
Performance of Selection Hyper-heuristics on the
Extended HyFlex Domains

Alhanof Almutairi1, Ender Özcan1, Ahmed Kheiri2 and Warren G. Jackson1

1 University of Nottingham, ASAP Research Group, School of Computer Science,
Wollaton Road, Nottingham, NG8 1BB, UK,

{psxaka,ender.ozcan,psxwgj}@nottingham.ac.uk
2 Cardiff University, Operational Research Group, School of Mathematics,

Senghennydd Road, Cardiff, CF24 4AG, UK,
KheiriA@cardiff.ac.uk

Abstract. Selection hyper-heuristics perform search over the space of heuristics
by mixing and controlling a predefined set of low level heuristics for solving com-
putationally hard combinatorial optimisation problems. Being reusable methods,
they are expected to be applicable to multiple problem domains, hence perform-
ing well in cross-domain search. HyFlex is a general purpose heuristic search
API which separates the high level search control from the domain details en-
abling rapid development and performance comparison of heuristic search meth-
ods, particularly hyper-heuristics. In this study, the performance of six previously
proposed selection hyper-heuristics are evaluated on three recently introduced ex-
tended HyFlex problem domains, namely 0-1 Knapsack, Quadratic Assignment
and Max-Cut. The empirical results indicate the strong generalising capability of
two adaptive selection hyper-heuristics which perform well across the ‘unseen’
problems in addition to the six standard HyFlex problem domains.

Keywords: Metaheuristic, Parameter Control, Adaptation, Move Acceptance,
Optimisation

1 Introduction

Many combinatorial optimisation problems are computationally difficult to solve and
require methods that use sufficient knowledge of the problem domain. Such meth-
ods cannot however be reused for solving problems from other domains. On the other
hand, researchers have been working on designing more general solution methods that
aim to work well across different problem domains. Hyper-heuristics have emerged
as such methodologies and can be broadly categorised into two categories; generation
hyper-heuristics to generate heuristics from existing components, and selection hyper-
heuristics to select the most appropriate heuristic from a set of low level heuristics [3].
This study focuses on selection hyper-heuristics.

A selection hyper-heuristic framework operates on a single solution and iteratively
selects a heuristic from a set of low level heuristics and applies it to the candidate so-
lution.Then a move acceptance method decides whether to accept or reject the newly
generated solution. This process is iteratively repeated until a termination criterion is

2 Alhanof Almutairi, Ender Özcan, Ahmed Kheiri and Warren G. Jackson

satisfied. In [5], a range of simple selection methods are introduced, including Simple
Random (SR) that randomly selects a heuristic at each step, and Random Descent which
works similarly to SR, but the selected low level heuristic is applied repeatedly until no
additional improvement in the solution is observed. Most of the simple non-stochastic
basic move acceptance methods are tested in [5]; including All Moves (AM), which
accepts all moves, Only Improving (OI), which accepts only improving moves and Im-
proving or Equal (IE), which accepts all non-worsening moves. Late acceptance [4]
accepts an incumbent solution if its quality is better than a solution that was obtained a
specific number of steps earlier. More on selection hyper-heuristics can be found in [3].

HyFlex [14] (Hyper-heuristics Flexible framework) is a cross-domain heuristic search
API and HyFlex v1.0 is a software framework written in Java, providing an easy-to-use
interface for the development of selection hyper-heuristic search algorithms along with
the implementation of several problem domains, each of which encapsulates problem-
specific components, such as solution representation and low level heuristics. We will
refer to HyFlex v1.0 as HyFlex from this point onward. HyFlex was initially developed
to support the first Cross-domain Heuristic Search Challenge (CHeSC) in 20113. Ini-
tially, there were six minimisation problem domains implemented within HyFlex [14].
The HyFlex problem domains have been extended to include three more of them, in-
cluding 0-1 Knapsack Problem (KP), Quadratic Assignment Problem (QAP) and Max-
Cut (MAC) [1]. In this study, we only consider the ’unseen’ extended HyFlex problem
domains to investigate the performance and the generality of some previously proposed
well performing selection hyper-heuristics.

2 Selection Hyper-heuristics for the Extended HyFlex Problem
Domains

In this section, we provide a description of the selection hyper-heuristic methods which
are investigated in this study. These hyper-heuristics use different combinations of
heuristic selection and move acceptance methods.

Sequence-based selection hyper-heuristic (SSHH) [10] is a relatively new method
which aims to discover the best performing sequences of heuristics for improving upon
an initially generated solution. The hidden Markov model (HMM) is employed to learn
the optimum sequence lengths of heuristics. The hidden states in HMM are replaced
by the low level heuristics and the observations in HMM are replaced by the sequence-
based acceptance strategies (AS). A transition probabilities matrix is utilised to deter-
mine the movement between the hidden states; and an emission probabilities matrix is
employed to determine whether a particular sequence of heuristics will be applied to the
candidate solution or will be coupled with another LLH. The move acceptance method
used in [10] accepts all improving moves and non-improving moves with an adaptive
threshold. The SSHH showed excellent performance across CHeSC 2011 problem do-
mains achieving better overall performance than Adap-HH which was the winner of the
challenge.

3http://www.asap.cs.nott.ac.uk/external/chesc2011/

Performance of Selection Hyper-heuristics on the Extended HyFlex Domains 3

Dominance-based and random descent hyper-heuristic (DRD) [16] is an iterated
multi-stage hyper-heuristic that hybridises a dominance-based and random descent heuris-
tic selection strategies, and uses a naı̈ve move acceptance method which accepts im-
proving moves and non-improving moves with a given probability. The dominance-
based stage uses a greedy-like method aiming to identify a set of ‘active’ low level
heuristics considering the trade-off between the delta change in the fitness and the num-
ber of iterations required to achieve that change. The random descent stage considers
only the subset of low level heuristics recommended by the dominance-based stage. If
the search stagnates, then the dominance-based stage may kick in again aiming to detect
a new subset of active heuristics. The method has proven to perform relatively well in
the MAX-SAT and 1D bin-packing problem domains as reported in [16].

Robinhood (round-robin neighbourhood) hyper-heuristic [11] is an iterated multi-
stage hyper-heuristic. Robinhood contains three selection hyper-heuristics. They all
share the same heuristic selection method but differ in the move acceptance. The Robin-
hood heuristic selection allocates equal time for each low level heuristic and applies
them one at a time to the incumbent solution in a cyclic manner during that time. The
three move acceptance criteria employed by Robinhood are only improving, improving
or equal, and an adaptive move acceptance method. The latter method accepts all im-
proving moves and non-improving moves are accepted with a probability that changes
adaptively throughout the search process. This selection hyper-heuristic outperformed
eight ‘standard’ hyper-heuristics across a set of instances from HyFlex problem do-
mains. A detailed description of the Robinhood hyper-heuristic can be found in [11].

Modified choice function (MCF) [6] uses an improved version of the traditional
choice function (CF) heuristic selection method used in [5] and has a better average
performance than CF when compared across the CHeSC 2011 competition problems.
The basic idea of a choice function hyper-heuristic is to choose the best low level heuris-
tic at each iteration. Hence, move acceptance is not needed and all moves are accepted.
In the traditional CF method, each low level heuristic is assigned a score based on three
factors; the recent effectiveness of the given heuristic (f1), the recent effectiveness of
consecutive pairs of heuristics (f2), and the amount of time since the given heuristic
was used (f3) where each factor within CF is associated with a weight; α , β , and δ re-
spectively [5]. It was also stated in the CF study that the hyper-heuristic was insensitive
to the parameter settings for solving Sales Summit Scheduling problems and are conse-
quently fixed throughout the search. MCF extends upon CF by controlling the weights
of each factor for improving its cross-domain performance [6]. In MCF, the weights
for f1 and f2 are equal as defined by the parameter φt , and the weight for f3 is set to
1−φt . φt is controlled using a simple mechanism. If an improving move is made, then
φt = 0.99. If a non-improving move is made, then φt = max{φt−1−0.01,0.01}.

Fuzzy late acceptance-based hyper-heuristic (F-LAHH) [8] was implemented for
solving MAX-SAT problems and showed promising results. F-LAHH utilises a fit-
ness proportionate selection mechanism (RUA1-F1FPS) [7] for the heuristic selection
method and uses late acceptance, whose list length is adaptively controlled using a
fuzzy control system, for its move acceptance method. In RUA1-F1FPS, the low level
heuristics are assigned scores which are updated based on acceptance of the candidate
solution as defined by the RUA1 scheme. A heuristic is chosen using a fitness propor-

4 Alhanof Almutairi, Ender Özcan, Ahmed Kheiri and Warren G. Jackson

tionate (roulette wheel) selection mechanism utilising Formula 1 (F1) ranking scores
(F1FPS). Each low level heuristic is ranked based on their current scores using F1 rank-
ing and are assigned probabilities to be selected proportional to their F1 rank. The fuzzy
control system, as defined in [8], adapts the list length of a late acceptance move accep-
tance method at the start of each phase each to promote intensification or diversification
within the subsequent phase of the search based on the amount of improvement over the
current phase. The F1FPS scoring mechanism used in this study is the RUA1 method as
used in [7, 8]. The parameters of the fuzzy system are the same as those used in [8] with
the universe of discourse of the list length fuzzy sets U = [10000,30000], the initial list
length of late acceptance L0 = 10000, and the number of phases equal to 50.

Simple Random-Great Deluge (SR-GD) is a single-parameter selection hyper-heuristic
method. At each step, a random heuristic will be selected and applied to the current solu-
tion. Great deluge move acceptance method [9] accepts improving solutions by default.
A non-improving solution is only accepted if its quality is better than a threshold level
at each iteration. Initially, the threshold level is set to the cost of the initially constructed
solution. The threshold level is then updated at each iteration with a linear rate given by
the following formula:

Tt = c+∆C× (1− t
N
) (1)

where Tt is the value of the threshold level at time t, N is the time limit, ∆C is the
expected range for the maximum change in the cost, and c is the final cost.

3 Empirical Results

The methods presented in Section 2 are applied to 10 instances from each of the re-
cently introduced HyFlex problem domains. The experiments are conducted on an i7-
3820 CPU at 3.60GHz with a memory of 16.00GB. Each run is repeated 31 times
with a termination criteria of 415 seconds corresponding to 600 nominal seconds of the
CHeSC 2011 challenge test machine4. The following performance indicators are used
for ranking hyper-heuristics across all three domains:
- rank: rank of a hyper-heuristic with respect to µnorm.
- µrank: each algorithm is ranked based on the median objective values that they produce
over 31 runs for each instance. The top algorithm is assigned to rank 1, while the worst
algorithm’s rank equals to the number of algorithms being considered in ranking. In
case of a tie, the ranks are shared by taking the average. The ranks are then accumulated
and averaged over all instances producing µrank.
- µnorm: the objective function values are normalised to values in the range [0,1] based
on the following formula:

norm(o, i) =
o(i)−obest(i)

oworst(i)−obest(i)
(2)

where o(i) is the objective function value on instance i, obest(i) is the best objective
function value obtained by all methods on instance i, and oworst(i) is the worst objective

4http://www.asap.cs.nott.ac.uk/external/chesc2011/benchmarking.html

Performance of Selection Hyper-heuristics on the Extended HyFlex Domains 5

function value obtained by all methods on instance i. µnorm is the average normalised
objective function value.

- best: is the number of instances for which the hyper-heuristic achieves the best median
objective function value.

- worst: the number of instances for which the hyper-heuristic delivers the worst median
objective function value.

As a performance indicator, µrank focusses on median values and does not consider
how far those values are from each other for the algorithms in consideration, while
µnorm considers the mean performance of algorithms by taking into account the relative
performance of all algorithms over all runs across each problem instance.

Table 1 summarises the results. On KP, SSHH delivers the best median values for
8 instances including 4 ties. Robinhood achieves the best median results in 5 instances
including a tie. SR-GD, F-LAHH and DRD show comparable performance. On the
QAP problem domain, SR-GD performs the best in 6 instances and F-LAHH shows
promising results in this particular problem domain. This gives an indication that sim-
ple selection methods are potentially the best for solving QAP problems. SSHH ranked
as the third best based on the average rank on QAP problem. On MAC, SSHH clearly
outperforms all other methods, followed by SR-GD and then Robinhood. The remain-
ing hyper-heuristics have relatively poor performance, with MCF being the worst of
the 6 hyper-heuristics. Overall, SSHH turns out to be the best with µnorm = 0.16 and
µrank = 2.28. SR-GD also shows promising performance, scoring the second best. MCF
consistently delivers weak performance in all the instances of the three problem do-
mains. Table 1 also provides the pairwise average performance comparison of SSHH
versus (DRD, Robinhood, MCF, F-LAHH and SR-GD) based on the Mann-Whitney-
Wilcoxon statistical test. SSHH performs significantly better than any hyper-heuristic
on all MAC instances, except Robinhood which performs better than SSHH on four
out of ten instances. On the majority of the KP instances, SSHH is the best perform-
ing hyper-heuristic. SSHH performs poorly on QAP when compared to F-LAHH and
SR-GD and both hyper-heuristics produce significantly better results than SSHH on al-
most all instances. SSHH performs statistically significantly better than the remaining
hyper-heuristics on QAP.

The performance of the best hyper-heuristic from Table 1, SSHH is compared to
the methods whose performances are reported in [1], including Adap-HH, which is
the winner of the CHeSC 2011 competition [13], an Evolutionary Programming Hyper-
heuristic (EPH) [12], Fair-Share Iterated Local Search with (FS-ILS) and without restart
(NS-FS-ILS), Simple Random-All Moves (SR-AM) (denoted as AA-HH previously)
and Simple Random-Improving or Equal (SR-IE) (denoted as ANW-HH previously).
Table 2 summarises the results based on µrank, µnorm, best and worst counts. Adap-HH
performs better than SSHH in KP and QAP while SSHH performs the best on MAC.
Overall, SSHH is the best method based on µnorm with a value of 0.113, however Adap-
HH is the top ranking algorithm based on µrank with a value of 2.53 and SSHH is the
second best with a value of 3.20.

6 Alhanof Almutairi, Ender Özcan, Ahmed Kheiri and Warren G. Jackson

Table
1.T

he
perform

ance
com

parison
ofSSH

H
,D

R
D

,R
obinhood,M

C
F,F-L

A
H

H
and

SR
-G

D
over31

runs
foreach

instance.T
he

bestm
edian

values
per

each
instance

are
highlighted

in
bold.B

ased
on

the
M

ann-W
hitney-W

ilcoxon
test,for

each
pair

of
algorithm

s;
SSH

H
versus

X
;

SSH
H

>
(<

)
X

indicates
thatSSH

H
(X

)
is

better
than

X
(SSH

H
)

and
this

perform
ance

variance
is

statistically
significantw

ith
a

confidence
levelof

95%
,and

SSH
H
≥

(≤
)X

indicates
thatthere

is
no

statisticalsignificantbetw
een

SSH
H

and
X

,butSSH
H

(X
)is

betterthan
X

(SSH
H

)on
average.

SSH
H

D
R

D
R

obinhood
M

C
F

F-L
A

H
H

SR
-G

D

D
om

ain
Instance

m
ed.rank

m
in.vs

m
ed.rank

m
in.vs

m
ed.rank

m
in.vs

m
ed.rank

m
in.vs

m
ed.rank

m
in.vs

m
ed.rank

m
in.

K
P

Inst1
-104046

1
-104046

>
-104025

4.5
-104044

>
-104034

3
-104046

>
-103998

6
-104046

>
-104037

2
-104046

>
-104025

4.5
-104046

Inst2
-1247642

1
-1261320

>
-1208666

6
-1208666

≥
-1241628

2
-1253664

>
-1226625

3
-1244413

>
-1212253

5
-1220422

>
-1212829

4
1221623

Inst3
-241934

1
-242963

>
-232525

6
-233066

>
-236420

5
-238447

>
-239323

2
-240023

>
-238397

4
-239848

>
-238664

3
-239192

Inst4
-431350

1
-431362

>
-431333

2
-431349

>
-431320

4
-431338

>
-431325

3
-431341

>
-431314

6
-431331

>
-431316

5
-431329

Inst5
-396167

3
-396167

≤
-396167

3
-396167

≤
-396167

3
-396167

>
-396127

6
-396167

>
-396167

3
-396167

≤
-396167

3
-396167

Inst6
-4251693

4
-4268665

>
-4248962

5.5
-4248962

<
-4262735

1
-4312111

>
-4248962

5.5
-4321660

≤
-4251867

3
-4268839

<
-4253175

2
-4273295

Inst7
-929052

2
-943136

>
-924303

5
-924357

>
-924346

4
-933892

>
-923904

6
-939879

>
-924937

3
-941397

<
-935411

1
-940485

Inst8
-1577175

2.5
-1577175

>
-1577166

5
-1577175

≤
-1577175

2.5
-1577175

>
-1572999

6
-1577175

>
-1577175

2.5
-1577175

≤
-1577175

2.5
-1577175

Inst9
-1530477

1.5
-1530511

>
-1530465

3.5
-1530485

≥
-1530477

1.5
-1530494

>
-1530465

3.5
-1530498

>
-1530453

5.5
-1530484

>
-1530453

5.5
-1530463

Inst10
-1467357

2
-1467362

>
-1467357

2
-1467357

>
-1467357

2
-1467362

>
-1457070

6
-1467353

>
-1467353

4.5
-1467361

>
-1467353

4.5
-1467362

rank
average

1.90
4.25

2.80
4.70

3.85
3.50

norm
average

0.10
0.27

0.17
0.30

0.25
0.17

Q
A

P

Inst1
152572

4
152224

≤
152000

1
152000

≥
152686

5
152334

>
153398

6
152700

<
152372

3
152122

<
152258

2
152068

Inst2
154492

3
154130

>
155000

5
154000

≥
154616

4
154136

>
155300

6
154706

<
154178

2
153960

<
154172

1
154016

Inst3
148374

3
147930

≥
148604

5
147916

≤
148462

4
148088

>
149584

6
148604

<
148140

2
148026

<
148056

1
147900

Inst4
150366

4
149782

≥
150336

3
149724

≥
150380

5
150002

>
151016

6
150164

<
149978

2
149730

<
149892

1
149688

Inst5
21419490

4
21325030

≤
21400000

3
21300000

<
21383596

2
21325716

>
21598704

6
21414834

>
21495226

5
21351226

<
21361794

1
21207680

Inst6
1190346287

4
1186663179

≥
1190000000

3
1190000000

>
1199401744

5
1192546366

>
1249957271

6
1204968089

<
1188454126

2
1186678730

<
1188111647

1
1186811188

Inst7
504406437

4
500015697

≥
504000000

3
502000000

>
508225133

5
504102563

>
511240596

6
506396735

<
501945504

1
500096792

<
502027073

2
499922042

Inst8
44892452

3
44855568

>
44900000

4
44800000

>
44933092

6
44875514

≥
44903670

5
44869704

<
44859724

1
44841194

<
44863858

2
44842660

Inst9
8179752

3
8151040

>
8200846

4
8165384

>
8202996

5
8177206

>
8254190

6
8213094

<
8162896

1
8157314

<
8163776

2
8150316

Inst10
273622

3
273216

>
274000

5
273000

>
273908

4
273590

>
274404

6
273566

<
273460

2
273264

<
273362

1
273216

rank
average

3.50
3.60

4.50
5.90

2.10
1.40

norm
average

0.24
0.29

0.32
0.58

0.16
0.12

M
A

C

Inst1
-41101646

1
-41517765

>
-39393891

6
-40202568

>
-40471041

3
-40863976

>
-40157605

5
-40967725

>
-40419083

4
-41268393

>
-40756746

2
-41377263

Inst2
-273938900

1
-277548425

>
-266329920

5
-268635140

>
-269502099

2
-271045451

>
-256423018

6
-261640131

>
-266773056

4
-274334343

>
-267482996

3
-269292120

Inst3
-3056

1
-3062

>
-3014

6
-3030

>
-3043

4.5
-3051

>
-3046

3
-3056

>
-3043

4.5
-3053

>
-3053

2
-3057

Inst4
-3040

1
-3050

>
-2991

6
-3012

>
-3027

4
-3032

>
-3027

4
-3033

>
-3027

4
-3037

>
-3035

2
-3047

Inst5
-3041

1
-3051

>
-3000

6
-3016

>
-3028

4.5
-3034

>
-3029

3
-3042

>
-3028

4.5
-3042

>
-3038

2
-3045

Inst6
-13243

1
-13300

>
-13047

6
-13106

>
-13204

3
-13246

>
-13176

5
-13241

>
-13186

4
-13247

>
-13216

2
-13284

Inst7
-1352

2
-1358

>
-1246

6
-1278

<
-1362

1
-1368

>
-1316

5
-1330

>
-1322

4
-1342

>
-1334

3
-1346

Inst8
-10074

2
-10125

>
-9819

6
-9872

<
-10152

1
-10190

>
-9964

5
-9996

>
-10004

4
-10101

>
-10046

3
-10078

Inst9
-454

2.5
-458

>
-416

6
-430

≤
-454

2.5
-456

>
-444

4
-454

>
-440

5
-450

<
-456

1
-456

Inst10
-2912

2
-2960

>
-2676

6
-2704

<
-2942

1
-2952

>
-2810

5
-2842

>
-2848

4
-2906

>
-2884

3
-2926

rank
average

1.45
5.90

2.65
4.50

4.20
2.30

norm
average

0.14
0.74

0.21
0.40

0.34
0.22

µ
rank

2.28
4.58

3.32
5.03

3.38
2.40

µ
norm

0.16
0.43

0.23
0.43

0.25
0.17

Performance of Selection Hyper-heuristics on the Extended HyFlex Domains 7

Table 2. The performance comparison of SSHH, Adap-HH, FS-ILS, NR-FS-ILS, EPH, SR-AM
and SR-IE

KP Problem Domain

rank method µrank µnorm best worst

1 Adap-HH 1.95 0.027 8 0
2 EPH 2.35 0.053 4 0
3 SSHH 2.45 0.059 5 0
4 SR-AM 4.40 0.148 2 0
5 SR-IE 5.55 0.328 0 4
6 NR-FS-ILS 5.60 0.361 1 6
7 FS-ILS 5.70 0.395 1 2

QAP Problem Domain

rank method µrank µnorm best worst

1 NR-FS-ILS 1.95 0.100 5 0
2 Adap-HH 2.50 0.103 2 0
3 FS-ILS 2.85 0.103 3 0
4 EPH 3.80 0.133 0 0
5 SR-AM 4.10 0.146 1 0
6 SSHH 5.80 0.189 0 0
7 SR-IE 7.00 0.634 0 10

MAC Problem Domain

rank method µrank µnorm best worst

1 SSHH 1.35 0.092 9 0
2 SR-AM 2.45 0.252 1 0
3 Adap-HH 3.15 0.275 0 0
4 NR-FS-ILS 4.00 0.374 0 0
5 FS-ILS 4.85 0.392 1 2
6 EPH 5.60 0.519 0 1
7 SR-IE 6.60 0.732 0 7

Overall

rank method µrank µnorm best worst

1 SSHH 3.20 0.113 14 0
2 Adap-HH 2.53 0.135 10 0
3 SR-AM 3.65 0.182 4 0
4 EPH 3.92 0.235 4 1
5 NR-FS-ILS 3.85 0.278 6 6
6 FS-ILS 4.47 0.297 5 4
7 SR-IE 6.38 0.565 0 21

4 Conclusion

A hyper-heuristic is a search methodology, designed with the aim of reducing the hu-
man effort in developing a solution method for multiple computationally difficult op-
timisation problems via automating the mixing and generation of heuristics. The goal
of this study was to assess the level of generality of a set of selection hyper-heuristics
across three recently introduced HyFlex problem domains. The empirical results show
that both Adap-HH and SSHH perform better than the previously proposed algorithms
across the problem domains included in the HyFlex extension set. Both adaptive al-
gorithms embed different online learning mechanisms and indeed generalise well on
the ‘unseen’ problems. It has also been observed that the choice of heuristic selection
and move acceptance combination could lead to major performance differences across
a diverse set of problem domains. This particular observation is aligned with previous
findings in [2, 15].

References

1. Adriaensen, S., Ochoa, G., Nowé, A.: A benchmark set extension and comparative study
for the HyFlex framework. In: IEEE Congress on Evolutionary Computation. pp. 784–791
(2015)

2. Bilgin, B., Özcan, E., Korkmaz, E.E.: An experimental study on hyper-heuristics and
exam scheduling. In: Burke, E.K., Rudová, H. (eds.) Practice and Theory of Automated
Timetabling VI. Lecture Notes in Computer Science, vol. 3867, pp. 394–412 (2007)

8 Alhanof Almutairi, Ender Özcan, Ahmed Kheiri and Warren G. Jackson

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-
heuristics: a survey of the state of the art. Journal of the Operational Research Society 64(12),
1695–1724 (2013)

4. Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling
problems. In: Proceedings of the 7th International Conference on the Practice and Theory of
Automated Timetabling (PATAT ’08) (2008)

5. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales sum-
mit. In: Burke, E., Erben, W. (eds.) Practice and Theory of Automated Timetabling III, Lec-
ture Notes in Computer Science, vol. 2079, pp. 176–190. Springer Berlin Heidelberg (2001)

6. Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for
cross domain heuristic search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia,
G., Pavone, M. (eds.) Parallel Problem Solving From Nature (PPSN XII). Lecture Notes in
Computer Science, vol. 7492, pp. 307–316. Springer Berlin Heidelberg (2012)

7. Jackson, W.G., Özcan, E., Drake, J.H.: Late acceptance-based selection hyper-heuristics for
cross-domain heuristic search. In: 13th UK Workshop on Computational Intelligence. pp.
228–235 (2013)

8. Jackson, W., Özcan, E., John, R.I.: Fuzzy adaptive parameter control of a late acceptance
hyper-heuristic. In: Computational Intelligence (UKCI), 14th UK Workshop on. pp. 1–8
(2014)

9. Kendall, G., Mohamad, M.: Channel assignment optimisation using a hyper-heuristic. In:
Proceedings of the IEEE Conference on Cybernetic and Intelligent Systems. pp. 790–795
(2004)

10. Kheiri, A., Keedwell, E.: A sequence-based selection hyper-heuristic utilising a hidden
Markov model. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Con-
ference. pp. 417–424. GECCO ’15, ACM, New York, NY, USA (2015)

11. Kheiri, A., Özcan, E.: A hyper-heuristic with a round robin neighbourhood selection. In:
Middendorf, M., Blum, C. (eds.) Evolutionary Computation in Combinatorial Optimization,
Lecture Notes in Computer Science, vol. 7832, pp. 1–12. Springer Berlin Heidelberg (2013)

12. Meignan, D.: An evolutionary programming hyper-heuristic with co-evolution for CHeSC1́1.
In: The 53rd Annual Conference of the UK Operational Research Society (OR53) (2011)

13. Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-heuristic
implementation in HyFlex: a study on generality. In: Fowler, J., Kendall, G., McCollum, B.
(eds.) Proceedings of the 5th Multidisciplinary International Scheduling Conference: Theory
and Application (MISTA2011). pp. 374–393 (2011)

14. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau, M.,
Kendall, G., McCollum, B., Parkes, A.J., Petrovic, S., Burke, E.K.: HyFlex: a benchmark
framework for cross-domain heuristic search. In: Hao, J.K., Middendorf, M. (eds.) Evolu-
tionary Computation in Combinatorial Optimization, LNCS, vol. 7245, pp. 136–147 (2012)

15. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics. Intelli-
gent Data Analysis 12(1), 3–23 (2008)

16. Özcan, E., Kheiri, A.: A hyper-heuristic based on random gradient, greedy and dominance.
In: Gelenbe, E., Lent, R., Sakellari, G. (eds.) Computer and Information Sciences II, pp.
557–563. Springer London (2012)

