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ABSTRACT

Oscillatory activity in the beta range, in human primary motor cortex (M1), shows interesting dynamics that are
tied to behaviour and change systematically in disease. To investigate the pathophysiology underlying these
changes, we must first understand how changes in beta activity are caused in healthy subjects. We therefore
adapted a canonical (repeatable) microcircuit model used in dynamic causal modelling (DCM) previously
used to model induced responses in visual cortex. We adapted this model to accommodate cytoarchitectural
differences between visual and motor cortex. Using biologically plausible connections, we used Bayesian model se-
lection to identify the best model of measured MEG data from 11 young healthy participants, performing a simple
handgrip task. We found that the canonical M1 model had substantially more model evidence than the generic ca-
nonical microcircuit model when explaining measured MEG data. The canonical M1 model reproduced measured
dynamics in humans at rest, in a manner consistent with equivalent studies performed in mice. Furthermore, the
changes in excitability (self-inhibition) necessary to explain beta suppression during handgrip were consistent
with the attenuation of sensory precision implied by predictive coding. These results establish the face validity of
a model that can be used to explore the laminar interactions that underlie beta-oscillatory dynamics in humans
in vivo. Our canonical M1 model may be useful for characterising the synaptic mechanisms that mediate pathophys-

iological beta dynamics associated with movement disorders, such as stroke or Parkinson's disease.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Introduction

There is increasing interest in studying oscillations as a marker
of brain function. Neuronal oscillations in the beta frequency range
(15-30 Hz) in primary motor cortex (M1) are fundamental for motor
control (Engel and Fries, 2010) and are a putative biomarker of patho-
physiology in conditions like Parkinson's disease.

Magnetoencephalography (MEG) studies have shown that volun-
tary movement is associated with a systematic reduction in power of
beta oscillations (movement-related betadesynchronisation, MRBD) in
M1, which rebounds following movement cessation (post-movement
beta rebound, PMBR) (Salmelin and Hari, 1994). The characteristics
of beta oscillations change with healthy ageing (Rossiter et al., 2014a)
and in disease states such as stroke (Rossiter et al., 2014b) and Parkinson's
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disease (Brown, 2006). An understanding of the mechanisms underlying
these changes may therefore provide novel therapeutic opportunities
(Ward, 2015a,b).

In this paper, we show how a biophysical (neuronal mass) model
facilitates the investigation of the laminar interactions underlying non-
invasive measurements of neuronal oscillations from primary motor
cortex (M1) in humans. Insights into cortical microcircuit dynamics in
M1 to date have come from in vitro intra- and extracellular recordings
in animals. From this work, the dominant (interlaminar) pathway in
the cortical column appears to be from superficial to deep pyramidal
cell layers (Weiler et al., 2008). Excitation of the deep pyramidal layer
(Yamawaki et al., 2008) or possibly synchronous hyperpolarisation of
superficial and deep pyramidal layers (Lacey et al., 2014) gives rise to
beta oscillations. In both cases, recurrent interactions with inhibitory
interneurons are important, as is the case for gamma oscillations
(Traub et al., 2001).

We applied dynamic causal modelling (DCM) to MEG data acquired
from humans. We focused on the spectral characteristics of a single
source within M1 in order to model underlying neuronal activity in
terms of specific cell populations within a typical motor cortical column.

1053-8119/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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DCM then allows one to infer (i.e., estimate) synaptic and connectivity
parameters associated with neuronal these sources (Moran et al.,
2008, 2011, 2013).

Recently, advances have been made in DCM towards developing a
canonical (repeatable) microcircuit model. This model has been
developed under the dual constraints of complying with known intrinsic
architecture within microcircuits and, at a functional level, is consistent
with the computational anatomy of hierarchical Bayesian filtering
(e.g., predictive coding) (Bastos et al., 2012). The nature of this model
means it can explain cortical dynamics over a wide range of sensory
brain areas (Bastos et al., 2012). However, the canonical microcircuit
(CMC) model may not be appropriate for M1, given the cytoarchitectonic
differences between such areas and M1 (Shipp, 2005). Our primary goal
was to construct a canonical model taking account of known M1-
specific microstructural characteristics and then, through Bayesian
model comparison, determine the specific model architecture most likely
to account for movement-related alterations in measured beta-band
oscillations from M1. We used the ensuing model to examine laminar
connectivity in human M1 (in comparison to known findings from ro-
dent M1) and, in particular, test for a dominant descending excitatory
drive through the connection from superficial to deep pyramidal layers
at rest, empirically observed in previous animal studies (Weiler et al.,
2008). Finally, we explored alterations in laminar connectivity during
movement-related changes in beta oscillations. This series of analyses
establish the face and construct validity of a canonical model for M1
activity that we hope will be useful in future DCM studies of pathophys-
iology, particularly in conditions that are associated with abnormal beta
dynamics.

Methods
Participants

Eleven healthy participants took part (mean age 24.7 + 1.6 years, 7
female, 2 left handed). Full written consent was obtained from all
participants in accordance with the Declaration of Helsinki. The study
was approved by the Joint Ethics Committee of the Institute of Neurology,
UCL and National Hospital for Neurology and Neurosurgery, UCL Hospitals
NHS Foundation Trust, London.

Motor task

Participants performed visually cued dominant hand isometric
handgrips using a force sensitive manipulandum during simultaneous
MEG and electromyography (EMG) recording. Maximal voluntary
contraction was recorded prior to scanning and subjects were then
asked to perform visually cued handgrips at 30% MVC. Subjects
performed 60 handgrips lasting 4 s each with an interstimulus interval
ranging between 4 and 7 s.

MEG recording

MEG signals were recorded during the handgrip task from a whole-
head CTF Omega 275 MEG system (CTF, Vancouver, Canada), at a sam-
pling rate of 600 Hz. Pre-processing of the data were performed offline
in SPM12 (Wellcome Trust Centre for Neuroimaging, www.fil.ion.ucl.
ac.uk/spm) (Litvak et al., 2011). Data were filtered from 2 to 100 Hz
and epoched from —1 s to +5 s, where time 0 indicated the onset of
visual cue. Artefacts from eye blinks and muscle contractions were
identified by visual inspection, and corrupted trials were excluded
from analysis. Power-line artefacts at 50 Hz were estimated and
subtracted from the data, and epochs containing artefacts were removed
with a semi-automatic artefact rejection protocol, based on a variance
threshold.

Data processing and analysis

To extract the spectral activity of M1 for subsequent dynamic causal
modelling, we first estimated source activity in M1 using standard
beamforming procedures: lead fields were computed using a single
shell model, with a template inner skull canonical mesh being affine-
transformed to fit MEG fiducials (nasion, left, and right pre-auricular).

Beta-band (15-30 Hz) power changes were localised using the line-
arly constrained maximal variance (LCMV) beamformer (Hillebrand
and Barnes, 2005). This method projects sensor data using a linearly
spatial filter derived from the lead-field of the source of interest and
data covariance. The data covariance matrix was computed using
three conditions (Rest, Mid-Grip and Post-Grip). The Rest time window
was taken from — 1 s to 0 s with 0 as the onset of the visual cue to move.
The Mid-Grip time window was from 1.0 s to 2.0 s following the visual
cue onset. The Post-Grip time window was from 4 s to 5 s following the
visual cue onset. In short, we used the same (global) filter (Brookes
et al., 2008) to estimate the induced responses in three distinct time
windows.

Volumetric statistical parametric maps (SPMs) of the t-statistic were
computed for each subject using a grid spacing of 10 mm. At each loca-
tion, the source orientation was taken to be in the direction yielding
maximal signal variance. The source signal was then extracted from
the location of peak change in beta power (15-30 Hz) within the prima-
ry motor cortex contralateral to the moving (dominant) hand (Sekihara
et al,, 2004). From these t-statistic images, we extracted the source sig-
nal from the location of peak change in beta power (15-30 Hz) within
the primary motor cortices contralateral to the moving hand. Morlet-
wavelet time-frequency analysis was used to explore the changes in
beta across a trial from these locations, data were epoched again in
order to visualise changes before and after the movement using the
time window — 1 s to + 5 s. The spectrograms were rescaled in order
to show percentage change from baseline (— 1 to 0 s) and averaged
across trials.

The extracted data were then treated as a ‘virtual electrode’, from
which data could be modelled in 5-45 Hz frequency range. The data
were re-epoched from —1sto0s (rest), 1sto2s (grip),4sto5s
(post-grip), and concatenated (Barnes et al., 2004). Data were truncated
between 5 and 45 Hz after inspection showed the majority of
behaviourally tied spectral changes occurred within this range.

Dynamic causal modelling (DCM)

Biophysical DCMs of canonical cortical microcircuits are used to infer
synaptic mechanisms that underlie event or induced responses—or
changes in the spectral characteristics of neural oscillations (Moran
et al., 2009, Moran et al., 2011). Dynamic causal models of this sort
allow empirical data from invasive (e.g., LFP/ECoG) or noninvasive
(M/EEG, fMRI, NIRS) recordings to be used to characterise the neuronal
interactions and architectures that generated them. This approach has
been validated using local field potentials recorded in animal prepara-
tions where independent pharmacological/microdialysis assays have
served to corroborate the modelling results (Moran et al., 2011). To
date, the canonical microcircuit used in this type of DCM has been
based largely on the known laminar architecture and intrinsic connec-
tivity of sensory cortex and has been used in studies of primary visual
cortex (V1) (Fig. 1A), (Moran et al., 2009; Bastos et al., 2012).

Here, we wish to study synaptic mechanisms in primary motor cor-
tex (M1). The laminar architecture of M1 differs substantially from that
of V1. M1 is mostly described as agranular, containing cell types with
differing electrophysiological characteristics (Brodmann and Garey,
1999); however, recent evidence has emerged of a functional layer 4
in mice at the layer 3/5 A border (Yamawaki et al., 2014). M1 also has
different inputs (Shepherd, 2009) and different interlaminar connectiv-
ity to V1, with dominant superficial to deep interlaminar pathways
(Anderson et al., 2010; Weiler et al., 2008; Yu et al., 2008). These
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Fig. 1. (A) Reduced CMC model before adaptations for M1. Pyramidal populations are shown as black triangles, the inhibitory subpopulation as a red circle, with the star representing spiny
stellate cells. (B) M1 model space. Solid lines represent connections highly likely to be present based on the anatomical literature. Pyramidal populations are shown as black triangles and
the inhibitory subpopulation as a red circle. Black lines represent glutamatergic projections, red lines represent GABAergic projections. Dotted lines represent connections investigated
using model comparison. All combinations of dotted connections were tested with Bayesian model comparison. Es: Superficial input, Em: Middle input, Ed: Deep input; all inputs are

scaled mixtures of pink and white noise to form biophysically plausible inputs.

connectivity architectures provide important constraints on the DCMs
used to model observed responses. A full mathematical description of
the use of microcircuit dynamics within a DCM framework can be
found in Moran et al. (2011), and Friston et al. (2012). Here, we will
review the basic ideas and challenges posed in the current setting.

In brief, the generative model used by DCM consists of two parts:
(i) the neuronal model, which comprises differential equations that
prescribe average ensemble dynamics, specifically mass firing rates
and postsynaptic membrane potentials which are themselves depen-
dent on defined connectivity and physiological parameters and describe
activity at the mesoscopic level, and (ii) an observation model mapping
these hidden neuronal states (source-level activity) onto observed
electrophysiological responses at the sensor level. Here, given our extrac-
tion of a time series from a virtual electrode in M1 (using beamforming),
this observation model is simply a gain parameter that controls the
amplitude matching from model to real data.

The neuronal model is effectively a neural mass (state space) model
based on differential equations that effectively model linear or nonline-
ar synaptic convolutions of presynaptic input within several coupled
neuronal populations (i.e. neural masses). Here, each neuronal subpop-
ulation was modelled with two transformations: the convolution of
presynaptic input to generate postsynaptic depolarisation and the
(nonlinear) transformation of depolarisation to spiking output. The
first transformation (presynaptic spiking to postsynaptic potentials) is
equivalent to convolving a synaptic alpha kernel (either inhibitory or
excitatory) with incoming spikes. The latter (postsynaptic potentials
to spiking) transformation is approximated using a sigmoid activation
function, which models a nonlinear transformation of voltage to spike
rate, averaged over an ensemble of neurons.

The precise architecture of this model is defined by the form of the
differential equations and the parameters encoding connection
strengths and synaptic time constants. Both the structure and values
of these parameters are estimated (using Bayesian model selection
and inversion respectively). Model identification and estimation involve
computing a posterior distribution over models and their parameters,
given empirical data. An important aspect of this modelling rests on
the prior distributions over the model parameters, which constrain the
ranges that they can take and the dynamics the model can generate or
explain. The prior expectations (i.e. means) of the intrinsic connections
(see supplementary appendix) were chosen to generate high-frequency
activity in the superficial pyramidal cells, relative to the deep pyramidal
cells. This was motivated by multiple neurophysiological studies that
have observed this spectral dissociation between superficial and deep
layers of the cortical column in different cortical areas (Bollimunta
et al,, 2011; Buffalo et al,, 2011, Maier, 2010, Roopun et al., 2006, Smith
et al, 2012, Van Kerkoerle et al. 2014 and Xing et al., 2012).

Oscillatory activity is modulated by activity at both excitatory and
inhibitory synapses where the respective effects are modelled by intrin-
sic connectivity (gamma) parameters that mimic the effective strength

of these synapses at an average level (Wilson and Cowan, 1972). In
previous DCM studies, these quantities have been shown to reflect neu-
rotransmitter density and synaptic efficacy (Moran et al.,, 2011, 2013).
Parameters associated with connections originating from excitatory
populations represent glutamatergic projections, and inhibitory popula-
tions target GABAergic receptors.

The model used in this analysis comprised four subpopulations, with
three pyramidal layers spatially distributed in superficial, middle, and
deep layers, with diffuse inhibitory connectivity throughout (Fig. 1B).
This neural model shares the same mathematical framework as the
model used by Moran et al. (2013) for DCM of visual cortex but had
equations and parameters adapted to reflect differences between prima-
ry visual and motor cortex. This entailed changing connectivity priors,
signal contributions from subpopulations, and differences in afferent
inputs (Shepherd, 2009); as well as changes to free parameters to ac-
count for differences in motor cortex physiology (e.g., synaptic time
constants).

While the motor cortex is described as agranular, cells at the layer
3/5 A border exhibit properties that suggest the presence of a functional
layer 4 (Yamawaki et al., 2014). Motor cortex layer 3/5 A cells are at a
comparable cortical depth to Layer 4 in sensory cortex, (Shepherd,
2009; Weiler et al., 2008; Yamawaki et al., 2014), and so we maintained
the middle pyramidal cell population from the CMC model. Middle py-
ramidal cells in M1 also receive thalamic input similar to that of Layer 4
(Shepherd, 2009; Yamawaki and Shepherd, 2015) and project to super-
ficial layers in a similar fashion to Layer 4 cells (Shepherd, 2009; Weiler
etal., 2008; Yamawaki et al., 2014). The model contained distinct inputs
to each layer, after recent findings showed that all three layers receive
thalamic input as well as input from other cortical areas in mice
(Hooks et al., 2013). Key model parameter priors are provided in the
supplementary appendix. Decisions to include or remove connections
between subpopulations were based on studies of intralaminar M1
architecture in rodents (Anderson et al., 2010; Brecht et al., 2004;
Hooks et al., 2013; Weiler et al., 2008) and subsequent Bayesian model
selection between biologically plausible variations, as described below.

Mathematically, the neural mass model comprises pairs of first-
order linear differential equations for each subpopulation of form:

1. kv =X|
2. X = KU—2KX;—K2xy
3. U = yS(Xvpresynaptic) +E

The column vectors Xv and Xi represent mean voltages and currents,
respectively, with each element corresponding to a specific subpopula-
tion. The equations model a convolution of a subpopulation's presynap-
ticinput (U) to produce a postsynaptic response. The rate constant (k) is
the inverse of a lumped parameter that accounts for all membrane and
dendritic time delays. Interlaminar delays were modelled using a Taylor
expansion of the system's Jacobian (Kiebel et al., 2006), where interlam-
inar delays had a prior expectations of 1 ms. Each subpopulation receives
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two presynaptic inputs, an endogenous component (E) which comprises
a mixture of white and pink noise, and a scaled input of ensemble firing
from laminar contributions from different subpopulations. These firing
rates are transformed via a sigmoidal function (slope = 2/3) to model
membrane depolarisation (Moran et al., 2009).

The intrinsic connectivity parameter priors (Gs) are extremely
important parameters that control the time constants of neuronal
transients (in ERP models) and have a profound effect on the spectral
responses (in models of cross spectral density). This is because they
play the role of rate or time constants. The particular values in the
CMC model have been optimised over several iterations to produce
the sorts of frequencies that are seen empirically. Extrinsic inputs into
the cortical column are a combination of white and pink noise to repre-
sent a physiologically representative frequency profile of non-specific
neuronal activity. Such frequency profiles are characterised by 1/f
(pink) noise and are found ubiquitously within the brain (Bédard
et al., 2006; Bédard and Destexhe, 2009, Allegrini et al., 2009).

The model outputs are a mixture of the depolarisation for each
subpopulation. Due to the tangential orientation of pyramidal dendrites,
as well as the large disparity in size and hence conductance characteris-
tics of deep layer Betz cells in M1, the contribution of each subpopulation
is optimised during model inversion or fitting. The implicit observer
function also comprises channel noise and amplifier gain components.
The prior contributions to measured signal were 20% for the superficial
and middle pyramidal layers and 60% for the deep pyramidal layer, due
to the morphological differences between Betz cells in deep layers and
other pyramidal cells. These priors were selected for to represent
differences in conductance between such cells. Contributions to mea-
sured signals are optimised during model inversion.

The model was then inverted given measured data from each partic-
ipant, to reduce an estimate of (or posterior density over) and their
model parameters. This inversion uses a standard variational Laplace
scheme to minimise free energy (a bound to the log model evidence)
as described in (Friston and Stephan, 2007). The ensuing variational
free energy provides approximation to log model evidence that is used
for comparing different models.

Bayesian model comparison

Model comparison enables one to evaluate the evidence for one
model relative to competing models. For a full description of Bayesian
model comparison see (Friston and Penny, 2011). In brief, the procedure
compares models using their free energy as a proxy for model evidence
(Friston and Stephan, 2007). By comparing the degree to which different
models minimise free energy, we may evaluate the best model in a given
model space. Generally, a difference of three or more in the free energy
(or log evidence) between two models is taken as strong evidence for
one model over the other (i.e., a likelihood ratio of exp(3):1 or 20:1).

We used Bayesian model comparison to compare alternative biolog-
ically plausible model structures. An anatomically based model space
was constructed, based on electrophysiological data from animal
models (Anderson et al., 2010; Brecht et al., 2004; Hooks et al., 2013;
Weiler et al.,, 2008). These core connections were present in all models
and all possible combinations of other (biologically plausible) connec-
tions were considered (Fig. 1B). Whenever a connection was included
in the model, we also allowed for condition-specific changes in the
connection. We also tested our model against the CMC model described
in Moran et al. (2013). Dynamic causal modelling was implemented
using the SPM8 software in MATLAB, and the practical procedure is
fully described in Litvak et al. (2011).

Statistical analysis
Parameter estimates were generated by model inversion. Gamma

parameters represent connection strength at rest, while beta parame-
ters represent changes in connection strength between conditions.

The beta parameters modelled in this case pertained to the change in
relative connection strength from rest to grip and rest to post-grip.

Parameter estimates were evaluated across subjects, using a paramet-
ric approach. The significance of particular (changes in) connections was
determined by one-sampled t-tests across subjects and correction for
multiple comparisons was performed using the Benjamini and Hochberg
false discovery rate (Benjamini and Wei, 1999). This assesses the strength
of (changes in) connectivity in relation to intersubject variability.

Results
MEG source localisation and power changes

The time-frequency spectrogram averaged over all subjects is
shown in Fig. 2. The location of the peak change in beta power for
each subject is shown in Fig. 3. A clear desynchronisation of power is
seen during grip, and restoration of beta power (above baseline) was
seen following movement termination, as expected.

Model selection

All configurations of connections were tested against each other, and
the CMC model using Bayesian model comparison (Fig. 4A). We tested
for a number of connections for which evidence in animal models was
weak or absent. This analysis supported the inclusion of a connection
from deep to superficial pyramidal layers, but not reciprocal connec-
tions between middle and deep layers. The metric used to appraise
model space was log evidence. The interpretation of such a metric is de-
pendent on the Bayes Factor (BF), whether providing weak (BF < 3),
positive (3 < BF < 20), strong (20 < BF < 150), or very strong
(BF > 150) evidence for preferring one model over another is the basis
for the calculation of model evidence. Strong evidence in favour of one
model thus requires the difference in log evidence to be three or more
(Penny et al., 2004). Bayes factor is simply the exponential of the
difference in log evidences. The winning model, with 14 connections,
had a relative log evidence of over 10,000 (Fig. 4B, 4C) (Kass and
Raftery, 1995). The majority of motor cortex models had substantially
more model evidence than the CMC model (Fig. 4A).

Model parameter estimates

All further analyses were performed under the winning model
shown in Fig. 4C. Intrinsic connections are those between populations
of cells within the cortical column and their (gamma) parameters repre-
sent effective connection strength (i.e., log scaling relative to their prior
values). The parameterisation of connectivity in the neural mass models
used in DCM renders connections either excitatory or inhibitory. The pa-
rameters of the DCM determine the strength of (excitatory or inhibitory)
connections by optimising these log scale parameters. In other words,
the connection strength is modulated by the (positive) exponential of
the parameter. This means a negative log scale parameter implies the
connectivity is less than the prior mean (or weaker than expected),
while a positive parameter means the connection strength is greater. In
pyramidal populations, higher parameter estimates indicate stronger
effective connections (the ability of one subpopulation to modulate the
activity of another) that are excitatory in nature. Negative parameter es-
timates represent weaker excitatory pathways, not inhibitory pathways.
Inhibitory pathways are modelled as separate projections from a distinct
inhibitory subpopulation, where higher parameter estimates represent
stronger inhibitory pathways, and negative inhibitory parameter
estimates represent weaker inhibitory pathways.

The results for intrinsic connectivity are shown in Fig. 5A and B. A
significant positive parameter estimate (strong pathway) was seen for
the superficial to deep pyramidal layers. Negative parameter estimates
(weaker pathways) were seen for the reciprocal connections between
the inhibitory and superficial pyramidal subpopulations and for the
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Fig. 2. Group average time-frequency spectrogram showing changes in spectral power from primary motor cortex before, during and after hand grip for a single trial. The trial constituted a
second of rest, followed by 4 s of grip, and 1 s post-grip and a jittered inter-trial interval of between 3 and 7 s. The visual cue to perform a hand grip was presented at 0 s. The colour indicates
percentage change in power in comparison to rest (pre-grip) with red representing an increase, and blue a decrease in power compared to rest.

middle pyramidal to inhibitory subpopulation connection. Full parame-
ter means and statistics are included in the supplementary appendix.

We then went on to examine how connection strength was altered
during and after handgrip. Our results demonstrated that in comparison
to rest, hand grip resulted in an increase in the connection from deep to
superficial pyramidal layers, as well as the reciprocal connections
between superficial and middle pyramidal layers, together with an
increase in the middle layer self connection (Fig. 5C, D). In comparison
to the resting state, release of handgrip resulted in an increase of input
into superficial and in particular, deep layers (Fig. 5E, F).

Discussion

In this study, we set out to create a biologically plausible model that
can accurately reproduce measured oscillatory dynamics in primary
motor cortex of human subjects. Furthermore, because the model
features are neurobiologically motivated, this approach can provide a
mechanistically meaningful explanation for oscillatory dynamics. Previ-
ously, the CMC model used for DCM of M/EEG (Bastos et al., 2012) has
proven successful in modelling activity in visual cortex (Bastos et al.,
2012, 2015; Moran et al., 2013; Muthukumaraswamy et al., 2013).
However, given the known differences between primary motor and
visual cortex, we reasoned that a number of principled changes to the
model architecture were required to allow data from M1 to be modelled
appropriately.

The spiny stellate population in the CMC model was removed. A fur-
ther pyramidal population was added in middle layers and the cortical
depth function altered, as we required a middle pyramidal population
to receive input. A middle population was retained, despite the widely
held view that M1 is agranular and lacks a functional Layer 4. This posi-
tion was motivated by recent findings describing a functional M1 layer
4 in mice (Yamawaki et al., 2014). The ensuing model comprised 3 pyra-
midal populations, in Layers 2/3, Layer 5 A, and Layer 5B and a population
of inhibitory interneurons. Changes to the model parameterisation also
reflected the different relative contributions of laminar-specific subpopu-
lations to measured signal; i.e., from large Betz cells in deep layers of M1.

Evidence from Weiler et al., 2008 led us to retain the reciprocal
connections between the superficial and middle layers. The inhibitory
connections were altered (in relation to the CMC model) so that an in-
hibitory population was reciprocally connected to all three pyramidal
populations. This enabled us to model distributed inhibitory interneu-
rons in M1 (Tokuno, 2000). Distinct inputs into each lamina were
modelled due to evidence in mice from Hooks et al., 2013, showing
sensory thalamus targets layers 2/3, 5 A and motor thalamus targets
L5B. In addition, these authors show inputs from other cortical areas
(such as M2 and orbital cortex) also target these three layers.

The final change, motivated by literature, was the inclusion of a con-
nection from the superficial subpopulation to the deep subpopulation.
This was due to the well-documented dominant superficial to deep
pathways present in M1 in animals (Anderson et al., 2010; Weiler
et al., 2008; Yu et al., 2008).

Fig. 3. ‘Glass brain’ showing the peak co-ordinates of beta (15-30 Hz) power change between rest and grip in contralateral sensorimotor cortex. Left-handed participants have had their
MNI co-ordinates flipped in the sagittal plane to show all participants in the same hemisphere.
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tested M1 models had significantly more model evidence than the inherited reduced CMC model. (B) Posterior probability of winning M1 model. (C) Connectivity diagram of winning
anatomical model based on log evidence (Model 1—Relative log evidence >10,000) (Es: superficial input, Em: middle input, Ed: deep input; all inputs are scaled mixtures of pink and

white noise to form biophysically plausible inputs.)

Having established this basic motor cortex model, we investigated the
presence of 3 hypothetical connections. These were reciprocal connec-
tions between the deep and middle pyramidal populations, and a connec-
tion from the deep to the superficial pyramidal populations. All
combinations of these connections were investigated (see Fig. 1B). Bayes-
ian model selection found evidence for the connection from deep to su-
perficial layers, but not for connections between middle and deep
layers. The model was also tested against the original microcircuit
model upon which it was based (Fig. 1A), with the majority of models (in-
cluding less competitive M1 models) having substantially more evidence
than the original CMC model (Fig. 4A).

When examining the connectivity architecture of our winning
model (Fig. 4C) at rest, we were able to show that the dominant connec-
tion in human M1 is from superficial to deep pyramidal layers. In mouse
M1, the same connection from superficial to deep cortical layers
accounts for nearly 1/3 of all synaptic current (Weiler et al., 2008,
Shepherd, 2009). This striking similarity between human and mouse
M1 provides some face validity for our noninvasive modelling approach.
Further, given this connection was not present in the CMC model on
which the M1 model was based, it is clear that its inclusion is essential
for modelling motor responses. Our results in human M1 at rest also
point to reduced excitatory drive from superficial and middle layers to
inhibitory interneurons together with reduced inhibitory drive to the
superficial pyramidal layer. A reduction in inhibitory drive to the middle
population was observed with a statistical trend. It is difficult to directly
compare this result with previous rodent work because inhibitory sig-
nalling has not been measured exclusively (Weiler et al., 2008);
however, the pattern of connectivity seen in human M1 points to

important excitatory dynamics at rest in middle and superficial
layers.

An advantage of our approach is the ability to look at changes in con-
nection strength during volitional behaviour. In human M/EEG studies, a
change in motor state from rest to grip is associated with a decrease in
M1 oscillatory power in the beta band. Our results suggest that this
movement-related beta desynchronisation is mediated by a number of
changes in laminar connectivity. We see a relative increase in deep to su-
perficial pyramidal layer connectivity as well as an increase in excitation
between middle and superficial pyramidal layers and a reduction in mid-
dle pyramidal layer gain. Other approaches utilising ECOG data have been
able to track such dynamic connectivity changes with the use of data-
driven modelling to investigate the mechanisms involved in seizure initi-
ation and termination (Freestone et al.,, 2016). Techniques such as this
and DCM allow one to noninvasively track connectivity during active be-
haviour, and allow fitting of the models to a participant's (or patient's)
own neuroimaging data, potentially accounting for small individual dif-
ferences that in turn leads to a better understanding of variability in func-
tional outcomes, or therapeutic response. Such models can even be used
to estimate responses to new network perturbations, such as those seen
in deep brain stimulation.

In comparison to rest, the immediate period after grip is characterised
by a rebound in M1 beta power (Salmelin and Hari, 1994). Our results
suggest that during this post-movement beta rebound, there is a relative
increase in external excitatory drive to superficial and deep pyramidal
layers, likely to come from other areas connected to M1, such as premotor
cortex or thalamus (although we are unable to distinguish between these
using a single source model).
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Fig. 5. For A, C, E, asterisks represent statistically significant parameters across subjects as determined by a two-tailed t-test and multiple comparison correction using the Benjamini and
Hochberg false detection rate (p < 0.05). Crosses represent parameters with statistical trends (0.05 < p <0.10). (A) Parameter estimates for the intrinsic connectivity (gamma parameters)
of winning model at rest. Gamma parameter estimates are (adimensional) log scaling coefficients with higher parameter estimates representing stronger effective connections.
(B) Connectivity diagram showing statistically significant gamma parameter estimates (overall connection strength at rest). Solid lines represent positive parameter estimates while
dotted lines represent negative parameter estimates. The dominant pathway from superficial to deep cells replicates dynamics previously measured in animal studies. (C) Parameter
estimates for modulation of connection strength (beta parameters) during grip in comparison to rest (Betal). Beta parameter estimates are adimensional log scaling with higher
parameter estimates representing larger increases in connection strength with respect to rest. (D) Connectivity diagram showing statistically significant beta parameters (change in
connection strength) from rest to grip. (E) Parameter estimates for modulation of connection strength (beta parameters) post-grip in comparison to rest (Beta2). (F) Connectivity
diagram showing statistically significant beta parameters (change in connection strength) from rest to grip. Solid lines represent parameter estimate increases while dotted lines
represent parameter estimate reductions. SP: Superficial layer, MP: middle layer, DP: deep layer, II: inhibitory interneurons.

In attempting to explain these task-related changes in laminar inter-
actions, one can appeal to the predictive coding framework, which pro-
poses that the brain constantly updates an internal model of the world,
using cues from external sensory stimuli in a Bayesian manner (Friston
and Kiebel, 2009). In predictive coding, expectations about (i.e. best es-
timates of) states of the world are encoded by activity in deep pyramidal
cells. These expectations are used to generate descending predictions of
sensory inputs and ensuing prediction errors. Prediction errors arise
through comparing predictions with sensory information which vali-
date or invalidate expectations, where prediction errors are thought to
originate from superficial pyramidal cells (Friston and Kiebel, 2009).
In our task, expectations may correspond to target grip force, and
prediction error may be thought of as the error associated with the so-
matosensory and proprioceptive feedback produced by the applied
force. At the neural level, this involves feedforward connections from
superficial layers and feedback connections from deep layers; updating

expectations and revising prediction errors, respectively (Bastos et al.,
2012; Bastos et al., 2015). In this context, our results are consistent
with this recurrent message passing; with increased excitatory connec-
tivity from middle and deep layers to superficial layers, and from super-
ficial to deep layers. More specifically, during the grip task, one would
expect prior expectations about the (consequences of) target force to
dominate over prediction errors. In predictive coding, this corresponds
to an attenuation of sensory precision, where precision corresponds
to the weight-afforded prediction errors. This sensory attenuation is
exactly consistent with the decrease in gain or sensitivity of middle py-
ramidal cells—as reflected by an increase in self-inhibition (and the in-
creased backward influence of deep pyramidal cells on superficial
pyramidal cells). Crucially, these changes in sensitivity and gain are suf-
ficient to explain grip-related beta suppression; suggested that beta
desynchronisation may be a useful proxy for sensory attenuation (or
precision) associated with motor execution.
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It is important to remember that we model neuronal ensembles and
not single cells, and so the connection from deep to superficial layers
could reflect deep-layer feedback to superficial layers of other cortical
columns that, clearly, cannot be resolved from MEG data. Furthermore,
we only modelled a single source, which places some limits on the
mechanistic insights gained from this approach. Firstly, the model rep-
resents different neural subpopulations organised into ensembles,
with model parameter estimates based on effective connectivity. As a
result, one cannot determine the precise flow of information through
the cortical column, but only infer directive coupling under a model
that is informed by other experimental methods, or careful planning
of the behavioural task. In addition, our results indicate that inputs
from other motor network nodes influence the dynamics within cortical
columns in M1 following movement cessation. To fully understand how
other nodes influence oscillatory dynamics in motor cortex, a single
area M1 model is insufficient. To understand distributed responses of
the sort, we would have to extend our model to include microcircuits
in other brain areas involved in the generation and termination of vol-
untary movement. Extensions of the sort have been recently been
used to investigate spectral asymmetries in feedforward and feedback
connections between areas V1, V2, V3, and V4, suggesting this approach
is viable for motor networks (Bastos et al., 2015).

In summary, we have described a new canonical microcircuit model
of the primary motor cortex (M1), which can be used for DCM. We have
demonstrated that this model has substantially more evidence when
explaining data acquired during motor performance than alternative
model structures. We have used this model to noninvasively character-
ise the dynamics of human M1 during a simple motor task, in terms of
underlying synaptic (effective) connectivity. Future work, using this
approach, may allow us to investigate the biological processes under-
pinning pathological disease states, where beta oscillations have been
shown to be altered in comparison to healthy populations during volun-
tary action (Rossiter et al., 2014a; Rossiter et al., 2014b, Brown, 2006).
Modelling oscillations in these disease states may provide mechanistic
insights and provide novel therapeutic targets, especially those that in-
volve nuancing the postsynaptic gain of key pyramidal cell populations.
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