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Abstract—The problem of limiting the diffusion of information
in social networks has received substantial attention. To deal
with the problem, existing works aim to prevent the diffusion
of information to as many nodes as possible, by deleting a
given number of edges. Thus, they assume that the diffusing
information can affect all nodes and that the deletion of each edge
has the same impact on the information propagation properties
of the graph. In this work, we propose an approach which
lifts these limiting assumptions. Our approach allows specifying
the nodes to which information diffusion should be prevented
and their maximum allowable activation probability, and it
performs edge deletion while avoiding drastic changes to the
ability of the network to propagate information. To realize our
approach, we propose a measure that captures changes, caused
by deletion, to the PageRank distribution of the graph. Based
on the measure, we define the problem of finding an edge
subset to delete as an optimization problem. We show that
the problem can be modeled as a Submodular Set Cover (SSC)
problem and design an approximation algorithm, based on the
well-known approximation algorithm for SSC. In addition, we
develop an iterative heuristic that has similar effectiveness but is
significantly more efficient than our algorithm. Experiments on
real and synthetic data show the effectiveness and efficiency of
our methods.

I. INTRODUCTION

Controlling the diffusion (propagation) of information in

social networks is an important task in multiple domains, such

as viral marketing and computer security. In the most common

setting, the diffusion starts from a small subset of users who

aim to activate their friends. The activated friends of these

users attempt to activate their own friends, and the diffusion

process proceeds similarly until no new users are activated.

The diffusing information comes in different forms, such as

a link to the website of a new product or to a malicious

website to download malware. Typically, the social network

is represented as a graph, the initial users correspond to a

subset of nodes called seeds, and the activation probabilities

of nodes are computed according to a diffusion model [13].

Recently, many works [14], [15], [18], [20] focused on

limiting the diffusion of potentially harmful information, by

strategically modifying the graph, before the start of the

diffusion process. These works aim to find a subset of k edges,

whose deletion by a decision maker (operator) reduces the

expected number of activated nodes at the end of the process

(spread) as much as possible. However, they consider a rather
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limited setting, since they assume that: (I) the diffusing infor-

mation can affect all nodes (i.e., adopt a collective approach),

and (II) the deletion of each edge has the same impact on

the information propagation properties of the graph (i.e., the

number of deleted edges determines the ability of the network

to propagate information after deletion).

In this work, we consider the problem of limiting infor-

mation diffusion through edge deletion, in a new setting.

Specifically, we propose a selective approach that allows spec-

ifying the nodes to which information should not be diffused

(vulnerable nodes) and their maximum allowable activation

probability. This flexibility is important in marketing when

there are certain classes of users, based on demographics, loca-

tion, or health condition, that may be harmed by the diffusing

information about a product [11], or form and spread negative

opinions about it [6]. In addition, our approach determines

the impact of deleting an edge subset on the information

propagation properties of the graph, using PageRank [2],

[4], a fundamental model of information propagation based

on network topology [1], [22]. This is important because

typically there is much other information (i.e., external to the

information that is limited), which needs to be propagated on

the network after edge deletion. For example, a node with

large PageRank score contributes significantly to information

propagation. Thus, deleting all its incoming edges, which

prevents the propagation of information through the node,

should be penalized more heavily than deleting the same total

number of edges from many nodes with smaller PageRank.

Our approach reduces the activation probability Pv of each

vulnerable node v to at most a threshold maxP , while pre-

serving the PageRank distribution of the graph. The activation

probabilities are computed by the Linear Threshold (LT) [13]

model, a well-established model of the diffusion of potentially

harmful information [14], [15]. The threshold maxP is a

simple, application-dependent measure of significance (alike

the minimum support threshold in pattern mining), which

models the maximum allowable activation probability for each

vulnerable node. The selection of maxP and of vulnerable

nodes is performed by the operator, based on domain knowl-

edge (e.g., customer vulnerability analysis and policies [19]).

Since the PageRank score of a node u can be interpreted as

the probability that a random walk which starts from a random

node ends at u [1], our approach avoids drastic changes to the

ability of nodes to propagate any information. Note that this is
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edge PRH gPv1
gPv2

gPv1,v2

e1 0.062 0.738 0.729 1.447

e2 0.062 0 0 0

e3 0.043 0.729 0.729 1.447

e4 0.036 0 0.729 0.719

e5 0.036 0.729 0 0.728

e6 0.043 0.009 0 0.009

e7 0.072 0.009 0 0.009

(c)

Algorithm Del. edges PRH

AGDE e3 0.043

IGDE {e4, e5} 0.071

[14] k = 2 {e1, e2} 0.124

(d)

Fig. 1: (a) Graph and edge probabilities; s is a seed, and v1, v2 are vulnerable nodes. The method of [14] with k = 1 (resp., k = 2) deletes
e2, (resp., {e1, e2}). (b) The PageRank distribution of the graph in Fig. 1(a) before and after deleting e1, {e1, e2}, and e3. (c) PRH , path
probability gain gPv1

and gPv2
used in IGDE, and aggregate path probability gain gPv1,v2

used in AGDE. (d) The deleted edges and
PRH for AGDE, IGDE, and the method of [14] with k = 2, when applied to Example 1.

not possible if the LT model, or any other model which only

represents a single diffusion process from given seeds, is used

instead of PageRank. This is because the use of such a model

would allow deleting edges that do not substantially reduce

the spread of the diffusion process but harm the ability of the

network to propagate other information.

Enforcing our approach is challenging, because: (I) There

is an exponential number of edge subsets that can be deleted.

(II) There are dependencies between edges, which affect the

activation probability of nodes. Specifically, the deletion of

an edge (ul, u) reduces the activation probability of all non-

seed nodes reachable from u, because these nodes can no

longer be activated by a path that contains (ul, u). (III)

Existing measures [2] that quantify changes to the PageRank

distribution cannot be used as optimization criteria in efficient

approximation algorithms. In addition, our approach cannot be

enforced by existing methods [14], [15] that limit the diffusion

of information under the LT model. This is because these

methods may not limit the activation probabilities of vulner-

able nodes, or they may substantially affect the information

propagation on the network, as shown in Example 1.

Example 1. Consider the graph of Fig. 1(a), where the seed

is s, and the vulnerable nodes are v1 and v2. The activation

probabilities Pv1 and Pv2 in the LT model are equal to 0.738
and 0.729, respectively. Assume that the activation probabili-

ties Pv1 and Pv2 need to be limited to at most 0.01. Applying

the method of [14] with k = 1, deletes e2 = (s, u1). This

minimizes the expected number of activated nodes. However,

Pv1 and Pv2 do not change, since all simple paths from s
to v1 and to v2 are preserved [10]. Using k = 2, results in

deleting {e1, e2}. This reduces Pv1 and Pv2 , to zero. However,

the information propagation on the network is significantly

affected, since no information can be propagated from u1, u2,

or u3 to the nodes on the right of s.

Our work makes the following contributions:

First, we propose a measure that captures changes, caused

by edge deletion, to the PageRank distribution. Our measure,

called PageRank-Harm (PRH), penalizes the deletion of an

edge based on the ratio between the PageRank score and out-

degree of the start node of the edge. For example, e1 = (s, u6)
has a larger PRH than e3 = (u6, u7) in Fig. 1(a), because

s has a larger PageRank score than u6 (see Fig. 1(b)) and s
and u6 have the same out-degree. Since the PageRank score of

each node is distributed equally into its out-neighbors, deleting

an edge with large PRH incurs a substantial change to the

PageRank scores of many other nodes. For instance, deleting

e1 instead of e3 causes a larger change to the PageRank scores

of the nodes in Fig. 1(a), as shown in Fig. 1(b). In addition, we

show that the PRH measure can be incorporated into efficient

approximation algorithms.

Second, we formally define the optimization problem of

PageRank-preserving Edge Deletion (PED). The problem re-

quires finding an edge subset whose deletion: (I) minimizes

changes to the PageRank distribution of the graph according

to PRH , and (II) limits the activation probability of each

vulnerable node to at most maxP . We also prove that PED

is NP-hard.

Third, we show that PED, for a single vulnerable node, can

be modeled as a Submodular Set Cover (SSC) [9], [21] prob-

lem. This allows developing an approximation algorithm based

on the well-known approximation algorithm for SSC [21]. Our

algorithm, called GDE, finds an edge subset iteratively. In each

iteration, it selects the edge with the minimum ratio between

PRH and path probability gain, which quantifies the benefit

of selecting the edge in terms of decreasing the activation

probability Pv of the vulnerable node. When the deletion of

the selected edges can limit Pv to at most maxP , these edges

are deleted and the algorithm stops. GDE finds an edge subset

whose PRH is larger than that of the optimal solution by at

most a logarithmic factor, which depends on the PRH and

the path probability gain of the subset.

Fourth, we propose two algorithms for PED, when there

are multiple vulnerable nodes. The first is an approximation

algorithm, called AGDE. The algorithm is similar to GDE,

but it selects an edge with small PRH which substantially

reduces the activation probabilities of multiple vulnerable

nodes simultaneously. Specifically, in each iteration, AGDE

selects the edge with the minimum ratio between PRH and

benefit in terms of decreasing the activation probability of

vulnerable nodes whose activation probability exceeds maxP .

The benefit is referred to as aggregate path probability gain.

AGDE achieves a logarithmic approximation ratio, which

depends on the PRH and the aggregate path probability gain

of the selected edges. Our experiments show that AGDE finds

near-optimal solutions (see Fig. 5a). The second algorithm,

IGDE, iterates over the vulnerable nodes, in decreasing order



of their activation probability, and applies GDE to approxi-

mate the PED problem for one vulnerable node per iteration.

IGDE is up to two orders of magnitude more efficient than

AGDE, because the deleted edges in an iteration are not

considered again, and it produces solutions of similar quality,

as shown in our experiments. To illustrate AGDE and IGDE,

we provide Example 2.

Example 2. AGDE and IGDE were applied to Example 1,

using maxP = 0.01. AGDE selected the edge e3 in Fig. 1(a),

which has the minimum ratio between PRH and aggregate

path probability gain gPv1,v2
(see Fig. 1(c)). The deletion of

e3 limits Pv1 and Pv2 to at most 0.01, thus AGDE deleted

e3. IGDE considered v1 first, since Pv1 is larger than Pv2 ,

and selected e5. This is because e5 has the minimum ratio

between PRH and path probability gain gPv1
among the

edges {e1, e3, e5, e6, e7}, whose deletion decreases Pv1 (see

Fig. 1(c)). The deletion of e5 limits Pv1 to at most 0.01, thus

IGDE deleted e5. Then, IGDE considered v2 and deleted e4.

The deletion of {e4, e5} limits both Pv1 and Pv2 to at most

0.01. As shown in Fig. 1(d), the solutions of IGDE and the

method of [14] with k = 2 have 65% and 186% larger PRH
than that of the solution of AGDE, respectively.

II. BACKGROUND

A. Preliminaries

Let G(V,E) be a directed graph. V is a set of nodes of size

|V |, and E is a set of edges of size |E|. The set of in-neighbors

of a node u is denoted with n−(u) and has size |n−(u)|, which

is referred to as the in-degree of u. The set of out-neighbors

of u is denoted with n+(u) and has size |n+(u)|, which is

referred to as the out-degree of u.

A path q = [(u1, u2), . . . , (um−1, u)] is an ordered set of

edges, which has length |q| = m− 1. A path q in which each

node, u1, . . . , u, is unique (i.e., a path with no cycle) is a

simple path. A path that starts and ends at the same node is a

cycle path. We assume simple paths, unless stated otherwise.

To quantify the distance between two probability distri-

butions, R = {r1, . . . , rm} and R′ = {r′1, . . . , r
′
m}, the

KL-divergence and the L1 distance can be used. The L1

distance quantifies the absolute error between R and R′ as

L1(R,R′) =
∑

i∈[1,m] |R(ri)−R′(r′i)|, and it is typically used

to measure distance between PageRank distributions [2]. The

L1 distance also forms the basis of: (I) the Gower distance,

which is defined as Gower(R,R′) = 1
m · L1(R,R′), and

(II) the Average Relative Error (ARE), which is defined as

ARE(R,R′) = 1
m ·

∑
i∈[1,m]

|R(ri)−R
′(r′i)|

R(ri)
.

Let U be a universe of elements and 2U its power set. A

set function f : 2U → R is non-decreasing, if f(X) ≤ f(Y )
for all subsets X ⊆ Y ⊆ U , monotone, if f(X) ≤ f(X ∪ u)
for each u /∈ X , and submodular, if it satisfies the diminishing

returns property f(X ∪ {u})− f(X) ≥ f(Y ∪ {u})− f(Y ),
for all X ⊆ Y ⊆ U and any u ∈ U \ Y [16].

B. PageRank

PageRank [4] is a well-established model of information

propagation based on network topology [1], [22]. The PageR-

ank score of a node u of a graph G is:

PR(u,G) = α
|V |

+ (1− α) ·
∑

ul∈n−(u)
PR(ul,G)

|n+(ul)|
(1)

where α ∈ (0, 1) is the restart probability, which is usually

set to 0.15 [2]. Eq. 1 assumes that each node has out-degree at

least 1 (i.e., there are no dangling nodes). If there are dangling

nodes, we treat them as in [17]. For simplicity of presentation,

we henceforth assume that G does not contain dangling nodes.

We will write PR(u) for PR(u,G), when G is clear from the

context. The PageRank distribution of the graph G is denoted

with PR(G), and it is defined as the vector of the PageRank

scores of all nodes of G [2].

C. The Linear Threshold (LT) model

The edge probability of an edge (ul, u) is denoted with

p((ul, u)) and reflects how likely u is activated by ul. For

each node u, it holds that
∑

ul∈n−(u) p((ul, u)) ≤ 1. The path

probability of a path q = [(u1, u2), . . . , (um−1, u)] is defined

as P (q) =
∏

e∈q p(e) and reflects how likely u is activated by

u1 through q.

Let S ⊆ V be the set of seeds. Let also Qs,u be the

set of paths from a seed s to a non-seed node u of G that

do not pass through another seed, and QS,u = ∪s∈SQs,u.

The activation probability of u by QS,u is computed as

P(u,QS,u) =
∑

q∈QS,u
P (q), where P (q) is the path proba-

bility of a path q in QS,u [10]. We denote P(u,QS,u) with

Pu, when QS,u is clear from the context. We also define

the activation graph G̃u of u as the subgraph of G which

is induced by the edges of all paths in QS,u.

The exact computation of Pu is a #P -hard problem for

general graphs [7]. However, the path probability of each path

decreases exponentially with the path length. Thus, Pu can

be estimated accurately and efficiently, based on the subset

of paths in QS,u whose seeds are “close” to u [10]. To find

these paths, we adapt the depth-first-search-based algorithm

of [10]. For each seed, the algorithm iteratively extends each

path from the seed and prunes it, if its path probability is lower

than a threshold h. Then, Pu is computed based on the paths

from seeds to u that are found by the algorithm, and G̃u is

constructed as the graph induced by the edges of these paths.

The threshold h ∈ [0, 1] represents the maximum tolerable

estimation error and is operator-specified [10]. The impact of

h on our approach is studied in Section VIII.

III. THE PRH MEASURE

The deletion of an edge affects the PageRank score of

the end node of the deleted edge, according to Eq. 1. In

addition, the PageRank score of this node is distributed into

its out-neighbors. Thus, the PageRank scores of these nodes

change, and the change is propagated similarly. Therefore,

edge deletion may incur a substantial change to the PageRank

distribution. Minimizing the change in our problem is chal-

lenging, because: (I) there are O(2|E|) edge subsets that can

be deleted, and (II) existing measures that capture changes to

the PageRank distribution (see Section II-A) are not monotone

and cannot be incorporated into efficient approximation algo-

rithms. Therefore, we propose PRH , a monotone measure that
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can be used by a greedy approach to produce approximately

optimal solutions. In the following, we outline the greedy

approach and present the PRH measure.

The greedy approach constructs the subset of edges E′ ⊆ E
to be deleted iteratively. In each iteration, the approach adds

into E′ the edge e that minimizes the ratio of: (I) the distance

between PR(G′1) and PR(G′2), where G′1 (respectively, G′2)

is produced from the graph G by deleting E′ (respectively,

E′∪e), and (II) aggregate path probability gain. The measure

of the distance must be monotone (i.e., its value for the deletion

of E′ must not be larger than that for the deletion of E′ ∪ e).

Otherwise, the greedy approach does not offer approximation

guarantees, as we will explain later. However, the measures

that capture changes to the PageRank distribution are not

monotone, as shown in Example 3.

Example 3. The subgraphs G′1 and G′2 of the graph G in

Fig. 1(a) are produced by deleting E′ = {e1} and E′ ∪
e2 = {e1, e2}, respectively. The distance between PR(G) and

PR(G′1) is higher than that between PR(G) and PR(G′2),
according to each of the measures in Fig. 3.

Subgraph Deleted edges L1 Gower ARE KL-divergence

G′1 E′ = {e1} 0.347 0.032 0.341 0.126

G′2 E′ ∪ e2 = {e1, e2} 0.188 0.017 0.178 0.051

Fig. 3: Existing measures favor the deletion of the edges {e1, e2}
instead of {e1} from G in Fig. 1(a).

On the contrary, PRH is a monotone measure. In Section

III-A, we define the PRH of an edge e = (u, u′) and show

that it is an effective proxy of the changes to the PageRank

scores of nodes caused by deleting e.

In Section III-B, we define the PRH of a subset of edges,

based on the observation that the dependencies among the

PRH of these edges are weak. That is, the deletion of an edge

e = (u, u′) does not substantially affect the PRH of another

edge e′ = (ũ1, ũ2) in the subset. Specifically, we show that the

change to the PageRank score of ũ1 decreases exponentially

with the length of the path from u to ũ1.

A. The PRH of a single edge

The PRH of an edge e = (u, u′) is defined as PRH(e) =

(1−α) · PR(u,G)
|n+(u)| , where PR(u,G) is the PageRank score of

u in G, |n+(u)| is the out-degree of u, and α is the restart

probability of Eq. 1.

Let δ(u∗) = PR(u∗, G)−PR(u∗, G′) be the change to the

PageRank score of a node u∗, when the deletion of the edge

e = (u, u′) from G produces G′. We show that PRH(e) can

be used as a proxy of δ(u∗). Specifically, there are two cases

when the edge e is deleted, which are illustrated in Fig. 2:
I u∗ is an out-neighbor of u, and

(a) u∗ = u′, or (b) u∗ 6= u′.

II u∗ is not an out-neighbor of u.
We now consider these cases in detail.

Case I Consider the case I(a). Before the deletion of e, the

contribution of e to PR(u∗) was (1−α)· PR(u,G)
|n+(u)| = PRH(e),

according to Eq. 1. However, after deleting e, u is no longer

an in-neighbor of u∗. Thus, the contribution of e to PR(u∗)
is zero. Now consider the case I(b). The deletion of e reduces

the out-degree of the node u by one. Thus, the contribution

of (u, u∗) to PR(u∗) changes from (1−α) · PR(u,G)
|n+(u)| to (1−

α) · PR(u,G′)
|n+(u)|−1 . However, in either case, u∗ may have a set of

in-neighbors other than u, which is denoted with UL (see Figs.

2I(a) and 2I(b)). Therefore, δ(u∗) is computed as in Eq. 2:

δ(u∗) =























PRH(e) + (1− α) ·
∑

ul∈UL

δ(ul)

|n+(ul)|
, u∗ = u′

PRH(e) − (1− α) · PR(u,G′)

|n+(u)|−1
+ (1− α) ·

∑

ul∈UL

δ(ul)

|n+(ul)|
, u∗ 6= u′

(2)

where δ(ul) is the change to the PageRank score of a node ul

in UL, and α is the restart probability of Eq. 1. The proof of

Eq. 2 follows easily from Eq. 1 and the definition of PRH ,

and it is omitted.

Case II The deletion of e changes the PageRank scores of the

out-neighbors of u, according to Case I (see Figs. 2II(a) and

II(b)), and the change is propagated to other nodes similarly.

In particular, δ(u∗) is computed using Eq. 3:

δ(u∗) = (1− α) ·
∑

ul∈n−(u∗)

δ(ul)

|n+(ul)|
(3)

which follows from Eq. 2, when u is not an in-neighbor of u∗.
Eq. 3 is computed backwards recursively to the out-neighbors

of u.

Thus, in Cases I and II, δ(u∗) is determined by PRH(e)
and/or by the change to PR(u∗), caused by the incom-

ing edges to u∗. Furthermore, the change incurred by an

edge (ul, u
∗) decreases exponentially with the length of the

path from u to ul. Specifically, given a simple path q =
[(u, u′), (u′, u′2) . . . , (u

′
|q|−1, ul)] (see Fig. 2II(a)), we obtain

Eq. 4:

δ(ul) = (1− α)|q|−1 · δ(u′)

|n+(u′)|·
∏|q|−1

r=2
|n+(u′

r)|
(4)



by recursively applying Eq. 3 for δ(ul) over u′|q|−1, . . . , u
′
2.

The case of a path q containing a cycle is similar (omitted).

Therefore, δ(ul) diminishes as we move away from u, and

δ(u∗) heavily depends on PRH(e) in most cases. Conse-

quently, PRH is a proxy of the change, caused by edge

deletion, to the PageRank scores of nodes.

B. The PRH of a subset of edges

We define the PRH of an edge subset E′ ⊆ E as

PRH(E′) =
∑

e∈E′ PRH(e), where e is an edge in E′ that

starts from a node u of G and PRH(e) = (1− α) · PR(u,G)
|n+(u)| .

Clearly, PRH is monotone since PRH(E′) ≤ PRH(E′∪e′),
for each edge e′ /∈ E′.

The PRH of each edge in E′ is computed based on the

graph G. This strategy allows our approach to select an edge

efficiently, without computing the PageRank distribution of

the graph that is produced by the deletion of the currently

selected edges. Furthermore, the strategy is effective, because

the deletion of a currently selected edge e = (u, u′) does not

substantially affect the PRH of another edge e′ = (ũ1, ũ2).
This is because δ(ũ1) decreases exponentially with the

length of the path from u to ũ1, since δ(ũ1) is computed

by applying Eq. 4 for ul = ũ1. Thus, δ(ũ1) is a small fraction

of δ(u∗), which is already small, since δ(u∗) depends on

PRH(e) and our approach selects edges with small PRH .

In Section VIII, we show that our PRH computation strategy

is much more efficient and equally effective as the alterna-

tive strategy, which computes PRH(e) on the graph that is

produced from G by deleting the currently selected edges.

IV. PROBLEM DEFINITION

The PED problem is defined as follows.

Problem 1 (PageRank-preserving Edge Deletion (PED)).

Given a graph G(V,E), a threshold maxP in [0, 1], a set

of seed nodes S and a set of vulnerable nodes D, such that

S,D ⊆ V and S ∩ D = ∅, and the PRH of each edge

e ∈ E, find an edge subset E′ ⊆ E, so that: (I) PRH(E′)
is minimum, and (II) the activation probability Pv ≤ maxP ,

for each node v ∈ D, after the deletion of E′ from G.

The problem requires finding an edge subset E′ with min-

imum PRH , whose deletion limits the activation probability

Pv of each vulnerable node v to at most maxP . We assume

that the operator selects the seeds (e.g., using existing methods

[10], [13]), as well as the threshold maxP and the vulnerable

nodes, based on domain knowledge (e.g., customer vulner-

ability analysis and policies [19]). In addition, the operator

computes the PRH of each edge. The PED problem is NP-

hard, as shown in Theorem 1. Variations of the PED problem

that use a fixed maxP = 0, or multiple thresholds, are easily

dealt with by our algorithms.

Theorem 1. PED is NP-hard.

Proof. The proof is by reducing the NP-hard Weighted Set

Cover (WSC) problem [8] to PED. The WSC problem is

defined as follows. Given a collection L = {L1, . . . , Lm} of

sets, such that each Lj ∈ L has a nonnegative weight w(Lj)

and ∪Lj∈LLj = U = {u1, . . . , un}, find a subcollection

L′ ⊆ L that (I) covers all elements of U (i.e., ∪Lj∈L′Lj = U ),

and (II) has minimum
∑

Lj∈L′ w(Lj).
We map a given instance IWSC of WSC to an instance

IPED of PED, in polynomial time, as follows (see Fig. 4):

(I) Each subset Lj ∈ L is mapped to [sj , xj , (sj , xj)], where sj
is a seed, xj is a non-seed node, and (sj , xj) is an edge.

(II) Each element ui in each Lj ∈ L is mapped to [xj , ui, (xj, ui)],
where ui is a vulnerable node and (xj, ui) is an edge.

(III) We assign PRH to edges as follows: PRH((sj, xj)) = w(Lj)
and PRH((xj, ui)) = ∞, to force the algorithm for PED
to select (sj , xj), which corresponds to Lj , and prevent the
selection of (xj , ui).

(IV) We assign edge probabilities as follows: p((sj, xj)) = 1 and
p((xj, ui)) = 1

|n−(ui)|
, to ensure that the path probability

of [(sj , xj), (xj , ui)] is determined by |n−(ui)|, which cor-
responds to the frequency of the element ui over the subsets of
L (number of subsets containing ui).

(V) We set maxP = 1 − 1
maxui

|n−(ui)|
, so that at least one

path [(sj , xj), (xj , ui)] to each ui is disconnected after the
deletion of the selected edges by the algorithm for PED. This
corresponds to covering each element ui ∈ U by at least one
subset Lj .

Fig. 4: The graph created from an instance of the WSC problem. The
seeds are s1, . . . , sm and the vulnerable nodes are u1, . . . , un. The
edge probability (resp. PRH) appears above (resp. below) the edges.

In the following, we prove the correspondence between a

solution L′ to the given instance IWSC and a solution E′ to

the instance IPED .

We first prove that, if L′ is a solution to IWSC , then E′

is a solution to IPED . Since ∪Lj∈L′Lj = U = {u1, . . . , un},

the deletion of E′ disconnects at least one path to each ui,

i ∈ [1, n], and Pui
≤ maxP holds, for each ui. Since∑

Lj∈L′ w(Lj) is minimum, PRH(E′) =
∑

Lj∈L′ w(Lj) is

minimum. Thus, E′ is a solution to IPED .

We now prove that, if an edge subset E′ is a solution

to IPED , then L′ is a solution to IWSC . Since E′ is a

solution to IPED , at least one path to each ui is discon-

nected, and Pui
≤ maxP holds for each ui, i ∈ [1, n].

Thus, L′ satisfies ∪Lj∈L′Lj = {u1, . . . , un} = U . Since

PRH(E′) =
∑

Lj∈L′ w(Lj) is minimum, L′ has minimum∑
Lj∈L′ w(Lj). Thus, L′ is a solution to IWSC .

V. ADDRESSING PED FOR A SINGLE VULNERABLE NODE

This section details our methodology for addressing PED,

when there is a single vulnerable node v. The main idea is

to model PED as a Submodular Set Cover (SSC) [9], [21]

problem and to develop an algorithm for PED based on the

approximation algorithm for SSC [21]. Our algorithm is called

GDE and is applied to the activation graph G̃v of v. The use

of G̃v improves efficiency, since only edges that affect the

activation probability of v are considered (see Section II-C).



Modeling PED as SSC. We show that PED, for a single

vulnerable node, can be modeled as an SSC problem, by means

of a reduction. We first provide the definition of the SSC

problem [9] and then a formulation of PED based on SSC,

which is referred to as PEDSSC and is used in the reduction.

After that, we present the reduction from PEDSSC to SSC.

Definition 1 (Submodular Set Cover (SSC) [9]). Let U be a

universe of elements and c(u) be the nonnegative cost of an

element u of U . Let also C be a function defined as C(S) =∑
u∈S c(u), for a subset S of U , and F be a monotone non-

decreasing submodular function. Given a nonnegative constant

b, find a subset S ⊆ U whose cost C(S) is minimum and

F (S) ≥ b.

The PEDSSC problem is defined as follows.

Problem 2 (PEDSSC). Given a threshold maxP in [0, 1],
a set of seed nodes S, a vulnerable node v, the activation

graph G̃v, and the PRH of each edge of G̃v , find an

edge subset E′ ⊆ E of G̃v , such that: (I) PRH(E′) is

minimum, and (II) P(v,QS,v, E)−P(v,QS,v, E
′) ≤ maxP ,

where P(v,QS,v, E) (resp., P(v,QS,v, E
′)) is the activation

probability of v by the paths of QS,v that contain edges in E
(resp., in E′).

In order to perform the reduction, we show that

P(v,QS,v, E
′) is monotone non-decreasing submodular, in

Theorem 2. Intuitively, the submodularity property holds,

because the addition of an edge e into E′ increases

P(v,QS,v, E
′) by the sum of the path probabilities of paths

that contain e and no other edge in E′. Thus, the increase

caused by adding e into E′ is at least equal to the increase to

P(v,QS,v, E
′′) caused by adding e into a superset E′′ of E′.

Theorem 2. The function P(v,QS,v, E
′) is monotone non-

decreasing submodular.

Proof: Let Ev be the edge set of G̃v , E1 ⊆ E2 ⊆ Ev be

subsets of Ev, and e be an edge in Ev \E2. Let also QE1

S,v ⊆

QS,v and QE2

S,v ⊆ QS,v be the set of paths containing edges

in E1 and E2, respectively, and Qe
S,v ⊆ QS,v be the set of

paths containing e. We will show that Eq. 5 holds in each of

the following cases.
P(v, QS,v, E1 ∪ e)−P(v,QS,v, E1) ≥

P(v, QS,v, E2 ∪ e)− P(v, QS,v, E2)
(5)

Case I: All paths in Qe
S,v are contained in QE1

S,v. Thus,

P(v,QS,v, E1 ∪ e) − P(v,QS,v, E1) = 0 ≥ P(v,QS,v, E2 ∪
e)−P(v,QS,v, E2) = 0, since adding e does not change QE1

S,v

and QE2

S,v.

Case II: All paths in Qe
S,v are contained in QE2

S,v and at least

one path is not contained in QE1

S,v. Thus, P(v,QS,v, E1 ∪ e)−
P(v,QS,v, E1) ≥ P(v,QS,v, E2 ∪ e) − P(v,QS,v, E2) = 0,

since adding e adds paths into QE1

S,v only.

Case III: At least one path in Qe
S,v is not contained in QE2

S,v.

Thus, P(v,QS,v, E1∪ e)−P(v,QS,v, E1) ≥ P(v,QS,v, E2∪
e)−P(v,QS,v, E2), since adding e adds into QE1

S,v all the paths

that are added into QE2

S,v and the paths of Qe
S,v contained in

QE2

S,v \Q
E1

S,v.

Consequently, Eq. 5 holds in each case and P(v,QS,v, E
′)

is submodular. In addition, P(v,QS,v, E
′) is monotone, since

P(v,QS,v, E
′) ≤ P(v,QS,v, E

′ ∪ e) for each e /∈ E′, and

non-decreasing, since P(v,QS,v, E1) ≤ P(v,QS,v, E2).

We now present the reduction from PEDSSC to SSC.

Theorem 3. PEDSSC can be reduced to SSC.

Proof. (Sketch) For any instance IPEDSSC
of PEDSSC, an

instance ISSC of SSC can be constructed as follows: (I) for

each edge e with PRH(e) in the activation graph G̃v , add

into the universe U an element u with cost c(u) = PRH(e),
(II) define the function F (S) = P(v,QS,v, E

′), where E′

is the edge subset corresponding to S ⊆ U , and (III) set

b = P(v,QS,v, E) − maxP . In addition, for any feasible

solution S of ISSC , a feasible solution E′ of IPEDSSC
with

PRH(E′) = C(S) can be constructed, by adding into E′

the edges that correspond to the elements of S. Note that

E′ is a solution of IPEDSSC
because F (S) ≥ b implies

P(v,QS,v, E
′) ≥ P(v,QS,v, E) − maxP , which implies

P(v,QS,v, E)− P(v,QS,v, E
′) ≤ maxP .

Since PEDSSC can be modeled as an SSC problem, we can

obtain an approximate solution to PEDSSC using the algorithm

of [21]. This algorithm iteratively adds the element u ∈ U \S

with the minimum ratio
c(u)

F (S∪u)−F (S) into S, until F (S) ≥ b.
Note that the function C in SSC is monotone. Thus, PEDSSC

cannot be reduced to SSC, if a non-monotone measure is used

instead of PRH .

Algorithm: GDE

Input: Graph G, activation graph G̃v , threshold maxP , PageRank distribution

PR(G), restart probability α
Output: Set of edges E′

1 foreach edge e = (u, u′) of G̃v do

2 PRH(e) ← (1− α) · PR(u)

|n+(u)|

3 E′ ← ∅

4 while P(v,QS,v , E)− P(v,QS,v , E
′) > maxP do

5 Reconstruct G̃v and find an edge e of G̃v s.t. gP(e) > 0 and
PRH(e)
gP (e)

is

minimum

6 E′ ← E′ ∪ e
7 Delete E′ from G
8 return E′

Greedy Delete Edges (GDE). GDE is applied to the

activation graph G̃v of v and constructs the subset of edges

E′ to be deleted iteratively. As can be seen in the pseudocode,

the algorithm computes the PRH of each edge in G̃v (steps

1-2) and constructs E′, based on a similar criterion to that

of the algorithm of [21] (steps 4-6). That is, it selects the

edge e with the minimum ratio
PRH(e)
gP (e) , where gP(e) =

P(v,QS,v, E
′∪e)−P(v,QS,v, E

′) is the path probability gain

of e. The path probability gain gP(e) quantifies the increase in

P(v,QS,v, E
′), caused by the selection of e. Thus, the selected

edge has small PRH and contributes significantly to lowering

the activation probability Pv . To ensure that gP(e) is positive,

we reconstruct G̃v in Step 5. Next, e is added into E′ (step

6), and the process is repeated if the activation probability

P(v,QS,v, E) − P(v,QS,v, E
′) exceeds maxP . Last, E′ is

deleted from G and returned (steps 7-8).

Theorem 4 shows that GDE finds a solution with PRH at

most 1 + ln(λ) times larger than that of the optimal solution,



where λ depends on the PRH and path probability gain of the

selected edges. The proof easily follows from [21] (omitted).

Theorem 4. Let E′ be the output of GDE and E′OPT be

the optimal solution to PEDSSC . It holds that PRH(E′) ≤
(1 + ln(λ)) · PRH(E′OPT ), where λ is the minimum of: (I)

the maximum ratio
gP(e1)
gP(e) , (II)

PRH(eℓ)
gP (eℓ)

/PRH(e1)
gP (e1)

, and (III)
P(v,QS,v ,E

′)
gP (eℓ)

, where e1 (resp., eℓ) is the edge that was first

(resp., last) added into E′, and e is an edge in E′ \ e1.

GDE needs O(|Ev | · |E
′| · T ) time, where Ev is the edge

set of G̃v , E′ ⊆ Ev is the set of deleted edges, and T is the

maximum time needed to compute gP(e). Specifically, step 4

is executed O(|E′|) times, and step 5 needs O(|Ev | ·T ) time.

In practice, T << |Ev| because the activation probabilities

are computed using small subgraphs of G̃v (see Section II-C).

VI. ALGORITHMS FOR MULTIPLE VULNERABLE NODES

This section presents AGDE and IGDE, which address the

PED problem when there are multiple vulnerable nodes.

Aggregate Greedy Delete Edges (AGDE). AGDE is an

approximation algorithm, which reduces the activation prob-

abilities of multiple vulnerable nodes simultaneously, using a

single (aggregate) constraint function. This function allows us

to model PED as an SSC problem and to base AGDE on the

algorithm of [21]. In the following, we present the aggregate

constraint function.

We aim to check whether the condition (II) of PED is

satisfied, using a single function. This condition is writ-

ten as P(v,QS,v, E) − P(v,QS,v, E
′) ≤ maxP , which

implies P(v,QS,v, E
′) ≥ P(v,QS,v, E) − maxP , for

each vulnerable node v. Now, we replace P(v,QS,v, E
′)

by min(P(v,QS,v, E
′),P(v,QS,v, E) − maxP). Clearly,

this reduces (truncates) P(v,QS,v, E
′) to the constant

P(v,QS,v, E) − maxP , if only if P(v,QS,v, E
′) ≥

P(v,QS,v, E) − maxP , for a vulnerable node v. Thus,

the condition (II) of PED is satisfied, if and only

if
∑

v∈D min(P(v,QS,v, E
′),P(v,QS,v, E) − maxP) =∑

v∈D(P(v,QS,v, E) − maxP). Based on this observation,

we define the aggregate constraint function, called aggregate

path probability, as:

P(D,∪v∈DQS,v , E
′
) =

∑

v∈D

min(P(v, QS,v , E
′
),P(v,QS,v , E)−maxP)

where D ⊆ V is the subset of vulnerable nodes.

We now present a formulation of the PED problem, which

uses the aggregate path probability. For clarity, the problem in

this formulation is referred to as PEDAggr.

Problem 3 (PEDAggr). Let S ⊆ V be the subset of seed nodes,

D ⊆ V be the subset of vulnerable nodes, and G̃D = ∪v∈DG̃v

be the activation graph of D. Given a threshold maxP in

[0, 1] and the PRH of each edge of G̃D , find an edge subset

E′ ⊆ E of G̃D such that: (I) PRH(E′) is minimum, and (II)

P(D,∪v∈DQS,v, E
′) =

∑
v∈D (P(v,QS,v, E)−maxP).

PEDAggr can be reduced to SSC, based on a similar reduc-

tion to that of Theorem 3 (omitted), where the submodularity

of the function P(D,∪v∈DQS,v, E
′) easily follows from the

submodularity of P(v,QS,v, E
′). Thus, we can obtain an

approximate solution to PEDAggr by using the algorithm of

[21] as the basis of our AGDE algorithm.

In what follows, we present the AGDE algorithm. As

can be seen in the pseudocode, the algorithm is applied

to the activation graph G̃D and iteratively selects the edge

with the minimum ratio
PRH(e)
gPD

(e) (step 5), where gPD
(e) =

P(D,∪v∈DQS,v, E
′ ∪ e) − P(D,∪v∈DQS,v, E

′) is the ag-

gregate path probability gain. The process is repeated until

the condition (II) of PEDAggr holds. Note that this condition

holds, in the worst case when E′ contains all edges of G̃D.

Thus, AGDE will always terminate.

Algorithm: AGDE

Input: Graph G, activation graph G̃D , threshold maxP , set of vulnerable nodes

D, PageRank distribution PR(G), restart probability α
Output: Set of edges E′

1 foreach edge e = (u, u′) of G̃D do

2 PRH(e) ← (1− α) · PR(u,G)

|n+(u)|

3 E′ ← ∅

4 while P(D,∪v∈DQS,v , E
′) <

∑

v∈D(P(v,QS,v , E)−maxP) do

5 Reconstruct G̃D and find an edge e of G̃D s.t. gPD
(e) > 0 and

PRH(e)
gPD

(e)

is minimum

6 E′ ← E′ ∪ e
7 Delete E′ from G
8 return E′

AGDE finds a solution with PRH at most 1 + ln(λD)
times larger than that of the optimal solution to PEDAggr,

where λD is as in Theorem 4 but with gPD
(respec-

tively, P(D,∪v∈DQS,v, E
′)) instead of gP (respectively,

P(v,QS,v, E
′)). The proof follows from [21] and is omitted.

Clearly, AGDE needs O(|E| · |E′| ·TD) time, where E is the

edge set of G̃D , E′ ⊆ E is the set of deleted edges, and TD

is the maximum time needed to compute gPD
.

Iterative Greedy Delete Edges (IGDE). As can be seen

in the pseudocode, IGDE sorts the vulnerable nodes, in

decreasing order of activation probability, and applies GDE

to the activation graph G̃v of one vulnerable node v at a time.

This heuristic improves efficiency, because: (I) G̃v contains

a much smaller number of edges than the activation graph

of all vulnerable nodes to which AGDE is applied, and

(II) the edge subset E′v that is deleted in an iteration is

not considered again. However, this reduces the number of

explored solutions. Therefore, vulnerable nodes with large

activation probability P(v,QS,v, E) are dealt with first, when

more edges are available for deletion.

Algorithm: IGDE

Input: Graph G, threshold maxP , set of vulnerable nodes D, activation graph

G̃v for each v ∈ D, PageRank distribution PR(G), restart probability α
Output: Set of edges E′

1 sort each v in D in decreasing order of activation probability P(v,QS,v , E)
2 E′ ← ∅; Gtmp ← G
3 foreach v in D do

4 if P(v,QS,v , E)− P(v,QS,v , E
′) > maxP then

5 E′
v ← GDE(G, G̃v,maxP, PR(Gtmp), α)

6 foreach v in D do

7 Update G̃v to reflect the deletion of E′
v

8 E′ ← E′ ∪E′
v

9 return E′

Note that each vulnerable node v is considered once,

because P(v,QS,v, E
′) cannot decrease in the next iterations

(see Theorem 2). Thus, after the loop of step 3 terminates,



the condition (II) of PED holds, and the subset of edges

E′ is returned (step 9). Furthermore, GDE is applied to the

PageRank distribution of the original graph (step 5), so that

edge deletion does not affect the PRH computation in GDE.

IGDE needs O(
∑

v∈D(|Ev| · |E
′| · T + |D| · |Ev|)) time.

VII. RELATED WORK

Existing methods limit the diffusion of information by mod-

ifying the graph, or by initiating the diffusion of information

of opposite content.

Methods that modify the graph aim to minimize the spread

(expected number of activated nodes) directly, or indirectly

by optimizing a graph property. To minimize the spread

directly, there are heuristics that apply node [23] or edge

[15] deletion, under the Independent Cascade (IC) model (e.g.,

[23]), or under the Linear Threshold (LT) model (e.g., [15]).

There is also an approximation algorithm [14] under the LT

model, which deletes an edge subset of given size. Methods

for minimizing the spread indirectly were proposed in [18],

[20]. All methods that modify the graph follow the collective

approach, which requires reducing the activation probabilities

of all nodes as much as possible. In addition, they assume that

deleting each edge has the same impact on the information

propagation properties of the graph. Thus, these methods are

not applicable to our problem, as discussed in Introduction.

Methods that minimize the spread of undesirable (negative)

information, by diffusing information of opposite content

(positive information) were proposed in [5], [12], under an

extended IC [5] or LT [12] model. These methods select seeds

which diffuse the positive information and aim to prevent

the diffusion of negative information to the largest (expected)

number of nodes. However, the PED problem requires limiting

the diffusion to vulnerable nodes, while not affecting the infor-

mation propagation to other nodes. Therefore, these methods

cannot be applied to our problem.

VIII. EXPERIMENTAL EVALUATION

In this section, we evaluate AGDE and IGDE, in terms

of their effectiveness and efficiency. Since existing methods

are not applicable to the PED problem, we compared our

algorithms against baselines that use different edge selection

criteria, and against the optimal method, BRUTEFORCE, which

examines all edge subsets. In addition, we show that PRH is

an effective and efficient proxy of the change to the PageRank

scores, caused by edge deletion.

Setup and datasets. To quantify the impact of edge deletion,

we used: (I) PRH , (II) the L1 distance, (III) the percentage of

deleted edges, and (IV) the Kendall τb correlation (Kτb). Kτb
captures changes to the ranking of all nodes, with respect to

their PageRank scores [3]. A Kτb value of 1 implies no change

to the ranking and larger values are preferred.

We implemented all algorithms in C++ and applied them

to the cit-HepPh (Ph), Wiki-vote (Wiki), and Polblogs (Pol)

datasets. Ph and Wiki are available at http://snap.stanford.edu/

data and Pol at http://www-personal.umich.edu/∼mejn/. We also used

two synthetic datasets, AB and ER, which were generated by

the Albert-Barabasi and the Erdös-Rényi model, respectively.

These models were also used in [7], [14]. Table I summarizes

the characteristics of each dataset and its default values for

maxP , |S| (# of seeds), and |D| (# of vulnerable nodes).

BRUTEFORCE does not scale to real datasets. Thus, it was

applied to 1000 datasets, which have 16 nodes and 28 edges

on average and were generated by the Erdös-Rényi model.
Dataset |V | |E| (avg, max) in-deg. maxP |S| |D|

Ph 34546 421578 (24.3, 846) 0.1 200 50

Wiki 7115 103689 (13.7, 452) 0.1 75 20

Pol 1490 19090 (11.9, 305) 0.1 500 20

AB 111150 500000 (9, 99907) 0.01 500 5

ER 5000 49917 (9.98, 24) 0.01 50 20

TABLE I: Characteristics of datasets and default values

All edge probabilities were assigned by the uniform method

(i.e., each incoming edge to u has edge probability 1
|n−(u)| )

[7], [13] and the threshold h was set to 10−3, as in [10].

The vulnerable nodes were: (I) selected randomly among the

top-10% of nodes with the largest in-degree, in Ph, Wiki, Pol,

and ER, and (II) the 5 nodes with the largest in-degree, in all

other datasets. This excludes nodes that are easy to deal with.

To find the seeds, we considered each vulnerable node v and

iteratively selected random paths of length at least 2 that end

at v, until Pv ≥ min(r ·maxP , 1), where r ≥ 1 is a random

integer. The start nodes of these paths were used as seeds.

Since there were many other paths from seeds to vulnerable

nodes, the activation graphs were large. All experiments ran

on an Intel Xeon at 2.4Ghz with 12Gb RAM.

Quality of approximation. We demonstrate that AGDE finds

near-optimal solutions, by comparing it to BRUTEFORCE. Fig.

5a shows the ratio between the PRH for AGDE and for

BRUTEFORCE, as well as the approximation ratio 1+ ln(λD),
when maxP = 0.2, for all 1000 datasets (sorted in decreasing

PRH). The ratio is 1 for 70% of the datasets, 1.04 on average,

and at most 1.7. The approximation ratio is 2.6 on average and

at most 6. Thus, AGDE produced solutions that are close to

optimal, and the ratio of AGDE to BRUTEFORCE was much

lower than the approximation ratio.

Effectiveness. We demonstrate that AGDE and IGDE do

not substantially affect the information propagation properties

of the graph and that they delete a small number of edges.

We compared our methods with two baselines: (I) BPRH ,

which selects the edge with the minimum PRH , and (II)

BPGain, which selects the edge with the maximum aggregate

path probability gain. Both baselines are based on AGDE but

do not offer approximation guarantees.

Figs. 5b and 5c show the PRH , for varying maxP . The

PRH decreases as maxP increases, because the required

reduction in activation probabilities becomes smaller. AGDE

was the best method, and the PRH for IGDE was slightly

larger. The baselines performed much worse, because BPRH

deleted edges that did not reduce the activation probabilities of

vulnerable nodes and BPGain deleted edges with large PRH .

Figs. 5d and 5e show the results for the L1 distance, which

follows the same trend as PRH . This suggests that minimizing

PRH helps preserving the PageRank distribution. AGDE and

IGDE performed similarly with respect to Kτb and better than
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the baselines (see Fig. 6a). Furthermore, AGDE and IGDE

deleted at most 0.04% more edges than BPGain, which aims

to minimize the number of deleted edges (see Fig. 6b).

Next, we measured effectiveness, for varying |S|, using

seed sets of increasing size, whose elements were contained

in all larger sets. Figs. 6c and 6d show that the L1 distance

increases with |S|. This is because the activation probabilities

of vulnerable nodes, before edge deletion, are higher for

large seed sets. They also show that AGDE and IGDE

outperformed both baselines. Furthermore, AGDE and IGDE

deleted at most 0.01% more edges than BPGain (see Fig. 6e).

We also measured effectiveness, for varying |D| (# of

vulnerable nodes). AGDE and IGDE performed similarly and

significantly better than both baselines, with respect to the L1

distance (see Fig. 7a). Furthermore, our methods deleted at

most 0.5% more edges than BPGain (see Fig. 7b).

Thus, AGDE and IGDE preserved the information propa-

gation properties of the graph much better than both baselines,

and they deleted a similar number of edges with BPGain,

which aims to minimize the number of deleted edges.

Efficiency. We demonstrate that AGDE and IGDE scale well

with |S|, |D|, and |E|, and that they are more efficient than

the fastest baselines, BPRH and BPGain. In addition, we show

that IGDE is substantially more efficient than AGDE.

Fig. 7c shows that AGDE and IGDE scaled better than

linear (sublinearly) with |S|. However, IGDE was up to 4
times faster, as it considers seeds contained in the activation

graph of one vulnerable node at a time. Fig. 7d shows that

IGDE scaled sublinearly with |D|, and it was up to two

orders of magnitude faster than AGDE. This is because

the edges deleted in an iteration of IGDE affected many

activation graphs. Fig. 7e shows that AGDE and IGDE scaled

sublinearly with |E|, and that IGDE was up to one order of

magnitude faster. The baselines scaled similarly to AGDE,

and the results for the ER dataset were similar (omitted).

Threshold h. We demonstrate the impact of h on the L1

distance and on the runtime of AGDE and IGDE. Figs. 8a and

8b show that the L1 distance decreased by 0.07% on average,

for h ≤ 10−3 and substantially for larger h values. The

runtime of both methods decreased significantly as h increases.

Thus, setting h to 10−3, as suggested in [10], allows estimating

the activation probabilities accurately and efficiently.

Benefit of using PRH vs. the L1 distance. We demonstrate

the effectiveness and efficiency of using PRH as a proxy of

the change to the PageRank scores, caused by edge deletion.

We compared our algorithms against BL1/PGain, a baseline

that implements the greedy approach based on the L1 distance

(see Section III).

Figs. 8c, 8d, and 8e show the results for varying maxP , |S|,
and |D|, respectively, with respect to the L1 distance. The L1

distance for BL1/PGain was 5 times larger than that of AGDE

and IGDE, on average. In addition, BL1/PGain was several

orders of magnitude slower than our algorithms, because it

computes the PageRank distribution of the graph after deleting

each edge, in order to select the best edge in each iteration. For

example, BL1/PGain required 12 hours when applied to Pol

with |D| = 50, while IGDE needed 90 seconds. Thus, PRH
is a more effective and efficient measure to avoid changes to

the PageRank distribution compared to the L1 distance.

Benefit of computing PRH on G. We demonstrate that

computing the PRH of every edge in a subset E′ on the

graph G helps efficiency and does not impact effectiveness.

We compared AGDE with BPRHupd/PGain, a baseline that

computes the PRH of an edge e on a graph G′e, produced

from G by deleting all edges that were added into E′ before

e. The baseline is based on AGDE, because AGDE computes

the PRH of more edge subsets (potential solutions) than

IGDE, and this allows comparing the PRH computation

strategies on more subsets. We repeated all experiments of

the effectiveness subsection above and found that AGDE and
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Fig. 8: (a) L1 distance vs. h, for Wiki. (b) Runtime vs. h, for Wiki. Comparison with BL1/PGain. L1 distance vs. (c) maxP , (d) |S|, and
(e) |D|, for Pol.

BPRHupd/PGain produced the same solutions, except in the

experiments of Figs. 5c and 6d. In the experiments of Figs.

5c and 6d the algorithms broke ties differently. Thus, their

solutions differed in at most 5 edges and had the same PRH .

However, AGDE was up to 84% faster, because it avoids

recomputing the PageRank distribution of the graph. Thus,

our PRH computation strategy is both effective and efficient.

IX. CONCLUSIONS

Existing works for limiting the diffusion of information by

edge deletion assume that the diffusing information can affect

all nodes and that deleting each edge has the same impact on

the information propagation properties of the graph. In this

work, we introduced an approach that lifts these restrictive

assumptions. Our approach reduces the activation probabilities

of vulnerable nodes to at most a specified threshold, and

it applies edge deletion while preserving the information

propagation properties of the graph, by avoiding changes to

its PageRank distribution. We proposed a measure to capture

these changes, and based on the measure we formulated the

PED problem. To deal with the problem, we developed an

effective approximation algorithm and an efficient heuristic.
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