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Abstract

This thesis presents the extension of the gradient smoothing technique for finite

element approximation (so-called Smoothed Finite Element Method (S-FEM)) and

its bubble-enhanced version for non-linear problems involving large deformations

in nearly-incompressible and incompressible hyperelastic materials.

Finite Element Method (FEM) presents numerous challenges for soft matter

applications, such as incompressibility, complex geometries and mesh distortion

from large deformation. S-FEM was introduced to overcome the challenges men-

tioned of FEM. The smoothed strains and the smoothed deformation gradients

are evaluated on the smoothing domain selected by either edge information, nodal

information or face information.

This thesis aims the extension of S-FEM in finite elasticity as a means of allevi-

ating locking and avoiding mesh distortion. S-FEM employs a “cubic” bubble

enhancement of the element shape functions with edge-based and face-based

S-FEMs, adding a linear displacement field at the centre of the element. Thereby

bubble-enhanced S-FEM affords a simple and efficient implementation.

This thesis reports the properties and performance of the proposed method for

quasi-incompressible hyperelastic materials. Benchmark tests show that the

method is well suited to soft matter simulation, overcoming deleterious locking

phenomenon and maintaining the accuracy with distorted meshes.
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1 Introduction

1.1 Introduction

Linear elasticity is a suitable assumption in many engineering applications where

strains are small and are proportional to the loads. However many engineering

and natural applications involve soft matter; hydrogels, polymers, rubbers and

biological structures such as human organs and soft tissues. These materials

are potentially subject to very large, non-linear (often inelastic) deformations.

Non-linear problems are very sensitive to material models, load and even meshes,

and advanced approximation schemes and solution procedures are required to solve

the equations. It is thus important to design approaches which are well-suited to

their robust and accurate simulation [15, 21, 40]. In particular, the design of a

simple and robust approach to model and solve patient specific models of human

organs for computerised surgical simulation and computer guided therapy is an

important issue in surgical simulation, planning and guidance.

The first step to solve such problems numerically is to obtain and adequate

discretisation of the organs as automatically and rapidly as possible, so as to fit

within the time scales required by clinical practice.
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Chapter 1. Introduction

Tetrahedral elements are the best suited to automatic generation and there exist

schemes that allow the generation of millions of tetrahedral elements per second

[134].

However, those elements are also notorious for their excessive stiffness and their

sensitivity to volumetric locking. Hexahedral (HEX) elements are more insensitive

to these deleterious effects, but generating HEX meshes automatically remains a

serious challenge in spite of recent advances in polyhedral element mesh genera-

tion [26] and element technology [99, 147, 149, 11]. Other approaches to increase

accuracy is the use of higher order approximation such as higher order tetrahedral

elements, isogeometric analysis or NURBS-based analyses [102, 48, 141] and mesh-

less methods [103]. However, these approaches are non-standard, computationally

expensive and cannot be easily implemented within existing finite element codes.

Moreover, they are computationally expensive, and as far as higher-order finite

elements, those tend to be sensitive to mesh distortion.

This thesis focuses on the development of a simple alternative to enable the use

of linear tetrahedral elements for quasi-incompressible large deformations. The

elements sought should be insensitive to mesh distortion, to volumetric locking,

should be easily implemented in existing finite element code, and, if possible,

adapted to GPU computing in order to enable real-time simulations [39].

1.2 Competing numerical approaches

In this section, numerical approaches proposed to tackle the difficulties of the

FEM are reviewed, in particularly concerning incompressibility. These approaches

are commonly used in either solid or fluid mechanics and it has been shown that

locking, instability or over-stiff behaviour can be effectively handled.
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Nodally averaged elements. Bonet and Burton introduced the idea of nodally

averaged pressure for a linear tetrahedral element in a nearly-incompressible hy-

perelastic model in 1998 [18]. The volumetric strains were computed at nodes and

a nodal pressure was averaged over elements. Although the proposed tetrahedra

performed very well comparing to hexahedra, their computational time is more

expensive than the standard hexahedra. Dohrmann et al. [49] introduced the

node-based uniform strain element which is closely related to the average nodal

pressure technique. Since previous researches were concerned with linear elasticity,

Bonet et al. [19] extended the nodal averaging scheme to large strains. However

it is shown that this approach still suffers from overly stiff behaviour in the case

of bending problems [20].

In the context of explicit dynamics, Andrade Pires et al. [1] introduced an

implicit version of the nodal averaging approach. They proposed the average

nodal volume change ratio defined by the fraction of initial nodal volume and

deformed nodal volume. Then, using the proposed volume ratio, the modified

deformation gradient F-bar was evaluated. Since the F-bar technique could not be

directly used for linear triangular and tetrahedral elements, the extended F-bar

approach was introduced for low-order FEs [45]. However, the tangent matrix

requires additional treatments to assemble globally because rows and columns of

the tangent stiffness matrix represent the degrees of freedom of different elements

on the different patches [45].

Stabilised elements. Stabilised finite element methods were introduced to

prevent numerical instabilities, especially for fluid dynamics. They allow the use

of equal-order interpolation for pressure and velocity. This makes their methods

attractive for large-scale multi-physics simulations conquered to mixed-Galerkin

methods. Generally the methods can be classified into two approaches: adding a
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stabilising term (so-called least-square stabilisation) for fluid mechanics and adding

a displacement field (so-called bubble functions) for non-linear solid mechanics

[30, 133].

Stabilised finite element methods for nearly-incompressible problems in linear

elasticity were introduced by Franca et al., in 1988 [55] and Douglas and Wang,

in 1989, proposed an absolstely stabilised FEM [51]. Klaas et al. extended the

concept of stabilisation into mixed finite element method [71].

Since Hughes introduced a sub-grid scale stabilisation method [66] for the scalar

convection-diffusion equation, Chiumenti et al. [36] extended the approach to

solid mechanics. This idea stabilises elastic incompressible formulations for quadri-

lateral and triangular elements. The concept of sub-grid scales was employed

in mixed formulations to stabilise the displacement/pressure (u/p) formulations

for incompressible and nearly-incompressible materials using orthogonal sub-grid

scale method (Cervera et al. [32]). Moreover, stabilisations were extended to

meshfree Galerkin methods for incompressible Navier-Stokes ideas [56].

Caylak and Mahnken [30] introduced a mixed finite element formulation with

area bubble functions to stabilise the formations for linear and non-linear elastic

materials.

Mixed and enhanced elements. Mixed and enhanced elements also can be

considered. The governing equation is explained by velocity and pressure for

the linear incompressible problem in fluid mechanics [37] and the equation is

expressed by displacement and pressure for the linear incompressible problems

in solid mechanics [150, 167]. Pantuso and Bathe introduced u/p/e formulations

combined with displacement, pressure and enhanced strain for linear analysis [129]

and for problems involving large strains [130]. Kasper and Taylor [69] introduced
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a mixed-enhanced strain formulation based on the Hu-Washizu variational prin-

ciple with three approximation fields: displacements, strains and stresses in the

incompressible limit in linear elasticity. Lovadina and Auricchio [92], using the

concept proposed by Pantuso and Bathe [129], proposed displacement/pressure

formulation for three-noded triangular element (T3) for linear incompressible ma-

terials, using assumed strain methods. Schröder et al. [139] developed tetrahedral

elements in the incompressible limit based on a Hu-Washizu functional derived by

deformation, co-factor and volumetric dilatation.

Auricchio et al.[4] stabilised the discrete formulation for incompressible materi-

als using the MINI mixed finite elements and quadrilateral mixed-interpolated

elements, and Cervera et al. [31] introduced a mixed finite element formulation

based on their previous study in 2003 [32], stabilising stress-displacement and

strain-displacement formulations using linear/linear interpolations in triangular

elements and bilinear/bilinear interpolations in quadrilateral elements for non-

linear problems.

Mahnken et al. [94] derived a five field weak formulation involving compatible dis-

placements, incompatible displacements, pressure, enhanced strains and stresses,

and three field weak formulations for a mixed method with incompatible modes

- displacements are split into a compatible and an incompatible part - and an

enhanced strain method. To derive a mixed finite element, area bubble functions

were used to augment the displacement and strain fields. Later they extended

the idea to non-linear problems [93]. Recently Lamichhane [74] proposed a mixed

finite element method for nearly incompressible materials and Stokes equations in

non-linear elasticity. In this study, displacements and velocity fields were derived

by space enrichment with bubble functions, however the pressure field was approxi-

mated by dual meshes introduced in [73] for quadrilateral and hexahedral elements.
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While mixed and enhanced approach prevent locking in the incompressible limit,

it was shown that enhanced simplex elements commonly lead to unstable methods

for large deformation problems [5, 36].

Non-mesh based methods. Non-mesh based techniques often called meshfree

(or meshless) methods [14, 81, 83] are another option. A general review of the

field was done by Nguyen et al. [103] and Belytsckho et al. [13] presented a

notable study for stability. These techniques improve the accuracy on heavily dis-

torted nodal layout, however Galerkin meshfree methods are more computationally

costly than the FEM and the locking problem is still a challenging problem [34, 65].

Nodal integration is often employed in meshfree/meshless methods [76, 131,

148]. In nodal integration, all discretised variables are defined at nodes and the

integration is much faster than Gaussian integration [12]. In Beissel and Belytschko

[12], it was shown that stabilised nodal integration in element-free Galerkin (EFG)

decreases the stability. This was attributed to vanishing derivatives at the nodes.

To avoid nodal integration instability, Chen et al. [33, 35] introduced a stabilised

conforming nodal integration (SCNI) technique into the EFG approximation. This

concept was applied to plastic limit analysis [77], error estimation [75]. Puso and

Solberg improved the study [49], augmenting the stabilisation term with a nodal

integration scheme [132]. This approach was extended to Mindlin-Reissner plates

to remove shear locking, introducing Kirchhoff mode reproducing conditions into

the construction of shape functions for the translational and rotational degrees of

freedom in Wang and Chen [152].
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1.3. Strain smoothing

1.3 Strain smoothing

The approaches mentioned in the previous section perform very well for either

incompressible or quasi-incompressible materials, they however still may encounter

difficulties that should be overcome, e.g. instability of linear elements in large

deformations [92, 130, 155], sensitivity to mesh distortion as well as overly-stiff

behaviour.

Herein we consider gradient smoothing as a possible way forward. Gradient

smoothing was shown for linear elastic materials to prevent locking and alleviate

most of the deleterious effects of element distortion. The basic idea of gradient

smoothing relies on stabilised conforming nodal integration (SCNI) proposed by

Chen et al. [33, 35], and extended to the natural element method (NEM) by Yoo

et al. [161].

Liu et al. [82] combined the idea of strain smoothing to FEM and called the

method, the smoothed finite element method (S-FEM). Since S-FEM was in-

troduced, its properties have been studied from a theoretical viewpoint: Liu et

al. [82] studied the performance of triangular and quadrilateral sub-domains

for triangular, quadrilateral and polygonal elements, and explained the relation

between strain smoothing approximation and Hellinger-Reissner principles [85].

Also, the convergence of displacement and strain energy error norms are given in

[88]. Different types of S-FEM were introduced depending on the construction

of the smoothing domains [84]: cell-based (CS-FEM), edge-based (ES-FEM),

node-based (NS-FEM) and face-based (FS-FEM). In such approaches, the mesh

structure is used to construct the sub-domain used as smoothing domain (Fig.

1.1). The sub-domain can be designed as not only triangle but also arbitrary

polygonal geometries. CS-FEM uses bilinear quadrilateral (Q4) element divided
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quadrilateral smoothing domains [85]. Bordas et al. [25] showed the important

properties of the four-noded Quadrilateral CS-FEM: (1) one smoothing domain is

equivalent to under-integrated FEM Q4 (quasi-equilibrium element) and increases

the stress accuracy, (2) four smoothing domains show intermediate behaviour, and

(3) the accuracy of displacements is increased when the number of smoothing do-

mains is (NSD → +∞). In contrast to CS-FEM, ES-FEM, NS-FEM and FS-FEM

use linear triangular and tetrahedral elements with triangular and tetrahedral

smoothing domains, respectively. The target smoothing domain of ES-FEM is

created by smoothing domains sharing a target edge of each elements1 and the

smoothing domains, in NS-FEM, are built node-wise2. Face-based S-FEM was

developed for 3D problems analogously to edge-based approach in 2D. A linear

simplex tetrahedral element is used in FS-FEM and therefore its smoothing do-

mains are also tetrahedrons. Similarly to ES-FEM, the smoothing domains of

FS-FEM are built by the combination of smoothing domains associated by target

face of each finite element. Node-based smoothing is similarly extended from 2D

to 3D.

Cell-based smoothed finite element method (CS-FEM). Early studies

on S-FEM, in general, showed remarkable features of S-FEM: (1) Liu et al. [85]

in 2007 presented the theoretical bases of S-FEM, the Galerkin weak form was

formulated by the Hu-Washizu mixed variational principle, and indicated numeri-

cally that four-quadrilateral smoothing domains in each Q4 element was optimal,

(2) Dai et al. investigated suitable shape functions for polygonal elements and

showed stable and accurate results [44], and (3) Bordas and Natarajan studied

the construction of shape functions in physical space [23].

Additional applications of CS-FEM were studied by Liu’s team, e.g. plane problems
1Target edge is one of edges of the finite elements.
2Target node is a field node of the finite elements.
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(a) Smoothing Domain of CS-FEM

(b) Smoothing Domain of ES-FEM

(c) Smoothing Domain of NS-FEM

Figure 1.1: Smoothing domains of S-FEM models: (a) four-noded element is
divided into four smoothing domains for Cell-based S-FEM, (b) three-noded
element is divided into three smoothing domains and four-noded smoothing domain
is constructed for Edge-based S-FEM and (c) three-noded element is divided into
three smoothing domains and six-node smoothing domain is constructed for
Node-based S-FEM
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in kinematic limit analysis (Le et al. [78]) and they provided accurate solutions

with fewer degree of freedoms (DOFs) than FEM. Cui et al. [42] solved linear

and geometrically non-linear plate and shell problems avoiding shear locking and

reaching faster convergence. Nguyen-Xuan et al. smoothed the curvature for

Reissner-Mindlin plates and shells [118]. Shear locking for thin plates and shells

is avoided by the proposed method, although the performance of the method

for heavily distorted meshes was not satisfying. This problem was addressed by

Wu et al. [157] who combined the curvature smoothing and an enhancement

through the mixed interpolation technique. Moreover further applications of

CS-FEM were introduced by Dai and Liu [43] for the free and forced vibration

analyses for 2D dynamic problems and in acoustics by Yao et al. [159], respectively.

To solve forced vibrations Dai and Liu [43] employed implicit and explicit time

integration approaches. Yao et al. [159] used the cell-based acoustic pressure

gradient smoothing operation and obtained accurate results for distorted meshes

and high wave number without increasing computational efforts (2D acoustic

problems). Bordas’ team created enriched extensions of S-FEM: SmXFEM in

[8, 24, 25, 166] and proposed adaptive schemes in fracture mechanics [116] using

node/edge based approaches.

Edge-based smoothed finite element method (ES-FEM). Due to its sim-

plicity and efficiency, ES-FEM is one of the most popular strain smoothing

approaches. The following features of ES-FEM are given by Liu and his colleagues

[84, 86]: 1) any element shape can be used but it normally prefers a triangu-

lar mesh, 2) the smoothed stiffness matrix is computed over smoothing domains

associated with a target edge and 3) a domain-based selective ES/NS-FEM can alle-

viate the locking problems because ES-FEM itself does not effectively handle them.

ES-FEM with the stabilised discrete shear gap method (DSG), which was proposed
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for static, free vibration and buckling analysis, was used for Reissner-Mindlin

plates by Nguyen-Xuan et al. [118]. Accuracy of low-order Reissner-Mindlin

plate elements often degrades due to shear locking, however the authors prove in

[118] that ES-FEM improves the quality of such elements, avoiding locking issues.

Nguyen-Xuan et al. [117] employed ES-FEM for static and frequency analyses and

solved 2D piezoelectric problems. ES-FEM provides accuracy, insensitivity to mesh

distortion and softer stiffness also for piezoelectric models stability. On the other

hand, Cui et al. [41] formulated ES-FEM based on Hencky’s deformation theory

to solve elastic-plastic problems and which alleviated over-stiffness. Moreover a

structural-acoustic problem: plate fluid interaction was investigated by He et al.

[61], coupling ES-FEM and FEM. In their study, the solid domain was discretized

by ES-FEM and the fluid domain was formulated by FEM. A rlecent study is a

3D spatial membrane structure under large deformation, rotation and strain done

by Zhang and Liu [165]. Stresses and strains were smoothed in local coordinates

and the rigid body motion was removed by the transformation from the global

Cartesian coordinates to the local coordinates.

Node-based smoothed finite element method (NS-FEM). In NS-FEM,

similarly to ES-FEM, strains/stresses and the stiffness matrix are smoothed and

computed over the smoothing domain [84]. A notable character of NS-FEM is that

the method provides an upper-bound solution, for problems with non-homogeneous

Dirichlet boundary conditions (BCs) and zero external forces, whereas ES-FEM

gives a lower-bound solution under the same condition [107]. Furthermore NS-

FEM is able to use n-sided arbitrary polygonal elements and is immune to any

locking issue [87].

Similarly to CS-FEM and ES-FEM, static, free vibration and mechanical/thermal

buckling problems for Reissner-Mindlin plates were solved with NS-FEM and
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using the discrete shear gap method by Nguyen-Xuan et al. [119]. In addition, 2D

and 3D visco-elastoplastic analyses were addressed by Nguyen-Thoi et al. [111].

Perfect visco-elastoplasticity and visco-elastoplasticity with isotropic hardening

and linear kinematic hardening were considered. Adaptive analyses were also

considered by Nguyen-Thoi et al. [109], enriched by NS-FEM. They proposed an

error indicator based on the recovery strain scheme for a three-node triangular

(T3) element. Stresses and strains were computed at field nodes and the T3

element was divided into two new sub-triangles by connecting the top field node

and mid-point of base edge of element.

Face-based smoothed finite element method (FS-FEM). In 3D, the face-

smoothed FEM (FS-FEM) was introduced by Nguyen-Thoi et al. [105]. Smoothing

domains of FS-FEM are constructed using faces of tetrahedral or hexahedral ele-

ments. Similar to other S-FEM, the stiffness matrix and strain are smoothed over

the smoothing domains associated with element faces [106].

Nguyen-Thoi et al. [106] extended the concept of ES-FEM to 3D solid mechanics

problems. They presented that: 1) the two-field Hellinger-Reissner principle for

FS-FEM has displacements as unknowns while those of mixed formulation in FEM

are stresses or strains, 2) FS-FEM gives more accurate results than FEM for linear

and geometrically non-linear analyses, and 3) a combined FS/NS-FEM suppresses

volumetric locking in the incompressible limits for linear materials. Jiang et

al. [68] used the same method, selective FS/NS-FEM, for nearly-incompressible

anisotropic materials. FS-FEM (and 3D-ES-FEM) was used for the deviatoric part

of deformation and NS-FEM was used for the volumetric parts. They improved

a four-node tetrahedral (T4) element to prevent locking. A FS-FEM combined

with the method of Carstensen and Klose [29] was proposed by Nguyen-Thoi et

al. [110] for perfect visco-elastoplasticity and visco-elastoplasticity with isotropic
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hardening and linear kinematic hardening. Further application for structural-

acoustic problems was done by Li et al. [80] using ES-FEM for the deformable

solid (plates) and FS-FEM for the acoustic fluid domain. Heat transfer and

thermal mechanical problems were studied in Feng et al. [54] using the von Mises

yield criterion for non-isothermal and isotropic hardening conditions.

1.3.1 Key contributions

The aforementioned section indicates the clear benefits of the smoothed FEM to

alleviate locking and to mesh distortion sensitivity. Soft matter is a crucial area of

physics and mechanics, with wide industrial applications (e.g. tyre manufacturing

and optimisation). A soft matter is also widely encountered in nature: soft tissues,

organs, cells, biofilms, hydrogels, and is used to build tissue scaffolds [38, 39, 46].

For this, it is mandatory that meshes are generated automatically. One approach

is the use of linear TETs which are also prone to lock. This work investigates the

potential of strain smoothing for such applications. Although existing S-FEM

research showed that the method is able to overcome such concerns in linear

incompressibility or quasi-incompressibility, non-linear elasticity still opens vast

unexplored area.

This work focuses on the development of a number of variants of the smoothed

finite elements to simulate the large deformations of nearly-incompressible and

incompressible soft matter. The following novelties are introduced in this work:

• The weak form for the smoothed finite element method in finite elasticity is

expressed in Chapter 4.

The smoothed deformation gradient, essential in finite elasticity approxima-

tion, is introduced and approved in section 4.2 and appendix B. Detailed

formulations for the smoothed strain-displacement and the smoothed tangent
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stiffness matrices are also introduced in section 4.2.

Using the introduced smoothed formulations, the smoothed global system

of equations is solved by a Newton-Raphson method.

• Bubble stabilisation is coupled to edge-based and face-based S-FEMs in

Chapter 5.

The “Cubic” bubble functions for 2D and 3D, that satisfy the partition of

unity, are transformed from the basic bubble functions in section 5.1. The

mixed formulations in the framework of S-FEM are given in section 5.2.

In section 5.3, the bubble-enriched ES-FEM is shown that it is very effective

to alleviate locking in finite elasticity without any additional terms in the

strain smoothing approximation.

1.4 Overview

This work endeavours to develop and improve the quality of low-order FEs for

incompressible and nearly-incompressible hyperelastic materials undergoing large

deformations. Variants of a novel numerical approach, so-called smoothed finite

element (S-FEM) are proposed and discussed. The work is organised as three

main parts.

Chapter 2 explains non-linearity and material descriptions which are commonly

used. Materials involving large deformations, particularly hyperelastic models,

are introduced. In hyperelastic models, relation of stress-strain is derived from

a strain energy function and this models are path-dependent. In this work, to

describe non-linear behaviour, a Lagrangian description and a neo-Hookean model

are used.

The combination of the strain smoothing technique and FEM in linear elasticity

is recalled in Chapter 3.

14



1.4. Overview

Chapter 4 presents the strain smoothing approach for finite elasticity in general and

hyperelastic materials in particular. The non-linear equilibrium equations solved

by Newton-Raphson are given using both a finite element approximation and a

smoothed finite element approximation. In the same manner as the smoothed

strains in S-FEM in linear elasticity, the smoothed deformation gradient is built

using smoothing domains. The stored energy function of neo-Hookean material is

derived by the smoothed deformation gradient.

Edge-based S-FEM (ES-FEM) enriched by the “Cubic” bubble functions in finite

elasticity is introduced in Chapter 5. Since the standard ES-FEM cannot effectively

avoid locking, bubble function enrichment/stabilisation associated with an internal

node located at the centroid of each T3 element gives excellent locking-free results.

Benchmark tests undergoing large deformation are discussed and provided with

all details necessary to be reproduced, including Dirichlet and Neumann boundary

conditions and full analytical solutions. Such fully developed solutions are rare in

the literature which makes verification tedious.

Finally the conclusions of the work, remarks and as well as the suggestions are

explained in Chapter 6.
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2 Fundamentals

Material descriptions are used to describe motion of a continuum body with

respect to coordinates and time and are also required for the governing equations

and their descretisation. Fig. 2.1 indicates the initial configuration Ω0 of a body

and the current configuration denoted by Ω.

Figure 2.1: The motion of a continuum body from the initial configuration Ω0 to
the current configuration Ω
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2.1 Mesh descriptions

There are three mesh descriptions: Lagrangian, Eulerian and arbitrary Lagrangian

Eulerian descriptions 1. One of the notable differences between Lagrangian and

Eulerian meshes are the behaviour of the nodes [15, 22, 95]. Fig. 2.2 represents

the movement of node and material points of both Lagrangian and Eulerian

descriptions. As shown in Fig. 2.2, nodes and material points (meshes and

materials) deform in Lagrangian formulation, whereas nodes are fixed and materials

flow into elements in Eulerian formulation. Lagrangian formulations have two

(a) Lagrangian Description

(b) Eulerian Description

Figure 2.2: Lagrangian and Eulerian descriptions

1Euler (1762) introduced Lagrangian coordinates (the material coordinates) and d’Alembert
introduced Eulerian coordinates (the spatial coordinates) in 1752 from References [95, 151].
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2.1. Mesh descriptions

possible descriptions, one is the total Lagrangian formulation. The second is the

updated Lagrangian formulation. Variables in the total Lagrangian formulation

are described in the initial configuration, while they are described in the current

configuration in the updated Lagrangian formulation [15]. Additionally different

stress and deformation measures are used in both formulations: a total measure

of strain and the second Piola-Kirchhoff (PK2) stress for the total Lagrangian

formulation and a rate measure of strain and Cauchy stress for updated Lagrangian

formulation. However, Green Lagrange strain can also be used in both total and

updated Lagrangian formulations. The momentum equation and its weak form

can be simply evaluated using the nominal stress rather than using the PK2

stress. Since PK2 stress is symmetric, the constitutive equations can be easily

obtained. Fig. 2.3 illustrates a 2D polygonal element in the initial (reference

Figure 2.3: Mapping to initial and current configurations in a Lagrangian mesh
description

or undeformed) and current (deformed) configuration. The 2D parent domain

(ξ, η) maps onto the initial (X, Y ) and current (x, y) configurations. Current

coordinates (x, y) are defined by initial coordinates (X, Y ) with displacement,

(x, y) = (X, Y ) + (uX , uY ).
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2.1.1 Lagrangian mesh

The Lagrangian (material) coordinates of the nodes coincide with material points

[9, 10, 15, 62].

• The Lagrangian coordinates of nodes moves with the material, and material

points are time invariant;

• The material does not pass between elements;

• Meshes can be severely distorted because the meshes deform with the

material;

• Boundary nodes remain on the boundary. Hence the implementation of

boundary condition is straightforward;

• Lagrangian coordinates are in general well-suited to solid mechanics.

2.1.2 Eulerian mesh

The Eulerian coordinates of the nodes are coincident with spatial points [9, 10,

15, 96].

• The Eulerian coordinates of the nodes are fixed;

• The material flows through the element;

• Since elements are fixed in space, mesh distortion never occurs;

• Boundary nodes and the boundary of material domain are not coincident,

therefore a treatment of moving boundary conditions is required;

• Eulerian coordinates are well-suited for fluid mechanics.

20



2.2. Hyperelastic materials

2.1.3 Arbitrary Lagrangian-Eulerian approach

A Lagrangian approach is ill-suited some cases in fluid mechanics and the accuracy

suffers due to severely distorted elements. Eulerian methods, on the other hand, do

not cause distortion because elements are fixed in space. However, the treatment

of moving boundaries, interfaces and constitutive equations is complicated in

Eulerian frame work. Arbitrary Lagrangian-Eulerian (ALE) formulation takes the

advantages of Lagrangian and Eulerian approaches but avoids their shortcomings

[3, 50, 70, 72, 145, 153]. This technique is often used in engineering, e.g. metal

forming [7, 58, 153], metal cutting [57, 125], fluid-structure interface [138, 144, 162],

free surface flow problems [27, 146] and free boundary problems [53, 158].

2.2 Hyperelastic materials

Hyperelastic (or Green elastic) materials are elastic materials. The stress is

defined by the current strain and is independent of strain. The stress-strain

curve is derived from a strain energy function (or stored energy function) W per

undeformed unit volume and fully reversible. Since the deformation of hyperelastic

materials is not directly proportional to the load, their behaviour is non-linear.

In [15, 22], compressible and incompressible hyperelastic materials, neo-Hookean

materials in particular, are expressed.

The second Piola-Kirchhoff (PK2) stress is obtained by a differentiation of the

stored energy function with respect to the Green-Lagrange strain

S = 2∂W (C)
∂C

= ∂W (E)
∂E

(2.1)

where S is the PK2 stress, E is the Green-Lagrange strain defined as E =

1/2
(
FTF− I

)
in terms of the deformation gradient F. C is the right Cauchy-

Green strain tensor C = FTF. From Eq. (2.1), the Cauchy (true) stress is

21



Chapter 2. Fundamentals

determined as

σ = −pI + 2∂W (E)
∂I1

C− 2∂W (E)
∂I2

C−1 (2.2)

where I1, I2 and I3 are the principal invariants of C. If the second-order tensor

is symmetric, the principal invariants of the right Cauchy-Green strain can be

expressed as

I1 (C) = trC = λ1 + λ2 + λ3

I2 (C) = 1
2
{

(trC)2 − tr
(
C2
)}

= tr (cofC) = λ1λ2 + λ2λ3 + λ3λ1

I3 (C) = det C = (det F)2 = λ1λ2λ3

(2.3)

where λ1, λ2 and λ3 are the eigenvalue of the right Cauchy-Green tensor C.

The average properties of rubber and other materials, human bone, steel, glass,

concrete, plastic and human tissues, are represented in Table 2.1 from [137] and

[143]2.

Table 2.1: Average material properties of rubber and other materials

Material Young’s modulus
(MPa)

Poisson’s ratio Shear modu-
lus (MPa)

Bulk modulus
(MPa)

Rubber (typical
range)

0.76∼7.60 0.5 0.35∼1.38 3,000∼3,500

Human Bone 10,021 0.3 3,854 8,350
Mild Steel 207,348 0.29∼0.3 79,483 158,967
Glass 55,292 0.25 22,117 36,631
Concrete 27,646 0.18 11,714 14,398
Polyethylene 138∼380 0.25 55∼152 89∼255
Stomach 0.1349∼0.2399 0.4995∼0.49991 0.008∼0.045 480
Liver 0.1109∼1.0195 0.49939∼0.49999 0.0037∼0.34 280
Heart 0.1799∼0.4439 0.4997∼0.4999 0.06∼0.148 250∼490
Lung 0.0299∼0.1619 0.4998∼0.4999 0.01∼0.054 150

2This paper is a technical paper written by MSC Software Corporation (http://www.
mscsoftware.com/application/nonlinear-analysis).
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2.2. Hyperelastic materials

There are numerous hyperelastic materials, e.g. St. Venant-Kirchhoff material,

neo-Hookean materials, Mooney-Rivlin materials, Ogden materials, the Yeoh

model as well as Blatz-Ko model. St. Venant-Kirchhoff material is the simplest

hyperelastic material [79]. The behaviour is large displacement but small strains.

In the linear elastic law, the stress is replaced by the second Piola-Kirchhoff (PK2)

stress and the linear strain is replaced by the Green-Lagrange strain. Mooney-

Rivlin materials are widely used for the large strain non-linear incompressible

materials, particularly rubbers [98, 135, 136]. These materials are incompressible

and initially isotropic. Ogden material was introduced by Ogden in 1972 [121]

to describe highly elastic materials such as rubbers or tissues. Ogden materials

are isotropic, incompressible and their strain rate are independent [122, 124]. The

Yeoh model was introduced to characterise the incompressible hyperelastic rubber-

like materials [140, 160] and Blatz-Ko material was introduced for the compressible

isotropic non-linearly elastic solids (foam-rubber material) [16, 17, 63].

In this work, neo-Hookean materials are considered. The neo-Hookean materials

are the extension of Hooke’s raw (isotropic linear law) and are normally used for

large deformation, e.g. rubber-like material [142, 154].

The stored energy function for a compressible neo-Hookean model [15] is

W (C) = 1
2λ0 (lnJ)2 − µ0lnJ + 1

2µ0 (trC− 3) (2.4)

where the Jacobian is J = det F.

By Eq. (2.1), the PK2 stress is given as

S = λ0lnJC−1 + µ0
(
I−C−1

)
(2.5)
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and the fourth-order elastic tensors are

Cijkl = λC−1
ij C

−1
kl + µ

(
C−1
ik C

−1
jl C

−1
jl + C−1

il C
−1
kj

)
(2.6)

where λ = λ0 and µ = µ0 − λlnJ . Note that µ0 is the shear modulus and Lamé’s

first parameter λ0 = κ− 2/3µ0 where the bulk modulus is κ.

2.3 Finite element method for linear elasticity

The principles of linear elasticity are reviewed and summarised in this section.

When either an external force or an internal force is applied to a continuum body,

all points of the body are influenced by these forces. The external force leads

a change of size and/or shape of the medium and the internal force resists this

deformation. Then when the external force is removed, the medium “tries” to

return to its initial shape and/or size. If the medium returns to its undeformed

shape perfectly, this medium is called elastic. A material is called linear elastic

if the relationship between the applied forces and the resulting displacements or

that of the applied displacements and resulting internal forces is linear.

Linear elasticity is a simplification of finite elasticity. In linear elastic, there

exists a linear relation between the components of strains and stresses. For most

materials, this is true when strains are small (less than 10%). In linear elasticity,

strain does not depend on the rate or history of loading but it depends on the

stress.
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2.3.1 Formulation of linear elastic 2D problem

For an isotropic linear elastic solid, the equilibrium equations state that the

divergence of the stress equals the body forces:

−∇σ = f (2.7)

The variational form of Eq. (2.7) can be expressed as

∫
Ω
σ · ∇vdΩ =

∫
Ω

f · vdΩ +
∫

ΓN

g · vdΓ (2.8)

where f is the vector of body forces, g = σ · n is the prescribed traction vector on

natural boundary ΓN and v is a test function belonging to the space of admissible

displacement field vanishing on the Dirichlet Boundary.

The stress tensor σ is

σ = 2µε+ λtr (ε) I (2.9)

where µ is the shear modulus and λ is Lamé’s parameter, which can be expressed

in terms of Young’s modulus E and Poisson’s ratio ν as follows

µ = E

2 (1 + ν) , λ = Eν

(1 + ν) (1− 2ν) (2.10)

and the infinitesimal strain tensor ε is

ε = {εij} , εij = 1
2

(
∂ui
∂Xj

+ ∂uj
∂Xi

)
(2.11)

or equivalently

ε = 1
2
(
∇u +∇uT

)
(2.12)
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In Voigt notation, the stress tensor can be expressed as follows


σ11

σ22

σ12


= C


ε11

ε22

2ε12


(2.13)

where C is the elasticity tensor

C =


2µ+ λ λ 0

λ 2µ+ λ 0

0 0 2µ

 (2.14)

The discrete equation of finite element method (FEM) from the Galerkin weak

form is to find the finite element relation uh in the discrete space of admissible

solutions satisfying Dirichlet BCs such that for all test functions vh with set of

admissible displacements with homogeneous Dirichlet BCs

∫
Ω
Cε

(
uh
)
· ε
(
vh
)

dΩ =
∫

Ω
f · vhdΩ +

∫
ΓN

g · vhdΓ (2.15)

This is written, in matrix form

Kuh = b (2.16)

where K is the stiffness matrix and b is the element force vector:

KIJ =
∫

Ω
Cε (ΨI) · ε (ΨJ) dΩ

bI =
∫

Ω
fΨIdΩ +

∫
ΓN

gΨIdΓ
(2.17)

where Ψ is the shape functions.
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2.4 Summary

This chapter recalled the fundamental background necessary to understand the

forthcoming developments.

27





3 Smoothed finite element method

3.1 Review of gradient smoothing approach for

finite elements

Gradient (strain) smoothing originated in the meshless literature from a stabilised

conforming nodal integration (SCNI) introduced by Chen et al. [33]. Direct nodal

integration faces numerical instability. SCNI improves accuracy and stability by

moving the evaluation of the shape function derivatives from the nodes where

they vanish to the boundary of smoothing domains, using the divergence theorem.

Yoo et al. [161] extended SCNI to the natural element method and solved nearly-

incompressible large deformation problems without any modification. Liu et al.

[82] employed strain smoothing in finite element method (smoothed finite element

method (S-FEM)), converting domain integration to boundary integration also

through the divergence theorem. The basic idea of S-FEM is to divide the compu-

tational domains into sub-domains where strains are smoothed. The gradients

(strains) are constant over the smoothing domains but they are discontinuous

across the boundaries of smoothing domains. Sub-domains are usually constructed

using the topology provided by the mesh. Depending on this construction, various

solution behaviours are observed, offering the use of a spectrum of methods with
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particular properties [25, 84, 85].

3.1.1 Main features of S-FEM

The smoothed finite element method (S-FEM) was introduced to enable the use

of simplex meshes, which are relatively simple to generate, even for complex

geometries, whilst avoiding the major drawbacks of such low order elements. The

methods that ensued have a range of properties, depending on the choice of the

background cells. Without giving details at this point, which will be revisited

later the salient features of S-FEM are as follows:

• ability to deal with almost arbitrary element distortion (because the sup-

pression of the Jacobian transformation from parent to physical coordinates:

integration is performed in physical space);

• ability to use elements of arbitrary shape, including polyhedral elements;

• relative insensitivity to locking (volumetric and shear).

When used with bilinear elements (quadrilaterals or hexahedral elements), the

method provides a range of behaviours ranging from a quasi-equilibrium element,

or, equivalently an under-integrated 4-node quadrilateral (for one single subcell)

to a displacement-based finite element (in the limit where the number of subcells

reaches infinity).

But S-FEM also has drawbacks

• the bandwidth is larger, which increases memory requirements and compu-

tational time. However, for most problems addressed to date, for the same

computational time, accuracy is usually superior for S-FEM [25];
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• the use of higher order and non-polynomial functions in the approximation

space is not yet well-understood in the context of strain smoothing.

3.2 Different smoothed finite elements

Four different types of S-FEM were developed [84], depending on how smoothing

domains are built: cell-based S-FEM (CS-FEM), edge-based S-FEM (ES-FEM),

node-based S-FEM (NS-FEM) and face-based S-FEM (FS-FEM). Each S-FEM

has different properties as follows:

• Volumetric locking NS-FEM can handle effectively nearly-incompressible

materials where Poisson’s ratio ν → 0.5 [84, 87], while ES-FEM does not

completely suppress volumetric locking. But combining NS- and ES-FEM:

the selective smoothing ES/NS-FEM overcomes the locking problem [84].

In the case of CS-FEM, volumetric locking can be avoided by selective

integration [101, 113]. Each method performed well with Poisson’s ratio up

to ν = 0.4999999.

• Upper and lower bound properties For most problems, NS-FEM gives

an upper bound solution and FEM obtains a lower bound solution. While, in

the case of a problem with no external forces (displacement-based) but non-

zero prescribed Dirichlet boundary conditions, NS-FEM and FEM provide

respectively lower and upper bounds for the energy [84, 89, 104].

• Static and Dynamic Analyses ES-FEM gives accurate and stable results

when solving either static or dynamic problems [86]. In contrast, although

NS-FEM is spatially stable, it is temporally unstable. Therefore, to solve

dynamic problems, NS-FEM requires stabilisation techniques [163, 164].

CS-FEM can also be extended to solve dynamic problems [43].

• Other features In NS-FEM, the accuracy of the displacement norm is

31



Chapter 3. Smoothed finite element method

comparable to that of the standard FEM using the same mesh, whereas the

accuracy of stress solutions in the energy norm is superior to that of FEM

[84]. In CS-FEM, four smoothing domains can be used for isochoric and

one smoothing domain can be used for volumetric components, respectively.

In terms of computational time, in general, S-FEM is more expensive than

conventional FEM for the same set of nodes [84].

3.2.1 Edge-based smoothed finite element method

The smoothing domain Ωk in ES-FEM is constructed around a target edge k

which is the boundary segment of each element sharing edge k (as shown in Fig.

3.1). In general, S-FEM is more accurate than FEM for the same computational

expense. The smoothed strain-displacement matrix B̃I for node I is computed

Figure 3.1: Smoothing domain associated with edge k for T3 ES-FEM

with shape functions evaluated at Gauss points on the mid-point of boundary

Γk of the smoothing domain Ωk and the outward normal vector (See Fig. 3.2).

A number of Gauss point is one on each segment of the smoothing domain and

therefore four Gauss points are used in the whole smoothing domain Ωk.
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The smoothed strain-displacement matrix B̃I is defined as

B̃I (x) = 1
Ak

∫
Γk

n (x) ΨIdΓ (3.1)

where Ak is the area of the smoothing domain, n is the outward normal vector

and Ψ is the shape functions. In particular, when a linear T3 element is used, the

following form of smoothed strain-displacement matrix can be used

B̃I (x) = 1
Ak

Ne
p∑

p=1

1
3A

e
pBe

p (3.2)

where N e
p is the number of elements of the smoothing domain associated with edge

k, Aep is the area of element sharing edge k and Be
p is the standard compatible

strain-displacement matrix of a T3 element in the standard FEM. The smoothed

Figure 3.2: Gauss point and outward normal evaluated on the boundary of
smoothing domain associated with target edge k in ES-FEM with linear T3
element

stiffness matrix is (shown in Fig. 3.3)

K̃ =
Ne∑
k=1

B̃T
k (x)CB̃k (x)Ak (3.3)

where Ne is the number of edges, C is the elasticity tensor and the area of

smoothing domain Ak =
∫

Ωs
k

dΩ. Note that the central point of each T3 element,
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Figure 3.3: Construction of the stiffness matrix in ES-FEM: Two T3 elements
have five edges and the smoothed strain-displacement matrices are built in each
smoothing domain

associated with edge-based strain smoothing, has no additional degrees of freedom

(DOF) and no additional field variables.

3.2.2 Node-based smoothed finite element method

In node-based smoothing, similarly to ES-FEM, the problem domain Ω is split

into smoothing domains created by grouping sub-domains of each element sharing

target node k (shown in Fig. 3.4). Sub-domains for NS-FEM are created using

the centroid of the finite elements and the mid-point of each edges.

As in ES-FEM, numerical integration for node-based strain smoothing is done

on the boundary of the smoothing domain (see Fig. 3.5). The smoothed

strain-displacement matrix in NS-FEM is given as

B̃I (x) = 1
Ak

∫
Γk

n (x) ΨIdΓ (3.4)

where Ak is the area of the smoothing domain, n is the outward normal vector and
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3.2. Different smoothed finite elements

Figure 3.4: Smoothing domain associated with node k for NS-FEM with T3
element

Figure 3.5: Gauss point and outward normal evaluated on the boundary of
smoothing domain associated with target edge k in NS-FEM with linear T3
element

Ψ is the shape functions. Similarly to ES-FEM, the smoothed strain-displacement

matrix can be also defined as

B̃I (x) = 1
Ak

Ne
p∑

p=1

1
3A

e
pBe

p (3.5)

where N e
p is the number of elements associated with node k, Aep is the area of

element sharing node k and Be
p is the standard compatible strain-displacement

matrix of a linear T3 element in the FEM. As shown in Fig. 3.6, the smoothed
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Figure 3.6: Construction of the stiffness matrix in NS-FEM: Two T3 elements
have four nodes and the smoothed strain-displacement matrices are built in each
smoothing domain

stiffness matrix is

K̃ =
Nn∑
k=1

B̃T
kCB̃kAk (3.6)

where Nn is the number of nodes, B̃k is the smoothed strain-displacement matrix,

C is the elasticity tensor and Ak is the area of the smoothing domain.

3.2.3 Face-based smoothed finite element method

Strain smoothing was extended to 3D problems, e.g. the face-based smoothed

finite element method (FS-FEM). The idea behind FS-FEM is shown in Fig. 3.7.

A T4 element is split into four sub-domains by a standard Delaunay triangulation

algorithm and smoothing domain is constructed using target face k of each face

(surface) of sub-domains.

In Reference [112], an integration scheme for 3D CS-FEM with hexahedral element

is explained. Similar to 3D CS-FEM, Gauss points for FS-FEM are located in
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the middle of each face of smoothing polyhedra, evaluating outward normals and

shape functions. Fig. 3.8 depicts positions of Gauss points for T4 FS-FEM. The
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(a) Sub-domains for tetrahedral element

(b) Smoothing domain associated to target face

Figure 3.7: Smoothing domain of face-based S-FEM with tetrahedral elements:
(a) four sub-domains for tetrahedral element and (b) smoothing domain associated
to target face

smoothed strain-displacement matrix for face-based smoothing is represented as

B̃ (x) = 1
Vk

∫
Ωs

k

BI (x) dΩ = 1
Vk

Ne
p∑

n=1

1
4V

e
p Be

p (3.7)
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Figure 3.8: Face-based Smoothing: Gauss Points where shape functions and
outward normal vectors are evaluated

Figure 3.9: Construction of the stiffness matrix in FS-FEM: Two T4 elements
have seven faces and the smoothed strain-displacement matrices are built in each
smoothing domain

where Vk is the volume of the smoothing domains, N e
p is the number of elements

associated with target face k, V e
p is the volume of the element sharing target face

and Be
p is the T4 strain-displacement matrix in the FEM. The smoothed stiffness
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3.3. Smoothed finite element method in linear elasticity

matrix of FS-FEM is built as shown in Fig. 3.9

K̃ =
Nf∑
k=1

B̃T
kCB̃kVk (3.8)

where Nf is the number of faces, B̃k is the smoothed strain-displacement matrix,

C is the elasticity tensor and Vk is the volume of smoothing domain.

3.3 Smoothed finite element method in linear

elasticity

Now that the key concepts behind the evaluation of the stiffness matrix in S-

FEM have been given, the construction of S-FEM is approached more primally.

The basics of S-FEM is presented in the context of small strain elasticity. The

infinitesimal strain tensor εh
ij for linear elasticity is given as

εh
ij = 1

2

(
∂uh

i

∂Xj

+
∂uh

j

∂Xi

)
(3.9)

where u is the displacement field and X is the initial (or material) configuration,

which for small deformation coincides with the current configuration.

The infinitesimal strain tensor is smoothed over the smoothing domain Ωs
k by

computing the weighted average of εh
ij as

∀x ∈ Ωs
k, ε̃h (xk) =

∫
Ωs

k

εh (x) Φ (x) dΩ (3.10)

where a point xk (shown in Fig. 3.10) is located in a smoothing domain Ωs
k.

Properties of the weight function Φ are

∫
Ωs

k

Φ (x) dΩ = 1, Φ > 0 (3.11)
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Φ (x) =

 1/Ak x ∈ Ωs
k

0 x /∈ Ωs
k

(3.12)

where Ak is the area of smoothing domain Ωs
k. Applying the divergence theorem,

(a) ES-FEM (b) NS-FEM

Figure 3.10: Description of the smoothing domains and integration points xk: the
considered smoothing domain is denoted by shade and dashed line, black-filled
circles are nodes and white-filled circles are integration points xk

the smoothed strain can be obtained as follows

ε̃h (xk) = 1
Ak

∫
Ωs

k

ε (x) dΩ = 1
Ak

∫
Γs

k

n (x) uh (x) dΓ (3.13)

where Γsk is the boundary of the smoothing domain Ωs
k and n (x) is the outward

normal on boundary Γsk. For 2D the outward normal vector matrix is

n (x) =


n1 0

0 n2

n2 n1

 (3.14)

The discrete trial and test functions are, in the FEM, using Lagrange shape
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functions ΨI at the node I of a simplex mesh1

uh (x) =
N∑
I=1

uIΨI (x) , vh (x) =
N∑
J=1

vJΨJ (x) (3.15)

If the strain in each sub-domain is constant (as for T3 or T4), the smoothed strain

is written

ε̃h (xk) = 1
Ak

NSD∑
q=1

Ak,qε (x)q (3.16)

where ε (x) is the constant compatible strain of the qth sub-domain of smoothing

domain Ωs
k, Ak,q is the smoothing domain area of the qth sub-domain and NSD

is the number of sub-domains of smoothing domain Ωs
k. Fig. 3.11 illustrates

Figure 3.11: Construction of the smoothed strain in ES-FEM

Eq. (3.16) in the edge-wise smoothing approach. Note that when target edge

k is chosen to an inner edge in the problem domain, the smoothing domain is

assembled by two sub-domains in ES-FEM. In this case thus NSD = 2, while when

target edge k is the boundary edge, then NSD = 1.
1In this work we consider only linear shape functions, as linear elements are the most suitable

for strain smoothing according to [24, 25].
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The smoothed strain-displacement matrix. The smoothed strain Eq. (3.13)

can be re-written in terms of the nodal displacements as follows

ε̃ (xk) =
∑
I∈Gk

B̃I (x) uh
I (3.17)

where Gk is a set of nodes shown in Figs. 3.1 and 3.4. From the smoothed

strain, the smoothed strain-displacement matrix for 2D is obtained to evaluate

the smoothed stiffness matrix given as

B̃I (x) = 1
Ak

∫
Γs

k

n (x) ΨIdΓ =


B̃I1 0

0 B̃I2

B̃I2 B̃I1

 (3.18)

where B̃Ii can be obtained as

B̃Ii = 1
Ak

∫
Γs

k

ψI (x)ni (x) dΓ (3.19)

where ΨI is the shape functions. Note that Eqs. (3.18) and (3.19) are visualized

in Figs. 3.2 and 3.5.

From the definition of the smoothed strain field Eq. (3.10), the relation be-

tween the smoothed strain-displacement B̃I (x) and a standard compatible strain-

displacement BI (x) in FEM is

B̃I = 1
Ak

∫
Ωs

k

BI (x) dΩ (3.20)

Smoothed stiffness matrix. The standard discretised algebraic system equa-

tions for S-FEM is given as

K̃uh = b (3.21)
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3.4. Summary

where the smoothed stiffness matrix K̃ is defined as

K̃ =
∫

Ω
B̃T (x)CB̃ (x) dΩ

=
Ne∑
k=1

∫
Ωs

k

B̃T (x)CB̃ (x) dΩ

=
Ne∑
k=1

B̃T (x)CB̃ (x)Ak

(3.22)

where Ne is, in particular, the number of edges in ES-FEM2, C is the elasticity

tensor and the area of smoothing domains is Ak =
∫

Ωs
k

dΩ. The S-FEM stiffness

matrix (in Eq. (3.22)) is computed over smoothing domains, not over the element

as in FEM, and this procedure does not require the numerical integration scheme

which is only required to compute the smoothed strain-displacement matrix B̃.

Note that the external force vector in S-FEM can be obtained exactly as in FEM,

since only gradients are only smoothed.

3.4 Summary

Different types of S-FEM models were detailed, cell-based S-FEM (CS-FEM),

edge-based S-FEM (ES-FEM) and node-based S-FEM (NS-FEM) for 2D and

face-based S-FEM (FS-FEM) for 3D. Their properties were explained in section

3.2.

2In NS-FEM, the notation Ne becomes Nn as the number of nodes. Similarly, Nf , the
number of faces, is used in FS-FEM.
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4 Smoothed finite element method

in finite elasticity

Soft materials used in engineering applications traditionally include tyres and

rubber. With advances in tissue engineering this list expands to include cell

agglomerates and hydrogels. These materials can undergo immense elastic strains.

Standard methods are still usable to reproduce such deformation. Enhanced

approaches discussed in Chapter 1 can be good alternatives, but those numerical

methods still have weaknesses: intrusiveness of implementations, complexity of

formulations, requirement of higher-order spaces. The smoothed finite element

method (S-FEM) has shown to be an equally worthy alternative which uses lower-

order simplex meshes (triangles and tetrahedra). Moreover the approach is easy to

implement within the existing codes and can avoid large extent volumetric locking

and sensitivity to mesh distortion. Superior stress accuracy is also observed for

certain classes of S-FEM and in particular parallelisation of the node-based S-FEM

is simple. However current work mainly has concentrated on quasi-incompressible

media [101, 104, 107, 108, 113, 114].

In this Chapter, the S-FEM approximation is introduced for finite elasticity.

Bubble stabilisation is also proposed to further improve the method’s behaviour

in an incompressible setting. Section 4.1 recalls finite element approximation as

applied to finite elasticity. The main contribution in this Chapter is given in
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Chapter 4. Smoothed finite element method in finite elasticity

section 4.2. Firstly the strain smoothing approximation for non-linear elasticity

is introduced. Then, to solve Galerkin weak form, the smoothed deformation

gradient, the smoothed tangent stiffness matrix, the internal force and the fourth-

order elasticity tensor are built on each smoothing domain. Finally the global

smoothed system of equations is solved using Newton-Raphson iterative method.

Benchmark tests for incompressibility and mesh distortion are given in section

4.3.

4.1 Finite element approximation in finite elas-

ticity

The solution of the non-linear equilibrium equations is achieved by Newton-

Raphson method in this Chapter. This process generally involves a linearisation

procedure. The developments in 2D are presented to simplify the notations, but

the approach is identical in 3D.

The Galerkin weak form. The strong form of equilibrium equation in partial

differential form is

∂σij
∂xj

+ bi = 0 ∈ Ω (4.1)

where σij is the stress and bi is the external force. From Eq. (4.1), the principle of

virtual work for finite elasticity is written as the Galerkin weak form [79, 97, 120]

∫
Ω

∂W
∂F

(X,F (u)) : ∇vdΩ =
∫

Ω
f · vdΩ +

∫
ΓN

g · vdΓ (4.2)

where v is the set of admissible test functions.

The strain energy density function W for a compressible neo-Hookean material
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4.1. Finite element approximation in finite elasticity

[15] is

W = 1
2λ (lnJ)2 − µlnJ + 1

2µ (trC− 3) (4.3)

where Lamé’s first parameter λ is λ = κ− 2
3µ

1, and the shear modulus µ > 0 and

the bulk modulus κ > 0 are material parameters.

The energy functional and its directional derivatives. From Eq. (4.2)

the energy functional (R (u)) is given as

R (u) =
∫

Ω

∂W
∂Fij

(X,F (u)) ∂vi
∂Xj

dΩ−
∫

Ω
fividΩ−

∫
ΓN

gividΓ (4.4)

and its directional derivatives (DR (u) · u) are

DR (u) · u =
∫

Ω

∂2W
∂Fij∂Fkl

(X,F (u)) ∂rk
∂Xl

∂vi
∂Xj

dΩ (4.5)

where i, j, k, l ∈ {1, 2, 3} for three dimensional problems and the deformation

gradient F is

F =
(
∂x
∂X

)T

or Fij = ∂xi
∂Xj

(4.6)

where x is the current configuration x = X + u and X is the initial configuration.

The right Cauchy-Green tensor and the Jacobian can be obtained as C = FTF

and J = det F, respectively.

Newton-Raphson method. To find an approximate solution to the non-linear

set of equations Eq. (4.4), Eq. (4.2) in the displacement field u, the Newton-

Raphson method is employed. At iteration iter + 1, knowing the displacement
1Lamé’s first parameter λ is defined as λ = κ− 1

2µ in two dimensional (2D) and λ = κ− 2
3µ

in three dimensional (3D) analyses. In this thesis, the strain energy function for hyperelastic
material in 3D form is generally considered.
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Chapter 4. Smoothed finite element method in finite elasticity

uiter from iteration iter , find riter that satisfies

DR (uiter) · riter = −R (uiter) (4.7)

The energy functional Eq. (4.4) and its directional derivatives Eq. (4.5) can be

re-written

R (u) =
∫

Ω
2 ∂W
∂Cij

Fki
∂vk
∂Xj

dΩ−
∫

Ω
fividΩ−

∫
ΓN

gividΓ (4.8)

DR (u) · r =
∫

Ω

{
∂2W

∂Cij∂Ckl
Fpi

∂vp
∂Xj

Fsk
∂rs
∂Xl

+ 2 ∂W
∂Cij

∂rk
∂Xi

∂vk
∂Xj

}
dΩ (4.9)

where i, j, k, l, p, s ∈ {1, 2} for 2D and i, j, k, l, p, s ∈ {1, 2, 3} for 3D.

Tangent stiffness matrix and load vector. The resulting linear algebraic

system of equations for the numerical approximation of Eq. (4.7) is assembled

into matrix form at each iteration:
 K11 K12

K21 K22


 r1

r2

 =

 b1

b2

 (4.10)

By taking v = ∑
I NIvI , in Eq. (4.9) (where N is the shape functions), the stiffness

matrix K is obtained with following components

K11 =
∫

Ω

[
4 ∂2W
∂Cij∂Ckl

(
δ1i + ∂u1

∂Xi

)
∂N1

∂Xj

(
δ1k + ∂u1

∂Xk

)
∂N1

∂Xl

+ 2 ∂W
∂Cij

∂N1

∂Xi

∂N1

∂Xj

]
dΩ

K12 =
∫

Ω

[
4 ∂2W
∂Cij∂Ckl

(
δ1i + ∂u1

∂Xi

)
∂N1

∂Xi

(
δ2k + ∂u2

∂Xk

)
∂N2

∂Xl

]
dΩ

K21 = K12

K22 =
∫

Ω

[
4 ∂2W
∂Cij∂Ckl

(
δ2i + ∂u2

∂Xi

)
∂N2

∂Xj

(
δ2k + ∂u2

∂Xk

)
∂N2

∂Xl

+ 2 ∂W
∂Cij

∂N2

∂Xi

∂N2

∂Xj

]
dΩ
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4.1. Finite element approximation in finite elasticity

(4.11)

and the components of the load vector are

b1 = −
∫

Ω

[
2 ∂W
∂Cij

(
δ1i + ∂u1

∂Xi

)
∂N1

∂Xj

]
dΩ +

∫
Ω
f1N1dΩ +

∫
ΓN

g1N1dΓ

b2 = −
∫

Ω

[
2 ∂W
∂Cij

(
δ2i + ∂u2

∂Xi

)
∂N2

∂Xj

]
dΩ +

∫
Ω
f2N2dΩ +

∫
ΓN

g2N2dΓ
(4.12)

Then the tangent stiffness matrix Ktan = Kmat + Kgeo can be re-written using Eq.

(4.11)

Kmat =
∫

Ω
BT

0 CB0dΩ

Kgeo =
∫

Ω
BTSBdΩ

(4.13)

and by Eq. (4.12) the load vector b is

b =
∫

Ω
B0 {S} dΩ (4.14)

where the second Piola-Kirchhoff (PK2) stress matrix S is

S =



S11 S12 0 0

S12 S22 0 0

0 0 S11 S12

0 0 S12 S22


(4.15)

and

{S} =


S11

S22

S12


(4.16)

49



Chapter 4. Smoothed finite element method in finite elasticity

where the fourth-order elasticity tensors C are

C =


C11 C12 0

C12 C22 0

0 0 C66

 (4.17)

Strain-displacement matrix. The strain-displacement matrices B0 and B for

2D can be expressed respectively as

B0 =



∂NI

∂X1

(
∂u1

∂X1
+ 1

)
∂NI

∂X1

(
∂u2

∂X1

)
∂NI

∂X2

(
∂u1

∂X2

)
∂NI

∂X2

(
∂u2

∂X2
+ 1

)
∂NI

∂X2

(
∂u1

∂X1
+ 1

)
+ ∂NI

∂X1

(
∂u1

∂X2

)
∂NI

∂X1

(
∂u2

∂X2
+ 1

)
+ ∂NI

∂X2

(
∂u2

∂X1

)



B =



∂NI

∂X1
0

∂NI

∂X2
0

0 ∂NI

∂X1

0 ∂NI

∂X2


(4.18)

The global system of equations. The global system of equations (Eq. (4.7))

can be written as

Kiterriter = biter (4.19)

and

uiter+1 = uiter + riter (4.20)
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4.2. Strain smoothing finite element approximation in finite elasticity

4.2 Strain smoothing finite element approxima-

tion in finite elasticity

In this section, the smoothed finite element approximation in finite elasticity

is proposed. Since the deformation gradient F requires to solve the Galerkin

weak form, the smoothed deformation gradient F̃ is given and thus the smoothed

right-Cauchy strain tensor C̃ is computed. Using Newton-Raphson iteration, the

smoothed global system of equation is solved.

The smoothed Galerkin weak form. The strong form of the equilibrium

equation is (see also Eq. (4.1) and Fig. 4.1)

∇σ + b = 0 in Ω

σn = t̄ on Γσ
u = ū on Γu

(4.21)

where σ is the internal stress, b is the external force.

Figure 4.1: 2D homogeneous body: Ω is the body domain, Γ is the boundary, Γt
is the external force and Γu is the boundary conditions
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Chapter 4. Smoothed finite element method in finite elasticity

The smoothed deformation gradient F̃ is defined as (see Fig. 4.2 and Appendix

B)

F̃ij = 1
Ak

∫
Ωk

(
∂uhi
∂Xj

+ δij

)
Φ (x) dΩ

= 1
Ak

∫
Ωk

(
∂uhi
∂Xj

)
Φ (x) dΩ + δij

= 1
Ak

∫
Ωk

∑
I∈Gk

(
∂NI

∂Xj

uiI

)
Φ (x) dΩ + δij

(4.22)

where Φ needs to satisfy the following properties (Fig. 4.3)

Φ =


1
Ak

x ∈ Ωk

0 otherwise

The Galerkin weak form (Eq. (4.2)) can be written for S-FEM

(a) ES-FEM (b) NS-FEM

Figure 4.2: Construction of the smoothed deformation gradient over the smoothing
domains

∫
Ω

∂W
∂F̃

(
X, F̃ (u)

)
: ∇vdΩ =

∫
Ω

f · vdΩ +
∫

ΓN

g · vdΓ (4.23)

Newton-Raphson method. In the same manner as FEM approximation in

finite elasticity, the linearisation is done as in the FEM case (see section 4.1).
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4.2. Strain smoothing finite element approximation in finite elasticity

(a) ES-FEM (b) NS-FEM

Figure 4.3: The property of the weight function Φ: (a) ES-FEM and (b) NS-FEM.
The weight function is constant (the inverse of the area of smoothing domain)
and is zero elsewhere

The smoothed stiffness matrix and load vector. Hence, the matrix form

of algebraic system in 2D is

 K̃11 K̃12

K̃12 K̃22


 r1

r2

 =

 b̃1

b̃2

 (4.24)

The smoothed tangent stiffness matrix K̃tan = K̃mat + K̃geo can be expressed by

replacing the discretized gradients B and B by their smoothed counterparts:

K̃mat =
∫

Ω
B̃T

0 C̃B̃0dΩ =
Ne∑
k=1

∫
Ωs

k

B̃T
0 C̃B̃0dΩ =

Ne∑
k=1

B̃T
0 C̃B̃0Ak

K̃geo =
∫

Ω
B̃TS̃B̃dΩ =

Ne∑
k=1

∫
Ωs

k

B̃TS̃B̃dΩ =
Ne∑
k=1

B̃TS̃B̃Ak

(4.25)

where Ne is the number of edges for ES-FEM2 and the stress matrix S̃ for 2D is

S̃ =



S̃11 S̃12 0 0

S̃12 S̃22 0 0

0 0 S̃11 S̃12

0 0 S̃12 S̃22


(4.26)

2Note that in NS-FEM Nn which is a number of nodes can be used and Nf for FS-FEM is a
number of faces.
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Chapter 4. Smoothed finite element method in finite elasticity

The load vector b̃ is

b̃ =
Ne∑
k=1

B̃0
{
S̃
}
Ak (4.27)

where the stress vector
{
S̃
}
is given by

{
S̃
}

=


S̃11

S̃22

S̃12


(4.28)

The stresses S̃ are given by Eq. (A.9) in Appendix A

S̃ = µ
(
I− C̃−1

)
+ λlnJ̃ C̃−1 (4.29)

and the elasticity tensors can be expressed by Eq. (A.18) in Appendix A

C̃ijkl = λ
(
C̃−1
ij C̃

−1
kl

)
+
(
µ− λlnJ̃

) [
C̃−1
ik C̃

−1
jl + C̃−1

il C̃
−1
jk

]
(4.30)

where the smoothed Jacobian J̃ = det F̃.

The smoothed strain-displacement matrix. The smoothed strain-displacement

matrices B̃0 and B̃ for 2D and 3D are respectively given by

B̃0 (x) =


B̃I1F̃11 B̃I1F̃21

B̃I2F̃12 B̃I2F̃22

B̃I2F̃11 + B̃I1F̃12 B̃I1F̃22 + B̃I2F̃21

 (x)

B̃ (x) =



B̃I1 0

B̃I2 0

0 B̃I1

0 B̃I2


(x)

(4.31)

54



4.2. Strain smoothing finite element approximation in finite elasticity

and

B̃0 (x) =



B̃I1F̃11 B̃I1F̃21 B̃I1F̃31

B̃I2F̃12 B̃I2F̃22 B̃I2F̃32

B̃I3F̃13 B̃I3F̃23 B̃I3F̃33

B̃I2F̃11 + B̃I1F̃12 B̃I2F̃21 + B̃I1F̃22 B̃I2F̃31 + B̃I1F̃32

B̃I3F̃12 + B̃I2F̃13 B̃I3F̃22 + B̃I2F̃23 B̃I3F̃32 + B̃I2F̃33

B̃I3F̃11 + B̃I1F̃13 B̃I3F̃21 + B̃I1F̃23 B̃I3F̃31 + B̃I1F̃33


(x)

B̃ (x) =



B̃I1 0 0

B̃I2 0 0

B̃I3 0 0

0 B̃I1 0

0 B̃I2 0

0 B̃I3 0

0 0 B̃I1

0 0 B̃I2

0 0 B̃I3



(x)

(4.32)

where the smoothed strain-displacement matrix B̃I (x) is given in Eq. (3.19) in

Chapter 3 (see also Figs. 3.3, 3.6, 3.9 and 3.10).

The smoothed global system of equations. The smoothed global system

of equations Eq. (4.7) at each Newton-Raphson iteration can be written as

K̃iterriter = b̃iter (4.33)

and the updated displacement u obtained by the Newton-Raphson method is

uiter+1 = uiter + riter (4.34)
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4.3 Numerical results

In this section, numerical examples are presented in order to demonstrate the

performance of the methods discussed so far in finite elasticity. For the imple-

mentation, the first derivative of strain energy density with respect to the right

Cauchy-Green deformation tensor C, which represents the stress, and the second

derivatives of strain density of neo-Hookean model with respect to the right

Cauchy-Green deformation tensor, which expresses the elasticity tensors C, are

needed. Those will be defined in section 4.3.1.

Simple shear deformation with Dirichlet boundary conditions (BCs) and Neumann

BCs will be analysed in section 4.3.2. In following sections 4.3.3 and 4.3.4, the

uniform extension with lateral contraction with Dirichlet and Neumann BCs,

“Not-so-simple” shear deformation with Dirichlet BCs and simple torsion of a solid

cylinder with Dirichlet BCs will be investigated, respectively. The examples are

taken from References [60, 97, 120, 123] and have some analytical solutions.

In addition, near-incompressibility and mesh distortion sensitivity are studied in

sections 4.3.5 and 4.3.6. For quasi-incompressibility, Cook’s membrane is used

with bulk moduli κ = 100, 1, 000 and 10, 000, which Poisson’s ratio is close to

0.5. The bending of a rectangle is solved with highly distorted meshes. Since

an analytical solution for Cook’s membrane does not exist, a numerical solution

using DOLFIN [90, 91], using the MINI element with a very fine mesh, is used as

a reference solution. The rectangle bending example is introduced in Reference

[123] and has an analytical solution.

These numerical examples are chosen as benchmarks with following parameters for

Newton-Raphson iteration: tolerance is 10−9, the number of load step is 50 ∼ 100

and the number of iteration to convergence is about 4 ∼ 6, including quadratic

convergence of the Newton-Raphson algorithm.
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Code details and implementation. All following numerical results for FEM

and S-FEM are obtained by MATLAB codes3. In 2D, 3-noded triangular elements

for FEM and 3-noded triangular and 4-noded bubble-enriched triangular elements

for edge-based and node-based S-FEM are used, respectively. For 3D, FEM with

4-noded simplex tetrahedral element and FS-FEM with 4-noded tetrahedral and

5-noded tetrahedral elements with the bubble functions are used.

For pseudo-analytical results, python scripts of the MINI element4 are used in

DOLFIN finite element software with very fine meshes (GDof = 816, 080, 000).

For the MINI element, 4-noded triangular and 5-noded tetrahedral elements for

2D and 3D problems are used, respectively. Python scripts used in this thesis are

based on website5 and Reference [6] (also a example script is provided in Appendix

E).

Computational time. All numerical examples are simulated on the Intel CPU

desktop (Inter Core i5 3.33 GHz and 8.00 GB RAM) operated by Ubuntu6. Note

that GPU and parallelism are not considered in this thesis.

For Cook’s membrane problem in section 5.3.1, when bulk modulus κ = 107, the

number of elements 100× 100 and the number of load step 100 are used, actual

simulation time is almost 1 day for FEM and around 2 ∼ 3 days for S-FEM on

MATLAB.

3MATLAB codes for FEM and S-FEM used for numerical experiments can be
found on computationalmechanicsos on SourceForge (https://sourceforge.net/projects/
computationalmechanaicsos/)

4The MINI element is a model for the Stokes problem. The velocity and the pressure are
approximated at the internal degrees of freedom in each element [2].

5FEniCS project (http://fenicsproject.org/documentation/dolfin/dev/python/demo/pde/
hyperelasticity/python/documentation.html).

6A Debian-based Linux operating system (http://www.ubuntu.com/).
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Chapter 4. Smoothed finite element method in finite elasticity

4.3.1 Neo-Hookean model

For all numerical tests in this work the neo-Hookean model will be used. This

model is the simplest hyperelastic model and is isotropic. The stored energy

function of neo-Hookean material given in Reference [15] is

W (C) = 1
2 (lnJ)2 − µ0lnJ + 1

2µ0 (trC− 3) (4.35)

where λ0 and µ0 are Lamé’s first parameter and Lamé’s second parameter (or often

called shear modulus) respectively and the Jacobian J = det F. The invariants

of tensors I1, I2 and I3 are shown in Eq. (2.3) and their derivatives are given in

Table 4.1.

Table 4.1: The derivatives of the principal invariants of the right Cauchy-Green
tensor with respect to itself (also see A.5∼A.8 in Appendix A)

The derivatives of principal invariants of the right Cauchy-Green tensor

∂I1

∂C
= I

∂I1

∂Cij
= δij

∂I2

∂C
= I1I−CT ∂I2

∂Cij
= Ckkδij − Cji

∂I3

∂C
= I3C−T ∂I3

∂Cij
= I3C

−1
ji

Expressing the first derivative of the stored energy with respect to the right

Cauchy-Green tensor C, the second Piola-Kirchhoff stress tensor (PK2 or S) of

a neo-Hookean material can be obtained by the chain rule using the principal
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4.3. Numerical results

invariants and its derivatives are given in Eq. (2.3) and Table 4.1

S = ∂W
∂C

= ∂W
∂I1

∂I1

∂C
+ ∂W
∂I2

∂I2

∂C
+ ∂W
∂I3

∂I3

∂C

= ∂W
∂I1

I + ∂W
∂I2

(I1I−C) ∂W
∂I3

I3C−1
(4.36)

where the right Cauchy-Green deformation tensor C is defined by the deformation

gradient F as

C = FTF (4.37)

The elasticity tensors are determined as the second derivatives of stored energy

function with respect to the right Cauchy-Green deformation, are given as (see

Appendix A and References [15, 21])

Cijkl = λC−1
ij C

−1
kl + µ

(
C−1
ik C

−1
jl + C−1

il C
−1
kj

)
(4.38)

where λ = λ0 and µ = µ0 − λlnJ .

4.3.2 Simple shear deformation

This example is one of the most popular benchmark tests because of the existence

of analytical solutions in finite elasticity. Two boundary conditions cases are

considered; (1) Dirichlet BCs and (2) mixed Dirichlet and Neumann boundary

conditions. Fig. 4.4 shows the geometry of this problem.
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Chapter 4. Smoothed finite element method in finite elasticity

Figure 4.4: Simple shear deformation of a unit square

The deformation gradient for the simple shear deformation takes following form:

F =


1 k 0

0 1 0

0 0 1

 (4.39)

where k > 0.

For the simple shear deformation problem, the shear and bulk moduli µ = 0.6

and κ = 100 are used, respectively. When a higher value of κ is used, the material

is more incompressible. The number of three-node triangular (T3) elements in

the x− and y−directions are 4× 4, 8× 8, 16× 16 and 32× 32. The analytical

solution can be written

W = µ

2k
2 (4.40)

The analytical solution can be calculated by Eq. (4.40) with given material

parameters, deformation k = 1, shear modulus µ = 0.6 and bulk modulus κ = 100,

and therefore the strain energy W = 0.3 (see in Appendices C.1 and D.1).

Fig. 4.5 represents the strain energy convergence for the simple shear with

Dirichlet and mixed Dirichlet and Neumann boundary conditions. The x- and

y-axes represent the logarithm of the total number of degrees of freedom. For
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4.3. Numerical results

this problem, it is clearly seen that the analytical solution W = 0.3 is reproduced

to machine precision regardless of the mesh size. All methods provide the exact

results down to machine precision.
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Figure 4.5: Strain energy convergence for the simple shear deformation (FEM,
ES-FEM, NS-FEM and the MINI): (a) Dirichlet BCs and (b) mixed Dirichlet and
Neumann BCs

The detailed values of the relative error in strain energy for the simple shear are

provided in Tables 4.2 and 4.3 for various meshes (4 × 4, 8 × 8, 16 × 16 and

32× 32). Such relative error is computed by

Werror = W
Numerical −WAnalytical

WAnalytical × 100

The value of the relative error is denoted by the percentage. From Table 4.2 and

4.3, the value provided by the strain smoothing formulations are exact within

machine precision.
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Table 4.2: Strain energy relative error for the simple shear deformation with Dirich-
let boundary conditions (FEM, ES-FEM, NS-FEM and the MINI (×10−11%))

Num. of elements FEM ES-FEM NS-FEM MINI

4×4 0.0019 -0.0037 0.0056 -0.1351

8×8 -0.0019 0.0148 0.0037 -0.3109

16×16 0.0093 -0.0056 -0.0130 -0.6828

32×32 -0.0296 0.0500 0.0056 -1.2952

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.

Table 4.3: Strain energy relative error for simple shear deformation with mixed
Dirichlet and Neumann boundary conditions (FEM, ES-FEM, NS-FEM and the
MINI (×10−11%))

Num. of elements FEM ES-FEM NS-FEM MINI
4×4 0.0000 -0.0111 0.0722 -0.5958
8×8 0.0019 0.0814 0.0537 -0.7938
16×16 0.0093 0.4200 -0.1591 -0.7031
32×32 -0.0296 2.0040 0.1869 6.8926

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.

4.3.3 Uniform extension with lateral contraction

The next benchmark test is uniform extension with lateral contraction with

Dirichlet and mixed Dirichlet and Neumann boundary conditions. The geometry

of this problem is a unit square and shear modulus µ = 0.6 and bulk modulus

κ = 100 are used. Used sizes of T3 meshes are 4× 4, 8× 8, 16× 16 and 32× 32.

The deformation gradient and the strain energy are given respectively (details are
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4.3. Numerical results

given in Appendices C.2 and D.2):

F =


λ1 0 0

0 λ2 0

0 0 λ3

 (4.41)

and

W = µ

2

(
λ2

1 + 1
λ2

1
− 2

)
(4.42)

The strain energy convergence of FEM, ES-FEM and NS-FEM are shown in

Fig. 4.6. Since the test has the analytical solution, numerical solutions of given

methods are close to the analytical solution, W ≈ 0.02359, with either coarse or

finer meshes. Furthermore, like simple shear deformation problems, a fraction is

within machine precision with portion 10−14.
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Figure 4.6: Strain energy convergence for the uniform extension with lateral
contraction (FEM, ES-FEM, NS-FEM and the MINI): (a) Dirichlet BCs and (b)
mixed Dirichlet and Neumann BCs

Tables 4.4 and 4.5 provide the values of the relative error in strain energy. The

errors provided by S-FEM are under machine precision with the coarse to fine
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Chapter 4. Smoothed finite element method in finite elasticity

meshes.

Table 4.4: Strain energy relative error for the uniform extension with lateral
contraction with Dirichlet boundary conditions (FEM, ES-FEM, NS-FEM and
the MINI (×10−11%))

Num. of elements FEM ES-FEM NS-FEM MINI
4×4 -0.0265 -0.0176 -0.0059 -0.1721
8×8 -0.0221 0.0132 -0.0103 -0.3103
16×16 -0.0882 -0.0147 -0.0471 -0.5720
32×32 0.3809 -0.3618 -0.0426 -1.1250

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.

Table 4.5: Strain energy relative error for the uniform extension with lateral
contraction with mixed Dirichlet and Neumann boundary conditions (FEM, ES-
FEM, NS-FEM and the MINI (×10−11%))

Num. of elements FEM ES-FEM NS-FEM MINI

4×4 -0.0882 -0.0868 -0.0838 0.0294

8×8 -0.0985 -0.0765 -0.0897 0.2073

16×16 -0.1176 -0.1412 -0.1088 0.5662

32×32 -0.0338 -0.4132 -0.1000 1.4205

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.

4.3.4 “Not-so-simple” shear deformation

In this section, a non-homogeneous deformation example denoted “Not-so-simple”

shear deformation is examined. Fig. 4.7 illustrates the initial and current configu-

rations of the problem. The geometry is (0, 2)× (0, 2). The following T3 meshes
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4.3. Numerical results

Figure 4.7: “Not-so-simple” shear deformation: the geometry and deformations

are used in the numerical examples: 4× 4, 8× 8, 16× 16 and 32× 32.

Current configuration of this problem is

x1 = X1 + kX2
2 , x2 = X2, x3 = X3 (4.43)

and this can be expressed in the form of deformation gradient:

F =


1 2kX2 0

0 1 0

0 0 1

 (4.44)

where k > 0 (Appendices C.3 and D.3).

The strain energy convergence for the “Not-so-simple” problem is illustrated in Fig.

4.8. In this problem, interestingly, the standard FEM shows faster convergence

than ES-FEM and NS-FEM while the MINI element performs very well. The

relative error in strain energy of the FEM, the MINI, ES-FEM and NS-FEM are

provided in Table 4.6. The MINI element is more accurate than S-FEM, however

errors for ES-FEM and NS-FEM are globally small about −0.35% and −0.4%,

respectively.
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Figure 4.8: Convergence in strain energy for “Not-so-simple” shear deformation
with Dirichlet boundary conditions (FEM, ES-FEM, NS-FEM and the MINI)

Table 4.6: Strain energy relative error for the “Not-so-simple” shear deformation
with Dirichlet boundary conditions (FEM, ES-FEM, NS-FEM and the MINI)

Num. of elements FEM ES-FEM NS-FEM MINI
4×4 -1.7452 -2.9355 -5.2169 -0.2945
8×8 -0.6442 -1.0001 -1.6983 -0.2953
16×16 -0.3799 -0.4774 -0.6662 -0.2955
32×32 -0.3162 -0.3419 -0.3902 -0.2956

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.
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4.3.5 Near-incompressibility

It has been demonstrated that S-FEM effectively alleviates locking issues in

linear elasticity. The finite deformation case is studied here. To do so, near-

incompressibility problems with different bulk moduli κ are tested in this section.

With different bulk moduli κ = 102, 103 and 104 which Poisson’s ratio is close

to 0.5 (ν → 0.5), the model becomes nearly-incompressible. The geometry of

the problem, Cook’s membrane which is a popular structure in engineering, is

illustrated in Fig. 4.9.

Figure 4.9: The geometry of Cook’s membrane with bending load.

Fig. 4.10 shows the convergence of the strain energy for the standard FEM, the

MINI element, ES-FEM and NS-FEM with T3 elements. The numbers of elements

along each side are 4× 4, 8× 8, 10× 10, 16× 16, 20× 20, 32× 32, 40× 40 and

100 × 100. Because an analytical solution is not available for this problem, a

reference solution using a mixed finite element method on a highly-refined mesh

with the DOLFIN finite element software is calculated numerically [90, 91]. A non-

locking FEM, the MINI element using the DOLIFIN in this work, is compared to
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Chapter 4. Smoothed finite element method in finite elasticity

strain smoothing. In Fig. 4.10, the x- and y-directions represent the logarithm of

the total number of degrees of freedom and the logarithm of the ratio between the

numerical and analytical solution, respectively. The black dashed-line represents

the reference solution computed by DOLFIN.

Although the MINI element provides better accuracy than S-FEM, edge-based

and node-based S-FEM are relatively accurate and reliable for both compressible

and quasi-incompressible problems (see Fig. 4.10). When the Poisson’s ratio

is close to 0.5, the convergence of the ES-FEM becomes slower. The NS-FEM

provides here an upper bound solution.

When Poisson’s ratio is close to 0.5 (ν → 0.5), the MINI element avoids lock-

ing. However it is clearly shown that S-FEM models handle excellently near-

incompressibility as shown in Tables 4.7, 4.8 and 4.9. Particularly results provided

by NS-FEM are much more accurate than FEM and even ES-FEM. Relative error

is given by

(
WNumerical −WReference

WReference

)
× 100% (4.45)
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(a) Strain energies with bulk modulus κ = 102
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(b) Strain energies with bulk modulus κ = 103
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(c) Strain energies with bulk modulus κ = 104

Figure 4.10: Strain energy convergence for the Cook membrane with bulk moduli
κ = 102, κ = 103 and κ = 104: WNumerical is the numerical solution of the standard
FEM, the MINI element and S-FEM models, and WReference is the solution of the
DOLFIN finite element software
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Table 4.7: Strain energy relative error for Cook’s membrane (the standard FEM,
ES-FEM, NS-FEM and the MINI element) with bulk modulus κ = 102

Num. of elements FEM ES-FEM NS-FEM MINI
4×4 -44.3239 -28.1828 5.0776 -1.3837
8×8 -32.2319 -10.8392 2.4749 -0.5685
10×10 -27.9243 -7.3515 1.8224 -0.4450
16×16 -18.8038 -3.2010 0.9324 -0.2731
20×20 -14.8639 -2.2123 0.6809 -0.2177
32×32 -8.3037 -1.1087 0.3672 -0.1338
40×40 -6.1115 -0.8299 0.2826 -0.1049

100×100 -1.6339 -0.3016 0.1279 -0.0282
Strain energy relative error is given by:(
WNumerical −WReference

WReference

)
× 100%.

Table 4.8: Strain energy relative error for Cook’s membrane (the standard FEM,
ES-FEM, NS-FEM and the MINI element) with bulk modulus κ = 103

Num. of elements FEM ES-FEM NS-FEM MINI
4×4 -50.3251 -42.8593 4.2691 -1.8554
8×8 -45.5338 -27.8347 2.4078 -0.6243
10×10 -40.5950 -21.8614 1.7890 -0.4761
16×16 -38.3660 -11.1631 0.9216 -0.2856
20×20 -35.1881 -7.7029 0.6743 -0.2268
32×32 -27.1125 -3.4408 0.3649 -0.1392
40×40 -22.9043 -2.3912 0.2813 -0.1092

100×100 -8.3459 -0.6855 0.1289 -0.0299
Strain energy relative error is given by:(
WNumerical −WReference

WReference

)
× 100%.
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Table 4.9: Strain energy relative error for Cook’s membrane (the standard FEM,
ES-FEM, NS-FEM and the MINI element) with bulk modulus κ = 104

Num. of elements FEM ES-FEM NS-FEM MINI
4×4 -51.1435 -47.4285 4.3948 -2.6696
8×8 -48.7502 -41.6966 2.3891 -0.8229

10×10 -48.1096 -37.6685 1.7776 -0.5938
16×16 -46.6042 -26.4562 0.9102 -0.3359
20×20 -45.6693 -20.6668 0.6647 -0.2676
32×32 -42.7694 -10.6931 0.3593 -0.1737
40×40 -40.7629 -7.4866 0.2769 -0.1429
100×100 -27.2710 -1.1743 0.1269 -0.0631

Strain energy relative error is given by:(
WNumerical −WReference

WReference

)
× 100%.

4.3.6 Mesh distortion sensitivity

In this section, mesh distortion sensitivity problems in large deformations are

examined. For this test, artificially distorted meshes which are given by [25] are

used

x′ = x+ rc αdistorted ∆x

y′ = y + rc αdistorted ∆y
(4.46)

where rc is a random number between −1.0 and 1.0, αdistorted is the magnitude of

the distortion and ∆x, ∆y are initial regular element size in the x- and y-directions.

The higher αdistorted the more distorted the mesh.

The geometry of the example is given in Section 2.2.6 and 5.2.4 in Reference

[123] (see also Fig. 4.11). Consider a rectangular block in the reference Cartesian

coordinates (X, Y, Z) defined by

X = (A1, A2) , Y = (−B,B) , Z = (0, 0) (4.47)

71



Chapter 4. Smoothed finite element method in finite elasticity

where (A1, A2, B > 0).

Figure 4.11: The geometry of the bending example.

The corresponding unit vectors for cylindrical coordinates (r, θ, z) are

er =


cos θ

sin θ

0

 , eθ =


− sin θ

cos θ

0

 , ez =


0

0

0

 (4.48)

The deformation in cylindrical coordinates is

r = f (X) =
√

2αX, θ = g (Y ) = 1
α
Y, z = Z (4.49)

For implementation, cylindrical coordinates are needed in Cartesian coordinates

x = r cos θ =
√

2αX cos Y
α

y = r sin θ =
√

2αX sin Y
α

z = 0

(4.50)

where (x, y, z) are the current Cartesian coordinates and (X, Y, Z) are the initial
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Cartesian coordinates.

Dirichlet boundary conditions. Dirichlet BCs are imposed as follows

• Bottom edge (Y = −B): u1(x) =
√

2αX cos −B
α
−X

u2(y) =
√

2αX sin −B
α

+B

• Top edge (Y = B): u1(x) =
√

2αX cos Y
α
−X

u2(y) =
√

2αX sin Y
α
−B

• Left-hand edge (x = A1): u1(x) =
√

2αA1 cos Y
α
− A1

u2(y) =
√

2αA1 sin Y
α
− Y

• Right-hand edge (x = A2): u1(x) =
√

2αA2 cos Y
α
− A2

u2(y) =
√

2αA2 sin Y
α
− Y

The deformation gradient F for this problem is

F =


f ′ (X) 0 0

0 f (X) g′ (Y ) 0

0 0 1

 (4.51)

where f (X) , g (Y ) , f ′ (X) and g′ (Y ) are

f (X) =
√

2αX, f ′ (X) =
√

2α
2
√
X
, g (Y ) = 1

α
Y, g′ (Y ) = 1

α
(4.52)

The strain energy density of the neo-Hookean model is

W = 1
2µ (I1 − 3) + 1

2λ (lnJ)2 − µlnJ = 1
2µ (I1 − 3) (4.53)

where the Jacobian J =
√
I3 = 1 and I1 = (f ′ (X))2 + {f (X) g′ (Y )}2 + 1.
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Hence, the exact strain energy can be computed as (see Appendix D.4)

W =
∫ 3

2

∫ 2

−2

{
µ

(0.9− 2X)2

3.6X

}
dV (4.54)

and finally strain energy is W =
∫ 3
2
∫ 2
−2WdY dX ≈ 4.485618 with following

parameters: (1) for Dirichlet BCs: α = 0.9, A1 = 2, A2 = 3 and B = 2, (2)

mesh distortion: the distortion factors αdistorted = 0.1, 0.2, 0.3, 0.4 and 0.45,

(3) material parameters: shear modulus µ = 0.6 and bulk modulus κ = 1.95

(E ≈ 1.6326, ν ≈ 0.3605).

Figs. 4.12 and 4.13 show the initial and current configurations of the bending

block with different distortion factors. When the distortion factor αdistorted is

close to 0.5, given meshes become severely distorted. In this test, only Dirichlet

boundary conditions are imposed which means that applied external forces vanish

and no body force acts on the domain. Following Figs. 4.14 and 4.15 illustrate

the strain energy convergence for regular and distorted meshes obtained by the

classical FEM and edge-wise and node-wise smoothed FEM. The x-direction and

y-direction denote the logarithm of the total number of degrees of freedom and the

logarithm ofWNumerical/WAnalytical, respectively. With regular meshes, FEM shows

better performance than ES-FEM and NS-FEM, which is similar to the result of

the “Not-so-simple” shear deformation with non-homogeneous Dirichlet boundary

conditions problem; however, when meshes are highly distorted, S-FEM provides

stable and accurate results as well as faster convergence than FEM. Interestingly

ES-FEM is insensitive to heavily distorted meshes while NS-FEM avoids the

locking issues (see previous section 4.3.3). Note that the black dashed-line is the

analytical solution for the bending problem computed by Eq. (4.54). (see also

Appendix D.4)

Detailed values of the relative error in strain energy are given in Tables 4.10, 4.11,

4.12, 4.13, 4.14 and 4.15. The relative errors of S-FEM are much less than those
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of FEM: errors for ES-FEM are about −1.0% to −1.9% and those of NS-FEM

are around −1.5% to −3.5% with finer (2× 32 and 4× 32 elements) and severely

distorted meshes (αdistorted = 0.45) whereas errors of FEM are approximately

−0.7% to 260%. This indicates that S-FEM models, ES-FEM in particular, can

effectively alleviate the mesh distortion sensitivity in large deformations.

4.4 Summary

In this chapter, the behaviour of two strain smoothing approaches was compared,

edge- and node-based for nearly-incompressible (Poisson’s ratio is up to 0.49997)

finite elasticity, and examined the effect of mesh distortion on accuracy. The

conclusions, for the selected finite elasticity problems which are solved as follows:

• Deformation gradient smoothing permits to reproduce homogeneous defor-

mations to machine precision;

• All smoothed elements perform much better than standard linear finite

elements, which suffer severely from volumetric locking;

• The gold-standard, MINI element, performs at least as well as smoothing

approaches for non-distorted meshes;

• Node-based smoothing is the most appropriate smoothing technique against

volumetric locking;

• Edge-based smoothing is superior to node-based smoothing when dealing

with distorted meshes.
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Chapter 4. Smoothed finite element method in finite elasticity

(a) Regular mesh (b) αdistorted = 0.1 (c) αdistorted = 0.2

(d) αdistorted = 0.3 (e) αdistorted = 0.4 (f) αdistorted = 0.45

Figure 4.12: Initial shapes of the rectangle (4 × 32 elements) with different
distortion factors: (a) Regular mesh, (b) distorted mesh αdistorted = 0.1, (c)
distorted mesh αdistorted = 0.2, (d) distorted mesh αdistorted = 0.3, (e) distorted
mesh αdistorted = 0.4, (f) distorted mesh αdistorted = 0.45
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4.4. Summary

(a) Regular mesh (b) αdistorted = 0.1 (c) αdistorted = 0.2

(d) αdistorted = 0.3 (e) αdistorted = 0.4 (f) αdistorted = 0.45

Figure 4.13: Deformed shapes of the rectangle (4× 32 elements) with different
distortion factors: (a) Regular mesh, (b) distorted mesh αdistorted = 0.1, (c)
distorted mesh αdistorted = 0.2, (d) distorted mesh αdistorted = 0.3, (e) distorted
mesh αdistorted = 0.4, (f) distorted mesh αdistorted = 0.45
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(d) αdistorted = 0.3
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(e) αdistorted = 0.4
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(f) αdistorted = 0.45

Figure 4.14: The strain energy convergence for the bending problem with two
elements in the x-direction (FEM, ES-FEM and NS-FEM): (a) Regular mesh,
(b) αdistorted = 0.1, (c) αdistorted = 0.2, (d) αdistorted = 0.3, (e) αdistorted = 0.4, (f)
αdistorted = 0.45
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(c) αdistorted = 0.2
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(d) αdistorted = 0.3
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(e) αdistorted = 0.4
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Figure 4.15: The strain energy convergence for the bending problem with four
elements in the x-direction (FEM, ES-FEM and NS-FEM): (a) Regular mesh, (b)
distorted mesh αdistorted = 0.1, (c) distorted mesh αdistorted = 0.2, (d) distorted
mesh αdistorted = 0.3, (e) distorted mesh αdistorted = 0.4, (f) distorted mesh
αdistorted = 0.45
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Table 4.10: Strain energy relative error for the rectangle bending example (FEM,
ES-FEM and NS-FEM) with regular meshes

Regular mesh
FEM ES-FEM NS-FEM

2×4 -0.0104 -10.2873 -18.7712
2×8 -1.0311 -4.7602 -8.9208
2×16 -0.5370 -1.8747 -3.4160
2×32 -0.3738 -1.0366 -1.7789
4×4 -0.3003 -10.4365 -17.4487
4×8 -1.3384 -4.8010 -8.6421
4×16 -0.8566 -1.8911 -3.1376
4×32 -0.6991 -1.0480 -1.4738

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.

Table 4.11: Strain energy relative error for the rectangle bending example (FEM,
ES-FEM and NS-FEM) with distorted meshes (αdistorted = 0.1)

Distorted mesh αdistorted = 0.1
FEM ES-FEM NS-FEM

2×4 15.0394 -5.2592 -16.8430
2×8 -0.3799 -4.6609 -9.1403
2×16 -0.5493 -1.8473 -3.4044
2×32 -0.3704 -1.0339 -1.7803
4×4 20.9957 -1.6956 -15.1659
4×8 3.1608 -2.6057 -8.4482
4×16 -0.4581 -1.7470 -3.1419
4×32 -0.6773 -1.0406 -1.4745

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.
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Table 4.12: Strain energy relative error for the rectangle bending example (FEM,
ES-FEM and NS-FEM) with regular meshes (αdistorted = 0.2)

Distorted mesh αdistorted = 0.2
FEM ES-FEM NS-FEM

2×4 207.8773 18.6808 -15.2692
2×8 2.9302 -3.2316 -9.3727
2×16 -0.2530 -1.7188 -3.4011
2×32 -0.3814 -1.0355 -1.7894
4×4 37.5691 5.6167 -9.3829
4×8 6.9526 -0.7515 -8.4558
4×16 0.6311 -1.3835 -3.1703
4×32 -0.5890 -1.0317 -1.4972

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.

Table 4.13: Strain energy relative error for the rectangle bending example (FEM,
ES-FEM and NS-FEM) with regular meshes (αdistorted = 0.3)

Distorted mesh αdistorted = 0.3
FEM ES-FEM NS-FEM

2×4 26.7563 4.2299 -16.6087
2×8 9.5888 0.3820 -8.2951
2×16 1.0435 -1.4042 -3.4437
2×32 -0.3210 -1.0064 -1.7800
4×4 98.2786 38.2155 -7.3456
4×8 50.9083 12.6831 -8.1246
4×16 3.4588 -0.5151 -3.1546
4×32 -0.4390 -1.0076 -1.5394

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.
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Table 4.14: Strain energy relative error for the rectangle bending example (FEM,
ES-FEM and NS-FEM) with regular meshes (αdistorted = 0.4)

Distorted mesh αdistorted = 0.4
FEM ES-FEM NS-FEM

2×4 372.4084 108.2842 -17.5341
2×8 16.1777 3.3278 -6.9028
2×16 2.5121 -1.0810 -3.5667
2×32 -0.2491 -1.0212 -1.8358
4×4 25.7889 82.1832 -19.3577
4×8 5.8777 18.5201 -8.7415
4×16 0.5084 -0.5468 -3.1434
4×32 -100.00 -1.2111 -2.0218

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.

Table 4.15: Strain energy relative error for the rectangle bending example (FEM,
ES-FEM and NS-FEM) with regular meshes (αdistorted = 0.45)

Distorted mesh αdistorted = 0.45
FEM ES-FEM NS-FEM

2×4 75.7918 99.6165 -33.9235
2×8 2.7048 -3.1995 -5.3375
2×16 -8.0411 -0.6074 -1.2245
2×32 -0.6437 -0.9329 5.5170
4×4 415.3821 398.7013 7.1348
4×8 37.5263 22.3123 -7.7612
4×16 11.6704 -0.0267 -3.6126
4×32 260.4544 -1.9604 -3.5447

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.
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5 Smoothed finite element method

enriched with bubble functions

Since S-FEM was introduced by Liu et al. [82], different S-FEM (CS-FEM, ES-

FEM, NS-FEM and FS-FEM) have been developed and used in a variety of fields.

Particularly ES-FEM is a popular S-FEM model because of its interesting features:

1) ES-FEM is insensitive to severely-distorted meshes, 2) the stiffness matrix of

ES-FEM is softer than FEM (overcomes the overestimation of stiffness), 3) it

produces more accurate solutions and faster convergence rate and 4) it is easy to

implement into existing FEM codes. ES-FEM does not overcome locking so that

an improved ES-FEM was introduced [86]: the domain-based selective ES/NS-

FEM. Recently domain-based smoothing was studied by Jiang et al. [67, 68].

The domain-based S-FEM showed the alleviation of locking; however, discretized

equations required an additional treatment for each of the edge-based, node-based

and face-based approaches.

However Nguyen-Xuan and Liu [115] reported that neither the domain-based

selective ES/NS-FEM nor NS-FEM fully prevent locking. They introduced the

mixed displacement-pressure formulation in the framework of edge-based strain

smoothing using cubic bubble functions: so-called bES-FEM. The mathematical

properties of the proposed methods, bES-FEM in 2D and bFS-FEM in 3D, were
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provided by Ong et al. [126, 127]1. Furthermore, bES-FEM was successfully

extended to the variational multi-scale approach [156].

In order to develop non-locking, gradient strain smoothing that is insensitive to

mesh distortion, this Chapter introduces the bubble-enhanced edge-based (2D) and

face-based (3D) strain smoothing approach for incompressible large deformations.

A transformation of “Cubic” bubble functions and mathematical formulations for

the proposed strain smoothing approach are presented in section 5.1. Following

this, the smoothed mixed formulation for linear elasticity is given in section 5.2.

5.1 “Cubic” bubble functions

The bubble function supplements an additional displacement field at a node placed

at the centroid of a triangle T . The MINI elements for Navier-Stoke equations

have the velocity fields and piecewise linear functions are used for the pressure.

This element is very effective for mixed formulation where both displacements

and pressure are unknowns [2, 28]. In contrast to the MINI element, ES-FEM

constructs a displacement-based formulation, ES-FEM with a bubble function has

only a linear displacement field as unknown which has value one at the centroid

of triangle T and the pressure vanishes at the edges of triangle T . As shown in

Fig. 5.1, an interior node is located at the geometric center with an additional

displacement field associated with the cubic bubble.

1Detail of Reference [127] is: T.H. Ong et al., Inf-suf stable bES-FEM method for nearly
incompressible elasticity,2013:URL http://arxiv.org/pdf/1305.0466.pdf
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5.1. “Cubic” bubble functions

(a) Linear 3-noded element (b) Quadratic 6-noded element (c) Cubic 10-noded element

Figure 5.1: Lagrange triangular elements: (a) linear Lagrange element, (b)
quadratic Lagrange element and (c) cubic Lagrange element

In this work the cubic bubble function introduced in Reference [59] is used. Since

the first three basis functions are not zero at the centroid (1/3, 1/3), a basis

function Ψ̃ (ξ, η) =
[

1− ξ − η ξ η 27ξη (1− ξ − η)
]T

is necessarily required

to transform the form of Ψ (ξ, η) given as

Ψ (ξ, η)T = Ψ̃ (ξ, η)TB−1
S

=
[

1− ξ − η ξ η 27ξη (1− ξ − η)
]


1 0 0 0

0 1 0 0

0 0 1 0

−1
3 −1

3 −1
3 1


(5.1)

and therefore the basis functions are

Ψ (ξ, η) =



(1− ξ − η)− 9ξη (1− ξ − η)

ξ − 9ξη (1− ξ − η)

η − 9ξη (1− ξ − η)

27ξη (1− ξ − η)


(5.2)

Fig. 5.2 represents the basis functions and the cubic bubble function located at

the centroid of a right 45◦ three-node triangular element. The bubble function
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has the following properties


Ψb > 0 in Ωe

Ψb = 0 on Γe
Ψb = 1 at internal nodes

(5.3)

Hence the assumed displacement uh on Ωe can be expressed as in Reference [115]

uh (x)
∣∣∣
Ωe

=
3∑
i=1

 Ψi (x) 0

0 Ψi (x)

di +

 Ψb (x) 0

0 Ψb (x)

db (5.4)

where Ψi, i = {1, 2, 3} are the basis functions, Ψb is the cubic bubble function,

di = [ui, vi]T are unknown displacements at each node and db = [ub, vb]T are the

unknown displacements at the centroid of triangle T .

5.2 Smoothed mixed finite element approxima-

tion in linear elasticity

A 2D linear elastic solid problem in a domain Ω in R2 with a Lipschitz boundary

Γ = ∂Ω is considered. From governing equation (Eq. (2.7)), the mixed formulation

introducing pressure p as an additional variable is given by

−divσ = f in Ω

div u− p

λ
= 0 in Ω

(5.5)

Note that the mixed displacement-pressure form (Eq. (5.5)) equivalently leads

to the penalised Stoke equation. Defining a displacement field u ∈ V = [H1 (Ω)]2

and a pressure p ∈ L2
0 (Ω) = {q ∈ L2 (Ω) ,

∫
Ω qdΩ = 0}, the mixed variational

formulation consists u ∈ v and p ∈ L2 (Ω) such that for all v ∈ V0 and all
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Figure 5.2: Renewed basis functions and the cubic bubble function associated the
centroid of a right 45◦ three-node triangular (T3) element

q ∈ L2
0 (Ω)

a (u,v) + b (v, p) = (f ,v)

b (u, q)− 1
λ
c (p, q) = 0

(5.6)

where pressure p is required to be square-integrable (L2-function) defining a space

L2
0 (Ω) to be the subspace of L2-function with the zero.
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The bilinear forms of Eq. (5.6) can be expressed as:

a (u,v) = 2µ
∫

Ω
εT (v)Cε (u) dΩ

b (v, p) =
∫

Ω
p∇vdΩ

c (p, q) =
∫

Ω
pqdΩ

(f ,v) =
∫

Ω
vTfdΩ

(5.7)

Similarly, the mixed variational problem in the framework of S-FEM can be written.

Finding uh ∈ V h = [H1 (Ω)]2 and ph ∈ L2
0 (Ω) =

{
q̃h ∈ L2 (Ω) ,

∫
Ω q̃

hdΩ = 0
}
such

that for all vh ∈ V h
0 and qh ∈ L2

0 (Ω)

ã
(
uh,vh

)
+ b̃

(
vh, ph

)
=
(
f ,vh

)
b̃
(
uh, qh

)
− 1
λ
c̃
(
ph, qh

)
= 0

(5.8)

where the following definitions are made:

ã
(
uh,vh

)
= 2µ

∫
Ω
ε̃T
(
vh
)
Cε̃ (u)h dΩ

b̃
(
vh, ph

)
=
∫

Ω
ph∇̃vhdΩ

c̃
(
ph, qh

)
=
∫

Ω
ph, qhdΩ(

f ,vh
)

=
∫

Ω

(
vh
)T

fdΩ

(5.9)

Finally the matrix form of the linear system for the enhanced S-FEM in linear

elasticity can be defined as

 Ã B̃T

B̃ −1
λ

C̃


 uh

ph

 =

 fh

0

 (5.10)

where matrices Ã, B̃ and C̃ are associated with the smoothed bilinear forms

(Eq. (5.10)) that are ã (·, ·), b̃ (·, ·) and c̃ (·, ·) and fh are associated with the linear

operator (f , ·) in Eq. (5.10).
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5.3 Numerical Results

Cook’s membrane test for incompressibility with bulk moduli κ = 105, 106 and 107

is firstly considered. Second the (near-)incompressible problems of a plate with

a circular hole inclusion at the center is considered. In this test, bulk modulus

κ = 107, Poisson’s ratio ν ≈ 0.49999997, is used for the conventional FEM,

the MINI element using DOLFIN finite element software, ES-FEM, NS-FEM

and the bubble-enriched ES-FEM. DOLFIN finite element software is used as a

reference solution. Then a sharp V-notched square and punching problem with

bulk modulus κ = 105, Poisson’s ratio ν ≈ 0.499997 are considered. As a reference

solution, the numerical solution of DOLFIN finite element software with a very

fine mesh of DOFs, 34379, is used for those three examples.

For sensitivity to the distorted meshes in compressibility, a punching problem

is firstly considered for the FEM, the MINI element, ES-FEM, NS-FEM and

bES-FEM with bulk modulus κ = 1.95 (ν ≈ 0.3605) with regular and distorted

meshes αdistorted = 0.1 and 0.3. Simple torsion of a rectangular block is tested.

This problem is expressed in sections 2.2.6 and 5.2.4 of Reference [123]. Cylindrical

coordinates and non-homogeneous Dirichlet boundary conditions are provided. A

bending of a rectangular block is examined subsequently with heavily distorted

meshes. Dirichlet boundary conditions are imposed in this test and these are

introduced in section 4.3.6.

Lastly problems for the mesh distortion sensitivity in the incompressible limit are

examined. A bevelled cantilever beam is tested with Poisson’s ratio ν ≈ 0.49999997.

Mesh distortion factors αdistorted = 0.1, 0.3 are used for the classical FEM, the

locking-free MINI element and S-FEM. DOLFIN with fine meshes is also used as

the reference solution.
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5.3.1 Incompressibility

Cook’s membrane. In this example, the geometry of Cook’s membrane and

parameters are exactly the same as in section 4.3.5. However the bulk modulus

used in this test is much larger: bulk moduli κ = 105, 106 and 107 are equivalent

to Poisson’s ratios ν ≈ 0.499997, ν ≈ 0.4999997 and ν ≈ 0.49999997. The number

of elements in this section is 4 × 4, 8 × 8, 10 × 10, 16 × 16, 20 × 20, 32 × 32,

40 × 40 and 100 × 100 along on each side. DOLFIN [90, 91] based on a mixed

finite element formulation on highly refined meshes (GDof = 816, 080, 000) is used

as a reference solution.

The strain energy convergence for each technique is shown in Fig. 5.3. The x- and

y-directions represent the logarithm of the total number of degrees of freedoms

and the logarithm of the ratio of the numerical strain energy obtained the MINI

element, standard T3 FEM and the smoothed FEM to the reference strain energy.

As shown in Fig. 5.3, NS-FEM performs better than ES-FEM and FEM for

large bulk moduli. However the bubble-enhanced ES-FEM produces much more

accurate results and faster convergence rates than the NS-FEM. It is seen that the

bubble function within ES-FEM effectively improves the quality of lower-order

simplex T3 element in quasi-incompressible limit and avoids locking.

Relative errors in the strain energy for FEM, the MINI element, ES-FEM, NS-

FEM and the bubble-enriched ES-FEM are given in Tables 5.1, 5.2 and 5.3. The

relative errors of FEM and ES-FEM are around 50% with fine meshes, whereas

the MINI, NS-FEM and bES-FEM are significantly more accurate. While the

MINI element provides reliable results, a notable improvement of the bES-FEM

is that its relative errors, around −0.05% for bulk moduli κ = 105, 106 and 107

with fine meshes which is about half those of NS-FEM, which are 0.13% with fine

meshes. In other words, bubble enriched ES-FEM is much more accurate and

provides faster convergence for nearly incompressible problems.
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Fig. 5.4 shows the logarithm of L2 norm in displacements for this problem. L2

norm is computed by

‖e‖u =
(∫ (

u∗ − uh
)′ (

u∗ − uh
)

dΩ
) 1

2
(5.11)

where u∗ is the reference solution and uh is the numerical solution.

Table 5.1: Strain energy relative error for Cook’s membrane (FEM, ES-FEM,
NS-FEM, bES-FEM and the MINI element) with bulk modulus κ = 105

Num. of elements FEM ES-FEM NS-FEM bES-FEM MINI
4×4 -51.2287 -45.3871 4.5275 -2.3552 -2.4588
8×8 -49.1551 -45.6788 2.3876 -0.8061 -0.8439
10×10 -48.7447 -44.9870 1.7765 -0.6295 -0.6172
16×16 -48.1180 -40.6140 0.9097 -0.3952 -0.3333
20×20 -47.8706 -37.0928 0.6632 -0.3191 -0.2531
32×32 -47.2637 -27.7231 0.3576 -0.2010 -0.1452
40×40 -46.8459 -23.0906 0.2753 -0.1595 -0.1119
100×100 -42.7784 -21.8067 0.1256 -0.0506 -0.0302

Strain energy relative error is given by:
(
WNumerical −WReference

WReference

)
× 100%.
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Table 5.2: Strain energy relative error for Cook’s membrane (FEM, ES-FEM,
NS-FEM, bES-FEM and the MINI element) with bulk modulus κ = 106

Num. of elements FEM ES-FEM NS-FEM bES-FEM MINI
4×4 -51.2285 -48.1102 4.5461 -2.3552 -2.3686
8×8 -49.1968 -47.7943 2.4001 -0.8061 -0.8033
10×10 -48.8111 -47.6096 1.7771 -0.6295 -0.5904
16×16 -48.2921 -46.4490 0.9113 -0.3952 -0.3261
20×20 -48.1398 -44.9314 0.6649 -0.3191 -0.2505
32×32 -47.9235 -38.1638 0.3594 -0.2010 -0.1459
40×40 -47.8376 -33.4308 0.2771 -0.1595 -0.1126
100×100 -47.1735 -12.8090 0.1267 -0.0506 -0.0302

Strain energy relative error is given by:
(
WNumerical −WReference

WReference

)
× 100%.

Table 5.3: Strain energy relative error for Cook’s membrane (FEM, ES-FEM,
NS-FEM, bES-FEM and the MINI element) with bulk modulus κ = 107

Num. of elements FEM ES-FEM NS-FEM bES-FEM MINI
4×4 -51.2381 -48.1194 4.5757 -2.3552 -2.3582
8×8 -49.2009 -47.8888 2.3908 -0.8061 -0.7968
10×10 -48.8186 -47.8235 1.7787 -0.6295 -0.5852
16×16 -48.3098 -47.6483 0.9130 -0.3952 -0.3229
20×20 -48.1684 -47.4416 0.6661 -0.3191 -0.2482
32×32 -47.9952 -45.8184 0.3593 -0.2010 -0.1447
40×40 -47.9486 -43.7801 0.2770 -0.1595 -0.1118
100×100 -47.8181 -25.1310 0.1267 -0.0506 -0.0301

Strain energy relative error is given by:
(
WNumerical −WReference

WReference

)
× 100%.
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(a) Bulk modulus κ = 105
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(b) Bulk modulus κ = 106
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(c) Bulk modulus κ = 107

Figure 5.3: Strain energy convergence for Cook’s membrane with bulk moduli
κ = 105, κ = 106 and κ = 107: WNumerical is the numerical solution of FEM, the
MINI and S-FEM and WReference is the DOLFIN solution
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(a) Bulk modulus κ = 105
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(b) Bulk modulus κ = 106
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(c) Bulk modulus κ = 107

Figure 5.4: L2 norm in displacements for Cook’s membrane with bulk moduli
κ = 105, κ = 106 and κ = 107
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Plate with a hole. A quasi-incompressible plate with a hole located at the

centre for near-incompressibility is studied next. The geometry, boundary condi-

tions and loading are shown in Fig. 5.5. Left-hand, right-hand and bottom edges

are fixed (prescribed displacement boundary conditions are ui = 0.0, i ∈ 1, 2) and

the external forces (P = −0.1) act on the top edge. The radius of the inner circle

is R = 0.5 and L = 1.0. Shear modulus µ = 0.6 and bulk modulus κ = 107, so

that Poisson’s ratio is ν ≈ 0.49999997, are used for this test.

Figure 5.5: A plate with a circular inclusion: geometry, boundary conditions and
external forces

Fig. 5.6 shows the deformed shapes with their displacements and Fig. 5.7 shows

strains. It is seen that the NS-FEM and bubble-enhanced ES-FEM are immune

to the locking problem in quasi-incompressible media.
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(a) the standard FEM (b) ES-FEM

(c) NS-FEM (d) bES-FEM

(e) MINI

Figure 5.6: Deformed shapes and displacements (uy) of Plate with a hole: Bulk
modulus κ = 107 and DOFs 364896



5.3. Numerical Results

(a) the standard FEM (b) ES-FEM

(c) NS-FEM (d) bES-FEM

Figure 5.7: Green strains (εy) of Plate with a hole: Bulk modulus κ = 107 and
DOFs 3648

Fig. 5.8 depicts the convergence of the strain energy. The x-direction denotes the

logarithm of the total number of degrees of freedom, which DOFs are 28, 72, 968

and 3648, and y-direction corresponds to the logarithm of ratio of the numerical

to the reference strain energy. Fig. 5.9 illustrates the logarithm of the relative
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error in strain energy. Relative error of strain energy W error is defined as

W error =
(
WNumerical −WReference

WReference

)
× 100 (5.12)

From Figs. 5.8 and 5.9, while NS-FEM effectively cure locking, the bubble-

enhanced ES-FEM and the MINI element provide better accurate and faster

convergence than FEM and ES-FEM.

ES-FEM provides slightly better accurate results than FEM, however it cannot

fully avoid locking. On the other hand, NS-FEM, bES-FEM and the MINI element

handles incompressible material efficiently as given in Table 5.4. The relative

error for bES-FEM is almost 17% of that of the MINI element which is a notable

improvement compare to Cook’s membrane problem.
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Figure 5.8: Convergence in strain energy for plate of FEM, the MINI element,
ES-FEM, NS-FEM and bES-FEM: Reference solution is obtained by DOLFIN
with very fine meshes of the MINI (DOFs: 682932)
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Figure 5.9: The logarithmic relative error in strain energy of FEM, the MINI,
ES-FEM, NS-FEM and bES-FEM

Fig. 5.10 shows the L2 norm for this problem. The y-axis denotes the logarithm

of L2 norm in displacements for the FEM, ES-FEM, NS-FEM and bES-FEM. The

MINI element (DOFs: 682932) is used as the reference solution.
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Figure 5.10: The logarithm of L2 norm in displacement for the plate (FEM,
ES-FEM, NS-FEM and bES-FEM)
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Table 5.4: Strain energy relative error for plate with hole (FEM, ES-FEM, NS-
FEM, bES-FEM and the MINI element) with bulk modulus κ = 107

Num. of DOFs FEM ES-FEM NS-FEM bES-FEM MINI

28 -99.9997 -99.9991 -65.4768 -24.6115 -15.8684

72 -99.9996 -99.9985 -73.1416 -13.9022 -13.1798

986 -78.2269 -74.9281 3.0111 -1.1299 -1.1054

3648 -71.5748 -58.8111 0.8862 -0.3655 -0.3023

Strain energy relative error is given by:
(
WNumerical −WReference

WReference

)
× 100%.

Sharp V-notched specimen. A sharp V-notched specimen under tension is

considered. The problem domain is given in Fig. 5.11. The square is clamped

on the bottom edge, and a vertical stretch 0.05 is imposed on the top edge. The

geometry is A = 1 and B = 0.02. The shear modulus µ = 0.6 and κ = 105

(Poisson’s ratio ν ≈ 0.499997). The total number of global degrees of freedom are

DOFs = 28, 52, 66, 184 and 216.

Figure 5.11: A square sharp V-notched specimen: geometry, boundary conditions
and vertical stretches
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(a) FEM (b) ES-FEM

(c) NS-FEM (d) bES-FEM

(e) MINI

Figure 5.12: Deformed shapes and displacements (uy) of sharp V-notched square:
Bulk modulus κ = 105 and the total number of degrees of freedoms is 216
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The deformed shapes are given in Fig. 5.12. In this case, the current configuration

of NS-FEM is more deformed than bES-FEM and the MINI, whereas displacements

of bES-FEM are similar to those of the MINI element.

Fig. 5.13 illustrates the logarithm of L2 norm for this problem. The x- and

y-axes denote the logarithm of the total number of degrees of freedom and the

logarithm of L2 norm in displacements. The L2 norm is obtained as ‖e‖ =(∫ (
u∗ − uh

)′ (
u∗ − uh

)
dΩ
) 1

2
, where u∗ is the reference solution and uh is the

numerical solution.
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Figure 5.13: The logarithm of L2 norm in displacement for the square sharp
V-notched specimen (FEM, ES-FEM, NS-FEM and bES-FEM)

The accuracy of the approach is indicated by Fig. 5.14. In Fig. 5.14 the solution

using the MINI element in the DOLFIN finite element software is compared to

the classical FEM, S-FEM and S-FEM enriched by bubbles. Similar to previous

incompressible problems, the accuracy of edge-based strain smoothing is affected

by the volumetric locking phenomenon. The MINI element in this test shows

more accurate results than other numerical approaches; however bES-FEM also
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provides accurate and stable results. One interesting point is the convergence

of NS-FEM. The convergence curve of NS-FEM lies within the lower and upper

bound solutions. This behaviour has been observed for linear elastic problems [82].

In linear elastic problems, NS-FEM and ES-FEM provide the upper and lower

bound solution respectively, thereby the exact solution lies in between NS-FEM

and ES-FEM. In this case, the exact solution may be placed in between NS-FEM

and bES-FEM where the reference solution is located.
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Figure 5.14: Strain energy convergence for the square sharp V-notched specimen:
Poisson’s ratio ν ≈ 0.499997

Table 5.5 provides detailed values of the relative error of strain energy for each

discussed method. It is clearly shown that the MINI element is the most accurate

result among the strain smoothing approaches. However, bES-FEM still provides

relatively accurate and stable results with half accuracy of the MINI element.

This percentage is the almost same as other incompressible problems studied in

sections 5.3.1 and 5.3.2.
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Table 5.5: Strain energy relative error for sharp V-notched square (FEM, ES-FEM,
NS-FEM, bES-FEM and the MINI element) with bulk modulus κ = 105

Num. of GDof FEM ES-FEM NS-FEM bES-FEM MINI

28 -33.7366 -27.9165 -15.3245 -23.2445 -9.7777

52 -54.0361 -49.7226 0.3910 -10.8873 -7.1832

66 -48.5564 -44.7730 3.8405 -10.4962 -5.7266

184 -56.3724 -44.4508 13.3948 -5.0999 -4.3576

216 -39.3833 -35.8755 12.6400 -5.1844 -3.2136

Strain energy relative error is given by:
(
WNumerical −WReference

WReference

)
×100%.

5.3.2 Mesh distortion sensitivity in compressibility

In this section, mesh distortion sensitivity in compressible material for the proposed

method will be investigated. Firstly punch under pressure problem in 2D will be

studied and then simple torsion and bending of a rectangular blocks in 3D are

going to be discussed.

Punch under pressure. To tackle the performance of discussed S-FEM with

distorted meshes in compressible limit, the punch problem is simulated. The

geometry and discretisation are given in Fig. 5.15. Left, right and bottom

edges are fully constrained and prescribed Dirichlet boundary conditions pressure

uy = −0.25 are imposed on the top edge as part punch pressure. Length L = 1 and

bulk modulus κ = 1.95 (ν ≈ 0.3605) are used in this section. Three different types

of meshes are used: 1) regular mesh αdistorted = 0.0 and 2) artificially distorted

meshes 0.1 and 0.3. As shown in Fig. 5.15, when the distortion factor α is

increased, finite meshes are highly distorted.
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(a) Geometry, boundary conditions and prescribed pressure

(b) Regular meshes

(c) Distorted Meshes: αdistorted = 0.1

(d) Distorted Meshes: αdistorted = 0.3

Figure 5.15: Punch problem under pressure: (a) geometry and Dirichlet bound-
ary conditions, (b) discretiszation of regular T3 meshes, (c) discretisation of
distorted T3 meshes (αdistorted = 0.1) and (d) discretisation of distorted T3 meshes
(αdistorted = 0.3)
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Fig. 5.16 shows the strain energy convergence for the punch problem with the

numbers of elements 4 × 4, 8 × 4, 16 × 4 and 32 × 4. DOLFIN provides the

numerical reference solution with a fine mesh (100× 4).

It is well-known that ES-FEM is insensitive to the mesh distortion and more

accurate than other numerical methods. The bubble-enhanced ES-FEM also shows

its insensitivity to severely distorted meshes. Notable results given in Fig. 5.16

are that NS-FEM provides the worst accuracy rather than other strain smoothing

approaches even FEM. It is clearly shown that NS-FEM shows its instability in

mesh distortion problems as shown in Fig. 5.17. Also note that the MINI element

provides the almost same convergence rate as FEM. In particular, when meshes

are heavily distorted, the accuracy of FEM and the MINI element becomes similar.

The relative errors of strain energy for FEM, S-FEM, S-FEM enriched by the

bubble and the MINI element can be found in Tables 5.6, 5.7 and 5.8. It can

be seen that ES-FEM retains its accuracy and stability when whether or not

meshes are distorted in this problem with around −0.8% of the error. Moreover

bubble-enhanced strain smoothing is also seen to be insensitive to the distorted

meshes in the compressible hyperelastic model where the relative error is almost

half of the MINI element.

Note that since S-FEM shows better performance for distorted meshes, the MINI

element is not suitable as the reference solution for this problem (see Tables 5.6,

5.7 and 5.8).

106



5.3. Numerical Results

3.5 4 4.5 5 5.5 6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

log(GDof)

lo
g(

W
N

um
er

ic
al

 / 
W

R
ef

er
en

ce
)

 

 
Reference
FEM
MINI
ES−FEM
NS−FEM
bES−FEM

(a) Regular meshes
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(b) Distorted Meshes αdistorted = 0.1
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(c) Distorted Meshes αdistorted = 0.3

Figure 5.16: Strain energy convergence for the Punch problem under pressure: (a)
regular T3 meshes, (b) distorted T3 meshes (αdistorted = 0.1) and (c) distorted T3
meshes (αdistorted = 0.3)
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(a) Regular meshes
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(b) Distorted Meshes: αdistorted = 0.1
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(c) Distorted Meshes: αdistorted = 0.3

Figure 5.17: The logarithm of L2 norm for the Punch problem under pressure:
(a) regular T3 meshes, (b) distorted T3 meshes (αdistorted = 0.1) and (c) distorted
T3 meshes (αdistorted = 0.3)
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Table 5.6: Strain energy relative error for Punching problem for FEM, ES-FEM,
NS-FEM, bES-FEM and the MINI element with regular T3 meshes

Num. of elements FEM ES-FEM NS-FEM bES-FEM MINI
4×4 42.9496 26.7358 14.2737 21.4592 39.5926
8×4 17.4018 6.3710 -11.2564 1.7797 16.6296
16×4 7.0569 0.8245 -13.0589 -2.1985 8.2183
32×4 3.4401 -0.9313 -12.0706 -3.2009 5.2887

Strain energy relative error is given by:
(
WNumerical −WReference

WReference

)
× 100%.

Table 5.7: Strain energy relative error for Punching problem for FEM, ES-
FEM, NS-FEM, bES-FEM and the MINI element with distorted T3 meshes
(αdistorted = 0.1)

Num. of elements FEM ES-FEM NS-FEM bES-FEM MINI
4×4 43.3460 26.8851 14.2828 21.4695 39.8607
8×4 18.0323 7.1311 -10.4057 2.1292 17.2383
16×4 7.4388 1.0299 -13.0674 -2.1414 8.47630
32×4 3.5728 -0.8410 -12.4376 -3.1630 5.4043

Strain energy relative error is given by:
(
WNumerical −WReference

WReference

)
× 100%.

Table 5.8: Strain energy relative error for Punching problem for FEM, ES-
FEM, NS-FEM, bES-FEM and the MINI element with distorted T3 meshes
(αdistorted = 0.3)

Num. of elements FEM ES-FEM NS-FEM bES-FEM MINI
4×4 47.5024 28.0809 14.2989 21.3682 41.8839
8×4 21.0752 10.9316 -7.9081 3.4391 20.8156
16×4 8.7765 2.0510 -12.7207 -2.2044 9.8479
32×4 4.3606 -0.7629 -11.4268 -3.0503 5.9217

Strain energy relative error is given by:
(
WNumerical −WReference

WReference

)
× 100%.
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Simple torsion of a rectangular block. For 3D mesh distortion sensitivity

in the incompressible limit, simple torsion of a rectangular block (given in sections

2.2.6 and 5.2.4 of Reference [123]) is taken. Given cylindrical coordinates and

Dirichlet boundary conditions are based on a solid cylinder; however, in this test,

Dirichlet boundary conditions are imposed to the rectangular solid. Firstly, polar

cylindrical coordinates are given by

0 ≤ R ≤ A, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L (5.13)

The corresponding unit vectors for current cylindrical coordinates (r, θ, z)

er =


cos θ

sin θ

0

 , eθ =


− sin θ

cos θ

0

 , ez =


0

0

1

 (5.14)

The deformation in cylindrical polar coordinates is

r = R, θ = Θ + τZ, z = Z (5.15)

where τ is the twist per unit length. The geometry of the rectangular block in the

Cartesian coordinates (X, Y, Z) is given in Fig. 5.18 with following parameters:

A = 0.5, B = 2, C = 0.5 and the twist τ = π/4 = 90◦.
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Figure 5.18: Simple torsion of a rectangular block: geometry in the Cartesian
coordinates (X, Y, Z)

The deformation gradient F and right Cauchy-Green tensor are respectively

F =


1 0 0

0 1 τR

0 0 1



C =


1 0 0

0 1 τR

0 τR 1 + τ 2R2



(5.16)

Given cylindrical coordinates can be formulated as follows

x = r cos θ = R cos (θ + τZ) = R [cos θ cos (τZ)− sin θ sin (τZ)]

y = r sin θ = R sin (θ + τZ) = R [cos (τZ) sin θ + cos θ sin (τZ)]

z = Z

(5.17)

where R =
√
X2 + Y 2 and tan θ = Y

X
.

Therefore, Dirichlet boundary conditions for simple torsion, which are imposed on

a rectangular block, can be represented as
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• Bottom surface (Z = 0):
(
u1(x), u2(y), u3(z)

)
= (0, 0, 0)

• Top surface (Z = B): u1(x) = X cos (τL)− Y sin (τL)−X

u2(y) = Y cos (τL) +X sin (τL)− Y

u3(z) = 0

• Left surface (X = −A)): u1(x) = −A cos (τZ)− Y sin (τZ) + A

u2(y) = Y cos (τZ)− A sin (τZ)− Y

u3(z) = 0

• Right surface (X = A)): u1(x) = A cos (τZ)− Y sin (τZ)− A

u2(y) = Y cos (τZ) + A sin (τZ)− Y

u3(z) = 0

• Front surface (Y = −C)): u1(x) = X cos (τL) + C sin (τL)−X

u2(y) = −C cos (τL) +X sin (τL) + C

u3(z) = 0

• Back surface (Y = C): u1(x) = X cos (τL)− C sin (τL)−X

u2(y) = C cos (τL) +X sin (τL)− C

u3(z) = 0
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Fig. 5.19 represents initial and current configurations for the rectangular block

under simple torsion with regular and distorted meshes αdistorted = 0.1 and 0.3.

Lamé’s parameters, shear modulus µ = 0.6 and bulk modulus κ = 1.95, are used

in this test and the numerical solution of DOLFIN with a fine mesh is provided as

the reference solution. The number of elements is 4× 4× 4, 4× 4× 8, 4× 4× 16

and 4× 4× 32.

Fig. 5.20 depicts the logarithm of ratio of the numericalWNumerical to the reference

solution WAnalytical strain energy in the vertical axis and the logarithm of global

degrees of freedom (GDof) in the horizontal axis. The MINI element with very

fine meshes (4 × 4 × 100) is also used as the pseudo-exact solution for simple

torsion of a rectangular block.

In 3D mesh distortion problems, ss shown in Fig. 5.20 with finer meshes, in case

3, the conventional FEM fails to converge, while S-FEM shows more accurate and

stable results. The MINI element is shown stable results with regular and slightly

distorted meshes (αdistorted = 0.1). However a remarkable result is shown that

the reference solution (the MINI element) fails to converge when highly distorted

meshes are used.

While FEM and the MINI element do not converge for distorted meshes, gradient

smoothing methods converged smoothly with either regular mesh or distorted

meshes. FS-FEM shows its insensitivity to mesh distortion in 3D non-homogeneous

Dirichlet boundary condition problem and ES-FEM is shown to be able to handle

mesh distortion in 2D in section 5.3.2. Although bubble-enriched ES-FEM could

not effectively handle mesh distortion problems, FS-FEM enriched by the bubbles

shows significant performance with severely distorted meshes in 3D.
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(a) Regular mesh (b) αdistorted = 0.1 (c) αdistorted = 0.3

(d) Regular mesh (e) αdistorted = 0.1 (f) αdistorted = 0.3

Figure 5.19: Initial and deformed shapes for the simple torsion problem: (a,b,c)
Initial configurations with regular, distorted meshes αdistorted = 0.1 and 0.3 and
(d,e,f) Current configurations with regular, distorted meshes αdistorted = 0.1 and
0.3
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(b) Distorted mesh αdistorted = 0.1
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(c) Distorted mesh αdistorted = 0.3

Figure 5.20: Convergence in strain energy for the simple torsion problem (FEM,
FS-FEM and bFS-FEM): (a) regular mesh, (2) distorted mesh αdistorted = 0.1 and
(3) distorted mesh αdistorted = 0.3
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Bending of a rectangular block. Mesh distortion sensitivity problem in 3D is

considered once more. The geometry of the problem and its boundary conditions

are shown in Fig. 5.21 [123].

Figure 5.21: Bending of a rectangular block into a sector of a circular cylindrical
tube: geometry and boundary conditions

The reference Cartesian coordinates (X, Y, Z) for the bending problem are

X = (A1, A2) , Y = (−B,B) , Z = (−C,C) (5.18)

where (A1, A2, B, C > 0). Cartesian coordinates are defined as

x = r cos θ =
√

2αX cos Y
α
, y = r sin θ =

√
2αX sin Y

α
, z = Z (5.19)

and hence Dirichlet BCs on all surfaces can be expressed as

116



5.3. Numerical Results

• Bottom surface (Y = −B): u1(x) =
√

2αX cos −B
α
−X

u2(y) =
√

2αX sin −B
α

+B

u3(z) = 0

• Top surface (Y = B): u1(x) =
√

2αX cos B
α
−X

u2(y) =
√

2αX sin B
α
−B

u3(z) = 0

• Front surface (Z = −C): u1(x) =
√

2αX cos Y
α
−X

u2(y) =
√

2αX sin Y
α
− Y

u3(z) = 0

• Back surface (Z = C): u1(x) =
√

2αX cos Y
α
−X

u2(y) =
√

2αX sin Y
α
− Y

u3(z) = 0

• Left-handed surface (X = A1): u1 =
√

2αA1 cos Y
α
− A1

u2 =
√

2αA1 sin Y
α
− Y

u3 = 0

• Right-handed surface (X = A2): u1(x) =
√

2αA2 cos Y
α
− A2

u2(y) =
√

2αA2 sin Y
α
− Y

u3(z) = 0

The analytical solution for this problem can be computed as in Appendix D.4

W =
∫ 3

2

∫ 2

−2

∫ 0.5

−0.5

{
µ

(α− 2X)2

4αX

}
dZdY dX ≈ 1.086 (5.20)
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with α = 2.0, A1 = 2, A2 = 3, B = 2, C = 0.5, shear modulus µ = 0.6 and bulk

modulus κ = 1.95.

Fig. 5.22 illustrates the initial and deformed shapes of the problem with regular

and highly distorted meshes with mesh distortion factors αdistorted = 0.1, 0.3 and

0.4, and 4× 32× 4 elements along x-, y- and z-axes.

(a) Regular mesh (b) αdistorted = 0.1 (c) αdistorted = 0.3 (d) αdistorted = 0.4

(e) Regular mesh (f) αdistorted = 0.1 (g) αdistorted = 0.3 (h) αdistorted = 0.4

Figure 5.22: Initial and current shapes of the rectangular block with distorted
meshes: (a,b,c) initial configurations with αdistorted = 0.1, 0.3 and 0.4, (d,e,f)
deformed configurations with αdistorted = 0.1, = 0.3 and 0.4
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For this problem, different number of elements are considered: (1) case 1 is that

number of element is 2× 4× 2, 2× 8× 2, 2× 16× 2, and 2× 32× 2, and (2) case

2 is 4× 4× 4, 4× 8× 4, 4× 16× 4 and 4× 32× 4.

The convergence of strain energy of FEM, S-FEM and the MINI element for the

bending is shown in Figs. 5.23 and 5.24. Also, x-axis represents the logarithm

of the global degrees of freedom (GDof) and y-axis describes the logarithm of

the ratio in strain energy of the numerical WNumerical to the analytical solution

WAnalytical, respectively.

As shown in Figs. 5.23 and 5.24, when the mesh becomes severely distorted,

FEM fails to converge with the fine mesh. Face-based S-FEM, on the other hand,

converges smoothly to the analytical solution.

Detailed relative errors in strain energy can be found in Tables 5.9, 5.10, 5.11 and

5.12 with regular mesh and heavily distorted meshes, respectively. With severely

distorted and fine meshes, the FEM solution fails to reach the analytical solution;

however, FS-FEM successfully converges regardless of regular or distorted meshes.

Interestingly, in this test, FS-FEM shows better performance than enriched FS-

FEM as previous mesh distortion problems whereas its convergence rate is faster

and more stable than the standard face-based S-FEM.
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(b) αdistorted = 0.1 (Case 1)
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(c) αdistorted = 0.3 (Case 1)
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(d) αdistorted = 0.4 (Case 1)

Figure 5.23: Strain energy convergence for the bending block problem (FEM, FS-
FEM and bFS-FEM): (a) strain energy with regular mesh, (b) strain energy with
distorted mesh αdistorted = 0.1, (c) strain energy with distorted mesh αdistorted = 0.3
and (d) strain energy with distorted mesh αdistorted = 0.4
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(a) Regular mesh (Case 2)
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(b) αdistorted = 0.1 (Case 2)
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(c) αdistorted = 0.3 (Case 2)
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Figure 5.24: Strain energy convergence for the bending block problem (FEM, FS-
FEM and bFS-FEM): (a) strain energy with regular mesh, (b) strain energy with
distorted mesh αdistorted = 0.1, (c) strain energy with distorted mesh αdistorted = 0.3
and (d) strain energy with distorted mesh αdistorted = 0.4
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Table 5.9: Strain energy relative error for the bending block with regular mesh
(FEM, FS-FEM and bFS-FEM)

Regular mesh
FEM FS-FEM bFS-FEM

2×4×2 4.9001 1.5773 0.9607
2×8×2 1.6447 0.2454 -0.1297
2×16×2 0.9323 0.1016 -0.2142
2×32×2 0.7585 0.0769 -0.2005
4×4×4 4.0175 0.9849 -22.9068
4×8×4 0.7339 -0.2622 -0.4313
4×16×4 0.0032 -0.3879 -0.5017
4×32×4 -0.1797 -0.4085 -0.5065

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.

Table 5.10: Strain energy relative error for the bending block with distorted mesh
αdistorted = 0.1 (FEM, FS-FEM and bFS-FEM)

Distorted mesh αdistorted = 0.1
FEM FS-FEM bFS-FEM

2×4×2 11.0568 3.6436 1.8102
2×8×2 1.8077 0.4890 -0.0157
2×16×2 1.0003 0.1209 -0.1986
2×32×2 0.8017 0.0949 -0.1916
4×4×4 19.8688 9.2666 3.3811
4×8×4 2.0408 0.4275 -0.2505
4×16×4 0.1075 -0.3392 -0.4874
4×32×4 -0.1675 -0.3984 -0.5000

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.
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Table 5.11: Strain energy relative error for the bending block with distorted mesh
αdistorted = 0.3 (FEM, FS-FEM and bFS-FEM)

Distorted mesh αdistorted = 0.3
FEM FS-FEM bFS-FEM

2×4×2 53.8079 34.6637 10.0197
2×8×2 32.6221 3.0031 0.7442
2×16×2 3.1583 0.3372 -0.4431
2×32×2 1721.2780 0.4674 -2.1339
4×4×4 1802.4257 140.7878 41.9260
4×8×4 Fails 13.5612 4.8012
4×16×4 Fails 0.5859 -1.0343
4×32×4 Fails -0.7379 -2.3619

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.

Table 5.12: Strain energy relative error for the bending block with distorted mesh
αdistorted = 0.4 (FEM, FS-FEM and bFS-FEM)

Distorted mesh αdistorted = 0.4
FEM FS-FEM bFS-FEM

2×4×2 426.3759 70.4614 25.3211
2×8×2 29.3479 12.5453 6.2909
2×16×2 3371.5573 0.8078 -1.2987
2×32×2 6900.4850 0.9846 -1.5653
4×4×4 Fails 448.6516 72.2076
4×8×4 Fails 20.7111 6.6395
4×16×4 Fails 3.0716 -0.0491
4×32×4 Fails -0.2531 -3.5229

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.
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5.3.3 Mesh distortion sensitivity in incompressibility

In this section the mesh distortion sensitivity in incompressibility problems is

investigated.

Bevelled cantilever beam. The bevelled cantilever beam is considered for

mesh distortion sensitivity in incompressible limit. The geometry, boundary

conditions and loading are shown in Fig. 5.25. The length L = 0.5 and the

external force P = −0.1 are used. Poisson’s ratio is ν ≈ 0.49999997 (the bulk

modulus κ = 107) and regular mesh, distorted meshes αdistorted = 0.1 and 0.3

are also used. For this problem, DOLFIN finite element software with the MINI

element is used as the analytical solution with fine meshes (100× 100).

Fig. 5.25 shows the discretisation of regular and distorted meshes and Figs. 5.26

and 5.27 illustrate its deformed shapes of S-FEM and the MINI element with

displacements Ux and Uy.

The convergence of strain energy for the bevelled beam with distorted meshes

is given in Fig. 5.28. The horizontal axis represents the logarithm of global

degrees of freedom (GDof) and the vertical axis shows the logarithm of the ratio

of the numerical solution WNumerical to the analytical solution WAnalytical of strain

energy, respectively. Although the meshes are distorted, ES-FEM is locked in

quasi-incompressible model. However, node-based and bubble-enriched edge-based

S-FEM give accurate and reliable results as does the MINI element. Also, the L2

norm in displacements for each methods are shown in Fig. 5.29.

The detailed relative errors of strain energy of FEM, S-FEM, bES-FEM and

the MINI element for the bevelled beam problem are provided in Table 5.13.

In particular when meshes are highly distorted, the relative error of the MINI

elements is increased while that of bES-FEM remains accurate.
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Consequently it is shown that the bubble-enhanced gradient smoothing effectively

handles mesh distortion sensitivity alleviating locking as well.

(a) Geometry, boundary conditions and
loading

(b) Regular meshes

(c) Distorted Meshes: αdistorted = 0.1 (d) Distorted Meshes: αdistorted = 0.3

Figure 5.25: A bevelled cantilever beam: (a) the geometry, the boundary conditions
and the loading, (b) discretisation of regular T3 meshes, (c) discretisation of
distorted T3 meshes (αdistorted = 0.1) and (d) discretisation of distorted T3 meshes
(αdistorted = 0.3)
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(a) MINI (b) ES-FEM

(c) NS-FEM (d) bES-FEM

Figure 5.26: Deformed shapes for the bevelled beam problem in displacements
ux with distorted meshes αdistorted = 0.3 (MINI, ES-FEM, NS-FEM and bES-
FEM): (a) MINI, (b) ES-FEM, (c) NS-FEM and (d) bES-FEM. Note that the
displacement ux of ES-FEM is smaller than the MINI, NS-FEM and bES-FEM.
Its value is -0.00408 to 0.00846.

126



5.3. Numerical Results

(a) MINI (b) ES-FEM

(c) NS-FEM (d) bES-FEM

Figure 5.27: Deformed shapes for the bevelled beam problem in displacements ux
with distorted meshes αdistorted = 0.3 (MINI, ES-FEM, NS-FEM and bES-FEM):
(a) MINI, (b) ES-FEM, (c) NS-FEM and (d) bES-FEM
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(a) Regular mesh

3 4 5 6 7 8
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

log(GDof)

lo
g(

W
N

um
er

ic
al

 / 
W

R
ef

er
en

ce
)

 

 

Reference
FEM
MINI
ES−FEM
NS−FEM
bES−FEM

(b) Distorted mesh αdistorted = 0.1
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(c) Distorted mesh αdistorted = 0.3

Figure 5.28: Strain energy convergence for the bevelled cantilever beam with
regular and distorted meshes (FEM, the MINI, ES-FEM, NS-FEM and bES-FEM):
(a) regular mesh, (b) distorted mesh αdistorted = 0.1 and (c) αdistorted = 0.3
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(b) Distorted mesh αdistorted = 0.1
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(c) Distorted mesh αdistorted = 0.3

Figure 5.29: The logarithm of L2 Norm for the bevelled cantilever beam with
regular and distorted meshes (FEM, the MINI, ES-FEM, NS-FEM and bES-FEM):
(a) regular mesh, (b) distorted mesh αdistorted = 0.1 and (c) αdistorted = 0.3
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Table 5.13: Strain energy relative error for the bevelled beam (FEM, ES-FEM,
NS-FEM, bES-FEM and the MINI)

FEM ES-FEM NS-FEM bES-FEM MINI
Regular mesh

4×4 -42.2275 -41.6822 -3.2025 -2.9028 -1.8218
8×8 -42.0075 -41.7756 0.1352 -0.9163 -0.6164
16×16 -41.9504 -41.8099 0.2182 -0.2892 -0.2515
32×32 -41.9339 -41.2806 -0.0287 -0.0728 -0.1024

Distorted mesh αdistorted = 0.1
4×4 -43.1736 -42.6865 -3.2025 -2.9008 -1.8187
8×8 -42.2429 -41.9523 -0.5018 -0.9184 -0.6187
16×16 -42.3178 -42.1163 0.2714 -0.2874 -0.2572
32×32 -42.3472 -41.5833 Fails -0.0718 -0.1042

Distorted mesh αdistorted = 0.3
4×4 -43.1602 -42.3768 3.0709 -2.2570 -2.9830
8×8 -42.2698 -42.7838 2.1827 -0.8725 -1.0867
16×16 -43.0153 -46.7746 1.0500 0.0349 -0.6156
32×32 Fails -48.1337 0.7453 0.2531 -0.3201

Strain energy relative error is given by:(
WNumerical −WAnalytical

WAnalytical

)
× 100%.
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5.4. Summary

5.4 Summary

In this chapter, a new bubble-enriched deformation-gradient smoothing approach

was introduced and a selective node/edge based smoothing technique able to

preserve the beneficial properties of both edge and node based smoothing (See

summary of Chapter 4.4). The behaviour of theses approaches was compared

to that of the gold-standard (the MINI element), for finite elasticity problems.

The effect of mesh distortion on accuracy was also examined. Tow classes of

problem were tackled (1) mesh distortion for compressible finite elasticity; (2) mesh

distortion for incompressible finite elasticity. The conclusions, for the selected

finite elasticity problems were solved as follows:

• In most cases, bubble-enriched smoothed FEM does not lock and provides

similar results of similar accuracy to the gold-standard the MINI element;

• Smoothed FEM handles better severe mesh distortion than the MINI, as it

can handle a large amount of distortion before the Newton iterative solution

fails to converge.

Consequently, because of its ease of implementation, the bubble-enriched strain

gradient smoothing approaches appear promising for large deformation problems

involving very large strains.
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6.1 Conclusions

In this work, a spectrum of gradient smoothing approaches for finite elasticity was

presented, developing the smoothed deformation gradient which is an essential

part to construct the strain-displacement matrix, the tangent stiffness matrix, the

internal force and the fourth-order elasticity tensor in Chapter 4. The transform

of “Cubic” bubble function was introduced for strain smoothing approaches in

Chapter 5. The employment of the proposed bubble function was shown its ease of

implementation into the existing strain smoothing framework without any further

mathematical formulations or numerical efforts.

Then the method was tested thoroughly on a number of benchmark problems

and compared their performance to both the standard finite element method

(FEM) and the gold-standard locking-free element: the MINI element using

DOLFIN finite element software. Three specific cases, which can be met when

soft matters are being dealt with, were considered as the numerical studies: 1)

quasi-incompressibility/incompressibility, 2) mesh distortion sensitivity in com-

pressibility and 3) mesh distortion sensitivity in incompressibility. Such investiga-

tion was conducted under highly incompressible condition with severely distorted
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meshes, comparing to the psuedo-exact solution obtained by DOLFIN.

Smoothed finite elements may be seen as providing, within a single unified

formulation, an intermediate class of elements situated between fast, but potentially

inaccurate low-order finite elements. From the numerical experiments which were

carried out, the following conclusions can be made:

Homogeneous deformations All methods tested are able to reproduce finite

homogeneous deformations to machine precision. If the analytical solution

lies in the approximation space, smoothed FEM is able to reproduce it to

machine precision.

Locking Most strain smoothing approaches tested are able to alleviate locking.

Especially, the node-based smoothing is the most accurate and can deal with

severe incompressibility. However, the bubble-enhanced edge-based strain

smoothing approach does not lock and provides the almost same accuracy

as the MINI element in severe incompressibility.

Mesh distortion Again, strain smoothing alleviates the deleterious effects of

mesh distortion to a large extent. The edge-based smoothing is superior to

node-based smoothing when dealing with distorted meshes. In particular,

the bubble-enriched S-FEM is immune to heavily distorted meshes rather

than the MINI element, as it can handle a large amount of distortion before

the Newton solution fails to converge.

Selective smoothing By selectively smoothing the volumetric (using node-based

smoothing) and deviatoric (using edge-based smoothing) part of the defor-

mation gradient, a compromise between edge and node-based smoothing

can be devised, which shares properties of both.

Bubble enhancement With the cooperation of “Cubic” bubble functions, gra-

dient strain smoothing can be easily ameliorated its robustness and stability
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in incompressible medium. Particularly, the edge-based strain smooth-

ing with the bubble is shown significant the improvement of accuracy in

both incompressibility with mesh distortion and compressibility with mesh

distortion.

In the context of computer-aided surgery, which is one of the central activities

of Legato research team1, achieving this would allow to simplify and automate

the creation of patient-specific meshes. From the results of numerical experiments

carried out in this thesis, bubble-enhanced strain smoothing can be suited to

soft tissue simulation since the proposed approach overcome numerous challenges,

such as incompressibility, mesh distortion and complex geometries, which are

arisen during the simulation. For such realistic applications, the proposed bubble-

enriched gradient smoothing approach needs to examine following consideration:

Dynamic approach Explicit integration algorithm allows the element-wise com-

putation in FEM and can avoid solution of large systems of algebraic

equations. This step-wise computations are inexpensive, therefore explicit

dynamic algorithm can be effectively used for soft tissue simulation.

Parallelisation Since time step computations are performed node-wise and

element-wise, the node-based and edge-based SFEM seem well-suited paral-

lelism and easily mapped to parallel hardware. This could be, in particular,

looked at within the context of Graphical Processing Units (GPUs).

The long-term aim of research efforts is to enable the use of a wide variety of

finite elements, from tetrahedral to polyhedral, which are not subject to locking.

Thereby following open research questions need to be answered:

Performance for extremely large deformations The methods was tested up
1http://legato-team.eu
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to strains of 25% only. It is necessary to investigate much larger deformations,

compatible with those arising in surgical practice.

Extension to polyhedral elements Perhaps the most promising aspect of

strain smoothing is its ability to deal with arbitrary elements. This work was

focused on tetrahedral elements. Now the behaviour of polyhedral elements

is investigating and comparing this approach to the Virtual Element Method

[100].

Extension to higher-order and enriched non-polynomial approximations

It was shown in [24] that higher order polynomial and non-polynomial en-

riched approximations did not blend well with strain smoothing. This can

be related to integration [52, 128]. These problems will be investigated in

the context of large deformation finite elasticity.

Comparison and coupling with Arbitrary-Lagrangian-Eulerian (ALE) schemes

The proposed method did not been compared to ALE approaches, which

is a topic of on-going research in the group. In particular, a coupling of

S-FEM and ALE could potentially help reach extreme deformations whilst

minimising mesh motion.
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A Elasticity tensor

A.1 Neo-Hookean material

The strain density for a compressible neo-Hookean material [15] is given as

W (C) = 1
2λ (lnJ)2 − µlnJ + 1

2µ (trC− 3) or

W (C) = 1
8λ (lnI3)2 − 1

2µlnI3 + 1
2µ (I1 − 3)

(A.1)

where J = det F, the deformation gradient is F and the principal invariants of

the right Cauchy strain tensor C are

I1 = trC = Cij

I2 = 1
2
{

trC2 − tr
(
C2
)}

= 1
2
{

(Cii)2 − CijCji
}

I3 = det C = εijklCi1Cj2Ck3

(A.2)
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Appendix A. Elasticity tensor

Expressing the first derivatives of strain density with respect to C, by the chain

rule, the second Piola-Kirchhoff stress is given by

S = 2∂W
∂C

= 2
(
∂W
∂I1

∂I1

∂C
+ ∂W
∂I2

∂I2

∂C
+ ∂W
∂I3

∂I3

∂C

)

= 2
(
∂W
∂I1

+ I1
∂W
∂I2

)
I− 2∂W

∂I2
C + 2I3

∂W
∂I3

C−1
(A.3)

The derivatives of the stored strain density with respect to the principal invariants

are

∂W
∂I1

= 1
2µ

∂W
∂I2

= 0

∂W
∂I3

= 1
4λlnI3I

−1
3 −

1
2µI

−1
3

(A.4)

The derivatives of the principal invariants of the right Cauchy strain tensor with

respect to the tensor itself can be described as follows

∂I1

∂C
= ∂Ckk
∂Cij

= δkiδkj

=
∑
k

δkiδkj =
∑
k

δikδkj = I · I = I
(A.5)

2∂I2

∂C
= ∂

∂Cij

(
C2
ij − CpgCqp

)
= 2∂Ckk

∂Cij
Ckk −

(
∂Cpq
∂Cij

Cqp + Cpq
∂Cpq
∂Cij

)

= 2 I trC− (δpiδqiCqp + Cpqδqiδpi)

= 2 I trC− (Cji + Cji)

(A.6)
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A.1. Neo-Hookean material

hence,

∂I2

∂C
= I trC− C − ji

= I (C)−CT = I (C)−C
(A.7)

and

∂I3

∂C
=


C22C33 − C32C23 C31C23 − C21C33 C21C32 − C31C22

C11C33 − C31C13 C31C12 − C11C21

symm. C11C22 − C21C12


since

C−1 =


C11 C12 C13

C21 C22 C23

C31 C32 C33


−1

= 1
det C


C22C33 − C32C23 C31C23 − C21C33 C21C32 − C31C22

C11C33 − C31C13 C31C12 − C11C21

symm. C11C22 − C21C12


it follows that

∂I3

C
= (det C) C−1 = I3C−1 (A.8)

Substituting Eqs. (A.4), (A.5), (A.6), (A.7) and (A.8) into Eq. (A.3), we can

obtain the 2nd Piola-Kirchhoff stress as following

S = µ
(
I−C−1

)
+ 1

2λlnI3C−1

= µ
(
I−C−1

)
+ λlnJC−1

(A.9)
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Appendix A. Elasticity tensor

The Lagrangian elasticity tensor is given by

C = 2 ∂S
∂C

= 2 ∂

∂C

(
2∂W
∂C

)
= 4 ∂

∂C

(
∂W
∂C

)
(A.10)

With the first derivatives of strain density with respect to the principal invariants

and the derivatives of the principal invariants of C with respect to itself, Eq.

(A.10) can be re-expressed as

C = 4 ∂

∂C

[1
2µI + I3

(1
4λlnI3I

−1
3 −

1
2µI

−1
3

)
C−1

]
= 4∂I3

∂C

[1
4λlnI3I

−1
3 −

1
2µI

−1
3

]
C−1

+ 4I3
∂

∂C

[1
4λlnI3I

−1
3 −

1
2µI

−1
3

]
C−1

+ 4I3

[1
4λlnI3I

−1
3 −

1
2µI

−1
3

]
∂C−1

∂C

(A.11)

The first term of right hand side of Eq. (A.11) is

4∂I3

∂C

[1
4λlnI3I

−1
3 −

1
2µI

−1
3

]
⊗C−1

= 4I3

[1
4λlnI3I

−1
3 −

1
2µI

−1
3

]
C−1 ⊗C−1

= λlnI3C−1 ⊗C−1 − 2µC−1 ⊗C−1

(A.12)

, the second term is

4I3
∂

∂C

[1
4λlnI3I

−1
3 −

1
2µI

−1
3

]
⊗C−1

= 4I3

[
I3

(1
4λI

−1
3 −

1
4λlnI3I

−2
3 + 1

2µI
−1
3

)
C−1

]
⊗C−1

= λC−1 ⊗C−1 − λlnI3C−1 ⊗C−1 + 2µC−1 ⊗C−1

(A.13)

and the last term is

4I3

[1
4λlnI3I

−1
3 −

1
2µI

−1
3

]
∂C−1

∂C
= (λlnI3 − 2µ) I (A.14)
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A.1. Neo-Hookean material

where C−1 ⊗C−1 and the fourth-order tensor I are given in [21]

C−1 ⊗C−1 =
∑(

C−1
)
ij

(
C−1

)
kl
Ei ⊗ Ej ⊗ Ek ⊗ El (A.15)

and

I = −∂C−1

∂C
, or Iijkl = −

∂ (C−1)ij
∂Ckl

(A.16)

Hence, the components of the tensor I can be written as

Iijkl = 1
2

[(
C−1

)
ik

(
C−1

)
jl

+
(
C−1

)
il

(
C−1

)
jk

]
(A.17)

Consequently, the fourth-order elasticity tensors of Eq. (A.10) in component form

are

Cijkl = λ
(
C−1
ij C

−1
kl

)
+
(
µ− 1

2λlnI3

) [
C−1
ik C

−1
jl + C−1

il C
−1
jk

]
, or

Cijkl = λ
(
C−1
ij C

−1
kl

)
+ (µ− λlnJ)

[
C−1
ik C

−1
jl + C−1

il C
−1
jk

] (A.18)

where the Lamé’s first parameter is λ = κ − 2
3µ with the shear modulus µ and

the bulk modulus κ.
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B Smoothed deformation gradient

If the deformation gradient F is homogeneous on an element, the displacement

field on a single element can be explained as following

u (X) =

 u1 (X)

u2 (X)

 =

 a11X1 + a12X2 + b1

a21X1 + a22X2 + b2

 (B.1)

where the undetermined coefficients aij and bi, where i, j ∈ {1, 2}, are constant. We

here consider the smoothed deformation gradient F̃ for ES-FEM. The deformation

gradient on a triangle 4ABC for the standard FEM in Fig. B.1 is

F =

 a11 + 1 a12

a21 a22 + 1

 =


(
uB1 − uA1

)
/h+ 1

(
uC1 − uA1

)
/h(

uB2 − uA2
)
/h

(
uC2 − uA2

)
/h+ 1

 (B.2)

For the smoothed deformation gradient F̃ in the smoothing domain Ωk in Fig.

B.1, the deformation gradient in the smoothing domain Ω1
k can be expressed as

following

u1 (O1) = 1
3
(
uA1 + uB1 + uC1

)
u2 (O2) = 1

3
(
uA2 + uB2 + uC2

) (B.3)
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Appendix B. Smoothed deformation gradient

(a) Smoothing domain associated with target edge k in ES-FEM

(b) Smoothing domain associated with target node k in NS-
FEM

Figure B.1: Smoothing domains associated with target edge k for ES-FEM and
target node k for NS-FEM to assemble the smoothed deformation gradient F̃

Substituting Eq. (B.3) into Eq. (B.1), the displacement field on mid-point O1 is

given by

1
3
(
uA1 + uB1 + uC1

)
= a11

h

3 + a12
h

3 + b1

1
3
(
uA2 + uB2 + uC2

)
= a21

h

3 + a22
h

3 + b2

(B.4)
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Similarly, the displacement fields on node B and C can be written as

uB1 = a11h+ b1, uB2 = a21h+ b2 (B.5)

and

uC1 = a12h+ b1, uC2 = a22h+ b2 (B.6)

Substituting Eq. (B.6) into Eq. (B.5), a11− a12 and a21− a22 can be obtained as

a11 − a12 = uB1 − uC1
h

, a21 − a22 = uB2 − uC2
h

(B.7)

Hence, the displacements on the mid-point O1 are given by

uA1 + uB1 + uC1 = a11h+ a12h+ 3
(
uC1 − a12h

)
uA2 + uB2 + uC2 = a21h+ a22h+ 3

(
uC2 − a22h

) (B.8)

From Eq. (B.8), the undetermined coefficients aij are defined as follows

a11 = uB1 − uA1
h

, a12 = uC1 − uA1
h

, a21 = uB2 − uA2
h

, a22 = uC2 − uA2
h

(B.9)

Similarly, the undetermined coefficients aij for triangle 4DCB in Fig. B.1 are

given by

a11 = uC1 − uD1
h

, a12 = uB1 − uD1
h

, a21 = uC2 − uD2
h

, a22
uB2 − uD2

h
(B.10)

The smoothed deformation gradient is given by Hu et al. [64]

F̃ij (x) = 1
Ak

∫
Ωk

Fij (xk) Φ (xk) dΩ

= 1
Ak

∫
Ωk

(
∂uhi
∂Xj

)
Φ (xk) dΩ + δij

(B.11)
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Appendix B. Smoothed deformation gradient

where Φ is

Φ =


1
Ak

x ∈ Ωk

0 otherwise
(B.12)

and then,

F̃11 = 1
Ak

{∫
Ω1

k

∂uh
1

∂X1
dΩ +

∫
Ω2

k

∂uh
1

∂X1
dΩ
}

+ 1 = 3
h2

(
a11

h2

6 + a2
11
h2

6

)
+ 1

F̃12 = 1
Ak

{∫
Ω1

k

∂uh
1

∂X2
dΩ +

∫
Ω2

k

∂uh
1

∂X2
dΩ
}

= 3
h2

(
a1

12
h2

6 + a2
12
h2

6

)

F̃21 = 1
Ak

{∫
Ω1

k

∂uh
2

∂X1
dΩ +

∫
Ω2

k

∂uh
2

∂X1
dΩ
}

= 3
h2

(
a1

21
h2

6 + a2
21
h2

6

)

F̃22 = 1
Ak

{∫
Ω1

k

∂uh
2

∂X2
dΩ +

∫
Ω2

k

∂uh
2

∂X2
dΩ
}

+ 1 = 3
h2

(
a22

h2

6 + a2
22
h2

6

)
+ 1

(B.13)

where Ak = A1
k + A2

k = h2

6 + h2

6 = h2

3 , and the matrix form is

F̃ =


1
2

(
uB1 − uA1

h
+ uC1 − uD1

h

)
+ 1 1

2

(
uC1 − uA1

h
+ uB1 − uD1

h

)
1
2

(
uB2 − uA2

h
+ uC2 − uD2

h

)
1
2

(
uC2 − uA2

h
+ uB2 − uD2

h

)
+ 1

 (B.14)

In case of the edge in on the boundary, the smoothed deformation gradient F̃ can

be described as follows

F̃ =


1
2

(
uB1 − uA1

h
+ uC1 − uD1

h

)
+ 1 1

2

(
uC1 − uA1

h
+ uB1 − uD1

h

)
1
2

(
uB2 − uA2

h
+ uC2 − uD2

h

)
1
2

(
uC2 − uA2

h
+ uB2 − uD2

h

)
+ 1

 (B.15)
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C Imposing Dirichlet and Neumann

boundary conditions

C.1 Simple shear deformation

The deformation gradient F for simple shear deformation is

F =


1 k 0

0 1 0

0 0 1

 (C.1)

where k > 0. The strain invariants for this deformation are given as

I1 = k2 + 3 = I2, I3 = 1 (C.2)

The non-zero entries of the corresponding Cauchy stress tensors are given in

References [47, 97]

σ11 = β0 + β1
(
1 + k2

)
+ β−1

σ22 = β0 + β1 + β−1
(
1 + k2

)
σ33 = β0 + β1 + β−1

σ12 = k (β1 − β−1)

(C.3)
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Appendix C. Imposing Dirichlet and Neumann boundary conditions

where β0, β1 and β−1 are

β0 = 2∂W
∂I3

= −µ

β1 = 2∂W
∂I1

= µ

β−1 = 0

(C.4)

Hence, by Eq. (C.4), Eq. (C.3) can be written

σ11 = k2µ

σ22 = σ33 = 0

σ12 = kµ

(C.5)

The first Piola-Kirchhoff stress tensor is then computed as

P =


σ11 − kσ12 σ12 0

σ12 − kσ22 σ22 0

0 0 σ33

 (C.6)

Dirichlet boundary conditions. Prescribed displacement boundary condi-

tions are imposed on all edges such that:

• All edges: (u1, u2) = (kX2, 0).

Fig. C.1 shows the deformed shapes provided by FEM and S-FEM.

150



C.1. Simple shear deformation

(a) FEM (b) Smoothed FEM

Figure C.1: Deformed shapes for the simple shear deformation with Dirichlet BCs
(FEM and S-FEM with T3 32× 32 elements)

Neumann boundary conditions. A zero prescribed displacement boundary

condition is imposed on the bottom edge, tensions in the vertical direction are

imposed on the left- and right-hand side edges and tension in the horizontal

direction is imposed on the top edge. Neumann BCs imposed on particular edges

are given as

• Top edge: (P1, P2) = (σ12, σ22)

• Left-hand side edge: (P1, P2) = (−σ11 + kσ12,−σ12 + kσ22)

• Right-hand side edge: (P1, P2) = (σ11 − kσ12, σ12 − kσ22)

where stresses imposed on top, left-hand and right-hand edges are

σ11 = β0 + β1
(
1 + k2

)
+ β−1 = −µ+ 2µ = µ

σ22 = β0 + β1 + β−1
(
1 + k2

)
= −µ+ µ = 0

σ12 = k (β1 − β−1) = µ

(C.7)

Fig. C.2 depicts the current configurations of FEM and S-FEM.
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Appendix C. Imposing Dirichlet and Neumann boundary conditions

(a) FEM (b) S-FEM

Figure C.2: Deformed shapes for the simple shear deformation with mixed Dirichlet
and Neumann BCs (FEM and S-FEM with T3 32× 32 elements)

C.2 Uniform extension with lateral contraction

The following triaxial stretches are defined for the deformation gradient for the

uniform extension with lateral contraction problem:

x1 = λ1X1, x2 = λ2X2, x3 = λ3λ3X3 (C.8)

where X = [X1, X2, X3]T and x = [x1, x2, x3]T respectively denote the reference

and current configurations and λi > 0, i ∈ {1, 2, 3}, are positive constants. Hence,

the deformation gradient is

F =


λ1 0 0

0 λ2 0

0 0 λ

 (C.9)
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C.2. Uniform extension with lateral contraction

For the triaxial deformation, the strain invariants of the left Cauchy-Green tensor

(B = FFT) are

I1 (B) = λ2
1 + λ2

2 + λ2
3

I2 (B) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

I3 (B) = λ2
1λ

2
2λ

2
3

(C.10)

In particular, if the deformation is isochoric (preserves volume), then I3 (B) = 1.

The triaxial deformation associated with a square section of the material is

obtained by setting λ3 = 1. λ2 = 1/λ1 in this case due to the fact that the

deformation is isochoric and then the strain invariants are given as

I1 = trB = λ2
1 + 1

λ2
1

+ 1 = I2, I3 = det B = 1 (C.11)

The general form of Cauchy stress can be expressed in terms of left Cauchy-Green

tensor B as follows

σ = β0I + β1B + β−1B−1 (C.12)

with the elastic response coefficients β0, β1 and β−1 defined as

β0 = 2√
I3

(
I2
∂W
∂I2

+ I3
∂W
∂I3

)

β1 = 2√
I3

∂W
∂I1

β−1 = −2
√
I3
∂W
∂I2

(C.13)
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Appendix C. Imposing Dirichlet and Neumann boundary conditions

In particular, the non-zero components of the Cauchy stress are represented as

σ11 = β0 + β1λ
2
1 + β−1

1
λ2

1

σ22 = β0 + β1
1
λ2

1
+ β−1λ

2
1

σ33 = β0 + β1 + β−1

(C.14)

where

β0 = 2∂W
∂I3

= −µ, β1 = 2∂W
∂I1

= µ, β−1 = 0 (C.15)

Therefore the non-zero components of the Cauchy stress can be expressed as

σ11 = µ
(
λ2

1 − 1
)
, σ22 = µ

(
1
λ2

1
− 1

)
(C.16)

Dirichlet boundary conditions. To obtain the triaxial stretch of a square

section, assuming that sides of the square are aligned with the direction X and Y ,

and the bottom left-hand corner is at the origin O (0, 0), then Dirichlet BCs are

imposed as

• Bottom edge: (u1, u2) = ((λ1 − 1)X1, 0)

• Left-hand side edge: (u1, u2) = (0, (1/λ1 − 1)X2)

• Top and right-hand side edges: (u1, u2) = ((λ1 − 1)X1, (1/λ1 − 1)X2)

Fig. C.3 illustrates the deformed shapes of FEM and S-FEM respectively.

Neumann boundary conditions. Alternatively, Neumann BCs can be im-

posed on some of edges. For Neumann BCs, the first Piola-Kirchhoff stress tensor
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C.2. Uniform extension with lateral contraction

(a) FEM (ux) (b) FEM (uy)

(c) Smoothed FEM (ux) (d) Smoothed FEM (uy)

Figure C.3: Deformed shapes for the uniform extension with lateral contraction
with Dirichlet BCs (FEM and S-FEM with T3 32× 32 elements)

is given as

P = σ (F) = σJF−T (C.17)

The non-zero components of the first Piola-Kirchhoff stress tensor with stretches

λ2 = 1/λ1 and λ3 = 1 can be calculated as

P11 = σ11

λ1
= µ

(
λ1 −

1
λ1

)
= −P22 (C.18)

• Top edge: (P1, P2) = (0,−P22)
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Appendix C. Imposing Dirichlet and Neumann boundary conditions

• Right-hand side edge: (P1, P2) = (P11, 0)

Zero Dirichlet BCs (prescribed displacements are zero) in the vertical direction

on bottom edge and zero Dirichlet BCs in horizontal axis on left-hand side edge

are imposed and consequently the left-hand sided of corner is to be zero Dirichlet

BCs in both horizontal and vertical directions.

Since λ1 = 1.15 is considered in this test with mixed Dirichlet and Neumann BCs,

the first Piola-Kirchhoff stress tensors P11 and P22 are P11 = −P22 = 0.16826087.

The strain energy for this problem is W ≈ 0.02359 with shear modulus µ = 0.6

and bulk modulus κ = 100, respectively (see also Appendix D.2).

Deformed shapes of FEM and S-FEM with mixed Dirichlet and Neumann BCs

are given in Fig. C.4.

C.3 “Not-so-simple” shear deformation

Current configuration of the problem is

x1 = X1 + kX2
2 , x2 = X2, x3 = X3 (C.19)

and this can be expressed in the form of deformation gradient

F =


1 2kX2 0

0 1 0

0 0 1

 (C.20)

where k > 0. The strain invariants are

I1 = K2 + 3 = I2, I3 = 1 (C.21)
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C.3. “Not-so-simple” shear deformation

(a) FEM (ux) (b) FEM (uy)

(c) Smoothed FEM (ux) (d) Smoothed FEM (uy)

Figure C.4: Deformed shapes for the uniform extension with lateral contraction
with mixed Dirichlet and Neumann BCs (FEM and S-FEM with T3 32 × 32
elements)

where K = 2kX2.

Dirichlet boundary conditions. Non-homogeneous Dirichlet BCs on all edges

are imposed:

• All edges: (u1, u2) = (kX2
2 , 0)

Note that this function is quadratic in X2.

The analytical strain energy for the “Not-so-simple” shear problem can be obtained
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Appendix C. Imposing Dirichlet and Neumann boundary conditions

as

W = µ

2K
2 = µ

2 (2kX2)2 = 2µk2X2
2 = 1.6 (C.22)

where K = 2kX2 is given in Appendix D.3.

(a) FEM (ux) (b) Smoothed FEM (ux)

Figure C.5: Deformed shapes for the “Not-so-simple” shear deformation with
Dirichlet BCs (FEM and S-FEM with T3 32× 32 elements)
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D Strain energy calculation

The stored energy function of compressible and incompressible neo-Hookean modes

are respectively defined as

W (C) = 1
2 (lnJ)2 − µ0lnJ + 1

2µ0 (trC− 3) (D.1)

and

W (C) = 1
2µ0 (trC− 3) (D.2)

where Lamé’s first parameter is λ0 = κ− (1/2)µ0 in 2D and λ0 = κ− (2/3)µ0 in

3D with Lamé’s second parameter (or shear modulus) µ0 and the bulk modulus

κ. The right Cauchy-Green deformation tensor is C = FTF and the Jacobian

J = det F.

The principal invariants of the right Cauchy-Green tensor and their derivatives
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Appendix D. Strain energy calculation

with respect to itself can be expressed as (or see Table 4.1)

I1 = tr (C)

I2 = 1
2
{

(trC)2 − tr
(
C2
)}

I3 = det (C)

(D.3)

and

∂I1

∂C
= I

∂I2

∂C
= I1I−CT

∂I3

∂C
= I3C−T

(D.4)

D.1 Simple shear deformation

For simple shear deformation, the deformation gradient F is given as

F =


1 k 0

0 1 0

0 0 1

 (D.5)

where k = 1 for simple shear deformation. Hence the right Cauchy-Green defor-

mation tensor C can be obtained as

C = FTF =


1 0 0

k 1 0

0 0 1




1 k 0

0 1 0

0 0 1



=


1 k 0

k k2 + 1 0

0 0 1



(D.6)
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D.2. Uniform extension with lateral contraction

Therefore the strain invariant of the right Cauchy-Green tensor C is represented

as

I1 (C) = tr (C) = k2 + 3

I2 (C) = 1
2
{

(trC)2 − tr
(
C2
)}

= K2 + 3

I3 (C) = det C = 1

(D.7)

To get the strain energy for simple shear deformation, Eq. (D.7) is substituted to

Eq. (D.2) and then the strain energy for simple shear deformation is

W = 1
2µ0 (I1 − 3) = 0.3 (D.8)

where the shear modulus is given as µ0 = 0.6.

D.2 Uniform extension with lateral contraction

The deformation gradient F of uniform extension with lateral contraction is

F =


λ1 0 0

0 λ2 0

0 0 λ3

 (D.9)

and consequently the left Cauchy-Green strain tensor can be calculated as

B = FFT =


λ1 0 0

0 λ2 0

0 0 λ3




λ1 0 0

0 λ2 0

0 0 λ3



=


λ2

1 0 0

0 λ2
2 0

0 0 λ2
3



(D.10)
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Appendix D. Strain energy calculation

The strain invariants of the left Cauchy-Green tensors are

I1 (B) = tr (B) = λ2
1 + λ2

2 + λ2
3 = λ2

1 + 1
λ2

1
+ 1

I2 (B) = 1
2
{

(trB)2 − tr
(
B2
)}

= λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 = λ2

1 + 1
λ2

1
+ 1

I3 (B) = det (B) = λ2
1λ

2
2λ

2
3 = 1

(D.11)

where λ2 = 1/λ1 and λ3 = 1 when the deformation is isochoric. Therefore the

strain energy of this problem is

W = 1
2µ (I1 − 3) = 1

2µ
(
λ2

1 + 1
λ2

1
− 2

)
= 0.023593100189036 (D.12)

where µ = 0.6 and λ1 = 1.15 are given.

D.3 “Not-so-simple” shear deformation

Current configuration of “Not-so-simple” shear deformation is given as

x1 = X1 + kX2
2

x2 = X2

x3 = X3

(D.13)

and thus the deformation gradient F for “Not-so-simple” shear deformation is

F =


1 2kX2 0

0 1 0

0 0 1

 (D.14)
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D.3. “Not-so-simple” shear deformation

The right Cauchy-Green tensor can be expressed as

C = FTF =


1 0 0

2kX2 1 0

0 0 1




1 2kX2 0

0 1 0

0 0 1



=


1 2kX2 0

2kX2 4k2X2
2 + 1 0

0 0 1



(D.15)

Now the strain invariants of the right Cauchy-Green tensor can be computed

I1 (C) = tr (C) = 4k2X2
2 + 3

I2 (C) = 1
2
{

(trC)2 − tr
(
C2
)}

= 4k2X2
2 + 3

I3 (C) = det (C) = 1

(D.16)

Eq. (D.1) can be re-written as

W = µ

2 (I1 − 3) = 2µk2X2
2 (D.17)

and finally the strain energies of “Not-so-simple” shear deformation in 2D and 3D

are obtained respectively

W =
∫ 2

0

∫ 2

0
WdX1dX2

= 2
∫ 2

0
2µk2X2

2 dX2

= 4µk2
(

1
3X

3
2

∣∣∣∣2
0

)
= 1.6

(D.18)
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Appendix D. Strain energy calculation

and

W =
∫ 2

0

∫ 2

0

∫ 2

0
WdX1dX2dX3

= 4
∫ 2

0
2µk2X2

2 dX2

= 8µk2
(

1
3X

3
2

∣∣∣∣2
0

)
= 3.2

(D.19)

where shear modulus µ = 0.6 and the deformation k = 0.5.

D.4 Bending of a rectangular block

The deformation in cylinder coordinate for bending a rectangular block given in

Chapter 4.3.1 (or see in reference [123]) is recalled here:

f (X) =
√

2αX, g (Y ) = 1
α
Y (D.20)

where α is a bending factor. The deformation gradient can be represented as

F =


f ′ (X) 0 0

0 f (X) g′ (Y ) 0

0 0 1

 (D.21)

where the principle stretches are defined as

λ2
1 = (f ′ (X))2

λ2
2 = (f (X) g′ (Y ))2

λ2
3 = 1

(D.22)

where

f ′ (X) =
√

2α
2
√
X

=
√

α

2X , g′ (Y ) = 1
α

(D.23)
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D.4. Bending of a rectangular block

A compressible neo-Hookean model is given by [15]:

W = µ

2 (trC− 3) + λ

2 (lnJ)2 − µlnJ (D.24)

where µ is the shear modulus and the Lamé’s first parameter is λ = κ− (2/3)µ

with the bulk modulus κ. The principal invariants are

I1 = trC = λ1 + λ2 + λ3

I2 = 1
2
{

(trC)2 − tr
(
C2
)}

= λ1λ2 + λ2λ3 + λ3λ1

I3 = det (C) = λ1λ2λ3

(D.25)

Substituting Eq. (D.22) into Eq. (D.25), the invariants can be obtained as follows

I1 = (f ′ (X))2 + (f (X) g′ (Y ))2 + 1

= α

2X + 2αX
α2 + 1 = α

2X + 2X
α

+ 1

I3 = (f ′ (X))2 (f (X) g′ (Y ))2 = α

2X 2αX 1
α2 = 1

(D.26)

Hence Eq. (D.24) can be re-written as

W = µ

2

(
α

2X + 2X
α
− 2

)

= µ
(α− 2X)2

4αX = µ
(0.9− 2X)2

3.6X

(D.27)

where the Jacobian is J =
√
I3 = 1 and the bending factor is α = 0.9.

Let the geometry of the rectangular block for 2D be

2 ≤ X ≤ 3, −2 ≤ Y ≤ 2
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Appendix D. Strain energy calculation

thus, the strain energy in the whole domain is

W =
∫ 3

2

∫ 2

−2
WdA

= 4
∫ 3

2
W (X) dX

= 4µ
∫ 3

2

0.81− 3.6X + 4X2

3.6X dX

= 4µ
∫ 3

2

( 9
40X − 1 + 10

9 X
)

dX

= 4µ
(

9
40lnX

∣∣∣∣3
2
− X|32 + 10

18X
2
∣∣∣∣3
2

)
(D.28)

where the shear modulus µ = 0.6 is used in this thesis, therefore strain energy is

W ≈ 4.485618.
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E Computer Code

In this chapter, one of computer scripts for DOLFIN finite element software used

in this thesis is presented. Scripts are written in Python and a given example

script is for bending of a rectangular block studied in section 4.3.6 of Chapter 4.
1 #!/ usr/bin/ python

2 # -*- coding : utf -8 -*-

3

4 """ Bending Blcok problem for mesh distortion with Dirichlet boundary

conditions

5 for incompressible hyperelasticity .

6

7 Based on:

8

9 http :// fenicsproject .org/ documentation / dolfin /dev/ python /demo/pde/

hyperelasticity / python / documentation .html

10

11 , the paper :

12

13 http :// dx.doi.org /10.1016/ j.cma .2008.06.004

14

15 and author : Jack S. Hale 2014 mail@jackhale .co.uk

16

17 Chang -Kye Lee 2015 changkyelee@gmail .com

18 """

19

20 import dolfin as df

21

22 from dolfin import Identity , grad , ln , det , tr , dot
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Appendix E. Computer Code

23 from decimal import Decimal

24 # from __ future __ import division

25

26 def mini(mesh , order =1):

27 assert ( order >= 1)

28 U = df. VectorFunctionSpace (mesh , "CG", order ) + \

29 df. VectorFunctionSpace (mesh , " Bubble ", 3)

30 P = df. FunctionSpace (mesh , "CG", order )

31 V = df. MixedFunctionSpace ([U, P])

32

33 return V

34

35

36 def stokes (mesh , order =2):

37 assert ( order >= 2)

38 U = df. VectorFunctionSpace (mesh , "CG", order )

39 P = df. FunctionSpace (mesh , "DG", order - 2)

40 V = df. MixedFunctionSpace ([U, P])

41

42 return V

43

44

45 def BendingBlock (nx ,ny):

46 ## mesh = df.Mesh (" meshes / Bending _ Block _"+ repr(nx)+"x"+ repr(ny)+". xml

")

47 mesh = df. RectangleMesh (df. Point (2 , -2) ,df. Point (3 ,2) ,nx ,ny)

48 dims = mesh.type ().dim ()

49

50 mu_ python = 0.6

51 mu = df. Constant (mu_ python )

52 kappa = 1.95

53 lmbda = df. Constant ( kappa - (1.0/2.0) *mu_ python )

54

55 order = 2

56 V = stokes (mesh , order = order ))

57 #V = mini(mesh , order = order )

58

59 # Define boundary conditions

60 def left(x, on_ boundary ):

61 return df.near(x[0] , 2.0) and on_ boundary

62

63 def right (x, on_ boundary ):

64 return df.near(x[0] , 3.0) and on_ boundary

65
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66 def bottom (x, on_ boundary ):

67 return df.near(x[1] , -2.0) and on_ boundary

68

69 def top(x, on_ boundary ):

70 return df.near(x[1] , 2.0) and on_ boundary

71

72 moved = df. Expression ((" sqrt (2*0.9* x[0])*cos(x [1]/0.9) -x[0]" ,\

73 "sqrt (2*0.9* x[0])*sin(x [1]/0.9) -x [1]") )

74 bcs_ moved = [df. DirichletBC (V.sub (0) , moved , face)

75 for face in [left , right , top , bottom ]]

76 bcs = bcs_ moved

77

78 dx = df.dx

79

80 # solution

81 up = df. Function (V)

82 # test functions

83 vq = df. TestFunction (V)

84

85 # START LAOD INCREMENT

86 nstep = 50

87

88 for istep in range (1, nstep +1):

89

90 scale = float ( istep )/ nstep

91

92 print "Load step Number : %f" %( scale )

93

94 LoadFactor = scale

95

96 moved = df. Expression ((" LoadFactor *( sqrt (2*0.9* x[0])*cos(x [1]/0.9) -x

[0]) ",\

97 " LoadFactor *( sqrt (2*0.9* x[0])*sin(x [1]/0.9) -x[1]) ") ,LoadFactor =

LoadFactor )

98

99 # print "DBC: %f" %( moved )

100

101 bcs_ moved = [df. DirichletBC (V.sub (0) , moved , face)

102 for face in [left , right , top , bottom ]]

103 bcs = bcs_ moved

104

105 # incremental solution

106 dup = df. TrialFunction (V)

107
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108

109 du , dp = df. split (dup)

110 u, p = df. split (up)

111 v, q = df. split (vq)

112

113 # standard definitions ,

114 # see e.g. http :// dx.doi.org /10.1016/ j.cma .2008.06.004

115 I = Identity (dims)

116 F = I + grad(u)

117 C = F.T*F

118 J = det(F)

119 Ic = tr(C)

120

121 # from Aurrichio et al. http :// dx.doi.org /10.1016/ j.cma .2008.06.004

122 psi = (mu /2.0) *( Ic - dims) - mu*ln(J) + p*ln(J) - (1.0/(2.0* lmbda ))*

p**2

123

124 # energy function

125 Pi = psi*dx

126 # gateux derivative with respect to test functions

127 F = df. derivative (Pi , up , vq)

128 # gateux derivative with resepct to increment ( linearisation )

129 J = df. derivative (F, up , dup)

130

131 # Add bcs as third parameter to this call

132 problem = df. NonlinearVariationalProblem (F, up , bcs , J)

133 solver = df. NonlinearVariationalSolver ( problem )

134

135

136 # up = up + dup

137

138

139 solver . solve ()

140

141

142 u_h, p_h = up. split ()

143

144 #f = df.File (" displacement .pvd ")

145 f = df.File ("./ Results / BendingBlock / BendingBlock _"+ repr(nx)+"x"+ repr(ny)

+". pvd ")

146 f << u_h

147

148 results = {}

149 # results [’ Distortion _Factor ’] = air
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150 results [’Xelem ’] = nx

151 results [’Yelem ’] = ny

152 results [’ internal _work ’] = df. assemble (psi*dx)

153 results [’dofs ’] = V.dim ()

154

155 #df.plot(u_h)

156

157 return results

158

159

160 if __ name __ == "__ main __":

161 # xelem = [2, 4]

162 # yelem = [4, 8, 16, 32]

163 # for nx in xelem :

164 # for ny in yelem :

165 results = BendingBlock (nx=4,ny =32)

166 print results
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