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This paper presents a versatile and robust SPH simulation approach for

multiple-fluid flows. The spatial distribution of different phases or com-

ponents is modeled using the volume fraction representation, the dynam-

ics of multiple-fluid flows is captured by using an improved mixture mod-

el, and a stable and accurate SPH formulation is rigorously derived to re-

solve the complex transport and transformation processes encountered in

multiple-fluid flows. The new approach can capture a wide range of real-

world multiple-fluid phenomena, including mixing/unmixing of miscible

and immiscible fluids, diffusion effect and chemical reaction etc. Moreover,
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the new multiple-fluid SPH scheme can be readily integrated into existing

state-of-the-art SPH simulators, and the multiple-fluid simulation is easy to

set up. Various examples are presented to demonstrate the effectiveness of

our approach.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-

Dimensional Graphics and Realism—Animation; I.6.8 [Simulation and

Modeling]: Types of Simulation—Animation

General Terms: Physically Based Animation, Fluid Simulation

Additional Key Words and Phrases: Multiphase and Multicomponent Flow,

Miscible and Immiscible Fluids, Smoothed Particle Hydrodynamics, Vol-

ume Fraction Model, Mixture Model

1. INTRODUCTION

Over the past decade, multiple-fluid simulation has received con-
siderable attention in the graphics community. Much of these works
focused on interfacial flows (e.g. [Losasso et al. 2006; Hong et al.
2008; Boyd and Bridson 2012; Misztal et al. 2012]), a special class
of multiple-fluid systems where the fluids are immiscible with each
other and clear interfaces exist between different phases or compo-
nents. Another category of multiple-fluid flows involve miscible or
dispersed fluid mixtures where interfaces can be difficult to track
continuously or even do not exist. Like interfacial flows, model-
ing miscible or dispersed fluids is also important for the visual
plausibility of graphic applications, such as water spray dynam-
ics ([Nielsen and Osterby 2013]) used in modeling of waterfall-
s, water jets and stormy seas. Miscible flows are more flexible to
achieve polytropic appearances featuring continuously varying col-
or details, as in colloidal dispersions or dissolving mixtures, which
is largely different in visual effect from the surface-rich interfa-
cial flow. However, very little work has involved in this aspect.
Meanwhile, the majority of the researches on multiple-fluid sim-
ulation use Eulerian methods, and simulating multiple-fluid flows
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with Lagrangian methods remains a challenging task. We propose a
robust Smoothed Particle Hydrodynamics (SPH) approach to simu-
late multiple-fluid flows. A special focus is placed on multiple-fluid
flows that do not necessarily have (or are difficult to track) clear and
persistent interfaces.

Interfacial flows can be solved in a similar way as the single-
phase flow, with the main modeling challenge arising from contin-
uous tracking of fluids’ interfaces. However, when different phas-
es or components can mix with each other, i.e. miscible with each
other, whether in a continuous manner (such as water solution) or
dispersed manner (such as slurry flows), the motion and distribu-
tion of different phases or components cannot be captured by the
single-phase fluid simulation. Different phases or components in a
multiple-fluid flow have different fluid properties (e.g. density, vis-
cosity etc.), and as a result they move at different velocities, caus-
ing relative motions between phases or components. The various
visually-interesting mixing/unmixing processes are the combined
result of the advection driven by the fluid’s bulk motion, the tur-
bulence caused by fluids’ instability, the diffusion driven by con-
centration difference, and most dominantly the relative motion de-
termined by the interactions between phases or components. The
major challenge in modeling multiple-fluid flow is to resolve the
above dynamic interactions between phases or components [Yeoh
and Tu 2009; Crowe et al. 2011].

We introduce a mixture model for simulating multiple-fluid
flows, in which the distribution of different phases or components is
represented by their volume fractions and does not rely on contin-
uous tracking of fluids’ interfaces. Also, we compute analytically
the drift velocities defined as the phase (or component) velocities
relative to the mixture average. As a result, the governing equa-
tions of multiple-fluid flow are retained similar to the single-phase
flow, even for mixtures consisting of arbitrary number of phases
or components. This SPH multiple-fluid simulation method has the
following properties:

Versatile Mathematical Model The mathematical model is aimed
to simultaneously capture a whole range of multiple-fluid phe-
nomena including mixing and unmixing effects between misci-
ble and immiscible phases or components, diffusion effects and
chemical reaction etc. The model should also enable flexible in-
clusion/exclusion of different mixing/unmixing phenomena and
multi-physics interactions.

Robust Numerical Scheme The numerical simulation scheme is
aimed to be robust and stable under widely-varying parame-
ter settings for animators and game designers without requiring
them to understand computational fluid dynamics (CFD).

Practical Implementation The new method is designed to be easy
to implement as an extension to existing single-phase fluid sim-
ulators, without adding high computational cost. The simulation
of multiple-fluid flow should be simple and intuitive to set up,
and should not require excessive parameter tuning.

The rest of the paper is organized as follows. The related work
is reviewed in §2, where we also further discuss the relation and
difference between our work and previous research. In §3, we in-
troduce the mixture model of multiple-fluid flow, and how we im-
prove it to better suit for graphics applications. Based on the mix-
ture model, a novel SPH simulation scheme is presented in §4,
after which implementation details are given in §5. A number of
multiple-fluid flow examples are illustrated in §6, which include
mixing of miscible and immiscible liquids, unmixing due to cen-
trifugal force, chemical reaction and phase transition etc.

2. PREVIOUS WORK

In computer graphics, multiple-fluid simulation has received in-
creasing attention in the past decade. Most notably, interfacial flows
have been extensively studied. Following the Lagrangian approach,
[Premoze et al. 2003] presented the Moving-Particle Semi-Implicit
(MPS) method to simulate immiscible fluids, and [Solenthaler and
Pajarola 2008] employed an improved SPH scheme to deal with
high-density contrast between immiscible fluids. Much more work-
s have been done using grid-based fluid solvers, including gas
bubbles in liquid [Kim et al. 2007; Hong et al. 2008; Busaryev
et al. 2012] and interacting fluids [Hong and Kim 2005; Losas-
so et al. 2006; Kim 2010; Boyd and Bridson 2012; Misztal et al.
2012]. Continuously tracking the interfaces between different phas-
es or components is essential for interfacial flow simulations. Many
of these interface tracking techniques are related to the level-set
method and the volume-of-fluid method (see e.g. [Hong and Kim
2005; Mihalef et al. 2006; Losasso et al. 2006; Kim 2010; Boyd
and Bridson 2012]), while the finite element method has also been
used recently to directly capture the interface with a moving mesh
[Misztal et al. 2012].

For multiple-fluid systems involving miscible fluids, the concept
of volume fraction was first introduced into the graphics communi-
ty by [Müller et al. 2005] to represent the spatial distribution of dif-
ferent phases or components. Both grid-based solvers [Kang et al.
2010; Bao et al. 2010] and the SPH solver [Liu et al. 2011] have
been coupled with the volume fraction representation to simulate
multiple-fluid flows. All of these works assumed different phases
or components move at the same bulk velocity as the mixture and
mixing is only caused by the diffusion effect due to concentration
difference. Doing so completely ignores the mixing and unmixing
effects in multiple-fluid that are primarily driven by flow motions
and force distributions. At the cost of increased memory require-
ment, the Lattice Boltzmann Method (LBM) has also been adapt-
ed to deal with multiple-fluid flows without clear interfaces [Zhu
et al. 2006; Park et al. 2008]. Recently, [Nielsen and Osterby 2013]
adapted a two-phase flow model to simulate water spray. In contrast
to earlier works, our volume-fraction based SPH formulation, while
easy to implement, can faithfully capture complex mixing and un-
mixing phenomena due to relative motions, turbulent interactions,
and varying force distribution among multiple fluids.

The following is also relevant to this work in the general con-
text of multiple-fluid phenomena: [Mullen et al. 2007] presented
a Eulerian geometry processing technique that can mimic certain
effects of miscible fluids. [Cleary et al. 2007] presented a parti-
cle based method to generate realistic visual effects of bubbles.
[Kim et al. 2010] modeled the dispersed bubble flow using a con-
tinuous fraction field. [Ihm et al. 2004; Kang et al. 2007] consid-
ered flow phenomena coupled with chemical reactions using mo-
lar concentration description to simulate gaseous chemical kinetic-
s. [Keiser et al. 2005; Solenthaler et al. 2007] addressed the visual
effects of melting and solidification. [Ando and Tsuruno 2010] de-
scribed the simulation of 2D multi-phase flows using vector graphs.
[Kim et al. 2012] used SPH particles in grid-based liquid simula-
tion to control bubble shapes. [Ihmsen et al. 2012] proposed a post-
processing method to add spray, foam and air bubbles to particle-
based fluids. Other than simulation, [Gregson et al. 2012] intro-
duced a 3D-imaging method based on stochastic tomography to
capture real-world liquid mixing and dye immersion. Their results
captured from real-world fluids can have much higher resolutions
than graphics simulation, but application of such methods may be
limited by its inflexibility in scene construction and tuning.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



• 3

Table I. Definition of symbols.

Symbol Meaning

αk volume fraction of phase k

ck mass fraction of phase k

ρk ,ρm rest density of phase k and the mixture

uk ,um velocity of phase k and the mixture

pk ,pm pressure acting on phase k and the mixture

Tk ,Tm stress tensor on phase k and the mixture

umk drift velocity

g gravity

ρmj ,mj rest density and rest mass of particle j

ρj interpolated density of particle j

W (r, h) smoothing kernel function

∇Wij short for ∇iW (ri − rj , h)
αki, αkj αk value of the i-th, j-th particle

umi,umj um value of the i-th, j-th particle

umki,umkj umk value of the i-th, j-th particle

ri, rj position of the i-th, j-th particle

µk viscosity of phase k

µi, µj aggregate viscosity of particles i,j

κ, τ, σ constant coefficients

Multiple-fluid flows have been extensively studied in the con-
text of computational fluid dynamics (CFD) for several decades,
primarily driven by oil & gas, chemical engineering and nuclear
power industries. Most commercial CFD packages for multiphase
or multicomponent flows are based on grid-based fluid solvers,
while more recently the SPH approach has been applied to simu-
late interfacial flows [Colagrossi and Landrini 2003; Hu and Adams
2006; Monaghan and Rafiee 2013]. Various mathematical models
have been developed to quantitatively describe multiple-fluid flows
[Kolev 2005; Yeoh and Tu 2009; Crowe et al. 2011], mainly includ-
ing the homogeneous model, the mixture model and the full mul-
tiphase model. We introduce the concept of “drift velocity” from
the grid-based mixture model and adapt it for SPH formulations by
incorporating appropriate pressure relationship and modifications,
thereby achieving stable and efficient SPH multiple-fluid simula-
tion.

3. THE MIXTURE MODEL OF MULTIPLE-FLUID

FLOW

In this section we briefly recap the mixture model [Manninen et al.
1996; Yeoh and Tu 2009], the most widely used mathematical mod-
el in engineering for grid-based multiple-fluid flows. §3.1 summa-
rizes the governing equations of the mixture model, and §3.2 de-
scribes the drift velocity required in the model. Later in §4, we de-
scribe how we extend this mixture model using SPH formulations
to more efficiently support visual applications. For simplicity, indi-
vidual phases or components in a multiple-fluid flow are uniformly
referred to as phases for the rest of the paper.

3.1 Governing Equations

In the mathematical theory of multiple-fluid flow, the presence of a
phase k is represented by its own volume fraction αk (the relative
fraction of an infinitesimal volume it occupies) and velocity uk,
and the continuity and momentum equations for each phase k are:

∂

∂t
(αkρk) +∇ · (αkρkuk) = 0 (1)

∂

∂t
(αkρkuk)+∇·(αkρkukuk) = αkρkg−αk∇pk+∇·(αkTk)+Fk

(2)

where ρk is the rest density of phase k (assumed as constant), pk the
pressure, g the external body forces such as gravity, Tk the viscous
stress tensor, and Fk the interfacial momentum source. The above
equations are similar to that of the single-phase flow, except for
the last term in Eqn.(2). The term Fk accounts for the interactions
between phases, such as drag and frictional forces. In the graphic-
s community, the multiple-fluid flow model defined in Eqns.(1,2)
was recently adopted by [Nielsen and Osterby 2013] in the case of
a two-phase flow to simulate water spray. The volume fractions αk

are bounded between 0 and 1, and they must add up to 1:
∑

k
αk = 1, αk ≥ 0. (3)

The continuity and momentum equations for the mixture follow
from Eqns.(1,2) by summing over the phases:

∂

∂t
ρm +∇ · (ρmum) = 0 (4)

∂

∂t
(ρmum)+∇·(ρmumum) = −∇pm+ρmg+∇·Tm+∇·TDm

(5)
where ρm =

∑
k
αkρk is the mixture density, um =

1

ρm

∑
k
αkρkuk is the mixture velocity (i.e. the velocity at the

mass center), the mixture’s pressure pm is defined by the rela-
tion ∇pm =

∑
k
αk∇pk, the mixture’s viscous stress tensor Tm

is defined to satisfy ∇ · Tm =
∑

k
∇ · (αkTk), and the term

TDm = −
∑

k
αkρkumkumk is derived from the left hand side

of the momentum equation, representing the convective momentum
transfer between phases. Here, the drift velocity umk is defined as

umk = uk − um. (6)

The drift velocity umk denotes the velocity of phase k relative to
the centre of the mixture mass. The interaction forces Fk do not
appear explicitly in the momentum equation (5) because they are
canceled when summing over all phases. Using a simple case with
3 phases of unit density (i.e. ρk = 1 for all three phases), Fig.1
illustrates the concepts and relationships of the multiple-fluid vari-
ables.

Substituting Eqn.(6) into Eqn.(1), the phase velocity uk can be
eliminated from the continuity equation of phase k:

∂αk

∂t
+ (um · ∇)αk = −αk∇ · um −∇ · (αkumk). (7)

Substituting Eqn.(4) into Eqn.(5), the momentum equation of mix-
ture can be reorganized as:

∂

∂t
um+(um ·∇)um = −∇pm

ρm
+g+

∇ ·Tm

ρm
+

∇ ·TDm

ρm
. (8)

Defined in Eqns.(7,8) are the governing equations of the mixture
model for multiple-fluid flows. Here, the spatial distribution of each
phase k is fully represented by its volume fraction αk, hence it is
not necessary to track the interfaces between different phases.

3.2 Drift Velocity

It is clear from Eqn.(7) that the nonuniform distribution of velocity
fields will lead to changes in the volume fraction of each phase. In
a multiple-fluid flow, this motion-induced mixing effect is quite in-
tuitive: different phases move at different velocities in the mixture,
and their discrepant motions will naturally result in relative mass
migration. The drift velocities umk play a key role in this inter-
action mechanism responsible for various miscible and immiscible
phenomena.
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Fig. 1. Suppose a mixture has three phases with unit density, the multiple-

fluid variables are illustrated above. (a) Volume fraction αk , and relation-

ship between the phase velocities uk and the mixture velocity um. (b) Ob-

taining drift velocities umk from uk and um. (c) Drift velocities umk .

Based on the assumption of local equilibrium and appropri-
ate drag force approximations, the drift velocities umk defined in
Eqn.(6) can be solved analytically, for which the rigorous mathe-
matical derivation can be found in [Manninen et al. 1996]. For sim-
plicity, the analytical expression of drift velocities is directly given
below:

umk = τ(ρk −
∑

k′ ck′ρk′)a− τ(∇pk −
∑

k′ ck′∇pk′)

−σ(∇αk

αk
−
∑

k′ ck′
∇αk′
αk′

) (9)

where τ and σ are user-defined constant coefficients to be discussed
later, ck = αkρk

ρm
is the mass fraction of the k-th component. The

acceleration a is

a = g − (um · ∇)um − ∂um

∂t
, (10)

which denotes the difference between the gravity acceleration and
the substantial derivative of the mixture velocity.

To compute the drift velocities following Eqn.(9), the relation be-
tween the phase pressure pk and the mixture pressure pm must also
be provided. The standard mixture model mainly deals with im-
miscible fluids and the following pressure relation has been widely
adopted:

pk = pm. (11)

For immiscible fluids, the phase pressure pk is identical to the mix-
ture pressure pm such that the second term in Eqn.(9) vanishes.
The intuitive explanation of it is for immiscible fluids where pres-
sure equilibrium is established between phases, the uniform pres-
sure shared with the mixture does not cause the immiscible phas-
es to move into each other. To cope with totally miscible fluids in
graphics applications, we extend the standard mixture model by in-
corporating the following pressure relation [Kolev 2005]:

pk = αkpm. (12)

For miscible fluids, phase pressures pk differ from each other de-
pendent on their volume fractions, thus miscible phases are accel-
erated within the mixture mass to move into each other.

Determined in Eqn.(9), the drift velocity umk contains three
terms. The first term accounts for the inertia effect, and in particular

the velocity differences caused by body forces are modeled by this
term. The second term accounts for the pressure effect, i.e. with-
in the mixture mass a phase accelerates in the direction from high
pressure to low pressure. The third term accounts for the diffusion
effect, i.e. a phase tends to move from more concentrated region-
s to less concentrated regions. The constant coefficients τ and σ
are essentially the strength factors of these fluid-dynamics effects.
Specifically, higher τ values will cause stronger inertia and pres-
sure effects (thus faster unmixing and mixing speeds due to these
two effects), higher σ values will cause stronger diffusion effect
(thus faster mixing speed due to the diffusive effect), and vice ver-
sa. In our work τ varies between 10−8 and 10−6, and σ is around
10−4 to 10−3. Further discussions of these three multiphase trans-
portation effects are provided in §5.3.

Once the drift velocities umk are determined following Eqn.(9),
the solution of the governing Eqns.(7,8) is reduced to solving for
the mixture velocity um (instead of all phase velocities uk) and
phase volume fractions αk. This significantly reduces the compu-
tational cost of solving multiple-fluid flows. Owing to the high effi-
ciency and versatility of the mixture model, it is widely adopted in
commercial CFD packages for multiple-fluid flows, including Eu-
lerian fluid solvers ANSYS CFX and FLUENT.

4. SPH FORMULATION

In contrast to grid-based formulations presented in [Manninen et al.
1996], we use SPH particles to discretize the multiple-fluid system
such that the SPH particles carry the mixture mass and move at
the mixture velocity um. These mixture particles also carry all the
physical quantities associated with individual phases.

In the governing equations of the mixture model Eqn.(7,8), the
left-hand-side of Eqn.(8) denotes the substantial derivative of the
mixture velocity um, while the left-hand-side of Eqn.(7) represents
the substantial derivative of the volume fraction of phase k, also
with respect to the mixture velocity um. In addition, it is noted that
after the drift velocities umk is computed following the analytical
solution in Eqn.(9), the solutions to Eqn.(7) and Eqn.(8) can be
decoupled if an explicit time-integration scheme is adopted. These
favorable Lagrangian properties of the mixture model fit nicely to
the SPH approach.

In this section we provide the SPH formulation of the govern-
ing equations Eqns.(7,8), for which we start from the drift velocity
solution in Eqn.(9). For each mixture particle i:

(∇pk)i =
∑

j

mj

ρ̄j
(pkj − pki)∇Wij (13)

(∇αk)i =
∑

j

mj

ρ̄j
(αkj − αki)∇Wij (14)

where the summation is performed over all neighborhood particles
j, ∇Wij = ∇iW (ri − rj , h) is the gradient of the smoothing k-
ernel function with support h. Adopting the formulation in [Müller
et al. 2003], we use the poly6 kernel for density interpolation, and
the spiky kernel for all other calculations involving derivative of
the smoothing kernel function. In Eqns.(13,14) and all equations
thereafter, mj and ρ̄j in the summation over particles j represent
the mass and interpolated density of the mixture particle j, respec-
tively. Eqns.(13,14) are standard symmetric SPH formulations for
gradient terms of scalars. Using the ∇pk and ∇αk expressions, the
drift velocity umk can be computed from Eqn.(9).

Then we examine Eqns.(7,8). Firstly, for Eqn.(7), it should be
noted that we cannot assume ∇ · um = 0 here. For multiple-fluid
flows, volume fractions αk change both over time and over space,
and phase velocities uk also differ from each other. Therefore, nei-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



• 5

ther the divergence of the mixture velocity nor that of the phase
velocity is zero, even when all phases are incompressible. To de-
scribe the continuity of multiple-fluid flows we must refer to the
fundamental mass conservation law in Eqn.(1).

For each mixture particle i, directly applying the SPH approxi-
mation rule to the right-hand-side terms in Eqn.(7) yields:

(αk∇ · um)i = αki

∑
j

mj

ρ̄j
umj · ∇Wij (15)

(∇ · (αkumk))i =
∑

j

mj

ρ̄j
αkjumkj · ∇Wij (16)

However, the above SPH approximations are not symmetric and do
not lead to stable simulation. Based on previous SPH stabilization
techniques, we modify them and propose to use the following sym-
metric formulations (See Appendix A for derivation):

(αk∇ · um)i =
∑

j

mj

ρ̄j

αkj + αki

2
(umj − umi) · ∇Wij (17)

(∇· (αkumk))i =
∑

j

mj

ρ̄j
(αkjumkj +αkiumki) ·∇Wij (18)

Intuitively, Eqn.(17) reflects the change of volume fraction due to
the aggregate motion of the mixture, i.e. relative motion of the mix-
ture particles, and Eqn.(18) reflects the change of volume fraction
due to the discrepancy between phase velocities, i.e. the difference
of drift fluxes αkumk between particles.

Secondly we examine the last term in Eqn.(8). It represents the
convective momentum change due to the drift velocities. We direct-
ly list below its symmetric formulation, and provide the detailed
derivation in Appendix A:

(∇ ·TDm)i = −
∑

j

mj

ρ̄j

∑
k
[ρk(αkjumkj(umkj · ∇Wij)

+αkiumki(umki · ∇Wij))] (19)

Finally, we deal with the rest terms in Eqn.(8). These terms are
similar to those of the single-phase flow, and hence their treatments
are essentially no different to the single-phase SPH formulation.
The pressure gradient in Eqn.(8) can be expressed by

(∇pm)i =
∑

j
mj

pmi + pmj

2 ρ̄j
∇Wij . (20)

The formulation proposed in [Cleary 1996; González et al. 2009]
is adopted to compute the divergence of viscosity tensor:

(∇ ·Tm)i =
∑

j

mj

ρ̄j
(µi + µj)(umj − umi)

(rj − ri) · ∇Wij

(rj − ri)2

(21)
where µj =

∑
k
αkjµk is the aggregate viscosity of particle j.

This formulation is obtained from the integral representation of sec-
ond order derivatives of the viscosity term.

Defined in Eqns.(7,8), the governing equations of the mixture
model share a similar format as the single-phase flow, with the in-
clusion of the drift velocity term. This similarity allows us to easi-
ly apply the state-of-the-art techniques developed for single-phase
flow. For the calculation ρ̄i, the interpolated density of the mixture
particles, the standard SPH formulation is:

ρ̄i =
∑

j
mj∇Wij . (22)

Recently, [Solenthaler and Pajarola 2008] proposed to use a modi-
fied density calculation method for immiscible multiple-fluid sim-
ulations with high density ratio. Their method changes the density

interpolation equation to

ρ̄i =
∑

j
mi∇Wij , (23)

and then substitutes it into the standard formulation to achieve de-
sired simulation results. Both Eqn.(22) and Eqn.(23) can be used in
our SPH framework. In our experiments, for miscible fluid simula-
tions featuring smooth changes of particle rest densities and with-
out interfaces, the standard approach produces better results, espe-
cially in cases with relatively low density contrast ratios.

In SPH simulations, the pressure value of each particle is related
to the interpolated particle density through the equation of state. In
the standard SPH scheme, the following linear relation is adopted:

pmi = κ(ρ̄i − ρmi) (24)

where κ is the gas constant. In more recent simulation method-
s, such as the Weakly Compressible SPH (WCSPH) [Becker and
Teschner 2007], the Tait equation is usually adopted to enhance in-
compressibility of the fluid appearance:

pmi =
κρmi

γ
((

ρ̄i
ρmi

)γ − 1) (25)

where γ = 7. Compared to the standard approach, the Tait equation
effectively results in much higher pressure changes with the same
amount of density variation. Again both state equations can be used
in our approach, to remain compatible with the standard simulation
method and the WCSPH scheme.

5. IMPLEMENTATION

This section further explains the implementation issues for the
SPH formulation of multiple-fluid flows, after which the algorithm
framework is summarized.

5.1 Volume Fraction Correction

The bound of αk described in Eqn.(3) is not automatically satisfied
when solving Eqn.(7). It is necessary to introduce a correction step
after advancing the volume fraction:

(1) If αk < 0, set αk = 0;

(2) Re-scale αk values for all components such that
∑

k
αk = 1.

In order to ensure equilibrium after correcting the volume frac-
tion, it is also necessary to perform a pressure adjustment for all
phases. Intuitively, the occupance of a volume fraction exceeding
one (i.e. αk > 1) means that in the current time step, the flux of the
k-th phase entering the mixture particle is larger than allowed and
the fluid is over-compressed. However, if the time step is set suf-
ficiently small, the pressure computed from the particle density as
Eqn.(24) or Eqn.(25) will raise and sequentially stop the k-th phase
from entering the mixture particle, so that the αk value remains be-
low one. Hence, the adjustment of αk value at the next time step
should relate to a pressure-adjustment for the current time step as
well.

For a quantitative formulation, we should calculate the deriva-
tive of pressure with respect to volume fraction. Eqn.(24) can be
rewritten as:

pmi = κ(
∑

j
mjWij −

∑
k
αkiρk). (26)

The derivative of pressure with respect to volume fraction is

∂pmi

∂αki

= −κρk, (27)
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and this leads to the following relation that links the change of vol-
ume fraction to the change of pressure

∆pmi =
∑

k
−κρk∆αki. (28)

Similarly, for the Tait equation in WCSPH approach, taking the
partial derivative of Eqn.(25) over αki yields

∂pmi

∂αki

= −κρk
γ

((γ − 1)(
ρ̄i
ρmi

)γ + 1), (29)

which gives a different form of pressure adjustment:

∆pmi =
∑

k
−κρk

γ
((γ − 1)(

ρ̄i
ρmi

)γ + 1)∆αki. (30)

The minus sign in Eqn.(28,30) assures correct direction of ad-
justment. The adjusted pressure is then given by

p̃mi = pmi +∆pmi. (31)

We then use the adjusted pressure p̃mi for gradient calculation in
Eqn.(20).

The purpose of the above correction step is to ensure Eqn.(3)
holds in line with the underlying physics. There may be other more
sophisticated correction approaches, however in practice we found
simulations with the proposed correction steps give good results
while keeping physical meaningfulness required by Eqn.(3).

5.2 Chemical Reaction

One advantage of combining the volume fraction representation
with the SPH representation is the convenience of being able to
deal with chemical reactions between phases by simply adding an
in-particle re-balance step at the end of each simulation loop. For
illustration, a simple case of reactants A and B reacting to produce
resultant C is considered here. For all particles carrying both phases
A and B, the mass of A and B are decreased by a controlled amount
at the end of each simulation loop, and at the same time the mass
of C is accordingly re-balanced. That is:

∆(mC) = −∆(mA)−∆(mB) = −∆(αA)ρAV −∆(αB)ρBV,
(32)

where V is the volume of the mixture particle before reaction. At
each time step, the amount of reactants ∆αA and ∆αB is set pro-
portionally to the volume fractions of both source phases. Specif-
ically, for the reaction xA + yB = zC, the reactants are set as
∆αA = xCrαAαB and ∆αB = yCrαAαB , where Cr is a coeffi-
cient controlling the reaction speed. We also ensure that the reacted
amount of reactants does not exceed the current volume fraction
value of each phase. This chemical re-balance procedure can also
involve total rest volume change to the mixture particle. Since the
new phase masses are known, the new volume fraction value of
each phase within the mixture particle is recalculated after the re-
balancing, as well as the aggregate rest density of the mixture parti-
cle. The momentum is automatically preserved, since both particle
mass and aggregate velocity of the mixture particle are not affected.

5.3 Mixing and Unmixing of Immiscible and Miscible

Fluids

Uniform Particle Description Various mixing and unmixing ef-
fects are captured by the drift velocity solved in Eqn.(9). For im-
miscible fluids, the second term in Eqn.(9) automatically vanishes
by setting pk = pm, and the inertia effect modeled by the first term
will separate different phases as the mixture flows. Note that this

does not mean immiscible fluids will always have a sharp inter-
face between phases, since in reality even immiscible phases can
get temporarily mixed in a vibrantly flowing mixture, e.g. in the
form of dispersed phases in a suspension. Such temporary mix-
ing of vibrant immiscible fluids is not an artificial smoothing and
it is the natural reflection of the real world, where sharp inter-
faces will begin to appear once the flow motion is no longer vi-
olent. The inertia term provides an unmixing mechanism for the
multiple-fluid flow. For miscible fluids, the second term in Eqn.(9)
is nonzero, and the pressure effect will work against the unmixing
trend caused by the inertia effect and keep the phases mixed. This
pressure-driven mixing mechanism should not be confused with d-
iffusion, which is modeled separately by the third term in Eqn.(9).
The diffusion effect is purely driven by concentration difference,
and it will monotonously eliminate any volume fraction difference
across the space. The mixing caused by the pressure effect is, how-
ever, related to the flow motion. In particular, when the flow motion
stops, the inertia term and the pressure term cancel to each other,
which sequentially terminates the pressure-driven mixing. Under
this framework, purely immiscible fluids are simulated by setting
the pressure relation pk = pm, and purely miscible fluids are sim-
ulated by setting pk = αkpm.

Particle Labeling Approach Our approach can also treat the
miscible/immiscible behaviors in a slightly different manner, when
dealing with a simulation which contains groups of phases that are
miscible within the same group but are immiscible between differ-
ent groups, or when it is desired to forbid volume fraction transfer
between different groups that are immiscible to each other. In such
cases, the traditional assumption that immiscible phases cannot ex-
ist together within a mixture particle is used, and the particles are
labeled into different “miscible groups”. The calculation of related
terms will then be limited to particles within the same group. That
is, in the calculation of Eqns.(17,18), the summation should only
be performed for the set of particles j that are in the same miscible
group as the current particle i, eliminating the volume fraction tran-
sition between different groups; and in the calculation of Eqn.(19),
the summation should also be limited to the set of particles j that
are in the same miscible group as the current particle i, eliminating
the momentum transition due to volume fraction transition between
different groups. If desired, one can also use Eqn.(22) within the
same miscible group and use Eqn.(23) between particles in differ-
ent groups.

5.4 Algorithm Framework

The multiple-fluid system is represented by a set of mixture
particles, and each mixture particle i carries aggregate values
(mi,ρmi,um,µi) and component-wise values (αki). During each
simulation loop, the SPH simulator sequentially performs the fol-
lowing tasks:

(1) Compute the drift velocity of each phase according to Eqn.(9)
using pk calculated from Eqn.(11) or Eqn.(12). The SPH for-
mulation of the gradient terms are given in Eqns.(13,14). The
diffusion effect can be switched on by assigning a positive val-
ue to the constant σ, and off by setting σ to zero.

(2) Advect volume fraction values according to Eqn.(7), where the
relevant SPH formulations are given in Eqns.(17,18).

(3) Check the bound of volume fraction according to Eqn.(3), and
if the bound is invalidated, correct the volume fraction within
the particle and calculate the pressure adjustment accordingly
as described in §5.1. For particles with corrected volume frac-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



• 7

tion, update into the pressure term the pressure adjustment as
Eqn.(31).

(4) Calculate acceleration of the mixture particle according to
Eqn.(8). SPH formulations of the related terms are provided
in Eqns.(19,20,21).

(5) Advect mixture particles using their accelerations and veloci-
ties.

(6) In the event of chemical reaction, re-balance the phase mass
within each involved particle as in Eqn.(32), and recalculate
the volume faction value of each phase, as well as the aggregate
rest density.

Essentially, this algorithm framework is very similar to
that of the single-phase fluid simulation. The main difference
is that multiple-fluid simulation involves volume fraction ad-
vance/correction, and a new term on the right-hand-side of the gov-
erning equations requires the drift velocities to be calculated in ad-
vance, which is given in an analytical form. The runtime of each
step depends on the number of particles and the number of phases,
which we’ll discuss in detail in §6.1.

5.5 Time Stepping

The Courant-Friedrichs-Lewy (CFL) condition is adopted for de-
termining the time step. Similar to [Monaghan 1992; Desbrun and
paule Gascuel 1996; Becker and Teschner 2007], the time step is
controlled by:

∆t = min{min
i

(
0.25h

|fi|
),

0.4h

cs + 0.6(cs + 2 ·maxi µi)
} (33)

where fi denotes external forces acting on the mixture particle,
and cs is the sound speed denoting the maximum possible parti-
cle speed in the fluid motion, which is related to the gas constant
κ in the equations of state and has cs ∝ √

κ. Simply speaking, the
CFL condition requires that a particle should not travel more than
a certain fraction of its smoothing radius in one time step, and in
[Desbrun and paule Gascuel 1996; Dagenais et al. 2012] the time
step can be bounded using ∆t = 0.3h

|maxi umi | , which is a simpler

form of the second term in Eqn.(33).
In multiple-fluid simulation, the drift velocity also add a con-

straint to the time step following the CFL condition:

∆t =
0.3h

|maxi(maxk umki)|
. (34)

Then we choose the smaller ∆t computed from Eqns.(33-34) as
the upper bound of time steps. The examples in §6 typically run
at time steps around 10−3 second. The viscous armadillo example
runs at time steps around 10−5 second because its large viscosity
dominates the calculation of time step.

6. PERFORMANCE AND RESULTS

6.1 Performance Analysis

GPU parallelization of standard SPH simulators is quite straight-
forward. A simple scheme uses a uniform grid structure to simplify
and accelerate the neighbor search in GPU. At the start of each time
step, SPH particles are assigned into the grid structure and sorted
based on their positions, and the neighbor search only needs to con-
sider particles in adjacent grids afterwards, which can be continu-
ously traversed in the sorted order. Then all computational tasks
can be parallelly executed over the particles. The GPU implemen-
tation of the mixture model follows exactly the same procedure.

Table II. Performance

Example Name Phase Number Particle Number average time(second/step)

Dam-breaking 3 344,000 0.477

Armadillo 2 313,000 0.339

Reacting Swirl 4 198,000-418,000 0.247-0.579

Unmixing 4 231,000 0.376

Vaporization 4 402,000 0.382

Rainbow Wave 8 756,000 1.889

The proposed SPH multiple-fluid simulator has been implemented
using CUDA 5, each step described in §5.4 is executed by a CU-
DA kernel function which parallels the computing task over each
fluid particle. All the variables including property values (e.g. ag-
gregate velocity) and intermediate values (e.g. drift velocity of each
phase) related to each particle are stored and updated in the graphi-
cal memory during the simulation loops in order to minimize CPU-
GPU communication.

The computational efficiency is mainly determined by the num-
ber of mixture particles and the number of phases adopted in the
simulation. Typically, for a three-phase flow simulated by using
344,000 mixture particles, the simulation runs at 0.477 second per
time-step on a NVIDIA GeForce GTX 680 4GB GPU. We analyze
runtime under different particle numbers and phase numbers, and
the performance is shown in Fig.2. The runtime of each step is lin-
ear to the total particle number, and given fixed particle number, the
runtime is sublinear to the number of phases, i.e. each extra phase
will increase the runtime by approximately 50% of the single-phase
runtime. The performance data of examples in the paper are provid-
ed in Table II.
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Fig. 2. Performance under different particle numbers and phase numbers.

Results are separated into two sub-diagrams to avoid over-compression in

the vertical axis. The runtime of each step is linear to the total particle num-

ber, and given fixed particle number, the runtime is sublinear to the num-

ber of phases. (a) blue: 48,000 particles; red: 239,000 particles; (b) blue:

476,000 particles; red: 2,368,000 particles.

6.2 Results

Using a triple dam-breaking set up, Example 1 (Fig.3) demon-
strates the new method’s capacity in capturing realistic phase-
interacting effects with different combinations of miscible and im-
miscible fluids. The density ratio between the three phases is set as
Red:Green:Blue = 1:2:3. In Fig.3(a), all three phases are immisci-
ble with each other; in Fig.3(b), all three phases are miscible with
each other and the diffusion effect is disabled; in Fig.3(c), all three
phases are miscible with each other and the diffusion effect is en-
abled; in Fig.3(d), the red and green phases are miscible with each
other, but they are immiscible with the blue phase. Our approach
successfully simulates mixing and unmixing effects in all these cir-
cumstances. As shown in Fig.3(a), the immiscible phases are clear-
ly separated into three layers. At the end of the simulation the im-
miscible phases are fully separated, and the volume fraction pene-
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Fig. 3. Three-phase liquid dam breaking (red, green and blue). (a) All three phases are immiscible with each other and they get separated into three layers

with clear interfaces. (b) All three phases are miscible with other, and with the diffusion effect disabled they get mixed due to interaction between phases. (c)

All three phases are miscible with each other, and with the diffusion effect enabled they get mixed more uniformly. (d) The red and blue phases are miscible

with each other, but are both immiscible with the blue phase.

trations in mixture particles near either side of the sharp color in-
terfaces are negligible. For the miscible fluids shown in Figs.3(b,c),
the mixing effects look smooth and natural and due to the inclusion
of the diffusion effect, the final result in Fig.3(c) is mixed more uni-
formly than that in Fig.3(b). The simulations in Figs.3(a,b,c) adopt
the uniform particle description as explained in §5.3, while the sim-
ulation in Fig.3(d) adopts the particle labeling approach to simulate
miscible and immiscible phases interacting with each other simul-
taneously. For all other examples in this paper we have used the
uniform particle description in the simulation.

Fig. 4. Viscous armadillo. Shown in the top row, a red armadillo formed

by a highly viscous phase (1000x viscosity and 2x density) drops into a con-

tainer filled by a transparent phase (1x viscosity, 1x density and immiscible

with the red phase); the red armadillo deforms in a highly viscous manner

and does not get diluted. Shown in the bottom row, after the red armadil-

lo’s settlement at the bottom of the container, the red phase is reset to 1x

viscosity, 0.5x density and miscible to the transparent phase, which then

undergoes volume expansion and rises up rapidly and a vibrant mixing is

observed during the two-phase interaction.

Example 2 (Fig.4) simulates a two-phase flow with high viscos-
ity contrast. The red armadillo formed by a highly viscous phase
(1000x viscosity and 2x density) drops into a rectangular container
filled by a transparent phase (1x viscosity, 1x density and immisci-
ble with the red phase). The mixture flow is shown in the top row
of Fig.4, where the red armadillo deforms in a highly viscous man-
ner and does not get diluted by the transparent phase. This example

shows our method can cope with very high viscosity contrast and
still achieve realistic and stable multiple-fluid simulations. Then,
after the red armadillo has settled at the bottom of the container,
the red phase is reset to 1x viscosity, 0.5x density and miscible with
the transparent phase. The mixture flow is shown in the bottom row
of Fig.4, where the now lighter red phase undergoes volume expan-
sion and rises up rapidly and it soon gets diluted into the transparent
phase. In both stages, the diffusion effect has been disabled.

In Example 3 (Fig.5), red and green liquids are injected into a
cylindrical container filled with transparent liquid solvent. As the
red and green liquids are injected from opposite sides of the con-
tainer, they drive the liquid mixture to swirl. During mixing, red
and green phases react to produce a blue liquid. All four phases
(red, green, transparent and blue) are miscible with each other. In
the top row is the simulation result using our approach with the d-
iffusion effect disabled. The center of the container largely remains
occupied by the transparent solvent during the swirling motion, re-
sulting in a rotating and dynamically-evolving S-shape, while the
whole scene containing vigorous mixing and chemical reaction si-
multaneously. The previous multi-fluid approach (e.g. [Kang et al.
2010; Bao et al. 2010; Liu et al. 2011]) considers Brownian diffu-
sion only. In such approaches the mixing between different phas-
es and thus the chemical reaction purely relies on the existence of
Brownian diffusion. Due to the physical nature of Brownian diffu-
sion, it will gradually eliminate the polytropic color variations in
multiple-fluid flows, leading to an undesired homogeneous appear-
ance. In the bottom row we show the simulation result of previous
multifluid approach, where the polytropic color variations gradu-
ally turn into a homogeneous appearance. It is clear in this ex-
ample that our approach is able to avoid the undesired variation-
eliminating effect and the homogeneous appearance due to Brow-
nian diffusion, while simultaneously keeping vigorous mixing and
reaction featuring polytropic colors throughout the whole simula-
tion.

Example 4 (Fig.6) demonstrates an unmixing process taking
place in a disk-shape container, which has a spinning turbine in-
stalled at its centre. The container is filled with four immiscible
phases, with the density ratio Red:Yellow:Green:Blue = 1:1.5:2.5:3,
and the mixture occupies about 3/4 of the volume. Initially, the four
phases are set at a “fully mixed” state resulting in a greyish col-
or, and they are unmixed due to the centrifugal effect during spin-
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Fig. 5. Reacting swirl. Red and green liquids are injected from opposite sides into the container filled with transparent solvent, causing the mixture to swirl.

Upon meeting, the red and green liquids react to produce a blue liquid. All four phases are miscible with each other. Top row: Our method, with the diffusion

effect disabled, forms a rotating and dynamically-evolving S-symbol at the centre of the container, while the whole scene containing vigorous mixing and

chemical reaction simultaneously. Bottom row: Using only Brownian diffusion to simulate mixing ([Kang et al. 2010; Bao et al. 2010; Liu et al. 2011]) results

in a homogeneous appearance.

Fig. 6. Unmixing. Four immiscible liquids (red, yellow, green and blue)

are artificially set to a “fully mixed” state in a circular container with a

rotating turbine at the centre, and during spinning they get “fully separated”

due to the centrifugal effect. Top: perspective view. Bottom: top view.

ning, resulting in a colorful ring-shape pattern. The top row in Fig.6
shows a perspective view of this unmixing process, and the bottom
row shows the top view. The gravity force is not considered in this
example. This unmixing effect cannot be captured by multiple-fluid
simulations where only the diffusion effect is modeled, and also it
is hard to achieve through the interfacial-flow simulation approach.

Example 5 (Fig.7) simulates a four-phase vaporization process
with high density contrast. A dome is filled with transparent air,
and two liquids (red and green) are injected into the dome from two
magic sources. The red and green liquids meet at the centre of the
floor, and react to produce a vapor phase, which rises up towards the
ceiling. In this example, all four phases are immiscible with each
other, and their density ratio is Red liquid:Green liquid:Transparent
air:Vapor phase = 1000:1000:2:1. Under high density contrast, the
vaporization process is successfully simulated.

In Example 6 (Fig.8), a tank with a movable wall on the left is
filled with transparent liquid. To the left of the tank, there are four
“reacting regions” marked in red, yellow, blue and purple. Upon
entering these reacting regions, the transparent liquid reacts to pro-
duce a new liquid with the color of the region. The wall on the
left moves back and forth periodically to drive the liquid mixture
to flow in the tank. Three more chemical reactions are introduced:
the red liquid reacting with the yellow liquid to produce an orange
liquid, the yellow liquid reacting with the blue liquid to produce a

Fig. 7. Vaporization. The dome is filled with transparent air, and from two

magic sources red and green liquids are injected into the dome. The two

liquids meet at the centre of the floor and react to produce a vapor phase,

which rises towards the ceiling. The density ratio is Red liquid:Green liq-

uid:Transparent air:Vapor phase = 1000:1000:2:1.

green liquid, and the blue liquid reacting with the purple liquid to
produce an indigo liquid. All eight phases are set as miscible with
each other. Thus, the mixing flow in the tank creates a lively rain-
bow wave with seven naturally colored streams adjacent to each
other: red, orange, yellow, green, blue, indigo and purple. Again,
the diffusion effect is disabled in this example to avoid the stiff and
uniform appearance.

7. CONCLUSION AND DISCUSSION

By combining the mixture model in computational fluid dynamics
and the SPH method, we have developed a novel simulation ap-
proach for multiple-fluid flows. Verified in various numerical ex-
periments, the new approach is versatile and can simultaneous-
ly capture a wide range of multiple-fluid phenomena, including
mixing/unmixing of miscible and immiscible fluids, diffusion and
chemical reaction etc. The new method is robust, and can achieve
stable and realistic simulation under widely-varying parameter set-
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Fig. 8. Rainbow wave. The transparent liquid is propelled by the periodically moving wall on the left, and when the transparent liquid passing over the four

magic regions in the left of the tank, it reacts to produce four new phases (red, yellow, blue and purple). The adjacent new phases can also react with each other

to produce another three phases (orange, green and indigo). All 8 phases are miscible with each other, and the diffusion effect is disabled. A lively rainbow

wave is formed in the tank.

tings, including high viscosity and density contrast. Implementa-
tion of our new scheme is straightforward as an extension to exist-
ing single-phase fluid simulators, and the multiple-fluid simulation
can be easily set up with a minimum requirement of multiple-fluid
information and without unnecessary parameter tuning. Compared
to the simple diffusion model (e.g. [Kang et al. 2010; Bao et al.
2010; Liu et al. 2011]), the proposed approach captures a wider
range of multiple-fluid phenomena, which allows efficient produc-
tion of various interesting and visually realistic multiple-fluid re-
sults with fine details throughout the whole simulation.

SPH simulations commonly assume constant particle mass over
time, and in cases of vaporization this can lead to dramatic increas-
es of the effective volume of particles due to large density drop,
which sequentially degrades the simulation resolution. To main-
tain the simulation resolution, one possible extension to this work
would be to introduce an efficient, adaptive refinement strategy to
split the SPH particles. Another possible future work is to incor-
porate the energy equation in the current theoretical framework to
simulate relatively less commonly observed energy-related effects,
such as extraction in chemistry.

Previous numerical strategies that enforce the incompressibili-
ty based on the divergence-free property of the flow field cannot
be directly applied to the multiple-fluid simulation, since neither
the divergence of the mixture velocity nor that of the phase veloc-
ity is zero, even when all phases are incompressible. At the cost
of smaller time steps, this limitation can be partially overcome by
increasing the gas constant in the equations of state to a higher val-
ue, but it will be beneficial to investigate new pressure-correction
methods enforcing incompressibility of the multiple-fluid simula-
tion at larger time steps, where component-wise incompressibility
relations should be taken into account. Another challenge is that
incorporating the mixture model with the Predictive-Corrective In-
compressible SPH (PCISPH) is not straightforward. PCISPH pre-
sumes uniform particle mass and rest density between particles,
however these properties usually vary between particles in the mix-
ture model. This makes the precomputation in the pressure correc-
tion of PCISPH impossible, resulting in erroneous values where
there is particle deficiency.

APPENDIX

Appendix A. DERIVATION OF EQNS.(17-19)

This appendix shows the detailed derivations of Eqns.(17-19). The
SPH approximation for the divergence operator can be expressed
as [Colagrossi and Landrini 2003]:

(∇·A)i =
∑

j

dVjAj ·∇Wij =
∑

j

dVj(Aj±Ai)·∇Wij . (35)

Eqn.(18) and Eqn.(19) are direct results following Eqn.(35).
The derivation of Eqn.(17) is more involved. Applying standard

SPH formulation to the right hand side of the following identity

(αk∇ · um)i = (∇ · (αkum))i − (um · ∇αk)i (36)

leads to

(αk∇ · um)i =
∑

j
dVjαkj(umj − umi) · ∇Wij . (37)

However applying Eqn.(35) to the left hand side of Eqn.(36) yields:

(αk∇ · um)i =
∑

j
dVjαki(umj − umi) · ∇Wij . (38)

The two equations above are almost the same, and directly averag-
ing the right hand side yields Eqn.(17).
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