess of the pressure distribution and it is compulsory to obtain 

a solution from the full matrix, as all the mesh nodes are included in the elastic 

equation. Houpert and Hamrock (1986) introduced a non-uniform computational mesh 

to decrease computational time and memory demand, which was improved by Hsiao 

et al. (1998) as an automatic meshing-remeshing algorithm was employed for the point 

contact problem. 
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The Coupled Differential Deflection Method originated from Okamura’s (1982) first 

order full coupled formulation, presented by Houpert and Hamrock (1986) and further 

developed by Elcoate (1996) and Hughes et al. (2000) for the line contact problem and 

by Holmes et al. (2003) for point contacts. A different formulation of the elastic 

deflection equation was suggested by Evans and Hughes (2000). The method allows 

to use a limited bandwidth matrix in solving the coupled EHL governing equations 

simultaneously and to increase stability under heavy loading conditions. The method 

was extended by Elcoate et al. (1999, 2001) to include real roughness and to make 

appropriate adjustments in the mixed lubrication regime.  

The Improved Direct Iterative Techniques include the Multigrid (MG) method, Semi-

System Approach and the Progressive Mesh Densification (PMD) Procedure. MG and 

PMD methods use a set of grids with different spacing to remove an error between the 

initial value and final solution as an alternative relaxation process or to generate a 

better initial candidate solution for the finer mesh respectively. Unfortunately, they are 

not applicable for rough surface contacts. The main contribution to MG method was 

made by Lubrecht et al. (1986), Lubrecht (1987), Venner (1991), Ai (1993) and 

Venner and Lubrecht (2000). The PDM technique was developed by Hu and Zhu 

(2000) and Zhu (2007). The Semi-system method was developed by Ai (1993) and 

basically modifies the Gauss-Seidel (Dowson and Higginson, 1966) relaxation process 

by considering the Couette entraining flow term of the Reynods equation as a function 

of unknown nodal pressures, on the contrary to the Gauss-Seidel, which only takes 

into account the contribution of the Poiseuille flow. It allows ensuring stability even 

under extremely severe conditions. PDM method was employed by Zhu and Hu (1999) 

and Hu and Zhu (2000). 
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1.6. Roughness effect 

In reality, there are no ideally smooth surfaces and most of the time roughness is 

comparable to the predicted film thickness or even greater, therefore, it must affect the 

behaviour of the EHL contact. Engineering observations proved that the contact 

surfaces of the heavily loaded mechanisms show no traces of damage even considering 

that their roughness is much higher than the minimum film thickness predicted for 

smooth contact conditions. Early attempts to obtain a numerical solution revealed 

some major complications such as high sensitivity of the micro deformations to 

thermal and non-Newtonian effect as well as a necessity of very high resolution. 

There are two groups of rough surface analyses: stochastic and deterministic. At the 

beginning, Lee and Cheng (1973) and Cheng and Dyson (1978) implemented a 

stochastic model, but, Patir and Cheng (1978a), Majumbar and Hamrock (1982), 

Prakash and Czichos (1983), Zhu and Cheng (1988), Sadeghi and Sui (1989) used the 

average flow EHL model of Pair and Cheng (1978b). They show tendencies to increase 

film thickness due to higher roughness or lower speeds of the surfaces in contact.  

Poon and Sayles (1994) and Ai and Cheng (1994) pioneered the inclusion of the real 

roughness into an EHL analysis and many followed them. It became apparent that in 

rough EHL problems the film thickness is very thin and metal on metal contact at some 

asperities is quite common. That type of regime is called mixed lubrication and some 

of the first results for real roughness in that type of condition were obtained by Tao et 

al. (2003) and Holmes et al. (2003a, 2003b). 

1.7. Spur Gear geometry and operational conditions 

The operational conditions and the undeformed geometry of involute spur gears vary 

through meshing cycle. In 1980 Wang and Cheng submitted the report, NASA CR 

3241 ‘Thermal Elastohydrodynamic Lubrication of Spur Gears’ that included a 

method of evaluation of film thickness along the path of contact based on the Grubin 

approach. Larson (1997) presented a full transient analysis of the meshing cycle, which 

was enhanced by thermoanalysis and more realistic load variation by Wang et al. 

(2004). Davis (2005) developed a comprehensive TEHL numerical solution 

incorporating the non-simplified involute shape and real roughness of the gear flanks. 
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1.8. Aims of the current work 

The aims of this thesis were to produce a robust tool to emulate the full meshing cycle 

of spur gears evaluating and storing elastic stress history in the way appropriate for 

applying a fatigue-life prediction tool. Another goal was to provide a comprehensive 

description of the model and input/output structure as well as increasing the reliability 

of the algorithm. 

The goals stated above can be broken down into the following steps 

1. Develop a full meshing cycle EHL contact analysis for spur gears in extreme 

mixed lubrication conditions utilising and enhancing existing software 

components where available. This requires: 

(a) Developing a method to include contact occurrences within a full 

meshing cycle analysis 

(b) Increasing robustness of the code in contact cases 

(c) Investigation of the importance of accurate surface roughness 

alignment 

(d) Considering methods to accelerate the software performance 

 

2. Development of the analysis to allow stress evaluation for the whole meshing 

cycle and production of the gear stress history information 

 

3. Application of fatigue tools using the stress history 

 

4. Packaging the gear analysis software for non-expert use. This is anticipated to 

include a consideration of 

(a) Interface control 

(b) Appropriate tools for dealing with job failures 

(c) Development of recovery/debug logs for non-expert and remote use 

(d) Removal of non-essential code options and optimisation of the 

software 

 

5. Providing tools for the graphic representation of the results at each stage of the 

analysis. 
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The analyses were carried out for real operating conditions from gear testing under 

extreme conditions. The surface roughness profiles used were real measured profiles 

taken from the test gears after initial running-in. The simulations reported are therefore 

as realistic as can be achieved and represent the true mixed lubrication conditions 

occurring in heavily loaded gears. The research also shows the importance of precise 

alignment of the roughness profiles in these conditions. 

 

1.9. Thesis structure 

The thesis includes the necessary summary of the theoretical methods used as well as 

a comprehensive description of their practical implementation and the results of the 

analysis. It is divided into the following chapters: 

Chapter 2 provides information about geometry, kinematics and load conditions of 

spur gears through the meshing cycle, EHL governing equations and formulae 

describing non-Newtonian behaviour and mechanical properties of the lubricant. 

Chapter 3 describes all implemented options of the full EHL transient numerical 

analysis of spur gear meshing cycle, including the calculations of the mesh spacing, 

the finite element and the finite element formulation of the Reynolds equation, Evans 

and Hughes (2000) differential method of deflection evaluation, structure of the matrix 

equation and explanation of the solving processes. 

Chapter 4 explains the elastic stress evaluation techniques with verification of the 

calculations, the collection of the stress history through the meshing cycle, some 

multiaxial fatigue-life prediction theories as well as a brief history of the fatigue 

studies and the structure of the output files.  

Chapters 5 and 6 present the results of the EHL and fatigue-life analyses of the NASA 

Glenn spur gear fatigue test and the Design Unit, Newcastle University experimental 

micropitting study. The preparation of the input data is described and a comparison of 

those two cases is provided. 

The conclusions are drawn and some ideas for the future development are considered 

in Chapters 7.  



2-1 
 

 

Chapter 2 

 

Introduction and basic theory 

 
 

2.1. Introduction 

This chapter describes the initial software for rough surface non-Newtonian transient 

line contact elastohydrodynamic lubrication (EHL) analysis for spur gears (Davis 

2005) as well as the basic theory used and main limitations and key features of this 

algorithm. 

The solution method used in the software was first developed by Elcoate et al. (1997) 

and it can be described as a simultaneous solution of Reynolds hydrodynamic equation 

and the elastic deflection equation formulated as a differential equation. The latter was 

formulated in this form by Evans and Hughes (2000). Both equations are functions of 

pressure and separation, where the elastic deflection equation sets the geometry of the 

contact and the hydrodynamic equation describes the behaviour of the lubricant that 

separates the surfaces. Further development was performed by Holmes (2000) and 

Sharif et al. (2001). The Eyring (1936) shear thinning rheological model was used to 

incorporate the non-Newtonian effect into the formulation of the problem. 

The software for applying these techniques to the gear meshing cycle for spur gears 

was created by Davies (2005). The coupled method as further developed by Holmes, 

Evans, Snidle (2005) was used to carry out full meshing cycle non-Newtonian EHL 

analysis with real roughness of both tooth surfaces. The program provides three 

meshing options: three node quadratic or two node linear finite elements, or central 

finite difference, and two solvers that are based either on the Gaussian elimination 

method or on the Gauss-Seidel iterative method.  
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2.2. Geometry and Kinematics of spur gear contact 

The EHL analysis of the lubricated contact of spur gears is a complex problem due to 

constantly changing radii of curvature and tangential velocities of the contacting 

surfaces, and the changing loading conditions through the meshing cycle. This is 

because the contact point progresses continuously over the involute gear tooth flanks 

and the number of teeth pairs engaged in contact varies through the meshing cycle. It 

is necessary to deduce a parameter that links all the operating conditions together. 

According to Kennedy’s theorem and the basic concept of the involute spur gears, the 

contact point between two mating gear flanks advances uniformly along the straight 

line BD, shown in Figure 2.1, called the line of action or the pressure line. It is 

tangential to the base circles of both gears and inclined at the pressure angle, ψ, to the 

normal to the line of centres, A1A2. Setting the line of action as a coordinate axis with 

an origin at its intersection with the line of centres called the pitch point, P, coordinate 

s is defined and is positive in the direction of motion of the contact point. 

Traditionally, subscript 1 is used to define the driving gear and subscript 2 denotes the 

driven gear. The subscript letters refer to the nomenclature of the gears: b – base circle; 

t – tip (addendum) of the teeth; r – root (dedendum) of the teeth; no letter subscript – 

pitch line or circle. 

The formulation of Reynolds hydrodynamic equation implies that any geometry of a 

contact can be reduced to simple contact of a plane and a parabolic surface. Since a 

plane is flat, the parabola must incorporate the curvatures of the surfaces in the contact. 

For example, the contact of two rollers can be considered as a contact of two parabolas, 

which represent the curvatures of the upper and the lower rollers. The gap between the 

parabola and the common tangent at the contact position, x=0, can be formulated as: 

 
R

x
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2
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So the total separation between two parabolas in contact at the origin can be 

determined as: 
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Figure 2.1 – Line of action of meshing gears (Davies, 2005) 

B 

D 

P 

E 

T 



2-4 
 

As discussed earlier, any contact can be reduced to the contact of the plane and 

parabola. So the total separation or the undeformed geometry will have a form of 

equation (2.1), where R is the radius of relative curvature and can be determinate from 

the comparison of equations (2.1) and (2.2): 

 










21

111

RRR
 (2.3) 

 

There are two levels of digitization of the undeformed geometry of the spur gear 

contact that can be used: (a) the equivalent rollers method (Martin, 1916) and (b) 

involute profile (Euler, 1754). 

The equivalent roller method (fig. 2.2) is based on the assumption that the curvature 

change within the contact is insignificant due to the diminutive contact length. Hence 

the radii of the equivalent rollers at the specified position of the meshing cycle can be 

determined as: 

 srR b     tan  11    (2.4) 

 srR b    tan 22  

 

where rb1, rb2 are base radii of the pinion and the gear respectively; ψ is the pressure 

angle; s is an instantaneous position of the contact on the line of action with the origin 

at the pitch point. These are the expressions for R1 and R2 because the fundamental 

form of the involute curve means that the centres of the radii of curvature at the contact 

point are always at the points B and D. 

The expressions for R1 and R2 in equations (2.4) can be substituted into equation (2.3) 

to define undeformed geometry of the contacting teeth at any position in the meshing 

cycle according to the value of parameter s. 

The second method is more complicated and more time consuming, but it increases 

the precision of the undeformed geometry calculations significantly by evaluating the 

gap between two involutes at any given value of s. 
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Litvin and Fuentes summarized and published a robust method to evaluate coordinates 

of the involute profile in 2004. 

 

Figure 2.2 – Method of equivalent rollers (Davies, 2005) 

 

Two branches of an involute curve are plotted in Figure 2.3. They are generated by 

point Mo of the straight line that rolls over the base circle radius, rb, both clockwise 

and counterclockwise. Each branch represents its respective side of the tooth. The 

analytical representation of an involute curve is based on the following consideration: 
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Figure 2.3 – For derivation of the equation of an involute curve 

 

A current point M of the involute curve is determined by the vector equation 

 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝑂𝑃⃗⃗⃗⃗  ⃗ + 𝑃𝑀⃗⃗⃗⃗ ⃗⃗  (2.5) 

where 

𝑂𝑃⃗⃗⃗⃗  ⃗ = 𝑟𝑏[𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾]𝑇 

𝑃𝑀⃗⃗⃗⃗ ⃗⃗ = 𝑃𝑀[−𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾]𝑇 

 

i. Due to rolling without sliding, we have 

 𝑃𝑀 = 𝑀𝑜𝑃̂ = 𝑟𝑏𝛾 (2.6) 

 

Here γ (rad) is the angle of rotation of rolling motion. 

 



2-7 
 

ii. Equations (2.5) and (2.6) give 

 [
𝑋
𝑌
] = 𝑟𝑏 [

𝑠𝑖𝑛𝛾 −𝑐𝑜𝑠𝛾
𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾

] [
1
𝛾
] (2.7) 

 

 

Figure 2.4 – For Coordinate transformation 
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Equation (2.7) is valid for the coordinate system with an origin at the centre of the 

gear, but the EHL problem is formulated around the contact point. In order to obtain 

coordinates of the point of interest in a new coordinate system with an origin at the 

contact point: 

 [
𝑋
𝑌
] − [

𝑋𝐶

𝑌𝐶
] = 𝑟𝑏 ([

𝑠𝑖𝑛𝛾 −𝑐𝑜𝑠𝛾
𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛾

] [
1
𝛾
] − [

𝑠𝑖𝑛𝛾𝐶 −𝑐𝑜𝑠𝛾𝐶

𝑐𝑜𝑠𝛾𝐶 𝑠𝑖𝑛𝛾𝐶
] [

1
𝛾𝐶

])  

 = 𝑟𝑏 [
𝑠𝑖𝑛𝛾 − 𝛾𝑐𝑜𝑠𝛾 − 𝑠𝑖𝑛𝛾𝐶 + 𝛾𝐶𝑐𝑜𝑠𝛾𝐶

𝑐𝑜𝑠𝛾 + 𝛾𝑠𝑖𝑛𝛾 − 𝑐𝑜𝑠𝛾𝐶 − 𝛾𝐶𝑠𝑖𝑛𝛾𝐶
] (2.8) 

The EHL axis x is parallel to the tangent plane at the contact point and is positive in 

the direction of rotation and axis z is normal to that plane and is positive towards the 

centre of the tooth. It means that the current coordinate system must be rotated by γC, 

as it is shown in Figure 2.4. It can be achieved by multiplying equation (2.8) by the 

rotation matrix. 

 [
𝑧
𝑥
] = 𝑟𝑏 [

𝑐𝑜𝑠𝛾𝐶 −𝑠𝑖𝑛𝛾𝐶

𝑠𝑖𝑛𝛾𝐶 𝑐𝑜𝑠𝛾𝐶
] [

𝑠𝑖𝑛𝛾 − 𝛾𝑐𝑜𝑠𝛾 − 𝑠𝑖𝑛𝛾𝐶 + 𝛾𝐶𝑐𝑜𝑠𝛾𝐶

𝑐𝑜𝑠𝛾 + 𝛾𝑠𝑖𝑛𝛾 − 𝑐𝑜𝑠𝛾𝐶 − 𝛾𝐶𝑠𝑖𝑛𝛾𝐶
] (2.9) 

 

The coordinate axes z1 and z2 are directed into the tooth material of the driving and 

driven gears respectively, so they are opposite vectors with tails at the contact point of 

the mated teeth. The coordinate axis x must be common for both teeth; therefore, the 

sign of x in the equation (2.9) is inverted. Finally, the coordinates of the involute 

profiles are: 

 [
𝑧2

𝑥
] = 𝑟𝑏 [

𝑐𝑜𝑠𝛾𝐶2 −𝑠𝑖𝑛𝛾𝐶2

𝑠𝑖𝑛𝛾𝐶2 𝑐𝑜𝑠𝛾𝐶2
] [

𝑠𝑖𝑛𝛾2 − 𝛾2𝑐𝑜𝑠𝛾2 − 𝑠𝑖𝑛𝛾𝐶2 + 𝛾𝐶2𝑐𝑜𝑠𝛾𝐶2

𝑐𝑜𝑠𝛾2 + 𝛾2𝑠𝑖𝑛𝛾2 − 𝑐𝑜𝑠𝛾𝐶2 − 𝛾𝐶2𝑠𝑖𝑛𝛾𝐶2
] (2.10) 

 [
𝑧1

𝑥
] = 𝑟𝑏 [

𝑐𝑜𝑠𝛾𝐶1 −𝑠𝑖𝑛𝛾𝐶1

−𝑠𝑖𝑛𝛾𝐶1 −𝑐𝑜𝑠𝛾𝐶1
] [

𝑠𝑖𝑛𝛾1 − 𝛾1𝑐𝑜𝑠𝛾1 − 𝑠𝑖𝑛𝛾𝐶1 + 𝛾𝐶1𝑐𝑜𝑠𝛾𝐶1

𝑐𝑜𝑠𝛾1 + 𝛾1𝑠𝑖𝑛𝛾1 − 𝑐𝑜𝑠𝛾𝐶1 − 𝛾𝐶1𝑠𝑖𝑛𝛾𝐶1
]  

 

The contact point translates along the line of action and over the mating tooth flanks 

as the meshing cycle progresses. The distance from the point of tangency the base 

circle and the line of action, P, (Figure 2.3) and the contact point, M, can be obtained 

from the equations (2.4), but, due to the rolling without sliding, it must be equal to the 

arc length of the involute from the base circle to the contact point, equation (2.6). 
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Therefore, the reference angles of the contact point in the coordinate system of the 

driving, γC1, and driven, γC2, gears are: 

 
1

1
1

tan

b

b
C

r

sr 



  (2.11) 

 
2

2
2

tan

b

b
C

r

sr 



  

The reference angles at the meshing point, γ1 or γ2, can be determined from the x part 

of equations (2.10), which allows z1 and z2 to be evaluated. The total separation 

between two involutes is the undeformed geometry of the contact: 

 21)( zzxhu   (2.12) 

 

The motion of the contact point along the line of action is shown in Figure 2.5. The 

gear revolves about the centre of rotation is point A with constant angular velocity 

k̂   11   . Therefore, the velocity of point C is the cross product of ω1 and A1C, which 

can be represented as a vector sum of A1B and BC. Thus 

                1111 BCBACAvC     

The length of the vector A1B is equal to the radius of the base circle, rb1, and it is 

collinear to the unit vector î . BC is collinear to the unit vector ĵ  and equal to R1 as in 

equation (2.4). Hence 

   iRjrjRirkv bbC
ˆ      ˆ   ˆ  ˆ   ˆ  111 111 1    (2.13) 

 

Given that the gear ratio of the meshing involute spur gears is constant, the point of 

contact travels along the line of action at constant velocity from equation (2.13): 

 2211  bbcontact rrv    
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Figure 2.5 – Kinematics of the contact 

 

The tangential velocity of the mating tooth flanks at the contact point can be obtained 

by substitution of equations (2.4) to equation (2.13): 

   111   tan  sru b   (2.14) 

   222   tan  sru b   
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As shown above, the contact geometry and operating conditions are formulated in 

terms of position of the contact point on the line of action relative to the pitch point. It 

is necessary to specify the boundary values of s, which are the point where the mating 

gear flanks first make contact, sf, and last make contact, sl, as well as the highest and 

the lowest points of a single tooth contact, sc1 and sc2. The latter two are important for 

the simplified loading conditions, covered in Section 4, and as a reference for the 

analysis results processing. 

According to Figure 2.1, the gear teeth first make the contact at the point of 

intersection, T, of the addendum circle of the driven gear, radius rt2, and the line of 

action, BD. Bearing in mind that the origin is set at the pitch point, P, the coordinate 

sf can be determined as the length of PT. The line of action is tangential to the base 

circle at D, therefore, A2D is normal to PD and TB and can be defined: 

 tan2brPD    

 2

2

2

2 bt rrTD   

 2

2

2

22 tan btbf rrrTDPDs    (2.15) 

 

Correspondingly: 

 tan1brPB    

 2

1

2

1 bt rrEB   

 tan1

2

1

2

1 bbtl rrrPBEBs   (2.16) 

 

The boundary of the single tooth contact zone can be determined as: 

 
1

1
1

2

n

r
ss b

lc


  (2.17) 

 
2

2
2

2

n

r
ss b

fc


   

Where n1 and n2 are the numbers of teeth of the driving and driven gears respectively. 
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2.3. The Elastic deformation equation 

The elastically deformed geometry, h(x), can be represented as a combination of the 

undeformed geometry, hu(x), explained in section 2, the constant separation term , C, 

used to achieve appropriate load conditions and the deflection, Λ(x). Those terms can 

be seen in Figure 2.6 and as follows: 

 Cxhxxh u  )(  )(  )(     (2.19) 

 

Figure 2.6 – Components of the elastic film thickness 

 

The deflection equation for semi-infinite body was formulated by Johnson (1985): 

  




b

a

ds
sr

sx
sp

E
x ln)(

'

4
)(


   

 

This expression effectively evaluates the deflection at the point of interest x, relative 

to the point x=r, it can be simplified to: 

 Ddssxsp
E

x

b

a

  ln)(
'

4
)(


  (2.20) 

 

The surface roughness profile, ϕ(x), can be incorporated into equation (2.19), 

therefore: 

 Cxx
u

hxxh  )(  )( )(  )(    (2.21) 
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2.4. Load conditions over meshing cycle of spur gear contact 

The variation of the shared tooth load over the meshing cycle can be determined 

statically and dynamically and depends on the gear flank profile and modifications. 

The influence of different types of the profile adjustments on the static and dynamic 

loading conditions are provided, for example, in NASA-TM-101444/AVSCOM-TR-

88-C-003. The static shared load function, is easy to define due to its dependence only 

on the geometry of the contact and the stage of the meshing cycle. Hence, it is widely 

used for different types of spur gear analysis. The schematic distribution of the load 

sharing function across the gear flank profile shown in Figure 2.7, where LPSTC and 

HPSTC stand for the lowest and highest point of single tooth contact respectively. 

 

Figure 2.7 – Schematic load distribution and Single and Double 

tooth contact zones (Imrek, 2009) 

 

Two load sharing functions plotted across of the coordinate on the line of action, s, in 

Figure 2.8. The load function shown in Figure 2.8(a) does not take into account 

lubricant behaviour and tooth deflection at the root, therefore, at the double tooth 

contact (DTC) zones, [sf, sc1] and [sc2, sl], the load has the constant magnitude of the 

half of the maximum constant load at the single tooth contact (STC) area, [sc1, sc2]. 

The second load function is influenced by the tooth deflection and presence of the 

lubricant, hence, the initial, at sf, and final, at sl, values of the meshing cycle are three 

times lower than the constant maximum load at the STC, , [sc1, sc2] zone and gradually 

increase over [sf, sc1] and decrease through [sc2, sl]. At the LPSTC, sc1, the load 

instantaneously rise from two thirds to unity of the maximum load, and there is the 

instant drop of the load at HPSTC, sc2. The coordinates sf, sc1, sc2 and sl are defined by 

equations 2.15-2.17. 
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Figure 2.8 – Schematic load distribution and Single, STC, and Double, DTC, 

tooth contact zones (ASM, 1992) 

 

However, the static load-sharing functions provide a crude approximation of the load 

variation over the meshing cycle, therefore, the dynamic load function shall be used 

whenever the measured values are available. One of the dynamic gear tooth load 

measuring techniques is described in NASA-TM-103281/AVSCOM-TR-90-C-023. 

The measurements are presented in NASA/TM-2005-213958/ARL-TR-3134 and 

shown in Figure 2.9. 

 

Figure 2.9 – Measured dynamic tooth force. The solid line is the measured data, the 

dashed lines are replicates of the measured data spaced along the ordinate at the 

equivalent of one tooth pitch. (NASA/TM-2005-213958/ARL-TR-3134) 

 

sf sc1 sc2 sl sf sc1 sc2 sl 

DTC STC DTC DTC STC DTC 
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2.5. The viscosity equation 

Gear tooth contact is non-conformal in that high load is distributed over a very small 

area. The concentrated contact pressure is high and can easily exceed 1GPa. As 

experiments show, viscosity is a function of pressure and temperature, however, the 

response to the variation of the temperature is less significant within the average gear 

operation temperatures. Viscosity increases dramatically with a rise of pressure so its 

behaviour must be taken into account. There are two common relationships that are 

used: 

Barus (1893): 

 pe  

0    (2.22) 

 

where is the viscosity at reference (atmospheric) pressure in N-s/m2 and is the 

pressure–viscosity coefficient of units m2/N; 

and Roelands (1966): 

 pe *

0    (2.23) 

where 

𝛼∗𝑝 = [ln⁡(𝜂0) + 9.67)] {(
𝜃 − 138

𝜃0 − 138
)
−𝑆0

[(1 +
𝑝

𝑝0
)
𝑍

− 1]} 

 

where 𝑝0 = 1.98 × 108⁡ Pa, 𝜃0 is a reference or ambient temperature, 𝜃0 and 𝜃 are in 

K, 𝜂 and 𝜂0 are in Pa.s, p is in Pa. 

Since both relationships describe the same behaviour the calculated values at low 

pressures must be similar. It can be done by equating the slopes of ln() at p=0: 

𝑍 =
𝛼

5.1 × 10−9(ln⁡(𝜂0) + 9.67))


𝑆0 =
𝛽(𝜃0 − 138)

ln⁡(𝜂0) + 9.67

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As it can be seen 𝑍 and 𝑆0 are constants of oil, independent of temperature and 

pressure. 𝜂0, 𝛽 and 𝛼 are usually given for well known oils. 

An example of the variation of the absolute viscosity due to pressure for three different 

lubricants calculated by equations (2.22) and (2.23) shown in Figure 2.10. 

 

 

Figure 2.10 – Comparison of absolute viscosity obtained from Barus (dashed) and 

Roelands (solid) formulas for three different lubricants at 311 K: 1 – synthetic 

paraffinic oil; 2 – supperrefined naphthetic mineral oil; 3 – synthetic hydrocarbon 

(NASA RP – 1255 / Hamrock, 1994) 
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2.6. The density equation 

Another liquid parameter that depends on pressure and temperature is density (Fig 1). 

It is necessary to know its behaviour to accurately determine the film shape. The 

corresponding variation of density with temperature is considered insignificant. A 

commonly used relationship describing its behaviour was proposed by Dowson and 

Higginson (1966): 

𝜌 = 𝜌0 (
1 + 𝛾𝜌𝑝

1 + 𝜆𝜌𝑝
) 

 

where 𝛾𝜌 and 𝜆𝜌 are the compressibility constants, 𝜌0 is the reference density of units 

kg/m3. Typical values of 𝛾𝜌 and 𝜆𝜌 are 2.266 GPa-1 and 1.683 GPa-1 respectively. 

As stated variation of density with temperature is considered insignificant but non-

conformal contact leads to high pressures and, probably, significant temperature 

changes. In this case, it is quite improvident to ignore a temperature impact. Sui and 

Sadeghi (1991) incorporated a linear temperature influence into Dowson and 

Higginson relationship so that it became  

𝜌 = 𝜌0 (
1 + 𝛾𝜌𝑝

1 + 𝜆𝜌𝑝
) [1 − 𝜀(𝜃−𝜃0)] 
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2.7. The Hydrodynamic Reynolds equation 

The governing equation of the hydrodynamic behaviour, which relates the pressure 

and the film thickness of the lubricant is based on two physical principles: the 

conservation of mass and the Navier-Strokes equation that describes the motion of a 

viscous fluid. This equation was named after Osborne Reynolds, who was the first 

scientist to derive it in 1886. Due to complexity of the nature of the problem, he 

simplified it by introducing following assumptions: 

i. Flow is laminar and inertia terms are negligible (Reynolds number is small); 

ii. There’s no slip at the liquid-solid interfaces; 

iii. Shear stress is proportional to shear strain (the lubricant behaves in a 

Newtonian manner); 

iv. The pressure is constant through the thickness of the film, therefore the 

viscosity and the density do NOT deviate across the lubricant, so they can only 

alter in the plane of the film; 

v. The body forces are negligible; 

vi. The dimensions of the contact zone, including the contact length and the radii 

of the surfaces’ curvature, are much greater than the film thickness. 

As was mentioned in the section 2, based on the first and sixth assumptions, the 

geometry of any contact can be reduced to simple contact of a plane and a parabolic 

surface. A general control volume shown in Figure 2.11 is a subject to force due to the 

pressure and the shear stress acting on its boundary. The resultant force in the x 

direction is: 

𝐹𝑥 = ∆𝑧 (𝑝 −
∆𝑥

2

𝜕𝑝

𝜕𝑥
) − ∆𝑧 (𝑝 +

∆𝑥

2

𝜕𝑝

𝜕𝑥
) + ∆𝑥 (𝜏 −

∆𝑧

2

𝜕𝜏

𝜕𝑧
) − ∆𝑥 (𝜏 −

∆𝑧

2

𝜕𝜏

𝜕𝑧
) 
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Figure 2.11 – Force equilibrium for a finite liquid control volume 

 

Considering the conservation of the momentum and the absence of the inertial effect 

in the x direction: 

𝐹𝑥 = ∆𝑥∆𝑧 (
𝜕𝑝

𝜕𝑥
−

𝜕𝜏

𝜕𝑧
) = 0 

 

If dimensions of the control element tend to zero: 

 
zx

p








 
 (2.24) 

 

For a Newtonian fluid, considering the scale of the contact shear stress and shear strain 

can be related as 

 𝜏 = 𝜂𝛾̇ = 𝜂 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) = 𝜂

𝜕𝑢

𝜕𝑧
⁡ (2.25) 

 

as 
x

w

z

u









 from scale considerations. 

x 

z 

δz 

δx 

𝜏 +
𝑑𝜏

𝑑𝑧

𝛿𝑧

2
 

𝑝 +
𝑑𝑝

𝑑𝑥

𝛿𝑥

2
 

𝜏 −
𝑑𝜏

𝑑𝑧

𝛿𝑧

2
 

𝑝 −
𝑑𝑝

𝑑𝑥

𝛿𝑥

2
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Substituting equation (2.24) to (2.25) gives 

 
𝜕𝑝

𝜕𝑥
= 𝜂

𝜕2𝑢

𝜕𝑧2
 (2.26) 

 

Since the pressure is assumed to be constant across the film thickness, i.e. does not 

vary with respect to z, equation 2.26 can be integrated twice with respect to z gives the 

general solution of the velocity profile as: 

𝜕𝑢

𝜕𝑧
=

𝑧

𝜂

𝜕𝑝

𝜕𝑥
+ 𝐴 

 𝑢 =
𝑧2

2𝜂

𝜕𝑝

𝜕𝑥
+ 𝐴𝑧 + 𝐵 (2.27) 

 

It should be noted that the integration above only applies to the isothermal conditions. 

Taking into account temperature variation across the film thickness can make the 

derivation more intricate and include thermal effects. 

The particular solution of the velocity profile can be found by applying boundary 

conditions from the assumption that slip does not occur at the surfaces, which means 

that the lubricant in contact must travel at the same speed as the surfaces. 

𝑢 = 𝑢1, at 𝑧 =
ℎ

2
   and   𝑢 = 𝑢2, at 𝑧 = −

ℎ

2
 

So 

 𝑢1 =
ℎ2

8𝜂

𝜕𝑝

𝜕𝑥
+

𝐴ℎ

2
+ 𝐵 (2.28) 

 𝑢2 =
ℎ2

8𝜂

𝜕𝑝

𝜕𝑥
−

𝐴ℎ

2
+ 𝐵 (2.29) 
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Summation of equations 2.28 and 2.29 gives 

𝐵 =
𝑢1 + 𝑢2

2
−

ℎ2

8𝜂

𝜕𝑝

𝜕𝑥
 

 

Subtraction of equation 2.29 from 2.28 gives 

𝐴 =
𝑢1 − 𝑢2

ℎ
 

 

Substituting A and B at 2.27 

𝑢 =
𝑧2

2𝜂

𝜕𝑝

𝜕𝑥
+

𝑧(𝑢1 − 𝑢2)

ℎ
+

𝑢1 + 𝑢2

2
−

ℎ2

8𝜂

𝜕𝑝

𝜕𝑥
 

 ∴ 𝑢 =
4𝑧2−ℎ2

8𝜂

𝜕𝑝

𝜕𝑥
+

𝑧(𝑢1−𝑢2)

ℎ
+

𝑢1+𝑢2

2
 (2.30) 

 

It can be noted that the velocity profile incorporates two components:  

 The velocity caused by motion of the surfaces, also referred as the Couette flow 

after M.F.A. Couette (1858 – 1943): 

𝑢𝐶𝐹 =
𝑧(𝑢1 − 𝑢2)

ℎ
+

𝑢1 + 𝑢2

2
 

 

 The velocity caused by the pressure gradient, also referred as the Poiseuille 

flow after J.L.M. Poiseuille (1797 – 1869): 

𝑢𝑃𝐹 =
4𝑧2 − ℎ2

8𝜂

𝜕𝑝

𝜕𝑥
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The principle of conservation of mass for the fixed control volume of the fluid system 

says that the rate of the change of the mass of the fluid system must be identical to the 

sum of (i) the rate of the change of the mass in the fixed control volume and (ii) the 

rate at which the mass leaves  the fixed control volume. 

0 =
𝜕(∆𝑥𝜌ℎ)

𝜕𝑡
+ (𝑄 +

∆𝑥

2

𝜕𝑄

𝜕𝑥
) − (𝑄 −

∆𝑥

2

𝜕𝑄

𝜕𝑥
) 

 

where Q is the mass flowrate in the x direction per unit transverse width between the 

solid boundaries. 

Which leads to the following when Δx tends to zero: 

 
𝜕(𝜌ℎ)

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 0 (2.31) 

 

The value of the mass flowrate, Q, can be obtained by integration as 

 𝑄 = ∫ 𝜌𝑢(𝑧)𝑑𝑧
ℎ

2

−
ℎ

2

 (2.32) 

 

Substitution of equation (2.30) to (2.32) gives 

𝑄 = ∫ 𝜌 [
4𝑧2 − ℎ2

8𝜂

𝜕𝑝

𝜕𝑥
+

𝑧(𝑢1 − 𝑢2)

ℎ
+

𝑢1 + 𝑢2

2
] 𝑑𝑧

ℎ
2

−
ℎ
2

 

= 𝜌 [
4𝑧3 − 3ℎ2𝑧

24𝜂

𝜕𝑝

𝜕𝑥
+

𝑧2(𝑢1 − 𝑢2)

2ℎ
+

𝑧(𝑢1 + 𝑢2)

2
]
−
ℎ
2

ℎ
2

 

= 𝜌 [
ℎ3 − 3ℎ3

24𝜂

𝜕𝑝

𝜕𝑥
+

0 ∙ (𝑢1 − 𝑢2)

2ℎ
+

ℎ(𝑢1 + 𝑢2)

2
] 
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Leading to the result 

 𝑄 = 𝜌 [
ℎ(𝑢1+𝑢2)

2
−

ℎ3

12𝜂

𝜕𝑝

𝜕𝑥
] (2.33) 

 

Defining a mean velocity, 𝑢̅: 

 𝑢̅ =
𝑢1+𝑢2

2
 (2.34) 

 

Substitution of equation (2.34) to (2.33) gives 

 𝑄(𝑥, 𝑡) = 𝜌𝑢̅ℎ −
𝜌ℎ3

12𝜂

𝜕𝑝

𝜕𝑥
 (2.35) 

 

It can be noted that, as with the velocity profile, the mass flow incorporates the Couette 

flow and the Poiseuille flow: 

𝑄𝐶𝐹 = 𝜌𝑢̅ℎ 

𝑄𝑃𝐹 = −
𝜌ℎ3

12𝜂

𝜕𝑝

𝜕𝑥
 

 

Substitution of equation (2.35) to (2.31) gives: 

𝜕(𝜌ℎ)

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢̅ℎ −

𝜌ℎ3

12𝜂

𝜕𝑝

𝜕𝑥
) = 0 

 

Defining a flow factor σ as 

 𝜎 =
𝜌ℎ3

12𝜂
 (2.36a) 

 

The standard form of the Reynolds equation becomes 

 
𝜕

𝜕𝑥
(𝜎

𝜕𝑝

𝜕𝑥
) −

𝜕

𝜕𝑥
(𝜌𝑢̅ℎ) −

𝜕(𝜌ℎ)

𝜕𝑡
= 0 (2.36b) 
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2.8. The Eyring Rheological model 

As it was stated in the section 2.7, the Reynolds equation was derived for fluid that 

behaves in a Newtonian manner. This is not the case for the lubrication of gears due 

to the high sliding velocities and the high shear rates. Therefore, the model must be 

relaxed to include the impact of the Non-Newtonian behaviour. Currently, the most 

popular shear thinning  rheological model was developed by Eyring (1936), however, 

there are many shear thinning and limiting shear stress rheological models at our 

disposal. The examples of the latter one are the Bair and Winer (1979); The Lee and 

Hamrock (1990), Gecim and Winer (1981) etc. In 2005 C.N. Davis presented a 

comprehensive comparison of the characteristic behaviour of the Non-Newtonian 

functions based on the rheological models, which are in wide use. Drawing a 

conclusion of his work, those rheological models have similar formulation and show 

a good agreement of the calculation results, which differing only in the region of the 

boundaries and have a different tolerance for numerical singularities. 

All rheological theories relate shear stress and shear strain rate. The Eyring shear 

thinning model was used 

 𝛾̇ =
𝑑𝑢

𝑑𝑧
=

𝜏0

𝜂
𝑠𝑖𝑛ℎ (

𝜏

𝜏0
) (2.37) 

 

where τ0 is the Eyring shear stress. The value used in this thesis is 10 MPa. This 

representative value is commonly used in the field in the absence of accurate friction 

measurement (Spikes and Jie, 2014). 

Conry, Wang and Cusano (1987) integrated equation (2.24) based on the assumption 

that the pressure is constant through the thickness of the film, so 

 𝜏 = 𝜏𝑚 + 𝑧
𝑑𝑝

𝑑𝑥
 (2.38) 

 

where 𝜏𝑚 is a shear stress in the middle of the film thickness. 

 



2-25 
 

Substitution of (2.38) into (2.37) gives: 

𝛾̇ =
𝑑𝑢

𝑑𝑧
=

𝜏0

𝜂
𝑠𝑖𝑛ℎ (

𝜏𝑚 + 𝑧
𝑑𝑝
𝑑𝑥

𝜏0
) 

Which can be simplified by introducing: 

 Σ =
ℎ

2𝜏0

𝑑𝑝

𝑑𝑥
 (2.39a) 

 λ =
𝜏𝑚

𝜏0
 (2.39b) 

 

So 

 𝛾̇ =
𝑑𝑢

𝑑𝑧
=

𝜏0

𝜂
𝑠𝑖𝑛ℎ (𝜆 + 𝑧

2Σ

ℎ
) (2.40) 

 

The general velocity profile can be found by integration of equation (2.40) with respect 

to z as 

∫𝑑𝑢 = ∫
𝜏0

𝜂
𝑠𝑖𝑛ℎ (𝜆 + 𝑧

2Σ

ℎ
) 𝑑𝑧 

 𝑢 =
𝜏0ℎ

2𝜂Σ
𝑐𝑜𝑠ℎ (𝜆 + 𝑧

2Σ

ℎ
) + 𝐴 (2.41) 

 

The specific solution can be found by applying the boundary conditions: 

𝑢 = 𝑢1, at 𝑧 =
ℎ

2
 and 𝑢 = 𝑢2, at 𝑧 = −

ℎ

2
 

So for the upper surface velocity is 

 𝑢1 =
𝜏0ℎ

2𝜂Σ
𝑐𝑜𝑠ℎ (𝜆 +

ℎ

2

2Σ

ℎ
) + 𝐴 (2.42) 
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And for the lower surface velocity is 

 𝑢2 =
𝜏0ℎ

2𝜂Σ
𝑐𝑜𝑠ℎ (𝜆 −

ℎ

2

2Σ

ℎ
) + 𝐴 (2.43) 

 

Isolating A in equation (2.43): 

𝐴 = 𝑢2 −
𝜏0ℎ

2𝜂Σ
𝑐𝑜𝑠ℎ (𝜆 −

ℎ

2

2Σ

ℎ
) 

 

Substituting A into (2.41): 

 𝑢 = 𝑢2 +
𝜏0ℎ

2𝜂Σ
[𝑐𝑜𝑠ℎ (𝜆 + 𝑧

2Σ

ℎ
) − 𝑐𝑜𝑠ℎ(𝜆 − Σ)] (2.44) 

 

The instantaneous sliding velocity of the surfaces in the contact can be found as the 

difference of the velocities at the surfaces: 

𝑢𝑠 = 𝑢1 − 𝑢2 =
𝜏0ℎ

2𝜂Σ
𝑐𝑜𝑠ℎ(𝜆 + Σ) + 𝐴 −

𝜏0ℎ

2𝜂Σ
𝑐𝑜𝑠ℎ(𝜆 − Σ) − 𝐴 

=
𝜏0ℎ

2𝜂Σ
[𝑐𝑜𝑠ℎ(𝜆 + Σ) − 𝑐𝑜𝑠ℎ(𝜆 − Σ)] 

=
𝜏0ℎ

2𝜂Σ
[𝑐𝑜𝑠ℎ(𝜆)𝑐𝑜𝑠ℎ(Σ) + 𝑠𝑖𝑛ℎ(𝜆)𝑠𝑖𝑛ℎ(Σ) 

= −𝑐𝑜𝑠ℎ(𝜆)𝑐𝑜𝑠ℎ(Σ) + 𝑠𝑖𝑛ℎ(𝜆)𝑠𝑖𝑛ℎ(Σ)] 

 ∴ 𝑢𝑠 =
𝜏0ℎ

𝜂Σ
𝑠𝑖𝑛ℎ(𝜆)𝑠𝑖𝑛ℎ(Σ) (2.45) 

 

Isolating the term involving λ 

 𝑠𝑖𝑛ℎ(𝜆) =
𝜂𝑢𝑠

𝜏0ℎ

Σ

𝑠𝑖𝑛ℎ(Σ)
 (2.46) 
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Equation (2.32), which defines the mass flow, was manipulated using integration by 

parts by Greenwood (2000): 

𝑄(𝑥, 𝑡) = ∫ 𝜌𝑢(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

= ∫ 𝜌𝑢(𝑧)
𝑑𝑧

𝑑𝑧
𝑑𝑧

ℎ
2

−
ℎ
2

= [𝜌𝑢̅ℎ]
−
ℎ
2

ℎ
2 − ∫ 𝜌𝑧

𝑑𝑢

𝑑𝑧
𝑑𝑧

ℎ
2

−
ℎ
2

 

 

i.e. 

 𝑄(𝑥, 𝑡) = ⁡𝜌𝑢̅ℎ − ∫ 𝜌𝑧
𝑑𝑢

𝑑𝑧
𝑑𝑧

ℎ

2

−
ℎ

2

 (2.47) 

 

As explained in the Section 2.7 

 𝑄𝐶𝐹 = 𝜌𝑢̅ℎ (2.48) 

 𝑄𝑃𝐹 = −𝜌∫ 𝑧
𝑑𝑢

𝑑𝑧
𝑑𝑧

ℎ

2

−
ℎ

2

 (2.49) 

 

Substituting (2.39) into the mass flow term due to the Poiseuille flow (2.49) gives 

𝑄𝑃𝐹 = −
𝜌𝜏0

𝜂
∫ 𝑧𝑠𝑖𝑛ℎ (𝜆 + 𝑧

2Σ

ℎ
) 𝑑𝑧

ℎ
2

−
ℎ
2

 

 

Integrating by parts 

[
𝑢 = 𝑧 𝑑𝑢 = 𝑑𝑧

𝑑𝑣 = 𝑠𝑖𝑛ℎ (𝜆 + 𝑧
2Σ

ℎ
) 𝑑𝑧 𝑣 =

ℎ

2Σ
𝑐𝑜𝑠ℎ (𝜆 + 𝑧

2Σ

ℎ
)
] 

 

𝑄𝑃𝐹 = −
𝜌𝜏0

𝜂
[
ℎ

2Σ
[𝑧 ∙ 𝑐𝑜𝑠ℎ (𝜆 + 𝑧

2Σ

ℎ
)]

−
ℎ
2

ℎ
2

−
ℎ

2Σ
∫ 𝑐𝑜𝑠ℎ (𝜆 + 𝑧

2Σ

ℎ
) 𝑑𝑧

ℎ
2

−
ℎ
2

] 



2-28 
 

= −
𝜌ℎ𝜏0

2𝜂Σ
[[𝑧 ∙ 𝑐𝑜𝑠ℎ (𝜆 + 𝑧

2Σ

ℎ
)]

−
ℎ
2

ℎ
2

−
ℎ

2Σ
[𝑠𝑖𝑛ℎ (𝜆 + 𝑧

2Σ

ℎ
)]

−
ℎ
2

ℎ
2

] 

= −
𝜌ℎ2𝜏0

4𝜂Σ2
[Σ[𝑐𝑜𝑠ℎ(𝜆 + Σ) + 𝑐𝑜𝑠ℎ(𝜆 − Σ)] − [𝑠𝑖𝑛ℎ(𝜆 + Σ) − 𝑠𝑖𝑛ℎ(𝜆 − Σ)]] 

= −
𝜌ℎ2𝜏0

4𝜂Σ2
[2Σ𝑐𝑜𝑠ℎ(𝜆)𝑐𝑜𝑠ℎ(Σ) − 2𝑐𝑜𝑠ℎ(𝜆)𝑠𝑖𝑛ℎ(Σ)] 

 

 ∴ 𝑄𝑃𝐹 = −
𝜌𝜏0ℎ2𝑐𝑜𝑠ℎ(𝜆)

2Σ2𝜂
(Σ𝑐𝑜𝑠ℎ(Σ) − 𝑠𝑖𝑛ℎ(Σ)) (2.50) 

 

Expressing 𝜏0 from (2.39a) 

 𝜏0 =
ℎ

2Σ

𝑑𝑝

𝑑𝑥
 (2.51) 

 

Substituting (2.51) into (2.50) 

𝑄𝑃𝐹 = −
𝜌ℎ3𝑐𝑜𝑠ℎ(𝜆)

4Σ3𝜂

𝑑𝑝

𝑑𝑥
(Σ𝑐𝑜𝑠ℎ(Σ) − 𝑠𝑖𝑛ℎ(Σ)) 

 ∴ 𝑄𝑃𝐹 = −
𝜌ℎ3

12𝜂

𝑑𝑝

𝑑𝑥
[
3𝑐𝑜𝑠ℎ(𝜆)(Σ𝑐𝑜𝑠ℎ(Σ)−𝑠𝑖𝑛ℎ(Σ))

Σ3
]  (2.52) 

 

Equation (2.36b) has the same form as (2.52), so, the flow factor (2.36a) becomes 

 𝜎 =
𝜌ℎ3

12𝜂
𝑆 (2.53) 

Where Non-Newtonian correction to the viscosity is 

 𝑆 =
3𝑐𝑜𝑠ℎ(𝜆)(Σ𝑐𝑜𝑠ℎ(Σ)−𝑠𝑖𝑛ℎ(Σ))

Σ3
 (2.54) 
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Since 

𝑐𝑜𝑠ℎ2(𝛼) + 𝑠𝑖𝑛ℎ2(𝛼) = 1 

 

Substituting (2.46) into (2.54) gives 

 𝑆 =
3(Σ𝑐𝑜𝑠ℎ(Σ)−𝑠𝑖𝑛ℎ(Σ))

Σ3
√1 + (

𝜂𝑢𝑠

𝜏0ℎ

Σ

𝑠𝑖𝑛ℎ(Σ)
)
2

 (2.55) 

 

Therefore, an effective viscosity can be found as 

𝜂𝑒𝑓𝑓 =
𝜂

𝑆
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Chapter 3 

 

Numerical theory for 

the Finite EHL model 

 
 

3.1. Introduction 

The theory summarised in Chapter 2 was used to set up the EHL model. This chapter 

provides details on the numerical representation of that model, tools used to solve it, 

major numerical difficulties faced and a discussion of the results. The numerical 

solution of the EHL problem for spur gears was brought together by Davies (2005). 

That software supplies a robust implementation of the Non-Newtonian rheological line 

contact EHL problem to evaluate pressure distribution and film thickness between 

smooth or rough surfaces for the complete meshing cycle. Unfortunately, there were 

some limitations: the algorithm became unstable with a reduction of the λ ratio and it 

did not take into account a permanent change of the initial geometry that will occur 

through plastic deformation due to the excess pressure. 

 

3.2. Computational Mesh 

The load and the geometry of the contact varies over the meshing cycle. It means that 

the EHL analysis can be only formulated as a transient problem, which is a series of 

timesteps uniformly spaced by time intervals Δt. For spur gears, the general EHL 

formulation can be reduced to the one-dimensional line contact analysis (Holmes et 

al., 2003). The pressure distribution generated by a tooth pair is similar to that formed 

by two stationary parallel smooth solid cylinders in a dry contact, illustrated in 
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Figure 3.1, under the normal load. Hertz (1881) showed that contact width can be 

calculated as: 

 
'

8

 E 

' Rw
a


   (3.1) 

 

Figure 3.1 – Graphical representation of two stationary parallel smooth solid 

cylinders in a dry Hertzian contact 
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Where the equivalent elastic modulus, E’, that incorporates elastic properties of both 

solids in contact is defined as: 

 
2

2

2

1

2

1 11

'

2

E

v

E

v

 E





   

 

The pressure is distributed in a semi-elliptic manner: 

  
2

2

0 1
a

x
    pxp    

 

The maximum pressure, p0, can be found as: 

 
R 

 w E

a 

 w
p

 2

'''2
0    

 

The centre of contact is chosen as the origin and the area of interest is defined in terms 

of the contact length upstream and downstream of the contact point. In a steady load 

analysis for fixed radius rollers this results in a time independent geometry and it is 

usual to use the Hertz contact dimension as a scaling factor in defining the spatial 

computing mesh.  However, due to the variation of load, w’, over the meshing cycle 

the contact length, a, is not constant, and using it to scale the mesh would cause an 

inconsistency of mesh spacing from one timeframe to another. To avoid this, the tooth 

flanks are meshed with respect to the Hertzian contact length calculated for the 

maximum load. Therefore, the mesh spacing, Δx, can be defined in terms of the number 

of nodes per half-Hetzian maximum contact length, amax. 
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3.3. Numerical formulation of the elastic film thickness equation 

As shown in Chapter 2, the elastic film thickness equation is: 

 Cxxhxxh u  )( )()( )(   (3.2) 

 

and the relative elastic deflection term, )(x , can be evaluated as (Johnson, 1985): 

 Ddssxsp
E

x

b

a

  ln)(
'

4
)(


  (3.3) 

 

The kernel of the integral is singular at the point at which deflection is being calculated, 

i.e. at x=s. This can be overcome by taking limits on either side of the singular point. 

 Ddssxspdssxsp
E

x

b

x

x

a









 











 ln)(ln)(lim

'

4
)(

0
 (3.4) 

 

Numerically the relative elastic deflection can be expressed using a suitable 

quadrature: 

 



n

k

kiki pgx
1

)(  (3.5) 

where the weighting function gk-i depends on the type of approximation applied to 

evaluate pressure between the adjacent mesh nodes, for example, Hamrock and 

Dowson (1974). 

In 2000 Evans and Hughes devised an alternative differential formulation of the 

relative elastic deflection. It can be seen that the effect of the pressure at the point is 

more dependent on the slope of the deflection than on its value (Johnson, 1985). The 

advantage of this method is that pressure has an extremely localised effect on the 

second derivative of deflection which allows the elastic and fluid differential equations 

to be solved as a coupled pair. The quadrature formula of the ordinary differential 

equation obtained by differentiating equation (3.4) twice has weighting function that 

decays rapidly with increasing distance from the evaluation point as shown below. 
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Differentiating equation (3.4) with respect to x using the chain rule in the limits of 

integration gives: 














 







b

x

x

a

ds
sx

sp
xpds

sx

sp
xp

dx

xdE








 )(
ln)(

)(
ln)(lim

)(

4

'

0
 (3.6) 

 

The pressure terms can be expressed by using Taylor series expansion: 

  
 
n

n

n

n

dx

xpd

n
xpxp 








1 !

)(
)(


   

 

On taking the limit: 

   
0

!

)(

!
)()(lnlim

00
0

















 
 








 n

n

n

n

n

n

n

n

dx

xpd

ndx

xpd

n
xpxp





 

 

Therefore, equation (3.6) becomes: 

 












 







b

x

x

a

ds
sx

sp
ds

sx

sp

dx

xdE







 )()(
lim

)(

4

'

0
  

 

To obtain the second derivative, the process is repeated: 

 
 

 
 




















 







b

x

x

a

ds
sx

spxp
ds

sx

spxp

dx

xdE





 






2202

2 )()(
lim

)(

4

'
 (3.7) 

 

To solve equation (3.7) numerically, a quadrature mesh is applied. Let the mesh 

spacing be Δ with each interval centred at the point where the relative deflection is 

calculated as shown in Figure 3.2. 
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Figure 3.2 – The EHL mesh and the quadrature 

 

The relative deflection is only singular over the domain 









2
 ,

2


. Therefore, the 

equation (3.7) can be written in the form: 

   










b

x

x

a

ds
sx

sp
ds

sx

sp

dx

xdE

2

2

2

22

2 )()()(

4

'






 

 
 

 
 

 


























 











2

2

2

20

)()(
lim








 






x

x

x

x

ds
sx

spxp
ds

sx

spxp
 (3.8) 

 

Using the Taylor series expansion and considering the pressure distribution is 

continuous and differentiable over that range, it can be expressed in terms of z = s – x 

as: 

    
2

22 )(

2

)(

dx

xpdz

dx

xdp
zxpzxp   (3.9) 

 

x, s 

p 
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pi 

pi-1 
pi+1 
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By substitution of the equation (3.9) into the limit term of the equation (3.8) becomes: 

 
   















 











2

22

2

22

0

)(

2

)()(

2

)(

 lim dx

xpd

dx

xdp
xp

dx

xpd

dx

xdp
xp

  

 
   















 




2

2

2

22

2

2

2

22 )(

2

)()(

2

)( 







dz
z

dx

xpdz

dx

xdp
zxp

dz
z

dx

xpdz

dx

xdp
zxp

 

   
 









 


































2

2

2

22

22

2

2

2

0

)(

2

1)()(

2

)(

2
 lim dz

dx

xpd

z

dz

dx

xdp

z

dz
xp

dx

xpdxp

dx

xpdxp

  








  
2 2

2

22

2

)(

2

1)(













dz
dx

xpd

z

dz

dx

xdp

z

dz
xp  

 
     














































 

2
 

2

2 

2
 

   

2
   

2

2

0

)(

2

1
 ln

)(1)(
2 lim z

dx

xpd
z

dx

xdp

z
xp

dx

xpdxp

      





























 

2
 

2

2 

2

  

2
  

)(

2

1
ln

)(1
z

dx

xpd
z

dx

xdp

z
xp  

 
 
































 2

)(

2

12
ln

)(21)(
2 lim

2

2

2

2

0











 dx

xpd

dx

xdp
xp

dx

xpdxp
 

   































2

)(

2

12
ln

)(21
2

2 






 dx

xpd

dx

xdp
xp  

 
  



























 2

)(21
2

)(
2 lim

2

2

2

2

0







 dx

xpd
xp

dx

xpdxp
 

     










 2

2

2

2

2

2

0

)(

2

4)()(
22 lim

dx

xpdxp

dx

xpd

dx

xpdxpxp 





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 

 
2

2

02

2 )(

2

4
2 lim

)(

dx

xpdxp

dx

xpd 







  

 

 
2

2 )(

2

4

dx

xpdxp 




 

 

Therefore, equation (3.9) becomes: 

 
   

   























 




2

2

2

2

2

22

2

2

4)()(

'

4)(

dx

spdsp
ds

sx

sp
ds

sx

sp

Edx

xd
b

x

x

a











 (3.10) 

 

The integral terms of the equation (3.10) can be evaluated numerically by application 

of the quadrature defined earlier and shown in Figure 3.2. Let s–x = z, then new limits 

of integration are: 

as   xaz   

2


 xs  

22


 xxz  

2


 xs  

22


 xxz  

bs   xbz   

 

So 

 
       


















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
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xb

xa

b

x

x

a

dz
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xzp
dz

z

xzp
ds

sx

sp
ds

sx

sp

2

2

2
  

2

2

2

2

2

)()()()(









 

 

Evidently, z = 0 is the point where s = x. For a signed integer, i, z = iΔ is the centre of 

the ith interval from x. Thus  
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The pressure over domain      5.0,5.0  ii  can be approximated by a parabola: 
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Coefficients Ai, Bi and Ci can be evaluated from equation (3.12). As it can be seen in 

Figure 3.2, the pressure values at the nodes (i-1)Δ, iΔ and (i+1)Δ are pi-1, pi and pi+1 

respectively. Therefore 
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Substituting coefficients (3.14) into expression (3.13) gives: 
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Separation of pressure terms gives: 
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Introducing terms:  
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allows the equation (3.15) to be written as: 
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Parameters  
iF , iF  and  

iF  are singular at i = 0 and the values of these functions at 

i = 0 can be obtained from the limiting process used in developing equation (3.10). 

This shows that 
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The relative differential deflection for any general node of the Δ spaced mesh can thus 

be formulated as: 
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where the quadrature weighting function shown in Figure 3.3 is 
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This variation of fk-i with k-i is shown in Figure 3.3. 

 

 

Figure 3.3 – Normalized shape of the weighting function 

in the neighbourhood of the point of evaluation (i=0) 
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Differentiating equation (3.2) with respect to x twice gives: 
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So that 
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The relative differential deflection can be evaluated using the expression (3.19). The 

second order differentials of the profile roughness and the underformed geometry 

profiles can be obtained as follows: 
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If the surfaces in the contact are smooth, the profile roughness term can be omitted. If 

the simplification of the gear flank profile using the equivalent rollers method (Martin, 

1916) described in section 2.2 is used, the second order derivative of the undeformed 

geometry profile can be reduced to 1/R. 

As can be seen in Figure 3.3, the weighting function determines that the pressure 

distribution in the neighbourhood of the point of evaluation has a significant influence 

on the relative deflection. Furthermore, the influence factors decay rapidly as index k–

i increases, as can be seen in Figure 3.3, where, for example, the magnitude f5 is less 

than 1% of f0 and also the pressure at the mesh point has an opposite sign. It is therefore 

possible to reduce the bandwidth of equation (3.22) by taking the influential pressure 

terms to the left-hand side and evaluating the remaining terms on the right-hand side 

based on previous cycle pressures. 
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The equation then becomes: 
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where nc is the bandwidth of the main matrix. 

 

3.4. Numerical formulation of Reynolds hydrodynamic equation 

As shown in Chapter 2, Reynolds hydrodynamic equation (2.36b) is: 
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where the flow factor, σ, is 

 S
h




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 12

  
    

3

  (3.25) 

 

The flow factor for the isothermal formulation is a function of the film thickness and 

pressure, which includes the density and the viscosity terms. If the thermal conditions 

are taken into the account, the density and the viscosity become the functions of 

pressure and temperature. To accommodate the Non-Newtonian behaviour the S term 

was introduced. As was stated in the section 2.8, S is a function of the sliding velocity 

and the pressure gradient, as well as film thickness and viscosity. 

Note that the flow factor, σ, is a function of pressure and, therefore, is a function of 

position, x, which makes partial differential equation (3.24) non-linear, but it can be 

linearized by the use of an iterative technique: values of the flow factors are calculated 

for a current candidate pressure distribution to find a new candidate pressure 

distribution and film thickness. Then the flow factors are then recalculated for the new 
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values of the pressure distribution and the process is repeated until the overall solution 

satisfies the convergence criterion. This process requires some under-relaxation in 

updating the candidate pressure distribution. 

Reynolds hydrodynamic equation can be formulated numerically by using finite 

difference and finite element methods. According to Elcoate (1996) the finite central 

difference and finite element models are stable and enable a fast convergence for both 

the smooth surface analysis and the rough surface analysis. 

 

3.5. Finite central difference formulation 

By the central difference formulation for the node i of the mesh shown in Figure 3.2, 

the first term equation (3.24) can be expressed as: 
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Taking into account that the instantaneous velocity at the centre of the film, u , is 

constant for the whole mesh and applying the chain rule, the second term of the 

equation (3.24) can be found as: 
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Therefore, the equation (3.24) can be written as: 
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where σI and σII are the values of the flow factor at the midpoints between mesh 

positions i – 1, i and i + 1, as shown in Figure 3.2. 

The Crank-Nicolson (1947) method is used to evaluate the time dependent term of the 

equation (3.24). The implicit numerical method is a combination of the explicit 

forward Euler method and the implicit backward Euler method: it is based on the 

trapezoidal rule, giving second-order convergence in time. The Crank-Nicolson 

method is unconditionally stable (Thomas, 1995). Equation (3.27), expressed in this 

way, becomes:  
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where k and k+1 are successive timesteps (and not powers). 

By moving all k terms to the left-hand side and all k+1 terms to the right-hand side: 
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 (3.29) 

 

3.6. Finite element formulation 

The finite element method is a numerical technique for solving partial differential 

equations by discretising these equations in their space dimensions into finite number 

of suitably shaped elements. These elements are interconnected and subdivided by a 

finite number of Gauss points. The Galerkin Weighted Residual, GWR, method was 

used for the Reynolds hydrodynamic equation formulation: 
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where Ni is the shape function that interpolates tabulated independent variable, which 

is pressure, and a set of dependant variable, such as viscosity, density and film 

thickness. 

 

The equation (3.30) can be reformulated by applying the chain rule to the Couette flow 

term and by integrating by parts the Poiseuille term: 
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    are the element boundary conditions. They are equal and 

opposite at the common nodes of adjacent elements; therefore, they are cancelled out 
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when the full problem matrix is assembled and can be ignored in the model 

formulation. 

At either end of the mesh, the pressure gradient is zero. At the inlet zone it can be 

achieved by setting pressure at the first two mesh nodes equal to zero, but the position 

of the downstream boundary is initially unknown. It can be established automatically 

during the iterative solving process by setting the negative pressure values at the outlet 

zone, which correspond to cavitated elements, to zero. 

The Crank-Nicolson method is used to evaluate the time dependent term of the 

equation (3.31): 
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If it is assumed, that the tabulated function varying linearly inside each element, then: 
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If the Lagrange interpolation functions are formulated over element length [-0.5dx, 

0.5dx], as shown in Figure 3.4, the shape functions become: 
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Figure 3.4 – Shape functions of a linear finite element 

 

The first derivatives of the shape functions are: 
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In case of a quadratic approximation, the tabulated function is: 
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There are three unknown terms a0, a1 and a2, so, a system of three equations is 

needed: 
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The Lagrange interpolation functions defined at [-dx, dx], shown in Figure 3.5: 
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The first derivatives of the shape functions are: 
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The integral terms of the equation (3.31) can be evaluated on an elemental level by 

application of the Gauss-Legendre quadrature:  
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where el is the element length; ngp is a number of integration Gauss points; xi and ci 

are positions and weights of the quadrature points respectively, shown for two, three 

and four point quadrature in Table 3.1. 
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Figure 3.5 – Shape functions of a quadratic finite element 

 

Table 3.1 – Gauss-Legendre integration points 
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Table 3.1 – Gauss-Legendre integration points (continued) 

Number of points Position (xi) Weight (ci) 
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The average terms evaluated at the Gauss points have the same format, and they can 

be summarized in a single equation as 
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So, finally, the equation (3.31) can be written as 
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3.7. Matrix formulation and the solving process 

The Reynolds (3.29) or (3.33) and elastic film thickness (3.23) equations are 

formulated to produce a banded matrix and can be expressed as: 
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 (3.34) 

 

where Ak and Bk are the pressure and film thickness coefficients of the Reynolds 

equation respectively; Ri incorporates the values from the previous timestep solution; 

Ck and Dk are the pressure and film thickness coefficients of the elastic deflection 

equation; Ei determines the contribution of the pressure distribution over the problem 

formulation bandwidth, nc, excluding the i mesh node. 

Based on the operating load, the undeformed geometry of the contact, the mechanical 

properties of the flank material and the lubricant, the initial candidate pressure 

distribution and film thickness are set as for the Hertzian contact, i.e. the parabolic 

pressure function as in Figure 3.1 and the flat gap between the surfaces in the Hertz 

contact zone. Therefore, the density and the viscosity at the mesh nodes can be 

evaluated, subsequently, allowing the coefficients of the Reynolds equation, Ak and Bk, 

to be obtained and to make the system linear. The coefficients Ck and Dk do not depend 

on the pressure and the film thickness values. 

The converged timestep solution can be obtained using either the Gaussian elimination 

and back substitution or the iterative Gauss-Seidel methods. The Gaussian elimination 

algorithm for a banded matrix is relatively simple and a ready-to-use code is available, 

for example, Press et al. (1992). It obtains the candidate solution in two sweeps: the 

matrix modification and backsubstitution. However, it cannot reformulate the problem 

to accommodate the occurrence of the dry contact and produces a negative film 

thickness instead, which must be addressed elsewhere and then, after the reformulation 

of the problem by setting Ak and Bk to zero, the system of equations (3.34) must be 

resolved again. 
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The Gauss-Seidel iterative algorithms, including the black-red one, involve a 

modification of the system of equations (3.34) by moving all terms except the diagonal 

ones for the pressure and the film thickness to the right-hand side as 
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These equations are solved as a simultaneous pair of equations to give new values for 

pi and hi 

 

 
iiii

iiii

i
CBDA

EBRD
p

  

ˆ ˆ 
 new




  

iiii

iiii
i

CBDA

RCEA
h

  

ˆ ˆ 
 new




   (3.36) 

 

In case of the occurrence of the dry contact, i.e. a negative value of the film thickness, 

there is no fluid to separate the surfaces, hence, Reynolds equation cannot be applied 

and the pressure is governed by the elastic deflection formula. The film thickness must 

be set to zero and the candidate solution is 
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The iterative process is recursive and continues until the mean change of the candidate 

solution is smaller than the convergence criterion, which is set to 0.5% of the mean 

value of the solution (p or h) throughout this thesis.  

The initial solution values are relaxed towards the new results produced by the 

elimination or converged by the iterative method and used to update the coefficients 

of equation (3.34). The process is repeated until the converged solution for the current 

timestep is obtained. The flow-chart of the EHL analysis is presented in Figure 5.5. 
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Chapter 4 

 

Elastic stress evaluation 

and fatigue life expectancy analysis 

 
 

4.1. Introduction 

The results of the EHL analysis include tabulated functions of normal and tangential 

loads at the specified timesteps of the meshing cycle. This chapter describes the 

method to evaluate the elastic stresses in the gear flanks in the contact; provides some 

verification of the accuracy of this method; explains the effective method developed 

to sort and store the stress history as well as the output file structure; briefly chronicles 

the timeline of the fatigue study; spells out the nomenclature and the main definitions 

of the fatigue analysis; tells about the fatigue-life prediction methods used. 

 

4.2. Elastic stress evaluation 

The stress analysis of the EHL contact of two rough surfaces is a complex problem, 

which can only be solved using numerical methods. However, the mathematical 

formulation is based on the traditional established theory of elasticity. 

Chapter 4 of Theory of Elasticity by Timoshenko & Goodier (1951) presents a 

derivation of the two-dimensional elastic equation in polar coordinates. It shows that 

the stress components that satisfy the equilibrium equations are: 



4-2 
 

 

































































 

 1

 

 

 

 

 

 1

 

 1

2

2

2

2

2

rr

r

rrr

r

r

  (4.1) 

 

where ϕ(r,θ) is the stress function. 

Flamant (1892) showed that in case of a concentrated nodal load P in a direction 

normal to the surface of a semi-infinite body, as shown in Figure 4.1, the stress 

function is  

      sin      , rAr    (4.2) 

where A is an arbitrary constant. 

By substitution of the equation (4.2) into the equations (4.1) they become: 
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The angle θ varies from 
2


  at the surface to the left of the line of action through 

2


 

at the surface to the right of the point of application. The system is in a state of 

equilibrium and there is only one non-zero stress component, so that: 
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Figure 4.1 – Stress components in Cartesian and polar coordinate systems 

 

The stress distribution is axisymmetric about the line of action of p, and σr is defined 

by equation (4.3), therefore 
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The directional stress components are obtained from the radial stress distribution 
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As can be seen in Fig. 4.1 
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A concentrated tangential load Q is argued by Johnson (1985) to produce a radial stress 

similar to a concentrated normal load P but revolved by 90°. 
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Since it was revolved by 90°, the directional components are 
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As presented by Johnson (1985), for example, a general surface load distribution can 

be approximated by a set of concentrated normal p(s) and tangential q(s) forces on an 

finite elemental area of width ds, as shown in Figure 4.2, therefore, equations (4.6) and 

(4.7) can be used to evaluate the stress components at any point of the half-space by 

replacing x by (x–s) and integrating them over the loaded strip (–b < x < a). 
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Figure 4.2 – For evaluation of stress components due to a load  

distributed over interval (–b, a) 

 

The EHL analysis explained in Chapter 3 provides the tabulated normal and tangential 

tractions evaluated on the EHL mesh, as shown schematically in Figure 4.3. The load 

can be approximated to a set of loads uniformly distributed over elemental areas Δ. 

According to the superposition principle the total stress at any point of the half-space 
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Figure 4.3 – Approximation of loading conditions 
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These expressions give the weighting functions for the element of surface loading at 

the origin. There are four types of integral to evaluate, which can be denoted c1, c1, c3, 

c4. 
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The stress components at point (x, z) are given by 
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By the principle of superimposition, if the load is composed of a series of such constant 

pressure, constant shear stress blocks, (p0, q0), (p1, q1), … , (pn-1, qn-1), as in Figure 4.4, 

the stress at general point A is given by 
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where xi is the coordinate at the centre of the ith loading block. 

To evaluate the weighting functions c1, c1, c3 and c4 it is convenient to let ix  , 

z  and s . 
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Figure 4.4 – Approximation of loading conditions 
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Therefore, the weighting functions are 
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They can be evaluated by substitution u = i – κ, and then dκ = –du. The limits of 

integration are reversed due to negative sign of du. According to Brychinov, Marichev 

and Prudnikov (1989), the integrals of the functions (4.13) are 
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As can be seen in Figure 4.5 
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Figure 4.5 – Approximation of loading conditions 
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The stress components defined in the equation (4.12) can be evaluated by applying a 

Discrete Convolution and Fast Fourier Transform (DC-FFT) method for contact 

analysis, developed by Liu, Wang and Liu (2000). The algorithm steps include the 

following: 

Notation: a vector   Niv        has N entries and its index , i, varies between 0 and N-1. 

1. Calculate the influence coefficients (4.16),   
N

ic ,1 ,   
N

ic ,2 ,   
N

ic ,3 , 

  
N

ic ,4 . Note that the influence coefficients are a function of the position at 

which the stress components are being evaluated, therefore they are constant for 

the static mesh. 

2. The EHL normal and tangential load domain is from 0 through N–1, where surface 

tractions,   
Nip  and   

N
iq  are applied. The load vectors must be extended from 

N to 2N, by zero padding over i   [N, 2N-1] and the influence coefficients must 

be mirrored about index N, where the value must be set to 0, in order to convert 

linear convolution into the cyclic one (Press et al. 1992). Note that c1 and c2 are 

even functions and c3 and c4 are odd. 

3. Apply FFT of discretely sampled data (Press et al. 1992) to   
N

ic
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4. Calculate a temporal frequency series   
Nxx 2

, ,   
Nzz 2

,  and 

  
Nxz 2

,  by the element-by-element multiplication of complex numbers 

based on the equations (4.11) 
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 (4.17) 

5. Apply IFFT to the temporal frequencies   
Nxx 2

, ,   
Nzz 2

,  and 

  
Nxz 2

,  

6. Discard the spoiled terms i  [N, 2N-1] and divide the rest of them by 2π to obtain 

stress components σx, σz and τxz 
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4.3. Verifying the accuracy of the elastic stress calculations 

To check the accuracy of the DC-FFT method, the two-dimensional contact of 

cylindrical bodies, as in Figure 3.1, was selected due to availability of analytical 

solutions. McEwen (1949) expressed the stress components at a general point (x,z)  
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 (4.18) 

where 
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 (4.19) 

The signs of n and m are the same as the signs of x and z respectively. 

The results of DC-FFT calculations are presented as two-dimensional filled contour 

plots in Figures 4.6 through 4.8 with the results of the analytical solution (4.17) 

superimposed on top as solid black iso-lines. The example illustrated has p0 = 0.8 MPa. 

The numerical errors plotted in Figure 4.9 are of the same format  

 %  100   



s

Ss
sError  (4.20) 

where s is appropriate stress component evaluated by using analytical equations (4.18) 

and S is the same stress component calculated by application of the DC-FFT method. 
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Figure 4.6 – Contact of cylinders: horizontal stress component, contour plot of σx / 105 Pa 
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Figure 4.7 – Contact of cylinders: vertical stress component, contour plot of σz / 105 Pa 
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Figure 4.8– Contact of cylinders: shear stress component, contour plot of τxz / 105 Pa 
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Figure 4.9 – Numerical error (%): (a) σx , (b) σz, (c) τxz  
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The numerical error does not exceed 0.5% for the vast majority of the mesh nodes with 

no more than 1.4% and 5% difference at the zones characterized by a high pressure 

gradient and pressure gradient discontinuity at x = ±a for σx and τxz respectively. The 

numerical error in evaluating σy at the inlet and outlet zones at the close proximity of 

the surface can reach up to 200% for the length up to three half-Hetzian contact widths 

and rises rapidly with the increase of distance from the centre of the contact. This is 

because of the cyclic loading that is actually being applied to the surface and can be 

reduced by adding zero padding. However, the values of stress components at those 

zones do not exceed 0.001% of p0, therefore, these differences are insignificant for 

evaluating the fatigue damage. 

From equations 4.6 and 4.7 it can be seen that stress components σx and τxz in the case 

of load directed normally to the surface are of the same form as τxz and σz in case of 

load directed tangentially to the surface respectively. Therefore, if the tangential 

traction is set in the form of the Hertzian stress distribution 
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 (4.21) 

the stress components σz and τxz can be evaluated by applying McEwen’s (1949) 

solution 
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 (4.22) 

 

The form of σx component in equation 4.7 is significantly different to all of the 

equations 4.6, so that McEwen’s (1949) solution cannot be applied. Nevertheless, from 

equation (4.8) if there is no normal load   xcqx     , where c(x,z) is a weighting 

function, which is defined for constant load across finite element by equation (4.16d) 

or, according to Johnson (1985)  
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Hence, σx can be approximated by the summation of the products of the load by 

weighting function at all mesh nodes. 

   
 


N

i

N

j

jix zixcqzx
0 0

),(,  (4.24) 

where N is the number of mesh intervals. 

The stress components due to the tangential load defined by equation (4.21) are plotted 

in Figures 4.10 through 4.12. The two-dimensional filled contours present the results 

of the DC-FFT calculations and the superimposed iso-lines show the results of the 

analytical solution (4.22) for σz and τxz and the numerical integration (4.24) using 

Johnson’s (1985) weighting function (4.23) for σx. The numerical errors in Figure 4.13 

are calculated by using equation (4.20). 

The numerical error can be only evaluated for σz and τxz due to unavailability of an 

analytical solution for σx. It is under 0.5% for most mesh nodes reaching 3.8% and 

1.4% for σz and τxz respectively at the nodes characterized by a rapid change of 

tangential traction. 

In the case of σx, the results of two numerical calculations are compared, therefore, 

both result sets incorporate a numerical error. However, the difference of the results 

does not exceed 0.5% for stresses above 20% of maximum stress values, increasing up 

to 4% for stresses 10-20% of maximum stress values and reaching 9% at the zone 

characterized by the low stress values and the change of the sign..
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Figure 4.10 – Hertzian distribution of the tangential traction: horizontal stress component, contour plot of σx / 106 Pa

z/
a
 

x/a 



4-21 
 

 

Figure 4.11 – Hertzian distribution of the tangential traction: vertical stress component, contour plot of σz / 106 Pa  
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Figure 4.12 – Hertzian distribution of the tangential traction: shear stress, contour plot of τxz / 105 Pa  
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Figure 4.13 – Numerical error (%): (a) σx , (b) σz, (c) τxz  
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Unfortunately, there is no analytical solution for more complex problems, so, it is not 

possible to evaluate the numerical error, but it is feasible to check the stress patterns 

along with the pressure and tangential traction distributions with rough surfaces 

arrangement as shown in Figures 4.14 through 4.16. The normal stresses are primarily 

driven by normal load, therefore, the σx and σz evaluated in the EHL mesh were plotted 

against the EHL pressure distribution shown in blue. It can be seen that peaks of 

pressure correspond to high stress values at the surface, which gradually reduce further 

down from the surface and the lower pressure zones cause lower stress level. The 

magnitude of the stress at the surface agrees with the magnitude of the pressure 

distribution and the stress pattern can be described as the Hertzian stress distribution 

as in Figures 4.6 and 4.7 with severe numerical noise at the surface and near subsurface 

due to the hydrodynamic pressure caused by the contact kinematics and the 

incorporated roughness. The gap between the surfaces is plotted in green. 

The shear stress τxz at the surface and near subsurface is heavily influenced by the 

tangential traction but its impact gradually reduces with the increase of the depth where 

the shear stress is dominated by the normal load. In Figure 4.16 the tangential load is 

plotted in blue and its pattern shows a good agreement with the shear stress pattern at 

the surface and near subsurface and further down from the surface it tends to the 

Hertzian stress distribution as in Figure 4.8. 

From the reasoning above, it can be concluded that the DC-FFT method provides a 

robust tool to evaluate stress components due to the normal and tangential load 

provided. 
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Figure 4.14 – Contact of rough surfaces: contour of horizontal stress component σx / GPa 

plotted against EHL pressure distribution and film thickness 
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Figure 4.15 – Contact of rough surfaces: contour of horizontal stress component σz / GPa 

plotted against EHL pressure distribution and film thickness 
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Figure 4.16 – Contact of rough surfaces: contour of horizontal stress component τxz / 108 Pa 

plotted against EHL tangential traction and film thickness 
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4.4. Storing stress history 

The stress components in the previous section are evaluated in the same EHL mesh, 

shown in red in Figure 4.16, as for the pressure distribution and the film thickness. 

This is defined relative to the centre of the contact with its origin at the contact point. 

Consequently, the EHL mesh moves non-uniformly along the gear flank during the 

meshing cycle. 

For the fatigue analysis the stress history must be collected for each mesh point of the 

gear flank. Therefore, the stress components must be interpolated to the gear flank 

mesh. The stress history mesh is set up at the first timestep for which the stress 

evaluation function is called. It is equally spaced in direction x as illustrated in Figure 

4.16 along the gear flank surface. The spacing in the direction z, normal to the surface 

and directed into the material can be specified in a general way and it is convenient to 

adopt a non-uniform mesh to resolve rapid change in stress in the near surface material 

efficiently. 

The fatigue analysis is based on the stress history at the point of interest and is not 

influenced by stresses at any other point, so, it is reasonable to store stress histories as 

a series of files. Each of these files contains the stress history of the nodes on a vertical 

line of the grid shown in grey in Figure 4.16 as it progresses through the EHL mesh 

associated with the centre of the contact zone. The position of the EHL mesh and 

corresponding flank material is shown for four timesteps in the gear meshing cycle. 

The file structure was developed to reduce the amount of data to be stored and system 

requirements for the hardware by excluding repeating patterns and storing them 

separately as well as sorting data in the most convenient manner to accommodate the 

fatigue analysis calculations. The file name is the six-digit number, which identifies 

the column of the material of the gear flank mesh. 
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Figure 4.16 – Schematic illustration of the gear flank mesh 

with the location of the EHL mesh and corresponding 

flank material shown in red at different timesteps 

 

The structure of these material column stress history files is specified in Table 4.1. The 

first line contains three numbers which are: 

1. The number of stress evaluation nodes normal to the surface, numZ; 

2. The spacing of the nodes parallel to the surface, Δx, in meters; 

3. The number of nodes in dimension amax parallel to the surface, ninb. 

Those values must not vary within the dataset of the stress history. They are set by the 

first file of the dataset, then they are only used to ensure that the data is not corrupted. 

The subsequent lines give the stress components, σxx, σzz and τxz, evaluated in Pa at the 

node spacing specified. 

An example of the stress history for the column of the gear flank material is plotted at 

the surface and subsurface at four depths in Figure 4.17. The first timestep that the 

column entered the EHL mesh is defined as 0. It is approaching the contact area for 

about 1600 timesteps and leaving it after 2600 timesteps. The stress levels tend to zero 

asymptotically as the distance of the column from the contact zone increases. The 

highest values of stresses correspond to the timesteps spent in the contact zone as 

expected. 

z 

x 

Length of the gear flank 

Length of the EHL mesh 

1 2 3 4 5 6 7 n 
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Table 4.1 – Structure of files holding stress history 
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Figure 4.17 – Plotted examples of stress history 
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4.5. Fatigue of Materials: definition and brief history 

The fatigue failure can be defined as the tendency of a material to fracture by means 

of progressive brittle cracking under repeated alternating or cyclic stresses of an 

intensity considerably below the normal strength. This definition excludes the 

phenomenon of static fatigue, which is used to describe stress corrosion cracking. 

According to Schultz (1996), the history of fatigue begins with Albert (1837) who 

published the first fatigue test results known, investigating a failure of the conveyor 

chains used in the Clausthal mines. It started an international discussion across the UK, 

Germany and France mainly concentrating on transport accidents, involving trains and 

horse-drawn coaches. In 1860s and 1870s the topic was dominated by Wohler (1858, 

1860, 1863, 1866, 1867, 1870, 1870a). In the UK, Fairbairn (1864) ran systematic 

fatigue testing. Ewing and Humfrey (1903) published the first metallurgical 

description of the fatigue process. 

From the beginning of the WWI and until the end of the WWII the scientific interest 

in fatigue grew and researchers from all over the world became interested in the 

subject. The first books on fatigue were published by Gough (1927) in the UK, by 

Moore and Kommers (1927) in the USA, by Cazaud (1937) in France and by Serensen 

(1937) in Russia. The damage accumulation hypotheses for fatigue life prediction 

under variable loading amplitudes were published by Palmgren (1924), Langer (1937), 

Serensen (1940) and Miner (1945). But the most important development was a 

proposal by Basquin (1910) to represent the Wohler curves so as to define the finite 

life region in the form of a plot of stress against fatigue life on logarithmic axes, which 

is still in use and is often referred to as an S-N curve. Another important evolution of 

the fatigue theory of the time was popularisation of Palmgren’s (1924) linear damage 

hypothesis by Miner (1945) which provided a practical method to predict a fatigue life 

taking accumulated damage into account. 

After three fatal crashes of the world’s first jetliner, the de Havilland DH 106 Comet, 

in 1953 and 1954 which caused 93 fatalities, the importance of including fatigue and 

stress concentration in the structural analysis became apparent. Since then the theory 

of fatigue has become a vital part of engineering and a variety of different fatigue 

related topics were investigated. 



4-33 
 

4.6. Fatigue of Materials: basic terms and nomenclature 

The basic factors causing fatigue failure are a maximum tensile stress of sufficiently 

high value, a large amount of variation or fluctuation in the applied stress, and a 

sufficiently large number of cycles of the applied stress. Additional factors, such as 

stress concentration, corrosion, temperature, overload, metal structure, residual and 

combined stress, can expedite the failure. 

The study of cyclic behaviour is based on the total-life approach, which includes stress-

life and strain-life, and the damage-tolerant approach, which concentrates on the 

fracture mechanics and fatigue crack growth. The stress-life approach to fatigue was 

first introduced in 1860s by Wohler as a concept of an ‘endurance limit’, which 

specifies the applied stress amplitude below which a nominally defect-free material is 

expected to have an infinite fatigue life. This empirical method has found widespread 

use in fatigue analysis, mostly in applications where low-amplitude cyclic stress 

induce primarily elastic deformation in a component which is designed for long life, 

i.e. in the so called high-cycle fatigue (HCF) applications. When considerable plastic 

deformation occurs during cyclic loading as, for example, a consequence of high stress 

amplitude or stress concentrations, the fatigue life is significantly shortened. This calls 

for the so-called low-cycle fatigue (LCF) approach.  

The EHL analysis presented in Chapter 3 does not include any procedure to 

accommodate plastic behaviour of the gear flanks as well as any indicators of the 

cracks on the surfaces. It narrows down the useful fatigue studies to the HCF approach. 

As mentioned previously, the HCF models are empirical, i.e. they are based on 

statistically processed results of a series of tests. The test methods and the appropriate 

processing of the results is covered in detail in BS ISO 1143:2010, BS 3518-3:1963, 

BS ISO 12107:2003 or ASTM International Standards E3, E466-E468, E606, E739, 

E1012 and E1823. The combination of the results for several specimens are usually 

provided as a so-called S-N curve, a log-log plot of stresses, S, against the number of 

cycles to failure, N. Because the S-N fatigue data is normally scattered, an S-N curve 

represents the average probability of failure. The presentation of results is defined by 

BS 3518-1:1993 as well as symbols, terms and definitions presented in Figures 4.18-

4.22 and Tables 4.2-4.3. 
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Table 4.2 – Symbols, terms and definitions relating to stress controlled testing 

 

Symbol Term Definition 

 ,  

 , 

S 

Stress 

The force applied divided by the original cross-

sectional area; tensile stress is considered positive and 

compressive stress negative 

max  

max  
Maximum stress The highest algebraic value of stress in the stress cycle 

min  

min  
Minimum stress The lowest algebraic value of stress in the stress cycle 

m  

m  
Mean stress 

Half of the algebraic sum of the maximum and 

minimum stresses 

a  

a  
Stress amplitude 

Half of the algebraic difference between the maximum 

and minimum stresses 

  

  
Range of stresses 

The algebraic difference between the maximum and 

minimum stresses 

R Stress ratio 
The algebraic ratio of the minimum stress to the 

maximum stress in one cycle 

n 
Number of stress 

cycles 
The number of cycles applied 

f 
Frequency of 

cycles 
The number of cycles applied per second 

N or Nf 
Endurance or 

fatigue life 

The number of stress cycles to failure. 
NOTE This is generally stated as decimal fractions or multiples of 

106 

N  

N  

Fatigue strength 

at N cycles 

The value of the stress amplitude at a stated stress ratio 

under which the test piece would have a life of at least 

N cycles with a stated probability. 
NOTE If no probability is stated 50 % is implied. If no stress ratio 

is stated a value of – 1 is implied 

D  

D  
Fatigue limit 

The value of the stress amplitude below which the test 

piece would be expected to endure an infinite number 

of stress cycles with a stated probability 
NOTE Certain materials do not show a fatigue limit. Others only 

show a fatigue limit in certain environments 

af  
Fatigue limits 

For fully reversed bending test 

af  For fully reversed pure torsion test 

u  
Ultimate tensile 

strength 
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Figure 4.18 – Fatigue stress cycle (BS 3518-1:1993) 

 

 

Figure 4.19 – Types of stress cycle with algebraic notation (BS 3518-1:1993) 
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Table 4.3 – Symbols, terms and definitions relating to strain controlled testing 

 

Symbol Term Definition 

ε,  

γ 
Strain 

The extension of the gauge length divided by the original 

gauge length. It is taken to be positive when the gauge 

length increases in length and negative when it contracts 

εmax,  

γmax 
Maximum strain The highest algebraic value of strain in the strain cycle 

εmin,  

γmin 
Minimum strain The lowest algebraic value of strain in the strain cycle 

εm,  

γm 
Mean strain 

One-half the algebraic sum of the maximum and 

minimum strain 

Δεt,  

Δγt 

Total strain 

range 

The algebraic difference between the maximum and 

minimum strain in one strain cycle 

Δεp,  

Δγp 

Plastic strain 

range 

The width of the hysteresis loop of stress plotted against 

strain, determined at the mean stress 

Δεe,  

Δγe 

Elastic strain 

range 

The difference between the total strain range and the 

plastic strain range 

εa  

γa 
Strain amplitude Half the total strain range 

0.5Δεp,  

0.5Δγp 

Plastic strain 

amplitude 
Half the plastic strain range 

0.5Δεe,  

0.5Δγe 

Elastic strain 

amplitude 
Half the elastic strain range 

2Nf 
Fatigue life in 

reversals 
The number of reversals, or half cycles, to failure 

b 
Fatigue strength 

exponent 

The slope of the “elastic” line obtained by plotting the 

logarithm of the elastic strain amplitude at half-life as the 

ordinate and the logarithm of the number of reversals to 

failure as the abscissa, the mean stress being zero as in 

Figure 4.21 

σ'f, 
τ'f 

Fatigue strength 

coefficient 

The stress amplitude corresponding to a life of one 

reversal, obtained by extrapolating the “elastic” line  

c 
Fatigue ductility 

exponent 

The slope of the “plastic” line obtained by plotting the 

logarithm of the plastic strain amplitude at half-life as the 

ordinate and the logarithm of the number of reversals to 

failure as the abscissa, the mean stress being zero as in 

Figure 4.21 

ε'f, 
γ'f 

Fatigue ductility 

coefficient 

The plastic strain amplitude corresponding to a life of one 

reversal obtained by extrapolating the “plastic” line as  

n' 

Cyclic 

hardening 

exponent 

The slope of the line obtained by plotting the logarithm 

of the stress amplitude at half-life as the ordinate and the 

logarithm of the half-life plastic strain amplitude as the 

abscissa, the mean stress being zero as in Figure 4.22 

K' 

Cyclic 

hardening 

coefficient 

The stress amplitude corresponding to a plastic strain 

amplitude of unity; obtained by plotting the logarithm of 

the stress amplitude at half-life as the ordinate and the 

logarithm of the half-life plastic strain amplitude as the 

abscissa, the mean stress being zero as in Figure 4.22 
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Figure 4.20 – Stress-strain hysteresis loop (BS 3518-1:1993) 

 

Figure 4.21 – Strain amplitude versus reversals to fatigue (BS 3518-1:1993) 



4-38 
 

To evaluate fatigue strength and ductility exponents and coefficients, b, c, σ'f, ε'f, 

BS3518-1:1993 directs that the results of fully reversed loading strain controlled tests 

that comply with BS 7270:2006 are used. An accepted and convenient scheme of 

analysis involves the plotting of the strain amplitude against the number of reversals 

to failure on logarithmic scales as in Figure 4.21. The two material constants σ'f and b 

are obtained from the intercept and slope of the line fitted through the high cycle part 

of the data by a regression analysis. This line, which is frequently referred to as the 

“elastic” line, has the equation: 

  bf

fe N
E

2
2

 
  (4.25) 

 

In a similar manner, the plastic strain amplitude is plotted against the number of 

reversals to failure using logarithmic scales as in Figure 4.21. Two further material 

constants, ε'f and c, are obtained from the intercept and slope of the line fitted through 

the data by regression analysis, this time using a regression fit to the low cycle data. 

This line, which is frequently referred to as the “plastic” line, has the equation: 

  cff

p
N2

2



  (4.26) 

 

In the absence of creep deformations the total strain amplitude consists only of time 

independent elastic and plastic strain amplitudes. Thus for a material for which straight 

“elastic” and “plastic” lines can be demonstrated as in Figure 4.21, the strain-life 

relationship may be represented by an equation of the form: 

    cff

b

f

ft NN
E

22
2







  (4.27) 
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Figure 4.22 – Determination of the cyclic hardening  

and the cyclic hardening exponent (BS 3518-1:1993) 

 

A cyclic stress-strain curve for a material may be generated from paired values of the 

stress amplitude at half-life plotted against the total strain amplitude as in Figure 4.22. 

Cyclic stress-strain behaviour is frequently analysed by separating the total strain 

amplitude into elastic and plastic strain amplitudes and describing the relationship 

between cyclic stress amplitude and plastic strain amplitude in the form of a power 

law. If the values of true stress and true strain are employed, many metals conform to 

the empirical relationship: 

 

n

p
K















22


 (4.28) 
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4.7. Multiaxial elastic stress-life methods 

A large variety of techniques and methods can be employed to predict the fatigue life 

of specimens. It is a hot topic nowadays and, for example, the Scopus database offers 

more than ten thousand papers published for the last five years. The most 

comprehensive summary of those methods is ASTM’s STP1387. However, most 

companies use self-developed modifications of the existing methods, which are 

protected by the copyright law. Therefore, it was decided to employ the well-known 

methods that can be easily modified by adjusting parameters. 

The fatigue criteria based on the elastic stress-life methods can be written in a general 

form: 

  BkA  (4.29) 

 

Therefore, the fatigue parameter can be determined as: 

 


BkA
FP


  (4.30) 

 

The fatigue parameter is calculated for a specific number of life cycles, Nf, and a value 

below unity means that fatigue failure is unlikely to happen in Nf cycles; if the FP is 

unity or above, fatigue failure is likely to happen in Nf cycles. 

For the Crossland (1956) and Sines (1955, 1959) criteria which are based on the 

amplitude of second invariant of stress tensor deviator, which corresponds to the von 

Mises stress, the parameters for equation  4.30 are given in Table 4.4. 

Table 4.4 – Parameters of equation 4.29 for Cossland and Sines criteria in 

formulations referred to by Papadopoulos et al. (1997) 

Fatigue 

method 
A  B  k    

Crossland aJ ,2  max,h  3
3


af

af




 af  

Sines aJ ,2  mh,  
 

3
13




af

uafaf




 af  
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where 

 
3

zyx

h





  (4.31) 

 
     

222

222

,2
6

zxyzxy

xzxyyx

aJ 





  (4.32) 

 

It was shown by Papadopoulos et al. (1997), Carpinteri and Spagnoli (2001), Banvillet 

et al (2003) that the Crossland’s criterion provides a better estimation of the fatigue 

failure. 

Another group of fatigue criteria considers load conditions on a so called “critical 

plane”. The critical plane for each particular case can be determined by maximisation 

of the right-hand side of equation (4.30). The principal normal and shear stress 

components on a plane for the plane strain case can be determined from the directional 

stresses on another plane, according to Timoshenko and Goodier (1973) as: 

  cossin2sincos 22

xzzx   (4.33a) 

      cossinsincos 22

xzxz   (4.33b) 

 

The time varying shear stress amplitude for the Dang Van (1973) criterion is used in 

Ekberg’s (1997) formulation 

     ma tt    (4.34) 

 

Parameters of equation 4.29 for the Findley (1953, 1957) criterion modified by Socie 

(1993), the revision of the McDiarmid (1991,1994) criterion and the Dang Van (1973) 

criterion are provided in Table 4.5. 
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Table 4.5 – Parameters of equation 4.29 for Findley, McDiarmid and Dang Van 

criteria  

Fatigue 

method 
A  B  k    

Findley acp ,  max,cp  
12

2





afaf

afaf




 

12 afaf

af




 

McDiarmid acp ,  max,cp  
u

af





2
 af  

Dang Van )(ta  max,cp  5.13 
af

af




 af  

 

4.8. Multiaxial strain-life approach  

The strain-life prediction methods can be broken down into similar steps. The only 

significant difference from the numerical point of view is the formula that defines the 

total damage. Since there is no universally accepted approach and the algorithm 

similarities it was decided to employ the Fatemi and Socie (1988) criterion in the form 

of the Bannantine and Socie (1992) revision. 

    cff

b

f

f

o

cp

acp NN
G

K 221
max,

, 





 















  (4.35) 

 

where a  is the amplitude of the principal shear strain; max  is the maximum principal 

tensile stress; b is the fatigue strength exponent; c is the fatigue ductility exponent; f   

and f   are fatigue stress and ductility coefficients; G is a shear modulus; o   is the 

yield stress. 

To evaluate the total-life the following steps are taken for each point in the fatigue 

evaluation area: 

1. Read the stress history for the current point. 

2. Calculate strain history using Hook’s law in compliance format as 
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 
E

zyx

x





  (4.36a) 
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yxz
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



12

 (4.36c) 

 

3. Consider each potential critical plane orientation in turn using steps 4 to 7 as 

follows. 

4. Obtain normal and shear stress history by equations 4.33 and normal and shear 

strain histories on the critical plane as 

  cossinsincos 22

xzzx   (4.37a) 

     


cossinsincos
22

22

xz
xz   (4.37b) 

 

5. Count cycles based on the shear strain history according to ASTM International 

E1049-85(2011) 

6. Calculate the fatigue life, Nf, for each cycle identified at step 5 using 

equation 4.35 

7. Calculate the total cumulative damage using the Palmgren-Miner (1924) rule: 

 



cycles all

1 ,

11

i iff NN
D  (4.38) 

for the current candidate critical plane orientation. 

8. Repeat steps 3 to 7 for each candidate critical plane and identify the plane that 

has the largest value of D, Dmax. This is the critical plane for the point being 

considered, and Dmax is the value of the accumulated damage at that point. 

9. Repeat from step 1 for all points in the fatigue evaluation area. 

10. Plot the value of Dmax for each point in the fatigue evaluation area. 
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4.9. Summary 

This chapter provides all necessary information to evaluate elastic stresses at the 

surface and subsurface of the gear flanks, store stress history in the most convenient 

manner for the fatigue analysis and a brief overview of the fatigue theories and their 

possible applications. 
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Chapter 5 

 

The results of the complete analysis 

of the gear meshing cycle 

The NASA Glenn case 

 
 

5.1. Introduction 

The method described in Chapters 2 through 4 was implemented in a software package, 

providing an opportunity to solve a full spur gear meshing cycle, obtain the stress 

history for the gear flanks in contact and apply the fatigue-life prediction tool. This 

Chapter describes the structure of the input and output files as well as the step-by-step 

user manual of the solving process. The NASA Glenn experimental investigation setup 

presented in report NASA/TM-2005-213956 / ARL-TR-3126 was taken to obtain the 

results by use of computer modelling. The Chapter provides the solution for each step 

of the analysis, including smooth and rough surface transient non-Newtonian EHL 

emulation of the full meshing cycle, plots of the elastic stresses and the fatigue-life 

evaluation. 

The explanation of the results is available, however, their comparison with The Design 

Unit case and a brief discussion of their differences and the reliability of the method 

is provided in Chapter 6. 
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5.2. NASA test set up parameters 

The results are presented for the NASA Glenn Research Centre gear fatigue test rig, 

shown in Figure 5.1 and described in NASA-TN-D-7261.  

 

Figure 5.1 – NASA Glenn Research Center gear fatigue test apparatus: 

(a) cutaway view; (b) schematic view. (Krantz, 2015) 
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The spur gears mounted on the test rig are identical. Their parameters are provided in 

Table 5.1. The gears were tested at 10,000 rpm and it was assumed that the gear 

temperature was equal to the oil outlet temperature, 348 K. The test lubricants used 

and properties at 348 K are given in Table 5.2. The load conditions were determined 

from the dynamic tooth force measurements by Krantz (2002), which were carried out 

according to the technique developed by Rebbechi, Oswald and Townsend (1996). The 

measured results are plotted in Figure 5.2. The abscissa of this graph is the position of 

tooth contact line on the line of action in millimetres with the origin at the pitch point. 

The graph has two ordinate axes which define the magnitude of the load: the left-hand 

side one states the tooth force in newtons and the right-hand side one specifies the load 

per unit face width in kN/m. The maximum measured tooth force is 2280 N and it is 

considered evenly distributed across a 2.79 mm contact line, which results in a pitch-

line load of approximately 820 kN/m and a pitch-line maximum Hertz stress of about 

2 GPa. This gives a maximum half-Herzian contact dimension of a = 0.264 mm. 

 

Table 5.1 – Spur test gears design parameters 

Geometrical parameters 

Module / mm m 3.175 

Number of teeth n 28 

Pressure angle / ° ψ 20 

Outside radius / mm rt 47.625 

Base radius / mm rb 41.769 

Material properties of AISI 9310 

Young’s modulus / GPa E 206.85 

Poisson’s ratio υ 0.3 

Coefficient of friction 

(dry contact) 
μ 0.1 

 

Table 5.2 –Lubricant properties (NASA/TM-2005-213956/ARL-TR-3126) 

Name 
Absolute viscosity at 

348 K / N-s/m2 

Pressure-viscosity 

coefficient / m2/N 

Basestock oil 1 0.014 9.0×10-9 

MIL-L-23699 0.018 10.5×10-9 

MIL-L-7808J 0.010 7.5×10-9 

DOD-L_85734 0.017 11.0×10-9 

DRED-2478 0.022 12.0×10-9 

Basestock oil 2 0.028 11.0×10-9 
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Figure 5.2 – Measured tooth force (Krantz, 2002) 

 

The roughness profiles used were provided by Dr. Krantz on behalf of NASA and 

ARL. There were two groups of profiles: as manufactured, which were measured 

before any type of tests or running-in were conducted, and run-in, which were run-in 

at a load per unit face width of 123 kN/m for one hour. In the test the load is then 

increased to the static test load of 580 kN/m. However, as it was mentioned before, the 

maximum measured dynamic load is about 820 kN/m. The run-in gear profiles do not 

show any traces of damage of any kind. The EHL analysis at the current stage of 

development does not incorporate any tool which would allow the change of the initial 

geometry due to stresses above the critical level to be taken into consideration. 

Therefore, instead of the permanent change of the surface profiles due to the plastic 

deformation, surface roughness features can drive the pressure at the nodes to be 

unfeasibly high, which causes unrealistic behaviour of the lubricant. However, if the 

gears run at a higher load then further plastic deformation will take place due to the 

higher load and the higher temperatures reached due to increased frictional heating. 

Hence, it was decided to use the run-in profiles because all plastic processes due to the 
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contacts with the counterfaces changed the gear tooth profiles over running-in period 

and any further contacts are predominantly elastic. The profiles used for the EHL 

analysis were run against each other for a short period of time at the full test load and 

are shown in Figures 5.3 and 5.4. Figures 5.3(a) and 5.4(a) present the profilometer 

measurements of the gear flanks taken using a 2 μm radius, conisphere-tipped stylus. 

Then a least-square curve form removal was applied followed by the application of an 

ISO-conforming Gaussian roughness filter having a 0.8 mm and 0.25 mm cutoff, 

shown in Figures 5.3(b), 5.4(b) and 5.3(c), 5.4(c) respectively. Figures 5.3(b) and 

5.4(b) still show some traces of waviness, therefore, the roughness profiles shown in 

Figures 5.3(c) and 5.4(c) were used for the further analysis. 

 

5.3. EHL and stress analysis solution approach 

The geometrical parameters, the kinematics and the loading conditions vary as the 

contact progresses along the line of action over the meshing cycle. Therefore, the EHL 

analysis is a transient problem, which can be considered as a series of timesteps with 

appropriate set up parameters linked by the full transient equations. 

The size and parameters of the computational EHL mesh are constant and it is scaled 

to the Hertz dimension at the pitch point, which is covered in Section 3.2. The mesh is 

worked out at the beginning of the EHL analysis and it is determined by four 

parameters specified in the input file: the pitch point load , load_max, number of nodes 

in the half-Hertzian width, ninb, number of the half-Hertzian dimensions from the 

centre of the contact upstream and downstream, upb and dob respectively. Hence, the 

spacing of the mesh is 

 
ninb

a
x

pointpitch        
     (5.1) 

and the total number of the EHL mesh nodes, nnode, is 

     1                  ninbdobupbnnode   (5.2) 

The algorithm of the solution process is shown in Figure 5.5. 
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Figure 5.3 – Pinion surface roughness: (a) raw data; (b) form removed and Gaussian filter with 0.8 mm cutoff applied; 

(c) form removed and Gaussian filter with 0.25 mm cutoff applied 

a) 

 

b) 

 

c) 
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Figure 5.4 – Cog-wheel surface roughness: (a) raw data; (b) form removed and Gaussian filter with 0.8 mm cutoff applied; 

(c) form removed and Gaussian filter with 0.25 mm cutoff applied 

a) 

 

b) 

 

c) 
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Figure 5.5 – Flowchart of the EHL analysis
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The software reads the input data stored in two files: ipg01.dat and load.txt. The 

ipg01.dat is the main input file, which contains the names of the current job and the 

surface roughness files, the selection parameters for the formulation and the solution 

method, the precision of the calculations, the geometric and kinematic parameters of 

the gear pair, the maximum load and the discretization parameters for the mesh, 

relaxation factors, mechanical properties of the material and the lubricant. These 

parameters are used to find the maximum dry contact Hertz dimension for smooth 

surfaces, amax, which is a scaling factor in the analysis. The file also specifies the 

timesteps at which results are to be tabulated. File load.txt holds the load conditions. 

The first column contains the coordinate on the path of action, s, in meters and the 

second one has the values of the load in N/m. The file is only used for the initial smooth 

surfaces analysis. 

The undeformed geometry and surface velocities can be calculated by equations (2.9) 

and (2.14) respectively. The target load is determined by linear interpolation of the 

appropriate segment of the tabulated target load read from the file. The load conditions 

can be defined by setting the clearance between the surfaces at any mesh node. Since 

the first mesh node in the inlet zone experiences the lowest elastic deflection due to 

the significant distance from the centre of contact, an adjustment of the separation at 

this point allows faster convergence of the load and reduces potential numerical 

instabilities. Thus, the clearance between flank surfaces at the first mesh node is set 

and adjusted through the analysis to obtain the loading conditions for the particular 

mesh. 

The content of the main matrix and the right-hand side matrix is explained in Chapter 

3 and can be formulated by the finite difference or the finite element methods. There 

are two solvers provided, one is based on the Gauss-Seidel method of successive 

displacement and other on the Gaussian elimination. The Gauss-Seidel method is an 

iterative technique which allows modification of the formulation of the problem within 

the convergence process but at the same time might cause some numerical instability 

and add some noise to the results obtained. The Gaussian elimination is a row 

reduction algorithm, which obtains the solution by direct algebraic manipulation but 

all necessary measures to alter the problem formulation, in case of a dry contact of the 

surfaces at a node for example, must be done separately and can increase the 
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computing time. The odd row entries of the matrices, which come from the Reynolds 

equation, must be updated for each candidate pressure distribution due to the non-

linearity of the equation, in view of the fact that density and viscosity are functions of 

pressure. The solution is considered converged when the difference between candidate 

solutions of previous and current convergence cycles comply with the convergence 

criteria set in the input file. 

The product of the sum of positive values of the converged pressure at all nodes and 

the mesh spacing gives the load in N/m. It is compared with the target value for that 

gear mesh position as illustrated in Figure 5.2 and if it does not comply with the 

convergence criteria an adjustment of the clearance between the surfaces at the fist 

mesh node is made. The timestep solution finding procedure is repeated until the load 

is correct. The algorithm must be repeated for each timestep. 

In the case of rough surfaces, it is problematic to converge the load due to the 

interaction of the asperities, because the formulation of the contact can change due to 

a different disposition of the surfaces, for example from full-film contact to dry one. 

Hence, the constant change of the clearance between surfaces in order to achieve 

appropriate load conditions for the rough surface analysis can cause considerable 

numerical difficulties. Moreover, the software only takes into account elastic 

deflection of the gear flanks, but the gear teeth are large elastic bodies which deflect 

at the root when they brought into contact. Therefore, the excess or scarcity of the 

generated load can be adjusted by an insignificant change of the deflection at the root 

of the gear teeth. 

To overcome the problem described above, the smooth surface case results for the 

specified lubricant, gears and the target load variation are obtained and the converged 

time varying clearance values between mating surfaces at the first mesh node are used 

to set the load conditions for the rough surface analysis. Note that the mesh boundaries 

and spacing must be identical for both analyses in order to achieve commensurable 

load conditions. The results of the converged loads and clearances between the mating 

gear flanks are shown in Figures 5.6 and 5.7 respectively. The abscissae determines 

the coordinate on the path of action, s, in mm and the ordinates specify the load per 

unit face width in N/m and the clearance at the first mesh node, h1, in μm. The 
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minimum magnitude of the load is set to 100 kN/m because lower values cause some 

numerical instabilities and make load convergence process very time consuming.  

 

Figure 5.6 – Converged loads for lubricants specified in Table 5.2 

 

The global convergence criteria of the analysis was set as 0.5%.The zoomed-in plot in 

Figure 5.6 shows the deviation of the converged loads from the target load. The graphs 

are very close for the lower loads, since the acceptable loads, for example, at 100 kN/m 

are [99.5; 100.5] kN/m, which can be seen at the end of the meshing cycle. At the pitch 

point, the load must be [815.9; 824.1] kN/m. Note, that during the monotonic increase 

of the load, the converged values are always below the target and right after the pitch 

point, where the load function starts to decrease monotonically the converged values 

are higher than target ones. The convergence process causes the mild oscillations at 

the tip, because the clearance between surfaces in contact is adjusted only if the 

candidate load is not within the allowed range of the target load. The converged loads 

increase linearly at s [-0.4; 0] in Figure 5.6 which corresponds to the constant clearance 

values in Figure 5.7. There is an immediate response of the clearance between the 



5-12 
 

surfaces to the change of the load and visible kinks at s = -6.6 and s  = 4.5, i.e. the end 

and the beginning of the load modification respectively and the clearance function is 

clearly different at the beginning and the end of the meshing cycle. 

 

 

Figure 5.7 – Converged clearance between mated gear flanks at the fist mesh node 

for lubricants specified in Table 5.2 

 

The results of the rough surface analysis can be grouped into two classes: the EHL 

analysis results and the stress history. The EHL analysis results are split in two 

subcategories: general and detailed. The general parameters are saved in Job_name.inf 

and the column structure of it is presented in Table 5.3. The minimum film thickness 

and the maximum pressure as well as film thickness at the centre of contact are plotted 

in Figure 5.8 for the smooth surface analysis. The radii of curvature and the tangential 

velocities are plotted in Figure 5.9. 
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Table 5.3 – Column structure of Job_name.inf 

Column Parameter Units 

1 Coordinate on the path of action, s mm 

2 Film thickness at the contact point μm 

3 Maximum value of the pressure at the EHL mesh GPa 

4 Minimum value of the film thickness at the EHL mesh μm 

5 Radius of curvature of the pinion flank mm 

6 Radius of curvature of the gear flank mm 

7 Radius of relative curvature mm 

8 Tangential velocity of the pinion flank ms-1 

9 Tangential velocity of the gear flank ms-1 

10 Mean tangential velocity of the pinion and the gear flanks ms-1 

11 Integrated load N/m 

 

 

Figure 5.8 – Film thickness at the contact point and minimum value 

and maximum pressure value over meshing cycle of smooth surfaces 



5-14 
 

 

Figure 5.9 – Undeformed geometry and kinematics of the meshing cycle 

 

Figure 5.10 presents the minimum film thickness and the maximum pressure for the 

EHL mesh as well as film thickness at the centre of contact for the analysis 

incorporating the rough surfaces. The difference between data plotted in Figures 5.8 

and 5.10 is apparent. The difference in film thickness and maximum pressure is driven 

by the incorporated roughness of the mating gear flanks. The maximum pressure 

values are more than twice the smooth surface contact ones. The minimum film 

thickness of the rough surface analysis is of the same order as that of the rough surface, 

but regularly drops to zero which means that at least one of the mesh nodes the 

lubricant is unable to separate the mating surfaces. This is particularly apparent at the 

highest loads that occur between s = -2 and s = +2. 
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Figure 5.10 – Film thickness at the contact point and minimum value 

and maximum pressure value over meshing cycle of rough surfaces 

 

The number of nodes in a dry contact for the rough surface contact lubricated by MIL-

L-7808J oil over the mesh cycle is plotted in Figure 5.12. The abscissa is the coordinate 

on the line of action with the origin at the pitch point and the ordinate is the number of 

mesh nodes at which dry contact is occurring in that timestep. This shows that direct 

contact of the asperity features happens during the meshing cycle but occurs at 

relatively few mesh points. It is most prevalent at the higher load area of the meshing 

cycle.  
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Figure 5.11 – Number of mesh nodes in dry contact at each timestep of the analysis 

 

The load results of the rough surface analysis set by the clearance between the surfaces 

at the first mesh node for MIL-L-7808J oil over the meshing cycle, shown in Figure 

5.7 in amber, are plotted against the converged load of the smooth surface analysis for 

the same lubricant in Figure 5.12. The abscissa is the coordinate on the line of action 

with the origin at the pitch point and the ordinate shows the load per unit face width in 

kN/m. The load exceeds the target values at the close proximity to the pitch point, 

however, the difference is less than 4% so that no modification of the load set up data 

is needed. In some cases the interaction of the asperities can cause a significant 

divergence from the target load, so, the clearance at the first mesh node must be 
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modified. The value of the change can be determined by trial and error method over 

several complete analyses. 

 

Figure 5.12 – Load over the meshing cycle: smooth (amber) 

and rough surface contact lubricated by MIL-L-7808J oil (blue) 

 

The difference between the load values up to 600 kN/m is apparent in Figure 5.12. The 

rough case load is lower than the smooth case one at the monotonically increasing side 

and greater at the decreasing side. This might be due to differences in the squeeze film 

load contribution at the lower level surface interaction. The load generated due to the 

approach velocity may be different for the smooth and the rough surface analysis and 

if so, the effect would be the opposite when the velocity was separating the surfaces. 

The detailed parameters of the EHL analysis are stored in the series of flies, *.txt. The 

file name is a six-digit number, which identifies the timestep number. The column 

structure of those files is specified in Table 5.4.  
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Table 5.4 – Column structure of *.txt 

Column Parameter Units 

1 x/a  

2 Pressure GPa  

3 Film thickness μm 

4 Offset of the pinion flank μm 

5 Offset of the gear flank μm 

6 Tangential load at the pinion flank surface Pa 

7 Tangential load at the gear flank surface Pa 

8 Indicator of cavitation (-1)/full film (0)/ direct contact (1)  

 

A universal design of the graphic representation of the results for each timestep defined 

in Table 5.4 was developed. The data can be automatically processed either for a single 

timestep or for a series of timesteps by the MATLAB code presented in Appendix A. 

The results are presented in Figures 5.13 through 5.16. There are three plots sharing 

the same abscissa, which gives the relative distance from the contact point in fractions 

of the half-Hertzian contact dimension at the maximum pitch load. The origin is set at 

the contact point and the axis is oriented in the direction of motion. The upper subplot 

contains the graphs of pressure distribution in red plotted on the left axis and the film 

thickness in green plotted on the right axis. The middle plot shows the offsets of the 

mating gear flanks at a reduced vertical scale and offset for clarity. The lower plot is a 

three-state indicator, where a filled lower-half position designates cavitated nodes, a 

filled upper-half designates the dry contact and the mid-line means that the surfaces in 

the contact are separated by lubricant. 
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Figure 5.13 shows the very beginning of the meshing cycle. The surfaces are just 

engaged in the contact. The radius of curvature of the pinion, upper surface offset, is 

visibly smaller than that of the gear. The area of the contact is small in terms of Hertz 

dimension, a, because the load is low at this timestep integrating to 75 kN/m. 

 

Figure 5.13 – Pressure distribution (red), film thickness (green), offsets of the 

surfaces (black, factor 4.446) and regime indicator (blue) at s = – 7.6765 mm 
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Figure 5.14 shows the results of timstep 5535, which corresponds to the coordinate of 

– 1.001 mm on the line of action with the origin at the pitch point. The radius of 

curvature of the pinion, upper surface offset, is still visibly smaller than that of the 

gear, but the difference is not as apparent as in Figure 5.13. The length of the contact 

has grown significantly. The mating surfaces are in dry contact at mesh points located 

at x/a values of – 0.645, – 0.340, 0.020 and 0.510. These four nodes split the contact 

into five local contacts with a significant increase of the hydrodynamic pressure at the 

outlet zone. There is a local cavitation at x/a = – 0.345. The pressure distribution 

integrates to 753 kN/m. 

 

Figure 5.14 – Pressure distribution (red), film thickness (green), offsets of the 

surfaces (black, factor 4.446) and regime indicator (blue) at s = – 1.001 mm 
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Figure 5.15 presents the results at the pitch point, timstep 6365. The radii of curvature 

of the pinion, upper surface offset, and the gear, lower surface offset, are equal due to 

the identical number of the teeth. The length of the contact has grown even more and 

is approximately the same as the reference Hertzian dimension, since it is within the 

range [-1, 1] of x/a. There is no local cavitation and dry contact only occurs at one 

mesh point at this timestep. The pressure distribution integrates to 823 kN/m. 

 

Figure 5.15 – Pressure distribution (red), film thickness (green), offsets of the 

surfaces (black, factor 4.446) and regime indicator (blue) at the pitch point, s = 0 
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The picture late in the meshing cycle is plotted in Figure 5.15. This is timstep 12224, 

which corresponds to the coordinate of s = 7.0675 mm. The surface offsets are close 

to the inverse of the surface offsets in Figure 5.12. The length of the contact has shrunk 

down and the pressure has been reduced significantly. There is no local cavitation or 

dry contact. The pressure distribution integrates to 104 kN/m. 

 

 

Figure 5.16 – Pressure distribution (red), film thickness (green), offsets of the 

surfaces (black, factor 4.446) and regime indicator (blue) at s = 7.0675 
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The stress developed in the gear material due to the contact loading is calculated for 

the EHL mesh. The three stress components are stored in series of files *.cmp, where 

the asterisk is a six-digit timestep ID number. The structure of the file is defined in 

Table 5.5. 

Table 5.5 – Column structure of *.cmp 

Column Parameter Units 

1 x/a  

2 z/a  

3 

Pinion 

σxx  

Pa 

4 σzz 

5 τxz 

6 

Gear 

σxx 

7 σzz 

8 τxz 

 

The stress components based on the pressure and tangential traction distribution when 

the contact is at the pitch point are plotted in Figure 5.17 for both surfaces. The von 

Mises and the Principal shear stresses are shown in Figure 5.18. Each of the plots 

incorporates two subplots, which share abscissa with the origin at the contact point and 

oriented in the direction of motion. The ordinates originate at the surface and are 

directed normally into the surface. Both coordinates are normalized in terms of the 

half-Hertzian dimension at the pitch point. The stress plots generally follow the Hertz 

stress pattern for two collinear cylinders in contact with a significant noise due to the 

roughness which has maximum impact at the surface and rapidly reduces with depth 

into the gear flanks. The maximum values of the stress correspond to the peaks of the 

pressure as expected. 

The stress components are then interpolated from the EHL mesh into the gear flank 

mesh. The details of that process are covered in Section 4.4. The resulting stress history 

files for the material are used for further fatigue analysis. Results of these calculations 

are presented in Figures 5.19 through 5.26 for the EHL analysis carried out using MIL-

L-7808J oil. The pinion flank results are shown from the root to the tip and the other 

way around for the gear tooth profile. 
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a) 

 
b) 

 
c) 

 
 

Figure 5.17 – Stress components at the pitch point: 

(a) σxx in GPa, (b) σzz in GPa, (c) τxz in MPa 
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a) 

 
b) 

 
 

Figure 5.18 – (a) von Mises stress in GPa and 

(b) Principal shear stress in MPa at the pitch point 

 

The values of the Dang Van and the Findley fatigue parameters greater than or equal 

to unity flags out the areas at which, most probably, fatigue processes will take place 

within 107 meshing cycles. The Fatemi and Socie model takes into account the cyclic 

behaviour of the load during the meshing cycle and the damage value plotted is the 

reciprocal of the number of probable load cycles to fatigue. To draw a comparison with 

the first two methods, the values of the probabilistic Fatemi and Socie fatigue life 

greater than 10-7 point out the fatigued nodes, where fatigue can be expected to occur 

in 107 meshing cycles. 



5-26 
 

 

Figure 5.19 – Pinion: (a) Dang Van and (b) Findley fatigue parameters for 107 

loading cycles and (c) Fatemi and Socie accumulated damage, 10-n,  

indicating fatigue in 10n cycles 

a) 

 

b) 

 

c) 
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Figure 5.20 – Gear: (a) Dang Van and (b) Findley fatigue parameters for 107 loading 

cycles and (c) Fatemi and Socie accumulated damage, 10-n,  

indicating fatigue in 10n cycles 

a) 

 

b) 

 

c) 
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Figure 5.21 – Pinion: Dang Van fatigue parameters at 107 loading cycles for the 

close proximity to the pinion flank surface 
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Figure 5.21 – Pinion: Dang Van fatigue parameters for 107 loading cycles at the 

close proximity to the pinion flank surface 
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Figure 5.22 – Gear: Dang Van fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 5.22 – Gear: Dang Van fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 5.23 – Pinion: Findley fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 5.23 – Pinion: Findley fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 5.24 – Gear: Findley fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 5.24 – Gear: Findley fatigue parameters at 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 5.25 – Pinion: Fatemi and Socie accumulated damage, 10-n, at the close 

proximity to the pinion flank surface indicating fatigue in 10n cycles 

-n 

-n 

-n 
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Figure 5.25 – Pinion: Fatemi and Socie accumulated damage, 10-n, at the close 

proximity to the pinion flank surface indicating fatigue in 10n cycles 

-n 

-n 

-n 
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Figure 5.26 – Gear: Fatemi and Socie accumulated damage, 10-n, at the close 

proximity to the gear flank surface indicating fatigue in 10n cycles 

-n 

-n 

-n 
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Figure 5.26 – Gear: Fatemi and Socie accumulated damage, 10-n, at the close 

proximity to the gear flank surface indicating fatigue in 10n cycles 

-n 

-n 

-n 
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Two processes different by nature can be seen in Figures 5.19 and 5.20. According to 

Johnson (1985), the maximum principal shear stress at the Hertz contact occurs at 

z = 0.78a (for the current smooth case it is 206 μm at the pitch point), therefore, the 

high values of the fatigue parameters shown as solid green and yellow contours for all 

three fatigue models deep down under the surface are primarily driven by the load and 

almost unaffected by the surface roughness. It is not surprising, considering the 

pressure distribution in Figures 5.14 and 5.15 that in this they are not very different 

from the Hertzian pressure function, with occasional peaks due to the incorporated 

roughness of the surfaces. 

The surface roughness contribution to the fatigue is the most apparent at the positions 

of high sliding: the tip of the pinion, x [5; 6] mm, and the root of the gear, x [5.75; 

6.25] mm. The Dang Van and the Fateni and Socie methods predict a mild wear of the 

middle part of the pinion and the gear flanks, with one particular fatiguing feature at 

x = 3.9 and x = 5.2 at the pinion and gear surfaces respectively. The Findley model 

predicts a severely more aggressive wear, because it is highly dependent on the shear 

stress, therefore, it is more responsive to the roughness effect. At the same time, it only 

considers the worst loading conditions of the meshing cycle, disregarding the stress 

history pattern, the duration of the peak load, softening and hardening processes. 

Hence, there is a fatigue feature shown in orange in Figures 5.19b and 5.20b in the 

close subsurface (z [20; 140] μm, x = 3 mm for the pinion and x = 4.35 mm for the 

gear).  

The NASA fatigue test results in NASA/TM–2005-213956/ARL-TR-3126 include 

photos of worn gear teeth for all the experiments replicated numerically in this chapter. 

The photo of the worn gear flank tip to root for the MIL-L-7808J test case is shown in 

Figure 5.27. There is a clear similarity between the predicted fatigue life parameters 

pattern shown in Figures 5.19 and the worn profile in Figure 5.27. 
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Figure 5.27 – Worn surface of the test gear tip to root 

(NASA/TM–2005-213956/ARL-TR-3126) 

Tip 

Root 
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Chapter 6 

 

The results of the complete analysis 

of the gear meshing cycle: 

The Design Unit case 

 
 

6.1. Introduction 

Due to some restrictions and limitations, the analysis produced of the NASA gears 

presented in Chapter 5 does not allow the roughness treatment procedure to be 

presented. At the same time, the fatigue-life prediction results shown in Chapter 5 are 

significantly different to the typical results previously obtained by the Cardiff 

Tribology group for representative steady state conditions. Therefore, it was necessary 

to use a different gear test case to explain the crucial steps to make sure that the surface 

roughness does not have any redundant artefacts and is properly located on the involute 

profiles so that the EHL analysis resembles the real meshing cycle behaviour. The 

operating conditions were also chosen so that they differed from the NASA test setup 

to demonstrate a different perspective on the results.  

This Chapter describes the surface roughness treatment approach, presents the EHL 

and fatigue-life analyses results of test gears provided by the Design Unit, Newcastle 

University (DU), and discusses the differences between them and the NASA case. 
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6.2. The test set up parameters 

Unfortunately, the profiles provided by NASA were pre-processed and cropped in such 

a way that the tooth root and tip features are not included. This creates significant 

uncertainties in aligning the rough profiles on the involute curves. Another 

complication in that analysis was the inability to obtain roughness of a counter surface 

of the particular gear flank. This was particularly important due to the equal number 

of teeth of the pinion and the gear, i.e. each pinion flank is brought into contact with 

one particular gear flank and that gear flank only. The setup of the test made it 

impossible to confirm that the pinion and gear profiles provided for the analysis were 

actually in contact with each other during the test and as such the probability of that 

being the case is 0.035. This is probably the reason for the numerical difficulties 

experienced in running the EHL analysis as each meshing flank pair will run in to 

accommodate each other. 

Therefore, it was decided to run a different analysis to include all steps of the gear 

meshing cycle analysis as well as investigating the influence of the roughness and the 

operating conditions on the results. The Cardiff Tribology group collaborates closely 

with the DU studying lubrication of helical gears. A pair of test gears taken from a 

micropitting test was available for measuring and had no traces of pitting damage. The 

gear design parameters as well as the lubricant properties are provided in Table 6.1. 
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Table 6.1 – DU test gears design parameters 

Geometrical parameters Pinion Gear 

Module / mm 
mn 4.500 

ms 4.776 

Number of teeth n 33 34 

Pressure angle / ° 
ψn 20.000 

ψs 21.121 

Outside radius / mm rt 83.305 85.695 

Base radius / mm rb 73.512 75.739 

Material properties of AMS 6260 

Young’s modulus / 

GPa 
E 206.850 

Poisson’s ratio υ 0.300 

Coefficient of friction 

(dry contact) 
μ 0.1 

Lubricant OEP 80 

Absolute viscosity at 

350 K / N-s/m2 
η0 0.0155 

Pressure-viscosity 

coefficient at 350 K / 

m2/N 

α 1.55×10-8 

 

The smooth surface analysis was conducted to obtain the clearance between surfaces 

at the first mesh node, which determines the load as was explained in Section 5.3 for 

the NASA gears. The target load function over the meshing cycle was scaled in order 

to obtain about 1.3 GPa pitch-line maximum Hertz stress. The converged operating 

load plotted against the target one and the clearance between surfaces at the first mesh 

node are shown in Figure 6.1 and 6.2 respectively. The half-Hertzian contact 

dimension at the maximum load is 0.311 mm. Due to numerical difficulties in 

converging the load for low values, because even small adjustment of the clearance 

between two surfaces in contact can cause a situation when the surfaces are too far 

away to maintain the contact, the lowest value of the target load function, which 

allowed a converged solution to be obtained was determined as 100 kN/m by a trial 

and error method. The modification of the target load function is an automatic process 

and the result of it is clear in the shape of the converged load plot, shown in red in 

Figure 6.1, at the beginning and the end of meshing cycle. 
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6.3. Results of the EHL smooth contact analysis 

 

Figure 6.1 – Target (black) and converged (red) loads 

The divergence of the converged clearance function shown in red in Figure 6.2 at the 

beginning and the end of meshing cycle due to the modification of the load function 

was resolved by manual extrapolation of the data obtained for the non-modified load 

region. The resultant modified clearance ready to use for the rough surface analysis is 

plotted in black in Figure 6.2. 
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Figure 6.2 – Converged (red) and manually modified for the rough surface analysis 

(black) clearance between mated gear flanks at the first mesh node 

 

6.4. Surface roughness measurements and treatment 

The processing of the roughness profiles differs significantly from the one employed 

for the NASA case, which used a standard process to remove waviness and filter the 

data. The helical gears were mounted in a purpose made jig that inclined the gear axis 

to the vertical by the tooth helix angle so that the tooth surface to be measured was 

nominally horizontal. The gear was then rotated so that the profilometer could take a 

root to tip profile measurement within the 1 mm height range of the instrument. The 

photograph in Figure 6.3 shows the pinion mounted in the jig at the measuring position.  
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The measuring objective is to take root to tip profiles where the tip of the gear can be 

clearly identified in the profile as a reference point. If the profilometer stylus moves 

outside the measuring range during a traverse then the instrument automatically 

abandons the profile measurement. This makes it difficult to achieve the measuring 

objective of including the gear tip as the profile must take the stylus contact beyond 

the gear tip and must end before the stylus loses contact with the surface. The 

profilometer was fitted with an accessory that can be adjusted to provide a stop support 

for the stylus beam to solve this difficulty. The accessory prevents the stylus from 

moving below the measurement range of the instrument causing it to lose contact with 

the surface if the surface becomes too low during the traverse. So with the accessory 

installed the height becomes constant when the stylus loses contact with the tip.  

 

 

 

 

 

 

 

 

Figure 6.3 – Photograph of gear mounted in measuring jig on profilometer y-stage. 

A typical root to tip profile is illustrated in Figure 6.4 which consists of 40,000 

measured heights giving the form of the tooth and its roughness measurement. Point 

T, arrowed, is the tip of the tooth and point C is the highest point of the form. The 

profile heights are thus measured perpendicular to involute tangent at C. Coordinates 

of points T and C are obtained by curve fitting the roughness data in the vicinity of the 

points and this gives an accurate measurement of distance TC. This coordinate 

information is then used to determine the radius of C from the gear axis and thus locate 

C on the involute whose base circle radius is known. Tooth tip relief must be accounted 
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for in this procedure but this is known from the gear manufacturing drawings and 

standard profile error measurements taken by a Klingelnberg P65 gear checker which 

confirm the relief magnitude at the tip.  

 

 

Figure 6.4 – Root to tip gear profile measurement taken from test gear. 

 

The analytic fit to the involute is used to remove the form so that the profile gives the 

deviation from the involute. An example of this is shown in Figure 6.5 which shows 

the measured profile. 

The profiles shown in Figure 6.5 are expressed in terms of roll angle which can be 

obtained in terms of the profile traverse coordinate from the involute geometry and the 

position of point C on that involute.  The SAP and STR positions are defined in terms 

of roll angle in the gear geometry specification and it is clear that the specified STR 

position corresponds to the location where the tip relief becomes apparent in the 

involute form removed profile, hdiff. 
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Figure 6.5 – Profile measurement, h, involute fit, hfit, and profile with fit removed, 

hdiff.  Also shown are start positions of active profile, SAP, and tip relief, STR. 

Figures 6.6 and 6.7 show the results of profile measurement for the pinion and wheel 

tooth measurements used for the EHL analysis, respectively, with all plots presented 

in terms of profile traverse position. Frames (a). show the raw profile data 

measurements, and frames (b) show the corresponding profiles after the fitted involute 

form is removed. To obtain the final roughness profile for the EHL analysis two further 

steps are carried out. Firstly the remaining form of the true involute portion is removed 

within the TalyMap roughness software using a 2nd or 4th order polynomial.  An ISO 

standard Gaussian filter is then applied to remove the waviness and produce the 

roughness profile using a standard cut-off of 0.25 mm, which is of the order of the 

Hertzian contact dimension, a. The resulting roughness profiles, shown in frames (c), 

are used for the EHL analysis and they do not show any traces of pitting damage.  

The roughness of the DU gear flanks after running-in is more aggressive than the 

NASA values: For the DU pinion roughness profile shown in Figure 6.6 the roughness 

parameter values of Ra=0.376 μm, and Rq=0.505 μm are obtained, which compare 

with values of Ra=0.214 μm and Rq=0.279 μm for the the NASA pinion. For the wheel 

roughness profile the DU gear has Ra=0.424 μm and Rq=0.563 μm while the NASA 

gear has Ra=0.157 μm  and Rq=0.213 μm. The minimum smooth surface film 

thicknesses are 0.23 μm and 0.48 μm giving minimum lambda ratios of the NASA and 

the DU cases, assessed over complete meshing cycle, of 0.655 and 0.635 respectively.  

h 
hfit 

hdiff 

SAP 
STR 
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Figure 6.6 – Pinion surface roughness: (a) raw data; (b) form removed; 

(c) form removed and Gaussian filter with 0.25 mm cutoff applied 

a) 

 

b) 

 

c) 
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Figure 6.7 – Wheel surface roughness: (a) raw data; (b) form removed; 

(c) form removed and Gaussian filter with 0.25 mm cutoff applied

a) 

 

b) 

 

c) 
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Positioning the roughness profile accurately on the involute for the analysis is possible 

as the position of point C is known.  The surfaces are aligned by specifying a point on 

the roughness profile and providing the corresponding roll-angle of the involute gear 

flank at that particular point. The easiest way to find the roll angle is by using equation 

2.7. The y coordinate is the radius from the centre of the gear to the point of interest: 

      ry   b     cos      sin        (6.1) 

The profiles are set to be in the correct positions at the pitch point where there is no 

sliding and the accurate relative location of asperities is particularly important. 

The graphic representations of Equation 6.1 for the pinion and the gear are plotted in 

Figure 6.8 as solid blue and red lines respectively. The horizontal dashed lines show 

the gear tip radii. The abscissa gives the roll angle of the involute in degrees and the 

ordinate specifies the radius of the circle, which defines the position of the profile from 

the centre of the gear in mm. The labels provide information about the arc length of 

the involute from the base circle and the roll angle in mm and degrees respectively. 

These data are obtained for each integer radius value between the base and the tip 

circles but can be evaluated for any radius. The values are also provided for the gear 

tip circles.  

The last point of the roughness profile corresponds to the tip, therefore, knowing the 

length and spacing of the roughness profile and the arc length of the involute at the tip 

point, the index of the point of interest can be determined as 

   
spacing

alal
  Nindex   

pitip

rough


       (6.2) 

Where Nrough is the size of the rough profile mesh; altip and  alpi are the arc lengths of 

the involute profile at the tip point and the point of interest respectively; spacing is the 

spacing of the rough profile mesh.  
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Figure 6.8 – Pinion (blue) and Gear (red) alignment parameters 

 

However, it is almost impossible to identify the exact tip point, which causes some 

imperfections in aligning profiles. It is not very important at the beginning and the end 

of the meshing cycle due to the high sliding velocity and low load, but at positions 

near the pitch point the load is high and the surfaces move with almost equal velocities, 

i.e. a feature of the pinion flank interacts only with a particular feature of the gear 

flank. 
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6.5. Results of the rough surface contact analysis 

The EHL analysis result when the contact is at the pitch point is shown in Figure 6.9 

where the pressure, film thickness and offset rough surfaces are shown, as before. 

There are three areas that can cause significant numerical problems if the surfaces are 

not aligned properly. The high and lengthy asperity at the pinion surface in zone A, 

shown in red in Figure 6.6, fits perfectly into the deep valley feature of the gear flank 

at x/a = -0.21. In zone B, shown in amber, two massive asperities barely miss each 

other and interact with an appropriate valley of the counter surface at x/a = 0.56. In 

green zone C the high sharp gear surface asperity at x/a = -1 follows the deep valley 

feature at the pinion surface, but does not interfere with it even later on during the 

meshing cycle. In this situation even a 5 μm misalignment can bring the features 

described above into a contact, which causes a rapid rise of pressure beyond the elastic 

limit and numerical difficulties with converging a candidate solution for the current 

timestep as a result. Keeping in mind that the gears of interest were previously used 

for some tests and operated under the similar loads, therefore, all plastic processes took 

place long before the roughness profiles were measured and the contact can be 

expected to be purely elastic. 

Due to the higher roughness the contact itself is clearly split into four subcontacts, 

characterized by the low pressure at the inlet zone and high hydrodynamic pressure at 

the outlet area. 



6-14 
 

 

Figure 6.9 – Pressure distribution (red), film thickness (green), offsets of the surfaces (black) and regime indicator (blue) at pitch point

A B C 
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The contact for the DU gear set is more aggressive than the NASA one, which can be 

seen in Figure 6.10 that shows the number of nodes in a dry contact at each timestep 

of the analysis and in Figure 6.11 which presents the load variation over the meshing 

cycle. 

 

 

Figure 6.10 – Number of nodes in dry contact at each timestep of the analysis 
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Figure 6.11 – Target (black) and rough surface contact (blue) load 

over the meshing cycle 

 

The fatigue analysis results for the two gear flanks are presented in Figures 6.12 to 

6.19 adopting the same format and approach as was adopted for the results in 

Chapter 5. Figures 6.12 and 6.13 show the overall results for the pinion and the gear 

surfaces for the Dang Van fatigue parameter, the Findley fatigue parameter and the 

Fatemi and Socie accumulated damage. 

The contour colours for the plots reflect the magnitude range of the parameter being 

plotted so that in comparing with the magnitude range of the corresponding figures, 

5.19 and 5.20, for the NASA gears where roughness is lower it must be noted that the 

colours may represent different values. Comparing the core values at the position of 

maximum principal shear, the Dang Van fatigue parameters are at similar levels, the 

Findley fatigue parameter is 25% higher in the NASA gears results, and the Fatemi 
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and Socie damage values are of similar order. The peak values occur near the surface 

and in this case the Dang Van and Findley fatigue parameters are approximately 50% 

higher for the DU gears. The Fatemi and Socie damage levels are again of similar 

order. 

The near surface difference can be seen more clearly in the more detailed larger scale 

plots. These confirm the levels of difference given in discussing Figures 6.12 and 6.13, 

above. It is also apparent that there are larger areas which are subject to the highest 

plotted values in each case, for the DU gears. In particular the Fatemi and Socie peak 

damage is higher in the DU gears although in the same order of magnitude range. 

In summary, the core values for the fatigue calculation are higher for the NASA test 

case which operates at a peak Hertzian pressure of 2 GPa compared to 1.3 GPa for the 

Design Unit gears. However, the higher surface roughness for the Design Unit gears 

leads to more aggressive asperity loading and increases the probability of fatigue in 

the near surface layer in spite of the significantly lower Hertzian contact pressure. 
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Figure 6.12 – Pinion: (a) Dang Van and (b) Findley fatigue parameters for 

107 loading cycles and (c) Fatemi and Socie accumulated damage, 10-n,  

indicating fatigue in 10n cycles 

-n 

a) 

 

b) 

 

c) 
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Figure 6.13 – Gear: (a) Dang Van and (b) Findley fatigue parameters for 

107 loading cycles and (c) Fatemi and Socie accumulated damage, 10-n,  

indicating fatigue in 10n cycles 

-n 

a) 

 

b) 

 

c) 
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Figure 6.14 – Pinion: Dang Van fatigue parameters for 107 loading cycles at the 

close proximity to the pinion flank surface 
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Figure 6.14 – Pinion: Dang Van fatigue parameters for 107 loading cycles at the 

close proximity to the pinion flank surface 
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Figure 6.14 – Pinion: Dang Van fatigue parameters for 107 loading cycles at the 

close proximity to the pinion flank surface 
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Figure 6.15 – Gear: Dang Van fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 



6-24 
 

 

Figure 6.15 – Gear: Dang Van fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 6.15 – Gear: Dang Van fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 6.16 – Pinion: Findley fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 6.16 – Pinion: Findley fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 6.16 – Pinion: Findley fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 6.17 – Gear: Findley fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface  
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Figure 6.17 – Gear: Findley fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface  
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Figure 6.17 – Gear: Findley fatigue parameters for 107 loading cycles at the close 

proximity to the pinion flank surface 
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Figure 6.18 – Pinion: Fatemi and Socie accumulated damage, 10-n, at the close 

proximity to the pinion flank surface indicating fatigue in 10n cycles 

-n 

-n 

-n 



6-33 
 

 

Figure 6.18 – Pinion: Fatemi and Socie accumulated damage, 10-n, at the close 

proximity to the pinion flank surface indicating fatigue in 10n cycles 
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Figure 6.18 – Pinion: Fatemi and Socie accumulated damage, 10-n, at the close 

proximity to the pinion flank surface indicating fatigue in 10n cycles 
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Figure 6.19 – Gear: Fatemi and Socie accumulated damage, 10-n, at the close 

proximity to the gear flank surface indicating fatigue in 10n cycles 
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Figure 6.19 – Gear: Fatemi and Socie accumulated damage, 10-n, at the close 

proximity to the gear flank surface indicating fatigue in 10n cycles 
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Figure 6.19 – Gear: Fatemi and Socie accumulated damage, 10-n, at the close 

proximity to the gear flank surface indicating fatigue in 10n cycles 
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Chapter 7 

 

Conclusions and 

Recommendations for future work 

 
 

7.1. Conclusions 

The thesis presents a procedure to: 

 Obtain a transient isothermal numerical EHL solution of the spur gear full 

meshing cycle, employing the Eyring rheological shear-thinning model, to 

accommodate the non-Newtonian behaviour of the lubricant and taking into 

account measured surface roughness of the gear flanks and different types of 

the operating load variation; 

 Calculate elastic stresses at the different stages of the meshing cycle using the 

Fast Fourier Transform numerical technique to reduce computing time; 

 Sort and store loading stress histories for the material of the gear flanks 

effectively; 

 Evaluate the predicted fatigue-life of the gear flanks in contact by a number of 

fatigue theory approaches. 

The work provides a comprehensive description of the EHL problem formulation, 

including the calculations of the geometry and kinematics of the spur gear contact over 

the meshing cycle, the application of the coupled method for solution of the Reynolds 

and the elastic deflection equations. The elastic stress evaluation method is explained 

in detail and verified. In addition some popular multi-axial and cumulative damage 

fatigue theories in the literature are discussed and implemented. 
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The aims of the research itemised in Section 1.8 have all been achived in the software 

developed, and the graphical tools produced have been used extensively in presenting 

the results at all stages of the work. 

The analysis methods have been applied to the extreme conditions adopted in 

endurance testing of gears and give a detailed insight into the interface conditions 

experienced by the gear flank material over all of the meshing cycle. They also allow 

an assessment of fatigue life to be made. 

The results of calculation are presented for two case studies showing that the faster 

speed and smoother NASA Glenn test gears are less likely to fatigue than the slower 

speed and rougher Design Unit ones as expected. However, the NASA Glenn gears 

appeared to have to centres of fatigue: at the surface driven by the combined surface 

roughness and at 0.79 of the half-Hertzian contact dimension as in a dry contact of 

collinear cylinders, which had not been the case in the previous studies of the Cardiff 

Tribology group. The EHL pressure distribution is similar to the parabolic Hertz 

pressure function with moderate oscillations due to the surface roughness. Contact 

analysis of the Design Unit test gears shows a more common picture: the fatigue is 

predicted to happen at the surface due to the gear flanks roughness. The EHL analysis 

results present a mixed lubricated contact, which can be considered as a combination 

of the simultaneous EHL contacts. Therefore, the fatigue-life is predicted to be lower 

due to the heavier interaction of the surfaces. 

 

7.2. Recommendations for future work 

The method presented in this thesis is based on the previous studies, which were 

proved correct by a series of tests. However, the combination of those methods is novel 

and was never investigated experimentally. Therefore, the obvious development of 

study would be to obtain test data and compare it with the simulation results. 

The suggested development of the software would include: (i) elastic-plastic EHL 

analysis, rather than just elastic one employed now; (ii) improvement of the surface 

roughness processing and aligning technique; (iii) including a thermal analysis in the 

EHL solution. 
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At the current stage, the algorithm cannot accommodate plastic behaviour of the gear 

flank material, resulting in the unrealistically high pressure values and the 

unreasonable change of the lubricant properties instead of the permanent change of the 

surface geometry. Some early attempts to incorporate the plastic deformation treating 

it as a permanent surface profile change of the same magnitude as the elastic response 

to the excess pressure were investigated and some results were obtained, but the 

timeline of the project did not allow this to be developed to the stage of experimental 

testing of the process.. 

The importance of accurate alignment of the surface roughness was emphasised in 

Chapter 6. Currently, the final tuning is done by a trial and error method, which is time 

consuming and requires a high level of expertise. Therefore, the process requires some 

simplification and better tools to identify the position of the filtered roughness data to 

the gear flank. 

The accuracy of the measured data is limited by the hardware. The Talysurf probe 

measures roughness perpendicular to the profile traverse direction rather than 

perpendicular to the gear flank surface which produces an error that could be corrected.  

The thermal analysis would increase the accuracy of the EHL solution and provide an 

opportunity to include the thermal stress calculations, which may be important in terms 

of the plastic yielding and crack propagation processes. 
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Appendix A – MatLAB code 

 

 

A.1. Plotting the EHL Results 

% setting directory and file type  

folder='E:\Chapter 5\'; ext='.txt'; 

  

% timestep sequence to plot 

first=9000;step=1;last=11000; 

  

% pressure axis set up in GPa 

prmin=0;prstep=.5;prmax=4; 

% film thickness axis set up in μm 

filmmin=0;filmstep=.5;filmmax=4; 

% horizontal axis set up in x/a 

xup=-1.5;xstep=.25;xdown=1.5; 

  

% creats a figure 800x800 pixels and white background 

fig=figure; 

set(fig, 'Position',[1, 1, 800, 800]); 

set(fig, 'Color','white'); 

 

for n=first:step:last    

  

    % reads data from files 

    name=num2str(n,'%06d'); 

    full_name=strcat(folder,name,ext); 

    toplot=dlmread(full_name);   

    dx=abs(toplot(2,1)-toplot(1,1)); 

  

    % creates three subplots 

    sub1=subplot(3,1,1); 

    sub2=subplot(3,1,2);  

    sub3=subplot(3,1,3); 

 

  

    % plots pressure and film thickness in subplot one 

    [ax,pr,he]=plotyy(toplot(:,1),toplot(:,2),toplot(:,1),toplot(:,3),'Parent',sub1); 
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    % formats subplot one 

    set(ax,'Layer','top'); 

    set(ax,'TickDir','out'); 

    set(ax(1),'YMinorTick','on'); 

    set(ax(2),'YMinorTick','on'); 

    set(ax,'XAxisLocation','top'); 

    set(ax,'XMinorTick','on'); 

    set(ax(1),'YMinorGrid','on'); 

    set(ax,'XMinorGrid','on'); 

    set(ax,'XGrid','on'); 

    xlabel('\itx\rm/\ita\rm','Parent',sub1); 

    set(ax(1),'YGrid','on'); 

    set(ax(1),'Ylim',[prmin,prmax]); 

    set(ax(2),'Ylim',[filmmin,filmmax]);     

    set(ax(1),'YTick',[prmin:prstep:prmax]); 

    set(ax(2),'YTick',[filmmin:filmstep:filmmax]); 

    set(ax,'Xlim',[xup,xdown]);  

    set(ax,'XTick',[xup:xstep:xdown]);   

    set(ax(1),'YColor','red'); 

    set(ax(2),'YColor',[0 0.4 0]); 

    set(get(ax(1), 'Ylabel'), 'String', 'Pressure/GPa'); 

    set(get(ax(2), 'Ylabel'), 'String', 'Film thickness/\mum');  

    set(pr,'Color','red'); 

    set(he,'Color',[0 0.4 0]); 

    set(pr,'LineWidth',1.5); 

    set(he,'LineWidth',1.5);   

  

    % plots offsets of flanks in subplot two    

    

offsets=plot(toplot(:,1),toplot(:,4),toplot(:,1),toplot(:,5),'Parent',sub2,'LineWidth',1.5,'

Color', 'black'); 

  

    % formats subplot one 

    set(sub2,'XLim',[xup,xdown]); 

    set(sub2,'XTick',[xup:xstep:xdown]); 

    set(sub2,'YTick',[]); 

    set(sub2,'YLim',[min(toplot(:,4))-5,min(toplot(:,4))+5]); 

    set(sub2,'TickDir','out'); 

    set(sub2,'XTickLabel',[]); 

    set(sub2,'XTick',[]); 

  

    % plots regime indicator in subplot three  

    ind=bar(toplot(:,1),toplot(:,6),'Parent',sub3); 

 

     

    %f ormats subplot three 

    set(sub3,'XTick',[xup:xstep:xdown]); 

    set(sub3,'XLim',[xup,xdown]); 

    set(sub3,'YLim',[-1, 1]); 

    set(sub3,'YTick',[]); 
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    set(sub3,'XMinorTick','on'); 

    set(sub3,'TickDir','out'); 

    xlabel('\itx\rm/\ita\rm','Parent',sub3); 

  

    % sets fonts 

    set(sub1,'FontName','Times New Roman'); 

    set(sub1,'FontSize',16); 

    set(ax(2),'FontName','Times New Roman'); 

    set(ax(2),'FontSize',16); 

    set(sub3,'FontName','Times New Roman'); 

    set(sub3,'FontSize',16); 

     

    % sets size of subplots   

    set(sub3,'Position',[0.1, 0.09, 0.8, 0.02]); 

    set(sub2,'Position',[0.1, 0.1, 0.8, 0.298]); 

    set(sub1,'Position',[0.1, 0.4, 0.8, 0.53]); 

     

    % rasterises figure and saves it as jpeg in same directory 

    % using timestep id as name of file 

    frame=getframe(fig); 

    im = frame2im(frame); 

    [A,map] = rgb2ind(im,256);  

    pic_name=strcat(folder,name,'.jpg'); 

    imwrite(A,map,pic_name,'jpg'); 

     

end   

 

 

A.2. Plotting the roll-angles to fit the roughness 

% Declaration of function with four arguments: 

% rbp and rap are base and addendum radii of pinion 

% rbp and rap are base and addendum radii of gear 

function rollangle(rbp, rap, rbg, rag) 

  

clear xinvp yinvp lnrap  xinvg yinvg lnrag gamma sum; 

  

% calculating involute coordinates 

for gamma=1:350000 

    gr=degtorad(gamma/10000); 

    A=[sin(gr),-cos(gr);cos(gr),sin(gr)]*[1; gr]; 

    xinvp(gamma)=rbp*A(1,1); 

    yinvp(gamma)=rbp*A(2,1); 

    xinvg(gamma)=rbg*A(1,1); 

    yinvg(gamma)=rbg*A(2,1); 

end 
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% setting tooth tip horizontal line  

lnrap(1:max(size(xinvp)))=rap; 

lnrag(1:max(size(xinvg)))=rag; 

gamma=1:350000; 

gamma=gamma/10000; 

  

% creating a figure 800x800 pixels and white background 

fig=figure; 

set(fig, 'Position',[1, 1, 800, 800]); 

set(fig, 'Color','white'); 

  

% plotting involutes and tip lines 

sub=subplot(1,1,1); 

radp=line(gamma,yinvp,'Parent',sub,'LineWidth',1,'Color', 'blue'); 

radg=line(gamma,yinvg,'Parent',sub,'LineWidth',1,'Color', 'red'); 

addp=line(gamma,lnrap,'Parent',sub,'LineWidth',1,'Color', 'blue','LineStyle', '--'); 

addg=line(gamma,lnrag,'Parent',sub,'LineWidth',1,'Color', 'red','LineStyle', '--'); 

  

% formating plot 

set(sub,'XLim',[0,35]); 

set(sub,'XTick',0:5:35); 

set(sub,'XTickLabel',0:5:35); 

set(sub,'YLim',[73,86]); 

set(sub,'YTick',73:86);    

set(sub,'TickDir','out'); 

set(sub,'YMinorTick','on'); 

set(sub,'XMinorTick','on'); 

set(sub,'XMinorGrid','on'); 

set(sub,'XGrid','on'); 

set(sub,'YMinorGrid','on'); 

set(sub,'YGrid','on'); 

xlabel('Roll-angle / deg','Parent',sub); 

ylabel('Gear radius / mm','Parent',sub); 

 

% calculating arc lengths and adding markers and text for pinion 

n=ceil(rbp); 

while n<=ceil(rap)     

  

    if n~=ceil(rap) 

        rtarg=n; 

    else 

        rtarg=rap;n=rap; 

    end 

    i=2;arc=0;  

    while yinvp(i)<rtarg 

        dx=xinvp(i)-xinvp(i-1);dy=yinvp(i)-yinvp(i-1); 

        arc=arc+sqrt(dx*dx+dy*dy); 

        i=i+1; 

    end 
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    txt=sprintf('%7.4f mm\n%7.4f',arc,gamma(i-1)); 

    line(gamma(i-1),n,'Parent',sub,'Marker','o','MarkerEdgeColor', 'blue',' 

MarkerFaceColor', 'blue','MarkerSize',6,'LineStyle', 'none'); 

    text(gamma(i),n,[txt,'\circ'],'HorizontalAlignment','left','Color','blue','FontName', 

'Times New Roman','FontSize',14) 

    n=n+1;   

end 

 

 

 

% calculating arc lengths and adding markers and text for gear 

n=ceil(rbg); 

while n<=ceil(rag)     

  

    if n~=ceil(rag) 

        rtarg=n; 

    else 

        rtarg=rag;n=rag; 

    end 

    i=2;arc=0;  

    while yinvg(i)<rtarg  

        dx=xinvg(i)-xinvg(i-1);dy=yinvg(i)-yinvg(i-1); 

        arc=arc+sqrt(dx*dx+dy*dy); 

        i=i+1; 

    end 

    txt=sprintf('%7.4f mm\n%7.4f',arc,gamma(i-1)); 

    line(gamma(i-1),n,'Parent',sub,'Marker','o','MarkerEdgeColor', 

'red','MarkerFaceColor', 'red','MarkerSize',6,'LineStyle', 'none'); 

    

text(gamma(i),n,[txt,'\circ'],'HorizontalAlignment','right','Color','red','FontName','Tim

es New Roman','FontSize',14) 

    n=n+1;   

end 

  

end 
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