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Summary 

This thesis considers the frequency assignment problem (FAP), which is a real world 

problem of assigning frequencies to wireless communication connections (also known 

as requests) while satisfying a set of constraints in order to prevent a loss of signal 

quality. This problem has many different applications such as mobile phones, TV 

broadcasting, radio and military operations. In this thesis, two variants of the FAP are 

considered, namely the static and the dynamic FAPs. The static FAP does not change 

over time, while the dynamic FAP changes over time as new requests gradually be-

come known and frequencies need to be assigned to those requests effectively and 

promptly. The dynamic FAP has received little attention so far in the literature com-

pared with the static FAP.  

This thesis consists of two parts: the first part discusses and develops three heuristic 

algorithms, namely tabu search (TS), ant colony optimization (ACO) and hyper heu-

ristic (HH), to solve the static FAP. These heuristic algorithms are chosen to represent 

different characteristics of heuristic algorithms in order to identify an appropriate so-

lution method for this problem. Several novel and existing techniques have been used 

to improve the performance of these heuristic algorithms. In terms of TS, one of the 

novel techniques aims to determine a lower bound on the number of frequencies that 

are required from each domain for a feasible solution to exist, based on the underlying 

graph colouring model. These lower bounds are used to ensure that we never waste 

time trying to find a feasible solution with a set of frequencies that do not satisfy the 

lower bounds, since there is no feasible solution in this search area. Another novel 

technique hybridises TS with multiple neighbourhood structures, one of which is used 

as a diversification technique. In terms of ACO, the concept of a well-known graph 

colouring algorithm, namely recursive largest first, is used. Moreover, some of the 

key factors in producing a high quality ACO implementation are examined such as 

different definitions of visibility and trail, and optimization of numerous parameters. 

In terms of HH, simple and advanced low level heuristics each with an associated in-

dependent tabu list are applied in this study. The lower bound on the number of fre-

quencies that are required from each domain for a feasible solution to exist is also 

used. 
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Based on the experimental results, it is found that the best performing heuristic algo-

rithm is TS, with HH also being competitive, whereas ACO achieves poor perfor-

mance. Additionally, TS shows competitive performance compared with other algo-

rithms in the literature.  

In the second part of this thesis, various approaches are designed to solve the dynamic 

FAP. The best heuristic algorithms considered in the first part of this thesis are used to 

construct these approaches. It is interesting to investigate whether heuristic algorithms 

which work well on the static FAP also prove efficient on the dynamic FAP. Addi-

tionally, several techniques are applied to improve the performance of these ap-

proaches. One of these, called the Gap technique, is novel. This technique aims to 

identify a good frequency to be assigned to a given request. Based on the experi-

mental results, it is found that the best approach for the dynamic FAP shows competi-

tive results compared with other approaches in the literature. Finally, this thesis pro-

poses a novel approach to solve the static FAP by modelling it as a dynamic FAP 

through dividing this problem into smaller sub-problems, which are then solved in 

turn in a dynamic process. The lower bound on the number of frequencies that are 

required from each domain for a feasible solution to exist, based on the underlying 

graph colouring model, and the Gap technique are also used. The proposed approach 

shows the ability to improve the results which have been found by the heuristic algo-

rithms in the first part of this thesis (which solve the static FAP as a whole). Moreo-

ver, it shows competitive results compared with other algorithms in the literature. 
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Chapter 1 

Introduction                                                                

1.1 Context 

Scarcity can be considered as the problem of having almost unlimited human wants in 

a world of limited resources. Many essential commodities such as oil, water and food 

are scarce due to their limited supply and rapidly increasing demand. One essential 

resource that is increasingly scarce, though not often considered by economists, is the 

radio frequency spectrum. The demand placed upon the usable spectrum increased 

exponentially between 1950 and 1980 [83]. Since then, the demand of frequencies for 

communication devices has further increased with the advent of high definition (HD), 

satellite television channels, mobile phones, satellite navigation systems and Wi-Fi, 

all of which require frequencies from the crowded radio spectrum. Mobile phone op-

erators have paid vast sums of money to purchase frequency bands from the Office of 

Communications1 (known as OFCOM) [118]. This demonstrates the value of using 

the spectrum as efficiently as possible. However, the radio spectrum from which fre-

quencies can be allocated is highly limited. For example, OFCOM limits frequencies 

                                                           
1 Office of Communications, commonly known as OFCOM, is the government-approved regulatory and competition authority 
for the broadcasting, telecommunications and postal industries of the UK. 

https://en.wikipedia.org/wiki/Mail
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from 9 KHz to 275 GHz [118]. Therefore, this is a good opportunity for researchers to 

develop algorithms to improve the efficiency of allocating frequencies from a limited 

radio spectrum.  

This has led to considerable academic interest in variants of the frequency assignment 

problem (FAP). These problems generally involve assigning frequencies to wireless 

communication connections (known as requests) while satisfying a set of constraints 

and optimizing a given objective. In this thesis, two variants of the FAP, namely the 

static and the dynamic FAPs, are studied. Research has mostly focused on the static 

FAP, where all features of this problem are known at the beginning and do not change 

over time. More recently, a new variant of the FAP, known as the dynamic FAP, was 

proposed in [55]. This problem is based on a military application in which features of 

the problem change over time. The dynamic FAP has to be solved in real time and 

therefore, the computational time required by any solution method is of particular im-

portance, unlike the static FAP.  

In the first part of this thesis, several heuristic algorithms are investigated and devel-

oped to solve the static FAP. These heuristic algorithms include some meta-heuristics 

and a hyper heuristic. Meta-heuristics can be defined as high-level frameworks for 

designing and developing heuristic algorithms to find high quality solutions [141]. In 

contrast, a hyper heuristic can be defined as a master process that controls other heu-

ristics to produce high quality solutions. The main difference between meta-heuristics 

and hyper heuristics is that meta-heuristics work on a solution space, while hyper heu-

ristics work on a space of heuristics. The use of heuristic algorithms is justified as the 

static FAP is NP-complete [66].  

This thesis aims to compare meta-heuristics from different classes, where there are 

several classifications for meta-heuristics in the literature. One of these is introduced 

in [119], which classifies meta-heuristics into three classes as follows: 

 Construction-based algorithms: these algorithms construct new solutions from 

scratch. Examples of construction-based algorithms are ant colony optimization 

[45] and greedy randomised adaptive search procedure [59].  
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 Population-based algorithms: these algorithms involve populations of solutions, 

where different parts of the solution space are searched simultaneously. Examples 

of these algorithms are ant colony optimization and genetic algorithms [91], and 

scatter search [70].    

 Local search-based algorithms: these algorithms solve problems by moving from 

one solution to another in the solution space. There are many such algorithms, in-

cluding tabu search [71], simulated annealing [98], noising algorithms [28], 

threshold acceptance [52], and variable neighbourhood search [112].  

Moreover, there are other classifications of meta-heuristics in the literature such as 

[12], which suggests that meta-heuristics can be classified in different ways according 

to different characteristics. For example, meta-heuristics can be classified as nature-

inspired versus non-nature inspired, population-based versus single point search, dy-

namic objective function versus static objective function, one neighbourhood versus 

multi-neighbourhood structures, and memory usage versus memory-less algorithms.  

In the second part of this thesis, various approaches are designed to solve the dynamic 

FAP. The best heuristic algorithms considered in the first part of this thesis are used to 

construct these approaches. Hence, it is interesting to investigate whether heuristic 

algorithms which work well on static problems also prove efficient on the dynamic 

problems. Furthermore, this thesis proposes a novel approach to solve the static FAP 

by modelling it as a dynamic FAP. 

1.2 Overview of Research Presented in this Thesis                   

In this thesis, three different heuristic algorithms are evaluated and developed, namely 

tabu search (TS), ant colony optimization (ACO) and hyper heuristic (HH), to solve 

the static FAP. They are chosen to represent different characteristics of heuristic algo-

rithms in order to identify the most appropriate solution method for such problem. As 

the static FAP can be modelled as a graph colouring problem [83], existing 

knowledge of this underlying model can be used to guide the implementation of the 

selected heuristic algorithms. These heuristic algorithms are assessed using public 

benchmark datasets of the static FAP which are denoted by CELAR and GRAPH.  
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TS and ACO represent two different classes of meta-heuristics, where TS represents a 

class of the local search-based algorithms and ACO represents a construction-based 

algorithm which incorporates a learning component. TS can be described as a neigh-

bourhood search algorithm which uses memory in the form of a tabu list to restrict the 

choices of the next solution in order to prevent the search from returning to previously 

visited solutions. This algorithm has proved extremely successful on a wide range of 

problems (see e.g. [75]).  

ACO has been inspired from the natural behaviour of real ant colonies. Ants are social 

insects which co-operate using indirect communication to find the shortest path be-

tween food sources and the nest. Hence, ACO can also be thought of as a population-

based algorithm. Although the most well-known population algorithm is the genetic 

algorithm, we choose to evaluate ACO instead for several reasons. One of these rea-

sons is that there is little evidence from the literature that genetic algorithms have 

proved successful on the static FAP. This may be because combining parts of two 

different high quality FAP solutions may not lead to a new high quality solution and 

indeed, may not even produce feasible solutions. Moreover, ACO may be well suited 

to a dynamic environment because it contains a natural learning process.  

HH represents a different characteristic of heuristic algorithms which work at a higher 

level. It is based on the idea that each heuristic has strengths and weaknesses, and 

therefore combining several heuristics may lead to an improved algorithm capable of 

solving a wide range of problems. 

In this study, TS, ACO and HH for the static FAP are compared and the best perform-

ing ones are used to construct various approaches to solve the dynamic FAP. This 

problem has received little attention so far in the literature compared with the static 

FAP. The main feature of the dynamic FAP is that new requests become known over 

a period of time and frequencies need to be assigned effectively and promptly. There-

fore, the dynamic FAP can be considered as a set of sub-problems, where each sub-

problem is considered in turn. Furthermore, a novel approach based on the concept of 

the dynamic FAP is proposed to solve the static FAP through modelling it as a dy-

namic FAP. It may be more profitable to portion the static FAP into smaller sub-

problems to be solved consecutively than solving it as a whole. This study investi-
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gates whether using this novel approach to solve the static FAP leads to better results 

compared with other algorithms considered in this study and in the literature. 

1.3 Overview of Time Complexity and Computational Complexity 

Time complexity of an algorithm shows the relationship between the computing time 

and the problem size [136]. Commonly, the time complexity of an algorithm is ex-

pressed using a big O notation, which is a mathematical representation for asymptotic 

upper bounds. Let f: ℕ → ℕ and g: ℕ → ℕ be functions, we say that f(n) = O(g(n)) if 

and only if there exists a constant  c > 0 and a non-negative integer n0 such that for all      

n ≥ n0, we have f (n) ≤ c g(n). Hence, when f(n) = O(g(n)), this means f grows no 

faster than g. When an algorithm takes a maximum of O(g(n)) time to solve an in-

stance of a problem for some polynomial g(n), we say this algorithm has polynomial 

time complexity. For more information about this topic, we refer the reader to [99, 

136].  

In computational complexity theory, computational problems can be classified as P, 

NP, NP-hard and NP-complete (among other classes). A problem is classified as P if 

it can be solved in polynomial time. In other words, the class P consists of problems 

that can be solved by an algorithm in time O(nk) for some constant k, where n is the 

size of the input to the problem. The class NP refers to non-deterministic polynomial 

time, which involves a non-deterministic computer. A non-deterministic computer is a 

theoretical tool that makes a non-deterministic (probabilistic) choice at each point in 

the computation, while a deterministic computer gives the same result for the same 

input. The class NP consists of decision problems, which can be solved in polynomial 

time using a non-deterministic computer and their solution can be verified for correct-

ness in polynomial time on a deterministic computer. Since P problems take polyno-

mial time to be solved, P is a subset of NP. A problem is classified as NP-hard if solv-

ing it in polynomial time would make it possible to solve all problems in class NP in 

polynomial time. In other words, a problem is classified as NP-hard if every problem 

in NP can be reduced to it in polynomial time. Some NP-hard problems are also in 

NP. Such problems are called NP-complete problems. Therefore, the class NP-

complete consists of the most difficult problems in the NP class. For more infor-

mation about this topic, we refer the reader to [66, 136, 144]. 

http://dictionary.reference.com/browse/NP
http://dictionary.reference.com/browse/NP
http://dictionary.reference.com/browse/NP-complete
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1.4 Overview of the Frequency Assignment Problem 

The main concept of the FAP is assigning a frequency to each request while satisfying 

a set of constraints and optimizing a given objective function. In fact, the FAP is not a 

single problem. Rather, there are variants of the FAP that are encountered in practice. 

Overall, the FAP can be defined formally as follows: given 

 a set of requests  𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑁𝑅}, where NR is the number of requests, 

 a set of frequencies  𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑁𝐹} ⊂ ℤ+, where NF is the number of     

frequencies, 

 a set of constraints related to the requests and frequencies, 

 an objective function,  

the goal is to assign one frequency to each request so that the given set of constraints 

are satisfied and the objective function is optimized. In this thesis, the frequency that 

is assigned to request 𝑟𝑖 is denoted as 𝑓𝑟𝑖
. 

In the next subsections, different types of constraints of the FAP are introduced. This 

is followed by the description of the two variants of the FAP, namely the static and 

the dynamic FAPs. 

1.4.1 Constraints of the FAP 

There are four main constraints in the FAP, which can be hard or soft depending on 

the variant of the FAP. Hard constraints must be satisfied while soft constraints are 

not required to be satisfied, but should be if possible. These constraints can be de-

scribed as follows: 

1) Bidirectional constraints: this type of constraint forms a link between each pair of 

requests {𝑟2𝑖−1, 𝑟2𝑖}, where 𝑖 = 1, . . . , 𝑁𝑅/2. In these constraints, frequencies 𝑓𝑟2𝑖−1
 

and  𝑓𝑟2𝑖
 that are assigned to requests 𝑟2𝑖−1 and 𝑟2𝑖, respectively, should be distance 

𝑑𝑐 apart, where 𝑑𝑐 is a given constant. In the datasets considered here (see Section 

1.5),  𝑑𝑐  is always equal to a constant value (238). These constraints can be written as 

follows: 

|𝑓𝑟2𝑖−1
−  𝑓 𝑟2𝑖

| =  𝑑𝑐 for  𝑖 = 1, . . . , 𝑁𝑅/2 (1.1) 
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2) Interference constraints: this type of constraint forms a link between a pair of re-

quests {𝑟𝑖, 𝑟𝑗}, where the frequencies 𝑓𝑟𝑖
 and 𝑓𝑟𝑗

 that are assigned to the requests 𝑟𝑖 and 

 𝑟𝑗, respectively, should be more than distance 𝑑𝑟𝑖𝑟𝑗
 apart, where 𝑑𝑟𝑖𝑟𝑗 is a given con-

stant. These constraints can be written as follows:  

|𝑓𝑟𝑖
−  𝑓𝑟𝑗

| >  𝑑𝑟𝑖𝑟𝑗
 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁𝑅 

(1.2) 

3) Domain constraints: the set of available frequencies for each request 𝑟𝑖 is denoted 

by the domain 𝐷𝑟𝑖
⊂ 𝐹, where  ∪𝑟𝑖∈𝑅 𝐷𝑟𝑖

= 𝐹. Hence, the frequency which is as-

signed to 𝑟𝑖 must belong to 𝐷𝑟𝑖
. This type of constraints is always hard in all of the 

variants of the FAP.  

For the datasets considered in this thesis, there are 7 available domains and hundreds 

of requests, which mean more than one request share the same domain. Moreover, 

each pair of requests {𝑟2𝑖−1, 𝑟2𝑖}, where 𝑖 = 1, . . . , 𝑁𝑅/2, has the same domain. Some 

frequencies belong to more than one domain and so can be assigned to requests which 

belong to different domains. Table 1.1 shows the 7 domains that are used in all of the 

benchmark datasets considered in this study.  

Domain 
No. of frequencies 

in the domain 
Frequencies 

1 44 

  16   30    44    58    72    86   100  114  128  142  156  254  268  

282  296  310  324  338  352  366  380  394  414  428  442  456  

470  484  498  512  526  540  554  652  666  680  694  708  722 

736  750  764  778  792 
   

2 22 
  30    58    86  114  142  268  296  324  352  380  414  442  470 

498  526  554  652  680  708  736  764  792 
   

3 36 

  30    44    58    72    86  100  114  128  142  268  282  296  310 

324  338  352  366  380  428  442  456  470  484  498  512  526 

540  666  680  694  708  722  736  750  764  778 
   

4 24 
  16    30    58    86  114  142  254  268  296  324  352  380  414 

442  470  498  526  554  652  680  708  736  764  792 
   

5 6 142  170  240  380  408  478 
   

6 42 

  30    44    58    72    86  100  114  128  142  156  268  282  296 

310  324  338  352  366  380  394  414  428  442  456  470  484 

498  512  526  540  554  652  666  680  694  708  722  736  750 

764  778  792 
   

7 22 
  16    30    44    58    72    86  100  114  128  142  156  254  268 

282  296  310  324  338  352  366  380  394 

Table 1.1: The domains in the datasets considered in this thesis. 
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4) Pre-assignment constraints: certain requests 𝑟𝑖 have already been pre-assigned to 

given frequencies 𝑔𝑟𝑖
. These constraints can be written as follows: 

𝑓𝑟𝑖
=  𝑔𝑟𝑖

                                                           (1.3) 

Example 1.1 clarifies the general concept of the FAP and the different types of con-

straints. 

Example 1.1:  

Consider an FAP instance that consists of 10 requests, 10 frequencies and 3 

domains as shown in Table 1.2.   

Domain 
No. of frequencies 

in the domain 
Frequencies 

1 4   16   254  100  338 

2 4 114   352  428  666 

3 6 428   666  100  338  540  778 

Table 1.2: The domains considered in Example 1.1. 

The domain and the pre-assignment constraints for each request are given in 

Table 1.3. In this example, there are pre-assignment constraints for only re-

quests 𝑟7 and 𝑟8. 

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10 
           

Domain constraints 2 2 1 1 3 3 1 1 2 2 

Pre-assignment constraints - - - - - - 16 254 - - 

Table 1.3: The domain and pre-assignment constraints considered in Example 1.1. 

The bidirectional and the interference constraints are given in Table 1.4.  

Bidirectional constraints Interference constraints 

|𝑓𝑟1
− 𝑓𝑟2

|  =  238       |𝑓𝑟1
− 𝑓𝑟3

| >  9 

|𝑓𝑟3
− 𝑓𝑟4

|  =  238 |𝑓𝑟3
− 𝑓𝑟5

| >  7 

|𝑓𝑟5
− 𝑓𝑟6

|  =  238    |𝑓𝑟4
−  𝑓𝑟7

|  >  20 

|𝑓𝑟7
− 𝑓𝑟8

|  =  238    |𝑓𝑟8
−  𝑓𝑟10

| >  80 

|𝑓𝑟9
−  𝑓𝑟10

| =  238  

Table 1.4: The bidirectional and the interference constraints considered in Example 1.1. 

Figure 1.1 presents the FAP instance considered in Example 1.1. Each request 

is represented by a node, and each bidirectional or interference constraint is 

represented by an edge. Additionally, each request is given a colour which in-

dicates the domain constraint of that request. 
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 Figure 1.1: The FAP instance considered in Example 1.1. 

A feasible solution of the considered FAP instance, which uses 8 frequencies, 

is given in Table 1.5. Note that a bold number means a pre-assignment con-

straint. 

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10 

Assigned frequency 666 428 100 338 778 540 16 254 428 666 
           

Table 1.5: A feasible solution for the problem in Example 1.1 

1.4.2 The Static FAP 

In the static FAP, all features are known at the beginning and do not change over 

time. This problem has three main variants, namely the minimum order FAP (MO-

FAP), the minimum span FAP (MS-FAP) and the minimum interference FAP (MI-

FAP). These variants have different objectives and also differ in terms of whether the 

constraints (see Section 1.4.1) are considered hard or soft. The formal definitions for 

each of these are given below as presented in [101]. To help define these problems, 

the set  𝑇𝑟𝑖𝑟𝑘
⊂ ℤ   is defined as the set of invalid distances between the frequencies 𝑓𝑟𝑖

 

and 𝑓𝑟𝑘
 that are assigned to the requests 𝑟𝑖 and 𝑟𝑘, respectively, based on bidirectional 

or interference constraints, as follows: 

𝑇𝑟𝑖𝑟𝑘 = {
       ℤ \ {𝑑𝑐}      𝑖𝑓 𝑟𝑖  𝑎𝑛𝑑 𝑟𝑘  𝑎𝑟𝑒 𝑙𝑖𝑛𝑘𝑒𝑑 𝑏𝑦 𝑎 𝑏𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

 {0, 1, … , 𝑑𝑟𝑖𝑟𝑘
}  𝑖𝑓 𝑟𝑖  𝑎𝑛𝑑 𝑟𝑘 𝑎𝑟𝑒 𝑙𝑖𝑛𝑘𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

 

Moreover, let 𝐶 be the set of pairs of requests {𝑟𝑖 , 𝑟𝑘} for which there exist bidirec-

tional or interference constraints. 

 

𝑟1 

𝑟2 

𝑟3 

𝑟4 

𝑟5 

𝑟6 

𝑟7 

𝑟8 

𝑟9 𝑟10 

Bidirectional constraint                                                      

Interference constraint  

  

Domain 1         

Domain 2         

Domain 3         
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i) The Minimum Order FAP: all types of the constraints are hard in the MO-FAP, and 

the objective is to minimize the number of used frequencies. The following integer 

linear programming formulation for this problem is given in [1]. For every request 𝑟𝑖 

and available frequency 𝑓𝑗 , a binary variable 𝑥𝑟𝑖𝑓𝑗
 is given by: 

𝑥𝑟𝑖𝑓𝑗
= {

   1        𝑖𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑗 ∈ 𝐷𝑟𝑖
 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑟𝑖

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                     
 

Moreover, another binary variable 𝑦𝑓𝑗
 indicates the use of frequency 𝑓𝑗 as follows:  

              𝑦𝑓𝑗
= {

  1        𝑖𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑗 ∈ 𝐹 𝑖𝑠 𝑢𝑠𝑒𝑑                                  

   0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                      
 

Then, the problem can be formulated as follows:  

𝑚𝑖𝑛 ∑ 𝑦𝑓𝑗

𝑓𝑗∈𝐹 

 
 

(1.4) 

𝑠. 𝑡. ∑ 𝑥𝑟𝑖𝑓𝑗

𝑓𝑗∈𝐷𝑟𝑖
 

= 1 

 

∀ 𝑟𝑖 ∈ 𝑅 

 

(1.5) 

   

𝑥𝑟𝑖𝑓𝑗
+  𝑥𝑟𝑘𝑓𝑙

≤ 1 ∀ {𝑟𝑖, 𝑟𝑘}  ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖
, 𝑓𝑙 ∈ 𝐷𝑟𝑘

:                                                   

|𝑓𝑗 − 𝑓𝑙| ∈ 𝑇𝑟𝑖𝑟𝑘  

(1.6) 

𝑥𝑟𝑖𝑓𝑗
≤  𝑦𝑓𝑗

 ∀ 𝑟𝑖 ∈ 𝑅, 𝑓𝑗 ∈ 𝐷𝑟𝑖
 (1.7) 

𝑥𝑟𝑖𝑓𝑗
∈ {0,1} ∀ 𝑟𝑖 ∈ 𝑅, 𝑓𝑗 ∈ 𝐷𝑟𝑖

 (1.8) 

𝑦𝑓𝑗
∈ {0,1} ∀ 𝑓𝑗 ∈ 𝐹 (1.9) 

 

The objective (1.4) counts the number of used frequencies. The constraint (1.5) means 

each request has one frequency. The constraint (1.6) gives the bidirectional, the inter-

ference and the domain constraints. The constraint (1.7) ensures that if a frequency is 

assigned to a request, then the corresponding  𝑦 variable is set to one.  

ii) The Minimum Span FAP: all types of the constraints in the MS-FAP are hard, and 

the objective is to minimize the difference between the maximum and minimum used 

frequencies, where this difference is called the span. An integer linear programing 

formulation for this problem is given in [3] as follows:  
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min  (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)  (1.9) 

𝑠. 𝑡. ∑ 𝑥𝑟𝑖𝑓𝑗

𝑓𝑗∈𝐷𝑟𝑖
 

= 1 

 

∀ 𝑟𝑖 ∈ 𝑅 

 

(1.10) 

𝑥𝑟𝑖𝑓𝑗
+  𝑥𝑟𝑘𝑓𝑙

≤ 1 ∀ {𝑟𝑖, 𝑟𝑘}  ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖
, 𝑓𝑙 ∈ 𝐷𝑟𝑘

:                                                   

|𝑓𝑗 − 𝑓𝑙| ∈ 𝑇𝑟𝑖𝑟𝑘  

(1.11) 

𝑥𝑟𝑖𝑓𝑗
≤  𝑦𝑓𝑗

 ∀ 𝑟𝑖 ∈ 𝑅, 𝑓𝑗 ∈ 𝐷𝑟𝑖
 (1.12) 

𝑧𝑚𝑎𝑥 ≥   𝑓𝑗  𝑦𝑓𝑗
 ∀ 𝑓𝑗 ∈ 𝐹 (1.13) 

𝑧𝑚𝑖𝑛 ≤  𝑓𝑚𝑎𝑥 − (𝑓𝑚𝑎𝑥 − 𝑓𝑗) 𝑦𝑓𝑗
 ∀𝑓𝑗 ∈ 𝐹 (1.14) 

𝑥𝑟𝑖𝑓𝑗
∈ {0,1} ∀ 𝑟𝑖 ∈ 𝑅, 𝑓𝑗 ∈ 𝐷𝑟𝑖

 (1.15) 

𝑦𝑓𝑗
∈ {0,1} ∀ 𝑓𝑗 ∈ 𝐹 (1.16) 

zmax, zmin  ∈ ℤ+  (1.17) 
 

Here, 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛 are the maximum and minimum used frequencies, respectively, 

and  𝑓𝑚𝑎𝑥 is the maximum frequency in the set F. The constraints (1.13) and (1.14) 

guarantee that 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛 are set to the right values. Other constraints are defined 

as for the MO-FAP.  

iii) The Minimum Interference FAP: there is a combination of hard and soft con-

straints in the MI-FAP. All the bidirectional constraints are hard, whereas all the inter-

ference constraints are soft. In contrast, the pre-assignment constraints can be hard or 

soft depending on the instances. The soft constraints are given weights which indicate 

the cost of breaking those constraints (also called violation). The violation cost is 

weighted by a given penalty value 𝑝𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
∈ ℤ+ for each broken soft constraint, 

where {𝑟𝑖, 𝑟𝑘} ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖
 and 𝑓𝑙 ∈ 𝐷𝑟𝑘

. The objective of the MI-FAP is to minimize 

the weighted sum of violation costs. 

To give an integer liner programing formulation for the MI-FAP as in [3], a new    

binary variable   𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
  is introduced for all  {𝑟𝑖, 𝑟𝑘} ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖

,  𝑓𝑙 ∈ 𝐷𝑟𝑘
 with 

 |𝑓𝑗 − 𝑓𝑙| ∈ 𝑇𝑟𝑖𝑟𝑘 . 

  𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
= {

   1        𝑖𝑓 𝑏𝑜𝑡ℎ 𝑥𝑟𝑖𝑓𝑗
= 1 𝑎𝑛𝑑 𝑥𝑟𝑘𝑓𝑙

= 1                                

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                     
 

Then, this problem can be formulated as follows: 
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𝑚𝑖𝑛 ∑   ∑ 𝑝𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
  𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙

𝑓𝑗∈𝐷𝑟𝑖
,𝑓𝑙∈𝐷𝑟𝑘

 

|𝑓𝑗−𝑓𝑙|∈𝑇𝑟𝑖𝑟𝑘  

{𝑟𝑖,𝑟𝑘}∈𝐶

 

(1.17) 

𝑠. 𝑡. ∑ 𝑥𝑟𝑖𝑓𝑗

𝑓𝑗∈𝐷𝑟𝑖
 

= 1 

 

∀ 𝑟𝑖 ∈ 𝑅 

 

(1.18) 

   

𝑥𝑟𝑖𝑓𝑗
+  𝑥𝑟𝑘𝑓𝑙

≤ 1 +   𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
 ∀ {𝑟𝑖, 𝑟𝑘}  ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖

, 𝑓𝑙 ∈ 𝐷𝑟𝑘
:                                                   

|𝑓𝑗 − 𝑓𝑙| ∈ 𝑇𝑟𝑖𝑟𝑘  

(1.19) 

𝑥𝑟𝑖𝑓𝑗
∈ {0,1} ∀ 𝑟𝑖 ∈ 𝑅, 𝑓𝑗 ∈ 𝐷𝑟𝑖

 (1.20) 

𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
∈ {0,1} ∀ {𝑟𝑖, 𝑟𝑘}  ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖

, 𝑓𝑙 ∈ 𝐷𝑟𝑘
:                                                   

|𝑓𝑗 − 𝑓𝑙| ∈ 𝑇𝑟𝑖𝑟𝑘  
(1.21) 

 

Constraint (1.19) states that the variable  𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
 is equal to 1 if and only if both of 

the frequencies 𝑓𝑗 and 𝑓𝑙 are assigned to the requests 𝑟𝑖 and 𝑟𝑘, respectively, which 

consequently adds a further penalty 𝑝𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
 to the sum in the objective (1.17).  

1.4.3 The Dynamic FAP 

The dynamic FAP changes over time as new requests gradually become known and 

frequencies need to be assigned to those requests effectively and promptly while satis-

fying a set of constraints (see Section 1.4.1), which are all hard in the dynamic FAP 

considered in this study. This problem can be considered as a set of sub-problems to 

be solved consecutively. The objective of the dynamic FAP is to find a feasible solu-

tion with the minimum number of re-assigned requests.  

1.5 Overview of the Datasets 

The heuristic algorithms considered in this thesis are assessed using two types of da-

tasets, which are static and dynamic FAP datasets. The static FAP datasets are publi-

cally available, which can be found on the static FAP website1. However, no dynamic 

FAP datasets are publically available, so for the purpose of this study, new dynamic 

FAP datasets have been generated from the static FAP datasets. Moreover, the new 

dynamic FAP datasets have been made available for other researchers, which can be 

                                                           
1 http://fap.zib.de/problems/CALMA/ (last accessed 25 February 2015). 

http://fap.zib.de/problems/CALMA/%20(last
http://fap.zib.de/problems/CALMA/%20(last
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found on the dynamic FAP website1. In this section, information about the static FAP 

datasets is presented, while the generated dynamic FAP datasets are discussed in more 

detail in Chapter 6.  

The static FAP datasets are denoted by CELAR and GRAPH. CELAR was provided 

by the Centre d’Electronique de l’Armement in France. This dataset is based on real 

life problems and has 11 instances. In contrast, GRAPH (Generating Radio Link Fre-

quency Assignment Problem Heuristically) was randomly generated in [146] and has 

14 instances. Overall, CELAR and GRAPH are widely used to test different algo-

rithms in the literature, and are widely accepted as benchmarks for the static FAP. The 

numbers of requests and constraints for CELAR and GRAPH instances are given in 

Table 1.6. 

Instance 
Variant of 

the static 

FAP 

No. of 

requests 

No. of  

bidirectional 

constraints 

No. of 

interference 

constraints 

No. of 

domain 

constraints 

No. of 

pre-assignment 

constraints 

Total 

no. of 

constraints 
         

CELAR 01 

CELAR 02 

CELAR 03 

CELAR 04 

CELAR 11 

GRAPH 01 

GRAPH 02 

GRAPH 08 

GRAPH 09 

GRAPH 14 

MO-FAP 916 458 5,090 916 0 6,464 

MO-FAP 200 100 1,135 200 0 1,435 

MO-FAP 400 200 2,560 400 0 3,160 

MO-FAP 680 340 3,627 400 280 4,647 

MO-FAP 680 340 3,763 680 0 4,783 

MO-FAP 200 100 1,034 200 0 1,334 

MO-FAP 400 200 2,045 400 0 2,645 

MO-FAP 680 340 3,417 680 0 4,437 

MO-FAP 916 458 4,788 916 0 6,162 

MO-FAP 916 458 4,180 916 0 5,554 

CELAR 05 

GRAPH 03 

GRAPH 04 

GRAPH 10 

MS-FAP 400 200 2,398 400 0 2,998 

MS-FAP 200 100 1,034 200 0 1,334 

MS-FAP 400 200 2,044 400 0 2,644 

MS-FAP 680 340 3,567 680 0 4,587 

CELAR 06 

CELAR 07 

CELAR 08 

CELAR 09 

CELAR 10 

GRAPH 05 

GRAPH 06 

GRAPH 07 

GRAPH 11 

GRAPH 12 

GRAPH 13 

MI-FAP 200 100 1,222 200 0 1,522 

MI-FAP 400 200 2,665 400 0 3,265 

MI-FAP 916 458 5,286 916 0 6,660 

MI-FAP 680 340 3,763 94 586 4,437 

MI-FAP 680 340 3,763 94 586 4,437 

MI-FAP 200 100 1,034 200 0 1,334 

MI-FAP 400 200 1,970 400 0 2,570 

MI-FAP 400 200 1,970 98 302 2,570 

MI-FAP 680 340 3,417 680 0 4,437 

MI-FAP 680 340 3,677 168 512 4,697 

MI-FAP 916 458 4,815 916 0 6,189 

Table 1.6: Details of the CELAR and the GRAPH datasets. 

In these datasets, the number of available frequencies (NF) is 48 and the number of 

requests varies between 200 and 916. Considering the computational complexity of 

these problems and the large numbers of requests and constraints, it is clear that this 

                                                           
1 https://dynamicfap.wordpress.com/ 
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problem can be difficult to solve. For example, for a moderate size instance of, say, 

40 frequencies and 600 requests, there would be up to 40600 possible solutions. 

1.6 Aims and Structure of this Thesis 

The aims of this thesis are as follows: 

1) To identify an appropriate solution method for the static FAP.  

2) To investigate whether the solution method can prove effective on different vari-

ants of the static FAP without significant changes.  

3) To determine an appropriate approach to solve the dynamic FAP using the best 

performing heuristic algorithms in this thesis.  

4) To ascertain whether the static FAP can be solved effectively using a novel ap-

proach which models the static FAP as the dynamic FAP.  

Each of these aims is discussed in more detail as follows:  

The first and second aims: in order to identify an appropriate solution method for the 

static FAP, three different heuristic algorithms are selected to be developed and eval-

uated. Each of them represents different characteristics of heuristic algorithms. The 

selected heuristic algorithms in this thesis are tabu search (TS), ant colony optimiza-

tion (ACO) and hyper heuristic (HH). Several novel and existing techniques are used 

to improve the performance of these heuristic algorithms to solve the static FAP. The 

selected heuristic algorithms are mainly designed to solve the MO-FAP. Then, it is of 

interest to investigate whether these heuristic algorithms can be effective on the other 

variants of the static FAP without significant changes. 

In this thesis, TS is considered first as it is one of the most popular meta-heuristic al-

gorithms and has achieved competitive performance on a variety of problems. ACO is 

considered next as it is also a meta-heuristic algorithm but it represents a different 

class of heuristic algorithms. Additionally, many ACO implementations include a lo-

cal search, so the findings from the work on TS may be helpful. Finally, we consider 

HH, which involves combining several heuristics, so findings from the previous algo-

rithms may influence this work.  

In terms of TS, several novel and existing techniques are used to improve the perfor-

mance of this algorithm and make it different from other TS algorithms in the litera-
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ture. One of the techniques is hybridising TS with multiple neighbourhood structures, 

one of which is used as a diversification technique. Another novel technique aims to 

determine a lower bound on the number of frequencies that are required from each 

domain for a feasible solution to exist, based on the underlying graph colouring mod-

el. These lower bounds ensure that the search focuses on parts of the solution space 

that are likely to contain feasible solutions. Moreover, TS is compared in two configu-

rations, where one relaxes the interference constraints, and the other relaxes both the 

bidirectional and the interference constraints. Some research questions are raised for 

TS as follows:   

 Is TS an effective solution method for the static FAP? 

 Is it beneficial to hybridise TS with multiple neighbourhood structures? 

 Can TS without significant changes be effective on different variants of the static 

FAP? 

In terms of ACO, some of the key factors in producing a high quality ACO implemen-

tation are examined such as different definitions of visibility and trails, and the values 

of numerous parameters. Moreover, the concept of a well-known graph colouring al-

gorithm, namely recursive largest first, is combined with ACO in order to improve the 

performance of this algorithm. We also attempt to improve ACO by combining it with 

a local search. Several research questions are raised for ACO as follows:   

 Can ACO perform better than TS on the static FAP? 

 Is it beneficial to combine ACO with a local search? 

 Is ACO an appropriate solution method for the static FAP?  

In terms of HH, simple and advanced low level heuristics (LLHs) associated with an 

independent tabu list for each LLH are applied in this study. Moreover, a lower bound 

on the number of frequencies that are required from each domain for a feasible solu-

tion to exist, based on the underlying graph colouring model, is also used. Several 

selection mechanisms of the LLHs are discussed and compared. Some research ques-

tions are raised for HH as follows:     

 Can HH perform better than TS and ACO on the static FAP?  

 What is the best mechanism for selecting the LLHs? 

 Is HH an appropriate solution method for the static FAP? 
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The third aim: in order to determine an appropriate solution method for the dynamic 

FAP, various approaches are designed and constructed using the best performing heu-

ristic algorithms on the static FAP considered in this study. It is interesting to investi-

gate whether heuristic algorithms which work well on the static FAP also prove effi-

cient on the dynamic FAP. Furthermore, several novel and existing techniques are 

used to improve the performance of the various approaches for solving the dynamic 

FAP. A novel technique, called the Gap technique, aims to identify a good frequency 

to be assigned to a given request. A research question is raised in this section as fol-

lows: 

 Can TS, ACO and HH for the static FAP be successful on the dynamic FAP?  

The fourth aim: in this thesis, a novel approach is proposed to solve the static FAP by 

modelling it as a dynamic FAP through breaking it down into smaller sub-problems, 

which are solved consecutively in a dynamic process using the best heuristic algo-

rithm in this study. Moreover, several techniques are applied to improve the perfor-

mance of this approach such as a lower bound on the number of frequencies that are 

required from each domain for a feasible solution to exist and the Gap technique. Our 

aim here is to investigate whether using this approach to solve the static FAP leads to 

better results compared with the heuristic algorithms considered in this study and oth-

er algorithms in the literature which solve the static FAP as a whole. A research ques-

tion is raised in this section as follows: 

 Can the proposed approach that models the static FAP as a dynamic FAP be an 

effective method for the static FAP?  

Structure of this thesis: this thesis is organized as follows: Chapter 2 provides some 

background information on the static and the dynamic FAPs and the selected heuristic 

algorithms in this study. This is followed by Chapter 3, which investigates the TS al-

gorithm for the static FAP. The ACO algorithm is investigated in Chapter 4 and 

Chapter 5 investigates the HH algorithm for the static FAP. In Chapter 6, the best of 

these heuristic algorithms are selected to construct various approaches to solve the 

dynamic FAP, and a novel approach is proposed to solve the static FAP by modelling 

it as a dynamic FAP. Finally, this thesis is closed with conclusions and ideas for fu-

ture work.   
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Chapter 2  

Literature Review                                                       

2.1 Introduction 

This chapter provides background to the study presented in this thesis and puts it in a 

broader context. Two problems are considered in this thesis: the static and the dynam-

ic frequency assignment problems (FAPs). The static FAP has received more attention 

so far in the literature compared with the dynamic FAP. The static FAP (defined in 

Section 1.4.2) has several variants such as the minimum order FAP (MO-FAP), the 

minimum span FAP (MS-FAP) and the minimum interference FAP (MI-FAP). These 

problems have been solved in the literature using a variety of solution methods. In this 

study, three heuristic algorithms are used to solve the static FAP, namely tabu search 

(TS), ant colony optimization (ACO) and hyper heuristic (HH). Overviews of these 

algorithms as well as their variations and extensions to solve these problems are giv-

en. Additionally, overviews of these algorithms to solve other problems in the litera-

ture are presented. 

The remainder of this chapter is organised as follows: the next section gives an over-

view of the static FAP. Section 2.3 provides a general description of the graph colour-

ing problem, which is related to the static FAP. Then, the three heuristic algorithms 
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are presented in Sections 2.4, 2.5 and 2.6. After that, the dynamic FAP is reviewed in 

Section 2.7. In Section 2.8, this chapter is closed with some conclusions.  

2.2 The Static Frequency Assignment Problem                                                     

The static FAP (also known as the static channel assignment problem) has applica-

tions in many types of wireless communication networks such as mobile phones, TV 

broadcasting, radio and military operations. This problem began through radio waves 

in the late 1800s, which was introduced in [111]. After that, the importance of this 

technology grew as a result of the increase in the number of wireless applications in 

the beginning of the 1990s. Since then, a variety of solution models and techniques 

for variants of the static FAP have been suggested.  

More recently, the literature on the static FAP has increased rapidly. This reflects the 

rapid growth of implementation of satellite communication projects and wireless mo-

bile phone networks. Moreover, important applications of this problem such as mili-

tary communication and TV broadcasting push the wheel of research quickly. These 

different applications lead to different models and different instances. Nevertheless, 

all of them have two common features: a set of requests must be assigned frequencies, 

and interference occurs when frequencies that are close to each other on the spectrum 

are assigned to two requests which are linked by a constraint [3].  

In the literature, variants of the static FAP were solved using a variety of heuristic 

algorithms such as tabu search [15, 145], general network algorithm [16], genetic al-

gorithm [94], potential reduction [151], nonlinear approach [150], evolutionary search 

[34], simulated annealing [145], branch and cut algorithm [1], self-organizing neural 

network approach [138] and dynamic programming algorithm [101]. Some of these 

algorithms were applied to the same static FAP datasets considered in this study. 

2.3 The Graph Colouring Problem     

The graph colouring problem (GCP) is a well-known and widely studied classical op-

timization problem which has many practical applications. In the literature, the GCP 

has been solved using a variety of algorithms (see e.g. [30, 49, 56]). The aim of this 

section is to introduce this type of problem and to show the relationship between the 

GCP and the static FAP.  
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The GCP can be described as follows: given a set of vertices V and a set of edges E, 

the objective is to allocate a colour to each vertex in such a way that the minimum 

number of colours is used and no adjacent vertices have the same colour. The mini-

mum number of colours to feasibly colour a graph is known as the chromatic number.  

The relationship between the static FAP and the GCP was discussed in [35, 83], 

which showed that the static FAP is equivalent to a generalization of the GCP. In or-

der to illustrate how the static FAP can be modelled as the GCP, Figure 2.1 presents a 

sample of a static FAP instance which contains 14 requests (denoted as  𝑟𝑖 , i = 1, … , 

14), 3 frequencies (denoted as  𝑓1,  𝑓2 and  𝑓3) and a set of constraints.   

 

 

 

 

 

 

Figure 2.1: A sample of a static FAP instance modelled as a GCP. 

In Figure 2.1, each colour represents a frequency and each vertex represents a request. 

The edges show bidirectional and interference constraints between the requests. For 

example, there is a bidirectional constraint between 𝑟1 and  𝑟2 , and an interference 

constraint between 𝑟2 and  𝑟3. An edge joining vertices means that the requests associ-

ated to those vertices should be assigned frequencies with a certain distance apart. 

This is similar to the constraints of the GCP (with frequencies viewed as colours).  

As a result of this relationship, several existing solution methods for the GCP can also 

be used to solve the static FAP [131] such as TS in [87], a heuristic algorithm origi-

nally developed for the k-colouring problem (KCP)1 in [123], and a stochastic local 

search algorithm (a generalization of a local search algorithm) in [30]. In fact, this 

thesis applies a number of techniques for the GCP in the literature. One of these is the 

                                                           
1 The KCP can be defined as colouring all vertices in a graph with K colours such that the total weight on the edges joining 
vertices with the same colour is minimized. 
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recursive largest first (RLF) algorithm, which was proposed in [104]. The RLF algo-

rithm generates a solution as follows: first, a colour is selected, then vertices are se-

quentially added to this colour until no more can be added feasibly. After that, a dif-

ferent colour is selected to colour as many remaining vertices as possible. This pro-

cess is repeated until all vertices are coloured. In this study, RLF is hybridised with 

ACO to improve its performance and makes it different from other ACO implementa-

tions for the static FAP in the literature. Moreover, a trail1 definition of ACO for the 

GCP in [49] is also applied in our ACO algorithm for solving the static FAP (see Sec-

tion 4.2.4). Furthermore, the cost function definition of ACO for the GCP in [49] and 

the solution space definition of TS for the GCP in [87] are used in our TS algorithm 

for solving the static FAP.  

2.4 Tabu Search  

Tabu search (TS) is an extension to local search that allows the search to escape from 

local optima. TS was proposed in [71] as a general meta-heuristic algorithm to solve 

difficult combinatorial problems. This algorithm has been widely used with much 

success on a large variety of problems. Therefore, over the last few decades, hundreds 

of researchers have implemented TS for a variety of combinatorial problems such as 

[75,120, 130,149]. TS usually finds solutions that are close to the optimal solution, if 

not the optimal, making it an extremely popular heuristic algorithm. 

Built on the idea of steepest descent, TS starts from an initial solution, which may be 

constructed either randomly or using a greedy heuristic. Then, one of the neighbour 

solutions (normally the best one) is accepted as the new solution. Unlike steepest de-

scent, TS may accept a neighbour which is worse than the current solution. This may 

lead to the search cycling through a small group of solutions. Hence, the tabu list is 

used as a memory structure to record previously visited solutions and to ensure that 

the search does not return to them. Sometimes, the tabu list is too restrictive by for-

bidding some attractive moves even when there is no harm of cycling. Therefore, it is 

essential to use the aspiration criteria to escape from this situation by allowing some 

neighbours in the tabu list to be accepted when that move leads to a better result than 

the best result so far. More complicated aspiration criteria in the literature have been 

proposed and successfully implemented, but are not popular (see e.g. [36, 88]). Unlike 

                                                           
1 A pheromone trail reflects how good a move is based on the history of successful moves. 
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other meta-heuristic algorithms such as ACO, TS requires relatively few parameters. 

The key parameters are the length of the tabu list and the total number of iterations. 

For more information about TS, the reader is referred to [74, 75].  

2.4.1 Tabu Search for the Static FAP   

The static FAP is one of the problems which have been solved in several studies using 

TS. To the best of my knowledge, only two papers [15, 145] applied TS to the same 

static FAP datasets considered in this study (CELAR and GRAPH). In this section, 

these two papers and others that use TS for different static FAP datasets are discussed. 

The MO-FAP and the MS-FAP (variants of the static FAP, see Section 1.4.1) were 

solved in [15] using TS. The solution space was defined as the set of solutions which 

satisfy pre-assignment and domain constraints, which means interference and bidirec-

tional constraints are relaxed. This solution space creates a sub-problem: minimizing 

the number of violations with a fixed number of used frequencies. TS is used to re-

duce the number of violations using the best neighbourhood move in each iteration. If 

a feasible solution is found, then the number of used frequencies is reduced, which 

may lead to violations. TS is then used again to reduce the number of violations. This 

process is repeated until one of the stopping criteria is satisfied. 

This TS algorithm requires three parameters: the tabu tenure, the patience parameter 

and the ratio parameter. The tabu tenure is the number of iterations for which a move 

stays on the tabu list. Although the authors stressed the importance of the tabu tenure, 

they did not state the value they actually used. The patience parameter is defined as 

the number of iterations in this algorithm. The ratio parameter (N) is used to reduce 

the search space to be more efficient. Therefore, this parameter can be seen as a way 

to restrict a neighbourhood by considering only the set of requests which contribute to 

the violations by at least N% of the maximum number of violations. To clarify the 

ratio parameter, consider Example 2.1.  

Example 2.1:  

Consider a static FAP instance which contains 6 requests and the ratio parame-

ter (N) is used to recommend some requests as good candidates to be re-

assigned to different frequencies. After selecting a value for the ratio parame-

ter, only the requests which contribute to the violations by at least N % of the 
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maximum number of violations are considered. Table 2.1 gives the number of 

violations for each request. 

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 
       

Number of violations 8 10 6 0 4 7 

Table 2.1: Example of the ratio parameter. 

Different values of the ratio parameter suggest different groups of requests to 

sample as follows:  

 If  𝑁 = 100, then only the requests with the maximum number of viola-

tions are considered, which is request  𝑟2. 

 If  𝑁 = 70, then the requests with at least 70% of the maximum number of 

violations are considered, which are  𝑟1, 𝑟2 and 𝑟6 . 

 If  𝑁 = 60, then the requests with at least 60% of the maximum number of 

violations are considered, which are 𝑟1, 𝑟2, 𝑟3 and 𝑟6 .  

 If  𝑁 = 0, then all requests are considered.                                         

For each selected request, all possible moves are attempted. Any prohibited moves, 

i.e. those on the tabu list, are excluded unless they satisfy the aspiration criteria. The 

cost function is the number of violated constraints. Another technique, called con-

straint variation, is also used in their work. The concept of this technique is to start 

solving the problem by considering only a subset of the constraints in order to make it 

easier to be solved. Then, other constraints are added gradually until all of the con-

straints are considered.  

The authors found in [15] that cycling may occur and the same request may cycle be-

tween different frequencies despite the tabu list. In order to avoid this problem, they 

suggested using another tabu list based on frequencies, meaning a request cannot be 

re-assigned to any frequency for a stated number of iterations. This may make all the 

possible moves tabu. In this case, the neighbourhood is extended by decreasing the 

ratio parameter by 20. If that does not help, then it is decreased by a further 20. (For 

example, if the initial value of N is 100, it reduces to N = 80, and then N = 60). If that 

still does not help, then it is decreased to zero.  

The authors also found in [15] that the TS algorithm is very poor in terms of minimiz-

ing the number of used frequencies for a feasible solution. Therefore, they presented a 
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new method to generate an initial solution using the starting point selection strategy. 

The main aim of this strategy is to start with the minimum possible number of fre-

quencies even if that leads to an infeasible solution with a high number of violations. 

Since there are two frequencies that are available in all domains in the considered in-

stances, it is possible to assign all requests to these two frequencies. The stopping cri-

teria in [15] are based on two conditions: when it reaches an optimal solution (if 

known), or when the number of iterations reaches the patience parameter.  

The performance of TS in [15] was compared with the performance of the random 

search (RS) algorithm and the general network algorithm (GENET) in [16]. It was 

found that TS achieved the optimal solutions in a reasonable time for 5 out of 6 in-

stances of the CELAR dataset. On the other hand, it was found that RS achieved fea-

sible solutions quickly for some instances, whereas TS was better on more difficult 

instances, but GENET was the fastest.  

The MO-FAP, the MS-FAP and the MI-FAP (variants of the static FAP, see Section 

1.4.1) were solved using TS, simulated annealing (SA) and variable-depth search in 

[145]. The differences between TS in [145] and [15] are the relaxation of the interfer-

ence constraints and the use of a back-tracking mechanism, which was proposed in 

[116]. The main concept of this mechanism is that when the algorithm could not im-

prove the quality of the solution for a large number of iterations, the search re-starts 

from the best found solution. The performance of TS for the MO-FAP in [145] is 

slightly better compared with SA and variable-depth search. However, TS for the MI-

FAP was abandoned due to poor performance. On the other hand, variable-depth 

search was the fastest in [145].  

The static FAP was solved using TS in [85] using a dataset provided by the French 

national research centre for telecommunications. This dataset is not the same as either 

CELAR or GRAPH and its source was not specified (hence, it is not considered in 

this thesis). Here, the same solution space in [15] and hence the same sub-problem are 

considered. An initial solution was randomly generated for TS in [85] and improved 

using the standard local search. After that, a randomly selected request is re-assigned 

to a new frequency. The main technique used in [85] was that when any moves have 

been accepted more frequently than expected, these moves are prohibited for some 

time to diversify the search. The performance of TS in [85] was compared with con-
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straint programming, graph colouring algorithm and SA. It was found that TS per-

formed similarly to SA and better than the others. Additionally, TS proved quicker on 

most of the instances, but was markedly slower on the more complicated instances.  

The reactive tabu search (RTS) algorithm is an extension of TS, which was used in 

[78] to solve the static FAP. The key improvement of RTS is adapting the tabu list 

size to properties of the optimization problem. If it seems that the search is cycling, 

then the tabu tenure is increased. It was found in [78] that RTS performed worse with 

long term memory (which is used to count the number of times each move is selected 

and to ensure that moves that are selected too frequently are penalized) than without 

it. The reason behind that is using the long term memory also increases the tabu ten-

ure for popular moves, which then over-constrains the search space. Overall, RTS 

improved the performance of TS as shown in [78].   

Two algorithms, namely TS and local search (LS), were proposed to solve the static 

FAP with polarization (FAPP) in [63]. The FAPP is different from the static FAP 

since polarities need to be assigned to each request and frequencies. Additional con-

straints govern how these polarities should be assigned. The dataset which was used 

in their study is based on the topic of the 2001 international challenge organized by 

the French operations research society ROADEF in collaboration with CELAR. Some 

techniques were used to reduce the size of the search space such as an adaptive jump-

ing procedure (AJP) and filtering pre-processing.  

The AJP is a diversification technique used to overcome the problem of being trapped 

in a suboptimal area of the search space. AJP is based on two components, which are 

LS and the jumping operator. The role of the jumping operator is to move from the 

current position in the search space to a new position by choosing randomly a fixed 

proportion of the requests and changing their frequencies randomly. The size of the 

jump can be changed based on the history of the search process. AJP is operated peri-

odically during the search and each time, there are three possible cases. In the first 

case, when the cost of the current solution is the same as the best solution, then it is 

necessary to widen the search by increasing the jumping operator. In the second case, 

if the cost is worse than the best solution, the process is jumping too far, so the jump-

ing operator needs to be decreased. In the last case, when the solution has been im-

proved, then the jumping operator remains the same and the new solution is stored as 
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the best solution so far. AJP stops as soon as the search achieves the optimal solution 

(if known) or if it achieves the maximum number of iterations. 

Additionally, the filtering pre-processing was used to reduce the size of the search 

space by eliminating some frequencies. These frequencies are deleted if it is known 

that these do not belong to any solution which satisfies all constraints. Such deletion 

is done using a constraint programming technique called arc-consistency [10,113]. It 

was found that TS for the FAPP in [63] achieved the best known feasible solutions for 

all the instances of the ROADEF Challenge 2001.  

An alternative TS algorithm for the static FAP was introduced in [86] which has sev-

eral features. These include a candidate list strategy, bidirectional constraints handling 

strategy, incremental evaluation and dynamic tabu tenure. The search space in [86] 

relaxes some constraints. The static FAP dataset in [86] was provided by the French 

national research centre for telecommunications. 

The candidate list strategy is a well-known strategy which aims to limit neighbours 

through updating a list that contains the best moves for requests that are currently in-

volved in violations, which reduces the run time. The bidirectional constraints han-

dling strategy aims to find solutions that satisfy the bidirectional constraints (see 

Equation 1.1) and ensure they are satisfied throughout the search. Since these con-

straints are always satisfied, they can be ignored in the cost function (which counts 

the number of violations). As a result, requests can be considered as pairs (instead of 

individually) based on the bidirectional constraints. This leads to a reduction in the 

size of the search space. Moreover, since the number of neighbours considered might 

be very large, a fast neighbour evaluation was implemented in [86] using an incre-

mental technique proposed in [61]. This technique aims to evaluate each move by 

considering only the constraints affected by this move. Moreover, a dynamic tabu 

tenure was applied in [86], where the tabu tenure is adjusted during the search accord-

ing to the size of the candidate list. Additionally, too large or small tabu tenures are 

avoided by introducing maximum and minimum bounds.  

The performance of TS in [86] was compared with other algorithms such as constraint 

programming (CP), graph colouring algorithm (GCA) and simulated annealing (SA). 

It was found that TS and SA performed better than CP and GCA, while TS performed 

better than SA.  
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It was found in [155] that TS is one of the best algorithms for the static FAP in terms 

of solution quality, but not in run time. Hence, an improved TS algorithm was intro-

duced in [155] to improve the run time of this algorithm. One of the factors that help 

to speed up TS is the way an initial solution is constructed. Therefore, it was found in 

[155] that a high quality initial solution helps the search find good solutions faster. 

Moreover, a candidate list strategy was also used in [155] to speed up the search. One 

of the ideas for speeding up the search is that there is no need to re-calculate the cost 

function at each iteration. Therefore, after the cost function of the initial solution was 

calculated, it needed only to be updated by considering the constraints affected by the 

new move. Also, a single-frequency violation technique was used in [155] to record 

the violations in order to make the search efficient. Using the single-frequency viola-

tion technique with other techniques to improve the run time of the TS algorithm in 

[155], a solution was obtained in a high speed compared with other algorithms and 

had almost the same quality as the solutions which have been found in earlier work. 

The heuristic manipulation technique (HMT) was used in combination with TS to 

solve the static FAP in [114]. The key idea of HMT is to change the search space by 

creating artificial constraints based on the information provided by TS. Hence, during 

TS implementation, common features of high quality solutions are observed. In par-

ticular, requests that tend to be assigned to different frequencies in good solutions are 

recorded. Artificial constraints are then added to the original problem to force these 

requests to be allocated to different frequencies. However, these artificial constraints 

may lead to suboptimal solutions. Hence, artificial constraints are only included for a 

certain period of time and can be replaced by others or removed. It was found in [114] 

that HMT improved the performance of TS. Moreover, HMT is not only applicable to 

TS for the static FAP, but it can be applied to other algorithms and other problems.   

2.4.2 Tabu Search for Other Problems  

TS has been implemented successfully on a wide range of problems such as facility 

location problems [5], scheduling problems [117, 153], traveling salesman problems 

[9] and vehicle routing problems [7]. In this section, some of these problems which 

are most often solved by TS are chosen to give a flavour of the success of this algo-

rithm for solving other problems.   
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An examination timetabling problem was solved in [153] using TS associated with 

long term memory. This problem is categorised as an assignment problem and can 

also be considered as a GCP. The description of this problem can be given as follows: 

assume there are n exams and m timeslots, each exam has to be assigned to a timeslot 

to satisfy the given constraints while optimizing a given objective function. The long 

term memory records the number of times each exam is moved and prevents exams 

from being moved too frequently. The dataset which has been used to test the TS al-

gorithm in [153] was a real dataset taken from the University of Ottawa in Canada. It 

was found in [153] that TS performed better when using long term memory than 

without it. Furthermore, a nurse scheduling problem was solved in [39] using TS 

based on a dataset taken from the School Hospital at the University of Campinas in 

Brazil. The TS algorithm in [39] was found to be slightly better and required less run 

time than a genetic algorithm. 

A vehicle routing problem (VRP) with split deliveries was solved in [7] using TS. The 

VRP can be described as finding the shortest routes for vehicles to serve a group of 

customers. In the split VRP, each customer can be visited by more than one vehicle, 

whereas in the classical VRP each customer is visited only once. It was found that the 

TS algorithm in [7] performed better than the heuristic algorithm suggested in [50].    

In general, TS has been successfully applied to solve a large number of problems, but 

many of these are beyond the scope of this research. For more information, the reader 

is referred to several publications [68, 75, 125].  

2.4.3 Summary of the Tabu Search Literature Review  

It can be seen from the literature that there are several motivations for selecting TS as 

one of the heuristic algorithms considered in this study. One of these is that TS is a 

flexible meta-heuristic algorithm which has been applied successfully to a wide range 

of problems, including the static FAP, where TS shows competitive performance 

compared with other algorithms in the literature. To the best of my knowledge, there 

are only two published papers [15, 145] that applied TS for solving the static FAP 

using the datasets considered in this thesis. The TS algorithms in [15, 145] were una-

ble to find the optimal solutions in some instances of the static FAP. Hence, it is inter-

esting to investigate whether we can improve the performance of TS using novel and 

existing techniques. By analysing the literature of TS, it can be found that there are 
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some interesting techniques when deciding to implement TS for the static FAP. One 

of these is attempting to create a feasible initial solution with high quality, which 

should lead to a more efficient solution method [155]. Another idea is using multiple 

neighbourhood structures, which make our TS algorithm more efficient and different 

from existing TS algorithms in the literature. These ideas and others are applied to 

design an improved TS algorithm in this thesis, which is described in more detail in 

Chapter 3.    

2.5 Ant Colony Optimization   

Ant colony optimization (ACO) is inherited from the process of ants seeking a short 

path between their colony and a source of food. In the 1940s, the first researcher who 

investigated the social behaviour of insects was Pierre-Paul Grassé [42]. He discov-

ered that these insects are able to react with indirect communication, which was called 

"significant stimuli", and can be divided into two main types: 

 Physical information, which belongs to the natural environment. 

 Local information, which belongs to the insects in that area.  

In 1992, ACO was proposed by Dorigo [40], where the aim was to find the shortest 

path between two given points in a graph. Therefore, ACO is considered a young me-

ta-heuristic compared with other algorithms such as tabu search, simulated annealing 

and evolutionary computation.  

ACO belongs to a class of constructive meta-heuristic algorithms. ACO can be 

viewed as a probabilistic greedy construction algorithm, where the probabilities are 

adjusted according to the results of previous constructions. ACO is based on a fixed 

number of ants, where each ant produces a solution. Each construction step is con-

trolled by two factors: the attractiveness (based on the constraints and the objective of 

a problem), and the pheromone trail level (based on the history of successful construc-

tion steps). After all ants complete their solutions, i.e. one generation is complete, 

then pheromone trails are updated by increasing the level of moves which lead to 

good solutions and decreasing the trail for moves leading to poor quality solutions. 

The updated pheromone trails guide ants in the following generations to produce bet-

ter solutions. The solution produced by each ant may be further improved by a local 

search.   
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It was found in [42] that the most successful variants of ACO are ant system (AS), 

max-min ant system (MMAS) and ant colony system (ACS). Different variants of 

ACO update the pheromone trail in different ways. AS is the basic ACO algorithm in 

which all ants provide trail updates. MMAS was proposed in [143] by making several 

changes to AS as follows: 

 The pheromone trail is updated by only the best ant. 

 The maximum and the minimum values of the pheromone are limited.  

ACS was proposed in [65] by making several changes to AS as follows: 

 The local pheromone update is executed for all ants after each construction step. 

The aim of that update is to diversify the search to produce different solutions.  

 An offline pheromone update is executed at the end of the construction process. 

At the end of each generation, this update is applied for only the best ant. 

Although ACO achieves good results, in some cases it is necessary to combine it with 

another meta-heuristic to achieve even better results. Combining ACO with other al-

gorithms was applied in several studies such as combining ACO with LS [127], with 

SA [14] and with GA [6].  

2.5.1 Ant Colony Optimization for the Static FAP  

A small number of researchers have applied ACO to the static FAP. However, to the 

best of my knowledge, there is only one published paper [109] that implemented ACO 

to solve the static FAP using the datasets considered in this thesis. This paper is dis-

cussed first, followed by other ACO algorithms for different datasets. 

A variant of ACO for the static FAP named ANTS was proposed in [109]. This algo-

rithm is an adaption of the original ant system (AS) proposed in [108]. The ANTS 

algorithm was constructed by adding several modifications to the original AS. One of 

these modifications was to change the probability formula of selecting each move. In 

order to avoid repeatedly constructing the same solution, a technique called stagnation 

avoidance, which evaluates each solution against the last k solutions produced by 

ANTS, is used. The trail was defined between each request and frequency and updat-

ed at each generation. Moreover, the solution produced by each ant was improved by 
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local search (LS). It was found in [109] that the performance of ANTS was good 

across many different data instances and the approach was robust.  

An extended ACO algorithm (originally designed for the GCP) was applied in [124] 

to solve the MO-FAP in a clustered mobile ad hoc network (MANET). The trail was 

defined between each request and frequency and used to determine the next construc-

tive step based on the probabilistic transition rule. Additionally, two different defini-

tions of the visibility were given: based on the degree of each request, i.e. the number 

of unallocated neighbours of that request, and based on the maximum number of fea-

sible frequencies. It was found in [124] that ACO showed competitive performance.   

The MS-FAP was solved in [115] using ANTS, which was proposed in [108] as a var-

iant of ACO. They fixed the available span to a high value and used ANTS to con-

struct a violation free solution. If a feasible solution is found, then the span of availa-

ble frequencies is decreased and ANTS is used again to find a new solution. The trail, 

defined between the requests and frequencies, reflects the quality of each move, and 

the visibility is defined as the number of feasible allocations for each request. Moreo-

ver, LS was used to improve the performance of ANTS. It was found in [115] that the 

performance of the ANTS algorithm was competitive compared with other algorithms 

described in [137, 152]. 

An ACO algorithm for the static FAP was presented in [107] using a real dataset 

based on the global system for mobile (GSM) network. GSM is a digital mobile tele-

phone system that is widely used and considered as a second generation system. GSM 

uses a variety of time division multiple access and is one of the most widely used of 

the digital wireless telephony technologies. ACO in [107] is a MMAS, where the trail 

was defined between requests and frequencies. It was found in [107] that this algo-

rithm did not perform better than an evolutionary algorithm.  

2.5.2 Ant Colony Optimization for Other Problems 

ACO has attracted many researchers to develop many models to successfully solve a 

large number of optimization problems such as multi objective optimization [93], dy-

namic optimization [80], stochastic problems [82], continuous and mixed-variable 

optimization [139, 140], discrete optimization [44], vehicle routing problems [19], 

traveling salesman problems, scheduling problems, facility location problems, trans-
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portation problems, set covering problems and network flow problems [32]. In this 

section, the problems that are most often solved by the ACO algorithm are chosen to 

show the success of this algorithm for other problems.   

One of the most frequently solved problems by ACO is the traveling salesman prob-

lem (TSP). In this problem, a salesman has to visit a set of cities and the objective is 

to find the shortest route to visit all the cities only once and return to the first position. 

The TSP was the first problem to be solved using ACO in [46], where a novel heuris-

tic algorithm called ant system (AS) was proposed. This was followed by many stud-

ies aiming to solve the TSP using different variations of ACO. One of these was pro-

posed in [45], which was based on a process called the ant system paradigm (ASP). 

The main ideas of that paradigm were positive feedback, distributed computation and 

the use of a constructive greedy heuristic. The purpose of the positive feedback is to 

speed up the process of finding solutions, the distributed computation is to avoid 

premature convergence and the greedy heuristic helps find high quality solutions. 

ASP was applied in [45] to solve other problems such as quadratic assignment prob-

lems, job-shop scheduling problems and asymmetric travelling salesman problems. 

Three algorithms were implemented in [45] using the ASP to study their strengths and 

weaknesses. These algorithms were ant-cycle, ant-density and ant-quantity. The dif-

ference between these algorithms is that ant-cycle uses global information, that is, 

ants lay a pheromone trail, which reflects how good a move is based on the history of 

successful moves, whereas ant-density and ant-quantity use local information. Also, 

the difference between the ant-density and the ant-quantity algorithms is the method 

for updating the trail. From the experiments, ant-density and ant-quantity obtained 

worse results than ant-cycle because of the kind of information which was used to 

direct the ants. It was found in [45] that ASP was able to find good solutions even for 

difficult problems. ASP was considered a very promising algorithm and proved to be 

as good as TS and superior to SA.  

An ant colony system (ACS) was applied in [41] to solve the TSP. It was found that 

ACS performed better compared with other heuristic algorithms such as SA and evo-

lutionary computation. More details of applying the ACO algorithm to solve the TSP 

can be found in [142].    
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The ant local search (ALS) algorithm was proposed in [126] for solving the GCP. In 

this algorithm, each ant is a local search, rather than constructing an entire solution as 

is standard. A new technique was suggested to reduce the computational effort for 

each ant using greedy selection and trails. ALS was inspired from TS which has been 

proposed to solve the k-colouring problem (KCP). It was found in [126] that ALS 

achieved a competitive performance.  

A new ACO algorithm (called ANTCOL) was proposed in [89] to solve the KCP. The 

main contribution of the proposed algorithm was that each ant gives a colour to a sin-

gle vertex. Moreover, a trail system and a greedy force technique were used in this 

algorithm. In the trail system, several parameters such as the evaporation rate and the 

reinforcement value are set and different values of these parameters are compared. 

The greedy force technique is a method to remove conflicts which happen when two 

ants of the same colour are assigned to two adjacent vertices. ANTCOL was com-

pared with other algorithms, namely TS, DSATUR and a hybrid genetic algorithm. It 

was found in [89] that ANTCOL was much better that DSATUR, whereas TS and the 

hybrid genetic algorithm were much better than ANTCOL.  

The GCP was solved in [58] using a modified ACO which was built on two main ba-

ses, namely MMAS and LS. The modified ACO follows the MMAS structure and 

involves a new probabilistic decision rule and uses LS to improve the performance. 

This modified algorithm was called the max-min ant system algorithm for the graph 

colouring problem (MMGC). It was found in [58] that MMGC did not achieve the 

optimal solutions in most cases, but did produce superior results compared with the 

results of ANTCOL.     

2.5.3 Summary of the Ant Colony Optimization Literature Review  

Although ACO has been used successfully to solve various problems, it can be seen 

from the literature that ACO is not a popular algorithm for solving the static FAP as 

there are only few pieces of research into this area. To the best of my knowledge, 

there is only one published paper [109] that implemented ACO to solve the static FAP 

using the datasets considered in this thesis. Moreover, the published results did not 

show that ACO is one of the best algorithms for such a problem. Additionally, it is 

often a relatively time consuming algorithm, which may make it less appropriate for 

the dynamic FAP. However, it is interesting to include this algorithm in this thesis to 
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investigate whether it is possible to improve its performance using several novel and 

existing techniques. Some of the key factors in producing a high quality ACO imple-

mentation are investigated such as the visibility definition, trail definition and opti-

mizing numerous parameters. Additionally, in order to improve the performance of 

ACO, the concept of a well-known graph colouring algorithm, namely recursive larg-

est first, is combined with our ACO algorithm. 

2.6 Hyper Heuristics  

In 1997, the term hyper heuristic (HH) was proposed in [37]. However, the original 

concept of HH was discovered in the 1960s [60]. Since 2001, the term and the con-

cept of HH have been seen clearly in the literature. A hyper heuristic is an algorithm 

that combines multiple heuristics. Therefore, the concept of HH is based on the idea 

that, as each heuristic has strengths and weaknesses, combining several heuristics 

might lead to better performance. These heuristics, which are managed by the HH, are 

called low level heuristics (LLHs). The criteria for choosing one of these at each step 

of the HH is usually problem independent. Hence, HH is an iterative process of two 

stages: heuristic selection and move acceptance. The main difference between HH and 

meta-heuristics is that the implementation of HH always searches within the search 

space of the heuristics, whereas meta-heuristics search within the search space of the 

problem. 

HH was classified in [22] into two main categories: heuristic selection methodology 

and heuristic generation methodology. The first methodology uses combinations of 

pre-defined heuristics, while the second one generates new heuristic algorithms. Each 

category is classified into two further categories called construction heuristics and 

perturbation heuristics. The former constructs new solutions from scratch and the lat-

ter modifies an existing solution. Moreover, the source of feedback from the search 

process can be divided into three classifications: online learning hyper heuristics, of-

fline learning hyper heuristics and no-learning hyper heuristics. The first one learns 

while solving a problem, whereas the second one is a method which learns from a set 

of training instances, which can be applied to unseen instances. The third one never 

uses information from the search process. 
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It was found in [122] that acceptance criteria significantly affected the performance of 

HH compared with the heuristic selection mechanisms. Therefore, several acceptance 

criteria were compared in [122], namely all moves (AM), only improving (OI), im-

proving and equal (IE), great deluge (GD) and Monte Carlo (MC). AM accepts all 

moves, while OI accepts only improving moves and IE rejects only worse moves. GD 

accepts all moves which are better than or equal to a level computed at each step dur-

ing the search. MC accepts all improving moves while non-improving moves are ac-

cepted based on a dynamically changing probability function; if no improvement can 

be achieved over a given number of iterations, then the probability is increased. It was 

found in [122] that GD, MC and IE were the best acceptance criteria. 

Moreover, four different frameworks of HH were compared in [122], three of which 

were proposed in [122]. These frameworks used two different types of heuristics, 

namely mutational heuristics and hill climbers. The hill climbers aim to produce a 

better solution, while the mutational heuristics do not normally produce a better solu-

tion because they are based on random perturbation. Each framework has a different 

way of using the mutational heuristics and the hill climbers. The first framework was 

a traditional one where at each step a mutational heuristic or a hill climber is chosen. 

In the other three frameworks, a hill climber is used separately to improve the diversi-

ty provided by a mutational heuristic. The second framework selects either a muta-

tional heuristic or a hill climber, and then a predefined hill climber is implemented to 

the solution. Hence, this means the hill climber is used at each step during the search. 

The third framework always selects a mutational heuristic before a predefined hill 

climber is used. The final framework uses two hyper heuristics, one for the mutational 

heuristics and one for the hill climbers. It was found in [122] that each framework 

performed differently and the third framework performed the best. 

2.6.1 Hyper Heuristics for the Static FAP 

Few researchers have used HH to solve the static FAP. To the best of my knowledge, 

there are no published papers using HH to solve this problem using the datasets con-

sidered in this thesis. Hence, this is the first attempt to solve such datasets using HH.  

The MS-FAP was solved in [96] using a HH which uses a local search based meta-

heuristic called the great deluge algorithm. The initial solution is produced by a 

greedy constructive heuristic and then low level heuristics (LLHs) are used to im-



Chapter 2. Literature Review 

 

35 
 

prove the quality of the solution. The selection of LLHs is based on the choice func-

tion which ranks each LLH based on the quality of the solution provided by each of 

them. Each move of a LLH produces a new solution, which is accepted or rejected by 

the HH. This decision is made by comparing the objective function with a parameter 

called Level. This parameter is set during the initialization stage and will be reduced 

slowly by another parameter called DownRate at each iteration. Therefore, the per-

formance of this algorithm is based on the values of the two parameters, which are the 

starting value of Level and the selected value of DownRate. It was found in [96] that 

HH showed promising performance especially in the limited computational time.  

An alternative HH algorithm for the MS-FAP was proposed in [97]. Simple LLHs 

were used such as delete, add and swap, which are easy, fast and robust. At each itera-

tion, one of the LLHs is randomly selected, then the solution from the selected LLH is 

accepted by the HH based on one of the following four different acceptance criteria: 

all moves (AM), only improving (OI), Monte Carlo (MC) (as described earlier), and 

record-to-record travel (RRT), which is a variant of the great deluge acceptance crite-

ria proposed in [51]. In the RRT criteria, the possibility of acceptance is increased by 

adding a small value, called Deviation, to the cost of the current solution. It was found 

in [51] that, among the four acceptance criteria, HH performed the best when the RRT 

acceptance criterion was used.   

A parallel hyper heuristic (PHH) algorithm for the static FAP was proposed in [135]. 

This algorithm combines several LLHs by allocating the best performing LLHs more 

computation resources. 30 different configurations of LLHs were applied in [135]. 

Moreover, two HH algorithms with different choice functions and probability selec-

tions strategies are compared. The first HH algorithm evaluates the improvement due 

to each configuration of LLH. The second HH algorithm evaluates the performance of 

each LLH when operated in parallel with another. It was found in [135] that the sec-

ond HH algorithm provided slightly better results.  

A proposed algorithm for the static FAP in [29] is based on PHH and uses a set of 

meta-heuristics as LLHs. These meta-heuristics are local search, genetic algorithm, 

variable neighbourhood search, greedy randomized adaptive search procedure, scatter 

search and artificial bee colony. PHH manages the LLHs using a probability vector, 

which reflects the number of times each LLH is selected. Moreover, a minimum limit 
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of the probability of selecting each LLH is set to make sure no LLH is ignored. In the 

beginning, the LLHs are expected to be chosen homogeneously. After a period of 

time, the best solution obtained by each meta-heuristic is compared and the probabil-

ity vector is updated with meta-heuristics producing the best solutions being rewarded 

with more computational resources. This algorithm achieved the best results at that 

time. Moreover, this algorithm was competitive in terms of the run time compared 

with other results in the literature.   

2.6.2 Hyper Heuristics for Other Problems   

HH has attracted the attention of researchers in a wide range of areas including opera-

tional research, computer science and artificial intelligence. This algorithm is self-

adaptive, which means that it can be applied to a wide range of optimization problem 

without the need for heavy modification. Hence, HH have been used to solve a variety 

of problems such as bin packing problems, job shop scheduling problems, traveling 

salesman problems and vehicle routing problems [23]. Moreover, HH demonstrates 

the ability to achieve extremely good and robust results on a wide range of problems. 

In this section, some of the problems which are most often solved by HH are chosen 

to give a flavour of the success of this algorithm for other problems.   

The examination timetabling problem was solved by HH in [95], which aims to de-

sign a generic system that is able to select the most appropriate heuristics for the giv-

en problems. A tabu list was used to control the selection of the LLHs by making the 

most often applied LLHs tabu to allow other LLHs to be applied. Moreover, several 

techniques were applied to choose the LLHs: considering all heuristics, considering 

only non-tabu LLHs and considering LLHs which lead to improved solutions only. It 

was found that the HH could not beat the best results in the literature. However, the 

aim of [95] was not to beat the best solution, but to present the ability of the HH to 

create a good solution across a wide range of problems. Moreover, this algorithm can 

be applied easily to other problems by only changing the LLHs and the evaluation 

function. 

The course and exam timetabling problem was solved in [25] using HH which is 

based on graph colouring heuristics and TS (as a high level search algorithm). The 

aim of this algorithm was to produce a good sequence of LLHs. Moreover, the study 

in [25] focused on the two search spaces: the heuristic space and the solution space. It 
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was found in [25] that HH performed better when a larger number of LLHs were 

used. However, this increased the search space size, which led to an increase in the 

run time. In general, HH achieved competitive results.  

2.6.3 Summary of the Hyper Heuristics Literature Review  

It can be seen that HH is increasingly popular and has been used to solve a variety of 

optimization problems. Furthermore, this algorithm generally gives promising results 

on a wide range of optimization problems compared with other algorithms. On the 

other hand, only few researchers have implemented HH for the static FAP. Moreover, 

to the best of my knowledge, there are no published papers applying a HH to solve the 

static FAP using the datasets considered in this thesis (CELAR and GRAPH). Hence, 

this is the first attempt to solve such datasets using a HH.  

2.7 The Dynamic Frequency Assignment Problem  

Up until recently, research has focused on static problems, where all the data is known 

in advance, but many real-life problems can be considered as dynamic problems. Re-

search is growing more popular into dynamic variants of optimization problems such 

as vehicle routing problems [67, 69, 128], where new customers become known dur-

ing the working day; job shop scheduling problems [121], where unpredictable real-

time events such as machine failure and the arrival of new jobs may cause an existing 

schedule to no longer be feasible; the bin packing problem [31, 79]; scheduling prob-

lems [57] and graph colouring problems [148]. The major difficulties of dynamic 

problems come from ignorance of how the problem is going to change in the future. 

In the dynamic FAP, new requests become known over a period of time and frequen-

cies need to be assigned to those requests effectively and promptly. Hence, this prob-

lem can be seen as a set of sub-problems to be considered consecutively. In the litera-

ture, few pieces of research discussed the dynamic FAP. This includes [54], which 

concerned the deployment of a Hertzian communication network for military applica-

tions provided by Center Electronique de L’armement. Requests and frequencies are 

considered as pairs based on the bidirectional constraints (see Equation 1.1). The dy-

namic FAP was divided into three underlying problems, namely the static problem, 

the online problem and the repair problem, each of which is solved using a different 

solution phase. The static problem is solved in the beginning using the initial solution 
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phase, which contains only the first sub-problem. The online problem contains sub-

problems, which become known and are solved consecutively using the online as-

signment phase. In case a sub-problem could not be solved by this phase, then this 

problem will be solved using the repair phase. This phase aims to solve this problem 

by re-assigning some requests that have already been previously assigned.  

The approach to solve the dynamic FAP in [54] was extended and discussed in more 

detail in [55]. In terms of the initial solution phase, the static problem was solved us-

ing a classical greedy algorithm called the minimum frequency greedy algorithm. If 

any request could not be assigned, then this approach applies the consistent neigh-

bourhood in tabu search (CN-tabu), which was presented in [147]. This algorithm is a 

hybrid tabu search algorithm which aims to feasibly assign a set of partial requests 

under certain constraints in order to find a complete feasible solution. Hence, instead 

of dealing with complete infeasible solutions, it deals with incomplete feasible ones. 

The online problem is considered after solving the static problem. The minimum fre-

quency greedy algorithm is used to deal with every new sub-problem arriving dynam-

ically to the online assignment phase. Each sub-problem is solved without modifica-

tion of the previous decisions. Two strategies for selecting a feasible frequency were 

compared, namely the minimum feasible frequency or the most occupied one. For the 

minimum feasible frequency strategy, since the requests and frequencies are consid-

ered as pairs in [55], a pair of frequencies with the minimum highest value is selected 

(the highest value of a pair of frequencies is the larger one in the pair). In case of a tie, 

a pair with the minimum smallest value is chosen. These two strategies aim to maxim-

ize the number of unused frequencies. This allows more choices of frequencies for 

requests that will appear at later time periods.  

The repair phase is executed in case some requests in the online problem could not be 

feasibly assigned. The objective of this phase is to find a feasible solution with a min-

imum number of re-assigned requests. Changing frequencies which have been as-

signed previously is technically allowed. However, in practice this can be time con-

suming and takes up human resources. Therefore, the problem considered here states 

that changing frequencies of requests should be avoided unless no other means of 

finding a feasible solution exists. Two types of algorithms were applied and compared 

to solve the repair problem: the first type is based on CN-tabu only, while the second 
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type is based on branch and bound followed by CN-tabu, which is used only when 

branch and bound could not solve the repair problem within a given time period.  

Branch and bound is an exact algorithm which is used to solve the repair problem. It 

optimally assigns all the requests connected to the request currently being consid-

ered. During the search, the solution quality was evaluated according to the number of 

requests which have not been assigned to their original frequencies (called the number 

of repairs) and back-tracking is applied when a better solution cannot be produced. A 

disadvantage of this algorithm is that it can require a long run time. Therefore, the 

branch and bound is terminated after a fixed time period. Hence, there is no guarantee 

that a feasible solution will be found, and therefore CN-tabu is used to allow other 

changes to be considered. 

If branch and bound fails to solve the repair problem, CN-tabu is applied. First, CN-

tabu tries assigning each unassigned request to each available frequency and counts 

the number of violations. Then, the assignment that leads to the smallest number of 

violations is selected. After that, all clashing requests become unassigned.  

In order to prevent CN-tabu from cycling, requests that just became unassigned and 

their frequencies are added to the tabu list to prevent these frequencies from being re-

assigned back to these requests for a certain number of iterations using a dynamic ta-

bu tenure. Say a request 𝑟𝑖 and a frequency 𝑓𝑗  are added to the tabu list, then their dy-

namic tabu tenure is given by Formula 2.1.   

                   Dynamic tabu tenure (𝑟𝑖, 𝑓𝑗) = iter + 𝑓𝑟𝑒𝑞(𝑟𝑖, 𝑓𝑗)                                (2.1) 

where iter is the current number of iterations, and  𝑓𝑟𝑒𝑞(𝑟𝑖, 𝑓𝑗) is the number of times 

𝑓𝑗  has been  assigned to 𝑟𝑖 . To clarify CN-tabu, consider Example 2.2.  
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Example 2.2:  

Consider a dynamic FAP instance that consists of 6 requests and 3 frequencies 

(𝑓1 = 10, 𝑓2 = 15, 𝑓3 = 20). The constraints are given in Table 2.2. Note that 

the frequency that is assigned to request 𝑟𝑖 is denoted as 𝑓𝑟𝑖
 and a dash “-” 

means that a feasible assignment could not be found. 

Constraints 

|𝑓𝑟1
− 𝑓𝑟2

|  ≥  10       

|𝑓𝑟1
− 𝑓𝑟3

|  ≥  10  

|𝑓𝑟2
− 𝑓𝑟5

|  ≥  10  

|𝑓𝑟3
−  𝑓𝑟5

| ≥  10  

|𝑓𝑟5
−  𝑓𝑟6

|  ≥  10 

Table 2.2: The constraints considered in Example 2.2. 

An initial solution is given in Table 2.3, where there are 2 unassigned requests. 

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 

Assigned frequency 15 - - 10 10 20 

Table 2.3: An initial solution in Example 2.2. 

The number of violations after assigning each frequency to each unassigned 

request is given in Table 2.4.  

requests 
frequencies 

𝑓1 𝑓2 𝑓3 

𝑟2 2 2 1 

𝑟3 2 2 1 

Table 2.4: The number of violations after assigning the unassigned requests.  

The assignments with the smallest number of violations are 𝑓 𝑟2
= 20 and 

 𝑓 𝑟3
= 20. One of them is randomly selected, say 𝑓 𝑟2

= 20, and the clashing 

request 𝑟1 (due to |𝑓𝑟1
−  𝑓𝑟2

|  ≥  10) is unassigned as given in Table 2.5.  

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 

Assigned frequency - 20 - 10 10 20 

Table 2.5: The solution after assigning 𝑟2. 

After that, 𝑟1 and 𝑓2 are added to the tabu list with freq(𝑟1, 𝑓2) = 1 and iter = 1, 

so the dynamic tabu tenure is updated using Formula 2.1. Therefore, this as-

signment is tabu for the next two iterations. After that, the number of viola-

tions after assigning each frequency to each unassigned request is updated as 

shown in Table 2.6. 
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Request 
Frequency 

𝑓1 𝑓2 𝑓3 

𝑟1 0 1 1 

𝑟3 1 1 0 

Table 2.6: The number of violations after assigning the unassigned requests. 

The assignments with the smallest number of violations are 𝑓 𝑟1
= 10 and 

𝑓 𝑟3
= 20. One of these is chosen randomly, say 𝑓 𝑟1

= 10. The new solution is 

given in Table 2.7.  

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 

Assigned frequency 10 20 - 10 10 20 

Table 2.7: The solution after assigning 𝑟1. 

Nothing is made tabu as no requests are unassigned. Then, the number of vio-

lations after assigning each frequency to each unassigned request is updated as 

given in Table 2.8.  

Request 
Frequency 

𝑓1 𝑓2 𝑓3 

𝑟3 2 2 0 

Table 2.8: The number of violations after assigning the unassigned requests. 

The best assignment is 𝑓 𝑟3
= 20, which leads to a feasible solution as given in 

Table 2.9.  

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 

Assigned frequency 10 20 20 10 10 20 

Table 2.9: A feasible solution in Example 2.2. 

Based on the experiments in [55], it was found that the approach for the dynamic FAP 

performed better when the minimum feasible frequency strategy is applied in the 

online assignment phase than the most occupied strategy. Moreover, it was found in 

[55] that using the second type of repair phase (using branch and bound and CN-tabu) 

performed better than using the first one (using CN-tabu only). 

To sum up, it is found that the dynamic FAP has been studied in relatively few studies 

compared with the static FAP. Therefore, the dynamic FAP will be studied and solved 

in this thesis (see Chapter 6) using novel and existing techniques and compared with 

existing approaches in the literature.  
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2.8 Conclusions  

This chapter provided background of the problems and methodologies that are con-

sidered and investigated in this thesis. It concerns two main problems, namely the 

static and the dynamic FAPs. In terms of the number of publications of these prob-

lems in the literature, the static FAP has been studied more than the dynamic FAP, for 

which only few studies exist. Therefore, this warrants further study into the dynamic 

FAP, which appears to be an interesting and practical problem. Moreover, the rela-

tionship between the static FAP and the GCP has been discussed and reviewed in the 

literature. This relationship shows that the static FAP is a generalization of the GCP, 

which means many algorithms and techniques which have been used to solve the GCP 

can also be used to solve the static FAP.  

The literature showed several motivations to select the heuristic algorithms considered 

in this study, namely TS, ACO and HH. One of these motivations is that these heuris-

tic algorithms are very flexible and have been applied successfully to a variety of 

problems. These heuristic algorithms have been reviewed in this chapter by presenting 

how they were used to solve the static FAP and other problems. For the static FAP, it 

was found that TS is amongst the most popular solution method, whereas ACO is not 

very popular compared with the other two algorithms. However, all the three heuristic 

algorithms have proven track records of producing good quality solutions across a 

range of problems. To the best of my knowledge, there are only two published papers 

that implemented TS and one that implemented ACO to solve the static FAP on the 

datasets considered in this thesis, which are CELAR and GRAPH. On the other hand, 

no published papers apply HH to solve the static FAP on the datasets considered in 

this thesis. Finally, the dynamic FAP and existing approaches for this problem were 

reviewed.  
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Chapter 3  

Tabu Search for the Static FAP 

3.1 Introduction    

Tabu search (TS) is a modern meta-heuristic algorithm designed to solve difficult 

combinatorial optimization problems. This algorithm is an extension to local search 

that allows the search to escape from local optima. The main concepts of TS are ac-

cepting non-improving moves (i.e. changes made to a solution) and using a flexible 

memory called a tabu list to restrict the next choice of neighbour, thereby preventing 

the search from revisiting previously visited solutions. In order to implement TS for a 

particular problem, several decisions must be made such as how to define a solution 

space, a neighbourhood, a cost function, a tabu list and aspiration criteria.  

This algorithm has proved to be an efficient method to find a high quality solution for 

a variety of optimization problems (see e.g. [75]). However, existing TS algorithms in 

the literature are unable to find the optimal solutions in some instances of the static 

frequency assignment problem (FAP) considered in this study.  
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In this chapter, an improved TS algorithm is applied to solve the static FAP. This al-

gorithm is mainly designed to solve the minimum order FAP (MO-FAP) using several 

novel and existing techniques. One of the novel techniques is hybridising TS with 

multiple neighbourhood structures, one of which is used as a diversification tech-

nique. In contrast, existing TS algorithms for the static FAP in the literature imple-

mented only a single neighbourhood structure (see e.g. [15, 16, 86, 145]). Another 

novel technique is determining a lower bound on the number of frequencies that are 

required from each domain for a feasible solution to exist. These lower bounds are 

based on the underlying graph colouring model (see Section 3.2) and ensure that the 

search focuses on parts of the solution space that are likely to contain feasible solu-

tions. Additionally, this chapter investigates whether TS without significant changes 

can prove effective on other variants of the static FAP, namely the minimum span 

FAP (MS-FAP) and the minimum interference FAP (MI-FAP). This chapter focuses 

on the following research questions: 

 Is TS an effective solution method for the static FAP? 

 Is it beneficial to hybridise TS with multiple neighbourhood structures? 

 Can TS without significant changes be effective on different variants of the static 

FAP? 

This chapter is organised as follows: the next section explains how the underlying 

graph colouring model for the static FAP can be used to provide a lower bound on the 

number of frequencies that are required from each domain for a feasible solution to 

exist and how this information can be used to assist the search. In Section 3.3, an 

overview of the TS algorithm for solving the static FAP is given and Section 3.4 pre-

sents the main components of the TS algorithm. Results of this algorithm are given 

and discussed in Section 3.5 before this chapter finishes with conclusions.   

3.2 Graph Colouring Model for the Static FAP 

The graph colouring problem (GCP) for a graph G(V,E) consisting of |V | vertices and 

|E| edges involves allocating a colour to each vertex such that no adjacent vertices are 

in the same colour class and the number of colours is minimized. The GCP can be 

seen as an underlying model to the static FAP [83]. In other words, a static FAP in-

stance can be represented as a GCP by representing each request as a vertex, each fre-
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𝑟872 

Bidirectional constraint                                                      

Interference constraint  

Domain 1         

Domain 3         

𝑟871 

𝑟200 𝑟1 

𝑟899 

quency as a colour and each bidirectional or interference constraint as an edge joining 

the corresponding vertices.  

One useful concept of graph theory is the idea of cliques. A clique in a graph can be 

defined as a set of vertices in which each vertex is linked to all other vertices. A max-

imum clique is the largest among all cliques in the graph. Every vertex in a clique has 

to be allocated to a different colour in a feasible colouring. Therefore, the size (i.e. the 

number of vertices) of the maximum clique acts as a lower bound on the minimum 

number of colours in a GCP instance and, by extension, as a lower bound on the num-

ber of frequencies for a static FAP instance.  

A graph colouring representation of a static FAP instance may contain many cliques 

with different clique numbers. For instance, one of the cliques in the CELAR 01 in-

stance includes the requests  𝑟1,  𝑟200,  𝑟871,  𝑟872 and  𝑟899, which are linked to each 

other by either bidirectional or interference constraints as shown in Figure 3.1.  

 

 

 

 

 

 

 

Figure 3.1: An example of a clique in the CELAR 01 instance in the graph colouring model. 

Figure 3.1 shows 5 different requests that are linked to each other, hence 5 different 

frequencies are required to feasibly assign these requests. Additionally, the requests 

𝑟1,  𝑟200,  𝑟871 and 𝑟872 belong to domain 1, while request 𝑟899 belongs to domain 3. 

As these requests belong to different domains, the graph colouring model for each 

domain can be considered separately to calculate a lower bound on the number of fre-

quencies that is required from each domain. For example, the clique shown in Figure 

3.1 indicates that the minimum number of frequencies for domain 1 is at least 4. Also, 

at least 1 frequency is required from domain 3, because request 𝑟899 belongs to do-

main 3. In total, at least 5 different frequencies are required.  
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3.2.1 Computational Time of Lower Bounds 

This section considers the effect of the numbers of requests and constraints on the run 

time to calculate a lower bound of a static FAP instance based on the maximum 

clique. To assist the analysis, the density of a static FAP is defined by Formula 3.1. 

         𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑠𝑡𝑎𝑡𝑖𝑐 𝐹𝐴𝑃 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 
             (3.1)                   

where the maximum possible number of constraints can be calculated by Formula 3.2.  

               𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 =  
𝑁𝑅 (𝑁𝑅−1)

2
                   (3.2)                  

where NR is the number of requests. 

Experiments were conducted using randomly produced instances with the number of 

requests varied between 200 and 1,000; and the density varied between 0.05 and 0.4 

(i.e. 5% and 40%). A branch and bound algorithm in [17] is used to calculate the max-

imum clique size for each instance. The run times of this algorithm are shown in Ta-

ble 3.1.  

No. of 

requests 

Density 

0.05 0.10 0.20 0.30 0.40 

200 0.05 sec 0.09 sec 0.34 sec 1.50 sec 8.02 sec 

400 0.23 sec 0.76 sec 5.76 sec 46.57 sec 431.67 sec 

600 0.84 sec 3.35 sec 37.03 sec 390.38 sec 5,490.33 sec 

800 2.22 sec 10.12 sec 141.04 sec 1,880.53 sec 36,250.80 sec 

1,000 4.77 sec 25.05 sec 395.18 sec 6,748.14 sec 163,100.00 sec 

Table 3.1: Run times for finding the maximum clique size for different numbers of requests and values of density. 

 

Table 3.1 shows that increasing the problem density has a dramatic effect on run time. 

It can be seen that it required over 45 hours to find the maximum clique size of a 

problem with 1,000 requests and a density of 0.40.  

Figure 3.2 presents the relationship between the log of the run time versus the number 

of requests. 
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Figure 3.2: The relationship between the log of run time versus the number of requests. 
 

Figure 3.2 demonstrates an exponential increase in run time as the number of requests 

increases.  Table 3.2 shows the densities of the datasets considered in this thesis. 

Instance 
Variant of the 

static FAP 

Number of  

Requests 

Number of 

 constraints 

Max. number 

of constraints 
Density 

CELAR 01 MO-FAP 916 6,464 419,070        0.015425 

CELAR 02 MO-FAP 200 1,435 19,900        0.072111 

CELAR 03 MO-FAP 400 3,160 79,800        0.039599 

CELAR 04 MO-FAP 680 4,647 230,860        0.020129 

CELAR 11 MO-FAP 680 4,783 230,860        0.020718 

GRAPH 01 MO-FAP 200 1,334 19,900        0.067035 

GRAPH 02 MO-FAP 400 2,645 79,800        0.033145 

GRAPH 08 MO-FAP 680 4,437 230,860        0.019219 

GRAPH 09 MO-FAP 916 6,162 419,070        0.014704 

GRAPH 14 MO-FAP 916 5,554 419,070        0.013253 

CELAR 05 MS-FAP 400 2,998 79,800        0.037569 

GRAPH 03 MS-FAP 200 1,334 19,900        0.067035 

GRAPH 04 MS-FAP 400 2,644 79,800        0.033133 

GRAPH 10 MS-FAP 680 4,587 230,860        0.019869 

CELAR 06 MI-FAP 200 1,522 19,900        0.076482 

CELAR 07 MI-FAP 400 3,265 79,800        0.040915 

CELAR 08 MI-FAP 916 6,660 419,070        0.015892 

CELAR 09 MI-FAP 680 4,437 230,860        0.019219 

CELAR 10 MI-FAP 680 4,437 230,860        0.019219 

GRAPH 05 MI-FAP 200 1,334 19,900        0.067035 

GRAPH 06 MI-FAP 400 2,570 79,800        0.032206 

GRAPH 07 MI-FAP 400 2,570 79,800        0.032206 

GRAPH 11 MI-FAP 680 4,437 230,860        0.019219 

GRAPH 12 MI-FAP 680 4,697 230,860        0.020346 

GRAPH 13 MI-FAP 916 6,189 419,070        0.014768 

 Table 3.2: The maximum possible number of constraints and the density for the considered datasets. 

  

Table 3.2 shows that the densities of the datasets considered in this thesis varied be-

tween 0.013 and 0.076. For densities within this range, the maximum cliques can be 

determined quickly, generally taking less than 5 seconds for a problem with 1,000 

requests. For the considered datasets the larger datasets in terms of the number of re-
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quests tended to have a smaller density and vice versa. In practice, when a problem is 

given, the density can be calculated and then a decision made as to whether it is 

worthwhile calculating the clique sizes.   

3.2.2 Lower Bounds for the Static FAP  

A branch and bound algorithm in [17] is used to obtain the set of all maximum cliques 

for each domain within each instance. This concept can be used for all types of the 

static FAP except for the MI-FAP because the objective of this problem is different 

and allows all the frequencies to be used. Table 3.3 gives a lower bound on the num-

bers of frequencies that are required from each domain for a feasible solution to exist 

and a lower bound for the whole instance, and the time taken to calculate these lower 

bounds.  

Instance 
Variant of the 

static FAP 

Domain Whole 

instance 
Run time 

1 2 3 4 5 6 7 

CELAR 01 MO-FAP 10 9 10 4 4 7 2 12 1.50 sec 

CELAR 02 MO-FAP 10 0 10 0 0 0 2 14 0.02 sec 

CELAR 03 MO-FAP 10 0 10 0 2 0 2 12 0.06 sec 

CELAR 04 MO-FAP 10 0 10 4 2 0 2 44 0.34 sec 

CELAR 11 MO-FAP 20 0 14 4 2 0 2 20 0.34 sec 

GRAPH 01 MO-FAP   8 3   6 2 4 4 2 18 0.03 sec 

GRAPH 02 MO-FAP   6 2   4 0 2 4 0 14 0.12 sec 

GRAPH 08 MO-FAP 10 2   6 2 3 8 3 16 0.28 sec 

GRAPH 09 MO-FAP   6 2 10 2 2 8 2 18 0.48 sec 

GRAPH 14 MO-FAP   6 2   4 2 0 2 2   8 0.48 sec 

CELAR 05 MS-FAP 10 0 10 0 2 0 2 12 0.08 sec 

GRAPH 03 MS-FAP   8 0   6 3 2 6 2 12 0.06 sec 

GRAPH 04 MS-FAP   6 2   6 2 0 8 3 14 0.12 sec 

GRAPH 10 MS-FAP   8 3   6 2 0 10 2 10 0.08 sec 

Table 3.3: Lower bounds of the numbers of frequencies required for each domain and for the whole instance, and 

the time taken to calculate them. 

The results in Table 3.3 were obtained using FORTRAN 95 and all experiments were 

conducted on a 3.0 GHz Intel Core I3-2120 Processor (2nd Generation) with 8GB 

RAM and a 1TB Hard Drive.  

Table 3.3 shows that the run time for all the instances except one is below one second. 

Note that some frequencies are part of more than one domain, meaning the sum of the 

lower bound for each domain does not necessarily equal the lower bound for the 

whole instance. Additionally, CELAR 04 is the only instance here which has pre-

assignment constraints, which is used to strengthen the lower bound. 
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The lower bounds are applied in this study and can be used in two ways: firstly, the 

search stops as soon as it finds a feasible solution such that the total number of used 

frequencies is equal to the lower bound of the whole instance (as this is the optimal 

solution); secondly, the lower bound for each domain are used to ensure that an algo-

rithm never wastes time trying to find a feasible solution with a set of frequencies that 

do not satisfy the lower bound for each domain since there can be no feasible solu-

tions in this search area.  

3.3 Overview of the Tabu Search Algorithm 

A key decision when constructing a TS algorithm is how to define the solution space 

and the corresponding cost function. 

3.3.1 Solution Space and Cost Function 

It is relatively straightforward to find solutions that satisfy bidirectional, domain and 

pre-assignment constraints, and to define a neighbourhood operator that moves be-

tween such solutions [47]. Here, two configurations are considered. In the first con-

figuration, bidirectional, domain and pre-assignment constraints are enforced while 

interference constraints are relaxed. Note that interference constraints are relaxed be-

cause these are the most difficult constraints to be satisfied [47]. This configuration 

was previously used in TS for the static FAP [86, 145]. In the second configuration, 

only domain and pre-assignment constraints are enforced, while bidirectional and in-

terference constraints are relaxed. This configuration was previously used in TS for 

the static FAP [15, 85]. In both configurations, the cost function is defined as the 

number of violations. 

There are advantages and disadvantages in using each configuration. One of the ad-

vantages of using the first configuration is that, in effect, the number of requests is 

halved because requests are considered as pairs based on the bidirectional constraints. 

However, this leads to a restriction in the search space which may result in difficulties 

in the search. In contrast, using the second configuration gives more freedom. There-

fore, these two types of configuration are implemented and compared.  

The solution space could have been defined as the set of all possible feasible assign-

ments, that is, satisfying all of the constraints, and the corresponding cost function as 
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the number of used frequencies. However, there are a number of difficulties with this 

configuration: first, TS has been found to be poor with this configuration [15]. More-

over, it may be difficult to move from one feasible solution to another. Furthermore, a 

large number of neighbour solutions with the same cost may differ greatly in their 

quality [49] (clarified by Example 3.1). Hence, this configuration is not considered.  

Example 3.1:                       

Assume a static FAP instance has 50 requests and 2 feasible solutions use 5 

frequencies. Table 3.4 shows the number of requests assigned to each used 

frequency and the corresponding cost function value for each solution. 

 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 
Total no. 

requests 

Cost function  

value 

Solution 1 10 10 10 10 10 50 5 

Solution 2 14 12 12 11 1 50 5 

            Table 3.4: The number of requests assigned to each used frequency in two different feasible solutions.  

Table 3.4 shows that solution 2 is closer to a solution using just 4 frequencies. 

However, both of the solutions have the same cost function value. This means 

that using this definition of the cost function may not guide the search towards 

solutions using fewer frequencies.  

3.3.2 Sub-problem in the static FAP  

Using the solution space which relaxes some constraints creates the following sub-

problem: minimizing the number of violations with a fixed number of used frequen-

cies. If a solution with zero violations (a feasible solution) is found in the improve-

ment phase (see Section 3.4.6), then the number of used frequencies is reduced in the 

creating violations phase (see Section 3.4.5) and the sub-problem is reconsidered. The 

process is repeated until a feasible solution can no longer be found. This process is 

similar to TS for the GCP in [87] and TS for the static FAP in [86, 145]. 

3.3.3 Structure of the Tabu Search Algorithm 

The TS algorithm consists of three phases, namely the initial solution phase, the creat-

ing violations phase and the improvement phase. The initial solution phase (see Sec-

tion 3.4.4) generates an initial solution. Assume the initial solution is feasible. Then, 
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the creating violations phase (see Section 3.4.5) reduces the number of used frequen-

cies by removing a used frequency. Then, all requests that are assigned to the re-

moved frequency are re-assigned to another used frequency, which may result in 

some violations. The improvement phase (see Section 3.4.6) aims to reduce the num-

ber of violations to zero, using three neighbourhood structures. Three independent 

tabu lists, one for each neighbourhood structure, are defined in this algorithm. Notice 

that all of the tabu lists are cleared after the sub-problem is solved. If the improvement 

phase results in a feasible solution within a specified number of iterations, then the 

creating violations phase is revisited to remove another used frequency. After that, the 

process continues until either no feasible solution can be found or the number of used 

frequencies equal to the lower bound. In case the initial solution is not feasible, the 

creating violations phase can be omitted and the search moves immediately to the im-

provement phase. Figure 3.3 illustrates the overall structure of the TS algorithm for 

the static FAP in this study. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Overall structure of the TS algorithm for the static FAP. 
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3.4 Components of the Tabu Search Algorithm 

The main components and the implementation of the TS algorithm are presented and 

discussed in this section.  

 

3.4.1 Neighbourhood Structures  

Hybridising TS with multiple neighbourhood structures is one of the techniques 

which aim to improve the performance of this algorithm and make it different from 

existing TS. In fact, existing TS algorithms for the static FAP implemented only a 

single neighbourhood structure (see e.g. [15, 16, 86, 145]). The concept of using mul-

tiple neighbourhood structures is inherited from variable neighbourhood search, 

which was introduced in [112] and has been proved to be an effective solution method 

to solve the static FAP in the literature (see e.g. [110]).  

In this study, TS is hybridised with three different neighbourhoods, namely a move 

neighbourhood structure (MNS), a swap neighbourhood structure (SNS) and a diver-

sification neighbourhood structure (DNS). MNS was previously used in TS for the 

static FAP [15, 16, 86, 145], whereas SNS and DNS are new techniques. The three 

neighbourhood structures are defined as follows: 

i) Move neighbourhood structure: this structure is defined as the set of solutions ob-

tained by selecting a request to be re-assigned to a different used frequency. There-

fore, this neighbourhood investigates all the possible moves for all requests and used 

frequencies (the maximum possible number of such moves is  𝑁𝑅 × 𝑛𝑓 , where  𝑛𝑓  is 

the number of used frequencies). This ensures that the number of used frequencies 

does not increase. 

ii) Swap neighbourhood structure: this structure is defined as the set of solutions ob-

tained by swapping the frequencies of each request with its partner (based on the bidi-

rectional constraints). SNS proves to be quick as it contains a small number of neigh-

bours (at most 𝑁𝑅/2), yet it can improve the solution quality.  

iii) Diversification neighbourhood structure: this structure, unlike the previous struc-

tures, is intended to diversify the search, i.e. move to a different part of the solution 

space. It consists of the set of solutions obtained by replacing a used (old) frequency 

with an unused (new) frequency. Given an old frequency, another frequency is ac-
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cepted if it can be assigned to all requests which were assigned to the old frequency. 

However, any re-assignment that causes the number of used frequencies to drop be-

low the lower bound for some domains (see Section 3.2) is not considered. 

3.4.2 Tabu Lists  

Three independent tabu lists, one for each neighbourhood structure, are defined in this 

algorithm. Notice that all of the tabu lists are cleared after the sub-problem is solved. 

These tabu lists are described as follows: 

i) Move tabu list: when a request is re-assigned to another frequency, then the request 

and the removed frequency are added to the tabu list and this assignment is classified 

as forbidden for a given number of iterations (i.e. tabu tenure). 

ii) Swap tabu list: when a request is swapped with its partner as a pair (based on the 

bidirectional constants), then this pair is added to the swap tabu list. This list prevents 

a pair of requests from being swapped more than once. 

iii) Diversification tabu list: when an old frequency is replaced by a new frequency, 

then both of them are added to the diversification tabu list. 

3.4.3 Aspiration Criteria  

Sometimes the tabu list is too restrictive by forbidding some attractive moves even 

when there is no harm of cycling. Hence, it is essential to use a technique to escape 

from this situation by ignoring the tabu list. This is called the aspiration criteria. Here, 

the logical and commonly used aspiration criteria is applied, that is, to accept a tabu 

move if it leads to a better solution than the current best one.  

3.4.4 The Initial Solution Phase   

It is sensible to produce a good initial solution in order to improve the efficiency of 

this algorithm [155]. Here, the objective is to produce a feasible initial solution with 

as few frequencies as possible, although for some problem instances this may be diffi-

cult and the initial solution may be infeasible.  
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This phase consists of three stages, namely the assignment stage, the allowing infeasi-

ble solutions stage and the descent method stage. All these stages are described in the 

following subsections.   

3.4.4.1 The Assignment Stage   

This stage aims to assign each request a frequency, where the selection of requests 

and frequencies is based on three arrays as follows: 

 Request Array (𝑅𝐴): the elements of this array correspond to the number of feasi-

ble frequencies for each request. So, at the start, these elements correspond to the 

size of the domain for each request. This array is updated each time a frequency is 

assigned a request. 
 

 Frequency Array (𝐹𝐴): the elements of this array correspond to the number of re-

quests that can be feasibly assigned to each frequency. This array also is updated 

each time a frequency is assigned a request. 
 

 

 Constraint Array (𝐶𝐴): the elements of this array correspond to the number of re-

laxed constraints which are involved for each request. Notice that this array is 

constant because this reflects the number of relaxed constraints in the static FAP 

instance, which is fixed.  

Selection of Requests and Frequencies: a request which has the minimum value 

of  𝑅𝐴 is chosen. There are two possible cases: 

Case A: Min (𝑅𝐴) ≠ 0 

In case there is more than one request with the same minimum value of  𝑅𝐴 , then the 

one with the maximum value of  𝐶𝐴  is chosen. If there is still more than one such re-

quest, then one of them is selected at random. After choosing a request, a frequency is 

selected to be assigned. Therefore, we randomly choose one of the used frequencies 

that can be feasibly assigned to the selected request. If there is no such frequency, 

then an unused frequency is selected. In order to choose an unused frequency, we 

choose the one which can be feasibly assigned to the selected request and has the 

maximum value of FA. In case of a tie, one of them is selected randomly. This type of 

selection is intended to minimize the number of used frequencies. After that, the next 

request is then considered.   



Chapter 3. Tabu Search for the Static FAP 

 

55 
 

Case B: Min (𝑅𝐴) = 0 

If there is more than one request that has no feasible frequencies, then one of them is 

randomly selected and is called the candidate request. Notice that the candidate re-

quest cannot be feasibly assigned. However, experiments showed that in many cases, 

this infeasibility could be fixed by a simple re-assignment phase. In this phase, the 

number of attempts to assign the candidate request is counted. 

Re-assignment phase: if the number of attempts to feasibly assign the candidate re-

quest is not greater than 500 (where this number is chosen based on experiments), 

then two groups are generated as follows: the candidate request is assigned to all 

available frequencies in turn. For each assignment, requests that are involved in vio-

lated constraints are added to the first group, while the other requests are added to the 

second group. After that, a request is selected from one of these groups in order to be 

re-assigned as follows: if the number of attempts to feasibly assign the candidate re-

quest is less than 250 (where this number is chosen based on experiments), then a re-

quest is randomly selected from the first group; otherwise it is selected from the sec-

ond group. Then, the selected request is feasibly re-assigned, if possible, in order to 

allow the candidate request to be feasibly assigned. The process is repeated until a 

feasible initial solution is found or the number of attempts to feasibly assign the can-

didate request exceeds 500, then the allowing infeasible assignments stage is execut-

ed.  

3.4.4.2 The Allowing Infeasible Assignments Stage 

This stage allows the candidate request to be assigned to an infeasible frequency 

which causes the lowest number of violations. If there is still more than one such fre-

quency, then one of them is selected randomly. After assigning all the requests, the 

descent method stage is executed to attempt to find a feasible initial solution. 

3.4.4.3 The Descent Method Stage 

The descent method is used to attempt to reduce the number of violations to zero. This 

method uses MNS and the cost function is defined as the number of violations. Initial-

ly, only used frequencies are considered. Steepest descent is used and if there are sev-

eral moves that lead to equal improvements, one of them is selected at random. Once 

a local optimum is found, if the number of violations is still greater than zero, any 
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unused frequencies are considered. Moves that cause the cost to remain unchanged 

are now accepted and the search terminates when a feasible solution is found or when 

10,000 iterations have been completed (this value was set experimentally). Figure 3.4 

shows the overall structure of the initial solution phase. The descriptions of the abbre-

viations in Figure 3.4 are given in Table 3.5. 

Abbreviation Definition 

𝑇𝑟𝑘
 The number of attempts to assign the candidate request 𝑟𝑘. 

  

RC 
The set of the requests that clash with the candidate request with respect to some con-

straints when all possible frequencies are assigned to the candidate request. 
  

NRC The number of requests in RC 
  

RS 
The set of the requests that do not clash with the candidate request when all possible 

frequencies are assigned to the candidate request. 
  

NRS The number of requests in RS. 

Table 3.5: The definition of the abbreviations in Figure 3.4 

 

 

             

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Overall structure of the initial solution phase. 
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3.4.5 The Creating Violations Phase 

This phase aims to reduce the number of used frequencies in a feasible solution by 

removing a used frequency. The frequency that will be removed must satisfy the fol-

lowing conditions: (i) it is not involved in any pre-assignment constraints; (ii) the 

lower bound on the number of frequencies that are required from each domain based 

on the underlying graph colouring model (see Section 3.2) is satisfied after removing 

this frequency. If there is more than one candidate frequency, then the one which is 

assigned to the least number of requests is selected. If there is still more than one, then 

one of them is randomly selected. After that, the requests which are assigned to the 

candidate frequency are re-assigned to another feasible used frequency. The process is 

repeated until there is no feasible used frequency. In this case, these requests are ran-

domly re-assigned to infeasible used frequencies, and then the improvement phase 

(see Section 3.4.6) is executed to find a feasible solution. The creating violations 

phase was previously applied in TS for the static FAP in [86]. 

3.4.6 The Improvement Phase  

This phase starts from an infeasible solution which is usually produced by the creating 

violations phase. Then, the iterative procedure of TS starts in the improvement phase. 

The aim of this phase is to solve the sub-problem using three neighbourhood struc-

tures, namely the move neighbourhood structure (MNS), the swap neighbourhood 

structure (SNS), and the diversification neighbourhood structure (DNS). In MNS and 

SNS, only used frequencies are considered, while DNS considers only unused fre-

quencies. MNS is explored first because it contains a large number of neighbours. 

SNS, which covers a limited number of neighbours, is then considered to support the 

MNS. DNS aims to jump from the current position in the solution space to a new po-

sition by removing a used frequency and adding a new one from the set of unused 

frequencies. Therefore, DNS is intended to diversify the search rather than reduce the 

number of violations, which reflects the reason for leaving it as the last structure. 

Implementation of the improvement phase 

One of the three neighbourhood structures is executed each iteration, where this phase 

begins with MNS. If this structure results in a better solution, then it is accepted. Oth-

erwise, it is repeated until MNS is executed for a given number of times consecutively 
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without improvement. Then, the search enters SNS. If this structure leads to a better 

or equally good solution, then the search goes back to MNS. Otherwise, it appears 

there is little prospect of finding a better solution in the current region of the solution 

space, so the search enters DNS. A solution from DNS is accepted and the search re-

turns to MNS.  

It was found that on occasions, no moves in DNS are allowed due to the tabu lists, the 

pre-assignment constraints and the lower bound for each domain. If this happens, the 

criterion of selecting a new frequency in DNS is modified, that is, a frequency is ac-

cepted as a new frequency if it can be assigned to at least one request (instead of all 

requests) that were assigned to the old frequency. Although the new frequency is not 

allowed to be removed because of the diversification tabu list, the old frequency is 

allowed to return to the solution because of the limited number of neighbours in this 

structure. So, there are two possible types of diversification neighbourhood structure: 

structure A (see Section 3.4.1) and structure B (described here). 

The output of the improvement phase can be a feasible or an infeasible solution. If it 

is a feasible, but not optimal solution, then the algorithm returns to the creating viola-

tions phase. In contrast, if the output is an infeasible solution, then the algorithm re-

turns to MNS. This continues until one of the stopping criteria is met. Figure 3.5 illus-

trates the overall structure of the improvement phase.  

3.4.7 Stopping Criteria 

The TS algorithm has three different stopping criteria as follows: (i) it finds a feasible 

solution whose number of frequencies is equal to the lower bound (as this is an opti-

mal solution), (ii) the number of iterations reaches a given number without successful-

ly solving the sub-problem (see Section 3.3.2), i.e. a feasible solution could not be 

achieved (note that the number of iterations is reset to zero each time the sub-problem 

is solved), (iii) DNS is executed for a given number of times. 
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Figure 3.5: Overall structure of the improvement phase.1 
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3.5 Experiments and Results 

This section presents the performance of TS for the static FAP using CELAR and 

GRAPH datasets (available on the FAP website1). After that, the process of this algo-

rithm is analysed. Finally, the performance of our TS algorithm is compared with ex-

isting algorithms in the literature. The parameters of our TS algorithm are set based 

on experimentations for solving the sub-problem as follows: 

 The maximum number of iterations is 10,000. 

 The maximum number of times of accepting worse solutions consecutively in 

MNS is 100. 

 The maximum number of times of executing DNS is 20. 

 The tabu tenure of the move tabu list is 100. 

 The tabu tenure of the swap tabu list is NR/2, where NR is the number of re-

quests in the instance. 

 The tabu tenure of the diversification tabu list is 20. 

In this study, the algorithm was coded using FORTRAN 95 and all experiments were 

conducted on a 3.0 GHz Intel Core I3-2120 Processor (2nd Generation) with 8GB 

RAM and a 1TB Hard Drive. 

3.5.1 Results of the Tabu Search Algorithm 

The results of TS are given for the three variants of the static FAP, namely MO-FAP, 

MS-FAP and MI-FAP, in two parts. The first part gives the results of the initial solu-

tion phase, while the second part compares the results of TS using two types of con-

figurations (see Section 3.3.1). The optimal solutions of these datasets are known and 

available on the static FAP website1. Therefore, the solutions of TS are compared 

with known optimal solutions.  

The results of two different numbers of runs (5 and 20) of TS are compared to inves-

tigate whether there is a significant difference. It is found that there is no significant 

difference using the Wilcoxon signed-rank test. Therefore, for each instance of the 

static FAP, 5 runs are performed, where each run uses a different random number 

stream.  

                                                           
1 http://fap.zib.de/problems/CALMA/ (last accessed 25 February 2015). 

http://fap.zib.de/problems/CALMA/%20(last
http://fap.zib.de/problems/CALMA/%20(last
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Recall that the results of TS for the MO-FAP refer to the number of used frequencies 

in a feasible solution. Note that a bold number means that the optimal solution was 

achieved.  

3.5.1.1 The Initial Solution Phase 

The initial solutions of TS for the MO-FAP are given in Table 3.6.  

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 20 24 22.4 16 43.33 sec 

CELAR 02 14 16 14.4 14 0.22 sec 

CELAR 03 18 20 18.4 14 18.87 sec 

CELAR 04 46 46 46.0 46 54.43 sec 

CELAR 11 44 48 46.7 22 1.50 min 

GRAPH 01 22 24 22.4 18 1.43 sec 

GRAPH 02 16 20 18.8 14 1.24 sec 

GRAPH 08 26 32 29.2 18 3.98 sec 

GRAPH 09 28 44 33.6 18 52.50 sec 

GRAPH 14 12 14 13.2   8 49.01 sec 

Table 3.6: the initial solution of TS for the MO-FAP. 

Table 3.6 shows that the optimal solution was obtained using TS for the MO-FAP in 

only two instances (CELAR 02 and CELAR 04). However, a feasible initial solution 

was achieved for almost all of the instances, although the algorithm failed to find a 

feasible solution for 2 out of 5 runs for CELAR 11. It is clear that for some instances, 

this algorithm used considerably more frequencies than the optimal number of used 

frequencies. This is expected as we used a relatively simple algorithm to produce the 

initial solution. It is encouraging that in almost all of the experiments, the initial solu-

tion phase managed to produce feasible solutions.  

For the MS-FAP, no feasible initial solution was achieved for all of the instances. Ad-

ditionally, initial solutions of the MI-FAP were poor although some changes were 

made in this algorithm to suit this problem. This is because the initial solution phase is 

designed to find a feasible solution, whereas for the MI-FAP there is no feasible solu-

tion. 

3.5.1.2 Comparison of Different Configurations  

The results of the two configurations of our TS algorithm (see Section 3.3.1) are com-

pared. Table 3.7 shows the results of TS for the MO-FAP using the first configura-

tion, which relaxes the interference constraints, while Table 3.8 presents the results of 

TS for the MO-FAP using the second configuration, where the bidirectional and inter-
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ference constraints are relaxed. Both tables of results include the average results of the 

five runs, the optimal solution and the average run time. Note that the run time of 

finding the lower bound of the number of frequencies for each domain (see Table 3.1) 

is included. 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

 solution 

Average 

 run time 

CELAR 01 16 16 16.0 16 3.63 min 

CELAR 02 14 14 14.0 14 0.52 sec 

CELAR 03 14 16 14.8 14 1.00 min 

CELAR 04 46 46 46.0 46 54.34 sec 

CELAR 11 38 40 38.4 22 8.81 min 

GRAPH 01 18 18 18.0 18 5.43 sec 

GRAPH 02 14 14 14.0 14 2.16 sec 

GRAPH 08 18 18 18.0 18 24.28 sec 

GRAPH 09 18 18 18.0 18 3.01 min 

GRAPH 14   8   8   8.0   8 4.81 min 

Table 3.7: Results of TS for the MO-FAP when the interference constraints are relaxed. 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 18 22 18.8 16 5.83 min 

CELAR 02 14 14 14.0 14 0.62 sec 

CELAR 03 16 18 17.2 14 2.00 min 

CELAR 04 46 46 46.0 46 54.34 sec 

CELAR 11 38 44 42.0 22 4.21 min 

GRAPH 01 18 22 19.6 18 24.03 sec 

GRAPH 02 14 16 14.4 14 42.12 sec 

GRAPH 08 26 30 27.6 18 3.40 min 

GRAPH 09 20 24 21.6 18 8.81 min 

GRAPH 14 10 10 10.0   8 10.81 min 

Table 3.8: Results of TS for the MO-FAP when the bidirectional and interference constraints are relaxed. 

Table 3.7 shows that the optimal solution was achieved using the first configuration 

for all the instances except CELAR 11 and for two runs of CELAR 03. Moreover, 

these results were achieved in a reasonable time, mostly less than 5 minutes. In con-

trast, Table 3.8 shows that the optimal solution was achieved using the second config-

uration in almost all runs of GRAPH 02 and in two runs of GRAPH 01. Additionally, 

some initial solutions (see Table 3.6) were improved. However, for some instances, it 

used considerably more frequencies than the optimal solution. Moreover, using the 

second configuration consumed more time.  

The average results of TS for the MO-FAP using the two types of configuration is 

given in Figure 3.6. 
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Figure 3.6: Results of TS for MO-FAP using two types of configurations. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is 

a significant difference between the performances of TS using the two types of con-

figurations. Figure 3.6 shows that the first configuration produces better performance 

for all the instances except two for which both configurations achieved the optimal 

solution.  

The average run times of TS for the MO-FAP using two types of configurations are 

shown Figure 3.7.  

Figure 3.7: Run time of TS for MO-FAP using two types of configurations. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is 

a significant difference between the run times of TS for the MO-FAP using two types 

of configurations. Figure 3.7 shows that using the first configuration achieved a better 

run time for all the instances except CELAR 11. However, the quality of the solutions 
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which have been found by the first configuration for CELAR 11 was better, although 

both configurations failed to achieve the optimal solution. Moreover, the total average 

run time using the first configuration was 22.7 minutes and for the second configura-

tion was 37.1 minutes. Therefore, the best configuration for TS for the MO-FAP is the 

first configuration, where only the interference constraints are relaxed.  

It is of interest to investigate whether TS without significant changes can be success-

fully applied to other variants of the static FAP (MS-FAP and MI-FAP). Notice that 

our TS algorithm has been mainly designed to solve the MO-FAP, hence a small 

number of changes are made. For the MS-FAP, the way of selecting a frequency to be 

removed in the creating violations phase is changed: the frequency that reduces the 

maximum value of the used frequencies is selected. For the MI-FAP, the creating vio-

lations phase is not required as a zero cost solution does not exist. Hence, TS simply 

consists of three neighbourhood structures (MNS, SNS and DNS) being searched in 

turn.  

Experimental results show that TS could not achieve feasible solutions for the MS-

FAP for all instances except GRAPH 03, where a feasible solution is found, but not 

the optimal. Furthermore, TS showed poor performance for the MI-FAP. The difficul-

ties in finding good results for this variant of the static FAP using TS which is mainly 

designed for MO-FAP without significant changes agreed with the findings of [86, 

145]. Therefore, this algorithm is not sufficiently effective on all the variants of the 

static FAP without significant changes. It is likely that more significant changes are 

required for it to work well on other variants of the static FAP.  

3.5.2 Analysis of the Tabu Search Algorithm Process  

In this section, different aspects of TS are analysed to investigate four topics: the con-

tribution of each neighbourhood structure, the importance of each neighbourhood 

structure, the time complexity and the convergence of this algorithm. 

3.5.2.1 Contribution of Each Neighbourhood Structure 

The contribution of each neighbourhood structure in TS with the first configuration 

for the CELAR 01 instance is shown in Figure 3.8. The results of each neighbourhood 

structure during the process of TS are presented as the number of used frequencies 

and the number of violations in each iteration.  
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Figure 3.8: The number of used frequencies and violations in each iteration in TS with the first configuration on 

the CELAR 01 instance. 

Figure 3.8 shows that TS started with a feasible initial solution which used 22 fre-

quencies, and then this number was reduced to 16 at the end. Moreover, the most exe-

cuted neighbourhood structure is MNS, which is represented by the red colour, alt-

hough all neighbourhood structures have been involved during the process of this al-

gorithm. This reflects the most successful structure in our TS algorithm to reduce the 

number of violations. Note that MNS is the most commonly used structure in TS for 

the static FAP in the literature (see e.g. [15, 86, 145]). SNS came as the second struc-

ture for reducing the number of violations. This reflects the objective of this structure 

(i.e. to support MNS) and the limited neighbours of SNS. DNS is executed a very lim-

ited number of times and usually results in an increase in the number of violations. 

This is because this structure aims to diversify the search rather than optimize it. 

Moreover, it is clear the number of used frequencies has converged. The number of 

violations tends to increase as the number of frequencies decreases which is to be ex-

pected as the problem of finding a feasible solution with fewer available frequencies 

is more difficult.  

3.5.2.2 Importance of Each Neighbourhood Structure 

In order to investigate the importance of each neighbourhood structure of TS, 4 dif-

ferent approaches of this algorithm are compared.  
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The performance of the 4 approaches for some of the instances (specifically, CELAR 

01, CELAR 03, GRAPH 09 and GRAPH 14) is shown in Figure 3.9. The selected 

instances are chosen to represent different numbers of requests and constraints. 

Figure 3.9: Average number of used frequencies for different approaches of the TS algorithm. 

Figure 3.9 shows that all the neighbourhood structures play a role. The results of these 

instances improved after including each neighbourhood structure, which means all the 

neighbourhood structures are essential to improve solutions.  

3.5.2.3 Time Complexity of the Tabu Search Algorithm   

The time complexity of TS can be expressed using the big O notation by counting the 

number of times the key operation, which is assigning a frequency to a request, is per-

formed. Recall that 𝑁𝑅 is the number of requests and 𝑁𝐹 is the number of frequen-

cies. In terms of the initial solution phase, the time complexity of the assignment stage 

is of order O(𝑁𝑅2 ∗ 𝑁𝐹), the allowing infeasible assignment stage is of order O(𝑁𝑅 ∗

𝑁𝐹) and the descent method stage is of order O(𝑁𝑅 ∗ 𝑁𝐹). In terms of the creating 

violations phase, the time complexity is of order O(𝑁𝑅 ∗ 𝑁𝐹). The calculation of the 

initial cost has complexity proportional to O(𝑁𝑅2). In terms of the improvement 
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phase, the changes in the cost are calculated efficiently so the time complexity is of 

order O(𝑁𝑅). The time complexity of MNS is of order O(𝑁𝑅2 ∗ 𝑁𝐹), SNS is of order 

O(𝑁𝑅2) and DNS is of order O(𝑁𝑅2 ∗ 𝑁𝐹2). Hence, the time complexity of our TS 

algorithm is of order O(𝑁𝑅2 ∗ 𝑁𝐹2).    

3.5.2.4 Convergence of the Tabu Search Algorithm   

To investigate the convergence of this algorithm, first note that the number of used 

frequencies in our TS algorithm never increases. This is because the algorithm con-

sists of reducing the number of used frequencies and seeking for a feasible solution 

with a fixed number of used frequencies. If a feasible solution is found (i.e. the sub-

problem (see Section 3.3.2) is solved), then the number of used frequencies is reduced 

and the number of iterations is reset to zero. This process is repeated until a feasible 

solution can no longer be found. 

The TS algorithm for the MO-FAP (see Table 3.7) achieved the optimal solution for 

all the instances except CELAR 11 within 10,000 iterations for each time the sub-

problem is considered. Here, TS is run on CELAR 11 for more iterations for each 

sub-problem (say 50,000 iterations) and the stopping criteria (see Section 3.4.7) are 

ignored to investigate the convergence of this algorithm. Moreover, TS is executed for 

five runs, where each run uses different random number streams. Figure 3.10 shows 

the convergence of TS using the average solutions of the five runs. 

Figure 3.10: The convergence of the TS algorithm on the CELAR 11 instance. 
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Figure 3.10 shows that TS achieves a feasible solution within 10,000 iterations for 

each sub-problem. This suggests that the selected number of iterations in this study is 

an appropriate number based on the convergence experiments.  

3.5.3 Results Comparison of the Tabu Search Algorithm 

This section compares the performance of our TS algorithm in two subsections. The 

first subsection compares the performance of this algorithm with existing TS algo-

rithms in the literature. The second subsection compares the performance of our TS 

algorithm with other algorithms in the literature. Note that a bold number means that 

the optimal solution is achieved and a dash “-” means that the result is not available.  

3.5.3.1 Results Comparison with Existing TS Algorithms 

The best found results of our TS algorithm and existing TS algorithms in the literature 

are given in Table 3.9.  

Instance TS [15] TS [145] Our TS 
Optimal 

solution 

CELAR 01 18 16 16 16 

CELAR 02 14 14 14 14 

CELAR 03 14 14 14 14 

CELAR 04 46 46 46 46 

CELAR 11 24 22 38 22 

GRAPH 01 18 18 18 18 

GRAPH 02 16 14 14 14 

GRAPH 08 24 20 18 18 

GRAPH 09 22 22 18 18 

GRAPH 14 12 10   8   8 

Table 3.9: Results of TS and existing TS algorithms in the literature. 

Table 3.9 shows that our TS algorithm achieved better performance compared with 

those of TS algorithms proposed in [15, 145]. In fact, our TS algorithm achieved the 

optimal solution for all the instances except CELAR 11, while the other TS algo-

rithms failed to find the optimal solutions for some instances such as GRAPH 08, 

GRAPH 09 and GRAPH 14. Additionally, TS proposed in [15] could not achieve the 

optimal solution for CELAR 11 and GRAPH 02. In contrast, the TS in [145] achieved 

the optimal solution for both. Overall, our TS algorithm showed competitive perfor-

mance compared with existing TS algorithms in the literature.  
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3.5.3.2 Results Comparison with Other Algorithms 

This section compares the best found results of our TS algorithm with those of other 

algorithms in the literature as shown in Table 3.10.  
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Optimal  

solution 

CELAR 01 16 20 16 16 - 16 16 16 16 

CELAR 02 14 14 14 - 14 14 14 14 14 

CELAR 03 14 16 16 16 14 14 14 14 14 

CELAR 04 46 46 46 - - 46 46 46 46 

CELAR 11 24 32 - - - 24 24 38 22 

GRAPH 01 18 20 18 18 18 - - 18 18 

GRAPH 02 14 16 14 14 14 - - 14 14 

GRAPH 08 22 - 18 18 - - - 18 18 

GRAPH 09 22 28 18 18 - - - 18 18 

GRAPH 14 - 14 10 10 - - -   8   8 

Table 3.10: Results of TS and other algorithms in the literature. 

Table 3.10 shows that our TS algorithm achieved competitive performance compared 

with other algorithms in the literature. Moreover, our TS algorithm is the only algo-

rithm that achieved the optimal solution for GRAPH 14. In contrast, better results for 

CELAR 11 (not the optimal solution) were found using other algorithms such as sim-

ulating annealing and variable depth search in [145]. Note that the performance of the 

genetic algorithm in [94] is less satisfactory than other algorithms, where this algo-

rithm achieved the optimal solutions for only two instances. Overall, our TS algorithm 

showed competitive performance compared with other algorithms in the literature.  

3.6 Conclusions   

This chapter introduced an improved TS algorithm for the static FAP, where this algo-

rithm is mainly designed to solve the MO-FAP. Several novel and existing techniques 

were used to improve the performance of this algorithm, which are applying the lower 

bound on the number of frequencies that are required from each domain for a feasible 

solution to exist, based on the underlying graph colouring model, and hybridising TS 

with multiple neighbourhood structures, one of which is used as a diversification 

technique. Moreover, TS was compared in two different types of configurations, 
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where the first configuration relaxes only interference constraints, while the second 

configuration relaxes bidirectional and interference constraints. 

TS with the first configuration proved effective for the MO-FAP, whereas using the 

second configuration proved less effective and is therefore rejected. Furthermore, ap-

plying TS without significant changes on the other variants of the static FAP was not 

successful. This finding agrees with what has been found in the literature. It is likely 

that more significant changes are required for it to work well on other variants of the 

static FAP.  

It was found that our TS algorithm showed competitive performance for the MO-FAP 

compared with existing TS algorithms and other heuristic algorithms in the literature. 

In fact, it beat other heuristic algorithms in the literature by achieving the optimal so-

lution for GRAPH 14.   

Finally, the research questions which were raised in the beginning of this chapter can 

be answered as follows: 

 Is TS an effective solution method for the static FAP? 

Our TS algorithm is an effective solution method for the static FAP. The optimal 

solution was achieved for all the instances except one (see Table 3.7). Additional-

ly, TS is competitive compared with existing TS (see Table 3.9) and other heuris-

tic algorithms in the literature (see Table 3.10).  

 

 Is it beneficial to hybridise TS with multiple neighbourhood structures? 

Each neighbourhood structure in TS plays a role. MNS and SNS aim to improve 

the quality of the solution using two different techniques, whereas DNS aims to 

diversify the search. Figure 3.9 shows that the performance of TS improves after 

including each neighbourhood structure, which means hybridising TS with multi-

ple neighbourhood structures is beneficial.  

 

 Can TS without significant changes be effective on different variants of the static 

FAP? 

TS without significant changes was not successful to solve other variants of the 

static FAP (MS-FAP and MI-FAP), which agreed with what has been found in the 

literature. It is likely that more significant changes are required to work well on 

other variants of the static FAP. 
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Chapter 4  

Ant Colony Optimization for the Static FAP 

4.1 Introduction  

Ant colony optimization (ACO) is a relatively recent meta-heuristic technique to 

solve combinatorial optimization problems using indirect communication, which is 

inspired by how ants cooperate to find the shortest path between their nest and a po-

tential food source. ACO has been successfully applied in the literature to several 

problems such as traveling salesman problems [41], sequential ordering problems 

[64], vehicle routing problems [19] and dynamic problems [38].  

Although many studies in the literature reflect the success of ACO, it has several 

shortcomings. One of these is that ACO looks for a better local optimal solution rather 

than a global optimal solution [18]. Moreover, ACO has a fast convergence rate at the 

beginning and after a certain number of generations the ants may tend to produce a 

solution near the local optimum [154]. Finally, ACO is a time consuming method as 

many elements are used to define the visibility, the trail and parameters and so a lot of 

computation is needed [33]. 
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There are relatively few papers concerning the application of ACO to solve the static 

frequency assignment problem (FAP). However, existing ACO algorithms in the liter-

ature are unable to find a feasible solution in some instances of the static FAP. Hence, 

this chapter investigates whether ACO can be improved to be an effective solution 

method for the static FAP.   

In this study, ACO is mainly designed to solve the minimum order FAP (MO-FAP). 

Several novel and existing techniques are used in this study to improve the perfor-

mance of ACO. One of these techniques is applying the concept of a well-known 

graph colouring algorithm, namely recursive largest first (see Section 2.3), which has 

not been used in ACO for the static FAP in the literature. Furthermore, this study 

compares ACO using two visibility definitions (see Section 4.2.3). The first definition 

is based on the number of feasible frequencies, which was previously used in ACO 

for the graph colouring problem (GCP) [33]. The second one is based on the degree, 

which was previously used in ACO for the GCP [49]. Additionally, we compare ACO 

using two trail definitions (see Section 4.2.4). The first one is between requests and 

frequencies, which was previously used in ACO for the static FAP [109]. Note that 

ACO in [109] decreases the level of trail for bad solutions, whereas we increase the 

level of trail for the unassigned requests for all available frequencies in order to be 

more attractive to be selected. This technique was previously used in ACO for the 

examination scheduling problem [48]. The second trail definition considered in this 

study is between requests and requests, which was previously used in ACO for the 

GCP [49]. Moreover, this chapter investigates whether ACO without significant 

changes can prove effective on other variants of the static FAP, namely the minimum 

span FAP (MS-FAP) and minimum interference FAP (MI-FAP). This chapter focuses 

on the following research questions: 

 Can ACO perform better than tabu search on the static FAP? 

 Is it beneficial to combine ACO with a local search? 

 Is ACO an appropriate solution method for the static FAP? 

This chapter is organised as follows: the next subsection gives an overview of ACO. 

Section 4.2 presents the main components of our ACO algorithm for the static FAP. 

Results of this algorithm are given and discussed in Section 4.3. Time complexity and 
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convergence of ACO are discussed in Section 4.4 before the chapter finishes with 

conclusions.    

4.1.1 Overview of Ant Colony Optimization  

The basic idea of ACO is inherited from the natural behaviour of real ant colonies. 

Figure 4.1 shows a group of ants travelling between their nest and some food source. 

Figure 4.1: Ants in a path between the nest and the food. 

If an obstacle appears somewhere in the path between the nest and the food, then 

when the ants reach the obstacle, at first they randomly choose one way, either right 

or left, as they are unable to determine which is the shortest route. It is assumed that 

approximately half of the ants go right and the rest go left, as illustrated in Figure 4.2. 

     Figure 4.2: Ants can reach the food in two paths.                      Figure 4.3: Ants find the shortest path. 

The group of ants indirectly communicate with one another by leaving trails of pher-

omone as they travel. As ants find existing trails, they are more likely to follow them 

depending on the strength of those trails, and they in turn lay down further phero-

mone, reinforcing the trail. A shorter path is more likely to be followed than a longer 

path, leading to more trails being laid down along such path. This causes more and 

more ants to choose the shorter path until eventually all ants have found the shortest 

path as shown in Figure 4.3. 
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The behaviour of the ants is exploited in artificial ant colonies for finding the shortest 

path between two given nodes in a graph, where a path is a sequence of edges. Each 

artificial ant constructs a solution based on two factors: the visibility and the phero-

mone trail. The visibility is a measure of the quality of going along each possible 

edge. The pheromone trail is an indication of the desirability of going along each edge 

based on the experiences of previous ants. The values of the pheromone trail indicate 

the strength of the pheromone trail on the corresponding edge based on the experience 

of previous artificial ants. More formally, moving along the edge (𝑖, 𝑗), where 𝑖 and 𝑗 

are nodes in the graph, during constructing a solution is based on probability 𝑝𝑖𝑗, 

which is given by Formula 4.1. 

τ𝑖𝑗
α .η𝑖𝑗

β

∑ τ𝑖𝑙
α  .η𝑖𝑙

β
𝟏

𝒍∈𝑵

        if  𝑗 ∈ 𝑁                                                                                                                        

 0                       otherwise            

where 𝑁 is the set of nodes which can be visited by an artificial ant, and τ𝑖𝑗 is the 

pheromone trail between 𝑖 and 𝑗. The visibility 𝜂𝑖𝑗 is given by Formula 4.2.  

          𝜂𝑖𝑗 =
1

𝐿𝑖𝑗
 ,                                        (4.2) 

where 𝐿𝑖𝑗  is the distance of the edge (𝑖, 𝑗). The parameters 𝛼, 𝛽 ≥ 0 control the rela-

tive significance of the pheromone trail τ𝑖𝑗  against the visibility 𝜂𝑖𝑗 . 

After all ants complete their solutions, i.e. one generation is complete, then phero-

mone trails are updated. The updated pheromone trails guide ants in the following 

generations to produce better solutions.  

There are several variants of ACO. The main difference between them is based on the 

ways of updating the trail. In the original ACO algorithm in [40], the trail was updat-

ed globally after all artificial ants have completed a path between the two given 

nodes. For each path 𝑇𝑘 created by an ant k, the trail is updated by adding  ∆𝜏𝑖𝑗
𝑘 , de-

fined by Formula 4.4, to the trail τ𝑖𝑗  of edges (𝑖, 𝑗) which have been visited in 𝑇𝑘. The 

trail is updated by Formula 4.3.   

 

𝑝𝑖𝑗  = (4.1) 
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𝜏𝑖𝑗 ← 𝜌 .  𝜏𝑖𝑗 +  ∑ ∆𝜏𝑖𝑗
𝑘

𝐾

𝑘

  (4.3) 

 

 

 

                                  𝑄

𝐶𝑘
           if  𝑇𝑘 uses the edge (𝑖, 𝑗) 

                                                          0       otherwise           

and 𝜌 ∈ [0,1) is the evaporation parameter, 𝑄 is a constant related to the amount of 

trail laid by ants and 𝐶𝑘  is the total distance of  𝑇𝑘. Finally, the solution produced by 

ACO may be further improved by a local search algorithm.   

ACO requires many parameters to be determined. The performance of ACO depends 

on finding the most appropriate values of these parameters.  

4.2 Components of the ACO Algorithm  

The components of ACO include solution space and cost function, request and fre-

quency selection, visibility definitions, trail definitions and descent method.  

4.2.1 Solution Space and Cost Function   

The solution space of ACO is defined as the set of all possible feasible assignments, 

that is, satisfying all of the constraints. The corresponding cost function is defined as 

the number of unassigned requests. Note that requests and frequencies in this algo-

rithm are considered as pairs based on the bidirectional constraints (see Equation 1.1) 

because this configuration showed promising performance (see Section 3.5.1.2) 

4.2.2 Request and Frequency Selection  

ACO selects a frequency 𝑓𝑗  greedily by selecting the one which can be assigned feasi-

bly to the most requests. If there is more than one candidate frequency, then one of 

them is randomly selected. After that, the frequency 𝑓𝑗  is sequentially feasibly as-

signed to all possible requests until no more can be feasibly assigned. The order of 

selecting requests from among those that are feasible for 𝑓𝑗 is based on probability 

𝑝𝑟𝑖𝑓𝑗
 given by Formula 4.5.  

 

  ∆𝜏𝑖𝑗
𝑘  =   

  

  where  

  

  (4.4)    
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𝜏𝑟𝑖𝑓𝑗

𝛼 .𝜂𝑟𝑖𝑓𝑗

𝛽

∑ 𝜏𝑟𝑖𝑓𝑘
𝛼  .𝜂𝑟𝑖𝑓𝑘

𝛽
𝟏

𝑓𝑘∈𝑮

        if  𝑓𝑗 ∈ 𝐺𝑟𝑖
                                                                                                                        

                                       0                               otherwise            

where 𝐺𝑟𝑖
 is the set of frequencies which can be feasibly assigned by an artificial ant 

to the request 𝑟𝑖, The visibility 𝜂𝑟𝑖𝑓𝑗
 of a request 𝑟𝑖 to be assigned a frequency 𝑓𝑗 is 

defined in Section 4.2.3 and the trail 𝜏𝑟𝑖𝑓𝑗
 is defined in Section 4.2.4. 

After that, a different frequency is selected in the same way and this process is repeat-

ed until all requests are feasibly assigned, if possible. This process is inherited from a 

well-known graph colouring algorithm, namely recursive largest first (see Section 

2.3). In contrast, ACO for the static FAP in the literature (see e.g. [109, 124]) fre-

quently selects a request based on probability and then assign it to a feasible frequen-

cy.  

4.2.3 Visibility Definitions 

The visibility gives some indication of the desirability of choosing a request based on 

the experience of previous ants. Hence, the visibility of a request acts as a greedy heu-

ristic. In this study, two types of visibility definition are applied and compared. These 

two visibilities are defined as follows:  

i) Visibility 𝜂𝑟𝑖𝑓𝑗
 of a request 𝑟𝑖 to be assigned a frequency 𝑓𝑗 is based on the number 

of feasible frequencies for 𝑟𝑖 (𝑁𝐹𝐹𝑟𝑖
), which is given by Formula 4.6. 

                                         𝜂𝑟𝑖𝑓𝑗
=

1

𝑁𝐹𝐹𝑟𝑖

                                                     (4.6) 

This definition prioritises those requests that have fewer feasible frequencies. This 

type of visibility definition was previously used in ACO for the graph colouring prob-

lem (GCP) [33].  

ii) Visibility 𝜂𝑟𝑖𝑓𝑗
 of a request 𝑟𝑖 to be assigned a frequency 𝑓𝑗 is based on the degree 

of 𝑟𝑖 (𝐷𝐸𝐺𝑟𝑖
), which is defined as the numbers of unassigned requests that cannot be 

assigned feasibly to 𝑓𝑗  and have a common interference constraint with 𝑟𝑖. This visi-

bility is given by Formula 4.7.    

𝑝𝑟𝑖𝑓𝑗
 = (4.5) 
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                                   𝜂𝑟𝑖𝑓𝑗
=  𝐷𝐸𝐺𝑟𝑖

+ 1                                                  (4.7) 

This visibility looks ahead and prioritises requests that have more constraints in com-

mon with other requests that cannot be assigned to the frequencies being considered 

currently. This visibility definition was previously used in ACO for the GCP [49]. 

Example 4.1 clarifies the probability of selecting a request based on the two different 

visibility definitions. 

Example 4.1: 

Assume one of the requests 𝑟1, 𝑟3, 𝑟5 and 𝑟7 needs to be assigned to the selected 

frequency 𝑓𝑗, where the requests 𝑟9, 𝑟11 and 𝑟13 represent unassigned requests 

that cannot be assigned feasibly to 𝑓𝑗 and have a common interference con-

straint with at least one of the requests 𝑟1, 𝑟3, 𝑟5 and 𝑟7 . The graph colouring 

model for this problem is shown in Figure 4.4.  

 

 

 

 

 

 

        Figure 4.4: Graph colouring model of Example 4.1. 

A request from among those that are feasible for the selected frequency 𝑓𝑗  is 

selected based on the probability given by Formula 4.5. Here, assume that the 

trail and the parameters 𝛼 and 𝛽  in Formula 4.5 are set to one. Then, the prob-

ability of selecting a request based on the two visibility definitions would be 

calculated as follows: 

i) The probability of selecting each request using the first visibility definition 

is given in Table 4.1. Note that the number of feasible frequencies of each re-

quest (𝑁𝐹𝐹𝑟𝑖
) is invented and cannot be deduced from Figure 4.4. 

𝑟3 𝑟5 

𝑟7 

𝑟9 𝑟11 

𝑟13 

Interference constraint   

𝑟1 

Requests can be assigned feasibly to the selected frequency 

Requests cannot be assigned feasibly to the selected frequency 
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 𝑟1 𝑟3 𝑟5 𝑟7 Σ 

𝑁𝐹𝐹𝑟𝑖
 1 2 3 4  

1 / 𝑁𝐹𝐹𝑟𝑖
 1 1/2 1/3 1/4 25/12 

𝑝𝑟𝑖𝑓𝑗
 0.48 0.24 0.16 0.12 1 

                    Table 4.1: Requests selection based on probability using the first definition of visibility. 

ii) The probability of selecting each request using the second visibility defini-

tion is given in Table 4.2. Note that the degree of each request (𝐷𝐸𝐺𝑟𝑖
) can be 

deduced from Figure 4.4. 

 𝑟1 𝑟3 𝑟5 𝑟7 Σ 

𝐷𝐸𝐺𝑟𝑖
 3 0 1 1  

𝐷𝐸𝐺𝑟𝑖
+1 4 1 2 2 9 

𝑝𝑟𝑖𝑓𝑗
 0.44 0.11 0.22 0.22 1 

                     Table 4.2: Requests selection based on probability using the second definition of visibility. 

In both cases, once the probabilities have been calculated, one request is se-

lected probabilistically.  

4.2.4 Trail Definitions                   

The purpose of the trail within ACO is to provide information about previous con-

struction solutions to influence future constructions. In this study, two different trails 

are defined, where the initial values of these trails are set to one. Moreover, evapora-

tion and updating of these trails are discussed. The definitions of these trails are given 

as follows: 

i) Trail between requests and frequencies (𝑇𝐴 𝑅𝐹): the key component of a solution is 

to decide to which frequency each request is assigned. Therefore, the most obvious 

trail definition is between each request and each frequency, which is also previously 

used in ACO for the static FAP [124]. The value of the trail indicates the quality of 

previous solutions when a request is assigned to a frequency.  

ii) Trail between requests and requests (𝑇𝐴 𝑅𝑅): previous work on the graph colour-

ing problem (GCP) in [49] found that a trail between nodes and nodes was more suc-

cessful than a trail between nodes and colours. This is because the important aspect of 

a graph colouring solution is not in which colour each node is placed, as the colours 

are interchangeable. The important aspect is which nodes are placed together in the 

same colour class. When considering the static FAP, clearly the actual frequency to 

which each request is assigned is important. However, given the static FAP has the 
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same underlying model as the GCP, we decided to investigate whether a trail based on 

which requests are assigned to the same frequencies could be advantageous.  

This trail measures the success of previous solutions when requests are assigned to the 

same frequency using 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝐴 𝑅𝑅, which is the average trail between the pro-

spective request and all requests already assigned to the candidate frequency 𝑓𝑗, which 

is defined by Formula 4.8. 

                         𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝐴 𝑅𝑅{𝑟𝑖}  = ∑
 𝑇𝐴 𝑅𝑅{𝑟𝑖,𝑟𝑗} 

|𝐻| 𝑟𝑗∈𝐻,𝑖≠𝑗                               (4.8)  

where 𝐻 is the set of requests already assigned to frequencies 𝑓𝑗.  

Example 4.2 clarifies the concept of calculating 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝐴 𝑅𝑅, which is given by 

Formula 4.8.   

Example 4.2: 

The probability of selecting a request 𝑟𝑖 to be assigned a frequency 𝑓𝑗, which is 

already assigned to three requests, namely 𝑟𝑠 , 𝑟𝑡 and 𝑟𝑢 , and the trail values 

between  𝑟𝑖  and these requests are as follows:  

𝑇𝐴 𝑅𝑅{𝑟𝑖, 𝑟𝑠} = 2.0   

𝑇𝐴 𝑅𝑅{𝑟𝑖, 𝑟𝑡} = 1.0 

𝑇𝐴𝑅𝑅{𝑟𝑖, 𝑟𝑢}  = 0.5 
 

Based on Formula 4.8,  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝐴 𝑅𝑅 {𝑟𝑖} = 
2.0 + 1.0 + 0.5 

3
 =  1.17  

4.2.4.1 Trail Evaporation 

Both types of trail are evaporated after each generation by multiplying the trail by the 

evaporation parameter, which will be determined experimentally (see Section 4.3.1.4). 

The trail evaporation can be defined by Formula (4.9). 

                                                 𝜏𝑟𝑖𝑓𝑗
←  𝜌 . 𝜏𝑟𝑖𝑓𝑗

                                                     (4.9) 

where the evaporation parameter 𝜌 is in the range [0, 1).   
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4.2.4.2 Trail Updates 

The trails are updated using two reward functions, namely Cost1 and Cost2, which are 

defined as follows: 

Cost1: counts the number of used frequencies in the current solution. This is 

appropriate when a solution is feasible.   

Cost2: counts the number of unassigned requests in the current solution. This 

is appropriate when a solution is infeasible.       

The values of  𝑇𝐴 𝑅𝐹 could have been updated using Formula 4.10.  

                                 𝑇𝐴 𝑅𝐹 {𝑟𝑖, 𝑓
𝑗
} = 𝑇𝐴 𝑅𝐹 {𝑟𝑖, 𝑓

𝑗
} +

𝑄

𝐶𝑜𝑠𝑡1+𝐶𝑜𝑠𝑡2
                        (4.10) 

However, this proved unsatisfactory for two reasons. Firstly, the range of possible 

amounts added to the trail is relatively small, and therefore fails to distinguish suffi-

ciently between good and bad solutions. So for example, if the optimal number of fre-

quencies is 40, and 𝑄 is equal to 10, then the amounts added to the trail for 4 different 

feasible solutions are given in Table 4.3. 

 Solution 1 Solution 2 Solution 3 Solution 4 

No. used  frequencies  41 42 43 44 

Trail update 0.24 0.24 0.23 0.23 

Table 4.3: Example of trail update values. 

These values are not significantly different, making it difficult for ACO to learn. Ad-

ditionally, the amount added to the trail differs from instance to instance depending on 

the typical number of frequencies. In order to avoid this problem, a better way of trail 

updates is applied and given by Formula 4.11. 

                            𝑇𝐴 𝑅𝐹 {𝑟𝑖, 𝑓
𝑗
} = 𝑇𝐴 𝑅𝐹 {𝑟𝑖, 𝑓

𝑗
} +

𝑄

𝐶𝑜𝑠𝑡1+ 𝐶𝑜𝑠𝑡2− 𝐵𝑒𝑠𝑡 + 1
                    (4.11) 

where 𝐵𝑒𝑠𝑡 is the best minimum number of used frequencies found so far in the 

search. Note that 𝐶𝑜𝑠𝑡1 +  𝐶𝑜𝑠𝑡2 − 𝐵𝑒𝑠𝑡 can be equal to 0 when 𝐶𝑜𝑠𝑡1 = 𝐵𝑒𝑠𝑡 and 

𝐶𝑜𝑠𝑡2 = 0. Thus, we add 1 to the denominator of the last term in Formula 4.11. A sim-

ilar trail update function was previously used in ACO for the GCP [49].  

Formula 4.11 has the advantage that any solution that uses a number of frequencies 

more than the best solution does will have significantly larger trail update values. So 
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for example, if the optimal number of frequencies is 40, and 𝑄 is equal to 10, then the 

amounts added to the trail for 4 different feasible solutions are given in Table 4.4.  

 Solution 1 Solution 2 Solution 3 Solution 4 

No. used frequencies 41 42 43 44 

Trail update 10 5 3.33 2.50 

Table 4.4: Example of trail update values with improved trail update function. 

Similarly, the values of  𝑇𝐴 𝑅𝑅 are updated using Formula 4.12.   

                            𝑇𝐴 𝑅𝑅{𝑟𝑖, 𝑟𝑗} = 𝑇𝐴 𝑅𝑅{𝑟𝑖, 𝑟𝑗} +
𝑄

𝐶𝑜𝑠𝑡1+ 𝐶𝑜𝑠𝑡2− 𝐵𝑒𝑠𝑡 + 1
                  (4.12) 

Another problem of trail updates is that only requests that have been assigned to fre-

quencies are updated. Therefore, the trail values on any unassigned requests are not 

increased, meaning such requests are likely to be selected even later in the following 

construction processes. As we would prefer to consider them earlier in the construc-

tion process, the trail is increased on each unassigned request for all available fre-

quencies. This idea was previously used in ACO for the examination scheduling prob-

lem [48]. 

4.2.5 Descent Method   

This method is executed only when no feasible solution can be found by all ants in a 

generation. In such generations, the descent method is executed only for one ant 

which constructs the infeasible solution with the minimum number of unassigned re-

quests. First, these requests are assigned to the frequencies which lead to the least 

number of violations. Then, the descent method aims to reduce the number of viola-

tions with a fixed number of frequencies to find a feasible solution, if possible. The 

description of the descent method can be found in Section 3.4.4.3.  

4.2.6 The ACO Algorithm Implementation 

ACO consists of a given number of generations, each of which contains a given num-

ber of ants, where each ant individually constructs a solution. Each ant starts con-

structing a solution by selecting a frequency to be assigned to all possible feasible 

requests. The process is repeated until no frequencies can be selected (see Section 

4.2.2). After all ants in the current generation construct their solutions, if no feasible 

solution can be found, then the descent method (see Section 4.2.5) is used to attempt 

to achieve a feasible solution. Then, the trail is evaporated and updated (see Section 
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4.2.4.1 and 4.2.4.2). After that, the next generation is executed by the same process. 

The overall structure of the ACO algorithm is illustrated in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Overall structure of our ACO algorithm for the static FAP. 
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4.3 Experiments and Results                                                                                            

This section presents and compared the performance of ACO in three sections. The 

first section gives the results of ACO for the static FAP. The second section compares 

the performance of ACO with existing ACO algorithms in the literature. Finally, the 

performance of ACO is compared with other algorithms in the literature.  

ACO is implemented in FORTRAN 95 and all experiments were conducted on a 3.0 

GHz Intel Core I3-2120 Processor (2nd Generation) with 8GB RAM and a 1TB Hard 

Drive.  

4.3.1 Results Comparison of the ACO Algorithm 

In this study, the number of generation of ACO is 100, where this number is selected 

based on experiments. Moreover, the performance of ACO is compared based on sev-

eral options of the following components:  

1. The number of ants, 

2. The trail definition, 

3. The visibility definition, 

4. The parameters 𝛼, 𝛽  𝑎𝑛𝑑 𝜌 (described in Section 4.1.1).  

Different values of the number of ants, two options of the trail definition and two op-

tions for visibility definition are compared. For the parameters  𝛼, 𝛽 and 𝜌, three val-

ues of each parameter are tested. The values considered for each parameter in this 

study are given in Table 4.5.  

𝛼 𝛽 𝜌 

1 1 0.80 

3 2 0.90 

5 3 0.95 

Table 4.5: The considered values of the parameters 𝛼, 𝛽 and 𝜌. 

Another parameter that might need to be considered is the parameter 𝑄 for trail up-

dates. However, from literature and our experiments, it was found that this parameter 

has no major effect on the algorithm [45]. Therefore, the value of 𝑄 is set to 10 

throughout this study.   

By considering all these options, there are 756 versions of ACO to be compared. 

Moreover, each version is tested on 10 instances with 5 runs being performed on each 
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instance. Therefore, considering all the versions of ACO take excessive time. Hence, 

the comparison is made for each component while fixing the others; i.e. first, different 

numbers of ants are compared while fixing the remaining components. After selecting 

the best number of ants, the two different trail definitions are compared. After that, 

two definitions of the visibility are compared and finally, different values of the pa-

rameters (𝛼, 𝛽 and 𝜌) are compared in the same way.  

The experiments are run using CELAR and GRAPH datasets for the static FAP. Re-

call that the results of the MO-FAP refer to the number of used frequencies in a feasi-

ble solution. ACO is run on each instance five times and each run uses a different 

random number stream, where this number is chosen based on experiments. Moreo-

ver, the best, the worst and the average solution, and the average run time are calcu-

lated.  

4.3.1.1 The Number of Ants  

This section discusses the effects of the number of ants on the performance of ACO. 

Different numbers of ants are chosen to be compared, where these numbers are select-

ed based on experiments. The selected numbers of ants  are 5, 10, 15, 20, 25, 30 and 

35. In order to observe the impact of the number of ants on the performance of ACO, 

other options are fixed, which are the visibility definition, the trail definition and the 

values of the parameters 𝛼, 𝛽 and 𝜌. In this stage, the visibility definition is based on 

the number of feasible frequencies, the trail definition is  𝑇𝐴 𝑅𝐹 and the parame-

ters 𝛼, 𝛽 and 𝜌 take the default values as given in Table 4.6.  

𝛼 𝛽 𝜌 𝑄 

5 2 0.90 10 

Table 4.6: The default values of the parameters. 

The ACO algorithm is tested on a subset of instances (specifically, CELAR 01, 

CELAR 03, GRAPH 01 and GRAPH 02). The selected subset of instances represents 

different numbers of requests and constraints. The effect of the number of ants on the 

performance of this algorithm is shown in Figure 4.6. 
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     Figure 4.6: The effect of the number of ants on the performance of the ACO algorithm. 

Figure 4.6 shows that the best results are found when the number of ants is 20. Hence, 

the selected number of ants in our ACO algorithm is 20. 

4.3.1.2 The Trail Definitions  

Two different trails are compared by fixing the number of ants to 20, the visibility to 

the number of feasible frequencies, and the parameters to the default values (see Table 

4.6). The results of ACO using the first trail definition 𝑇𝐴 𝑅𝐹 are given in Table 4.7, 

while Table 4.8 gives the results of ACO using the second trail definition 𝑇𝐴 𝑅𝑅. The 

best, the worst and the average solution, and the average run time of these two tables 

are compared and the better ones are shown in bold. Note that a dash “-” means that a 

feasible solution could not be found. 

 

 



Chapter 4. Ant Colony Optimization for the Static FAP 

 

86 
 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average  

run time 

CELAR 01 18 20 19.2 16  1.4 hrs 

CELAR 02 14 14 14.0 14 11.2 min 

CELAR 03 16 18 16.8 14 31.1 min 

CELAR 04 46 46 46.0 46 55.8 min 

CELAR 11 - - - 22 - 

GRAPH 01 20 20 20.0 18 18.3 min 

GRAPH 02 16 18 16.4 14 29.8 min 

GRAPH 08 24 24 24.0 18 30.1 min 

GRAPH 09 - - - 18 - 

GRAPH 14 10 12 11.6   8 59.8 min 

Table 4.7: Results of ACO for the MO-FAP using the trail 𝑇𝐴 𝑅𝐹.      

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average  

run time 

CELAR 01 22 24 23.2 16 1.6 hrs 

CELAR 02 14 14 14.0 14 18.2 min 

CELAR 03 16 18 17.6 14 41.8 hrs 

CELAR 04 - - - 46 - 

CELAR 11 - - - 22 - 

GRAPH 01 20 22 21.2 18 27.8 min 

GRAPH 02 18 20 19.6 14 44.2 min 

GRAPH 08 - - - 18 - 

GRAPH 09 - - - 18 - 

GRAPH 14 10 12 11.6   8 1.3 hrs 

Table 4.8: Results of ACO for the MO-FAP using the trail 𝑇𝐴 𝑅𝑅. 

The performance of ACO using 𝑇𝐴 𝑅𝐹 is better than using 𝑇𝐴 𝑅𝑅 for 6 out of 10 in-

stances. Moreover, using  𝑇𝐴 𝑅𝐹 has better run times for all the instances. The perfor-

mance of ACO using the two types of trail definitions is shown in Figure 4.7 (for the 

instances in which feasible solutions are found). 

 

 

 

 

 

 

 

Figure 4.7: The performance of ACO using two types of trail definitions. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is 

a significant difference between the performances of ACO using  𝑇𝐴 𝑅𝐹 and  𝑇𝐴 𝑅𝑅.  
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The run time of ACO using these two trails is shown in Figure 4.8 (for the instances 

in which feasible solutions are found).   

 

 

 

 

 

 

 

 

Figure 4.8: The average run time of ACO using two types of trail definitions. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is 

a significant difference between the run times of ACO using  𝑇𝐴 𝑅𝐹 and  𝑇𝐴 𝑅𝑅. 

Overall, using  𝑇𝐴 𝑅𝐹 resulted in better performance of ACO, hence it is selected as 

the definition of trail in this algorithm.  

4.3.1.3 The Visibility Definitions  

Here, the performance of ACO using the two different visibility definitions is com-

pared. The results of ACO using the first visibility definition were previously shown 

in Table 4.7, while those for the second visibility definition are given in Table 4.9. 

Note that a bold number in Table 4.9 means it is not worse than the corresponding one 

in Table 4.7 and a dash “-” means that a feasible solution could not be found. 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average  

run time 

CELAR 01 20 22 20.8 16  1.8 hrs 

CELAR 02 14 14 14.0 14 27.2 min 

CELAR 03 18 18 18.0 14 51.1 min 

CELAR 04 46 46 46.0 46  1.2 hrs 

CELAR 11 - - - 22 - 

GRAPH 01 22 22 22.0 18 29.8 min 

GRAPH 02 20 22 20.4 14 59.2 min 

GRAPH 08 - - - 18 - 

GRAPH 09 - - - 18 - 

GRAPH 14 12 12 12.0   8  1.5 hrs 

Table 4.9: Results of ACO for the MO-FAP using the second definition of visibility. 
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It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the per-

formance of ACO is significantly better when the first definition of visibility is used. 

4.3.1.4 The Parameters Values  

Here, different values of each parameter are compared to find the appropriate values. 

In order to observe the impact of each parameter on the performance of ACO, the val-

ues of each parameter are compared as follows: different values of the parameter 𝛼 

are compared while fixing the other parameters (𝛽 and 𝜌) to the default values (see 

Table 4.6). After that, the best value of the parameter 𝛼 is fixed to compare different 

values of the parameter 𝛽. Finally, different values of the last parameter 𝜌 are com-

pared. Note that a bold number shows the best result among different values of the 

parameter being considered and a dash “-” means that a feasible solution could not be 

found. 

The performance of ACO with different values of the parameter  𝛼 while 𝛽 = 2  

and 𝜌 = 0.90 (their default values) is shown in Table 4.10. 

Instance 
Average solution 

𝛼 = 1 𝛼 = 3 𝛼 = 5 

CELAR 01 20.4 20.0 19.2 

CELAR 02 14.0 14.0 14.0 

CELAR 03 18.0 18.0 16.8 

CELAR 04 - 46.0 46.0 

CELAR 11 - - - 

GRAPH 01 24.0 22.0 20.0 

GRAPH 02 20.0 18.4 16.4 

GRAPH 08 - 24.0 24.0 

GRAPH 09 - - - 

GRAPH 14 12.1 12.4 11.6 

Table 4.10: Results of ACO using different values of the parameter 𝛼. 

Table 4.10 shows that the best value of the parameter 𝛼 is 5. The performance of 

ACO with different values of the parameter  𝛽 while 𝛼 = 5 (its best value) and 𝜌 =

0.90 (its default value) is shown in Table 4.11. 
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Instance 
Average solution 

𝛽 =  1 𝛽 =  2 𝛽 =  3 

CELAR 01 

CELAR 02 

CELAR 03 

CELAR 04 

CELAR 11 

GRAPH 01 

GRAPH 02 

GRAPH 08 

GRAPH 09 

GRAPH 14 

20.0 19.2 20.4 

14.2 14.0 14.0 

18.8 16.8 18.8 

46.0 46.0 46.0 

- - - 

22.0 20.0 20.0 

18.4 16.4 16.8 

- 24.0 - 

- - - 

12.2 11.6 12.4 

Table 4.11: Results of ACO using different values of the parameter 𝛽. 

Table 4.11 shows that the best value of the parameter 𝛽 is 2. The performance of 

ACO with different values of the parameter  𝜌 while 𝛼 = 5  and 𝛽 = 2 (their best val-

ues) is shown in Table 4.12. 

 Instance 
Average solution 

𝜌 = 0.80 𝜌 = 0.90 𝜌 = 0.95 

CELAR 01 

CELAR 02 

CELAR 03 

CELAR 04 

CELAR 11 

GRAPH 01 

GRAPH 02 

GRAPH 08 

GRAPH 09 

GRAPH 14 

19.2 19.2 19.4 

14.0 14.0 14.0 

16.8 16.8 18.4 

46.0 46.0 46.0 

- - - 

20.0 20.0 20.4 

18.0 16.4 16.8 

24.0 24.0 24.0 

- - - 

12.6 11.6 12.8 

Table 4.12: Results of ACO using different values of the parameter 𝜌. 

Table 4.12 shows that the best value of the parameter 𝜌 is 0.90.  

The results of ACO using the best values of the parameters (𝛼 = 5, 𝛽 = 2, 𝜌 = 0.90) 

are shown in Table 4.13, where a bold number means the optimal solution is found. 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 18 20 19.2 16 1.4 hrs 

CELAR 02 14 14 14.0 14 11.2 min 

CELAR 03 16 18 16.8 14 31.1 min 

CELAR 04 46 46 46.0 46 55.8 min 

CELAR 11 - - - 22 - 

GRAPH 01 20 20 20.0 18 18.3 min 

GRAPH 02 16 18 16.4 14 29.8 min 

GRAPH 08 24 24 24.0 18 30.1 min 

GRAPH 09 - - - 18 - 

GRAPH 14 10 12 11.6   8 59.8 min 

Table 4.13: The best results of the ACO algorithm for the MO-FAP. 
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Table 4.16 shows that ACO managed to achieve a feasible solution for all the instanc-

es except two (CELAR 11 and GRAPH 09). In fact, ACO achieved the optimal solu-

tions for only two instances (CELAR 02 and CELAR 04). 

Furthermore, it is of interest to investigate whether ACO without significant changes 

can be successfully applied to other variants of the static FAP (MS-FAP and MI-

FAP). Notice that ACO is mainly designed to solve the MO-FAP. Therefore, a small 

number of changes are made to ACO. For the MS-FAP, the same ACO algorithm is 

used, but in the frequency selection, the selected frequency is changed to be the one 

that has the minimum value and is feasible for the most requests. It is found that ACO 

has poor performance for MS-FAP and MI-FAP, which agrees with what has been 

found by the tabu search algorithm in Chapter 3. It is likely that more significant 

changes are required to work well on other variants of the static FAP. 

4.3.1.5 The Descent Method   

Here, we investigate whether it is beneficial to combine ACO with a descent method 

by implementing ACO without it. After that, the performance of ACO with and with-

out the descent method is compared. The performance of ACO without the descent 

method is shown in Table 4.14.  

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 18 20 18.7 16 1.2 hrs 

CELAR 02 14 14 14.0 14 9.8 min 

CELAR 03 16 18 16.8 14 26.8 min 

CELAR 04 46 46 46.0 46 46.1 min 

CELAR 11 - - - 22 - 

GRAPH 01 20 20 20.0 18 12.2 min 

GRAPH 02 16 18 16.4 14 22.4 min 

GRAPH 08 - - - 18 - 

GRAPH 09 - - - 18 - 

GRAPH 14 10 12 11.6   8 52.8 min 

Table 4.14: Results of ACO for the MO-FAP without using the descent method. 

Table 4.14 shows that ACO without the descent method struggled to find a feasible 

solution for CELAR 11, GRAPH 08 and GRAPH 09. Using the descent method 

helped ACO to achieve feasible solutions for GRAPH 08 (see Table 4.13). Overall, 

combining ACO with the descent method led to a better performance compared with 

ACO without the descent method.  
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4.3.2 Results Comparison with Existing ACO Algorithms 

The performance of our ACO is compared with existing ACO in the literature. To the 

best of my knowledge, only one published research [109] (described in Section 2.5.1) 

applied ACO for the MO-FAP using CELAR and GRAPH datasets. Table 4.15 shows 

the results in the form given in [109], i.e. in the form of (y) where y is the number of 

violations. Note that y is equal to 0 means a feasible solution is found.  

Instance 

A
C

O
 [

1
0

9
] 

O
u

r 
A

C
O

 

CELAR 01 (0) (0) 

CELAR 02 (0) (0) 

CELAR 03 (0) (0) 

CELAR 04 (8) (0) 

CELAR 11 (2) (6) 

GRAPH 01 (0) (0) 

GRAPH 02 (0) (0) 

GRAPH 08 (0) (0) 

GRAPH 09 (0) (12) 

GRAPH 14 (0) (0) 

Table 4.15: Results of ACO and existing ACO algorithm in the literature. 

Table 4.15 shows that both of the algorithms struggled to find a feasible solution for 

CELAR 11. Moreover, ACO in [109] could not achieve a feasible solution for 

CELAR 04, whereas our ACO could. In contrast, our ACO could not achieve a feasi-

ble solution for GRAPH 09, whereas ACO in [109] could. Overall, both of the ACO 

algorithms performing equally well.  

4.3.3 Results Comparison with Other Algorithms 

This section compares the best found results of our ACO algorithm with those of oth-

er algorithms in the literature and our tabu search algorithm (see Chapter 3) as shown 

in Table 4.16, where a bold number means that the optimal solution is achieved and a 

dash “-” means that the result is not available.  

http://fap.zib.de/biblio/content.html#TiHuLe99
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Optimal 

solution 

CELAR 01 18 16 20 16 16 - 16 16 16 16 18 16 

CELAR 02 14 14 14 14 - 14 14 14 14 14 14 14 

CELAR 03 14 14 16 16 16 14 14 14 14 14 16 14 

CELAR 04 46 46 46 46 - - 46 46 46 46 46 46 

CELAR 11 24 24 32 - - - 22 24 24 38 - 22 

GRAPH 01 18 18 20 18 18 18 18 - - 18 20 18 

GRAPH 02 16 14 16 14 14 14 14 - - 14 16 14 

GRAPH 08 24 22 - 18 18 - 20 - - 18 24 18 

GRAPH 09 22 22 28 18 18 - 22 - - 18 - 18 

GRAPH 14 12 - 14 10 10 - 10 - -   8 10   8 

Table 4.16: Results of ACO and other algorithms in the literature. 

Table 4.16 shows that our ACO algorithm achieved competitive results for CELAR 

02, CELAR 04 and GRAPH 14, while it achieved reasonable results for other instanc-

es. In contrast, our ACO algorithm struggled to achieve a feasible solution for 

CELAR 11 and GRAPH 09. Additionally, our ACO algorithm and the genetic algo-

rithm in [34] are less satisfactory than the other algorithms as these achieved the op-

timal solutions for only two instances. Note that our tabu search algorithm found the 

optimal solution for the highest number of instances in Table 4.16.   

4.4 Time Complexity and Convergence of ACO 

The time complexity of ACO can be expressed using the big O notation by counting 

the number of times the key operation, which is assigning a frequency to a request, is 

performed. The first step of ACO is selecting a frequency and this requires O(𝑁𝑅2 ∗

𝑁𝐹), while selecting requests to be assigned the selected frequency is of order 

O(𝑁𝑅2 ∗ 𝑁𝐹). For each ant, the cost function must be calculated from scratch and this 

has complexity of O(𝑁𝑅2). The trail update requires O(𝑁𝑅 ∗ 𝑁𝐹) and the descent 

method requires O(𝑁𝑅2 ∗ 𝑁𝐹). Hence, the time complexity of ACO is of order 

O(𝑁𝑅2 ∗ 𝑁𝐹). 

To investigate the convergence of ACO, this algorithm is executed for 500 genera-

tions for the GRAPH 01 instance. It is run with five different random streams and the 

average of the solutions is shown in Figure 4.10.   
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Figure 4.9: The convergence of the ACO algorithm on the GRAPH 01 instance. 

Figure 4.9 shows the ACO algorithm converged within 100 generations. Furthermore, 

similar convergence has been found for other instances. Therefore, this convergence 

experiment suggests that the appropriate number of generations in our ACO for the 

static FAP is 100. 

4.5 Conclusions                

In this study, an improved ACO was introduced for the static FAP, where ACO is 

mainly designed to solve the MO-FAP. One of the techniques which was applied to 

improve the performance of ACO is the recursive largest first (RLF). In fact, applying 

RLF aims to improve the performance of selecting frequencies and requests to be as-

signed. Moreover, ACO was compared using two trail definitions and two visibility 

definitions. It was found that using the trail between requests and frequencies led to 

better performance than the other trail definition. Moreover, using the visibility defi-

nition based on the number of feasible frequencies (Formula 4.6) resulted in better 

performance than another visibility definition. Furthermore, several values for the 

parameters 𝛼, 𝛽, 𝜌 were compared and the best values are 5, 2 and 0.90, respectively. 

ACO is combined with a descent method to achieve better results when no feasible 

solution can be found in a generation. In such generations, the descent method is exe-

cuted for only one ant which constructs the infeasible solution with the minimum 

number of unassigned requests. Overall, our ACO algorithm performed similarly to 

ACO in the literature, whereas it showed poor performance compared with other algo-
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rithms in the literature. Hence, other heuristic algorithms need to be considered to 

achieve the optimal solution or better results. In chapter 5, one of the popular heuristic 

algorithms called hyper heuristics is considered to solve the static FAP. 

Finally, the research questions of this chapter can be answered as follows: 

 Can ACO perform better than tabu search on the static FAP? 

ACO cannot perform better than tabu search on the static FAP (see Section 4.3.3). 

Indeed, ACO struggled to find a feasible solution for some instances (see Table 

4.13), so this algorithm is not strong enough.  

 

 Is it beneficial to combine ACO with a local search? 

Combining ACO with a local search improves the results of our ACO algorithm 

(see Section 4.3.1.5).  

 

 Is ACO an appropriate solution method for the static FAP? 

The comparison of the performance of ACO with other algorithms in the literature 

(see Table 4.16) suggests that ACO is not the appropriate solution method for the 

static FAP due to the poor performance of this algorithm.    



Chapter 5. Hyper Heuristic for the Static FAP 

95 
 

 

 

 

 

Chapter 5                                                                                                            

Hyper Heuristic for the Static FAP 

5.1 Introduction  

Hyper heuristic (HH) can be thought of as an algorithm that combines multiple heu-

ristics to solve hard combinatorial optimization problems. The concept of HH is based 

on the idea that, as each heuristic has strengths and weaknesses, combining several 

heuristics may lead to an improved performance. Such heuristics are called low level 

heuristics (LLHs) and are managed by HH. The criteria to select one of these at each 

step is usually problem independent. This algorithm is an iterative process of two 

stages: heuristic selection and move acceptance. 

There are two main types of HH, namely constructive and improvement algorithms 

[22]. The constructive HH algorithm constructs a solution from scratch, whereas the 

improvement HH algorithm starts with an initial solution and aims to improve it. In 

this thesis, an improvement heuristic algorithm was considered in Chapter 3, namely 

tabu search (TS), whereas a constructive heuristic algorithm was discussed in Chapter 

4, namely ant colony optimization (ACO), and the former proved far superior. There-
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fore, the improvement approach is adopted for HH in this study. There are relatively 

few papers that apply HH for the static frequency assignment problem (FAP). How-

ever, to the best of my knowledge, no existing papers in the literature apply HH on the 

static FAP datasets considered in this thesis. Hence, this is the first attempt to solve 

such datasets using HH. 

In this chapter, a HH algorithm is applied to the static FAP and is mainly designed for 

the minimum order FAP (MO-FAP) using several novel and existing techniques. One 

of these is using a lower bound on the number of frequencies that are required from 

each domain for a feasible solution to exist, based on the underlying graph colouring 

model (see Section 3.2). These lower bounds are used to ensure that we never waste 

time trying to find a feasible solution with a set of frequencies that do not satisfy the 

lower bounds. Moreover, applying simple and advanced LLHs associated with an in-

dependent tabu list for each LLH is aimed to make this algorithm more efficient and 

different from other HHs for the static FAP in the literature (see e.g. [96, 97]). This 

chapter focuses on the following research questions: 

 Can HH perform better than TS and ACO on the static FAP?  

 What is the best mechanism for selecting the LLHs? 

 Is HH an appropriate solution method for the static FAP? 

This chapter is organized as follows: Section 5.2 presents an overview of our HH al-

gorithm for the static FAP. Section 5.3 gives the main components of our HH algo-

rithm. In Section 5.4, the results of HH are given and analysed. Then, the performance 

of HH is compared with the algorithms considered in this thesis and other algorithms 

in the literature. The time complexity and the convergence of our HH algorithm are 

discussed in Section 5.5. Finally, this chapter is closed with conclusions.    

5.2 Overview of the Hyper Heuristic Algorithm   

5.2.1 Solution Space and Cost function  

It was found in [47] that the interference constraints are the most difficult constraints 

to be satisfied. Hence, this type of constraint can be relaxed and the solution space is 

defined here as the set of all possible solutions that satisfy bidirectional, domain and 

pre-assignment constraints. The cost function is defined as the number of broken in-
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terference constraints, also known as the number of violations. This configuration is 

different from other configurations in HH for the static FAP in the literature where no 

constraints are relaxed (see e.g. [96, 97]). Note that requests and frequencies are con-

sidered as pairs based on the bidirectional constraints (see Equation 1.1) because this 

configuration showed promising performance (see Section 3.5.1.2). 

Using the solution space which relaxes the interference constraints creates the follow-

ing sub-problem: minimizing the number of violations with a fixed number of used 

frequencies. If a solution with zero violations (a feasible solution) is found, then the 

number of used frequencies is reduced using the creating violations phase (see Section 

5.3.2) and then the sub-problem is revisited. The process is repeated until a feasible 

solution can no longer be found. This process is the same as tabu search in Chapter 3. 

5.2.2 Structure of the Hyper Heuristic Algorithm 

HH starts with the initial solution phase (see Section 5.3.1). Assume the initial solu-

tion is feasible. Then, the creating violations phase (see Section 5.3.2) is used to re-

duce the number of used frequencies. After that, HH is applied using LLHs (see Sec-

tion 5.3.3) to find a feasible solution with a fixed number of used frequencies. One of 

the LLHs is selected in each iteration based on the selection mechanism (see Section 

5.3.4) to find a new solution. This solution is accepted or rejected based on the move 

acceptance criteria (see Section 5.3.5), which accepts worse solutions a limited num-

ber of times to diversify the search. After that, the process continues until one of the 

stopping criteria is met (see Section 5.3.6). If the initial solution is infeasible, then the 

creating violations phase is skipped and all available frequencies are allowed. The 

overall structure of the HH algorithm considered in this study is illustrated in Figure 

5.1. 
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Figure 5.1: Overall structure of the HH algorithm for the static FAP. 

5.3 Components of the Hyper Heuristic Algorithm      

5.3.1 The Initial Solution Phase 

In this phase, the initial solution is generated in the same way as for TS (see Section 

3.4.4) to allow a fair comparison between HH and TS. That is, a greedy algorithm 

No 
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hybridised with a descent method to produce a feasible initial solution, if possible. 

Similarly, a greedy constructive heuristic was used to generate an initial solution in 

the HH algorithm for the static FAP in [97]. 

5.3.2 The Creating Violations Phase 

This phase aims to reduce the number of used frequencies in a feasible solution by 

removing a used frequency. The creating violations phase that we implement here is 

the same as that in TS (see Section 3.4.5). To the best of my knowledge, this idea has 

not been previously used in HH for the static FAP. 

5.3.3 The Low Level Heuristics  

HH involves a set of LLHs, each of which gives a new neighbour solution. In this 

study, 13 LLHs are applied, where some of them are simple (and previously used, see 

e.g. [97]) and the others are more advanced. Then, HH accepts or rejects each new 

solution. In fact, some neighbour solutions are accepted sometimes even if these lead 

to an increase in the number of violations in order to diversify the search. Hence, the 

LLHs can be divided into two groups: intensification and diversification LLHs. As 

this algorithm accepts neighbour solutions that are of the same cost as the current so-

lution, cycling is one of the problems which may be faced in each LLH. In order to 

avoid this, each LLH has an independent local tabu list.  

Each LLH starts by either choosing a frequency 𝑓𝑘  to be removed or choosing a re-

quest 𝑟𝑖 to be re-assigned. In the former type of the LLHs, the chosen frequency 𝑓𝑘 

should satisfy the following conditions: (i) 𝑓𝑘 is not in the local tabu list, (ii) 𝑓𝑘 is in-

volved in most violations. If more than one frequency satisfies these conditions, then 

one of them is chosen randomly.  

In the latter type of the LLHs, the chosen request 𝑟𝑖 should satisfy the following con-

ditions: (i) 𝑟𝑖 is not in the local tabu list, (ii) 𝑟𝑖 is involved in most violations. If more 

than one request satisfies those conditions, then one of them is chosen randomly.  

A frequency 𝑓𝑗  to be assigned in place of the removed frequency 𝑓𝑘 or to be assigned 

to the chosen request 𝑟𝑖 should satisfy the following conditions: (i) 𝑓𝑗  is not in the lo-

cal tabu list, (ii) 𝑓𝑗  results in the minimum number of violations. If more than one fre-

quency satisfies these conditions, then one of them is chosen randomly. 
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The descriptions of the LLHs which start by choosing a frequency 𝑓𝑘 are given as fol-

lows: 

LLH1: the set of requests that are currently assigned to the chosen frequency 𝑓𝑘  is 

swapped with its partner (based on the bidirectional constants).  

LLH2: all requests assigned to 𝑓𝑘 are re-assigned to either the chosen unused frequen-

cy 𝑓𝑗  or one of the used frequencies. If the assignment to 𝑓𝑗 results in zero vio-

lations, then this is always made, otherwise each request is assigned to a used 

frequency that results in the smallest number of violations. In the event of a 

tie, the requests are assigned randomly.  

LLH3: a request is randomly selected from the set of requests that are currently as-

signed to the chosen frequency 𝑓𝑘  to be re-assigned to the used frequency 𝑓𝑗. 

The description of the LLHs which start by choosing a request 𝑟𝑖 is given as follows: 

LLH4:  the selected request 𝑟𝑖 is assigned to the chosen used frequency 𝑓𝑗. 

LLH5:  the selected request 𝑟𝑖 is swapped with its partner (based on the bidirectional 

constraints).  

LLH6: it is similar to LLH2 but the method of choosing the frequency to be removed 

is different. Here, the frequency of the selected request 𝑟𝑖 is chosen to be re-

moved. 

The following LLHs are not required to satisfy the condition (ii) for selecting 𝑓𝑘, 

or  𝑟𝑖, or  𝑓𝑗. 

LLH7:  it is similar to LLH2 but the method of choosing the frequency to be removed 

is different. Here, the frequency 𝑓𝑘  which is assigned to the fewest requests is 

removed.  

LLH8:  a request  𝑟𝑖 is chosen randomly to be re-assigned to a used frequency 𝑓𝑗  which 

is also chosen randomly.  

LLH9: a request 𝑟𝑖 is chosen randomly to be swapped with its partner (based on the 

bidirectional constraints).   
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LLH10: a used frequency 𝑓𝑘  is chosen randomly, and then one of the requests that is 

assigned to 𝑓𝑘, say  𝑟𝑖, is randomly selected. After that, a used frequency 

𝑓𝑗  which results in the minimum number of violations is assigned to  𝑟𝑖. In case 

of a tie, one of them is chosen randomly.   

LLH11: each request is swapped with its partner (based on the bidirectional con-

straints) as long as this does not increase the number of violations.  

LLH12: for each request 𝑟𝑖, the used frequency 𝑓𝑗  that results in the minimum number 

of violations is chosen. In case of a tie, one of them is chosen randomly.   

LLH13: the search is diversified by assigning an unused frequency 𝑓𝑗  in place of a 

used frequency 𝑓𝑘. In other words, the frequency 𝑓𝑗  is assigned to all requests 

that are currently assigned 𝑓𝑘. Here, all the possible choices of 𝑓𝑗  and 𝑓𝑘 are 

considered. Then, the choice that results in the lowest number of violations is 

chosen.  

Recall that LLHs can be divided into two groups: intensification and diversification 

LLHs. Here, the former group contains LLH1, LLH3, LLH4, LLH5, LLH8, LLH9, 

LLH10, LLH11 and LLH12, and the latter group contains LLH2, LLH6, LLH7 and 

LLH13. 

Any change made to the solution by each LLH is added to the local tabu list. All the 

local tabu lists are cleared when a feasible solution is achieved, i.e. the sub-problem is 

solved. 

5.3.4 LLH Selection Mechanisms 

The LLH selection mechanisms can be executed in two ways: a non-adaptive selec-

tion method such as random selection or an adaptive selection method such as proba-

bilistic selection [22]. In our HH algorithm, both of these selection mechanisms are 

considered and compared to select the best one. These two selection mechanisms are 

discussed in more detail in the following two subsections.  

5.3.4.1 Random Selection of the LLHs 

The first selection mechanism of the LLHs in this study is based on randomness. 

Random selection of the LLHs is the oldest, the simplest and the most commonly 
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used selection mechanism of the LLHs in HH [27]. This type of selection mechanism 

was previously used in HH for the static FAP in [97]. 

5.3.4.2 Probabilistic Selection of the LLHs  

In this type of selection mechanism, the LLHs are selected probabilistically based on 

the performance of each LLH. At the beginning, each of the intensification LLHs has 

an equal chance of being selected. Note that the diversification LLHs are not probabil-

istically selected because they are intended to take the search to different parts of the 

solution space, regardless of the effect on a solution cost. Moreover, the diversifica-

tion LLHs usually lead to worse results, which would result in a lower probability of 

selecting them, where this is undesirable. Probabilistic selection was used previously 

in HH for the static FAP in [135]. 

In order to reflect the performance of each LLH, the probabilities are updated by 

measuring their contribution in terms of reducing the number of violations. When a 

LLH reduces the number of violations, the probability of selecting that LLH increas-

es. Three different approaches can be considered to update the probability when a 

LLH leads to a decrease or an increase in the number of violations. These three ap-

proaches are defined as follows (where N is a parameter, which is set to 50 in this 

study): 

Approach 1: 

If the selected 𝐿𝐿𝐻𝑗  decreases the number of violations, the probability of selecting 

𝐿𝐿𝐻𝑗  is increased using Formula 5.1.    

                                       𝑃(𝐿𝐿𝐻𝑗) ← 𝑃(𝐿𝐿𝐻𝑗) +  
1

𝑁
                                                 (5.1)                  

In contrast, if 𝐿𝐿𝐻𝑗 increases the number of violations, the probability of selecting 

𝐿𝐿𝐻𝑗  is decreased using Formula 5.2.    

                                        𝑃(𝐿𝐿𝐻𝑗) ← 𝑃(𝐿𝐿𝐻𝑗) −
1

𝑁
                                                 (5.2)  

Approach 2: 

If the selected 𝐿𝐿𝐻𝑗  decreases the number of violations by M, the probability of 𝐿𝐿𝐻𝑗 

is increased using Formula 5.3.    
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∑ 𝑃(𝐿𝐿𝐻𝑖)

12

𝑖=1
𝑖≠2,6,7

 

   𝑃(𝐿𝐿𝐻𝑗) ←  
𝑃(𝐿𝐿𝐻𝑗)

1
 

                                        𝑃(𝐿𝐿𝐻𝑗) ←  
𝑃(𝐿𝐿𝐻𝑗) + 𝑀

𝑁
                                                     (5.3)     

Therefore, the probability is increased by a greater amount if 𝐿𝐿𝐻𝑗 causes a large im-

provement in the number of violations.             

In contrast, if 𝐿𝐿𝐻𝑗 increases the number of violations, the probability of 𝐿𝐿𝐻𝑗 is un-

changed using Formula 5.4.     

                                         𝑃(𝐿𝐿𝐻𝑗) ← 𝑃(𝐿𝐿𝐻𝑗)                                                       (5.4)   

Approach 3: 

This approach is a mixture of the first two approaches and rewards changes that im-

prove a solution and penalises changes that worsen a solution. If the selected  𝐿𝐿𝐻𝑗 

decreases the number of violations by M, then the probability of 𝐿𝐿𝐻𝑗 is increased 

according to Formula 5.3. In contrast, if 𝐿𝐿𝐻𝑗   increases the number of violations, the 

probability of 𝐿𝐿𝐻𝑗 is decreased according to Formula 5.2. 

After increasing or decreasing the probability of the selected LLH using one of the 

above approaches, the probabilities are normalised using Formula 5.5.    

          (5.5) 

 

 

Example 5.1 clarifies the concept of the probabilistic selection of the LLHs.  

Example 5.1:  

Assume the probabilistic selection of the LLHs is based on Approach 3. In the 

first iteration, LLH1 is selected and reduces the number of violations by 6. In 

the second iteration, LLH4 is selected and reduces the number of violations by 

20. The probability of selecting of each LLH is shown in Table 5.1.  
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LLHs  
Initial 

probability 
M P( LLH ) 

First   

updated 

probability 

M P( LLH ) 

Second 

updated 

probability 

 LLH 1 0.1111 6 0.12222 0.12088  - 0.12088 0.0935 

 LLH 2 0.1111 - 0.11111 0.10989  - 0.10989 0.08503 

 LLH 3 0.1111 - 0.11111 0.10989  - 0.10989 0.08503 

 LLH 4 0.1111 - 0.11111 0.10989 20 0.40219 0.31122 

 LLH 5 0.1111 - 0.11111 0.10989  - 0.10989 0.08503 

 LLH 6 0.1111 - 0.11111 0.10989  - 0.10989 0.08503 

 LLH 7 0.1111 - 0.11111 0.10989  - 0.10989 0.08503 

 LLH 8 0.1111 - 0.11111 0.10989  - 0.10989 0.08503 

 LLH 9 0.1111 - 0.11111 0.10989  - 0.10989 0.08503 

 Total  1 6 1.011102 1  20 1.29230 1 

             Table 5.1: An example of updating the probability of selecting each LLH. 

Table 5.1 shows that the probability of selecting LLH1 is increased from 

0.1111 to 0.12088, reflecting its success and making it more likely to be se-

lected in the future. In the second iteration, the probability of selecting LLH4 is 

increased by 0.20133, which reflects its success. It can be seen that a bigger 

reduction in the number of violations results in a bigger increase in the corre-

sponding probability.  

Limitation on probabilities 

Probabilistic selection of the LLHs can be implemented in two different ways:  

1. Probabilistic selection of the LLHs without a limit. 

2. Probabilistic selection of the LLHs with a limit. 

In the first type of implementation, the probabilities have freedom to be increased or 

decreased without a limit. This may lead to some LLHs being ignored because their 

probabilities reach approximately zero. In order to avoid this, the second type of im-

plementation restricts the probabilities by giving a minimum limit of the probability 

of selecting each LLH. The reason behind using this limit is to make sure there is a 

balance between selecting all the LLHs.  

In order to avoid probabilities dropping below the limit value, which is set to 0.05 in 

this study, the probability of 𝐿𝐿𝐻𝑗  is updated using Formula 5.6. This may lead to an 

increase in the probability in some LLHs. 

                                   𝑃(𝐿𝐿𝐻𝑗) ← 𝑀𝑎𝑥 (0.05 , 𝑃(𝐿𝐿𝐻𝑗))                                       (5.6) 
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Using a limit for the probability of selecting each LLH was previously used in [29], 

but this technique is implemented differently in our HH algorithm by considering two 

stages of removing the extra probability, which is given by Formula 5.7.  

           𝐸𝑥𝑡𝑟𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.05 −  𝑃(𝐿𝐿𝐻𝑗)                             (5.7)       

Note that the second stage is used when the first stage fails to remove the extra proba-

bility. These two stages are described as follows:  

a) Removing the extra probability by equivalent division 

The extra probability is equally removed from those LLHs which do not reach the 

limit of the probability value. Assume that we have n LLHs that do not reach the limit 

of the probability. Then, the extra probability is divided by n, which gives the reduc-

tion probability as given by Formula 5.8.   

        𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝐸𝑥𝑡𝑟𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

𝑛
                           (5.8) 

Then, the reduction probability is subtracted from each probability of the n LLHs. In 

order to clarify this, consider Example 5.2.  

Example 5.2:  

Assume there are five LLHs and their probabilities are given in Table 5.2.   

 

                                                 

 

 

Table 5.2: An example of probabilities of selecting the LLHs. 

Then, assume the probability of LLH1 is increased by 0.05. After that, the 

probability is updated using Formula 5.5 and the limit of the probability is ap-

plied using Formula 5.6 as shown in Table 5.3.   

 

 

 

LLHs P(LLH) 

LLH 1 0.40 

LLH 2 0.30 

LLH 3 0.20 

LLH 4 0.05 

LLH 5 0.05 

Total 1 
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LLHs P(LLH) 
Updated 

probability 

Applying the 

limitation 

LLH 1 0.45 0.428571 0.428571 

LLH 2 0.30 0.285714 0.285714 

LLH 3 0.20 0.190476 0.190476 

LLH 4 0.05 0.047619 0.050000 

LLH 5 0.05 0.047619 0.050000 

Total 1.05 1 1.004762 

Table 5.3: Applying the limit on the probabilities of selecting the LLHs. 

Hence, the extra probability 0.004762 is removed from the other three LLHs 

which do not reach the limit of the probability. Using equivalent division ac-

cording to Formula 5.8, each of these is reduced by 
0.004762

3
 = 0.00159 as 

shown in Table 5.4.  

LLHs P(LLH) 
Appling the 

equivalent division 

LLH 1 0.428571 0.426984 

LLH 2 0.285714 0.284127 

LLH 3 0.190476 0.188889 

LLH 4 0.050000 0.050000 

LLH 5 0.050000 0.050000 

Total 1.004762 1 

Table 5.4: Applying the equivalent division to the probabilities of selecting the LLHs.  

b) Removing the extra probability by proportional division 

Occasionally, the previous stage resulted in at least one LLH with probability still 

being less than the limit. This happens when the probability of a particular LLH is 

narrowly above 0.05, but becomes smaller than 0.05 by the equivalent division pro-

cess. In this stage, the extra probability is removed proportionally from the probabili-

ties of LLHs which do not reach the limit. Say there are m such LLHs. Therefore, the 

probability of selecting each of the m LLHs is reduced by a different value based on 

proportional division. The reduction probabilities are given by Formula 5.9.   

        𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐿𝐿𝐻𝑗) =  
𝑃(𝐿𝐿𝐻𝑗)

∑ 𝑃(𝐿𝐿𝐻𝑖)𝑚
𝑖=1

 × 𝐸𝑥𝑡𝑟𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦           (5.9) 

In order to clarify this concept, consider Example 5.3. 

Example 5.3:  

Assume removing the extra probability by equivalent division results in an ex-

tra probability as shown in Table 5.5. Hence, the extra probability is removed 

by proportional division. As a result, each probability of LLHs which is higher 
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than the limit is reduced by different values based on proportional division us-

ing Formula 5.9. These results are shown in Table 5.5.  

 
LLHs P(LLH) 

Updated 

probability 

Applying the 

limitation 

Reduction 

probability 

Updated 

probability 

 LLH 1 0.450000 0.428571 0.428571 0.002255 0.426316 

 LLH 2 0.300000 0.285714 0.285714 0.001504 0.284210 

 LLH 3 0.200000 0.190476 0.190476 0.001003 0.189473 

 LLH 4 0.050000 0.047619 0.050000 0 0.050000 

 LLH 5 0.050000 0.047619 0.050000 0 0.050000 

 Total 1.050000 1 1.004762 0.004762 1 

                    Table 5.5: Applying the proportional division to the probabilities of selecting the LLHs.  

The extra probability in Table 5.5 is removed using proportional division 

based on Formula 5.9 which is calculated as follows:  

 Reduction probability (LLH1) = 
0.428571

0.904761
 ×  0.004762 =  0.002255 

 Reduction probability (LLH2) = 
0.285714

0.904761
 ×  0.004762 =  0.001504      

 Reduction probability (LLH3) = 
0.190476

0.904761
 ×  0.004762 =  0.001003  

Finally, each different reduction probability is removed from each correspond-

ing probability of the LLHs as shown in Table 5.5.  

5.3.5 Acceptance Criteria 

A combination of two types of acceptance criteria is applied. This concept was previ-

ously used in the literature (see e.g. [129]). The first one is applied when one of the 

intensification LLHs is selected, where only neighbour solutions that are not worse 

than the current solution are accepted. This type of criteria is commonly used and one 

of the successful acceptance criteria in the literature [122]. The second types of ac-

ceptance criteria is applied when one of the diversification LLHs is selected, where 

neighbour solutions are accepted regardless of the effect on the solution cost, i.e. even 

if these lead to an increase in the number of violations. Note that one of the diversifi-

cation LLHs is selected when no better neighbour solution has been found for a cer-

tain number of iterations using the intensification LLHs. This allows the search to 

diversify by moving into a new area of the search space. Note that each of the diversi-

fication LLHs is allowed to give a worse solution for no more than a given number of 

times. 
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5.3.6 Stopping Criteria  

The HH algorithm has three stopping criteria as follows: (i) a feasible solution whose 

number of frequencies is equal to the lower bound is found (as this is the optimal so-

lution), (ii) the number of iterations is equal to a given number without successfully 

solving the sub-problem (see Section 5.2.1), i.e. a feasible solution could not be 

achieved (note that the number of iterations is reset to zero each time the sub-problem 

is solved), and (iii) the number of violations remains unchanged for more than a given 

number of iterations and the number of times each diversification LLH is executed 

reaches a given number. 

5.4 Experiments and Results      

This section presents and compares the results of HH for the static FAP in three stages 

using CELAR and GRAPH datasets (available on the FAP website1). The first stage 

presents and compares the results of HH in this study. The second stage compares the 

performance of HH with other algorithms in the literature. Finally, the performance of 

HH is compared with the algorithms considered in this thesis. The parameters of our 

HH algorithm are set based on experimentations for solving the sub-problem as fol-

lows: 

 The maximum number of iterations is 2,500. 

 The tabu tenure of a local tabu list for each LLH is 5. 

 When no better neighbour solution can be achieved using the intensification 

LLHs for 50 consecutively iterations, a solution is produced using one of the 

diversification LLHs. This will usually be worse than the current solution. 

Each of the diversification LLHs is allowed to give a worse solution for no 

more than 6 times. 

In this study, the algorithm was coded using FORTRAN 95 and all experiments were 

conducted on a 3.0 GHz Intel Core I3-2120 Processor (2nd Generation) with 8GB 

RAM and a 1TB Hard Drive. 

5.4.1 Results Comparison of the Hyper Heuristic Algorithm                                                                         

This section compares the performance of HH for the static FAP using random and 

probabilistic selection mechanism for the LLHs. The optimal solutions of these da-
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tasets are known (available on the FAP website1). Therefore, the results are compared 

with the known optimal solutions. Note that the initial solutions in this algorithm are 

the same as given in Section 3.5.1.1. 

As HH is mainly designed for the MO-FAP, applying HH to solve this problem is 

considered first. For each instance, HH is run 5 times, where each run uses different 

random number streams. The selected number of runs is chosen based on the experi-

ments. The results of HH include the best, the worst and the average solution, and the 

average run time. Notice that a bold number means that the optimal solution is 

achieved.  

5.4.1.1 Random Selection of the LLHs 

Three different versions of HH are examined and compared using different subsets of 

the LLHs to investigate the importance of each subset. The first version of HH con-

siders all the LLHs (this version of HH is denoted by approach A). The second ver-

sion of HH considers all the LLHs except the diversification LLHs (this version of 

HH is denoted by approach B). The third version of HH considers all the LLHs except 

the LLHs which do not contribute to reducing the number of violations in approach A 

(this version of HH is denoted by approach C). The results of these approaches are 

given and compared as follows:  

Approach A: this approach considers the performance of HH including all the LLHs. 

The results of this approach are given in Table 5.6.  

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 16 24 19.2 16 18.03 min 

CELAR 02 14 14 14.0 14  0.62 sec 

CELAR 03 16 18 16.8 14   3.20 min 

CELAR 04 46 46 46.0 46 54.34 sec 

CELAR 11 36 48 40.0 22 10.41 min 

GRAPH 01 18 20 18.4 18 48.03 sec 

GRAPH 02 14 16 14.8 14   3.00 min 

GRAPH 08 20 20 20.0 18 13.20 min 

GRAPH 09 20 24 22.0 18 19.21 min 

GRAPH 14 10 12 10.8   8 15.61 min 

Table 5.6: Results of HH for the MO-FAP using approach A. 

                                                           
1 http://fap.zib.de/problems/CALMA/ (last accessed 25 February 2015).  

http://fap.zib.de/problems/CALMA/%20(last
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Table 5.6 shows that the optimal solution is achieved for CELAR 02 and CELAR 04, 

and most of the runs for GRAPH 01 and GRAPH 02. In contrast, for some instances, 

HH achieved solutions that use considerably more frequencies than the optimal.   

Three instances are selected to analyse the number of calls (the number of times each 

LLH is selected) and the number of executions (the number of times each LLH is se-

lected and accepted) of the LLHs. The selected instances represent different instances 

with different number of requests and constraints. Figure 5.2 shows the total number 

of calls of the LLHs for the selected instances. 

Figure 5.2: The total number of calls of the LLHs for the selected instances. 

Figure 5.2 shows that the lowest numbers of calls of the LLHs correspond to LLH2, 

LLH6, LLH7 and LLH13 (the diversification LLHs). The reason behind that is that 

these LLHs are applied to diversify the search and the use of these is limited. The to-

tal number of times each LLH is executed for the same selected instances is shown in 

Figure 5.3. 

Figure 5.3: The total number of executions of the LLHs for the selected instances. 
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Figure 5.3 shows that the lowest numbers of executions of the LLHs correspond to the 

diversification LLHs (LLH2, LLH6, LLH7 and LLH13), as well as LLH1. This is be-

cause LLH1 involves the swapping of a set of pairs of requests, which is a small 

change in the solution compared with the other LLHs, so this is less likely to be ac-

cepted. However, the importance of LLH1 is investigated by considering the total and 

average number of violations which has been reduced by each LLH. Figure 5.4 and 

Figure 5.5 show the total and the average reduction in the number of violations due to 

each LLH, respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Total reduction in the number of violations due to each LLH. 

Figure 5.5: Average reduction in the number of violations due to each LLH. 

Figure 5.4 and Figure 5.5 shows that LLH2, LLH6, LLH7 and LLH13 did not contrib-

ute to reducing the number of violations as was explained earlier. Moreover, LLH8, 
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LLH9 and LLH10 did not contribute to reducing the number of violations either, but 

these LLHs are accepted as can be seen in Figure 5.3 because they keep the number of 

violations unchanged. To investigate whether these LLHs are important for optimiz-

ing the solution, approach B excludes the diversification LLHs and approach C ex-

cludes LLH8, LLH9 and LLH10 as shown next.  

Approach B: this approach considers the performance of HH including all LLHs ex-

cept the diversification LLHs (LLH2, LLH6, LLH7 and LLH13). The results of this ap-

proach are given in Table 5.7.  

 

 

 

 

 

 

Table 5.7: Results of HH for the MO-FAP using approach B. 

Table 5.7 shows that this approach struggled to find the optimal solutions in most of 

the instances, whereas in approach A the optimal solutions are found in almost half of 

the instances. Moreover, this approach struggled to improve the initial solution in 

some of the instances (see Table 3.6). Therefore, these results demonstrate the im-

portance of the diversification LLHs to achieve better quality solutions.  

Approach C: this approach excludes some LLHs which do not contribute to reducing 

the number of violations using approach A. In other words, HH is executed without 

LLH8, LLH9 and LLH10. The results of this approach are shown in Table 5.8.  

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 18 22 20.4 16 18.03 min 

CELAR 02 14 14 14.0 14 0.62 sec 

CELAR 03 16 18 17.2 14 3.60 min 

CELAR 04 46 46 46.0 46 54.34 sec 

CELAR 11 34 48 41.2 22 13.21 min 

GRAPH 01 18 18 18.0 18 25.23 min 

GRAPH 02 14 16 14.8 14 2.20 min 

GRAPH 08 20 24 22.0 18 14.40 min 

GRAPH 09 20 24 21.6 18 31.21 min 

GRAPH 14 10 12 10.4   8 25.21 min 

Table 5.8: Results of HH for the MO-FAP using approach C.  

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 20 24 21.6 16 8.63 min 

CELAR 02 14 14 14.0 14 0.62 sec 

CELAR 03 16 20 18.0 14 2.00 min 

CELAR 04 46 46 46.0 46 54.34 sec 

CELAR 11 44 48 44.8 22 7.61 min 

GRAPH 01 20 22 21.2 18 1.83 min 

GRAPH 02 16 20 17.2 14 3.40 min 

GRAPH 08 20 28 23.2 18 7.60 min 

GRAPH 09 22 28 24.4 18 13.21 min 

GRAPH 14 10 12 11.6   8 10.21 min 
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By comparing the average solutions of approach A and approach C, it can be seen that 

approach C is better than approach A for three instances, but worse for four instances. 

The run time is generally slower for approach C. In order to give a clear picture about 

the performance of each approach given earlier, the average solutions of the three dif-

ferent approaches are presented in Figure 5.6. 

Figure 5.6: Average solutions of the three different approaches of the HH algorithm. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that ap-

proach A is significantly better than approach B. Furthermore, there is no significant 

difference between approach A and approach C. Hence, these two approaches are 

compared by considering the run time. Figure 5.7 presents a comparison of the run 

time between approach A and approach C.   

Figure 5.7: Average run time of approach A and approach C. 
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It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the av-

erage run time of approach A is significantly better than the average run time of ap-

proach C. Therefore, approach A is selected in this stage as the best approach.   

5.4.1.2 Probabilistic Selection of the LLHs 

In this section, the performance of the three different approaches, namely approach 1, 

2 and 3 (see Section 5.3.4.2), are compared in two different ways: allowing the proba-

bilities of the LLHs to vary without and with a limit. Adding a limit to the probabili-

ties of the LLHs creates a balance which makes sure no LLH is ignored. Three in-

stances, namely CELAR 01, CELAR 03 and GRAPH 08, are used to test these differ-

ent approaches. The selected instances represent different instances with different 

numbers of requests and constraints. The following subsections discuss this compari-

son in detail.   

5.4.1.2.1 Probabilistic Selection of the LLHs without a Limit 

Here, the LLHs probabilities have freedom to be increased or decreased without a 

limit. The results of each approach are given as follows: 

Approach 1: 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 20 24 21.6 16 50.43 min 

CELAR 03 16 18 17.2 14 9.60 min 

GRAPH 08 20 28 23.2 18 3.70 min 

Table 5.9: Results of approach 1 based on the probabilistic selection of the LLHs without a limit. 

Figure 5.8: Probabilities of the LLHs in CELAR 01 during the iterations using approach 1 without a limit. 
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Approach 2: 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 18 24 20.4 16 32.43 min 

CELAR 03 16 18 16.8 14   9.40 min 

GRAPH 08 20 22 20.4 18 37.20 min 

Table 5.10: Results of Approach 2 based on the probabilistic selection of the LLHs without a limit. 

Figure 5.9: Probabilities of the LLHs in CELAR 01 during the iterations using approach 2 without a limit. 

Approach 3: 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 18 22 19.2 16 50.43 min 

CELAR 03 14 18 16.4 14   9.40 min 

GRAPH 08 18 22 20.4 18 37.20 min 

Table 5.11: Results of approach 3 based on the probabilstic selection of the LLHs without a limit. 

 

 

 

 

 

 

 

 

 

Figure 5.10: Probabilities of the LLHs in CELAR 01 during the iterations using approach 3 without a limit. 
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It can be seen from Figures 5.8, 5.9 and 5.10 that typically the probability of one LLH 

becomes close to 1. Interestingly, it is not the same LLH in each case. On the other 

hand, the probabilities of the majority of the LLHs reach 0. This means there is no 

chance of them being selected in the future. Hence, it is essential to add a limit for 

each LLH probability, which is discussed next.  

5.4.1.2.2 Probabilistic Selection of the LLHs with a Limit 

The probability of each LLH is restricted by a limit, that is, it is not permitted to de-

crease below 0.05. The results of these approaches are given as follows: 

Approach 1: 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 18 22 20.0 16 37.63 min 

CELAR 03 16 18 17.2 14   7.20 min 

GRAPH 08 18 22 19.6 18 26.40 min 

Table 5.12: Results of approach 1 based on the probabilistic selection of the LLHs with a limit. 

Figure 5.11: Probabilities of the LLHs in CELAR 01 during the iterations using approach 1 with a limit. 

Approach 2: 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 18 24 20.0 16 33.63 min 

CELAR 03 16 18 16.4 14   9.40 min 

GRAPH 08 20 22 21.2 18 25.20 min 

Table 5.13: Results of approach 2 based on the probabilistic selection of the LLHs with a limit. 
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Figure 5.12: Probabilities of the LLHs in CELAR 01 during the iterations using approach 2 with a limit. 

Approach 3: 

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 16 22 18.8 16 26.03 min 

CELAR 03 16 18 16.4 14   6.60 min 

GRAPH 08 18 20 19.2 18 20.80 min 

Table 5.14: Results of approach 3 based on the probabilistic selection of the LLHs with a limit. 

Figure 5.13: Probabilities of the LLHs in CELAR 01 during the iterations using approach 3 with a limit. 

It can be seen from Figures 5.11, 5.12 and 5.13 that giving the probability of each 

LLH a limit is successful to ensure that all LLHs are involved in the search and prob-

abilistically chosen. The LLHs that have high probabilities are the same LLHs as in 

Section 5.4.1.2.1, although here all LLHs have a reasonable chance of being selected. 
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5.4.1.2.3 Results Comparison and Analysis 

This section compares the performance of HH which is based on the probabilistic se-

lection without and with a limit (see Section 5.4.1.2.1 and Section 5.4.1.2.2, respec-

tively). The total average numbers of used frequencies for all instances in each ap-

proach are shown in Figure 5.14.   

Figure 5.14: Total average number of used frequencies for each approach. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the per-

formance of HH with a limit on the probabilities of LLHs is significantly better than 

HH without a limit. Hence, the three approaches (see Section 5.3.4.2) of updating the 

probabilities with a limit are compared as shown in Figure 5.15  

Figure 5.15: The average number of used frequencies in each instance for all approaches based on the probabilistic selection. 
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It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is 

no significant difference between the average results over the selected three instances 

of these approaches. Hence, these approaches are compared based on the average run 

time as shown in Figure 5.16.  

Figure 5.16: The average run time in each instance for all approaches based on the probabilistic selection. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is 

a significant difference between the average run times over the selected three instanc-

es of these approaches. Therefore, the selected approach in this stage is approach 3.  

Finally, Table 5.15 presents the best results of the HH algorithm using the LLHs 

probability selection with a limit and updating the probability using approach 3.  

Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 16 22 18.8 16 36.03 min 

CELAR 02 14 14 14.0 14 0.82 sec 

CELAR 03 16 18 16.4 14 7.60 min 

CELAR 04 46 46 46.0 46 54.34 sec 

CELAR 11 38 48 43.2 22 19.21 min 

GRAPH 01 18 18 18.0 18 1.13 min 

GRAPH 02 14 18 14.8 14 4.60 min 

GRAPH 08 18 20 19.2 18 28.80 min 

GRAPH 09 22 24 22.4 18 38.41 min 

GRAPH 14 10 12 10.8   8 38.4 1min 

Table 5.15: The best results of the HH algorithm for the MO-FAP based on the probabilistic selection. 

5.4.1.3 Comparison of the LLH Selection Mechanisms 

The results of the HH algorithm based on the LLH selections mechanisms, which are 

random and probabilistic selection mechanism, are shown in Figure 5.17. 
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Figure 5.17: The average results of the HH algorithm using two types of the LLH selection mechanisms. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is 

no significant difference between the average results of HH based on the LLHs selec-

tion mechanisms. Therefore, these approaches are compared based on the run time as 

shown in Figure 5.18. 

 

 

 

 

 

 

 

Figure 5.18: The average run time of the HH algorithm using two types of the LLH selection mechanisms. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the av-

erage run time using the random selection is significantly better than using the proba-

bilistic selection of the LLHs. Hence, the random selection of the LLHs is selected.  

The best results of the HH algorithm are given in Table 5.16. Note that the run time of 

finding the lower bound of the number of frequencies for each domain (see Table 3.3) 

is included. 
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Instance 
Best 

solution 

Worst 

solution 

Average 

solution 

Optimal 

solution 

Average 

run time 

CELAR 01 16 24 19.2 16 18.03 min 

CELAR 02 14 14 14.0 14 0.62 sec 

CELAR 03 16 18 16.8 14 3.20 min 

CELAR 04 46 46 46.0 46 54.34 sec 

CELAR 11 36 48 40.0 22 10.41 min 

GRAPH 01 18 20 18.4 18 48.03sec 

GRAPH 02 14 16 14.8 14 3.00 min 

GRAPH 08 20 20 20.0 18 13.20 min 

GRAPH 09 20 24 22.0 18 19.21 min 

GRAPH 14 10 12 10.8   8 15.61 min 

Table 5.16: The best results of the HH algorithm for the MO-FAP.  

Table 5.16 shows that HH achieved the optimal solution for CELAR 01, CELAR 02, 

CELAR 04, GRAPH 01 and GRAPH 02. However, for some instances, it used con-

siderably more frequencies than the optimal solution. Moreover, these results were 

achieved in a reasonable time, mostly less than 18 minutes.  

Furthermore, it is of interest to investigate whether HH without significant changes 

can be successfully applied to other variants of the static FAP (MS-FAP and MI-

FAP). Notice that our HH algorithm has been mainly designed to solve the MO-FAP. 

Therefore, a small number of changes are made to the HH algorithm to solve the MS-

FAP. For example, in the creating violations phase, the removed frequency is changed 

to be the frequency that reduces the maximum value of the used frequencies. For the 

MI-FAP, the creating violations phase is omitted as minimizing the number of used 

frequencies is not required. It was found that HH showed poor performance for both 

MS-FAP and MI-FAP, which agrees with the findings for tabu search (TS) and ant 

colony optimization (ACO) (see Chapters 3 and 4, respectively). It is likely that more 

significant changes are required for HH to work well on other variants of the static 

FAP. 

5.4.2 Results Comparison with Other Algorithms 

This section compares the performance of our HH algorithm with other algorithms in 

the literature and the algorithms considered in this thesis, namely TS and ACO. The 

comparison is shown in Table 5.17, where a bold number means that the optimal solu-

tion was achieved and a dash “-” means that this result is not available.  
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Optimal 

solution 

CELAR 01 16 20 16 16 - 16 16 18 16 16 18 16 16 

CELAR 02 14 14 14 - 14 14 14 14 14 14 14 14 14 

CELAR 03 14 16 16 16 14 14 14 14 14 14 16 16 14 

CELAR 04 46 46 46 - - 46 46 46 46 46 46 46 46 

CELAR 11 24 32 - - - 24 24 24 22 38 - 36 22 

GRAPH 01 18 20 18 18 18 - - 18 18 18 20 18 18 

GRAPH 02 14 16 14 14 14 - - 16 14 14 16 14 14 

GRAPH 08 22 - 18 18 - - - 24 20 18 24 20 18 

GRAPH 09 22 28 18 18 - - - 22 22 18 - 20 18 

GRAPH 14 - 14 10 10 - - - 12 10 8 10 10 8 

Table 5.17: Results of HH and other algorithms in the literature. 

Table 5.17 shows that our HH algorithm achieved the optimal solution for half of the 

instances and came as the fifth best algorithm (based on the number of optimal solu-

tions achieved by each algorithm). However, the majority of the optimal solutions 

were achieved by our TS algorithm, which is the best performing algorithm in Table 

5.17 and in this thesis. In contrast, the genetic algorithm in [94] and our ACO algo-

rithm showed poor performance compared with the other algorithms. In fact, the op-

timal solution was achieved for only two instances. Overall, our HH algorithm came 

as the second best algorithm in this study and shows reasonable results compared 

with other algorithms in the literature.   

5.4.3 Results Comparison with TS and ACO Algorithms 

This section compares the performance of the three heuristic algorithms considered in 

this study, which are TS, ACO and HH, in order to identify an appropriate solution 

method for the static FAP and to determine the appropriate heuristic algorithms to be 

used to construct an approach to solve the dynamic FAP, where the run time is im-

portant. Table 5.18 shows the results comparison of these heuristic algorithms includ-

ing the best found solution, the average run time and the optimal solution. Note that a 

bold number means that the optimal solution was achieved and a dash “-” means that 

a feasible solution could not be found.  
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Instance 
Best found Average run time Optimal 

solution TS ACO HH TS ACO HH 

CELAR 01 16 18 16 3.6 min 1.4 hrs 18.0 min 16 

CELAR 02 14 14 14 0.5 sec 11.2 min 0.6 sec 14 

CELAR 03 14 16 16 1.0 min 31.1 min 3.2 min 14 

CELAR 04 46 46 46 54.3 sec 55.8 min 54.3 sec 46 

CELAR 11 38 - 36 8.8 min - 10.4 min 22 

GRAPH 01 18 20 18 5.4 sec  18.0 min 48.3 sec  18 

GRAPH 02 14 16 14 2.2 sec 29.8 min 3.0 min 14 

GRAPH 08 18 24 20 24.3 sec 30.1 min 13.2 min 18 

GRAPH 09 18 - 20 3.0 min - 19.2 min 18 

GRAPH 14   8 10 10 4.8 min 59.8 min 15.6 min   8 

Table 5.18: The best solutions and the average run time of TS, ACO and HH in this study. 

Table 5.18 shows that the best performing algorithm in this study is TS while HH 

came as the second best algorithm. In contrast, ACO is the worst performing among 

these heuristic algorithms. Figure 5.19 compares the quality of the solution of these 

heuristic algorithms by showing the number of instances where the optimal solution is 

achieved and the number of instances where the optimal solution is not achieved.  

 

 

 

 

 

 

 

Figure 5.19: The numbers of instances where the optimal solution is achieved by TS, ACO and HH. 

Figure 5.19 shows TS is the best performing algorithm for the static FAP, followed by 

HH and finally ACO. This suggests that local search-based algorithms perform better 

than population-based algorithms and HH for solving the static FAP.   

The run time is considered as the best algorithm will be used to construct an approach 

to solve the dynamic FAP in the next chapter, where time is limited. Figure 5.20 

shows the total of average run times for each heuristic algorithm. 
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Figure 5.20: Total of average run times for TS, ACO and HH. 

Figure 5.20 shows that the best heuristic algorithm in this study in terms of the run 

time is TS, followed by HH and the worst one is ACO. Overall, TS and HH have the 

best performance in this study. Hence, these heuristic algorithms are selected to be 

used in Chapter 6 to construct an approach to solve the dynamic FAP.  

5.5 Time Complexity and Convergence of HH                              

The time complexity of the HH algorithm can be expressed using the big O notation 

by counting the number of times the key operation are performed, which is assigning 

a frequency to a request. In terms of the initial solution phase, the time complexity of 

the assignment stage is of order O(𝑁𝑅2 ∗ 𝑁𝐹), where 𝑁𝑅 is the number of requests 

and 𝑁𝐹 is the number of frequencies, the allowing infeasible assignment stage is of 

order O(𝑁𝑅 ∗ 𝑁𝐹) and the descent method stage is of order O(𝑁𝑅 ∗ 𝑁𝐹). In terms of 

the creating violations phase, the time complexity is of order O(𝑁𝑅 ∗ 𝑁𝐹). For each 

LLH, the initial cost is calculated, which is of order O(𝑁𝑅2). Then, the cost is updated 

each step, which requires a number of calculations proportional to O(𝑁𝑅). The high-

est order of time complexity in the LLHs is LLH13, which have complexity O(𝑁𝑅2 ∗

𝑁𝐹2). Hence, the overall time complexity of HH is of order O(𝑁𝑅2 ∗ 𝑁𝐹2).    

To investigate the convergence of this algorithm, first note that the number of used 

frequencies in our HH algorithm never increases. This is because the algorithm con-

sists of reducing the number of used frequencies and seeking for a feasible solution 

with a fixed number of used frequencies. If a feasible solution is found (i.e. the sub-
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problem (see Section 5.2.1) is solved), then the number of used frequencies is reduced 

and the number of iterations is reset to zero. This process is repeated until a feasible 

solution can no longer be found. 

Here, HH is run on GRAPH 09 for more iterations for each sub-problem (say 20,000 

iterations) and the stopping criteria (see Section 5.3.6) are ignored to investigate the 

convergence of this algorithm. Moreover, HH is executed for five runs, where each 

run uses different random number streams. Figure 5.21 shows the convergence of HH 

using the average solutions of the five runs. 

 

Figure 5.21: The convergence of the HH algorithm on the GRAPH 09 instance. 

Figure 5.21 shows that HH converged within 2,500 iterations with a fixed number of 

used frequencies.  Furthermore, similar convergence has been found for other instanc-

es. This convergence experiment justifies the selected number of iterations in this 

study.  

5.6 Conclusions                              

This chapter discussed HH for the static FAP, where this algorithm is mainly designed 

to solve the MO-FAP. Note that this is the first attempt to solve the static FAP by HH 

using the datasets considered in this study (CELAR and GRAPH). Several novel and 

existing techniques have been used to attempt to improve the performance of this al-

gorithm. One of these is applying the lower bound on the number of frequencies that 

are required from each domain for a feasible solution to exist, based on the underlying 
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graph colouring model. These lower bounds are used to ensure that we never waste 

time trying to find a feasible solution with a set of frequencies that do not satisfy the 

lower bounds. Moreover, our HH includes 13 simple and advanced LLHs, some of 

which are used for diversification. Furthermore, each LLH has an independent tabu 

list in order to avoid cycling. Additionally, two different methods of the LLHs selec-

tion were compared: random and probabilistic selection. The probabilistic selection 

gives a higher probability to the LLHs which reduce the number of violations. More-

over, two types of the LLH probabilistic selection were tested: without and with a 

limit.  

It was found that random selection of the LLHs performed better than probabilistic 

selection. Moreover, the performance of HH does not seem to be as efficient as TS 

(see Chapter 3), but does perform much better than ACO (see Chapter 4). Hence, this 

algorithm recorded the second best performance in this thesis. As a result, this sug-

gests that local search-based algorithms are more suitable for the static FAP than pop-

ulation-based algorithms and HH. Furthermore, applying HH without significant 

changes on other variants of the static FAP (MS-FAP and MI-FAP) were not success-

ful. This finding agrees with what has been found for TS (see Chapter 3). It is likely 

that more significant changes are required for HH to work well on these problems.  

Finally, the research questions which were presented in the beginning of this chapter 

can be answered as follows: 

 Can HH perform better than TS and ACO on the static FAP?  

HH does not seem to be as efficient as TS, but does perform much better than 

ACO (see Section 5.4.3). 

 

 What is the best mechanism for selecting the LLHs? 

Based on the investigation in this study, the best selection mechanism for the 

LLHs is based on random selection (see Section 5.4.1.3).  

 

 Is HH an appropriate solution method for the static FAP? 

HH showed competitive performance compared with other algorithms in the liter-

ature (see Sections 5.4.2). Moreover, HH came as the second best performing heu-

ristic algorithm in this study (see Section 5.4.3). Therefore, HH is considered as 

an appropriate solution method for the static FAP after TS. 
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Chapter 6 

Approaches for Dynamic and Static FAPs  

6.1 Introduction 

There has been an increasing interest in variants of dynamic optimization problems, in 

which some attributes of the problem change over time. Decisions have to be made at 

different points of time, and the quality of the solution depends on all the decisions 

made over time periods. The major difficulties of dynamic problems come from igno-

rance of how the problem is going to change in the future. Many real-life problems 

can be considered to be dynamic, but up until recently, research has focused on static 

problems, where all the data is known in advance. Research into dynamic problems is 

growing in some areas such as graph colouring problems, scheduling problems and 

vehicle routing problems [54].  

One of the dynamic problems is the dynamic frequency assignment problem (FAP), 

which was proposed in [55]. In the dynamic FAP, new requests become known over 

time periods and frequencies need to be assigned to them effectively and promptly 

while satisfying a set of constraints (see Section 1.4.1). Hence, solving the dynamic 
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FAP needs to deal with uncertain data as new data arrive in a dynamic process. There 

are two possible types of uncertain data: entirely accessible data and partially accessi-

ble data. The first type belongs to the area of robust optimization [102], where we 

need to find solution methods able to accommodate different realizations of data. The 

second type, which is considered in this study, corresponds to dynamic optimization 

[84], which has three features: 1) new decisions are made one by one; 2) the decisions 

are non-adjustable unless necessary; 3) no information about the future is accessible.  

During solving the dynamic FAP using uncertain data, if no feasible solution can be 

found, it is essential to change the previous decisions to improve the solution with the 

minimum number of changes. Although changing frequencies that have been assigned 

previously is technically allowed, in practice this can be time consuming and takes up 

human resources. Hence, the dynamic FAP states that changing frequencies of re-

quests that are previously assigned should be avoided unless no other means of find-

ing a feasible solution exists. Therefore, the objective of the dynamic FAP is to find a 

feasible solution with the minimum number of re-assigned requests.  

In order to clarify the dynamic FAP, a dynamic FAP instance over 3 time periods is 

illustrated in Figure 6.1, where each node represents a request, each edge represents a 

bidirectional or an interference constraint (see Equations 1.1 and 1.2, respectively) 

and each colour represents a time period in which a request becomes known for the 

first time.  

 

 

 

 

 

 

 

 

Figure 6.1: A dynamic FAP instance over 3 time periods. 
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Figure 6.1 shows that requests are partitioned into three sub-problems based on 3 time 

periods, where each sub-problem is considered in its respective time period.  

In this chapter, various approaches are designed to solve the dynamic FAP. The best 

performing heuristic algorithms for the static FAP in this thesis (tabu search (TS) and 

hyper heuristic (HH)) are used to construct these approaches for the dynamic FAP. It 

is interesting to investigate whether heuristic algorithms which work well on static 

FAP also prove efficient on the dynamic FAP. Several novel and existing techniques 

are applied to improve the performance of these approaches. These include a novel 

technique called the Gap technique, which aims to identify a good frequency to be 

assigned to a given request. To assess these approaches, new dynamic FAP datasets 

are generated from the static FAP datasets (CELAR and GRAPH). Moreover, the new 

dynamic FAP datasets have been made available for other researchers, which can be 

found on the dynamic FAP website1. 

Furthermore, this chapter proposes a novel approach to solve the minimum order FAP 

(MO-FAP), which is a variant of the static FAP. The objective of the MO-FAP is to 

find the optimal solution with no restriction on the number of re-assigned requests. 

The idea of this approach is inherited from the dynamic concept, where the computa-

tional time is important. It can be extremely time consuming to solve a large static 

problem and it may be a better strategy to break it into smaller parts and solve these in 

turn, rather than try to solve it in its entirety. Hence, the static FAP is modelled as a 

dynamic FAP through dividing this problem into smaller sub-problems, which are 

then solved consecutively. This novel approach is constructed using TS (see Chapter 

3) because it was the best performing heuristic algorithm in this thesis. Several tech-

niques are applied to make this approach more efficient. These include applying the 

lower bound on the number of frequencies that are required from each domain for a 

feasible solution to exist, based on the underlying graph colouring model (see Section 

3.2), and the Gap technique.  

In this chapter, we focus on the following research questions: 

 Can TS and HH for the static FAP be successful on the dynamic FAP?  

 Can the proposed approach that models the static FAP as a dynamic FAP be an 

effective method for the static FAP?  

                                                           
1 https://dynamicfap.wordpress.com/ 
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This chapter is organised as follows: Section 6.2 describes how to generate the new 

dynamic FAP datasets. In Section 6.3, an overview of approaches for the dynamic 

FAP is presented. Section 6.4 presents the main components of approaches for the 

dynamic FAP. In Section 6.5, the results of these approaches are given and compared. 

In Section 6.6, a novel approach for solving the static FAP that models it as a dynamic 

FAP is proposed and discussed. Finally, this chapter is closed with some conclusions.  

6.2 Generating the Dynamic FAP Datasets 

For the purpose of the present study, new dynamic FAP datasets are generated from 

the static FAP datasets (CELAR and GRAPH) to assess the proposed approaches. The 

dynamic FAP instances are generated by breaking down the static FAP instances into 

smaller sub-problems, where each sub-problem is considered at a specific time period. 

To achieve this, each request is given an integer number between 0 and 𝑛 (where 𝑛 is 

a positive integer) indicating the time period in which it becomes known. In effect, the 

problem is divided into 𝑛 + 1 smaller sub-problems  𝑃0 ,  𝑃1, … , 𝑃𝑛, where n is the 

number of sub-problems after the initial sub-problem 𝑃0. Each sub-problem  𝑃𝑖  con-

tains a subset of requests which become known at time period 𝑖. In this study, we 

found that the number of sub-problems does not impact on the performance of the 

approaches for solving the dynamic FAP, so the number of sub-problems is fixed at 

21 (i.e. n = 20).  

Based on the number of the requests known at time period 0 (belonging to the initial 

sub-problem 𝑃0), 10 different dynamic FAP instances are generated from each static 

FAP instance. These dynamic FAP instances are named using percentages which in-

dicate the number of requests known at time period 0, namely 0%, 10%, 20%, 30%, 

40%, 50%, 60%, 70%, 80%, 90% (note that 100% means all the requests are known at 

time period 0 and so corresponds to the static FAP instance).  

6.3 Overview of the Approaches for the Dynamic FAP 

In this section, the solution space and the cost function of the approaches for the dy-

namic FAP are given. Moreover, this section presents an overview of the structure of 

these approaches.  
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6.3.1 Solution Space and Cost function   

As the objective of the dynamic FAP is to find a feasible solution with the minimum 

number of re-assigned requests, the solution space is defined as the set of all possible 

solutions that satisfies all the constraints (see Section 1.4.1) and the cost function is 

defined as the number of re-assigned requests. This configuration was previously used 

in [55] for the dynamic FAP.  

6.3.2 Structure of the Approaches for the Dynamic FAP   

The dynamic FAP can be divided into three underlying problems, namely the static 

problem, the online problem and the repair problem. Hence, as in [55], the proposed 

approaches for the dynamic FAP apply three solution phases, which are the initial 

solution phase, the online assignment phase and the repair phase. The initial solution 

phase aims to solve the static problem (the initial sub-problem 𝑃0). Note that if the 

static problem could not be solved by the initial solution phase, then the repair phase 

is applied.  

After that, the online assignment phase is executed to solve the online problem (the 

sub-problems 𝑃1, . . . , 𝑃20, consecutively). In this phase, no existing assignments are 

changed. If any request cannot be feasibly assigned, this creates the repair problem, 

which is solved in the repair phase by attempting to feasibly assign the unassigned 

requests with the minimum number of re-assigned requests. This phase includes two 

phases, namely the initial and the advanced repair phases. If the initial repair phase 

manages to achieve a feasible solution for the current time period, then the next time 

period is considered. Otherwise, the advanced repair phase is executed, then the ap-

proach proceeds to the next time period. The overall structure of the approach for the 

dynamic FAP is illustrated in Figure 6.2 
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Figure 6.2: Overall structure of the approach for the dynamic FAP. 

6.4 Components of the Approaches for the Dynamic FAP 

In this section, the descriptions of the three phases of the approaches for the dynamic 

FAP, namely the initial solution phase, the online assignment phase and the repair 

phase, are given. Differences between our approaches and existing approaches are 

also specified in appropriate sections. 

6.4.1 The Initial Solution Phase  

The aim of this phase is to solve the initial sub-problem 𝑃0. Hence, the initial solution 

phase which was proposed for TS (see Section 3.4.4) is applied here. If no feasible 
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solution can be found, then the repair phase (see Section 6.4.3) is applied. In contrast, 

the initial solution phase in Dupont’s approach for the dynamic FAP in [55] aims to 

only find a feasible solution using the minimum frequency greedy algorithm (see Sec-

tion 2.7) and if no feasible solution can be found, then the consistent neighbourhood 

in tabu search (CN-tabu) (see Section 2.7) is applied. 

6.4.2 The Online Assignment Phase                                                                                                 

The online assignment phase is considered after solving the initial sub-problem 𝑃0. 

Hence, this phase aims to solve the remaining sub-problems 𝑃1,  . . . , 𝑃20, consecutive-

ly based on their time periods. In this phase, several techniques are applied and com-

pared to solve these sub-problems, whereas Dupont’s approach in [55] applied the 

minimum frequency greedy algorithm (see Section 2.7).  

Several decisions need to be made in each time period in order to select requests and 

frequencies to be feasibly assigned. These decisions are related to the following ques-

tions:  

 In what order should the new requests be considered? 

 For the chosen request, which used feasible frequencies (if available) should be 

selected? 

 For the chosen request, which unused feasible frequencies should be selected, if 

necessary? 

The following stages give answers to the above questions consecutively.  

i) Request selection stage 

There are two ways to select requests from a sub-problem 𝑃𝑖, where requests can be 

considered either as individuals or as pairs based on the bidirectional constraints (see 

Equation 1.1). In the request selection stage, 8 different techniques are discussed as 

follows:   

 Technique 1: the request that has the least number of feasible frequencies is se-

lected. In case of a tie, the request that is involved in the highest number of con-

straints (based on only the currently known data) is selected. In case of a tie, one 

of them is randomly selected. 
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 Technique 2: the request that has the least number of feasible frequencies is se-

lected. In case of a tie, one of them is randomly selected. 

 Technique 3: the request that is involved in the highest number of constraints 

(based on only the currently known data) is selected. In case of a tie, one of them 

is randomly selected.  

 Technique 4: the request is randomly selected.  

The remaining techniques 5, 6, 7 and 8 are the same as techniques 1, 2, 3 and 4 re-

spectively except that the requests are considered as pairs (instead of individuals) 

based on the bidirectional constraints (see Equation 1.1).  

ii) Used feasible frequency selection stage 

This stage is based on one of the following techniques:  

 The Ran technique: one of the used feasible frequencies is randomly selected. 

 The Min technique: the lowest value of the set of used feasible frequencies is se-

lected. In case of a tie, one of them is randomly selected. 

 The Most technique: the most occupied frequency (i.e. the frequency assigned to 

the most requests) in the set of used feasible frequencies is selected. In case of a 

tie, one of them is randomly selected. 

The Min and Most techniques aim to maximize the number of frequencies that are not 

selected from the set of used frequencies. This allows more choices of used frequen-

cies for requests that will appear at later time periods.  

iii) Unused feasible frequency selection stage 

This stage is based on one of the following techniques:  

 The Feas technique: the frequency that is feasible for the most requests is select-

ed. In case of a tie, one of them is randomly selected. 

 The Low technique: the lowest value of the set of unused feasible frequencies is 

selected. In case of a tie, one of them is randomly selected. 

 The Gap technique: this is a novel technique that aims to select a frequency from 

the set of unused feasible frequencies with the largest minimum gap between it 

and an already used frequency. In case of a tie, one of them is randomly selected. 
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The largest minimum gap leads to a greater probability that the interference con-

straints are satisfied. Example 6.1 clarifies the concept of the Gap technique. 

Example 6.1:  

Assume a request needs to be assigned to one of the unused feasible frequen-

cies 𝑓1 and 𝑓2, whereas 𝑓3 and 𝑓4 are used infeasible frequencies. Figure 6.3 

shows the gaps between these frequencies, where the red colour indicates a 

used infeasible frequency and the green colour indicates an unused feasible 

frequency.   

 

 

 

 

Figure 6.3: An example of the Gap technique. 

The Gap technique starts by finding the minimum gap between each unused 

feasible frequency and the set of used frequencies as shown in Figure 6.3. Af-

ter that, the unused feasible frequency that has the largest minimum gap is se-

lected. In Figure 6.3, this corresponds to 𝑓2. 

Overall, the Feas, Low and Gap techniques aim to maximize the number of unused 

frequencies, which allows more choices of unused frequencies for requests that will 

appear at later time periods.  

6.4.3 The Repair Phase     

The repair phase is executed only if there is at least one request that could not be fea-

sibly assigned by the online assignment phase as it was previously used in [55]. 

Hence, the aim of this phase is to attempt to feasibly assign the unassigned requests 

with the minimum number of re-assigned requests. This phase consists of two stages, 

namely the initial repair phase and the advanced repair phase.  
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6.4.3.1 The Initial Repair Phase                                                                                    

The initial repair phase is based on the following simple method: given that a request 

𝑟𝑖 cannot be feasibly assigned by the online assignment phase, then all the available 

frequencies for 𝑟𝑖 are ordered according to the number of violations that would result 

when  𝑟𝑖  is assigned to each of them. After that, these frequencies are considered in 

turn starting with the frequency which would result in the minimum number of viola-

tions. Assume that the minimum number of violations corresponds to the frequen-

cy 𝑓𝑘. Then, the set of requests that clash with 𝑟𝑖 with respect to some constraints 

when 𝑓𝑘 is assigned to 𝑟𝑖 is produced. After that, each clashed request is attempted to 

be feasibly re-assigned. In case one of these cannot be feasibly re-assigned, then all 

re-assigned requests are reversed and the next frequency is considered. Example 6.2 

clarifies the concept of the initial repair phase. Hence, this phase is based on greedy 

assignments; whereas the initial repair phase in Dupont’s approach in [55] is based on 

the branch and bound algorithm (see Section 2.7). 

Example 6.2:  

Assume 𝑟𝑖 could not be feasibly assigned by the online assignment phase, then 

we attempt to feasibly assign 𝑟𝑖 by the initial repair phase. Assume that the 

available frequencies for 𝑟𝑖 are 𝑓𝑗 , 𝑓𝑘  and 𝑓𝑙 . Each frequency is assigned to 𝑟𝑖 in 

turn and the number of violations is given in Table 6.1.  

Available frequencies Number of violations 

𝑓𝑗  6 

𝑓𝑘  4 

𝑓𝑙  10 

Table 6.1: Number of violations for each available frequency when it is assigned to 𝑟𝑖. 

The first selected frequency is 𝑓𝑘  because it results in the minimum number of 

violations. If this does not result in feasible assignments, then the second se-

lection is 𝑓𝑗, which results in the next smallest number of violations. In case 

this does not lead to feasible assignments, then the last selection is 𝑓𝑙 . 

6.4.3.2 The Advanced Repair Phase 

This phase is only executed if the initial repair phase results in some unassigned re-

quests. Then, each unassigned request is assigned to the frequency that results in the 



Chapter 6. Approaches for Dynamic and Static FAP 

137 
 

minimum number of violations. After that, the number of violations is reduced using 

the advanced repair phase which is based on either a tabu search repair phase (TSRP), 

or a hyper heuristic repair phase (HHRP). TSRP is based on the tabu search algorithm 

described in Chapter 3 and HHRP is based on the hyper heuristic described in Chapter 

5, where the objective of these algorithms are modified to find a feasible solution in-

stead of the optimal solution. In contrast, the advanced repair phase in the Dupont’s 

approach in [55] is based on the CN-tabu algorithm (see Section 2.7).  

6.5 Experiments and Results 

This section compares the performance of various approaches for the dynamic FAP in 

the online assignment phase and the repair phase. After that, the best approach is 

compared with Dupont’s approach in [55] using the generated datasets in this thesis.  

In this study, these approaches were coded using FORTRAN 95 and all experiments 

were conducted on a 3.0 GHz Intel Core I3-2120 Processor (2nd Generation) with 

8GB RAM and a 1TB Hard Drive.  

6.5.1 The Online Assignment Phase   

The performance of various approaches using different techniques in each selection 

stage (see Section 6.4.2) is compared using TSRP as the advanced repair phase. In 

this phase, we have 8 potential techniques in the first stage (request selection stage), 3 

potential techniques in the second stage (used feasible frequency selection stage) and 

3 potential techniques in the third stage (unused feasible frequency selection stage). In 

total, this gives 72 different various approaches to be compared. Moreover, each ap-

proach is tested using 100 dynamic FAP instances. Therefore, considering all the var-

ious approaches takes excessive time. Hence, these approaches are compared based 

on 3 experiments as follows: Experiment 1 fixes the technique of the second and third 

stage to the Ran and Feas techniques, respectively, and compares the 8 techniques of 

the first stage. Experiment 2 tests the techniques of the second stage by fixing the best 

technique of the first stage and using the Feas technique for the third stage, as before. 

Experiment 3 tests the techniques of the third stage while the best techniques of the 

first and second stages are fixed. 
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In order to select the best approach in each experiment, three types of comparisons are 

used, namely comparisons A, B and C. These comparisons firstly rank the approach-

es, where the best approach is given the lowest rank. In case of a tie, these are given 

the average rank.   

 Comparison A applies the instance average rank, which is calculated for each 

instance by taking the average rank of all dynamic FAP instances that are generat-

ed from that instance.  

 Comparison B applies the dynamic average rank, which is calculated for each 

percentage of the number of requests known at time period 0 by taking the aver-

age rank of all dynamic FAP instances corresponding to that percentage. 

 Comparison C applies the total rank, which is calculated by summing the ranks of 

all the dynamic FAP instances for each approach.  

The objective of the three types of comparisons is to find the minimum average rank 

and the minimum total rank. These comparisons are not independent of one another, 

but should indicate whether certain techniques work better for different levels of dy-

namism or for different instances. 

Experiment 1: this experiment compares 8 different techniques of the request selec-

tion stage, while selecting the Ran and Feas techniques for used and unused feasible 

frequency selection stages, respectively. The results of the three types of comparisons 

are presented in Table 6.2, Table 6.3 and Figure 6.4. Note that a bold number shows 

the best results among these approaches with different techniques of the requests se-

lection stage.    

 Comparison A 

Instance 
Techniques of the request selection stage 

1 2 3 4 5 6 7 8 

CELAR 01 5.45 4.70 7.00 7.70 2.55 2.10 3.45 3.05 

CELAR 02 4.65 4.45 7.05 7.00 3.15 3.25 3.55 3.90 

CELAR 03 6.40 3.45 7.05 7.30 3.00 2.70 2.70 3.40 

CELAR 04 2.70 3.00 7.40 7.10 3.20 3.90 5.20 11.60 

CELAR 11 5.85 5.15 6.40 7.55 2.50 3.35 3.15 2.05 

GRAPH 01 5.70 6.00 6.30 7.80 2.50 2.35 3.05 2.30 

GRAPH 02 5.70 5.60 7.00 7.70 2.15 2.30 2.60 2.95 

GRAPH 08 5.55 5.65 7.10 7.70 2.00 3.15 2.55 2.30 

GRAPH 09 5.90 6.00 7.10 5.80 2.45 2.85 2.20 3.70 

GRAPH 14 5.55 5.85 7.00 7.60 2.80 2.50 1.85 2.85 

Total 53.50 49.80 69.40 73.30 26.30 28.50 30.30 38.10 

Table 6.2: The instance average rank for each approach based on Experiment 1. 
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Table 6.2 shows that using techniques 5, 6, 7 and 8 are better than using techniques 1, 

2, 3 and 4. This indicates that considering requests as pairs based on bidirectional 

constraints (see Equation 1.1) led to better results than considering them individually. 

In this comparison, the approach that applies technique 5 is the best approach.  

 Comparison B 

Dynamic 

instances 

Techniques of the request selection stage 

1 2 3 4 5 6 7 8 

0% 6.05 5.90 7.85 8.76 2.95 2.85 2.83 2.81 

10% 5.22 5.67 6.88 7.78 2.00 2.56 3.33 2.56 

20% 5.67 5.11 7.00 7.78 2.39 2.44 2.50 3.11 

30% 5.44 5.11 6.61 7.89 2.56 2.61 3.00 2.78 

40% 5.61 5.11 7.00 7.89 2.11 2.89 2.06 3.33 

50% 5.25 5.15 7.40 7.30 1.80 2.80 3.25 3.05 

60% 5.80 3.75 7.30 7.60 3.20 2.80 3.10 2.45 

70% 5.20 5.5 6.70 6.85 3.30 2.00 3.25 3.20 

80% 5.70 4.95 6.40 6.65 2.60 4.00 2.45 3.25 

90% 5.50 5.30 6.75 6.00 3.25 3.15 3.60 2.45 

Total 55.40 51.50 69.80 74.50 26.20 28.10 29.40 28.90 

Table 6.3: The dynamic average rank for each approach based on Experiment 1. 

This comparison confirms that considering the requests as pairs improved the perfor-

mance of the approach for the dynamic FAP. Therefore, we focus on techniques 5, 6, 

7 and 8, where each of them produced the best result for at least one instance, but 

technique 5 achieves the best performance based on the total dynamic average rank. 

Additionally, it produced the best result on 4 instances, more than any other tech-

niques. Hence, technique 5 is recommended.  

 Comparison C 

 

 

 

 

 

 

 

 

Figure 6.4: The total rank for each approach based on Experiment 1. 
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Figure 6.4 shows that the minimum total rank is 247, which suggests that the best 

technique based on comparison C is also technique 5.  

Overall, all the three types of comparisons suggest that the best approach is based on 

using technique 5, which considers requests as pairs based on the bidirectional con-

straints (see Equation 1.1). In terms of the run time, based on the Wilcoxon signed-

rank test, there is no significant difference between them. Hence, in the request selec-

tion stage the best technique is technique 5. 

Experiment 2: this experiment compares 3 different techniques of the used feasible 

frequency selection stage, while fixing the remaining techniques by selecting tech-

nique 5 for the request selection stage (see Experiment 1) and the Feas technique for 

the unused feasible frequency selection stage. The results of the three comparisons are 

presented in Table 6.4, Table 6.5 and Figure 6.5. Note that a bold number shows the 

best results among these approaches with different techniques of the used feasible 

frequency selection stage.    

 Comparison A 

Instance 

Techniques of the used feasible 

frequency selection stage 

Ran Min Most 

CELAR 01 2.20 2.15 1.65 

CELAR 02 2.15 1.80 2.05 

CELAR 03 2.20 1.95 1.85 

CELAR 04 1.90 1.90 2.20 

CELAR 11 1.95 2.45 1.60 

GRAPH 01 2.10 1.70 2.20 

GRAPH 02 1.70 2.10 2.20 

GRAPH 08 1.65 1.95 2.40 

GRAPH 09 2.05 1.75 2.20 

GRAPH 14 2.70 2.30 1.00 

Total 20.60 20.10 19.40 

Table 6.4: The instance average rank for each approach based on Experiment 2. 

Although there is little difference in the performance between these approaches as 

shown in Table 6.4, the best total instance average rank is found by the Most tech-

nique. Hence, comparison A recommends the Most technique for the used feasible 

frequency selection stage.  
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Table 6.5: The dynamic average rank for each approach based on Experiment 2. 

Table 6.5 shows that the majority of the minimum dynamic average rank is found by 

the Most technique, which records the best results for 6 out of the 10 instances. In this 

comparison, the total dynamic average rank also recommends the Most technique.  

 Comparison C 

Figure 6.5 The total rank for each approach based on Experiment 2. 

Figure 6.5 shows that the minimum total rank is 182.5, which indicates that the best 

technique based on comparison C is again the Most technique.  

Overall, although there is little difference in the results achieved by the 3 different 

techniques in the used feasible frequency selection stage, all the three types of com-

parisons show that the best approach is based on using the Most technique. In terms of 

the run time, based on the Wilcoxon signed-rank test, there is no significant difference 

between them. 

Dynamic 

instances 

Techniques of the used feasible 

frequency selection stage 

Ran Min Most 

0% 2.53 2.50 1.64 

10% 2.33 1.83 1.83 

20% 1.78 2.22 2.00 

30% 2.28 2.00 1.72 

40% 1.83 1.72 2.44 

50% 1.70 2.30 2.00 

60% 2.10 1.95 1.95 

70% 2.25 1.90 1.85 

80% 1.85 1.95 2.20 

90% 2.30 1.95 1.75 

Total 20.90 20.30 19.40 
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Experiment 3: this experiment compares 3 different techniques of the unused feasible 

frequency selection stage, while fixing the remaining techniques by selecting tech-

nique 5 for the request selection stage (see Experiment 1) and the Most technique for 

the used feasible frequency selection stage (see Experiment 2). The results of the three 

comparisons are presented in Table 6.6, Table 6.7 and Figure 6.6. Note that a bold 

number shows the best results among these approaches with different techniques of 

the unused feasible frequency selection stage.   

 Comparison A 

Instance 

Techniques of the unused feasible 

frequency selection stage 

Feas Low Gap 

CELAR 01 2.20 1.65 2.15 

CELAR 02 1.90 2.35 1.75 

CELAR 03 2.05 1.95 2.00 

CELAR 04 2.10 1.80 2.10 

CELAR 11 1.50 2.15 2.35 

GRAPH 01 1.90 2.40 1.70 

GRAPH 02 2.35 1.95 1.70 

GRAPH 08 2.15 1.60 2.25 

GRAPH 09 2.00 2.35 1.65 

GRAPH 14 1.60 3.00 1.40 

Total 19.80 21.20 19.10 

Table 6.6: The instance average rank for each approach based on Experiment 3. 

Table 6.6 shows that the Gap techniques give the best results on five instances. More-

over, the total instance average rank shows that the Gap technique achieved the best 

performance. Hence, comparison A recommends the Gap technique. 

  Comparison B 

 

 

 

 

 

Table 6.7: The dynamic average rank for each approach based on Experiment 3. 

Dynamic 

instances 

Techniques of the unused feasible 

frequency selection stage 

Feas Low Gap 

0% 2.17 2.62 1.88 

10% 2.06 2.11 1.83 

20% 1.78 1.78 2.44 

30% 2.00 2.11 1.89 

40% 2.38 1.94 1.67 

50% 2.00 2.00 2.00 

60% 1.75 2.15 2.10 

70% 1.65 2.35 2.00 

80% 2.30 2.40 1.30 

90% 1.85 2.10 2.05 

Total 19.90 21.60 19.20 
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Table 6.7 shows that using the Feas technique for the unused feasible frequency se-

lection stage achieved 5 minimum dynamic average ranks, the Low technique 

achieved 2 and the Gap technique achieved 6 out of 10. Hence, the Gap technique is 

recommended, which agrees with the total dynamic average rank.  

 Comparison C 

Figure 6.6: The total rank for each approach based on Experiment 3. 

Figure 6.6 shows that the minimum number of the total rank was 180, which resulted 

from using the Gap technique. Hence, the best technique based on the comparison C 

is the Gap technique for the unused feasible frequency selection stage.  

Overall, the three types of comparisons suggest that the Gap technique should be 

adopted in the unused feasible frequency selection stage. In terms of the run time, 

based on the Wilcoxon signed-rank test, there is no significant difference between 

them. 

Based on the above three experiments, the best approach for the dynamic FAP is 

based on technique 5 in the request selection stage, the Most technique in the used 

feasible frequency selection stage and the Gap technique in the unused feasible fre-

quency selection stage. This gives a complete description of the online assignment 

phase.   
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6.5.2 The Repair Phase   

This section presents and compares the performance of various approaches for the 

dynamic FAP in two stages: the first uses the initial repair phase only and the second 

includes the advanced repair phase. The results in this section include the number of 

used frequencies in a feasible solution, the run time and the number of re-assigned 

requests in the repair phase (denoted by Repair). Note that a dash “-” means that no 

feasible solution is found. 

6.5.2.1 The Initial Repair Phase   

The performance of the approach for the dynamic FAP using only the initial repair 

phase is given in Table 6.8. 

Instance 
Number of requests known at time period 0  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

CELAR 01 26 28 - 30 - - - 26 - 30 

Time 8.5 sec 19.5 sec - 2 min - - - 7 min - 11 min 

Repair 54 854 - 252 - - - 250 - 102 

CELAR 02 16 18 18 20 16 16 18 18 16 14 

Time 0.6 sec 2.9 sec 8.5 sec 13 sec 30 sec 33 sec 1 min 49 sec 54 sec 59 sec 

Repair 200 182 160 146 114 114 10 50 48 10 

CELAR 03 24 26 20 24 - 26 26 24 28 - 

Time 1.7 sec 7.3 sec 16.1 sec 54.1 sec - 1 min 1.2 min 3.2 min 2.5 min - 

Repair 38 46 334 268 - 228 24 106 4 - 

CELAR 04 46 46 46 46 46 46 46 46 46 46 

Time 24 sec 24.3 sec 56.3 sec 1.1 min 1.5 min 1.5 min 1.6 min 2.1 min 2.3 min 2.3 min 

Repair 18 24 20 18 21 18 24 12 10 16 

CELAR 11 - - - - - - - - - - 

Time - - - - - - - - - - 

Repair - - - - - - - - - - 

GRAPH 01 - 24 28 - - - 22 22 22 20 

Time - 2.8 sec 7.5 sec - - - 47 sec 1.1 min 1 min 2.1 min 

Repair - 18 16 - - - 72 52 48 20 

GRAPH 02 22 - 26 - - 28 20 26 18 22 

Time 1.7 sec - 38 sec - - 1.5 min 2.8 min 3.1 min 4.5 min 4.8 min 

Repair 400 - 26 - - 6 112 50 86 44 

GRAPH 08 - - - - - - - - - - 

Time - - - - - - - - - - 

Repair - - - - - - - - - - 

GRAPH 09 - - - - - - - - - - 

Time - - - - - - - - - - 

Repair - - - - - - - - - - 

GRAPH 14 16 12 14 16 14 16 20 16 14 14 

Time 7.5 sec 42.5 sec 58.5 sec 2.1 min 3.6 min 4.2 min 6.9 min 19 min 13 min 18 min 

Repair 916 808 760 634 564 464 152 280 166 76 

Table 6.8: Results of the approach for the dynamic FAP using the initial repair phase. 

Table 6.8 shows that this approach achieved feasible solutions for all dynamic FAP 

instances for CELAR 02, CELAR 04 and GRAPH 14. In contrast, this approach could 

not achieve a feasible solution for all dynamic FAP instances for GRAPH 08 and 

GRAPH 09. In terms of the number of re-assigned requests (labelled as Repair), this 

number fluctuates, but a significant number of re-assignments are needed for most 
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instances. Moreover, Table 6.8 shows that the run time increased with the number of 

requests known at the time period 0. 

6.5.2.2 The Advanced Repair Phase  

The performance of the approach for the dynamic FAP using two types of advanced 

repair phase is compared.  

i) The tabu search repair phase (TSRP): the results of the approach for the dynamic 

FAP using TSRP as the advanced repair phase are presented in Table 6.9.  

Instance 
Number of requests known at time period 0  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

CELAR 01 26 26 34 26 32 30 30 26 32 26 

Time 5.8 sec 9.2 sec 15.5 sec 38.5 sec 48.5 sec 57.5 sec 1 min 2.13 min 2.8 min 3.7 min 

Repair 54 172 40 54 16 22 36 250 42 4 

CELAR 02 16 16 18 16 18 16 18 16 16 14 

Time 0.4 sec 0.5 sec 0.7 sec 1.1 sec 3.3 sec 4.8 sec 7 sec 3.4 sec 12 sec 11 sec 

Repair 200 182 160 146 114 114 10 50 48 10 

CELAR 03 24 24 22 28 22 26 22 20 24 18 

Time 2.1 sec 3.3 sec 5.9 sec 6.2 sec 13.1 sec 5.5 sec 19.1 sec 24.1 sec 28.1 sec 29.1 sec 

Repair 38 46 90 268 208 66 60 106 70 50 

CELAR 04 46 46 46 46 46 46 46 46 46 46 

Time 24 sec 24.3 sec 44 sec 1.1 min 1.1 min 1.3 min 1.5 min 2.1 min 2.3 min 2.3 min 

Repair 18 24 8 20 10 18 20 12 10 16 

CELAR 11 42 42 40 42 44 32 42 42 42 40 

Time 26.3 sec 23.3 sec 2.6 min 1.9 min 3.9 min 1.6 min 3.7 min 4 min 4.7 min 9.3 min 

Repair 28 52 418 336 432 24 424 376 376 350 

GRAPH 01 20 30 24 26 24 22 22 24 22 22 

Time 0.5 sec 0.5 sec 2.1 sec 1.1 sec 11 sec 3.8 sec 11 sec 4.2 sec 15 sec 6.7 sec 

Repair 52 6 10 14 10 34 72 52 48 20 

GRAPH 02 22 22 28 20 24 24 24 28 22 20 

Time 1.2 sec 1.4 sec 3 sec 2.9 sec 5.1 sec 8.1 sec 30.1 sec 30.1 sec 43.1 sec 1.1 min 

Repair 400 4 28 22 256 210 46 60 86 42 

GRAPH 08 30 36 44 38 36 32 40 36 34 32 

Time 10.3 sec 17.3 sec 15.3 sec 14.3 sec 19.3 sec 26.3 sec 59.3 sec 1.1 min 1.5 min 2.1 min 

Repair 24 24 44 24 38 78 28 16 34 30 

GRAPH 09 40 44 42 38 42 42 44 42 40 30 

Time 18.5 sec 20.5 sec 29.5 sec 42.5 sec 1.1 min 1.2 min 1.9 min 2.2 min 3.9 min 4.1 min 

Repair 22 24 46 38 46 58 30 10 2 6 

GRAPH 14 16 16 16 18 18 14 12 12 14 14 

Time 4.5 sec 5.5 sec 7.5 sec 16.5 sec 31.5 sec 1.1 min 2.2 min 3.1 min 7.3 min 15 min 

Repair 916 916 760 634 564 6 344 286 166 76 

Table 6.9: Results of the approach for the dynamic FAP using TSRP as the advanced repair phase. 

Table 6.9 shows that using TSRP as the advanced repair phase resulted in feasible 

solutions for all instances. The number of re-assigned requests (labelled as Repair) 

fluctuates and does not have a relationship with the number of requests known at time 

period 0. Moreover, Table 6.9 shows that the run time increased with the number of 

requests known at the time period 0. The effect of the number of requests known at 

time period 0 on the run time is shows in Figure 6.7. 
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Figure 6.7: The run time for all dynamic FAP instances of the selected instances. 

Figure 6.7 shows that the run time of each instance increased with the number of re-

quests known at time period 0. Moreover, it indicates that the approach is fastest when 

no requests are known at time period 0. In contrast, the approach is slowest when 90% 

of the requests are known at time period 0.  

ii) The hyper heuristic repair phase (HHRP): the results of the approach for the dy-

namic FAP using HHRP as the advanced repair phase are given in Table 6.10. 

Instance 
Number of request known at time period 0  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

CELAR 01 26 28 38 30 30 28 26 26 26 30 

Time 8.5 sec 19.5 sec 9.8 min 2 min 6.2 min 6  min 6.1 min 7 min 10 min 11 min 

Repair 54 854 592 252 322 28 94 250 174 102 

CELAR 02 16 18 18 20 16 16 18 18 18 14 

Time 0.6 sec 2.9 sec 8.5 sec 13 sec 30 sec 33 sec 1 min 49 sec 54 sec 59 sec 

Repair 200 182 160 146 24 114 10 50 48 10 

CELAR 03 24 26 20 24 22 26 26 24 28 20 

Time 1.7 sec 7.3 sec 16.1 sec 54.1 sec 30 sec 1 min 1.2 min 3.2 min 2.5 min 3.4 min 

Repair 38 46 334 268 114 228 24 106 4 50 

CELAR 04 46 46 46 46 46 46 46 46 46 46 

Time 24 sec 24.3 sec 56.3 sec 1.1 min 1.5 min 1.5 min 1.6 min 2.1 min 2.3 min 2.3 min 

Repair 18 24 20 18 21 18 24 12 10 16 

CELAR 11 44 44 46 - - 46 - - 46 - 

Time 28 min 22 min 20 min - - 29 min - - 21 min - 

Repair 656 656 652 - - 650 - - 646 - 

GRAPH 01 26 24 28 26 26 28 22 22 22 20 

Time 0.6 sec 2.8 sec 7.5 sec 11 sec 40 sec 37 sec 47 sec 1.1 min 1 min 2.1 min 

Repair 6 18 16 0 2 6 72 52 48 20 

GRAPH 02 22 22 26 22 20 28 20 26 18 22 

Time 1.7sec 6.8 sec 38 sec 25 sec 48 sec 1.5 min 2.8 min 3.1 min 4.5 min 4.8 min 

Repair 400 12 26 24 58 6 112 50 86 44 

GRAPH 08 34 34 38 38 30 34 32 32 32 28 

Time 1.1 min 26.3 sec 51.3 sec 1.2 min 2.1 min 2.2 min 4.4 min 3.1 min 3.8 min 6.1 min 

Repair 258 216 172 118 208 262 84 206 78 292 

GRAPH 09 40 38 38 38 38 38 40 38 38 24 

Time 20.5 sec 1.1 min 1.4 min 2.2 min 2.9 min 5.7 min 5.9 min 11 min 10 min 17 min 

Repair 180 100 244 102 74 200 322 358 48 18 

GRAPH 14 16 12 14 16 14 16 20 16 14 14 

Time 7.5 sec 42.5 sec 58.5 sec 2.1 min 3.6 min 4.2 min 6.9 min 19 min 13 min 18 min 

Repair 916 808 760 634 564 464 152 280 166 76 

Table 6.10: Results of the approach for the dynamic FAP using the HHRP as the advanced repair phase. 
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Table 6.10 shows that using HHRP as the advanced repair phase resulted in feasible 

solutions for almost all the instances. The number of re-assigned requests (labelled as 

Repair) fluctuates with no clear pattern. Moreover, the run time increased with the 

number of requests known at time period 0.  

iii) Results comparison of using TSRP and HHRP as the advanced repair phase: the 

results of the approach using TSRP (see Table 6.9) achieved feasible solutions for all 

the instances, whereas the approach using HHRP (see Table 6.10) did not achieve 

feasible solutions for all the instances. The number of dynamic FAP instances for 

each CELAR or GRAPH instance for which TSRP or HHRP re-assigned fewer re-

quests is given in Table 6.11.  

 

Instance TSRP HHRP Total 

CELAR 01 

CELAR 02 

CELAR 03 

CELAR 04 

CELAR 11 

GRAPH 01 

GRAPH 02 

GRAPH 08 

GRAPH 09 

GRAPH 14 

8 0 8 

0 1 1 

2 3 5 

3 1 4 

10 0 10 

2 4 6 

4 4 8 

10 0 10 

10 0 10 

1 3 4 

Total 50 16 - 

Table 6.11: The number of dynamic FAP instances for each CELAR or GRAPH instance for which TSRP or HHRP re-assigned 

fewer requests. 

Note that the sum of each row in Table 6.11 may not be equal to 10 because the same 

numbers of re-assigned requests were achieved by both approaches using TSRP or 

HHRP, or the initial repair phase was able to find feasible solutions without requiring 

the use of the advanced repair phase. Furthermore, Table 6.11 shows that TSRP re-

assigned fewer requests in 50 instances, whereas HHRP re-assigned fewer requests in 

16 instances. This suggests that TSRP is the best type of the advanced repair phase in 

terms of achieving feasible solutions with the minimum number of re-assigned re-

quests.  
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The total run time of all dynamic FAP instances for each CELAR or GRAPH instance 

of two approaches using TSRP or HHRP as the advanced repair phase are shown in 

Figure 6.8. 

Figure 6.8 The total run time of all dynamic FAP instances for each CELAR or GRAPH instance using two different types of the 

advanced repair phase. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the per-

formance using TSRP as the advance repair phase gives significantly better results 

than using HHRP. The total run time for each approach using TSRP or HHRP for all 

instances is shown in Figure 6.9.  

Figure 6.9: The total run time of all dynamic FAP instances using two different types of the advanced repair phase. 

To sum up, using TSRP as the advanced repair phase for the dynamic FAP achieved 

the best results in terms of the objective of the dynamic FAP, i.e. achieving feasible 

solutions with the minimum number of re-assigned requests. Moreover, using TSRP 

resulted in the best run time, indicating that this is more appropriate than HHRP.  
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6.5.3 Results Comparison with Other Approaches   

The performance of the Dupont’s approach in [55] is compared with our approach for 

the dynamic FAP. Private correspondence with the authors in [55] revealed that they 

had not kept copies of either their dynamic datasets or their software, so we re-

implemented Dupont’s approach in [55] to solve the dynamic FAP using our generat-

ed dynamic FAP datasets in this thesis and the results are shown in Table 6.12. 

Instance 
Number of requests known at time period 0  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

CELAR 01 36 30 42 34 30 32 30 34 30 34 

Time 7.2 min 8.9 min 9.2 min 11 min 11.5 min 21 min 24 min 26 min 30 min 31 min 

Repair 230 912 620 340 322 320 240 430 234 420 

CELAR 02 18 18 18 22 22 18 18 18 18 16 

Time 2 sec 4.8 sec 6.2 sec 10 sec 18 sec 38 sec 55 sec 57 sec 1.3 min 1.8 min 

Repair 200 190 190 160 70 30 90 40 80 30 

CELAR 03 32 30 34 24 30 32 36 30 30 30 

Time 20 sec 45 sec 50 sec 54 sec 52 sec 1.8 min 2.1 min 4.1 min 4.7 min 5.2 min 

Repair 70 200 430 330 204 220 110 98 60 40 

CELAR 04 46 46 46 46 46 46 46 46 46 46 

Time 1.7 min 2.3 min 4.1 min 6.1 min 6.2 min 8.1 min 10.2 min 11.9 min 20.1 min 30 min 

Repair 42 80 32 22 52 24 92 88 22 72 

CELAR 11 42 44 44 42 44 44 44 42 40 40 

Time 8.1 min 8 min 9.5 min 9.7 min 10 min 11 min 13 min 14.7 min 17 min 18 min 

Repair 356 556 312 400 334 366 342 322 398 338 

GRAPH 01 40 40 42 32 36 40 42 44 38 38 

Time 38 sec 54 sec 2.3 min 3.1 min 3.4 min 3.7 min 4.7 min 5.5 min 7.1 min 7.2 min 

Repair 110 42 146 204 172 190 176 144 142 120 

GRAPH 02 36 40 40 40 40 40 42 38 40 42 

Time 1.7 min 2.8 min 2.9 min 3 min 3.1 min 4.2 min 4.8 min 5.2 min 5.3 min 6.8 min 

Repair 212 76 252 302 294 306 258 256 256 242 

GRAPH 08 48 46 48 44 44 44 48 48 42 44 

Time 1.6 min 1.5 min 2 min 2.1 min 2.8 min 3.5 min 3.4 min 4.5 min 4.8 min 5.1 min 

Repair 252 194 264 306 276 300 286 288 318 302 

GRAPH 09 46 46 42 46 46 44 44 46 44 42 

Time 4 min 4.1 min 5.3 min 6.2 min 6.7 min 8.5 min 8.8 min 10.2 min 12 min 17 min 

Repair 308 178 300 298 280 278 274 290 308 302 

GRAPH 14 26 26 36 34 34 32 34 34 34 28 

Time 9.1 min 10 min 11 min 12 min 13.4 min 14 min 15.5 min 19.2 min 24.1 min 26 min 

Repair 916 916 840 744 564 912 340 230 850 420 

Table 6.12: Results of Dupont’s approach for the dynamic FAP. 

Table 6.12 shows that Dupont’s approach achieved feasible solutions for all instances. 

By looking at the number of re-assigned requests (labelled as Repair), it can be seen 

that this number fluctuates and does not have a relationship with the number of re-

quests known at time period 0.  

By comparing the performance of Dupont’s approach (see Table 6.12) with our ap-

proach (see Table 6.9), it is found that Dupont’s approach gave a higher number of re-

assigned requests compared with our approach. Figure 6.10 shows the average num-

ber of re-assigned requests for each instance in our approach and Dupont’s approach.   
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Figure 6.10: Average number of re-assigned requests of our approach and Dupont’s approach. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the total 

number of re-assigned requests of our approach is significantly better than Dupont’s 

approach. Hence, our approach achieved better results in terms of achieving feasible 

solutions with the minimum number of re-assigned requests. The average run time of 

our approach and Dupont’s approach is shown in Figure 6.11 

Figure 6.11: The average run time of our approach and Dupont’s approach. 

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the av-

erage run time of our approach is significantly better than Dupont’s approach.  

Overall, based on the comparisons above, it is found that our approach is competitive 

compared with Dupont’s approach. 
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6.6 An Approach for the Static FAP 

In this study, a novel approach called the dynamic tabu search (DTS) is proposed to 

solve the MO-FAP, which is a variant of the static FAP. This approach is inherited 

from the approach for the dynamic FAP (see Section 6.3). It models the static FAP as 

a dynamic FAP through dividing this problem into smaller sub-problems, which are 

then solved in turn in a dynamic process. As TS is the best heuristic algorithm consid-

ered in this study (see Chapter 3), it is used to construct DTS. This approach aims to 

find a feasible solution for each sub-problem with the minimum number of used fre-

quencies. Note that there are no restrictions on the number of re-assigned requests 

because the static FAP does not concern the number of re-assignments (while the dy-

namic FAP does). Moreover, we aim to investigate whether applying DTS to solve 

the static FAP has better performance than solving the entire problem as a whole.  

In order to implement this approach, the static FAP needs to be broken down into 

smaller sub-problems, which can be done as described in Section 6.2. Breaking the 

static FAP into smaller sub-problems can be viewed as modelling the static FAP into 

a dynamic FAP. An example of how a static FAP instance is modelled as a dynamic 

FAP instance is illustrated in Figure 6.12, where each node indicates a request, each 

edge represents a bidirectional or an interference constraint and each colour reflects a 

time period in which a request becomes known for the first time. 
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Figure 6.12: An example of modelling a static FAP instance as a dynamic FAP instance over 3 time periods. 

6.6.1 Experiments and Results of the DTS Approach 

The results of the DTS approach for the static FAP are presented and compared in the 

following three subsections. The first subsection gives the results of the DTS ap-

proach. The second subsection compares the performance of DTS with our TS algo-

rithm. The third subsection compares the performance of DTS with other algorithms 

in the literature. 
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6.6.1.1 Results Comparison of the DTS Approach 

The results of the DTS approach for the MO-FAP, where each instance is modelled as 

a dynamic FAP in 10 different versions (based on the number of requests known at 

time period 0), are given in Table 6.13. Note that a bold number means that the opti-

mal solution was achieved by DTS. 

Instance 
Number of requests known at time period 0  Optimal 

Solution 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

CELAR 01 
16 16 16 16 16 16 18 16 16 16 

16 
2.9 min 3 min 4.3 min 4.5 min 4.8 min 4.2 min 5.2 min 5.1 min 6 min 6.7 min 

CELAR 02 
14 14 14 14 14 14 14 14 14 14 

14 
27 sec 46 sec 63 sec 1.1 min 1.5 min 1.2 min 2 min 1.4 min 2.3 min 2.1 min 

CELAR 03 
14 14 14 14 16 14 14 14 14 14 

14 
51 sec 1.7 min 1.6 min 3.9 min 4.3 min 3.9 min 4.6 min 5.3 min 5.8 min 5.9 min 

CELAR 04 
46 46 46 46 46 46 46 46 46 46 

46 
42 sec 45 sec 51 sec 56 sec 58 sec 58 sec 1 min 1.1 min 1.3 min 1.8 min 

CELAR 11 
28 36 32 30 28 32 32 36 32 32 

22 
5.2 min 7 min 6.9 min 11 min 13 min 17 min 21 min 26 min 29 min 31 min 

GRAPH 01 
18 18 18 18 18 18 20 20 20 24 

18 
52 sec 48 sec 1.8 min 4.7 min 5.1 min 4.8 min 6.9 min 6.4 min 7.1 min 7.4 min 

GRAPH 02 
14 14 14 14 14 14 14 14 14 14 

14 
41 sec 1.1 min 1.9 min 1.3 min 2.2 min 3.6 min 7.8 min 6.5 min 11 min 16 min 

GRAPH 08 
18 18 18 18 18 18 18 18 20 18 

18 
1.9 min 2.2 min 2.1 min 3.6 min 3.8 min 4.6 min 4.4 min 4.8 min 4.5 min 5.5 min 

GRAPH 09 
18 18 18 18 18 18 18 18 18 18 

18 
3 min 11 min 15 min 17 min 28 min 33 min 41 min 1.1 hrs 1.4 hrs 1.9 hrs 

GRAPH 14 
8 8 8 8 8 8 8 8 8 8 

8 
20 sec 2.1 min 2.1 min 4.2 min 6.3 min 13 min 19 min 39 min 1.1 hrs 1.8 hrs 

Table 6.13: Results of the DTS approach for the MO-FAP. 

Table 6.13 shows that DTS achieved feasible solutions for all instances. Moreover, 

this approach achieved the optimal solutions for all instances except CELAR 11. Note 

that the run time gradually increases with the number of requests known at time peri-

od 0. To clarify that, the run times of all versions of CELAR 01, GRAPH 01 and 

GRAPH 02 are shown in Figure 6.13. The selected instances represent different num-

bers of requests and constraints.   
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Figure 6.13: The run time of all versions of the selected instances. 

Figure 6.13 shows that the run time increased with the number of requests known at 

time period 0. In terms of both the quality of the solution and the run time, 0% is the 

best number of requests known at time period 0. As the decision of what percentage 

of requests are known at time period 0 is not fixed but can be chosen as part of the 

approach, we choose to apply DTS with no requests being known at time period 0.  

6.6.1.2 Results Comparison with the Tabu Search Algorithm 

The performance of TS (see Table 3.7) and DTS (see Table 6.13) are shown in Figure 

6.14.  

Figure 6.14: The solutions quality of TS and DTS. 
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Figure 6.14 shows that DTS improved the results of CELAR 03 and CELAR 11, 

whereas both approaches achieved the optimal solutions in the rest of the instances. 

Furthermore, the run time of TS and DTS is shown in Figure 6.15.  

Figure 6.15: The run time of TS and DTS. 

Figure 6.15 shows that DTS achieved better run times than TS on CELAR 01, 

CELAR 03, CELAR 04, CELAR 11 and GRAPH 14. In contrast, TS achieved better 

run time on the other instances. Furthermore, DTS achieved better total run time (of 

all instances) than TS as shown in Figure 6.16.  

Figure 6.16: The total run time of TS and DTS  
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Overall, this study suggests that solving the static FAP through modelling it as a dy-

namic FAP gives competitive results compared with the approach that solves the stat-

ic FAP as a whole. Hence, this shows the ability of this approach to achieve better 

performance, which gives a good indication that this should be studied extensively as 

future work.  

6.6.1.3 Results Comparison with Other Algorithms 

This section compares the performance of DTS with the algorithms considered in this 

thesis and other algorithms in the literature. Table 6.14 shows the best found results of 

these algorithms. Note that a bold number means that the optimal solution was 

achieved and a dash “-” means that the result is not available.  
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Optimal 

solution 

CELAR 01 16 20 16 16 - 16 16 18 16 16 18 16 16 16 

CELAR 02 14 14 14 - 14 14 14 14 14 14 14 14 14 14 

CELAR 03 14 16 16 16 14 14 14 14 14 14 16 16 14 14 

CELAR 04 46 46 46 - - 46 46 46 46 46 46 46 46 46 

CELAR 11 24 32 - - - 24 24 24 22 38 - 36 28 22 

GRAPH 01 18 20 18 18 18 - - 18 18 18 20 18 18 18 

GRAPH 02 14 16 14 14 14 - - 16 14 14 16 14 14 14 

GRAPH 08 22 - 18 18 - - - 24 20 18 24 20 18 18 

GRAPH 09 22 28 18 18 - - - 22 22 18 - 20 18 18 

GRAPH 14 - 14 10 10 - - - 12 10 8 10 10 8 8 

Table 6.14: Results of DTS and the algorithms considered in this thesis, and other algorithms in the literature. 

Table 6.14 shows that DTS achieved the optimal solution for all the instances except 

for CELAR 11. Additionally, DTS achieved a better result for CELAR 11 compared 

with the result which was found by our TS algorithm. Moreover, DTS and our TS 

algorithm are the only approaches that achieved the optimal solution for GRAPH 14. 

In contrast, the optimal solution for CELAR 11 was found in [145] using TS. Overall, 

DTS showed competitive performance compared with the algorithms considered in 

this thesis and other algorithms in the literature.  
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6.7 Conclusions    

This chapter discussed and compared various approaches for the dynamic FAP, where 

the best heuristic algorithms considered in this thesis were used to construct these ap-

proaches. Several techniques are applied to improve the performance of these ap-

proaches. One of these, called the Gap technique, is novel. This technique aims to 

identify a good frequency to be assigned to a given request. For the purpose of this 

study, new dynamic datasets were generated from the static benchmark datasets 

(CELAR and GRAPH). Moreover, the new dynamic FAP datasets have been made 

available for other researchers, which can be found on the dynamic FAP website1. 

These approaches solve the dynamic FAP through solving three underlying problems 

of the dynamic FAP, which are the static problem, the online problem and the repair 

problem. Hence, these approaches consist of three solution phases: the initial solution 

phase (where the requests known at time period 0 are feasibly assigned, if possible), 

the online assignment phase (where the requests which dynamically arrive are feasi-

bly assigned, if possible) and the repair phase (where the unassigned requests from the 

previous phases are feasibly assigned, if possible). The repair phase includes two 

stages: the initial repair phase and the advanced repair phase. Furthermore, the two 

best heuristic algorithms in this study were implemented and compared as the ad-

vanced repair phase, which are TSRP and HHRP. It was found that the best type of 

advanced repair phase is TSRP. Moreover, the best approach for the dynamic FAP 

showed competitive performance compared with other approaches in the literature. 

Later in this chapter, a novel approach (called DTS) was proposed to solve the MO-

FAP, which is a variant of the static FAP, by modelling it as a dynamic FAP through 

dividing the static FAP into smaller sub-problems. Then, these sub-problems are con-

secutively solved using TS (which is the best heuristic algorithm in this study) as the 

advanced repair phase. The proposed approach showed the ability to improve the per-

formance of TS which solves the static FAP as a whole and showed competitive per-

formance compared with other algorithms in the literature. 

Finally, the research questions given in the beginning of this chapter can be answered 

as follows:  

                                                           
1 https://dynamicfap.wordpress.com/ 
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 Can TS and HH for the static FAP be successful on the dynamic FAP?  

TS and HH were shown to successfully tackle the dynamic FAP, where TS 

achieved the best performance as advanced repair phase (see Section 6.5.2.2).  

 

 Can the proposed approach that models the static FAP as a dynamic FAP be an 

effective method for the static FAP?  

The proposed approach, namely DTS, achieved competitive performance com-

pared with the algorithms considered in this thesis and other algorithms in the lit-

erature which solved the static FAP as a whole (see Table 6.14). This suggests that 

solving the static FAP through modelling it as a dynamic FAP can improve the so-

lutions compared with the solutions which have been found by solving the static 

problem as a whole. Moreover, this suggests that this approach can be extensively 

studied as future work.  
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Chapter 7  

Conclusions and Future Work 

7.1 Introduction 

This thesis considered the frequency assignment problem (FAP), which is related to 

wireless communication networks. This problem has many applications such as mo-

bile phones, TV broadcasting and Wi-Fi. The aim of the FAP is to assign frequencies 

to wireless communication connections (also known as requests) while satisfying a set 

of constraints, which are usually related to prevention of a loss of signal quality. In 

this thesis, two variants of the FAP were considered, namely the static and the dynam-

ic FAPs. 

This thesis consists of two parts. In the first part, three heuristic algorithms, namely 

tabu search (TS), ant colony optimization (ACO) and hyper heuristic (HH), were de-

signed and developed for the static FAP to identify an appropriate solution method for 

such problem. In the second part, various approaches for the dynamic FAP were de-

signed using the best performing heuristic algorithms considered in the first part of 

this thesis. We investigated whether heuristic algorithms which work well on the stat-

ic FAP also prove efficient on the dynamic FAP. Finally, this thesis proposed a novel 
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approach to solve the static FAP by modelling it as a dynamic FAP through dividing 

this problem into smaller sub-problems, which are then solved consecutively based on 

their time periods.  

This chapter is organized as follows: Section 7.2 summarizes the study of the three 

heuristic algorithms for the static FAP as discussed in Chapters 3, 4 and 5. Section 7.3 

summarizes the study of the various approaches for the dynamic FAP and the pro-

posed approach for the static FAP which models it as a dynamic FAP as presented in 

Chapter 6. Finally, this chapter is closed with some suggestions of future work in Sec-

tion 7.4.  

7.2 Heuristic Algorithms for the Static FAP 

This thesis investigated three heuristic algorithms (TS, ACO and HH), which were 

mainly designed to solve the minimum order FAP (MO-FAP), which is a variant of 

the static FAP. Each of these represents a different characteristic of heuristic algo-

rithms. TS and ACO represent two different classes of meta-heuristics, where TS rep-

resents a class of a local search-based algorithm and ACO represents a construction-

based algorithm. HH represents a different characteristic of heuristic algorithms 

which work at a higher level. HH is based on the idea that each heuristic has strengths 

and weaknesses, and therefore combining several heuristics may lead to an improved 

algorithm capable of solving problems with a wide range of characteristics. The se-

lected heuristic algorithms have been successfully implemented on many difficult 

combinatorial problems in the literature. 

Tabu Search Algorithm 

In this thesis, several techniques were used to improve the performance of this algo-

rithm and to make it different from existing TS algorithms for the static FAP. One of 

the novel techniques was applying a lower bound on the number of frequencies that 

are required from each domain for a feasible solution to exist, based on the underlying 

graph colouring model. These lower bounds were used to ensure that we never waste 

time trying to find a feasible solution with a set of frequencies that do not satisfy the 

lower bound of each domain as there is no feasible solution in this search area. An-

other novel technique was hybridising TS with multiple neighbourhood structures, 

one of which was used as a diversification technique. In contrast, existing TS algo-
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rithms for the static FAP in the literature implemented only a single neighbourhood 

structure.  

Moreover, two different configurations of the TS algorithm were discussed and com-

pared. One configuration relaxes interference constraints, while the other configura-

tion relaxes bidirectional and interference constraints (see Equation 1.1 and 1.2, re-

spectively). In both configurations, the cost function is defined as the number of vio-

lations. Relaxing some constraints creates the following sub-problem: minimizing the 

number of violations with a fixed number of used frequencies. 

In this study, the TS algorithm consists of three phases, namely the initial solution 

phase, the creating violations phase and the improvement phase. This algorithm starts 

with the initial solution phase to generate an initial solution using a greedy heuristic. 

If the initial solution is feasible but not optimal, then the creating violations phase is 

used to produce an infeasible solution that uses fewer frequencies. After that, the im-

provement phase is used to reduce the number of violations to zero (by solving the 

sub-problem). If a solution with zero violations, i.e. a feasible solution, is found using 

this phase, then the number of used frequencies is reduced in the creating violations 

phase and the sub-problem is reconsidered. The process is repeated until a feasible 

solution can no longer be found. In case the initial solution is infeasible, the creating 

violations phase can be omitted and the search moves immediately to the improve-

ment phase.  

Based on the experimental results using the CELAR and the GRAPH datasets, it was 

found that the best approach of TS was based on the first configuration, which relaxes 

interference constraints. Moreover, this algorithm outperformed other algorithms in 

the literature. Furthermore, it is noted that applying the same TS algorithm, which has 

been mainly designed to solve the MO-FAP, on other variants of the static FAP with-

out significant changes was not successful. This finding agrees with what has been 

found in the literature. It is likely that more significant changes were required for this 

algorithm to work well on these problems.  

Ant Colony Optimization Algorithm 

In this thesis, some techniques were used to improve the performance of the ACO 

algorithm and make it different from other ACO algorithms for the static FAP in the 
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literature. One of these was applying the concept of a well-known graph colouring 

algorithm, namely recursive largest first, to improve the process of selecting frequen-

cies and requests to be assigned. Moreover, another technique was applied to improve 

the trail updates by increasing the level of trail between the unassigned requests and 

all available frequencies for them to be more likely assigned in the next generation. 

Furthermore, some of the key factors in producing a high quality ACO implementa-

tion are examined such as different definitions of trail (𝑇𝐴 𝑅𝐹 and 𝑇𝐴 𝑅𝑅) and visibil-

ity (based on the number of feasible frequencies and based on the degree), and the 

optimization of numerous parameters.  

In this study, ACO consists of a given number of generations, each of which contains 

a given number of ants. Each ant starts constructing a solution by selecting a frequen-

cy to be assigned to all feasible requests. The process is repeated until no frequencies 

can be selected. After all ants in the current generation construct their solutions, if no 

feasible solution can be found, then a local search is used to attempt to achieve a fea-

sible solution. Then, the trail is evaporated and updated. After that, the next genera-

tion creates solutions by the same process. 

Based on the experimental results using the CELAR and the GRAPH datasets, it was 

found that the best trail of ACO was based on 𝑇𝐴 𝑅𝐹 and the visibility definition was 

based on the number of feasible frequencies. ACO did not prove to be as efficient as 

TS, although this algorithm performed equally well compared with existing ACO al-

gorithms in the literature. 

Hyper Heuristic Algorithm 

In this thesis, some techniques are applied in HH to make our algorithm more effi-

cient and different from existing HH algorithms for the static FAP. One of the novel 

techniques was applying a lower bound on the number of frequencies that are required 

from each domain for a feasible solution to exist, based on the underlying graph col-

ouring model. These lower bounds are used to ensure that we never waste time trying 

to find a feasible solution with a set of frequencies that do not satisfy the lower 

bounds, since there is no feasible solution in this search area. Another technique was 

applying simple and advanced LLHs associated with an independent tabu list for each 

LLH.  
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In this study, the HH algorithm consists of three phases, namely the initial solution 

phase, the creating violations phase and the low level heuristic (LLHs) phase. The 

first two phases were inherited from our TS algorithm to allow fair comparison. The 

process of the LLHs phase can be divided into two stages: the LLHs selection mecha-

nism and the move acceptance criteria. One of the LLHs is selected each iteration 

based on the selection mechanism to find a new solution. Two types the selection 

mechanism are compared for HH, which are random and probabilistic selection. After 

that, this solution is accepted or rejected based on the move acceptance criteria, which 

accepts worse solutions for a limited number of times to diversify the search.   

To the best of my knowledge, there are no published papers using HH to solve the 

static FAP using the datasets considered in this thesis (CELAR and GRAPH). Hence, 

this is the first attempt to solve such datasets using HH. The experimental results 

showed that random selection performed better than probabilistic selection. Overall, 

the performance of HH was superior to ACO and competitive with TS, although gen-

erally not of the same standard. However, HH was of sufficient quality to be applied 

to the dynamic FAP.  

To sum up, the best performing heuristic algorithm in this study was TS, with HH 

also being competitive, whereas ACO achieved poor performance. This suggests that 

local search-based algorithms are more suitable for solving the static FAP than popu-

lation-based algorithms and HH algorithms.  

7.3 Approaches for Dynamic and Static FAPs 

In the dynamic FAP, new requests become known over a period of time and frequen-

cies need to be assigned to those requests effectively and promptly. This problem has 

received little attention so far in the literature compared with the static FAP. In this 

thesis, various approaches are designed to solve the dynamic FAP. In order to assess 

these approaches, new dynamic FAP datasets were generated from the static FAP da-

tasets and have been made available to other researchers on the dynamic FAP web-

site1. The objective of the dynamic FAP is to find a feasible solution with the mini-

mum number of re-assigned requests. Changing frequencies which have been as-

                                                           
1 https://dynamicfap.wordpress.com/ 
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signed previously is technically allowed. However, in practice this can be time con-

suming and can take up human resources. 

The best heuristic algorithms for the static FAP considered in this thesis were used to 

construct approaches for the dynamic FAP. This allowed us to investigate whether 

heuristic algorithms which work well on the static FAP also prove efficient on the 

dynamic FAP. Additionally, several techniques are applied to improve the perfor-

mance of these approaches. One of these, called the Gap technique, is novel. This 

technique aims to identify a good frequency to be assigned to a given request. As the 

dynamic FAP consists of three underlying problems, which are the static problem, the 

online problem and the repair problem, these approaches consist of three different 

solution phases. These are the initial solution phase (which aims to feasibly assign 

requests known at time period 0), the online assignment phase (which aims to feasibly 

assign requests that arrive dynamically) and the repair phase (which aims to feasibly 

assign unassigned requests from the previous phase by re-assigning other requests).  

The repair phase includes two stages, which are the initial repair phase and the ad-

vanced repair phase. Two types of the advanced repair phase were implemented and 

compared, namely the tabu search repair phase (TSRP) and the hyper heuristic repair 

phase (HHRP), as these were the best heuristic algorithms for the static FAP in this 

study. It was found that the best performing approach was based on TSRP as the ad-

vanced repair phase. Overall, the performance of the best approach for the dynamic 

FAP in this study was competitive compared with existing approaches in the litera-

ture. 

Furthermore, this thesis proposed a novel approach, which is called the dynamic tabu 

search (DTS) approach, to solve the MO-FAP, which is a variant of the static FAP. 

This approach modelled the MO-FAP as a dynamic FAP through dividing it into 

smaller sub-problems, which are then solved consecutively based on their time peri-

ods. DTS is inherited from the approach for the dynamic FAP in this study using TS 

as an advanced repair phase. Several techniques were used to improve the perfor-

mance of this approach. One of these was applying a lower bound on the number of 

frequencies that are required from each domain for a feasible solution to exist. More-

over, the Gap technique was applied, which aims to identify a good frequency to be 

assigned to a given request. The proposed approach showed the ability to improve the 



Chapter 7. Conclusions and Future Work 

 

165 
 

1 

2 

3 

4 6 

7 5 

8 

results which were found by the heuristic algorithms in this thesis that solve the MO-

FAP as a whole. Moreover, it showed competitive performance compared with other 

algorithms in the literature. This suggests that this could be extensively studied as fu-

ture work. 

7.4 Future Work   

The study presented in this thesis leads to many possible directions for future work, 

either of applying new or existing techniques to the heuristic algorithms considered in 

this thesis for solving the static and dynamic FAPs. One of the ideas which may im-

prove the performance of TS is applying more advanced neighbourhood structures 

such as swapping requests based on forming chains similar to Kempe chains in the 

graph colouring problem (GCP). A Kempe chain can be defined as a set of vertices in 

two colours that form a chain of clashing vertices with respect to some constraints and 

if they are all swapped between the two colours then feasibility is maintained. Exam-

ple 7.1 clarifies the concept of Kempe chains in a GCP.  

Example 7.1:  

Assume a GCP instance consists of 8 vertices, 2 colours, and 6 edges between 

these vertices as shown in Figure 7.1. 

 

 

 

   Figure 7.1: A GCP instance in Example 7.1. 

Figure 7.1 shows that there are two chains. The first chain includes the verti-

ces 1, 2, 3, and 6, and the second chain includes 4, 5, 8 and 7. The colours of 

the vertices within each chain can be swapped without any constraint being af-

fected and feasibility is maintained. For example, in the first chain, it is possi-

ble to swap the colour of 1 and 3 with the colour of 2 and 6.  

When Kempe chains are applied in the static FAP, we have to take into account dif-

ferent types of constraints (see Section 1.4.1), which make feasibility more complicat-
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ed to achieve compared with the GCP. In other words, swapping a chain based on one 

type of constraint may break another type of constraint. Example 7.2 clarifies the dif-

ficulties of applying Kempe chains in the static FAP by considering only bidirectional 

and interference constraints.  

Example 7.2:  

Assume a static FAP instance consists of 9 requests, 3 frequencies  𝑓1,  𝑓2 , 

and 𝑓3, where 𝑓1 ≤ 𝑓2 ≤ 𝑓3, and a set of interference constraints. Figure 7.2 

shows this instance, where each node represents a request, each colour repre-

sents a frequency and each edge represents an interference constraint.   

 

 

 

 

 

                

           Figure 7.2: The static FAP instance considered in Example 7.2. 

Figure 7.2 shows that there is a chain including the requests  𝑟1,   𝑟11,   𝑟3  

and 𝑟15. Note that swapping the frequencies of  𝑟11 and  𝑟3 may break the inter-

ference constraint between  𝑟11 and  𝑟20 because 𝑓2 ≤ 𝑓3. Therefore, we need to 

take into account the interference constraint which links a request outside the 

chain to a request in the chain. Furthermore, as each request is linked to its 

partner by a bidirectional constraint (see Equation 1.1), swapping this chain 

may also break the bidirectional constraints. 

Furthermore, as this thesis introduced interesting techniques to solve the static and 

dynamic FAPs, it would be worthwhile applying these to solve other problems. More-

over, we could extend our study by including other heuristic algorithms for the static 

and dynamic FAPs.  
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