

Heuristic Algorithms

for Static and Dynamic

Frequency Assignment Problems

by

Khaled Alrajhi

Thesis submitted to Cardiff University

In candidature for the degree of

Doctor of Philosophy

School of Mathematics

Cardiff University

 July 2016

The Most Beneficent, the Most Merciful

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://my.englishclub.com/photo/allah-001&ei=kaoSVbqDA6aQ7Aau1IDYCQ&bvm=bv.89217033,d.ZGU&psig=AFQjCNFE04bKbtJ3PbOZyI_0lRIfWDHiyQ&ust=1427373067456797

To

My Mother, Muzna, My Father, Abdulaziz

And

M y wife, Hend

ii

iii

Acknowledgements

First and foremost, I praise and acknowledge Allah, the most beneficent and the most

merciful. Secondly, there are many people without whom this thesis would never have

come about. Firstly, Dr Jonathan Thompson for his supervision, support, friendship

and patience throughout the past few years; secondly, Dr Rong Qu and Dr Christine

Mumford for their invaluable advice and comments; thirdly, Professor Paul Harper,

Professor Paul Rosin, Professor Nikolai Leonenko, Dr Maggie Chen, Dr Ahmed

Kheiri, Dr Yu-Kun Lai, Dr Xianfang Sun, Dr Iskander Aliev, Dr Rhyd Lewis, Dr

Timm Oertel, Dr Chris Davies, Dr Andrey Pepelyshev, Dr Stuart Allen, Mr Fawaz

Alanazi and Mr Wasin Padungwech for their review and invaluable comments;

fourthly, my parents and my wife for their love and their support, fifthly, my govern-

ment for the sponsorship and support; finally, to all my friends and the staff of the

School of Mathematics at the Cardiff University for their invaluable assistance.

http://www.cardiff.ac.uk/people/view/98650-harper-paul
http://www.cardiff.ac.uk/people/view/98655-leonenko-nikolai
http://www.cardiff.ac.uk/people/view/138450-chen-maggie
http://www.cardiff.ac.uk/people/view/192900-Ahmed-Kheiri
http://www.cardiff.ac.uk/people/view/192900-Ahmed-Kheiri
http://www.cardiff.ac.uk/people/view/98627-aliev-iskander
http://www.cardiff.ac.uk/people/view/192658-oertel-timm
http://www.cardiff.ac.uk/people/view/192658-oertel-timm
http://www.cardiff.ac.uk/people/view/98638-davies-chris
http://www.cardiff.ac.uk/people/view/98662-pepelyshev-andrey
http://www.sciencedirect.com/science/article/pii/S0140366415002546

iv

v

Summary

This thesis considers the frequency assignment problem (FAP), which is a real world

problem of assigning frequencies to wireless communication connections (also known

as requests) while satisfying a set of constraints in order to prevent a loss of signal

quality. This problem has many different applications such as mobile phones, TV

broadcasting, radio and military operations. In this thesis, two variants of the FAP are

considered, namely the static and the dynamic FAPs. The static FAP does not change

over time, while the dynamic FAP changes over time as new requests gradually be-

come known and frequencies need to be assigned to those requests effectively and

promptly. The dynamic FAP has received little attention so far in the literature com-

pared with the static FAP.

This thesis consists of two parts: the first part discusses and develops three heuristic

algorithms, namely tabu search (TS), ant colony optimization (ACO) and hyper heu-

ristic (HH), to solve the static FAP. These heuristic algorithms are chosen to represent

different characteristics of heuristic algorithms in order to identify an appropriate so-

lution method for this problem. Several novel and existing techniques have been used

to improve the performance of these heuristic algorithms. In terms of TS, one of the

novel techniques aims to determine a lower bound on the number of frequencies that

are required from each domain for a feasible solution to exist, based on the underlying

graph colouring model. These lower bounds are used to ensure that we never waste

time trying to find a feasible solution with a set of frequencies that do not satisfy the

lower bounds, since there is no feasible solution in this search area. Another novel

technique hybridises TS with multiple neighbourhood structures, one of which is used

as a diversification technique. In terms of ACO, the concept of a well-known graph

colouring algorithm, namely recursive largest first, is used. Moreover, some of the

key factors in producing a high quality ACO implementation are examined such as

different definitions of visibility and trail, and optimization of numerous parameters.

In terms of HH, simple and advanced low level heuristics each with an associated in-

dependent tabu list are applied in this study. The lower bound on the number of fre-

quencies that are required from each domain for a feasible solution to exist is also

used.

vi

Based on the experimental results, it is found that the best performing heuristic algo-

rithm is TS, with HH also being competitive, whereas ACO achieves poor perfor-

mance. Additionally, TS shows competitive performance compared with other algo-

rithms in the literature.

In the second part of this thesis, various approaches are designed to solve the dynamic

FAP. The best heuristic algorithms considered in the first part of this thesis are used to

construct these approaches. It is interesting to investigate whether heuristic algorithms

which work well on the static FAP also prove efficient on the dynamic FAP. Addi-

tionally, several techniques are applied to improve the performance of these ap-

proaches. One of these, called the Gap technique, is novel. This technique aims to

identify a good frequency to be assigned to a given request. Based on the experi-

mental results, it is found that the best approach for the dynamic FAP shows competi-

tive results compared with other approaches in the literature. Finally, this thesis pro-

poses a novel approach to solve the static FAP by modelling it as a dynamic FAP

through dividing this problem into smaller sub-problems, which are then solved in

turn in a dynamic process. The lower bound on the number of frequencies that are

required from each domain for a feasible solution to exist, based on the underlying

graph colouring model, and the Gap technique are also used. The proposed approach

shows the ability to improve the results which have been found by the heuristic algo-

rithms in the first part of this thesis (which solve the static FAP as a whole). Moreo-

ver, it shows competitive results compared with other algorithms in the literature.

vii

Acronyms

ACO Ant colony optimization

ACS Ant colony system

AS Ant system

CN-tabu Consistent neighbourhood in tabu search

FAP Frequency assignment problem

GA Genetic algorithm

GCP Graph colouring problem

HH Hyper heuristic

KCP K-colouring problem

LLHs Low level heuristics

LS Local search

MMAS MAX-MIN ant system

MO-FAP Minimum order frequency assignment problem

MS-FAP Minimum span frequency assignment problem

MI-FAP Minimum interference frequency assignment problem

RS Random search

RTS Reactive tabu search

SA Simulated annealing

SLS Stochastic local search

TS Tabu search

TSP Traveling salesman problem

VRP Vehicle routing problem

viii

List of Publications

- Alrajhi K., Thompson J. and Padungwech W., 2016. A heuristic approach for the

dynamic frequency assignment problem. Journal of Computers & Operations Re-

search. [in review]

- Alrajhi K. and Padungwech W., 2016. A dynamic tabu search algorithm for solv-

ing the static frequency assignment problem. Lecture Notes in Computer Science,

proceedings of the 16th UK Workshop on Computational Intelligence, UKCI

2016. Springer.

- Alrajhi K., Thompson J. and Padungwech W., 2016. Tabu search hybridized with

multiple neighbourhood structures for the static frequency assignment problem.

Lecture Notes in Computer Science 9668, pp. 157-170, proceedings of the 10th In-

ternational Workshop on Hybrid Meta-heuristics, HM 2016. Springer.

List of Presentations

- Alrajhi K. and Padungwech W., 2016. A dynamic tabu search algorithm for solv-

ing the static frequency assignment problem. The 16th UK Workshop on Compu-

tational Intelligence, UKCI 2016. Lancaster, UK.

- Alrajhi K., Thompson J. and Padungwech W., 2016. Tabu search hybridized with

multiple neighbourhood structures for the static frequency assignment problem.

The 10th International Workshop on Hybrid Meta-heuristics, HM 2016. Plym-

outh, UK.

- Alrajhi K. and Thompson J., 2016. Heuristic algorithms for static and dynamic

frequency assignment problem. The Wales Mathematics Colloquium Conference.

Powys, UK.

- Alrajhi K. and Thompson J., 2016. Heuristic algorithms for static and dynamic

frequency assignment problem. The 5th Society for Industrial and Applied Math-

ematics, SIAM, National Student Chapter Conference. Cardiff, UK.

- Alrajhi K. and Thompson J., 2016. Heuristic algorithms for the static frequency

assignment problem. The 5th Student Conference on Operational Research,

SCOR16. Nottingham, UK.

http://www.cardiff.ac.uk/people/research-students/view/98606-padungwech-wasin
http://www.cardiff.ac.uk/people/research-students/view/98606-padungwech-wasin
http://www.cardiff.ac.uk/people/research-students/view/98606-padungwech-wasin
http://www.cardiff.ac.uk/people/research-students/view/98606-padungwech-wasin
http://www.cardiff.ac.uk/people/research-students/view/98606-padungwech-wasin
http://www.siam.org/
http://www.siam.org/

ix

- Alrajhi K. and Thompson J., 2015. Static and dynamic frequency assignment

problems. The 29th Belgian Conference on Operational Research, ORBEL29.

Antwerp, Belgium.

- Alrajhi K. and Thompson J., 2013. Meta-heuristic for the static frequency as-

signment problem. The Conference of the South Wales Operational Research

Discussion Society, SWORDS. Cardiff, UK.

- Alrajhi K. and Thompson J., 2013. Meta-heuristics for the static frequency as-

signment problem. The 55th Conference of the Operational Research Society,

OR55. Exeter, UK.

- Alrajhi K. and Thompson J., 2012. Tabu search and ant colony optimization. The

Conference of the South Wales Operational Research Discussion Society,

SWORDS. Cardiff, UK.

List of Posters

- Alrajhi K. and Thompson J., 2015. Tabu search for the dynamic frequency as-

signment problem. The 3rd Society for Industrial and Applied Mathematics,

SIAM, National Student Chapter Conference. Cardiff, UK.

http://www.siam.org/

x

Contents

Declarations i

Acknowledgements iii

Summary v

Acronyms vii

List of Publications viii

List of Presentations viii

List of Posters ix

Chapter 1 – Introduction

1.1 Context 1

1.2 Overview of Research Presented in this Thesis 3

1.3 Overview of Time Complexity and Computational Complexity 5

1.4 Overview of the Frequency Assignment Problem 6

 1.4.1 Constraints of the FAP 6

 1.4.2 The Static FAP 9

 1.4.3 The Dynamic FAP 12

1.5 Overview of the Datasets 12

1.6 Aims and Structure of this Thesis 14

Chapter 2 – Literature Review

2.1 Introduction 17

2.2 The Static Frequency Assignment Problem 18

2.3 The Graph Colouring problem 18

2.4 Tabu Search 20

 2.4.1 Tabu Search for the Static FAP 21

 2.4.2 Tabu Search for Other Problems 26

 2.4.3 Summary of the Tabu Search Literature Review 27

2.5 Ant Colony Optimization 28

 2.5.1 Ant Colony Optimization for the Static FAP 29

 2.5.2 Ant Colony Optimization for Other Problems 30

 2.5.3 Summary of the Ant Colony Optimization Literature Review 32

2.6 Hyper Heuristics 33

 2.6.1 Hyper Heuristics for the Static FAP 34

 2.6.2 Hyper Heuristics for Other Problems 36

 2.6.3 Summary of the Hyper Heuristics Literature Review 37

2.7 The Dynamic Frequency Assignment Problem 37

2.8 Conclusions 42

Chapter 3 – Tabu Search for the Static FAP

3.1 Introduction 43

3.2 Graph Colouring Model for the Static FAP 44

 3.2.1 Computational Time of Lower Bounds 46

xi

 3.2.2 Lower Bounds for the Static FAP 48

3.3 Overview of the Tabu Search Algorithm 49

 3.3.1 Solution Space and Cost Function 49

 3.3.2 Sub-problem in the Static FAP 50

 3.3.3 Structure of the Tabu Search Algorithm 50

3.4 Components of the Tabu Search Algorithm 52

 3.4.1 Neighbourhood Structures 52

 3.4.2 Tabu Lists 53

 3.4.3 Aspiration Criteria 53

 3.4.4 The Initial Solution Phase 53

 3.4.4.1 The Assignment Stage 54

 3.4.4.2 The Allowing Infeasible Assignments Stage 55

 3.4.4.3 The Descent Method Stage 55

 3.4.5 The Creating Violations Phase 57

 3.4.6 The Improvement Phase 57

 3.4.7 Stopping Criteria 58

3.5 Experiments and Results 60

 3.5.1 Results of the Tabu Search Algorithm 60

 3.5.1.1 The Initial Solution Phase 61

 3.5.1.2 Comparison of Different Configurations 61

 3.5.2 Analysis of the Tabu Search Algorithm Process 64

 3.5.2.1 Contribution of Each Neighbourhood Structure 64

 3.5.2.2 Importance of Each Neighbourhood Structure 65

 3.5.2.3 Time Complexity of the Tabu Search Algorithm 66

 3.5.2.4 Convergence of the Tabu Search Algorithm 67

 3.5.3 Results Comparison of the Tabu Search Algorithm 68

 3.5.3.1 Results Comparison with Existing TS Algorithms 68

 3.5.3.2 Results Comparison with Other Algorithms 69

3.6 Conclusions 69

Chapter 4 – Ant Colony Optimization for the Static FAP

4.1 Introduction 71

 4.1.1 Overview of Ant Colony Optimization 73

4.2 Components of the ACO Algorithm 75

 4.2.1 Solution Space and Cost Function 75

 4.2.2 Request and Frequency Selection 75

 4.2.3 Visibility Definitions 76

 4.2.4 Trail Definitions 78

 4.2.4.1 Trail Evaporation 79

 4.2.4.2 Trail Updates 80

 4.2.5 Descent Method 81

 4.2.6 The ACO Algorithm Implementation 81

4.3 Experiments and Results 83

 4.3.1 Results Comparison of the ACO Algorithm 83

 4.3.1.1 The Number of Ants 84

xii

 4.3.1.2 The Trail Definitions 85

 4.3.1.3 The Visibility Definitions 87

 4.3.1.4 The Parameters Values 88

 4.3.1.5 The Descent Method 90

 4.3.2 Results Comparison with Existing ACO Algorithms 91

 4.3.3 Results Comparison with Other Algorithms 91

4.4 Time Complexity and Convergence of ACO 92

4.5 Conclusions 93

Chapter 5 – Hyper Heuristic for the Static FAP

5.1 Introduction 95

5.2 Overview of the Hyper Heuristic Algorithm 96

 5.2.1 Solution Space and Cost Function 96

 5.2.2 Structure of the Hyper Heuristic Algorithm 97

5.3 Components of the Hyper Heuristic Algorithm 98

 5.3.1 The Initial Solution Phase 98

 5.3.2 The Creating Violations Phase 99

 5.3.3 The Low Level Heuristics 99

 5.3.4 LLH Selection Mechanisms 101

 5.3.4.1 Random Selection of the LLHs 101

 5.3.4.2 Probabilistic Selection of the LLHs 102

 5.3.5 Acceptance Criteria 107

 5.3.6 Stopping Criteria 108

5.4 Experiments and Results 108

 5.4.1 Results Comparison of the Hyper Heuristic Algorithm 108

 5.4.1.1 Random Selection of the LLHs 109

 5.4.1.2 Probabilistic Selection of the LLHs 114

 5.4.1.2.1 Probabilistic Selection of the LLHs without a Limit 114

 5.4.1.2.2 Probabilistic Selection of the LLHs with a Limit 116

 5.4.1.2.3 Results Comparison and Analysis 118

 5.4.1.3 Comparison of the LLH Selection Mechanisms 119

 5.4.2 Results Comparison with Other Algorithms 121

 5.4.3 Results Comparison with TS and ACO Algorithms 122

5.5 Time Complexity and Convergence of HH 124

5.6 Conclusions 125

Chapter 6 – Approaches for Dynamic and Static FAPs

6.1 Introduction 127

6.2 Generating the dynamic FAP Datasets 130

6.3 Overview of the Approaches for the Dynamic FAP 130

 6.3.1 Solution Space and Cost Function 131

 6.3.2 Structure of the Approaches for the Dynamic FAP 131

6.4 Components of the Approaches for the Dynamic FAP 132

 6.4.1 The Initial Solution Phase 132

 6.4.2 The Online Assignment Phase 133

xiii

 6.4.3 The Repair Phase 135

 6.4.3.1 The Initial Repair Phase 136

 6.4.3.2 The Advanced Repair Phase 136

6.5 Experiments and Results 137

 6.5.1 The Online Assignment Phase 137

 6.5.2 The Repair Phase 144

 6.5.2.1 The Initial Repair Phase 144

 6.5.2.2 The Advanced Repair Phase 145

 6.5.3 Results Comparison with Other Approaches 149

6.6 An Approach for the Static FAP 151

 6.6.1 Experiments and Results of the DTS Approach 152

 6.6.1.1 Results Comparison of the DTS Approach 153

 6.6.1.2 Results Comparison with the Tabu Search Algorithm 154

 6.6.1.3 Results Comparison with Other Algorithms 156

6.7 Conclusions 157

Chapter 7 – Conclusions and Future Work

7.1 Introduction 159

7.2 Heuristic Algorithms for the Static FAP 160

7.3 Approaches for Dynamic and Static FAPs 163

7.4 Future Work 165

Bibliography 167

xiv

List of Figures

Chapter 1 – Introduction

Figure 1.1 The FAP instance considered in Example 1.1 9

Chapter 2 – Literature Review

Figure 2.1 A sample of a static FAP instance modelled as a GCP 19

Chapter 3 – Tabu Search for the Static FAP

Figure 3.1 An example of a clique in the CELAR 01 instance in the graph

colouring model

 45

Figure 3.2 The relationship between the log of run time versus the number of

requests

 47

Figure 3.3 Overall structure of the TS algorithm for the static FAP 51

Figure 3.4 Overall structure of the initial solution phase 56

Figure 3.5 Overall structure of the improvement phase 59

Figure 3.6 Results of TS for MO-FAP using two types of configurations 63

Figure 3.7 Run time of TS for MO-FAP using two types of configurations 63

Figure 3.8 The number of used frequencies and violations in each iteration in

TS with the first configuration on the CELAR 01 instance

 65

Figure 3.9 Average number of used frequencies for different approaches of

the TS algorithm

 66

Figure 3.10 The convergence of the TS algorithm on the CELAR 11 instance 67

Chapter 4 – Ant Colony Optimization for the Static FAP

Figure 4.1 Ants in a path between the nest and the food 73

Figure 4.2 Ants can reach the food in two paths 73

Figure 4.3 Ants find the shortest path 73

Figure 4.4 Graph colouring model of Example 4.1 77

Figure 4.5 Overall structure of our ACO algorithm for the static FAP 82

Figure 4.6 The effect of the number of ants on the performance of the ACO

algorithm

 85

Figure 4.7 The performance of ACO using two types of trail definitions 86

Figure 4.8 The average run time of ACO using two types of trail definitions 87

Figure 4.9 The convergence of the ACO algorithm on the GRAPH 01 in-

stance

 93

Chapter 5 – Hyper Heuristic for the Static FAP

Figure 5.1 Overall structure of the HH algorithm for the static FAP 98

Figure 5.2 The total number of calls of the LLHs for the selected instance 110

Figure 5.3 The total number of executions of the LLHs for the selected in-

stances

110

Figure 5.4 Total reduction in the number of violations due to each LLH 111

xv

Figure 5.5 Average reduction in the number of violations due to each LLH 111

Figure 5.6 Average solutions of the three different approaches of the HH al-

gorithm

113

Figure 5.7 Average run time of approach A and approach C 113

Figure 5.8 Probabilities of the LLHs in CELAR 01 during the iterations using

approach 1 without a limit

114

Figure 5.9 Probabilities of the LLHs in CELAR 01 during the iterations using

approach 2 without a limit

115

Figure 5.10 Probabilities of the LLHs in CELAR 01 during the iterations using

approach 3 without a limit

115

Figure 5.11 Probabilities of the LLHs in CELAR 01 during the iterations using

approach 1 with a limit

116

Figure 5.12 Probabilities of the LLHs in CELAR 01 during the iterations using

approach 2 with a limit

117

Figure 5.13 Probabilities of the LLHs in CELAR 01 during the iterations using

approach 3 with a limit

117

Figure 5.14 Total average number of used frequencies for each approach 118

Figure 5.15 The average number of used frequencies in each instance for all

approaches based on the probabilistic selection

118

Figure 5.16 The average run time in each instance for all approaches based on

the probabilistic selection

119

Figure 5.17 The average results of the HH algorithm using two types of the

LLH selection mechanisms

120

Figure 5.18 The average run time of the HH algorithm using two types of the

LLH selection mechanisms

120

Figure 5.19 The numbers of instances where the optimal solution is achieved

by TS, ACO and HH

123

Figure 5.20 Total of average run times for TS, ACO and HH 124

Figure 5.21 The convergence of the HH algorithm on the GRAPH 09 instance 125

Chapter 6 – Approaches for Dynamic and Static FAP

Figure 6.1 A dynamic FAP instance over 3 time period 128

Figure 6.2 Overall structure of the approach for the dynamic FAP 132

Figure 6.3 An example of the Gap technique 135

Figure 6.4 The total rank for each approach based on Experiment 1 139

Figure 6.5 The total rank for each approach based on Experiment 2 141

Figure 6.6 The total rank for each approach based on Experiment 3 143

Figure 6.7 The run time for all dynamic FAP instances of the selected in-

stances

146

Figure 6.8 The total run time of all dynamic FAP instances for each CELAR

or GRAPH instance using two different types of the advanced re-

pair phase

148

Figure 6.9 The total run time of all dynamic FAP instances using two differ-

ent types of the advanced repair phase

148

xvi

Figure 6.10 Average number of re-assigned requests of our approach and

Dupont’s approach

150

Figure 6.11 The average run time of our approach and Dupont’s approach 150

Figure 6.12 An example of modelling a static FAP instance as a dynamic FAP

instance over 3 time periods

152

Figure 6.13 The run time of all versions of the selected instances 154

Figure 6.14 The solutions quality of TS and DTS 154

Figure 6.15 The run time of TS and DTS 155

Figure 6.16 The total run time of TS and DTS 155

Chapter 7 – Conclusions and Future Work

Figure 7.1 A GCP instance in Example 7.1 165

Figure 7.2 The static FAP instance considered in Example 7.2 166

xvii

List of Tables

Chapter 1 – Introduction

Table 1.1 The domains in the datasets considered in this thesis 7

Table 1.2 The domains considered in Example 1.1 8

Table 1.3 The domain and pre-assignment constraints considered in Example

1.1

 8

Table 1.4 The bidirectional and the interference constraints considered in Ex-

ample 1.1

 8

Table 1.5 A feasible solution for the problem in Example 1.1 9

Table 1.6 Details of the CELAR and the GRAPH datasets 13

Chapter 2 – Literature Review

Table 2.1 Example of the ratio parameter 22

Table 2.2 The constraints considered in Example 2.2 40

Table 2.3 An initial solution in Example 2.2 40

Table 2.4 The number of violations after assigning the unassigned requests 40

Table 2.5 The solution after assigning 𝑟2 40

Table 2.6 The number of violations after assigning the unassigned requests 41

Table 2.7 The solution after assigning 𝑟1 41

Table 2.8 The number of violations after assigning the unassigned requests 41

Table 2.9 A feasible solution in Example 2.2 41

Chapter 3 – Tabu Search for the Static FAP

Table 3.1 Run times for finding the maximum clique size for different num-

bers of requests and values of density

 46

Table 3.2 The maximum possible number of constraints and the density for

the considered datasets

 47

Table 3.3 Lower bounds of the numbers of frequencies required for each do-

main and for the whole instance, and the time taken to calculate

them

 48

Table 3.4 The number of requests assigned to each used frequency in two

different feasible solutions

 50

Table 3.5 The definition of the abbreviation in Figure 3.4 56

Table 3.6 The initial solution of TS for the MO-FAP 61

Table 3.7 Results of TS for the MO-FAP when the interference constraints

are relaxed

 62

Table 3.8 Results of TS for the MO-FAP when the bidirectional and interfer-

ence constraints are relaxed

 62

Table 3.9 Results of TS and existing TS algorithms in the literature 68

Table 3.10 Results of TS and other algorithms in the literature 69

xviii

Chapter 4 – Ant Colony Optimization for the Static FAP

Table 4.1 Requests selection based on probability using the first definition of

visibility

 78

Table 4.2 Requests selection based on probability using the second definition

of visibility

 78

Table 4.3 Example of trail update values 80

Table 4.4 Example of trail update values with improved trail update function 81

Table 4.5 The considered values of the parameters 𝛼, 𝛽 and 𝜌 83

Table 4.6 The default values of the parameters 84

Table 4.7 Results of ACO for the MO-FAP using the trail 𝑇𝐴 𝑅𝐹 86

Table 4.8 Results of ACO for the MO-FAP using the trail 𝑇𝐴 𝑅𝑅 86

Table 4.9 Results of ACO for the MO-FAP using the second definition of

visibility

 87

Table 4.10 Results of ACO using different values of the parameter 𝛼 88

Table 4.11 Results of ACO using different values of the parameter 𝛽 89

Table 4.12 Results of ACO using different values of the parameter 𝜌 89

Table 4.13 The best results of the ACO algorithm for the MO-FAP 89

Table 4.14 Results of ACO for the MO-FAP without using the descent method 90

Table 4.15 Results of ACO and existing ACO algorithm in the literature 91

Table 4.16 Results of ACO and other algorithms in the literature 92

Chapter 5 – Hyper Heuristic for the Static FAP

Table 5.1 An example of updating the probability of selecting each LLH 104

Table 5.2 An example of the probabilities of selecting the LLHs 105

Table 5.3 Applying the limit on the probabilities of selecting the LLHs 106

Table 5.4 Applying the equivalent division to the probabilities of selecting

the LLHs

106

Table 5.5 Applying the proportional division to the probabilities of selecting

the LLHs

107

Table 5.6 Results of HH for the MO-FAP using approach A 109

Table 5.7 Results of HH for the MO-FAP using approach B 112

Table 5.8 Results of HH for the MO-FAP using approach C 112

Table 5.9 Results of approach 1 based on the probabilistic selection of the

LLHs without a limit

114

Table 5.10 Results of approach 2 based on the probabilistic selection of the

LLHs without a limit

115

Table 5.11 Results of approach 3 based on the probabilistic selection of the

LLHs without a limit

115

Table 5.12 Results of approach 1 based on the probabilistic selection of the

LLHs with a limit

116

Table 5.13 Results of approach 2 based on the probabilistic selection of the

LLHs with a limit

116

xix

Table 5.14 Results of approach 3 based on the probabilistic selection of the

LLHs with a limit

117

Table 5.15 The best results of the HH algorithm for the MO-FAP based on

the probabilistic selection

119

Table 5.16 The best results of the HH algorithm for the MO-FAP 121

Table 5.17 Results of HH and other algorithms in the literature 122

Table 5.18 The best solutions and the average run time of TS, ACO and HH in

this study

123

Chapter 6 – Approaches for Dynamic and Static FAP

Table 6.1 Number of violations for each available frequency when it is as-

signed to 𝑟𝑖

136

Table 6.2 The instance average rank for each approach based on Experiment

1

138

Table 6.3 The dynamic average rank for each approach based on Experiment

1

139

Table 6.4 The instance average rank for each approach based on Experiment

2

140

Table 6.5 The dynamic average rank for each approach based on Experiment

2

141

Table 6.6 The instance average rank for each approach based on Experiment

3

142

Table 6.7 The dynamic average rank for each approach based on Experiment

3

142

Table 6.8 Results of the approach for the dynamic FAP using the initial repair

phase

144

Table 6.9 Results of the approach for the dynamic FAP using the TSRP

as the advanced repair phase

145

Table 6.10 Results of the approach for the dynamic FAP using HHRP

as the advanced repair phase

146

Table 6.11 The number of dynamic FAP instances for each CELAR or

GRAPH instance for which TSRP or HHRP re-assigned fewer re-

quests

147

Table 6.12 Results of Dupont’s approach for the dynamic FAP 149

Table 6.13 Results of the DTS approach for the MO-FAP 153

Table 6.14 Results of DTS and the algorithms considered in this thesis, and

other algorithms in the literature

156

Chapter 1. Introduction

1

Chapter 1

Introduction

1.1 Context

Scarcity can be considered as the problem of having almost unlimited human wants in

a world of limited resources. Many essential commodities such as oil, water and food

are scarce due to their limited supply and rapidly increasing demand. One essential

resource that is increasingly scarce, though not often considered by economists, is the

radio frequency spectrum. The demand placed upon the usable spectrum increased

exponentially between 1950 and 1980 [83]. Since then, the demand of frequencies for

communication devices has further increased with the advent of high definition (HD),

satellite television channels, mobile phones, satellite navigation systems and Wi-Fi,

all of which require frequencies from the crowded radio spectrum. Mobile phone op-

erators have paid vast sums of money to purchase frequency bands from the Office of

Communications1 (known as OFCOM) [118]. This demonstrates the value of using

the spectrum as efficiently as possible. However, the radio spectrum from which fre-

quencies can be allocated is highly limited. For example, OFCOM limits frequencies

1 Office of Communications, commonly known as OFCOM, is the government-approved regulatory and competition authority
for the broadcasting, telecommunications and postal industries of the UK.

https://en.wikipedia.org/wiki/Mail

Chapter 1. Introduction

2

from 9 KHz to 275 GHz [118]. Therefore, this is a good opportunity for researchers to

develop algorithms to improve the efficiency of allocating frequencies from a limited

radio spectrum.

This has led to considerable academic interest in variants of the frequency assignment

problem (FAP). These problems generally involve assigning frequencies to wireless

communication connections (known as requests) while satisfying a set of constraints

and optimizing a given objective. In this thesis, two variants of the FAP, namely the

static and the dynamic FAPs, are studied. Research has mostly focused on the static

FAP, where all features of this problem are known at the beginning and do not change

over time. More recently, a new variant of the FAP, known as the dynamic FAP, was

proposed in [55]. This problem is based on a military application in which features of

the problem change over time. The dynamic FAP has to be solved in real time and

therefore, the computational time required by any solution method is of particular im-

portance, unlike the static FAP.

In the first part of this thesis, several heuristic algorithms are investigated and devel-

oped to solve the static FAP. These heuristic algorithms include some meta-heuristics

and a hyper heuristic. Meta-heuristics can be defined as high-level frameworks for

designing and developing heuristic algorithms to find high quality solutions [141]. In

contrast, a hyper heuristic can be defined as a master process that controls other heu-

ristics to produce high quality solutions. The main difference between meta-heuristics

and hyper heuristics is that meta-heuristics work on a solution space, while hyper heu-

ristics work on a space of heuristics. The use of heuristic algorithms is justified as the

static FAP is NP-complete [66].

This thesis aims to compare meta-heuristics from different classes, where there are

several classifications for meta-heuristics in the literature. One of these is introduced

in [119], which classifies meta-heuristics into three classes as follows:

 Construction-based algorithms: these algorithms construct new solutions from

scratch. Examples of construction-based algorithms are ant colony optimization

[45] and greedy randomised adaptive search procedure [59].

Chapter 1. Introduction

3

 Population-based algorithms: these algorithms involve populations of solutions,

where different parts of the solution space are searched simultaneously. Examples

of these algorithms are ant colony optimization and genetic algorithms [91], and

scatter search [70].

 Local search-based algorithms: these algorithms solve problems by moving from

one solution to another in the solution space. There are many such algorithms, in-

cluding tabu search [71], simulated annealing [98], noising algorithms [28],

threshold acceptance [52], and variable neighbourhood search [112].

Moreover, there are other classifications of meta-heuristics in the literature such as

[12], which suggests that meta-heuristics can be classified in different ways according

to different characteristics. For example, meta-heuristics can be classified as nature-

inspired versus non-nature inspired, population-based versus single point search, dy-

namic objective function versus static objective function, one neighbourhood versus

multi-neighbourhood structures, and memory usage versus memory-less algorithms.

In the second part of this thesis, various approaches are designed to solve the dynamic

FAP. The best heuristic algorithms considered in the first part of this thesis are used to

construct these approaches. Hence, it is interesting to investigate whether heuristic

algorithms which work well on static problems also prove efficient on the dynamic

problems. Furthermore, this thesis proposes a novel approach to solve the static FAP

by modelling it as a dynamic FAP.

1.2 Overview of Research Presented in this Thesis

In this thesis, three different heuristic algorithms are evaluated and developed, namely

tabu search (TS), ant colony optimization (ACO) and hyper heuristic (HH), to solve

the static FAP. They are chosen to represent different characteristics of heuristic algo-

rithms in order to identify the most appropriate solution method for such problem. As

the static FAP can be modelled as a graph colouring problem [83], existing

knowledge of this underlying model can be used to guide the implementation of the

selected heuristic algorithms. These heuristic algorithms are assessed using public

benchmark datasets of the static FAP which are denoted by CELAR and GRAPH.

Chapter 1. Introduction

4

TS and ACO represent two different classes of meta-heuristics, where TS represents a

class of the local search-based algorithms and ACO represents a construction-based

algorithm which incorporates a learning component. TS can be described as a neigh-

bourhood search algorithm which uses memory in the form of a tabu list to restrict the

choices of the next solution in order to prevent the search from returning to previously

visited solutions. This algorithm has proved extremely successful on a wide range of

problems (see e.g. [75]).

ACO has been inspired from the natural behaviour of real ant colonies. Ants are social

insects which co-operate using indirect communication to find the shortest path be-

tween food sources and the nest. Hence, ACO can also be thought of as a population-

based algorithm. Although the most well-known population algorithm is the genetic

algorithm, we choose to evaluate ACO instead for several reasons. One of these rea-

sons is that there is little evidence from the literature that genetic algorithms have

proved successful on the static FAP. This may be because combining parts of two

different high quality FAP solutions may not lead to a new high quality solution and

indeed, may not even produce feasible solutions. Moreover, ACO may be well suited

to a dynamic environment because it contains a natural learning process.

HH represents a different characteristic of heuristic algorithms which work at a higher

level. It is based on the idea that each heuristic has strengths and weaknesses, and

therefore combining several heuristics may lead to an improved algorithm capable of

solving a wide range of problems.

In this study, TS, ACO and HH for the static FAP are compared and the best perform-

ing ones are used to construct various approaches to solve the dynamic FAP. This

problem has received little attention so far in the literature compared with the static

FAP. The main feature of the dynamic FAP is that new requests become known over

a period of time and frequencies need to be assigned effectively and promptly. There-

fore, the dynamic FAP can be considered as a set of sub-problems, where each sub-

problem is considered in turn. Furthermore, a novel approach based on the concept of

the dynamic FAP is proposed to solve the static FAP through modelling it as a dy-

namic FAP. It may be more profitable to portion the static FAP into smaller sub-

problems to be solved consecutively than solving it as a whole. This study investi-

Chapter 1. Introduction

5

gates whether using this novel approach to solve the static FAP leads to better results

compared with other algorithms considered in this study and in the literature.

1.3 Overview of Time Complexity and Computational Complexity

Time complexity of an algorithm shows the relationship between the computing time

and the problem size [136]. Commonly, the time complexity of an algorithm is ex-

pressed using a big O notation, which is a mathematical representation for asymptotic

upper bounds. Let f: ℕ → ℕ and g: ℕ → ℕ be functions, we say that f(n) = O(g(n)) if

and only if there exists a constant c > 0 and a non-negative integer n0 such that for all

n ≥ n0, we have f (n) ≤ c g(n). Hence, when f(n) = O(g(n)), this means f grows no

faster than g. When an algorithm takes a maximum of O(g(n)) time to solve an in-

stance of a problem for some polynomial g(n), we say this algorithm has polynomial

time complexity. For more information about this topic, we refer the reader to [99,

136].

In computational complexity theory, computational problems can be classified as P,

NP, NP-hard and NP-complete (among other classes). A problem is classified as P if

it can be solved in polynomial time. In other words, the class P consists of problems

that can be solved by an algorithm in time O(nk) for some constant k, where n is the

size of the input to the problem. The class NP refers to non-deterministic polynomial

time, which involves a non-deterministic computer. A non-deterministic computer is a

theoretical tool that makes a non-deterministic (probabilistic) choice at each point in

the computation, while a deterministic computer gives the same result for the same

input. The class NP consists of decision problems, which can be solved in polynomial

time using a non-deterministic computer and their solution can be verified for correct-

ness in polynomial time on a deterministic computer. Since P problems take polyno-

mial time to be solved, P is a subset of NP. A problem is classified as NP-hard if solv-

ing it in polynomial time would make it possible to solve all problems in class NP in

polynomial time. In other words, a problem is classified as NP-hard if every problem

in NP can be reduced to it in polynomial time. Some NP-hard problems are also in

NP. Such problems are called NP-complete problems. Therefore, the class NP-

complete consists of the most difficult problems in the NP class. For more infor-

mation about this topic, we refer the reader to [66, 136, 144].

http://dictionary.reference.com/browse/NP
http://dictionary.reference.com/browse/NP
http://dictionary.reference.com/browse/NP-complete

Chapter 1. Introduction

6

1.4 Overview of the Frequency Assignment Problem

The main concept of the FAP is assigning a frequency to each request while satisfying

a set of constraints and optimizing a given objective function. In fact, the FAP is not a

single problem. Rather, there are variants of the FAP that are encountered in practice.

Overall, the FAP can be defined formally as follows: given

 a set of requests 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑁𝑅}, where NR is the number of requests,

 a set of frequencies 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑁𝐹} ⊂ ℤ+, where NF is the number of

frequencies,

 a set of constraints related to the requests and frequencies,

 an objective function,

the goal is to assign one frequency to each request so that the given set of constraints

are satisfied and the objective function is optimized. In this thesis, the frequency that

is assigned to request 𝑟𝑖 is denoted as 𝑓𝑟𝑖
.

In the next subsections, different types of constraints of the FAP are introduced. This

is followed by the description of the two variants of the FAP, namely the static and

the dynamic FAPs.

1.4.1 Constraints of the FAP

There are four main constraints in the FAP, which can be hard or soft depending on

the variant of the FAP. Hard constraints must be satisfied while soft constraints are

not required to be satisfied, but should be if possible. These constraints can be de-

scribed as follows:

1) Bidirectional constraints: this type of constraint forms a link between each pair of

requests {𝑟2𝑖−1, 𝑟2𝑖}, where 𝑖 = 1, . . . , 𝑁𝑅/2. In these constraints, frequencies 𝑓𝑟2𝑖−1

and 𝑓𝑟2𝑖
 that are assigned to requests 𝑟2𝑖−1 and 𝑟2𝑖, respectively, should be distance

𝑑𝑐 apart, where 𝑑𝑐 is a given constant. In the datasets considered here (see Section

1.5), 𝑑𝑐 is always equal to a constant value (238). These constraints can be written as

follows:

|𝑓𝑟2𝑖−1
− 𝑓 𝑟2𝑖

| = 𝑑𝑐 for 𝑖 = 1, . . . , 𝑁𝑅/2 (1.1)

Chapter 1. Introduction

7

2) Interference constraints: this type of constraint forms a link between a pair of re-

quests {𝑟𝑖, 𝑟𝑗}, where the frequencies 𝑓𝑟𝑖
 and 𝑓𝑟𝑗

 that are assigned to the requests 𝑟𝑖 and

 𝑟𝑗, respectively, should be more than distance 𝑑𝑟𝑖𝑟𝑗
 apart, where 𝑑𝑟𝑖𝑟𝑗 is a given con-

stant. These constraints can be written as follows:

|𝑓𝑟𝑖
− 𝑓𝑟𝑗

| > 𝑑𝑟𝑖𝑟𝑗
 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁𝑅

(1.2)

3) Domain constraints: the set of available frequencies for each request 𝑟𝑖 is denoted

by the domain 𝐷𝑟𝑖
⊂ 𝐹, where ∪𝑟𝑖∈𝑅 𝐷𝑟𝑖

= 𝐹. Hence, the frequency which is as-

signed to 𝑟𝑖 must belong to 𝐷𝑟𝑖
. This type of constraints is always hard in all of the

variants of the FAP.

For the datasets considered in this thesis, there are 7 available domains and hundreds

of requests, which mean more than one request share the same domain. Moreover,

each pair of requests {𝑟2𝑖−1, 𝑟2𝑖}, where 𝑖 = 1, . . . , 𝑁𝑅/2, has the same domain. Some

frequencies belong to more than one domain and so can be assigned to requests which

belong to different domains. Table 1.1 shows the 7 domains that are used in all of the

benchmark datasets considered in this study.

Domain
No. of frequencies

in the domain
Frequencies

1 44

 16 30 44 58 72 86 100 114 128 142 156 254 268

282 296 310 324 338 352 366 380 394 414 428 442 456

470 484 498 512 526 540 554 652 666 680 694 708 722

736 750 764 778 792

2 22
 30 58 86 114 142 268 296 324 352 380 414 442 470

498 526 554 652 680 708 736 764 792

3 36

 30 44 58 72 86 100 114 128 142 268 282 296 310

324 338 352 366 380 428 442 456 470 484 498 512 526

540 666 680 694 708 722 736 750 764 778

4 24
 16 30 58 86 114 142 254 268 296 324 352 380 414

442 470 498 526 554 652 680 708 736 764 792

5 6 142 170 240 380 408 478

6 42

 30 44 58 72 86 100 114 128 142 156 268 282 296

310 324 338 352 366 380 394 414 428 442 456 470 484

498 512 526 540 554 652 666 680 694 708 722 736 750

764 778 792

7 22
 16 30 44 58 72 86 100 114 128 142 156 254 268

282 296 310 324 338 352 366 380 394

Table 1.1: The domains in the datasets considered in this thesis.

Chapter 1. Introduction

8

4) Pre-assignment constraints: certain requests 𝑟𝑖 have already been pre-assigned to

given frequencies 𝑔𝑟𝑖
. These constraints can be written as follows:

𝑓𝑟𝑖
= 𝑔𝑟𝑖

 (1.3)

Example 1.1 clarifies the general concept of the FAP and the different types of con-

straints.

Example 1.1:

Consider an FAP instance that consists of 10 requests, 10 frequencies and 3

domains as shown in Table 1.2.

Domain
No. of frequencies

in the domain
Frequencies

1 4 16 254 100 338

2 4 114 352 428 666

3 6 428 666 100 338 540 778

Table 1.2: The domains considered in Example 1.1.

The domain and the pre-assignment constraints for each request are given in

Table 1.3. In this example, there are pre-assignment constraints for only re-

quests 𝑟7 and 𝑟8.

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

Domain constraints 2 2 1 1 3 3 1 1 2 2

Pre-assignment constraints - - - - - - 16 254 - -

Table 1.3: The domain and pre-assignment constraints considered in Example 1.1.

The bidirectional and the interference constraints are given in Table 1.4.

Bidirectional constraints Interference constraints

|𝑓𝑟1
− 𝑓𝑟2

| = 238 |𝑓𝑟1
− 𝑓𝑟3

| > 9

|𝑓𝑟3
− 𝑓𝑟4

| = 238 |𝑓𝑟3
− 𝑓𝑟5

| > 7

|𝑓𝑟5
− 𝑓𝑟6

| = 238 |𝑓𝑟4
− 𝑓𝑟7

| > 20

|𝑓𝑟7
− 𝑓𝑟8

| = 238 |𝑓𝑟8
− 𝑓𝑟10

| > 80

|𝑓𝑟9
− 𝑓𝑟10

| = 238

Table 1.4: The bidirectional and the interference constraints considered in Example 1.1.

Figure 1.1 presents the FAP instance considered in Example 1.1. Each request

is represented by a node, and each bidirectional or interference constraint is

represented by an edge. Additionally, each request is given a colour which in-

dicates the domain constraint of that request.

Chapter 1. Introduction

9

 Figure 1.1: The FAP instance considered in Example 1.1.

A feasible solution of the considered FAP instance, which uses 8 frequencies,

is given in Table 1.5. Note that a bold number means a pre-assignment con-

straint.

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10

Assigned frequency 666 428 100 338 778 540 16 254 428 666

Table 1.5: A feasible solution for the problem in Example 1.1

1.4.2 The Static FAP

In the static FAP, all features are known at the beginning and do not change over

time. This problem has three main variants, namely the minimum order FAP (MO-

FAP), the minimum span FAP (MS-FAP) and the minimum interference FAP (MI-

FAP). These variants have different objectives and also differ in terms of whether the

constraints (see Section 1.4.1) are considered hard or soft. The formal definitions for

each of these are given below as presented in [101]. To help define these problems,

the set 𝑇𝑟𝑖𝑟𝑘
⊂ ℤ is defined as the set of invalid distances between the frequencies 𝑓𝑟𝑖

and 𝑓𝑟𝑘
 that are assigned to the requests 𝑟𝑖 and 𝑟𝑘, respectively, based on bidirectional

or interference constraints, as follows:

𝑇𝑟𝑖𝑟𝑘 = {
 ℤ \ {𝑑𝑐} 𝑖𝑓 𝑟𝑖 𝑎𝑛𝑑 𝑟𝑘 𝑎𝑟𝑒 𝑙𝑖𝑛𝑘𝑒𝑑 𝑏𝑦 𝑎 𝑏𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

 {0, 1, … , 𝑑𝑟𝑖𝑟𝑘
} 𝑖𝑓 𝑟𝑖 𝑎𝑛𝑑 𝑟𝑘 𝑎𝑟𝑒 𝑙𝑖𝑛𝑘𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

Moreover, let 𝐶 be the set of pairs of requests {𝑟𝑖 , 𝑟𝑘} for which there exist bidirec-

tional or interference constraints.

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9 𝑟10

Bidirectional constraint

Interference constraint

Domain 1

Domain 2

Domain 3

Chapter 1. Introduction

10

i) The Minimum Order FAP: all types of the constraints are hard in the MO-FAP, and

the objective is to minimize the number of used frequencies. The following integer

linear programming formulation for this problem is given in [1]. For every request 𝑟𝑖

and available frequency 𝑓𝑗 , a binary variable 𝑥𝑟𝑖𝑓𝑗
 is given by:

𝑥𝑟𝑖𝑓𝑗
= {

 1 𝑖𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑗 ∈ 𝐷𝑟𝑖
 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑟𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Moreover, another binary variable 𝑦𝑓𝑗
 indicates the use of frequency 𝑓𝑗 as follows:

 𝑦𝑓𝑗
= {

 1 𝑖𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑗 ∈ 𝐹 𝑖𝑠 𝑢𝑠𝑒𝑑

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Then, the problem can be formulated as follows:

𝑚𝑖𝑛 ∑ 𝑦𝑓𝑗

𝑓𝑗∈𝐹

(1.4)

𝑠. 𝑡. ∑ 𝑥𝑟𝑖𝑓𝑗

𝑓𝑗∈𝐷𝑟𝑖

= 1

∀ 𝑟𝑖 ∈ 𝑅

(1.5)

𝑥𝑟𝑖𝑓𝑗
+ 𝑥𝑟𝑘𝑓𝑙

≤ 1 ∀ {𝑟𝑖, 𝑟𝑘} ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖
, 𝑓𝑙 ∈ 𝐷𝑟𝑘

:

|𝑓𝑗 − 𝑓𝑙| ∈ 𝑇𝑟𝑖𝑟𝑘

(1.6)

𝑥𝑟𝑖𝑓𝑗
≤ 𝑦𝑓𝑗

 ∀ 𝑟𝑖 ∈ 𝑅, 𝑓𝑗 ∈ 𝐷𝑟𝑖
 (1.7)

𝑥𝑟𝑖𝑓𝑗
∈ {0,1} ∀ 𝑟𝑖 ∈ 𝑅, 𝑓𝑗 ∈ 𝐷𝑟𝑖

 (1.8)

𝑦𝑓𝑗
∈ {0,1} ∀ 𝑓𝑗 ∈ 𝐹 (1.9)

The objective (1.4) counts the number of used frequencies. The constraint (1.5) means

each request has one frequency. The constraint (1.6) gives the bidirectional, the inter-

ference and the domain constraints. The constraint (1.7) ensures that if a frequency is

assigned to a request, then the corresponding 𝑦 variable is set to one.

ii) The Minimum Span FAP: all types of the constraints in the MS-FAP are hard, and

the objective is to minimize the difference between the maximum and minimum used

frequencies, where this difference is called the span. An integer linear programing

formulation for this problem is given in [3] as follows:

Chapter 1. Introduction

11

min (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛) (1.9)

𝑠. 𝑡. ∑ 𝑥𝑟𝑖𝑓𝑗

𝑓𝑗∈𝐷𝑟𝑖

= 1

∀ 𝑟𝑖 ∈ 𝑅

(1.10)

𝑥𝑟𝑖𝑓𝑗
+ 𝑥𝑟𝑘𝑓𝑙

≤ 1 ∀ {𝑟𝑖, 𝑟𝑘} ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖
, 𝑓𝑙 ∈ 𝐷𝑟𝑘

:

|𝑓𝑗 − 𝑓𝑙| ∈ 𝑇𝑟𝑖𝑟𝑘

(1.11)

𝑥𝑟𝑖𝑓𝑗
≤ 𝑦𝑓𝑗

 ∀ 𝑟𝑖 ∈ 𝑅, 𝑓𝑗 ∈ 𝐷𝑟𝑖
 (1.12)

𝑧𝑚𝑎𝑥 ≥ 𝑓𝑗 𝑦𝑓𝑗
 ∀ 𝑓𝑗 ∈ 𝐹 (1.13)

𝑧𝑚𝑖𝑛 ≤ 𝑓𝑚𝑎𝑥 − (𝑓𝑚𝑎𝑥 − 𝑓𝑗) 𝑦𝑓𝑗
 ∀𝑓𝑗 ∈ 𝐹 (1.14)

𝑥𝑟𝑖𝑓𝑗
∈ {0,1} ∀ 𝑟𝑖 ∈ 𝑅, 𝑓𝑗 ∈ 𝐷𝑟𝑖

 (1.15)

𝑦𝑓𝑗
∈ {0,1} ∀ 𝑓𝑗 ∈ 𝐹 (1.16)

zmax, zmin ∈ ℤ+ (1.17)

Here, 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛 are the maximum and minimum used frequencies, respectively,

and 𝑓𝑚𝑎𝑥 is the maximum frequency in the set F. The constraints (1.13) and (1.14)

guarantee that 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛 are set to the right values. Other constraints are defined

as for the MO-FAP.

iii) The Minimum Interference FAP: there is a combination of hard and soft con-

straints in the MI-FAP. All the bidirectional constraints are hard, whereas all the inter-

ference constraints are soft. In contrast, the pre-assignment constraints can be hard or

soft depending on the instances. The soft constraints are given weights which indicate

the cost of breaking those constraints (also called violation). The violation cost is

weighted by a given penalty value 𝑝𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
∈ ℤ+ for each broken soft constraint,

where {𝑟𝑖, 𝑟𝑘} ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖
 and 𝑓𝑙 ∈ 𝐷𝑟𝑘

. The objective of the MI-FAP is to minimize

the weighted sum of violation costs.

To give an integer liner programing formulation for the MI-FAP as in [3], a new

binary variable 𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
 is introduced for all {𝑟𝑖, 𝑟𝑘} ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖

, 𝑓𝑙 ∈ 𝐷𝑟𝑘
 with

 |𝑓𝑗 − 𝑓𝑙| ∈ 𝑇𝑟𝑖𝑟𝑘 .

 𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
= {

 1 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑥𝑟𝑖𝑓𝑗
= 1 𝑎𝑛𝑑 𝑥𝑟𝑘𝑓𝑙

= 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Then, this problem can be formulated as follows:

Chapter 1. Introduction

12

𝑚𝑖𝑛 ∑ ∑ 𝑝𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
 𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙

𝑓𝑗∈𝐷𝑟𝑖
,𝑓𝑙∈𝐷𝑟𝑘

|𝑓𝑗−𝑓𝑙|∈𝑇𝑟𝑖𝑟𝑘

{𝑟𝑖,𝑟𝑘}∈𝐶

(1.17)

𝑠. 𝑡. ∑ 𝑥𝑟𝑖𝑓𝑗

𝑓𝑗∈𝐷𝑟𝑖

= 1

∀ 𝑟𝑖 ∈ 𝑅

(1.18)

𝑥𝑟𝑖𝑓𝑗
+ 𝑥𝑟𝑘𝑓𝑙

≤ 1 + 𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
 ∀ {𝑟𝑖, 𝑟𝑘} ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖

, 𝑓𝑙 ∈ 𝐷𝑟𝑘
:

|𝑓𝑗 − 𝑓𝑙| ∈ 𝑇𝑟𝑖𝑟𝑘

(1.19)

𝑥𝑟𝑖𝑓𝑗
∈ {0,1} ∀ 𝑟𝑖 ∈ 𝑅, 𝑓𝑗 ∈ 𝐷𝑟𝑖

 (1.20)

𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
∈ {0,1} ∀ {𝑟𝑖, 𝑟𝑘} ∈ 𝐶, 𝑓𝑗 ∈ 𝐷𝑟𝑖

, 𝑓𝑙 ∈ 𝐷𝑟𝑘
:

|𝑓𝑗 − 𝑓𝑙| ∈ 𝑇𝑟𝑖𝑟𝑘
(1.21)

Constraint (1.19) states that the variable 𝑧𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
 is equal to 1 if and only if both of

the frequencies 𝑓𝑗 and 𝑓𝑙 are assigned to the requests 𝑟𝑖 and 𝑟𝑘, respectively, which

consequently adds a further penalty 𝑝𝑟𝑖𝑟𝑘𝑓𝑗𝑓𝑙
 to the sum in the objective (1.17).

1.4.3 The Dynamic FAP

The dynamic FAP changes over time as new requests gradually become known and

frequencies need to be assigned to those requests effectively and promptly while satis-

fying a set of constraints (see Section 1.4.1), which are all hard in the dynamic FAP

considered in this study. This problem can be considered as a set of sub-problems to

be solved consecutively. The objective of the dynamic FAP is to find a feasible solu-

tion with the minimum number of re-assigned requests.

1.5 Overview of the Datasets

The heuristic algorithms considered in this thesis are assessed using two types of da-

tasets, which are static and dynamic FAP datasets. The static FAP datasets are publi-

cally available, which can be found on the static FAP website1. However, no dynamic

FAP datasets are publically available, so for the purpose of this study, new dynamic

FAP datasets have been generated from the static FAP datasets. Moreover, the new

dynamic FAP datasets have been made available for other researchers, which can be

1 http://fap.zib.de/problems/CALMA/ (last accessed 25 February 2015).

http://fap.zib.de/problems/CALMA/%20(last
http://fap.zib.de/problems/CALMA/%20(last

Chapter 1. Introduction

13

found on the dynamic FAP website1. In this section, information about the static FAP

datasets is presented, while the generated dynamic FAP datasets are discussed in more

detail in Chapter 6.

The static FAP datasets are denoted by CELAR and GRAPH. CELAR was provided

by the Centre d’Electronique de l’Armement in France. This dataset is based on real

life problems and has 11 instances. In contrast, GRAPH (Generating Radio Link Fre-

quency Assignment Problem Heuristically) was randomly generated in [146] and has

14 instances. Overall, CELAR and GRAPH are widely used to test different algo-

rithms in the literature, and are widely accepted as benchmarks for the static FAP. The

numbers of requests and constraints for CELAR and GRAPH instances are given in

Table 1.6.

Instance
Variant of

the static

FAP

No. of

requests

No. of

bidirectional

constraints

No. of

interference

constraints

No. of

domain

constraints

No. of

pre-assignment

constraints

Total

no. of

constraints

CELAR 01

CELAR 02

CELAR 03

CELAR 04

CELAR 11

GRAPH 01

GRAPH 02

GRAPH 08

GRAPH 09

GRAPH 14

MO-FAP 916 458 5,090 916 0 6,464

MO-FAP 200 100 1,135 200 0 1,435

MO-FAP 400 200 2,560 400 0 3,160

MO-FAP 680 340 3,627 400 280 4,647

MO-FAP 680 340 3,763 680 0 4,783

MO-FAP 200 100 1,034 200 0 1,334

MO-FAP 400 200 2,045 400 0 2,645

MO-FAP 680 340 3,417 680 0 4,437

MO-FAP 916 458 4,788 916 0 6,162

MO-FAP 916 458 4,180 916 0 5,554

CELAR 05

GRAPH 03

GRAPH 04

GRAPH 10

MS-FAP 400 200 2,398 400 0 2,998

MS-FAP 200 100 1,034 200 0 1,334

MS-FAP 400 200 2,044 400 0 2,644

MS-FAP 680 340 3,567 680 0 4,587

CELAR 06

CELAR 07

CELAR 08

CELAR 09

CELAR 10

GRAPH 05

GRAPH 06

GRAPH 07

GRAPH 11

GRAPH 12

GRAPH 13

MI-FAP 200 100 1,222 200 0 1,522

MI-FAP 400 200 2,665 400 0 3,265

MI-FAP 916 458 5,286 916 0 6,660

MI-FAP 680 340 3,763 94 586 4,437

MI-FAP 680 340 3,763 94 586 4,437

MI-FAP 200 100 1,034 200 0 1,334

MI-FAP 400 200 1,970 400 0 2,570

MI-FAP 400 200 1,970 98 302 2,570

MI-FAP 680 340 3,417 680 0 4,437

MI-FAP 680 340 3,677 168 512 4,697

MI-FAP 916 458 4,815 916 0 6,189

Table 1.6: Details of the CELAR and the GRAPH datasets.

In these datasets, the number of available frequencies (NF) is 48 and the number of

requests varies between 200 and 916. Considering the computational complexity of

these problems and the large numbers of requests and constraints, it is clear that this

1 https://dynamicfap.wordpress.com/

Chapter 1. Introduction

14

problem can be difficult to solve. For example, for a moderate size instance of, say,

40 frequencies and 600 requests, there would be up to 40600 possible solutions.

1.6 Aims and Structure of this Thesis

The aims of this thesis are as follows:

1) To identify an appropriate solution method for the static FAP.

2) To investigate whether the solution method can prove effective on different vari-

ants of the static FAP without significant changes.

3) To determine an appropriate approach to solve the dynamic FAP using the best

performing heuristic algorithms in this thesis.

4) To ascertain whether the static FAP can be solved effectively using a novel ap-

proach which models the static FAP as the dynamic FAP.

Each of these aims is discussed in more detail as follows:

The first and second aims: in order to identify an appropriate solution method for the

static FAP, three different heuristic algorithms are selected to be developed and eval-

uated. Each of them represents different characteristics of heuristic algorithms. The

selected heuristic algorithms in this thesis are tabu search (TS), ant colony optimiza-

tion (ACO) and hyper heuristic (HH). Several novel and existing techniques are used

to improve the performance of these heuristic algorithms to solve the static FAP. The

selected heuristic algorithms are mainly designed to solve the MO-FAP. Then, it is of

interest to investigate whether these heuristic algorithms can be effective on the other

variants of the static FAP without significant changes.

In this thesis, TS is considered first as it is one of the most popular meta-heuristic al-

gorithms and has achieved competitive performance on a variety of problems. ACO is

considered next as it is also a meta-heuristic algorithm but it represents a different

class of heuristic algorithms. Additionally, many ACO implementations include a lo-

cal search, so the findings from the work on TS may be helpful. Finally, we consider

HH, which involves combining several heuristics, so findings from the previous algo-

rithms may influence this work.

In terms of TS, several novel and existing techniques are used to improve the perfor-

mance of this algorithm and make it different from other TS algorithms in the litera-

Chapter 1. Introduction

15

ture. One of the techniques is hybridising TS with multiple neighbourhood structures,

one of which is used as a diversification technique. Another novel technique aims to

determine a lower bound on the number of frequencies that are required from each

domain for a feasible solution to exist, based on the underlying graph colouring mod-

el. These lower bounds ensure that the search focuses on parts of the solution space

that are likely to contain feasible solutions. Moreover, TS is compared in two configu-

rations, where one relaxes the interference constraints, and the other relaxes both the

bidirectional and the interference constraints. Some research questions are raised for

TS as follows:

 Is TS an effective solution method for the static FAP?

 Is it beneficial to hybridise TS with multiple neighbourhood structures?

 Can TS without significant changes be effective on different variants of the static

FAP?

In terms of ACO, some of the key factors in producing a high quality ACO implemen-

tation are examined such as different definitions of visibility and trails, and the values

of numerous parameters. Moreover, the concept of a well-known graph colouring al-

gorithm, namely recursive largest first, is combined with ACO in order to improve the

performance of this algorithm. We also attempt to improve ACO by combining it with

a local search. Several research questions are raised for ACO as follows:

 Can ACO perform better than TS on the static FAP?

 Is it beneficial to combine ACO with a local search?

 Is ACO an appropriate solution method for the static FAP?

In terms of HH, simple and advanced low level heuristics (LLHs) associated with an

independent tabu list for each LLH are applied in this study. Moreover, a lower bound

on the number of frequencies that are required from each domain for a feasible solu-

tion to exist, based on the underlying graph colouring model, is also used. Several

selection mechanisms of the LLHs are discussed and compared. Some research ques-

tions are raised for HH as follows:

 Can HH perform better than TS and ACO on the static FAP?

 What is the best mechanism for selecting the LLHs?

 Is HH an appropriate solution method for the static FAP?

Chapter 1. Introduction

16

The third aim: in order to determine an appropriate solution method for the dynamic

FAP, various approaches are designed and constructed using the best performing heu-

ristic algorithms on the static FAP considered in this study. It is interesting to investi-

gate whether heuristic algorithms which work well on the static FAP also prove effi-

cient on the dynamic FAP. Furthermore, several novel and existing techniques are

used to improve the performance of the various approaches for solving the dynamic

FAP. A novel technique, called the Gap technique, aims to identify a good frequency

to be assigned to a given request. A research question is raised in this section as fol-

lows:

 Can TS, ACO and HH for the static FAP be successful on the dynamic FAP?

The fourth aim: in this thesis, a novel approach is proposed to solve the static FAP by

modelling it as a dynamic FAP through breaking it down into smaller sub-problems,

which are solved consecutively in a dynamic process using the best heuristic algo-

rithm in this study. Moreover, several techniques are applied to improve the perfor-

mance of this approach such as a lower bound on the number of frequencies that are

required from each domain for a feasible solution to exist and the Gap technique. Our

aim here is to investigate whether using this approach to solve the static FAP leads to

better results compared with the heuristic algorithms considered in this study and oth-

er algorithms in the literature which solve the static FAP as a whole. A research ques-

tion is raised in this section as follows:

 Can the proposed approach that models the static FAP as a dynamic FAP be an

effective method for the static FAP?

Structure of this thesis: this thesis is organized as follows: Chapter 2 provides some

background information on the static and the dynamic FAPs and the selected heuristic

algorithms in this study. This is followed by Chapter 3, which investigates the TS al-

gorithm for the static FAP. The ACO algorithm is investigated in Chapter 4 and

Chapter 5 investigates the HH algorithm for the static FAP. In Chapter 6, the best of

these heuristic algorithms are selected to construct various approaches to solve the

dynamic FAP, and a novel approach is proposed to solve the static FAP by modelling

it as a dynamic FAP. Finally, this thesis is closed with conclusions and ideas for fu-

ture work.

Chapter 2. Literature Review

17

Chapter 2

Literature Review

2.1 Introduction

This chapter provides background to the study presented in this thesis and puts it in a

broader context. Two problems are considered in this thesis: the static and the dynam-

ic frequency assignment problems (FAPs). The static FAP has received more attention

so far in the literature compared with the dynamic FAP. The static FAP (defined in

Section 1.4.2) has several variants such as the minimum order FAP (MO-FAP), the

minimum span FAP (MS-FAP) and the minimum interference FAP (MI-FAP). These

problems have been solved in the literature using a variety of solution methods. In this

study, three heuristic algorithms are used to solve the static FAP, namely tabu search

(TS), ant colony optimization (ACO) and hyper heuristic (HH). Overviews of these

algorithms as well as their variations and extensions to solve these problems are giv-

en. Additionally, overviews of these algorithms to solve other problems in the litera-

ture are presented.

The remainder of this chapter is organised as follows: the next section gives an over-

view of the static FAP. Section 2.3 provides a general description of the graph colour-

ing problem, which is related to the static FAP. Then, the three heuristic algorithms

Chapter 2. Literature Review

18

are presented in Sections 2.4, 2.5 and 2.6. After that, the dynamic FAP is reviewed in

Section 2.7. In Section 2.8, this chapter is closed with some conclusions.

2.2 The Static Frequency Assignment Problem

The static FAP (also known as the static channel assignment problem) has applica-

tions in many types of wireless communication networks such as mobile phones, TV

broadcasting, radio and military operations. This problem began through radio waves

in the late 1800s, which was introduced in [111]. After that, the importance of this

technology grew as a result of the increase in the number of wireless applications in

the beginning of the 1990s. Since then, a variety of solution models and techniques

for variants of the static FAP have been suggested.

More recently, the literature on the static FAP has increased rapidly. This reflects the

rapid growth of implementation of satellite communication projects and wireless mo-

bile phone networks. Moreover, important applications of this problem such as mili-

tary communication and TV broadcasting push the wheel of research quickly. These

different applications lead to different models and different instances. Nevertheless,

all of them have two common features: a set of requests must be assigned frequencies,

and interference occurs when frequencies that are close to each other on the spectrum

are assigned to two requests which are linked by a constraint [3].

In the literature, variants of the static FAP were solved using a variety of heuristic

algorithms such as tabu search [15, 145], general network algorithm [16], genetic al-

gorithm [94], potential reduction [151], nonlinear approach [150], evolutionary search

[34], simulated annealing [145], branch and cut algorithm [1], self-organizing neural

network approach [138] and dynamic programming algorithm [101]. Some of these

algorithms were applied to the same static FAP datasets considered in this study.

2.3 The Graph Colouring Problem

The graph colouring problem (GCP) is a well-known and widely studied classical op-

timization problem which has many practical applications. In the literature, the GCP

has been solved using a variety of algorithms (see e.g. [30, 49, 56]). The aim of this

section is to introduce this type of problem and to show the relationship between the

GCP and the static FAP.

Chapter 2. Literature Review

19

The GCP can be described as follows: given a set of vertices V and a set of edges E,

the objective is to allocate a colour to each vertex in such a way that the minimum

number of colours is used and no adjacent vertices have the same colour. The mini-

mum number of colours to feasibly colour a graph is known as the chromatic number.

The relationship between the static FAP and the GCP was discussed in [35, 83],

which showed that the static FAP is equivalent to a generalization of the GCP. In or-

der to illustrate how the static FAP can be modelled as the GCP, Figure 2.1 presents a

sample of a static FAP instance which contains 14 requests (denoted as 𝑟𝑖 , i = 1, … ,

14), 3 frequencies (denoted as 𝑓1, 𝑓2 and 𝑓3) and a set of constraints.

Figure 2.1: A sample of a static FAP instance modelled as a GCP.

In Figure 2.1, each colour represents a frequency and each vertex represents a request.

The edges show bidirectional and interference constraints between the requests. For

example, there is a bidirectional constraint between 𝑟1 and 𝑟2 , and an interference

constraint between 𝑟2 and 𝑟3. An edge joining vertices means that the requests associ-

ated to those vertices should be assigned frequencies with a certain distance apart.

This is similar to the constraints of the GCP (with frequencies viewed as colours).

As a result of this relationship, several existing solution methods for the GCP can also

be used to solve the static FAP [131] such as TS in [87], a heuristic algorithm origi-

nally developed for the k-colouring problem (KCP)1 in [123], and a stochastic local

search algorithm (a generalization of a local search algorithm) in [30]. In fact, this

thesis applies a number of techniques for the GCP in the literature. One of these is the

1 The KCP can be defined as colouring all vertices in a graph with K colours such that the total weight on the edges joining
vertices with the same colour is minimized.

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟12

𝑟11

𝑟10

𝑟14

𝑟13

Bidirectional constraint

Interference constraint

𝑟1

𝑓1

𝑓2

𝑓3

Chapter 2. Literature Review

20

recursive largest first (RLF) algorithm, which was proposed in [104]. The RLF algo-

rithm generates a solution as follows: first, a colour is selected, then vertices are se-

quentially added to this colour until no more can be added feasibly. After that, a dif-

ferent colour is selected to colour as many remaining vertices as possible. This pro-

cess is repeated until all vertices are coloured. In this study, RLF is hybridised with

ACO to improve its performance and makes it different from other ACO implementa-

tions for the static FAP in the literature. Moreover, a trail1 definition of ACO for the

GCP in [49] is also applied in our ACO algorithm for solving the static FAP (see Sec-

tion 4.2.4). Furthermore, the cost function definition of ACO for the GCP in [49] and

the solution space definition of TS for the GCP in [87] are used in our TS algorithm

for solving the static FAP.

2.4 Tabu Search

Tabu search (TS) is an extension to local search that allows the search to escape from

local optima. TS was proposed in [71] as a general meta-heuristic algorithm to solve

difficult combinatorial problems. This algorithm has been widely used with much

success on a large variety of problems. Therefore, over the last few decades, hundreds

of researchers have implemented TS for a variety of combinatorial problems such as

[75,120, 130,149]. TS usually finds solutions that are close to the optimal solution, if

not the optimal, making it an extremely popular heuristic algorithm.

Built on the idea of steepest descent, TS starts from an initial solution, which may be

constructed either randomly or using a greedy heuristic. Then, one of the neighbour

solutions (normally the best one) is accepted as the new solution. Unlike steepest de-

scent, TS may accept a neighbour which is worse than the current solution. This may

lead to the search cycling through a small group of solutions. Hence, the tabu list is

used as a memory structure to record previously visited solutions and to ensure that

the search does not return to them. Sometimes, the tabu list is too restrictive by for-

bidding some attractive moves even when there is no harm of cycling. Therefore, it is

essential to use the aspiration criteria to escape from this situation by allowing some

neighbours in the tabu list to be accepted when that move leads to a better result than

the best result so far. More complicated aspiration criteria in the literature have been

proposed and successfully implemented, but are not popular (see e.g. [36, 88]). Unlike

1 A pheromone trail reflects how good a move is based on the history of successful moves.

Chapter 2. Literature Review

21

other meta-heuristic algorithms such as ACO, TS requires relatively few parameters.

The key parameters are the length of the tabu list and the total number of iterations.

For more information about TS, the reader is referred to [74, 75].

2.4.1 Tabu Search for the Static FAP

The static FAP is one of the problems which have been solved in several studies using

TS. To the best of my knowledge, only two papers [15, 145] applied TS to the same

static FAP datasets considered in this study (CELAR and GRAPH). In this section,

these two papers and others that use TS for different static FAP datasets are discussed.

The MO-FAP and the MS-FAP (variants of the static FAP, see Section 1.4.1) were

solved in [15] using TS. The solution space was defined as the set of solutions which

satisfy pre-assignment and domain constraints, which means interference and bidirec-

tional constraints are relaxed. This solution space creates a sub-problem: minimizing

the number of violations with a fixed number of used frequencies. TS is used to re-

duce the number of violations using the best neighbourhood move in each iteration. If

a feasible solution is found, then the number of used frequencies is reduced, which

may lead to violations. TS is then used again to reduce the number of violations. This

process is repeated until one of the stopping criteria is satisfied.

This TS algorithm requires three parameters: the tabu tenure, the patience parameter

and the ratio parameter. The tabu tenure is the number of iterations for which a move

stays on the tabu list. Although the authors stressed the importance of the tabu tenure,

they did not state the value they actually used. The patience parameter is defined as

the number of iterations in this algorithm. The ratio parameter (N) is used to reduce

the search space to be more efficient. Therefore, this parameter can be seen as a way

to restrict a neighbourhood by considering only the set of requests which contribute to

the violations by at least N% of the maximum number of violations. To clarify the

ratio parameter, consider Example 2.1.

Example 2.1:

Consider a static FAP instance which contains 6 requests and the ratio parame-

ter (N) is used to recommend some requests as good candidates to be re-

assigned to different frequencies. After selecting a value for the ratio parame-

ter, only the requests which contribute to the violations by at least N % of the

Chapter 2. Literature Review

22

maximum number of violations are considered. Table 2.1 gives the number of

violations for each request.

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

Number of violations 8 10 6 0 4 7

Table 2.1: Example of the ratio parameter.

Different values of the ratio parameter suggest different groups of requests to

sample as follows:

 If 𝑁 = 100, then only the requests with the maximum number of viola-

tions are considered, which is request 𝑟2.

 If 𝑁 = 70, then the requests with at least 70% of the maximum number of

violations are considered, which are 𝑟1, 𝑟2 and 𝑟6 .

 If 𝑁 = 60, then the requests with at least 60% of the maximum number of

violations are considered, which are 𝑟1, 𝑟2, 𝑟3 and 𝑟6 .

 If 𝑁 = 0, then all requests are considered.

For each selected request, all possible moves are attempted. Any prohibited moves,

i.e. those on the tabu list, are excluded unless they satisfy the aspiration criteria. The

cost function is the number of violated constraints. Another technique, called con-

straint variation, is also used in their work. The concept of this technique is to start

solving the problem by considering only a subset of the constraints in order to make it

easier to be solved. Then, other constraints are added gradually until all of the con-

straints are considered.

The authors found in [15] that cycling may occur and the same request may cycle be-

tween different frequencies despite the tabu list. In order to avoid this problem, they

suggested using another tabu list based on frequencies, meaning a request cannot be

re-assigned to any frequency for a stated number of iterations. This may make all the

possible moves tabu. In this case, the neighbourhood is extended by decreasing the

ratio parameter by 20. If that does not help, then it is decreased by a further 20. (For

example, if the initial value of N is 100, it reduces to N = 80, and then N = 60). If that

still does not help, then it is decreased to zero.

The authors also found in [15] that the TS algorithm is very poor in terms of minimiz-

ing the number of used frequencies for a feasible solution. Therefore, they presented a

Chapter 2. Literature Review

23

new method to generate an initial solution using the starting point selection strategy.

The main aim of this strategy is to start with the minimum possible number of fre-

quencies even if that leads to an infeasible solution with a high number of violations.

Since there are two frequencies that are available in all domains in the considered in-

stances, it is possible to assign all requests to these two frequencies. The stopping cri-

teria in [15] are based on two conditions: when it reaches an optimal solution (if

known), or when the number of iterations reaches the patience parameter.

The performance of TS in [15] was compared with the performance of the random

search (RS) algorithm and the general network algorithm (GENET) in [16]. It was

found that TS achieved the optimal solutions in a reasonable time for 5 out of 6 in-

stances of the CELAR dataset. On the other hand, it was found that RS achieved fea-

sible solutions quickly for some instances, whereas TS was better on more difficult

instances, but GENET was the fastest.

The MO-FAP, the MS-FAP and the MI-FAP (variants of the static FAP, see Section

1.4.1) were solved using TS, simulated annealing (SA) and variable-depth search in

[145]. The differences between TS in [145] and [15] are the relaxation of the interfer-

ence constraints and the use of a back-tracking mechanism, which was proposed in

[116]. The main concept of this mechanism is that when the algorithm could not im-

prove the quality of the solution for a large number of iterations, the search re-starts

from the best found solution. The performance of TS for the MO-FAP in [145] is

slightly better compared with SA and variable-depth search. However, TS for the MI-

FAP was abandoned due to poor performance. On the other hand, variable-depth

search was the fastest in [145].

The static FAP was solved using TS in [85] using a dataset provided by the French

national research centre for telecommunications. This dataset is not the same as either

CELAR or GRAPH and its source was not specified (hence, it is not considered in

this thesis). Here, the same solution space in [15] and hence the same sub-problem are

considered. An initial solution was randomly generated for TS in [85] and improved

using the standard local search. After that, a randomly selected request is re-assigned

to a new frequency. The main technique used in [85] was that when any moves have

been accepted more frequently than expected, these moves are prohibited for some

time to diversify the search. The performance of TS in [85] was compared with con-

Chapter 2. Literature Review

24

straint programming, graph colouring algorithm and SA. It was found that TS per-

formed similarly to SA and better than the others. Additionally, TS proved quicker on

most of the instances, but was markedly slower on the more complicated instances.

The reactive tabu search (RTS) algorithm is an extension of TS, which was used in

[78] to solve the static FAP. The key improvement of RTS is adapting the tabu list

size to properties of the optimization problem. If it seems that the search is cycling,

then the tabu tenure is increased. It was found in [78] that RTS performed worse with

long term memory (which is used to count the number of times each move is selected

and to ensure that moves that are selected too frequently are penalized) than without

it. The reason behind that is using the long term memory also increases the tabu ten-

ure for popular moves, which then over-constrains the search space. Overall, RTS

improved the performance of TS as shown in [78].

Two algorithms, namely TS and local search (LS), were proposed to solve the static

FAP with polarization (FAPP) in [63]. The FAPP is different from the static FAP

since polarities need to be assigned to each request and frequencies. Additional con-

straints govern how these polarities should be assigned. The dataset which was used

in their study is based on the topic of the 2001 international challenge organized by

the French operations research society ROADEF in collaboration with CELAR. Some

techniques were used to reduce the size of the search space such as an adaptive jump-

ing procedure (AJP) and filtering pre-processing.

The AJP is a diversification technique used to overcome the problem of being trapped

in a suboptimal area of the search space. AJP is based on two components, which are

LS and the jumping operator. The role of the jumping operator is to move from the

current position in the search space to a new position by choosing randomly a fixed

proportion of the requests and changing their frequencies randomly. The size of the

jump can be changed based on the history of the search process. AJP is operated peri-

odically during the search and each time, there are three possible cases. In the first

case, when the cost of the current solution is the same as the best solution, then it is

necessary to widen the search by increasing the jumping operator. In the second case,

if the cost is worse than the best solution, the process is jumping too far, so the jump-

ing operator needs to be decreased. In the last case, when the solution has been im-

proved, then the jumping operator remains the same and the new solution is stored as

Chapter 2. Literature Review

25

the best solution so far. AJP stops as soon as the search achieves the optimal solution

(if known) or if it achieves the maximum number of iterations.

Additionally, the filtering pre-processing was used to reduce the size of the search

space by eliminating some frequencies. These frequencies are deleted if it is known

that these do not belong to any solution which satisfies all constraints. Such deletion

is done using a constraint programming technique called arc-consistency [10,113]. It

was found that TS for the FAPP in [63] achieved the best known feasible solutions for

all the instances of the ROADEF Challenge 2001.

An alternative TS algorithm for the static FAP was introduced in [86] which has sev-

eral features. These include a candidate list strategy, bidirectional constraints handling

strategy, incremental evaluation and dynamic tabu tenure. The search space in [86]

relaxes some constraints. The static FAP dataset in [86] was provided by the French

national research centre for telecommunications.

The candidate list strategy is a well-known strategy which aims to limit neighbours

through updating a list that contains the best moves for requests that are currently in-

volved in violations, which reduces the run time. The bidirectional constraints han-

dling strategy aims to find solutions that satisfy the bidirectional constraints (see

Equation 1.1) and ensure they are satisfied throughout the search. Since these con-

straints are always satisfied, they can be ignored in the cost function (which counts

the number of violations). As a result, requests can be considered as pairs (instead of

individually) based on the bidirectional constraints. This leads to a reduction in the

size of the search space. Moreover, since the number of neighbours considered might

be very large, a fast neighbour evaluation was implemented in [86] using an incre-

mental technique proposed in [61]. This technique aims to evaluate each move by

considering only the constraints affected by this move. Moreover, a dynamic tabu

tenure was applied in [86], where the tabu tenure is adjusted during the search accord-

ing to the size of the candidate list. Additionally, too large or small tabu tenures are

avoided by introducing maximum and minimum bounds.

The performance of TS in [86] was compared with other algorithms such as constraint

programming (CP), graph colouring algorithm (GCA) and simulated annealing (SA).

It was found that TS and SA performed better than CP and GCA, while TS performed

better than SA.

Chapter 2. Literature Review

26

It was found in [155] that TS is one of the best algorithms for the static FAP in terms

of solution quality, but not in run time. Hence, an improved TS algorithm was intro-

duced in [155] to improve the run time of this algorithm. One of the factors that help

to speed up TS is the way an initial solution is constructed. Therefore, it was found in

[155] that a high quality initial solution helps the search find good solutions faster.

Moreover, a candidate list strategy was also used in [155] to speed up the search. One

of the ideas for speeding up the search is that there is no need to re-calculate the cost

function at each iteration. Therefore, after the cost function of the initial solution was

calculated, it needed only to be updated by considering the constraints affected by the

new move. Also, a single-frequency violation technique was used in [155] to record

the violations in order to make the search efficient. Using the single-frequency viola-

tion technique with other techniques to improve the run time of the TS algorithm in

[155], a solution was obtained in a high speed compared with other algorithms and

had almost the same quality as the solutions which have been found in earlier work.

The heuristic manipulation technique (HMT) was used in combination with TS to

solve the static FAP in [114]. The key idea of HMT is to change the search space by

creating artificial constraints based on the information provided by TS. Hence, during

TS implementation, common features of high quality solutions are observed. In par-

ticular, requests that tend to be assigned to different frequencies in good solutions are

recorded. Artificial constraints are then added to the original problem to force these

requests to be allocated to different frequencies. However, these artificial constraints

may lead to suboptimal solutions. Hence, artificial constraints are only included for a

certain period of time and can be replaced by others or removed. It was found in [114]

that HMT improved the performance of TS. Moreover, HMT is not only applicable to

TS for the static FAP, but it can be applied to other algorithms and other problems.

2.4.2 Tabu Search for Other Problems

TS has been implemented successfully on a wide range of problems such as facility

location problems [5], scheduling problems [117, 153], traveling salesman problems

[9] and vehicle routing problems [7]. In this section, some of these problems which

are most often solved by TS are chosen to give a flavour of the success of this algo-

rithm for solving other problems.

Chapter 2. Literature Review

27

An examination timetabling problem was solved in [153] using TS associated with

long term memory. This problem is categorised as an assignment problem and can

also be considered as a GCP. The description of this problem can be given as follows:

assume there are n exams and m timeslots, each exam has to be assigned to a timeslot

to satisfy the given constraints while optimizing a given objective function. The long

term memory records the number of times each exam is moved and prevents exams

from being moved too frequently. The dataset which has been used to test the TS al-

gorithm in [153] was a real dataset taken from the University of Ottawa in Canada. It

was found in [153] that TS performed better when using long term memory than

without it. Furthermore, a nurse scheduling problem was solved in [39] using TS

based on a dataset taken from the School Hospital at the University of Campinas in

Brazil. The TS algorithm in [39] was found to be slightly better and required less run

time than a genetic algorithm.

A vehicle routing problem (VRP) with split deliveries was solved in [7] using TS. The

VRP can be described as finding the shortest routes for vehicles to serve a group of

customers. In the split VRP, each customer can be visited by more than one vehicle,

whereas in the classical VRP each customer is visited only once. It was found that the

TS algorithm in [7] performed better than the heuristic algorithm suggested in [50].

In general, TS has been successfully applied to solve a large number of problems, but

many of these are beyond the scope of this research. For more information, the reader

is referred to several publications [68, 75, 125].

2.4.3 Summary of the Tabu Search Literature Review

It can be seen from the literature that there are several motivations for selecting TS as

one of the heuristic algorithms considered in this study. One of these is that TS is a

flexible meta-heuristic algorithm which has been applied successfully to a wide range

of problems, including the static FAP, where TS shows competitive performance

compared with other algorithms in the literature. To the best of my knowledge, there

are only two published papers [15, 145] that applied TS for solving the static FAP

using the datasets considered in this thesis. The TS algorithms in [15, 145] were una-

ble to find the optimal solutions in some instances of the static FAP. Hence, it is inter-

esting to investigate whether we can improve the performance of TS using novel and

existing techniques. By analysing the literature of TS, it can be found that there are

Chapter 2. Literature Review

28

some interesting techniques when deciding to implement TS for the static FAP. One

of these is attempting to create a feasible initial solution with high quality, which

should lead to a more efficient solution method [155]. Another idea is using multiple

neighbourhood structures, which make our TS algorithm more efficient and different

from existing TS algorithms in the literature. These ideas and others are applied to

design an improved TS algorithm in this thesis, which is described in more detail in

Chapter 3.

2.5 Ant Colony Optimization

Ant colony optimization (ACO) is inherited from the process of ants seeking a short

path between their colony and a source of food. In the 1940s, the first researcher who

investigated the social behaviour of insects was Pierre-Paul Grassé [42]. He discov-

ered that these insects are able to react with indirect communication, which was called

"significant stimuli", and can be divided into two main types:

 Physical information, which belongs to the natural environment.

 Local information, which belongs to the insects in that area.

In 1992, ACO was proposed by Dorigo [40], where the aim was to find the shortest

path between two given points in a graph. Therefore, ACO is considered a young me-

ta-heuristic compared with other algorithms such as tabu search, simulated annealing

and evolutionary computation.

ACO belongs to a class of constructive meta-heuristic algorithms. ACO can be

viewed as a probabilistic greedy construction algorithm, where the probabilities are

adjusted according to the results of previous constructions. ACO is based on a fixed

number of ants, where each ant produces a solution. Each construction step is con-

trolled by two factors: the attractiveness (based on the constraints and the objective of

a problem), and the pheromone trail level (based on the history of successful construc-

tion steps). After all ants complete their solutions, i.e. one generation is complete,

then pheromone trails are updated by increasing the level of moves which lead to

good solutions and decreasing the trail for moves leading to poor quality solutions.

The updated pheromone trails guide ants in the following generations to produce bet-

ter solutions. The solution produced by each ant may be further improved by a local

search.

Chapter 2. Literature Review

29

It was found in [42] that the most successful variants of ACO are ant system (AS),

max-min ant system (MMAS) and ant colony system (ACS). Different variants of

ACO update the pheromone trail in different ways. AS is the basic ACO algorithm in

which all ants provide trail updates. MMAS was proposed in [143] by making several

changes to AS as follows:

 The pheromone trail is updated by only the best ant.

 The maximum and the minimum values of the pheromone are limited.

ACS was proposed in [65] by making several changes to AS as follows:

 The local pheromone update is executed for all ants after each construction step.

The aim of that update is to diversify the search to produce different solutions.

 An offline pheromone update is executed at the end of the construction process.

At the end of each generation, this update is applied for only the best ant.

Although ACO achieves good results, in some cases it is necessary to combine it with

another meta-heuristic to achieve even better results. Combining ACO with other al-

gorithms was applied in several studies such as combining ACO with LS [127], with

SA [14] and with GA [6].

2.5.1 Ant Colony Optimization for the Static FAP

A small number of researchers have applied ACO to the static FAP. However, to the

best of my knowledge, there is only one published paper [109] that implemented ACO

to solve the static FAP using the datasets considered in this thesis. This paper is dis-

cussed first, followed by other ACO algorithms for different datasets.

A variant of ACO for the static FAP named ANTS was proposed in [109]. This algo-

rithm is an adaption of the original ant system (AS) proposed in [108]. The ANTS

algorithm was constructed by adding several modifications to the original AS. One of

these modifications was to change the probability formula of selecting each move. In

order to avoid repeatedly constructing the same solution, a technique called stagnation

avoidance, which evaluates each solution against the last k solutions produced by

ANTS, is used. The trail was defined between each request and frequency and updat-

ed at each generation. Moreover, the solution produced by each ant was improved by

Chapter 2. Literature Review

30

local search (LS). It was found in [109] that the performance of ANTS was good

across many different data instances and the approach was robust.

An extended ACO algorithm (originally designed for the GCP) was applied in [124]

to solve the MO-FAP in a clustered mobile ad hoc network (MANET). The trail was

defined between each request and frequency and used to determine the next construc-

tive step based on the probabilistic transition rule. Additionally, two different defini-

tions of the visibility were given: based on the degree of each request, i.e. the number

of unallocated neighbours of that request, and based on the maximum number of fea-

sible frequencies. It was found in [124] that ACO showed competitive performance.

The MS-FAP was solved in [115] using ANTS, which was proposed in [108] as a var-

iant of ACO. They fixed the available span to a high value and used ANTS to con-

struct a violation free solution. If a feasible solution is found, then the span of availa-

ble frequencies is decreased and ANTS is used again to find a new solution. The trail,

defined between the requests and frequencies, reflects the quality of each move, and

the visibility is defined as the number of feasible allocations for each request. Moreo-

ver, LS was used to improve the performance of ANTS. It was found in [115] that the

performance of the ANTS algorithm was competitive compared with other algorithms

described in [137, 152].

An ACO algorithm for the static FAP was presented in [107] using a real dataset

based on the global system for mobile (GSM) network. GSM is a digital mobile tele-

phone system that is widely used and considered as a second generation system. GSM

uses a variety of time division multiple access and is one of the most widely used of

the digital wireless telephony technologies. ACO in [107] is a MMAS, where the trail

was defined between requests and frequencies. It was found in [107] that this algo-

rithm did not perform better than an evolutionary algorithm.

2.5.2 Ant Colony Optimization for Other Problems

ACO has attracted many researchers to develop many models to successfully solve a

large number of optimization problems such as multi objective optimization [93], dy-

namic optimization [80], stochastic problems [82], continuous and mixed-variable

optimization [139, 140], discrete optimization [44], vehicle routing problems [19],

traveling salesman problems, scheduling problems, facility location problems, trans-

Chapter 2. Literature Review

31

portation problems, set covering problems and network flow problems [32]. In this

section, the problems that are most often solved by the ACO algorithm are chosen to

show the success of this algorithm for other problems.

One of the most frequently solved problems by ACO is the traveling salesman prob-

lem (TSP). In this problem, a salesman has to visit a set of cities and the objective is

to find the shortest route to visit all the cities only once and return to the first position.

The TSP was the first problem to be solved using ACO in [46], where a novel heuris-

tic algorithm called ant system (AS) was proposed. This was followed by many stud-

ies aiming to solve the TSP using different variations of ACO. One of these was pro-

posed in [45], which was based on a process called the ant system paradigm (ASP).

The main ideas of that paradigm were positive feedback, distributed computation and

the use of a constructive greedy heuristic. The purpose of the positive feedback is to

speed up the process of finding solutions, the distributed computation is to avoid

premature convergence and the greedy heuristic helps find high quality solutions.

ASP was applied in [45] to solve other problems such as quadratic assignment prob-

lems, job-shop scheduling problems and asymmetric travelling salesman problems.

Three algorithms were implemented in [45] using the ASP to study their strengths and

weaknesses. These algorithms were ant-cycle, ant-density and ant-quantity. The dif-

ference between these algorithms is that ant-cycle uses global information, that is,

ants lay a pheromone trail, which reflects how good a move is based on the history of

successful moves, whereas ant-density and ant-quantity use local information. Also,

the difference between the ant-density and the ant-quantity algorithms is the method

for updating the trail. From the experiments, ant-density and ant-quantity obtained

worse results than ant-cycle because of the kind of information which was used to

direct the ants. It was found in [45] that ASP was able to find good solutions even for

difficult problems. ASP was considered a very promising algorithm and proved to be

as good as TS and superior to SA.

An ant colony system (ACS) was applied in [41] to solve the TSP. It was found that

ACS performed better compared with other heuristic algorithms such as SA and evo-

lutionary computation. More details of applying the ACO algorithm to solve the TSP

can be found in [142].

Chapter 2. Literature Review

32

The ant local search (ALS) algorithm was proposed in [126] for solving the GCP. In

this algorithm, each ant is a local search, rather than constructing an entire solution as

is standard. A new technique was suggested to reduce the computational effort for

each ant using greedy selection and trails. ALS was inspired from TS which has been

proposed to solve the k-colouring problem (KCP). It was found in [126] that ALS

achieved a competitive performance.

A new ACO algorithm (called ANTCOL) was proposed in [89] to solve the KCP. The

main contribution of the proposed algorithm was that each ant gives a colour to a sin-

gle vertex. Moreover, a trail system and a greedy force technique were used in this

algorithm. In the trail system, several parameters such as the evaporation rate and the

reinforcement value are set and different values of these parameters are compared.

The greedy force technique is a method to remove conflicts which happen when two

ants of the same colour are assigned to two adjacent vertices. ANTCOL was com-

pared with other algorithms, namely TS, DSATUR and a hybrid genetic algorithm. It

was found in [89] that ANTCOL was much better that DSATUR, whereas TS and the

hybrid genetic algorithm were much better than ANTCOL.

The GCP was solved in [58] using a modified ACO which was built on two main ba-

ses, namely MMAS and LS. The modified ACO follows the MMAS structure and

involves a new probabilistic decision rule and uses LS to improve the performance.

This modified algorithm was called the max-min ant system algorithm for the graph

colouring problem (MMGC). It was found in [58] that MMGC did not achieve the

optimal solutions in most cases, but did produce superior results compared with the

results of ANTCOL.

2.5.3 Summary of the Ant Colony Optimization Literature Review

Although ACO has been used successfully to solve various problems, it can be seen

from the literature that ACO is not a popular algorithm for solving the static FAP as

there are only few pieces of research into this area. To the best of my knowledge,

there is only one published paper [109] that implemented ACO to solve the static FAP

using the datasets considered in this thesis. Moreover, the published results did not

show that ACO is one of the best algorithms for such a problem. Additionally, it is

often a relatively time consuming algorithm, which may make it less appropriate for

the dynamic FAP. However, it is interesting to include this algorithm in this thesis to

Chapter 2. Literature Review

33

investigate whether it is possible to improve its performance using several novel and

existing techniques. Some of the key factors in producing a high quality ACO imple-

mentation are investigated such as the visibility definition, trail definition and opti-

mizing numerous parameters. Additionally, in order to improve the performance of

ACO, the concept of a well-known graph colouring algorithm, namely recursive larg-

est first, is combined with our ACO algorithm.

2.6 Hyper Heuristics

In 1997, the term hyper heuristic (HH) was proposed in [37]. However, the original

concept of HH was discovered in the 1960s [60]. Since 2001, the term and the con-

cept of HH have been seen clearly in the literature. A hyper heuristic is an algorithm

that combines multiple heuristics. Therefore, the concept of HH is based on the idea

that, as each heuristic has strengths and weaknesses, combining several heuristics

might lead to better performance. These heuristics, which are managed by the HH, are

called low level heuristics (LLHs). The criteria for choosing one of these at each step

of the HH is usually problem independent. Hence, HH is an iterative process of two

stages: heuristic selection and move acceptance. The main difference between HH and

meta-heuristics is that the implementation of HH always searches within the search

space of the heuristics, whereas meta-heuristics search within the search space of the

problem.

HH was classified in [22] into two main categories: heuristic selection methodology

and heuristic generation methodology. The first methodology uses combinations of

pre-defined heuristics, while the second one generates new heuristic algorithms. Each

category is classified into two further categories called construction heuristics and

perturbation heuristics. The former constructs new solutions from scratch and the lat-

ter modifies an existing solution. Moreover, the source of feedback from the search

process can be divided into three classifications: online learning hyper heuristics, of-

fline learning hyper heuristics and no-learning hyper heuristics. The first one learns

while solving a problem, whereas the second one is a method which learns from a set

of training instances, which can be applied to unseen instances. The third one never

uses information from the search process.

Chapter 2. Literature Review

34

It was found in [122] that acceptance criteria significantly affected the performance of

HH compared with the heuristic selection mechanisms. Therefore, several acceptance

criteria were compared in [122], namely all moves (AM), only improving (OI), im-

proving and equal (IE), great deluge (GD) and Monte Carlo (MC). AM accepts all

moves, while OI accepts only improving moves and IE rejects only worse moves. GD

accepts all moves which are better than or equal to a level computed at each step dur-

ing the search. MC accepts all improving moves while non-improving moves are ac-

cepted based on a dynamically changing probability function; if no improvement can

be achieved over a given number of iterations, then the probability is increased. It was

found in [122] that GD, MC and IE were the best acceptance criteria.

Moreover, four different frameworks of HH were compared in [122], three of which

were proposed in [122]. These frameworks used two different types of heuristics,

namely mutational heuristics and hill climbers. The hill climbers aim to produce a

better solution, while the mutational heuristics do not normally produce a better solu-

tion because they are based on random perturbation. Each framework has a different

way of using the mutational heuristics and the hill climbers. The first framework was

a traditional one where at each step a mutational heuristic or a hill climber is chosen.

In the other three frameworks, a hill climber is used separately to improve the diversi-

ty provided by a mutational heuristic. The second framework selects either a muta-

tional heuristic or a hill climber, and then a predefined hill climber is implemented to

the solution. Hence, this means the hill climber is used at each step during the search.

The third framework always selects a mutational heuristic before a predefined hill

climber is used. The final framework uses two hyper heuristics, one for the mutational

heuristics and one for the hill climbers. It was found in [122] that each framework

performed differently and the third framework performed the best.

2.6.1 Hyper Heuristics for the Static FAP

Few researchers have used HH to solve the static FAP. To the best of my knowledge,

there are no published papers using HH to solve this problem using the datasets con-

sidered in this thesis. Hence, this is the first attempt to solve such datasets using HH.

The MS-FAP was solved in [96] using a HH which uses a local search based meta-

heuristic called the great deluge algorithm. The initial solution is produced by a

greedy constructive heuristic and then low level heuristics (LLHs) are used to im-

Chapter 2. Literature Review

35

prove the quality of the solution. The selection of LLHs is based on the choice func-

tion which ranks each LLH based on the quality of the solution provided by each of

them. Each move of a LLH produces a new solution, which is accepted or rejected by

the HH. This decision is made by comparing the objective function with a parameter

called Level. This parameter is set during the initialization stage and will be reduced

slowly by another parameter called DownRate at each iteration. Therefore, the per-

formance of this algorithm is based on the values of the two parameters, which are the

starting value of Level and the selected value of DownRate. It was found in [96] that

HH showed promising performance especially in the limited computational time.

An alternative HH algorithm for the MS-FAP was proposed in [97]. Simple LLHs

were used such as delete, add and swap, which are easy, fast and robust. At each itera-

tion, one of the LLHs is randomly selected, then the solution from the selected LLH is

accepted by the HH based on one of the following four different acceptance criteria:

all moves (AM), only improving (OI), Monte Carlo (MC) (as described earlier), and

record-to-record travel (RRT), which is a variant of the great deluge acceptance crite-

ria proposed in [51]. In the RRT criteria, the possibility of acceptance is increased by

adding a small value, called Deviation, to the cost of the current solution. It was found

in [51] that, among the four acceptance criteria, HH performed the best when the RRT

acceptance criterion was used.

A parallel hyper heuristic (PHH) algorithm for the static FAP was proposed in [135].

This algorithm combines several LLHs by allocating the best performing LLHs more

computation resources. 30 different configurations of LLHs were applied in [135].

Moreover, two HH algorithms with different choice functions and probability selec-

tions strategies are compared. The first HH algorithm evaluates the improvement due

to each configuration of LLH. The second HH algorithm evaluates the performance of

each LLH when operated in parallel with another. It was found in [135] that the sec-

ond HH algorithm provided slightly better results.

A proposed algorithm for the static FAP in [29] is based on PHH and uses a set of

meta-heuristics as LLHs. These meta-heuristics are local search, genetic algorithm,

variable neighbourhood search, greedy randomized adaptive search procedure, scatter

search and artificial bee colony. PHH manages the LLHs using a probability vector,

which reflects the number of times each LLH is selected. Moreover, a minimum limit

Chapter 2. Literature Review

36

of the probability of selecting each LLH is set to make sure no LLH is ignored. In the

beginning, the LLHs are expected to be chosen homogeneously. After a period of

time, the best solution obtained by each meta-heuristic is compared and the probabil-

ity vector is updated with meta-heuristics producing the best solutions being rewarded

with more computational resources. This algorithm achieved the best results at that

time. Moreover, this algorithm was competitive in terms of the run time compared

with other results in the literature.

2.6.2 Hyper Heuristics for Other Problems

HH has attracted the attention of researchers in a wide range of areas including opera-

tional research, computer science and artificial intelligence. This algorithm is self-

adaptive, which means that it can be applied to a wide range of optimization problem

without the need for heavy modification. Hence, HH have been used to solve a variety

of problems such as bin packing problems, job shop scheduling problems, traveling

salesman problems and vehicle routing problems [23]. Moreover, HH demonstrates

the ability to achieve extremely good and robust results on a wide range of problems.

In this section, some of the problems which are most often solved by HH are chosen

to give a flavour of the success of this algorithm for other problems.

The examination timetabling problem was solved by HH in [95], which aims to de-

sign a generic system that is able to select the most appropriate heuristics for the giv-

en problems. A tabu list was used to control the selection of the LLHs by making the

most often applied LLHs tabu to allow other LLHs to be applied. Moreover, several

techniques were applied to choose the LLHs: considering all heuristics, considering

only non-tabu LLHs and considering LLHs which lead to improved solutions only. It

was found that the HH could not beat the best results in the literature. However, the

aim of [95] was not to beat the best solution, but to present the ability of the HH to

create a good solution across a wide range of problems. Moreover, this algorithm can

be applied easily to other problems by only changing the LLHs and the evaluation

function.

The course and exam timetabling problem was solved in [25] using HH which is

based on graph colouring heuristics and TS (as a high level search algorithm). The

aim of this algorithm was to produce a good sequence of LLHs. Moreover, the study

in [25] focused on the two search spaces: the heuristic space and the solution space. It

Chapter 2. Literature Review

37

was found in [25] that HH performed better when a larger number of LLHs were

used. However, this increased the search space size, which led to an increase in the

run time. In general, HH achieved competitive results.

2.6.3 Summary of the Hyper Heuristics Literature Review

It can be seen that HH is increasingly popular and has been used to solve a variety of

optimization problems. Furthermore, this algorithm generally gives promising results

on a wide range of optimization problems compared with other algorithms. On the

other hand, only few researchers have implemented HH for the static FAP. Moreover,

to the best of my knowledge, there are no published papers applying a HH to solve the

static FAP using the datasets considered in this thesis (CELAR and GRAPH). Hence,

this is the first attempt to solve such datasets using a HH.

2.7 The Dynamic Frequency Assignment Problem

Up until recently, research has focused on static problems, where all the data is known

in advance, but many real-life problems can be considered as dynamic problems. Re-

search is growing more popular into dynamic variants of optimization problems such

as vehicle routing problems [67, 69, 128], where new customers become known dur-

ing the working day; job shop scheduling problems [121], where unpredictable real-

time events such as machine failure and the arrival of new jobs may cause an existing

schedule to no longer be feasible; the bin packing problem [31, 79]; scheduling prob-

lems [57] and graph colouring problems [148]. The major difficulties of dynamic

problems come from ignorance of how the problem is going to change in the future.

In the dynamic FAP, new requests become known over a period of time and frequen-

cies need to be assigned to those requests effectively and promptly. Hence, this prob-

lem can be seen as a set of sub-problems to be considered consecutively. In the litera-

ture, few pieces of research discussed the dynamic FAP. This includes [54], which

concerned the deployment of a Hertzian communication network for military applica-

tions provided by Center Electronique de L’armement. Requests and frequencies are

considered as pairs based on the bidirectional constraints (see Equation 1.1). The dy-

namic FAP was divided into three underlying problems, namely the static problem,

the online problem and the repair problem, each of which is solved using a different

solution phase. The static problem is solved in the beginning using the initial solution

Chapter 2. Literature Review

38

phase, which contains only the first sub-problem. The online problem contains sub-

problems, which become known and are solved consecutively using the online as-

signment phase. In case a sub-problem could not be solved by this phase, then this

problem will be solved using the repair phase. This phase aims to solve this problem

by re-assigning some requests that have already been previously assigned.

The approach to solve the dynamic FAP in [54] was extended and discussed in more

detail in [55]. In terms of the initial solution phase, the static problem was solved us-

ing a classical greedy algorithm called the minimum frequency greedy algorithm. If

any request could not be assigned, then this approach applies the consistent neigh-

bourhood in tabu search (CN-tabu), which was presented in [147]. This algorithm is a

hybrid tabu search algorithm which aims to feasibly assign a set of partial requests

under certain constraints in order to find a complete feasible solution. Hence, instead

of dealing with complete infeasible solutions, it deals with incomplete feasible ones.

The online problem is considered after solving the static problem. The minimum fre-

quency greedy algorithm is used to deal with every new sub-problem arriving dynam-

ically to the online assignment phase. Each sub-problem is solved without modifica-

tion of the previous decisions. Two strategies for selecting a feasible frequency were

compared, namely the minimum feasible frequency or the most occupied one. For the

minimum feasible frequency strategy, since the requests and frequencies are consid-

ered as pairs in [55], a pair of frequencies with the minimum highest value is selected

(the highest value of a pair of frequencies is the larger one in the pair). In case of a tie,

a pair with the minimum smallest value is chosen. These two strategies aim to maxim-

ize the number of unused frequencies. This allows more choices of frequencies for

requests that will appear at later time periods.

The repair phase is executed in case some requests in the online problem could not be

feasibly assigned. The objective of this phase is to find a feasible solution with a min-

imum number of re-assigned requests. Changing frequencies which have been as-

signed previously is technically allowed. However, in practice this can be time con-

suming and takes up human resources. Therefore, the problem considered here states

that changing frequencies of requests should be avoided unless no other means of

finding a feasible solution exists. Two types of algorithms were applied and compared

to solve the repair problem: the first type is based on CN-tabu only, while the second

Chapter 2. Literature Review

39

type is based on branch and bound followed by CN-tabu, which is used only when

branch and bound could not solve the repair problem within a given time period.

Branch and bound is an exact algorithm which is used to solve the repair problem. It

optimally assigns all the requests connected to the request currently being consid-

ered. During the search, the solution quality was evaluated according to the number of

requests which have not been assigned to their original frequencies (called the number

of repairs) and back-tracking is applied when a better solution cannot be produced. A

disadvantage of this algorithm is that it can require a long run time. Therefore, the

branch and bound is terminated after a fixed time period. Hence, there is no guarantee

that a feasible solution will be found, and therefore CN-tabu is used to allow other

changes to be considered.

If branch and bound fails to solve the repair problem, CN-tabu is applied. First, CN-

tabu tries assigning each unassigned request to each available frequency and counts

the number of violations. Then, the assignment that leads to the smallest number of

violations is selected. After that, all clashing requests become unassigned.

In order to prevent CN-tabu from cycling, requests that just became unassigned and

their frequencies are added to the tabu list to prevent these frequencies from being re-

assigned back to these requests for a certain number of iterations using a dynamic ta-

bu tenure. Say a request 𝑟𝑖 and a frequency 𝑓𝑗 are added to the tabu list, then their dy-

namic tabu tenure is given by Formula 2.1.

 Dynamic tabu tenure (𝑟𝑖, 𝑓𝑗) = iter + 𝑓𝑟𝑒𝑞(𝑟𝑖, 𝑓𝑗) (2.1)

where iter is the current number of iterations, and 𝑓𝑟𝑒𝑞(𝑟𝑖, 𝑓𝑗) is the number of times

𝑓𝑗 has been assigned to 𝑟𝑖 . To clarify CN-tabu, consider Example 2.2.

Chapter 2. Literature Review

40

Example 2.2:

Consider a dynamic FAP instance that consists of 6 requests and 3 frequencies

(𝑓1 = 10, 𝑓2 = 15, 𝑓3 = 20). The constraints are given in Table 2.2. Note that

the frequency that is assigned to request 𝑟𝑖 is denoted as 𝑓𝑟𝑖
 and a dash “-”

means that a feasible assignment could not be found.

Constraints

|𝑓𝑟1
− 𝑓𝑟2

| ≥ 10

|𝑓𝑟1
− 𝑓𝑟3

| ≥ 10

|𝑓𝑟2
− 𝑓𝑟5

| ≥ 10

|𝑓𝑟3
− 𝑓𝑟5

| ≥ 10

|𝑓𝑟5
− 𝑓𝑟6

| ≥ 10

Table 2.2: The constraints considered in Example 2.2.

An initial solution is given in Table 2.3, where there are 2 unassigned requests.

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

Assigned frequency 15 - - 10 10 20

Table 2.3: An initial solution in Example 2.2.

The number of violations after assigning each frequency to each unassigned

request is given in Table 2.4.

requests
frequencies

𝑓1 𝑓2 𝑓3

𝑟2 2 2 1

𝑟3 2 2 1

Table 2.4: The number of violations after assigning the unassigned requests.

The assignments with the smallest number of violations are 𝑓 𝑟2
= 20 and

 𝑓 𝑟3
= 20. One of them is randomly selected, say 𝑓 𝑟2

= 20, and the clashing

request 𝑟1 (due to |𝑓𝑟1
− 𝑓𝑟2

| ≥ 10) is unassigned as given in Table 2.5.

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

Assigned frequency - 20 - 10 10 20

Table 2.5: The solution after assigning 𝑟2.

After that, 𝑟1 and 𝑓2 are added to the tabu list with freq(𝑟1, 𝑓2) = 1 and iter = 1,

so the dynamic tabu tenure is updated using Formula 2.1. Therefore, this as-

signment is tabu for the next two iterations. After that, the number of viola-

tions after assigning each frequency to each unassigned request is updated as

shown in Table 2.6.

Chapter 2. Literature Review

41

Request
Frequency

𝑓1 𝑓2 𝑓3

𝑟1 0 1 1

𝑟3 1 1 0

Table 2.6: The number of violations after assigning the unassigned requests.

The assignments with the smallest number of violations are 𝑓 𝑟1
= 10 and

𝑓 𝑟3
= 20. One of these is chosen randomly, say 𝑓 𝑟1

= 10. The new solution is

given in Table 2.7.

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

Assigned frequency 10 20 - 10 10 20

Table 2.7: The solution after assigning 𝑟1.

Nothing is made tabu as no requests are unassigned. Then, the number of vio-

lations after assigning each frequency to each unassigned request is updated as

given in Table 2.8.

Request
Frequency

𝑓1 𝑓2 𝑓3

𝑟3 2 2 0

Table 2.8: The number of violations after assigning the unassigned requests.

The best assignment is 𝑓 𝑟3
= 20, which leads to a feasible solution as given in

Table 2.9.

Request 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

Assigned frequency 10 20 20 10 10 20

Table 2.9: A feasible solution in Example 2.2.

Based on the experiments in [55], it was found that the approach for the dynamic FAP

performed better when the minimum feasible frequency strategy is applied in the

online assignment phase than the most occupied strategy. Moreover, it was found in

[55] that using the second type of repair phase (using branch and bound and CN-tabu)

performed better than using the first one (using CN-tabu only).

To sum up, it is found that the dynamic FAP has been studied in relatively few studies

compared with the static FAP. Therefore, the dynamic FAP will be studied and solved

in this thesis (see Chapter 6) using novel and existing techniques and compared with

existing approaches in the literature.

Chapter 2. Literature Review

42

2.8 Conclusions

This chapter provided background of the problems and methodologies that are con-

sidered and investigated in this thesis. It concerns two main problems, namely the

static and the dynamic FAPs. In terms of the number of publications of these prob-

lems in the literature, the static FAP has been studied more than the dynamic FAP, for

which only few studies exist. Therefore, this warrants further study into the dynamic

FAP, which appears to be an interesting and practical problem. Moreover, the rela-

tionship between the static FAP and the GCP has been discussed and reviewed in the

literature. This relationship shows that the static FAP is a generalization of the GCP,

which means many algorithms and techniques which have been used to solve the GCP

can also be used to solve the static FAP.

The literature showed several motivations to select the heuristic algorithms considered

in this study, namely TS, ACO and HH. One of these motivations is that these heuris-

tic algorithms are very flexible and have been applied successfully to a variety of

problems. These heuristic algorithms have been reviewed in this chapter by presenting

how they were used to solve the static FAP and other problems. For the static FAP, it

was found that TS is amongst the most popular solution method, whereas ACO is not

very popular compared with the other two algorithms. However, all the three heuristic

algorithms have proven track records of producing good quality solutions across a

range of problems. To the best of my knowledge, there are only two published papers

that implemented TS and one that implemented ACO to solve the static FAP on the

datasets considered in this thesis, which are CELAR and GRAPH. On the other hand,

no published papers apply HH to solve the static FAP on the datasets considered in

this thesis. Finally, the dynamic FAP and existing approaches for this problem were

reviewed.

Chapter 3. Tabu Search for the Static FAP

43

Chapter 3

Tabu Search for the Static FAP

3.1 Introduction

Tabu search (TS) is a modern meta-heuristic algorithm designed to solve difficult

combinatorial optimization problems. This algorithm is an extension to local search

that allows the search to escape from local optima. The main concepts of TS are ac-

cepting non-improving moves (i.e. changes made to a solution) and using a flexible

memory called a tabu list to restrict the next choice of neighbour, thereby preventing

the search from revisiting previously visited solutions. In order to implement TS for a

particular problem, several decisions must be made such as how to define a solution

space, a neighbourhood, a cost function, a tabu list and aspiration criteria.

This algorithm has proved to be an efficient method to find a high quality solution for

a variety of optimization problems (see e.g. [75]). However, existing TS algorithms in

the literature are unable to find the optimal solutions in some instances of the static

frequency assignment problem (FAP) considered in this study.

Chapter 3. Tabu Search for the Static FAP

44

In this chapter, an improved TS algorithm is applied to solve the static FAP. This al-

gorithm is mainly designed to solve the minimum order FAP (MO-FAP) using several

novel and existing techniques. One of the novel techniques is hybridising TS with

multiple neighbourhood structures, one of which is used as a diversification tech-

nique. In contrast, existing TS algorithms for the static FAP in the literature imple-

mented only a single neighbourhood structure (see e.g. [15, 16, 86, 145]). Another

novel technique is determining a lower bound on the number of frequencies that are

required from each domain for a feasible solution to exist. These lower bounds are

based on the underlying graph colouring model (see Section 3.2) and ensure that the

search focuses on parts of the solution space that are likely to contain feasible solu-

tions. Additionally, this chapter investigates whether TS without significant changes

can prove effective on other variants of the static FAP, namely the minimum span

FAP (MS-FAP) and the minimum interference FAP (MI-FAP). This chapter focuses

on the following research questions:

 Is TS an effective solution method for the static FAP?

 Is it beneficial to hybridise TS with multiple neighbourhood structures?

 Can TS without significant changes be effective on different variants of the static

FAP?

This chapter is organised as follows: the next section explains how the underlying

graph colouring model for the static FAP can be used to provide a lower bound on the

number of frequencies that are required from each domain for a feasible solution to

exist and how this information can be used to assist the search. In Section 3.3, an

overview of the TS algorithm for solving the static FAP is given and Section 3.4 pre-

sents the main components of the TS algorithm. Results of this algorithm are given

and discussed in Section 3.5 before this chapter finishes with conclusions.

3.2 Graph Colouring Model for the Static FAP

The graph colouring problem (GCP) for a graph G(V,E) consisting of |V | vertices and

|E| edges involves allocating a colour to each vertex such that no adjacent vertices are

in the same colour class and the number of colours is minimized. The GCP can be

seen as an underlying model to the static FAP [83]. In other words, a static FAP in-

stance can be represented as a GCP by representing each request as a vertex, each fre-

Chapter 3. Tabu Search for the Static FAP

45

𝑟872

Bidirectional constraint

Interference constraint

Domain 1

Domain 3

𝑟871

𝑟200 𝑟1

𝑟899

quency as a colour and each bidirectional or interference constraint as an edge joining

the corresponding vertices.

One useful concept of graph theory is the idea of cliques. A clique in a graph can be

defined as a set of vertices in which each vertex is linked to all other vertices. A max-

imum clique is the largest among all cliques in the graph. Every vertex in a clique has

to be allocated to a different colour in a feasible colouring. Therefore, the size (i.e. the

number of vertices) of the maximum clique acts as a lower bound on the minimum

number of colours in a GCP instance and, by extension, as a lower bound on the num-

ber of frequencies for a static FAP instance.

A graph colouring representation of a static FAP instance may contain many cliques

with different clique numbers. For instance, one of the cliques in the CELAR 01 in-

stance includes the requests 𝑟1, 𝑟200, 𝑟871, 𝑟872 and 𝑟899, which are linked to each

other by either bidirectional or interference constraints as shown in Figure 3.1.

Figure 3.1: An example of a clique in the CELAR 01 instance in the graph colouring model.

Figure 3.1 shows 5 different requests that are linked to each other, hence 5 different

frequencies are required to feasibly assign these requests. Additionally, the requests

𝑟1, 𝑟200, 𝑟871 and 𝑟872 belong to domain 1, while request 𝑟899 belongs to domain 3.

As these requests belong to different domains, the graph colouring model for each

domain can be considered separately to calculate a lower bound on the number of fre-

quencies that is required from each domain. For example, the clique shown in Figure

3.1 indicates that the minimum number of frequencies for domain 1 is at least 4. Also,

at least 1 frequency is required from domain 3, because request 𝑟899 belongs to do-

main 3. In total, at least 5 different frequencies are required.

Chapter 3. Tabu Search for the Static FAP

46

3.2.1 Computational Time of Lower Bounds

This section considers the effect of the numbers of requests and constraints on the run

time to calculate a lower bound of a static FAP instance based on the maximum

clique. To assist the analysis, the density of a static FAP is defined by Formula 3.1.

 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑠𝑡𝑎𝑡𝑖𝑐 𝐹𝐴𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
 (3.1)

where the maximum possible number of constraints can be calculated by Formula 3.2.

 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 =
𝑁𝑅 (𝑁𝑅−1)

2
 (3.2)

where NR is the number of requests.

Experiments were conducted using randomly produced instances with the number of

requests varied between 200 and 1,000; and the density varied between 0.05 and 0.4

(i.e. 5% and 40%). A branch and bound algorithm in [17] is used to calculate the max-

imum clique size for each instance. The run times of this algorithm are shown in Ta-

ble 3.1.

No. of

requests

Density

0.05 0.10 0.20 0.30 0.40

200 0.05 sec 0.09 sec 0.34 sec 1.50 sec 8.02 sec

400 0.23 sec 0.76 sec 5.76 sec 46.57 sec 431.67 sec

600 0.84 sec 3.35 sec 37.03 sec 390.38 sec 5,490.33 sec

800 2.22 sec 10.12 sec 141.04 sec 1,880.53 sec 36,250.80 sec

1,000 4.77 sec 25.05 sec 395.18 sec 6,748.14 sec 163,100.00 sec

Table 3.1: Run times for finding the maximum clique size for different numbers of requests and values of density.

Table 3.1 shows that increasing the problem density has a dramatic effect on run time.

It can be seen that it required over 45 hours to find the maximum clique size of a

problem with 1,000 requests and a density of 0.40.

Figure 3.2 presents the relationship between the log of the run time versus the number

of requests.

Chapter 3. Tabu Search for the Static FAP

47

-2

-1

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200

Lo
g

o
f

ru
n

 t
im

e
 (

se
c)

Number of requests

0.05

0.1

0.2

0.3

0.4

Figure 3.2: The relationship between the log of run time versus the number of requests.

Figure 3.2 demonstrates an exponential increase in run time as the number of requests

increases. Table 3.2 shows the densities of the datasets considered in this thesis.

Instance
Variant of the

static FAP

Number of

Requests

Number of

 constraints

Max. number

of constraints
Density

CELAR 01 MO-FAP 916 6,464 419,070 0.015425

CELAR 02 MO-FAP 200 1,435 19,900 0.072111

CELAR 03 MO-FAP 400 3,160 79,800 0.039599

CELAR 04 MO-FAP 680 4,647 230,860 0.020129

CELAR 11 MO-FAP 680 4,783 230,860 0.020718

GRAPH 01 MO-FAP 200 1,334 19,900 0.067035

GRAPH 02 MO-FAP 400 2,645 79,800 0.033145

GRAPH 08 MO-FAP 680 4,437 230,860 0.019219

GRAPH 09 MO-FAP 916 6,162 419,070 0.014704

GRAPH 14 MO-FAP 916 5,554 419,070 0.013253

CELAR 05 MS-FAP 400 2,998 79,800 0.037569

GRAPH 03 MS-FAP 200 1,334 19,900 0.067035

GRAPH 04 MS-FAP 400 2,644 79,800 0.033133

GRAPH 10 MS-FAP 680 4,587 230,860 0.019869

CELAR 06 MI-FAP 200 1,522 19,900 0.076482

CELAR 07 MI-FAP 400 3,265 79,800 0.040915

CELAR 08 MI-FAP 916 6,660 419,070 0.015892

CELAR 09 MI-FAP 680 4,437 230,860 0.019219

CELAR 10 MI-FAP 680 4,437 230,860 0.019219

GRAPH 05 MI-FAP 200 1,334 19,900 0.067035

GRAPH 06 MI-FAP 400 2,570 79,800 0.032206

GRAPH 07 MI-FAP 400 2,570 79,800 0.032206

GRAPH 11 MI-FAP 680 4,437 230,860 0.019219

GRAPH 12 MI-FAP 680 4,697 230,860 0.020346

GRAPH 13 MI-FAP 916 6,189 419,070 0.014768

 Table 3.2: The maximum possible number of constraints and the density for the considered datasets.

Table 3.2 shows that the densities of the datasets considered in this thesis varied be-

tween 0.013 and 0.076. For densities within this range, the maximum cliques can be

determined quickly, generally taking less than 5 seconds for a problem with 1,000

requests. For the considered datasets the larger datasets in terms of the number of re-

Chapter 3. Tabu Search for the Static FAP

48

quests tended to have a smaller density and vice versa. In practice, when a problem is

given, the density can be calculated and then a decision made as to whether it is

worthwhile calculating the clique sizes.

3.2.2 Lower Bounds for the Static FAP

A branch and bound algorithm in [17] is used to obtain the set of all maximum cliques

for each domain within each instance. This concept can be used for all types of the

static FAP except for the MI-FAP because the objective of this problem is different

and allows all the frequencies to be used. Table 3.3 gives a lower bound on the num-

bers of frequencies that are required from each domain for a feasible solution to exist

and a lower bound for the whole instance, and the time taken to calculate these lower

bounds.

Instance
Variant of the

static FAP

Domain Whole

instance
Run time

1 2 3 4 5 6 7

CELAR 01 MO-FAP 10 9 10 4 4 7 2 12 1.50 sec

CELAR 02 MO-FAP 10 0 10 0 0 0 2 14 0.02 sec

CELAR 03 MO-FAP 10 0 10 0 2 0 2 12 0.06 sec

CELAR 04 MO-FAP 10 0 10 4 2 0 2 44 0.34 sec

CELAR 11 MO-FAP 20 0 14 4 2 0 2 20 0.34 sec

GRAPH 01 MO-FAP 8 3 6 2 4 4 2 18 0.03 sec

GRAPH 02 MO-FAP 6 2 4 0 2 4 0 14 0.12 sec

GRAPH 08 MO-FAP 10 2 6 2 3 8 3 16 0.28 sec

GRAPH 09 MO-FAP 6 2 10 2 2 8 2 18 0.48 sec

GRAPH 14 MO-FAP 6 2 4 2 0 2 2 8 0.48 sec

CELAR 05 MS-FAP 10 0 10 0 2 0 2 12 0.08 sec

GRAPH 03 MS-FAP 8 0 6 3 2 6 2 12 0.06 sec

GRAPH 04 MS-FAP 6 2 6 2 0 8 3 14 0.12 sec

GRAPH 10 MS-FAP 8 3 6 2 0 10 2 10 0.08 sec

Table 3.3: Lower bounds of the numbers of frequencies required for each domain and for the whole instance, and

the time taken to calculate them.

The results in Table 3.3 were obtained using FORTRAN 95 and all experiments were

conducted on a 3.0 GHz Intel Core I3-2120 Processor (2nd Generation) with 8GB

RAM and a 1TB Hard Drive.

Table 3.3 shows that the run time for all the instances except one is below one second.

Note that some frequencies are part of more than one domain, meaning the sum of the

lower bound for each domain does not necessarily equal the lower bound for the

whole instance. Additionally, CELAR 04 is the only instance here which has pre-

assignment constraints, which is used to strengthen the lower bound.

Chapter 3. Tabu Search for the Static FAP

49

The lower bounds are applied in this study and can be used in two ways: firstly, the

search stops as soon as it finds a feasible solution such that the total number of used

frequencies is equal to the lower bound of the whole instance (as this is the optimal

solution); secondly, the lower bound for each domain are used to ensure that an algo-

rithm never wastes time trying to find a feasible solution with a set of frequencies that

do not satisfy the lower bound for each domain since there can be no feasible solu-

tions in this search area.

3.3 Overview of the Tabu Search Algorithm

A key decision when constructing a TS algorithm is how to define the solution space

and the corresponding cost function.

3.3.1 Solution Space and Cost Function

It is relatively straightforward to find solutions that satisfy bidirectional, domain and

pre-assignment constraints, and to define a neighbourhood operator that moves be-

tween such solutions [47]. Here, two configurations are considered. In the first con-

figuration, bidirectional, domain and pre-assignment constraints are enforced while

interference constraints are relaxed. Note that interference constraints are relaxed be-

cause these are the most difficult constraints to be satisfied [47]. This configuration

was previously used in TS for the static FAP [86, 145]. In the second configuration,

only domain and pre-assignment constraints are enforced, while bidirectional and in-

terference constraints are relaxed. This configuration was previously used in TS for

the static FAP [15, 85]. In both configurations, the cost function is defined as the

number of violations.

There are advantages and disadvantages in using each configuration. One of the ad-

vantages of using the first configuration is that, in effect, the number of requests is

halved because requests are considered as pairs based on the bidirectional constraints.

However, this leads to a restriction in the search space which may result in difficulties

in the search. In contrast, using the second configuration gives more freedom. There-

fore, these two types of configuration are implemented and compared.

The solution space could have been defined as the set of all possible feasible assign-

ments, that is, satisfying all of the constraints, and the corresponding cost function as

Chapter 3. Tabu Search for the Static FAP

50

the number of used frequencies. However, there are a number of difficulties with this

configuration: first, TS has been found to be poor with this configuration [15]. More-

over, it may be difficult to move from one feasible solution to another. Furthermore, a

large number of neighbour solutions with the same cost may differ greatly in their

quality [49] (clarified by Example 3.1). Hence, this configuration is not considered.

Example 3.1:

Assume a static FAP instance has 50 requests and 2 feasible solutions use 5

frequencies. Table 3.4 shows the number of requests assigned to each used

frequency and the corresponding cost function value for each solution.

 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5
Total no.

requests

Cost function

value

Solution 1 10 10 10 10 10 50 5

Solution 2 14 12 12 11 1 50 5

 Table 3.4: The number of requests assigned to each used frequency in two different feasible solutions.

Table 3.4 shows that solution 2 is closer to a solution using just 4 frequencies.

However, both of the solutions have the same cost function value. This means

that using this definition of the cost function may not guide the search towards

solutions using fewer frequencies.

3.3.2 Sub-problem in the static FAP

Using the solution space which relaxes some constraints creates the following sub-

problem: minimizing the number of violations with a fixed number of used frequen-

cies. If a solution with zero violations (a feasible solution) is found in the improve-

ment phase (see Section 3.4.6), then the number of used frequencies is reduced in the

creating violations phase (see Section 3.4.5) and the sub-problem is reconsidered. The

process is repeated until a feasible solution can no longer be found. This process is

similar to TS for the GCP in [87] and TS for the static FAP in [86, 145].

3.3.3 Structure of the Tabu Search Algorithm

The TS algorithm consists of three phases, namely the initial solution phase, the creat-

ing violations phase and the improvement phase. The initial solution phase (see Sec-

tion 3.4.4) generates an initial solution. Assume the initial solution is feasible. Then,

Chapter 3. Tabu Search for the Static FAP

51

the creating violations phase (see Section 3.4.5) reduces the number of used frequen-

cies by removing a used frequency. Then, all requests that are assigned to the re-

moved frequency are re-assigned to another used frequency, which may result in

some violations. The improvement phase (see Section 3.4.6) aims to reduce the num-

ber of violations to zero, using three neighbourhood structures. Three independent

tabu lists, one for each neighbourhood structure, are defined in this algorithm. Notice

that all of the tabu lists are cleared after the sub-problem is solved. If the improvement

phase results in a feasible solution within a specified number of iterations, then the

creating violations phase is revisited to remove another used frequency. After that, the

process continues until either no feasible solution can be found or the number of used

frequencies equal to the lower bound. In case the initial solution is not feasible, the

creating violations phase can be omitted and the search moves immediately to the im-

provement phase. Figure 3.3 illustrates the overall structure of the TS algorithm for

the static FAP in this study.

Figure 3.3: Overall structure of the TS algorithm for the static FAP.

Yes

Initial solution phase

No Is the number of

violations equal to zero?

Creating violations phase

Improvement phase (Figure 3.5)

Is the number of used

frequencies equal to the

lower bound?

No

Yes

Stop

Return the current
feasible solution

Yes

No

Is the number of

violations equal to zero?

Yes No
Is the previous solution feasible?

Stop

Return the previous
feasible solution

Stop

Return the current
infeasible solution

Chapter 3. Tabu Search for the Static FAP

52

3.4 Components of the Tabu Search Algorithm

The main components and the implementation of the TS algorithm are presented and

discussed in this section.

3.4.1 Neighbourhood Structures

Hybridising TS with multiple neighbourhood structures is one of the techniques

which aim to improve the performance of this algorithm and make it different from

existing TS. In fact, existing TS algorithms for the static FAP implemented only a

single neighbourhood structure (see e.g. [15, 16, 86, 145]). The concept of using mul-

tiple neighbourhood structures is inherited from variable neighbourhood search,

which was introduced in [112] and has been proved to be an effective solution method

to solve the static FAP in the literature (see e.g. [110]).

In this study, TS is hybridised with three different neighbourhoods, namely a move

neighbourhood structure (MNS), a swap neighbourhood structure (SNS) and a diver-

sification neighbourhood structure (DNS). MNS was previously used in TS for the

static FAP [15, 16, 86, 145], whereas SNS and DNS are new techniques. The three

neighbourhood structures are defined as follows:

i) Move neighbourhood structure: this structure is defined as the set of solutions ob-

tained by selecting a request to be re-assigned to a different used frequency. There-

fore, this neighbourhood investigates all the possible moves for all requests and used

frequencies (the maximum possible number of such moves is 𝑁𝑅 × 𝑛𝑓 , where 𝑛𝑓 is

the number of used frequencies). This ensures that the number of used frequencies

does not increase.

ii) Swap neighbourhood structure: this structure is defined as the set of solutions ob-

tained by swapping the frequencies of each request with its partner (based on the bidi-

rectional constraints). SNS proves to be quick as it contains a small number of neigh-

bours (at most 𝑁𝑅/2), yet it can improve the solution quality.

iii) Diversification neighbourhood structure: this structure, unlike the previous struc-

tures, is intended to diversify the search, i.e. move to a different part of the solution

space. It consists of the set of solutions obtained by replacing a used (old) frequency

with an unused (new) frequency. Given an old frequency, another frequency is ac-

Chapter 3. Tabu Search for the Static FAP

53

cepted if it can be assigned to all requests which were assigned to the old frequency.

However, any re-assignment that causes the number of used frequencies to drop be-

low the lower bound for some domains (see Section 3.2) is not considered.

3.4.2 Tabu Lists

Three independent tabu lists, one for each neighbourhood structure, are defined in this

algorithm. Notice that all of the tabu lists are cleared after the sub-problem is solved.

These tabu lists are described as follows:

i) Move tabu list: when a request is re-assigned to another frequency, then the request

and the removed frequency are added to the tabu list and this assignment is classified

as forbidden for a given number of iterations (i.e. tabu tenure).

ii) Swap tabu list: when a request is swapped with its partner as a pair (based on the

bidirectional constants), then this pair is added to the swap tabu list. This list prevents

a pair of requests from being swapped more than once.

iii) Diversification tabu list: when an old frequency is replaced by a new frequency,

then both of them are added to the diversification tabu list.

3.4.3 Aspiration Criteria

Sometimes the tabu list is too restrictive by forbidding some attractive moves even

when there is no harm of cycling. Hence, it is essential to use a technique to escape

from this situation by ignoring the tabu list. This is called the aspiration criteria. Here,

the logical and commonly used aspiration criteria is applied, that is, to accept a tabu

move if it leads to a better solution than the current best one.

3.4.4 The Initial Solution Phase

It is sensible to produce a good initial solution in order to improve the efficiency of

this algorithm [155]. Here, the objective is to produce a feasible initial solution with

as few frequencies as possible, although for some problem instances this may be diffi-

cult and the initial solution may be infeasible.

Chapter 3. Tabu Search for the Static FAP

54

This phase consists of three stages, namely the assignment stage, the allowing infeasi-

ble solutions stage and the descent method stage. All these stages are described in the

following subsections.

3.4.4.1 The Assignment Stage

This stage aims to assign each request a frequency, where the selection of requests

and frequencies is based on three arrays as follows:

 Request Array (𝑅𝐴): the elements of this array correspond to the number of feasi-

ble frequencies for each request. So, at the start, these elements correspond to the

size of the domain for each request. This array is updated each time a frequency is

assigned a request.

 Frequency Array (𝐹𝐴): the elements of this array correspond to the number of re-

quests that can be feasibly assigned to each frequency. This array also is updated

each time a frequency is assigned a request.

 Constraint Array (𝐶𝐴): the elements of this array correspond to the number of re-

laxed constraints which are involved for each request. Notice that this array is

constant because this reflects the number of relaxed constraints in the static FAP

instance, which is fixed.

Selection of Requests and Frequencies: a request which has the minimum value

of 𝑅𝐴 is chosen. There are two possible cases:

Case A: Min (𝑅𝐴) ≠ 0

In case there is more than one request with the same minimum value of 𝑅𝐴 , then the

one with the maximum value of 𝐶𝐴 is chosen. If there is still more than one such re-

quest, then one of them is selected at random. After choosing a request, a frequency is

selected to be assigned. Therefore, we randomly choose one of the used frequencies

that can be feasibly assigned to the selected request. If there is no such frequency,

then an unused frequency is selected. In order to choose an unused frequency, we

choose the one which can be feasibly assigned to the selected request and has the

maximum value of FA. In case of a tie, one of them is selected randomly. This type of

selection is intended to minimize the number of used frequencies. After that, the next

request is then considered.

Chapter 3. Tabu Search for the Static FAP

55

Case B: Min (𝑅𝐴) = 0

If there is more than one request that has no feasible frequencies, then one of them is

randomly selected and is called the candidate request. Notice that the candidate re-

quest cannot be feasibly assigned. However, experiments showed that in many cases,

this infeasibility could be fixed by a simple re-assignment phase. In this phase, the

number of attempts to assign the candidate request is counted.

Re-assignment phase: if the number of attempts to feasibly assign the candidate re-

quest is not greater than 500 (where this number is chosen based on experiments),

then two groups are generated as follows: the candidate request is assigned to all

available frequencies in turn. For each assignment, requests that are involved in vio-

lated constraints are added to the first group, while the other requests are added to the

second group. After that, a request is selected from one of these groups in order to be

re-assigned as follows: if the number of attempts to feasibly assign the candidate re-

quest is less than 250 (where this number is chosen based on experiments), then a re-

quest is randomly selected from the first group; otherwise it is selected from the sec-

ond group. Then, the selected request is feasibly re-assigned, if possible, in order to

allow the candidate request to be feasibly assigned. The process is repeated until a

feasible initial solution is found or the number of attempts to feasibly assign the can-

didate request exceeds 500, then the allowing infeasible assignments stage is execut-

ed.

3.4.4.2 The Allowing Infeasible Assignments Stage

This stage allows the candidate request to be assigned to an infeasible frequency

which causes the lowest number of violations. If there is still more than one such fre-

quency, then one of them is selected randomly. After assigning all the requests, the

descent method stage is executed to attempt to find a feasible initial solution.

3.4.4.3 The Descent Method Stage

The descent method is used to attempt to reduce the number of violations to zero. This

method uses MNS and the cost function is defined as the number of violations. Initial-

ly, only used frequencies are considered. Steepest descent is used and if there are sev-

eral moves that lead to equal improvements, one of them is selected at random. Once

a local optimum is found, if the number of violations is still greater than zero, any

Chapter 3. Tabu Search for the Static FAP

56

unused frequencies are considered. Moves that cause the cost to remain unchanged

are now accepted and the search terminates when a feasible solution is found or when

10,000 iterations have been completed (this value was set experimentally). Figure 3.4

shows the overall structure of the initial solution phase. The descriptions of the abbre-

viations in Figure 3.4 are given in Table 3.5.

Abbreviation Definition

𝑇𝑟𝑘
 The number of attempts to assign the candidate request 𝑟𝑘.

RC
The set of the requests that clash with the candidate request with respect to some con-

straints when all possible frequencies are assigned to the candidate request.

NRC The number of requests in RC

RS
The set of the requests that do not clash with the candidate request when all possible

frequencies are assigned to the candidate request.

NRS The number of requests in RS.

Table 3.5: The definition of the abbreviations in Figure 3.4

Figure 3.4: Overall structure of the initial solution phase.

Yes

Yes

No
Is Min (𝑅𝐴) equal to 0?

Is (NRC ≠ 0

and 𝑇𝑟𝑘
<250)?

Yes

No

Has each request been
assigned a frequency?

Is (𝑇𝑟𝑘
 > 500)?

No

No

Yes

Set 𝑇𝑟𝑘
 = 0 ∀ 𝑟𝑘

Calculate 𝑅𝐴, 𝐹𝐴 and 𝐶𝐴

Stop

Return a solution

A request is selected and
assigned a frequency (see

Case A, Section 3.4.4.1).

A request which has no

feasible frequencies is

chosen randomly.

The allowing infeasible

assignments stage

(Section 3.4.4.2)

𝑇𝑟𝑘
 = 𝑇𝑟𝑘

 + 1

Calculate NRC

One of the requests from RC is chosen

randomly to be feasibly re-assigned.

One of the requests from RS is chosen

randomly to be feasibly re-assigned.

Is the solution

feasible?

The descent method

stage (Section 3.4.4.3)

Yes

No

Update 𝑅𝐴 and 𝐹𝐴 Update 𝑅𝐴 and 𝐹𝐴

Chapter 3. Tabu Search for the Static FAP

57

3.4.5 The Creating Violations Phase

This phase aims to reduce the number of used frequencies in a feasible solution by

removing a used frequency. The frequency that will be removed must satisfy the fol-

lowing conditions: (i) it is not involved in any pre-assignment constraints; (ii) the

lower bound on the number of frequencies that are required from each domain based

on the underlying graph colouring model (see Section 3.2) is satisfied after removing

this frequency. If there is more than one candidate frequency, then the one which is

assigned to the least number of requests is selected. If there is still more than one, then

one of them is randomly selected. After that, the requests which are assigned to the

candidate frequency are re-assigned to another feasible used frequency. The process is

repeated until there is no feasible used frequency. In this case, these requests are ran-

domly re-assigned to infeasible used frequencies, and then the improvement phase

(see Section 3.4.6) is executed to find a feasible solution. The creating violations

phase was previously applied in TS for the static FAP in [86].

3.4.6 The Improvement Phase

This phase starts from an infeasible solution which is usually produced by the creating

violations phase. Then, the iterative procedure of TS starts in the improvement phase.

The aim of this phase is to solve the sub-problem using three neighbourhood struc-

tures, namely the move neighbourhood structure (MNS), the swap neighbourhood

structure (SNS), and the diversification neighbourhood structure (DNS). In MNS and

SNS, only used frequencies are considered, while DNS considers only unused fre-

quencies. MNS is explored first because it contains a large number of neighbours.

SNS, which covers a limited number of neighbours, is then considered to support the

MNS. DNS aims to jump from the current position in the solution space to a new po-

sition by removing a used frequency and adding a new one from the set of unused

frequencies. Therefore, DNS is intended to diversify the search rather than reduce the

number of violations, which reflects the reason for leaving it as the last structure.

Implementation of the improvement phase

One of the three neighbourhood structures is executed each iteration, where this phase

begins with MNS. If this structure results in a better solution, then it is accepted. Oth-

erwise, it is repeated until MNS is executed for a given number of times consecutively

Chapter 3. Tabu Search for the Static FAP

58

without improvement. Then, the search enters SNS. If this structure leads to a better

or equally good solution, then the search goes back to MNS. Otherwise, it appears

there is little prospect of finding a better solution in the current region of the solution

space, so the search enters DNS. A solution from DNS is accepted and the search re-

turns to MNS.

It was found that on occasions, no moves in DNS are allowed due to the tabu lists, the

pre-assignment constraints and the lower bound for each domain. If this happens, the

criterion of selecting a new frequency in DNS is modified, that is, a frequency is ac-

cepted as a new frequency if it can be assigned to at least one request (instead of all

requests) that were assigned to the old frequency. Although the new frequency is not

allowed to be removed because of the diversification tabu list, the old frequency is

allowed to return to the solution because of the limited number of neighbours in this

structure. So, there are two possible types of diversification neighbourhood structure:

structure A (see Section 3.4.1) and structure B (described here).

The output of the improvement phase can be a feasible or an infeasible solution. If it

is a feasible, but not optimal solution, then the algorithm returns to the creating viola-

tions phase. In contrast, if the output is an infeasible solution, then the algorithm re-

turns to MNS. This continues until one of the stopping criteria is met. Figure 3.5 illus-

trates the overall structure of the improvement phase.

3.4.7 Stopping Criteria

The TS algorithm has three different stopping criteria as follows: (i) it finds a feasible

solution whose number of frequencies is equal to the lower bound (as this is an opti-

mal solution), (ii) the number of iterations reaches a given number without successful-

ly solving the sub-problem (see Section 3.3.2), i.e. a feasible solution could not be

achieved (note that the number of iterations is reset to zero each time the sub-problem

is solved), (iii) DNS is executed for a given number of times.

Chapter 3. Tabu Search for the Static FAP

59

Figure 3.5: Overall structure of the improvement phase.1

1 The counter parameter counts the number of times worse solutions are accepted in the move neighborhood structure.

No

No

Yes

Yes

No

Yes

No

Yes

No

Move neighbourhood structure

Swap neighbourhood structure

Diversification neighbourhood structure A

Stop

Return a solution

Is the number of
used frequen-

cies equal to the

lower bound?

Is the number of
diversifications > a given

number?

Is the number of
violations ≥ cost?

Is the number

of violations
equal to zero?

number of diversifications = number of diversifications +1

Set number of iterations, number of diversifications, counter1 and cost to 0

number of iterations = number of iterations + 1

Set cost = the current number of violations

Is the number of

iterations > a given
number?

Is counter > a given

number?

Yes

counter = counter + 1

Set cost = number of violations

Set counter = 0

Is the number of

violations > cost?

No

Yes

No
No

Yes

Do we find a

diversification move?

Diversification neighbourhood structure B

Yes

Creating

violations phase

Initial solution phase

Chapter 3. Tabu Search for the Static FAP

60

3.5 Experiments and Results

This section presents the performance of TS for the static FAP using CELAR and

GRAPH datasets (available on the FAP website1). After that, the process of this algo-

rithm is analysed. Finally, the performance of our TS algorithm is compared with ex-

isting algorithms in the literature. The parameters of our TS algorithm are set based

on experimentations for solving the sub-problem as follows:

 The maximum number of iterations is 10,000.

 The maximum number of times of accepting worse solutions consecutively in

MNS is 100.

 The maximum number of times of executing DNS is 20.

 The tabu tenure of the move tabu list is 100.

 The tabu tenure of the swap tabu list is NR/2, where NR is the number of re-

quests in the instance.

 The tabu tenure of the diversification tabu list is 20.

In this study, the algorithm was coded using FORTRAN 95 and all experiments were

conducted on a 3.0 GHz Intel Core I3-2120 Processor (2nd Generation) with 8GB

RAM and a 1TB Hard Drive.

3.5.1 Results of the Tabu Search Algorithm

The results of TS are given for the three variants of the static FAP, namely MO-FAP,

MS-FAP and MI-FAP, in two parts. The first part gives the results of the initial solu-

tion phase, while the second part compares the results of TS using two types of con-

figurations (see Section 3.3.1). The optimal solutions of these datasets are known and

available on the static FAP website1. Therefore, the solutions of TS are compared

with known optimal solutions.

The results of two different numbers of runs (5 and 20) of TS are compared to inves-

tigate whether there is a significant difference. It is found that there is no significant

difference using the Wilcoxon signed-rank test. Therefore, for each instance of the

static FAP, 5 runs are performed, where each run uses a different random number

stream.

1 http://fap.zib.de/problems/CALMA/ (last accessed 25 February 2015).

http://fap.zib.de/problems/CALMA/%20(last
http://fap.zib.de/problems/CALMA/%20(last

Chapter 3. Tabu Search for the Static FAP

61

Recall that the results of TS for the MO-FAP refer to the number of used frequencies

in a feasible solution. Note that a bold number means that the optimal solution was

achieved.

3.5.1.1 The Initial Solution Phase

The initial solutions of TS for the MO-FAP are given in Table 3.6.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 20 24 22.4 16 43.33 sec

CELAR 02 14 16 14.4 14 0.22 sec

CELAR 03 18 20 18.4 14 18.87 sec

CELAR 04 46 46 46.0 46 54.43 sec

CELAR 11 44 48 46.7 22 1.50 min

GRAPH 01 22 24 22.4 18 1.43 sec

GRAPH 02 16 20 18.8 14 1.24 sec

GRAPH 08 26 32 29.2 18 3.98 sec

GRAPH 09 28 44 33.6 18 52.50 sec

GRAPH 14 12 14 13.2 8 49.01 sec

Table 3.6: the initial solution of TS for the MO-FAP.

Table 3.6 shows that the optimal solution was obtained using TS for the MO-FAP in

only two instances (CELAR 02 and CELAR 04). However, a feasible initial solution

was achieved for almost all of the instances, although the algorithm failed to find a

feasible solution for 2 out of 5 runs for CELAR 11. It is clear that for some instances,

this algorithm used considerably more frequencies than the optimal number of used

frequencies. This is expected as we used a relatively simple algorithm to produce the

initial solution. It is encouraging that in almost all of the experiments, the initial solu-

tion phase managed to produce feasible solutions.

For the MS-FAP, no feasible initial solution was achieved for all of the instances. Ad-

ditionally, initial solutions of the MI-FAP were poor although some changes were

made in this algorithm to suit this problem. This is because the initial solution phase is

designed to find a feasible solution, whereas for the MI-FAP there is no feasible solu-

tion.

3.5.1.2 Comparison of Different Configurations

The results of the two configurations of our TS algorithm (see Section 3.3.1) are com-

pared. Table 3.7 shows the results of TS for the MO-FAP using the first configura-

tion, which relaxes the interference constraints, while Table 3.8 presents the results of

TS for the MO-FAP using the second configuration, where the bidirectional and inter-

Chapter 3. Tabu Search for the Static FAP

62

ference constraints are relaxed. Both tables of results include the average results of the

five runs, the optimal solution and the average run time. Note that the run time of

finding the lower bound of the number of frequencies for each domain (see Table 3.1)

is included.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

 solution

Average

 run time

CELAR 01 16 16 16.0 16 3.63 min

CELAR 02 14 14 14.0 14 0.52 sec

CELAR 03 14 16 14.8 14 1.00 min

CELAR 04 46 46 46.0 46 54.34 sec

CELAR 11 38 40 38.4 22 8.81 min

GRAPH 01 18 18 18.0 18 5.43 sec

GRAPH 02 14 14 14.0 14 2.16 sec

GRAPH 08 18 18 18.0 18 24.28 sec

GRAPH 09 18 18 18.0 18 3.01 min

GRAPH 14 8 8 8.0 8 4.81 min

Table 3.7: Results of TS for the MO-FAP when the interference constraints are relaxed.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 18 22 18.8 16 5.83 min

CELAR 02 14 14 14.0 14 0.62 sec

CELAR 03 16 18 17.2 14 2.00 min

CELAR 04 46 46 46.0 46 54.34 sec

CELAR 11 38 44 42.0 22 4.21 min

GRAPH 01 18 22 19.6 18 24.03 sec

GRAPH 02 14 16 14.4 14 42.12 sec

GRAPH 08 26 30 27.6 18 3.40 min

GRAPH 09 20 24 21.6 18 8.81 min

GRAPH 14 10 10 10.0 8 10.81 min

Table 3.8: Results of TS for the MO-FAP when the bidirectional and interference constraints are relaxed.

Table 3.7 shows that the optimal solution was achieved using the first configuration

for all the instances except CELAR 11 and for two runs of CELAR 03. Moreover,

these results were achieved in a reasonable time, mostly less than 5 minutes. In con-

trast, Table 3.8 shows that the optimal solution was achieved using the second config-

uration in almost all runs of GRAPH 02 and in two runs of GRAPH 01. Additionally,

some initial solutions (see Table 3.6) were improved. However, for some instances, it

used considerably more frequencies than the optimal solution. Moreover, using the

second configuration consumed more time.

The average results of TS for the MO-FAP using the two types of configuration is

given in Figure 3.6.

Chapter 3. Tabu Search for the Static FAP

63

0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 n
u

m
b

e
r

o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

 First configuration

 Second configuration

0

2

4

6

8

10

12

A
ve

ra
ge

 r
u

n
 t

im
e

 (
m

in
)

First configuration

Second configuration

Figure 3.6: Results of TS for MO-FAP using two types of configurations.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is

a significant difference between the performances of TS using the two types of con-

figurations. Figure 3.6 shows that the first configuration produces better performance

for all the instances except two for which both configurations achieved the optimal

solution.

The average run times of TS for the MO-FAP using two types of configurations are

shown Figure 3.7.

Figure 3.7: Run time of TS for MO-FAP using two types of configurations.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is

a significant difference between the run times of TS for the MO-FAP using two types

of configurations. Figure 3.7 shows that using the first configuration achieved a better

run time for all the instances except CELAR 11. However, the quality of the solutions

Chapter 3. Tabu Search for the Static FAP

64

which have been found by the first configuration for CELAR 11 was better, although

both configurations failed to achieve the optimal solution. Moreover, the total average

run time using the first configuration was 22.7 minutes and for the second configura-

tion was 37.1 minutes. Therefore, the best configuration for TS for the MO-FAP is the

first configuration, where only the interference constraints are relaxed.

It is of interest to investigate whether TS without significant changes can be success-

fully applied to other variants of the static FAP (MS-FAP and MI-FAP). Notice that

our TS algorithm has been mainly designed to solve the MO-FAP, hence a small

number of changes are made. For the MS-FAP, the way of selecting a frequency to be

removed in the creating violations phase is changed: the frequency that reduces the

maximum value of the used frequencies is selected. For the MI-FAP, the creating vio-

lations phase is not required as a zero cost solution does not exist. Hence, TS simply

consists of three neighbourhood structures (MNS, SNS and DNS) being searched in

turn.

Experimental results show that TS could not achieve feasible solutions for the MS-

FAP for all instances except GRAPH 03, where a feasible solution is found, but not

the optimal. Furthermore, TS showed poor performance for the MI-FAP. The difficul-

ties in finding good results for this variant of the static FAP using TS which is mainly

designed for MO-FAP without significant changes agreed with the findings of [86,

145]. Therefore, this algorithm is not sufficiently effective on all the variants of the

static FAP without significant changes. It is likely that more significant changes are

required for it to work well on other variants of the static FAP.

3.5.2 Analysis of the Tabu Search Algorithm Process

In this section, different aspects of TS are analysed to investigate four topics: the con-

tribution of each neighbourhood structure, the importance of each neighbourhood

structure, the time complexity and the convergence of this algorithm.

3.5.2.1 Contribution of Each Neighbourhood Structure

The contribution of each neighbourhood structure in TS with the first configuration

for the CELAR 01 instance is shown in Figure 3.8. The results of each neighbourhood

structure during the process of TS are presented as the number of used frequencies

and the number of violations in each iteration.

Chapter 3. Tabu Search for the Static FAP

65

Figure 3.8: The number of used frequencies and violations in each iteration in TS with the first configuration on

the CELAR 01 instance.

Figure 3.8 shows that TS started with a feasible initial solution which used 22 fre-

quencies, and then this number was reduced to 16 at the end. Moreover, the most exe-

cuted neighbourhood structure is MNS, which is represented by the red colour, alt-

hough all neighbourhood structures have been involved during the process of this al-

gorithm. This reflects the most successful structure in our TS algorithm to reduce the

number of violations. Note that MNS is the most commonly used structure in TS for

the static FAP in the literature (see e.g. [15, 86, 145]). SNS came as the second struc-

ture for reducing the number of violations. This reflects the objective of this structure

(i.e. to support MNS) and the limited neighbours of SNS. DNS is executed a very lim-

ited number of times and usually results in an increase in the number of violations.

This is because this structure aims to diversify the search rather than optimize it.

Moreover, it is clear the number of used frequencies has converged. The number of

violations tends to increase as the number of frequencies decreases which is to be ex-

pected as the problem of finding a feasible solution with fewer available frequencies

is more difficult.

3.5.2.2 Importance of Each Neighbourhood Structure

In order to investigate the importance of each neighbourhood structure of TS, 4 dif-

ferent approaches of this algorithm are compared.

Chapter 3. Tabu Search for the Static FAP

66

0

5

10

15

20

25

30

35

40

CELAR 01 CELAR 03 GRAPH 09 GRAPH 14

A
ve

ra
ge

 n
u

m
b

e
r

o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Approach 1

Approach 2

Approach 3

Approach 4

 Approach 1: apply the initial solution phase only.

 Approach 2: apply MNS only.

 Approach 3: apply MNS and SNS only.

 Approach 4: apply MNS, SNS and DNS

The performance of the 4 approaches for some of the instances (specifically, CELAR

01, CELAR 03, GRAPH 09 and GRAPH 14) is shown in Figure 3.9. The selected

instances are chosen to represent different numbers of requests and constraints.

Figure 3.9: Average number of used frequencies for different approaches of the TS algorithm.

Figure 3.9 shows that all the neighbourhood structures play a role. The results of these

instances improved after including each neighbourhood structure, which means all the

neighbourhood structures are essential to improve solutions.

3.5.2.3 Time Complexity of the Tabu Search Algorithm

The time complexity of TS can be expressed using the big O notation by counting the

number of times the key operation, which is assigning a frequency to a request, is per-

formed. Recall that 𝑁𝑅 is the number of requests and 𝑁𝐹 is the number of frequen-

cies. In terms of the initial solution phase, the time complexity of the assignment stage

is of order O(𝑁𝑅2 ∗ 𝑁𝐹), the allowing infeasible assignment stage is of order O(𝑁𝑅 ∗

𝑁𝐹) and the descent method stage is of order O(𝑁𝑅 ∗ 𝑁𝐹). In terms of the creating

violations phase, the time complexity is of order O(𝑁𝑅 ∗ 𝑁𝐹). The calculation of the

initial cost has complexity proportional to O(𝑁𝑅2). In terms of the improvement

Chapter 3. Tabu Search for the Static FAP

67

0

10

20

30

40

50

60

A
ve

ra
ge

 n
u

m
b

e
r

o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Total number of iterations

phase, the changes in the cost are calculated efficiently so the time complexity is of

order O(𝑁𝑅). The time complexity of MNS is of order O(𝑁𝑅2 ∗ 𝑁𝐹), SNS is of order

O(𝑁𝑅2) and DNS is of order O(𝑁𝑅2 ∗ 𝑁𝐹2). Hence, the time complexity of our TS

algorithm is of order O(𝑁𝑅2 ∗ 𝑁𝐹2).

3.5.2.4 Convergence of the Tabu Search Algorithm

To investigate the convergence of this algorithm, first note that the number of used

frequencies in our TS algorithm never increases. This is because the algorithm con-

sists of reducing the number of used frequencies and seeking for a feasible solution

with a fixed number of used frequencies. If a feasible solution is found (i.e. the sub-

problem (see Section 3.3.2) is solved), then the number of used frequencies is reduced

and the number of iterations is reset to zero. This process is repeated until a feasible

solution can no longer be found.

The TS algorithm for the MO-FAP (see Table 3.7) achieved the optimal solution for

all the instances except CELAR 11 within 10,000 iterations for each time the sub-

problem is considered. Here, TS is run on CELAR 11 for more iterations for each

sub-problem (say 50,000 iterations) and the stopping criteria (see Section 3.4.7) are

ignored to investigate the convergence of this algorithm. Moreover, TS is executed for

five runs, where each run uses different random number streams. Figure 3.10 shows

the convergence of TS using the average solutions of the five runs.

Figure 3.10: The convergence of the TS algorithm on the CELAR 11 instance.

Chapter 3. Tabu Search for the Static FAP

68

Figure 3.10 shows that TS achieves a feasible solution within 10,000 iterations for

each sub-problem. This suggests that the selected number of iterations in this study is

an appropriate number based on the convergence experiments.

3.5.3 Results Comparison of the Tabu Search Algorithm

This section compares the performance of our TS algorithm in two subsections. The

first subsection compares the performance of this algorithm with existing TS algo-

rithms in the literature. The second subsection compares the performance of our TS

algorithm with other algorithms in the literature. Note that a bold number means that

the optimal solution is achieved and a dash “-” means that the result is not available.

3.5.3.1 Results Comparison with Existing TS Algorithms

The best found results of our TS algorithm and existing TS algorithms in the literature

are given in Table 3.9.

Instance TS [15] TS [145] Our TS
Optimal

solution

CELAR 01 18 16 16 16

CELAR 02 14 14 14 14

CELAR 03 14 14 14 14

CELAR 04 46 46 46 46

CELAR 11 24 22 38 22

GRAPH 01 18 18 18 18

GRAPH 02 16 14 14 14

GRAPH 08 24 20 18 18

GRAPH 09 22 22 18 18

GRAPH 14 12 10 8 8

Table 3.9: Results of TS and existing TS algorithms in the literature.

Table 3.9 shows that our TS algorithm achieved better performance compared with

those of TS algorithms proposed in [15, 145]. In fact, our TS algorithm achieved the

optimal solution for all the instances except CELAR 11, while the other TS algo-

rithms failed to find the optimal solutions for some instances such as GRAPH 08,

GRAPH 09 and GRAPH 14. Additionally, TS proposed in [15] could not achieve the

optimal solution for CELAR 11 and GRAPH 02. In contrast, the TS in [145] achieved

the optimal solution for both. Overall, our TS algorithm showed competitive perfor-

mance compared with existing TS algorithms in the literature.

Chapter 3. Tabu Search for the Static FAP

69

3.5.3.2 Results Comparison with Other Algorithms

This section compares the best found results of our TS algorithm with those of other

algorithms in the literature as shown in Table 3.10.

Instance
G

E
N

E
T

 [
1

6
]

G
en

et
ic

 a
lg

o
ri

th
m

 [
9
4

]

P
o

te
n

ti
al

 r
ed

u
ct

io
n
 [

1
5

1
]

A
 n

o
n

li
n

ea
r

 a
p

p
ro

ac
h

 [
1
5

0
]

E
v

o
lu

ti
o

n
ar

y
 s

ea
rc

h
 [

3
4

]

S
im

u
la

ti
n
g

 a
n
n

ea
li

n
g
 [

1
4

5
]

V
ar

ia
b

le
 d

ep
th

 s
ea

rc
h

 [
1

4
5

]

O
u

r
T

S

Optimal

solution

CELAR 01 16 20 16 16 - 16 16 16 16

CELAR 02 14 14 14 - 14 14 14 14 14

CELAR 03 14 16 16 16 14 14 14 14 14

CELAR 04 46 46 46 - - 46 46 46 46

CELAR 11 24 32 - - - 24 24 38 22

GRAPH 01 18 20 18 18 18 - - 18 18

GRAPH 02 14 16 14 14 14 - - 14 14

GRAPH 08 22 - 18 18 - - - 18 18

GRAPH 09 22 28 18 18 - - - 18 18

GRAPH 14 - 14 10 10 - - - 8 8

Table 3.10: Results of TS and other algorithms in the literature.

Table 3.10 shows that our TS algorithm achieved competitive performance compared

with other algorithms in the literature. Moreover, our TS algorithm is the only algo-

rithm that achieved the optimal solution for GRAPH 14. In contrast, better results for

CELAR 11 (not the optimal solution) were found using other algorithms such as sim-

ulating annealing and variable depth search in [145]. Note that the performance of the

genetic algorithm in [94] is less satisfactory than other algorithms, where this algo-

rithm achieved the optimal solutions for only two instances. Overall, our TS algorithm

showed competitive performance compared with other algorithms in the literature.

3.6 Conclusions

This chapter introduced an improved TS algorithm for the static FAP, where this algo-

rithm is mainly designed to solve the MO-FAP. Several novel and existing techniques

were used to improve the performance of this algorithm, which are applying the lower

bound on the number of frequencies that are required from each domain for a feasible

solution to exist, based on the underlying graph colouring model, and hybridising TS

with multiple neighbourhood structures, one of which is used as a diversification

technique. Moreover, TS was compared in two different types of configurations,

Chapter 3. Tabu Search for the Static FAP

70

where the first configuration relaxes only interference constraints, while the second

configuration relaxes bidirectional and interference constraints.

TS with the first configuration proved effective for the MO-FAP, whereas using the

second configuration proved less effective and is therefore rejected. Furthermore, ap-

plying TS without significant changes on the other variants of the static FAP was not

successful. This finding agrees with what has been found in the literature. It is likely

that more significant changes are required for it to work well on other variants of the

static FAP.

It was found that our TS algorithm showed competitive performance for the MO-FAP

compared with existing TS algorithms and other heuristic algorithms in the literature.

In fact, it beat other heuristic algorithms in the literature by achieving the optimal so-

lution for GRAPH 14.

Finally, the research questions which were raised in the beginning of this chapter can

be answered as follows:

 Is TS an effective solution method for the static FAP?

Our TS algorithm is an effective solution method for the static FAP. The optimal

solution was achieved for all the instances except one (see Table 3.7). Additional-

ly, TS is competitive compared with existing TS (see Table 3.9) and other heuris-

tic algorithms in the literature (see Table 3.10).

 Is it beneficial to hybridise TS with multiple neighbourhood structures?

Each neighbourhood structure in TS plays a role. MNS and SNS aim to improve

the quality of the solution using two different techniques, whereas DNS aims to

diversify the search. Figure 3.9 shows that the performance of TS improves after

including each neighbourhood structure, which means hybridising TS with multi-

ple neighbourhood structures is beneficial.

 Can TS without significant changes be effective on different variants of the static

FAP?

TS without significant changes was not successful to solve other variants of the

static FAP (MS-FAP and MI-FAP), which agreed with what has been found in the

literature. It is likely that more significant changes are required to work well on

other variants of the static FAP.

Chapter 4. Ant Colony Optimization for the Static FAP

71

Chapter 4

Ant Colony Optimization for the Static FAP

4.1 Introduction

Ant colony optimization (ACO) is a relatively recent meta-heuristic technique to

solve combinatorial optimization problems using indirect communication, which is

inspired by how ants cooperate to find the shortest path between their nest and a po-

tential food source. ACO has been successfully applied in the literature to several

problems such as traveling salesman problems [41], sequential ordering problems

[64], vehicle routing problems [19] and dynamic problems [38].

Although many studies in the literature reflect the success of ACO, it has several

shortcomings. One of these is that ACO looks for a better local optimal solution rather

than a global optimal solution [18]. Moreover, ACO has a fast convergence rate at the

beginning and after a certain number of generations the ants may tend to produce a

solution near the local optimum [154]. Finally, ACO is a time consuming method as

many elements are used to define the visibility, the trail and parameters and so a lot of

computation is needed [33].

Chapter 4. Ant Colony Optimization for the Static FAP

72

There are relatively few papers concerning the application of ACO to solve the static

frequency assignment problem (FAP). However, existing ACO algorithms in the liter-

ature are unable to find a feasible solution in some instances of the static FAP. Hence,

this chapter investigates whether ACO can be improved to be an effective solution

method for the static FAP.

In this study, ACO is mainly designed to solve the minimum order FAP (MO-FAP).

Several novel and existing techniques are used in this study to improve the perfor-

mance of ACO. One of these techniques is applying the concept of a well-known

graph colouring algorithm, namely recursive largest first (see Section 2.3), which has

not been used in ACO for the static FAP in the literature. Furthermore, this study

compares ACO using two visibility definitions (see Section 4.2.3). The first definition

is based on the number of feasible frequencies, which was previously used in ACO

for the graph colouring problem (GCP) [33]. The second one is based on the degree,

which was previously used in ACO for the GCP [49]. Additionally, we compare ACO

using two trail definitions (see Section 4.2.4). The first one is between requests and

frequencies, which was previously used in ACO for the static FAP [109]. Note that

ACO in [109] decreases the level of trail for bad solutions, whereas we increase the

level of trail for the unassigned requests for all available frequencies in order to be

more attractive to be selected. This technique was previously used in ACO for the

examination scheduling problem [48]. The second trail definition considered in this

study is between requests and requests, which was previously used in ACO for the

GCP [49]. Moreover, this chapter investigates whether ACO without significant

changes can prove effective on other variants of the static FAP, namely the minimum

span FAP (MS-FAP) and minimum interference FAP (MI-FAP). This chapter focuses

on the following research questions:

 Can ACO perform better than tabu search on the static FAP?

 Is it beneficial to combine ACO with a local search?

 Is ACO an appropriate solution method for the static FAP?

This chapter is organised as follows: the next subsection gives an overview of ACO.

Section 4.2 presents the main components of our ACO algorithm for the static FAP.

Results of this algorithm are given and discussed in Section 4.3. Time complexity and

Chapter 4. Ant Colony Optimization for the Static FAP

73

convergence of ACO are discussed in Section 4.4 before the chapter finishes with

conclusions.

4.1.1 Overview of Ant Colony Optimization

The basic idea of ACO is inherited from the natural behaviour of real ant colonies.

Figure 4.1 shows a group of ants travelling between their nest and some food source.

Figure 4.1: Ants in a path between the nest and the food.

If an obstacle appears somewhere in the path between the nest and the food, then

when the ants reach the obstacle, at first they randomly choose one way, either right

or left, as they are unable to determine which is the shortest route. It is assumed that

approximately half of the ants go right and the rest go left, as illustrated in Figure 4.2.

 Figure 4.2: Ants can reach the food in two paths. Figure 4.3: Ants find the shortest path.

The group of ants indirectly communicate with one another by leaving trails of pher-

omone as they travel. As ants find existing trails, they are more likely to follow them

depending on the strength of those trails, and they in turn lay down further phero-

mone, reinforcing the trail. A shorter path is more likely to be followed than a longer

path, leading to more trails being laid down along such path. This causes more and

more ants to choose the shorter path until eventually all ants have found the shortest

path as shown in Figure 4.3.

Chapter 4. Ant Colony Optimization for the Static FAP

74

The behaviour of the ants is exploited in artificial ant colonies for finding the shortest

path between two given nodes in a graph, where a path is a sequence of edges. Each

artificial ant constructs a solution based on two factors: the visibility and the phero-

mone trail. The visibility is a measure of the quality of going along each possible

edge. The pheromone trail is an indication of the desirability of going along each edge

based on the experiences of previous ants. The values of the pheromone trail indicate

the strength of the pheromone trail on the corresponding edge based on the experience

of previous artificial ants. More formally, moving along the edge (𝑖, 𝑗), where 𝑖 and 𝑗

are nodes in the graph, during constructing a solution is based on probability 𝑝𝑖𝑗,

which is given by Formula 4.1.

τ𝑖𝑗
α .η𝑖𝑗

β

∑ τ𝑖𝑙
α .η𝑖𝑙

β
𝟏

𝒍∈𝑵

 if 𝑗 ∈ 𝑁

 0 otherwise

where 𝑁 is the set of nodes which can be visited by an artificial ant, and τ𝑖𝑗 is the

pheromone trail between 𝑖 and 𝑗. The visibility 𝜂𝑖𝑗 is given by Formula 4.2.

 𝜂𝑖𝑗 =
1

𝐿𝑖𝑗
 , (4.2)

where 𝐿𝑖𝑗 is the distance of the edge (𝑖, 𝑗). The parameters 𝛼, 𝛽 ≥ 0 control the rela-

tive significance of the pheromone trail τ𝑖𝑗 against the visibility 𝜂𝑖𝑗 .

After all ants complete their solutions, i.e. one generation is complete, then phero-

mone trails are updated. The updated pheromone trails guide ants in the following

generations to produce better solutions.

There are several variants of ACO. The main difference between them is based on the

ways of updating the trail. In the original ACO algorithm in [40], the trail was updat-

ed globally after all artificial ants have completed a path between the two given

nodes. For each path 𝑇𝑘 created by an ant k, the trail is updated by adding ∆𝜏𝑖𝑗
𝑘 , de-

fined by Formula 4.4, to the trail τ𝑖𝑗 of edges (𝑖, 𝑗) which have been visited in 𝑇𝑘. The

trail is updated by Formula 4.3.

𝑝𝑖𝑗 = (4.1)

Chapter 4. Ant Colony Optimization for the Static FAP

75

𝜏𝑖𝑗 ← 𝜌 . 𝜏𝑖𝑗 + ∑ ∆𝜏𝑖𝑗
𝑘

𝐾

𝑘

 (4.3)

 𝑄

𝐶𝑘
 if 𝑇𝑘 uses the edge (𝑖, 𝑗)

 0 otherwise

and 𝜌 ∈ [0,1) is the evaporation parameter, 𝑄 is a constant related to the amount of

trail laid by ants and 𝐶𝑘 is the total distance of 𝑇𝑘. Finally, the solution produced by

ACO may be further improved by a local search algorithm.

ACO requires many parameters to be determined. The performance of ACO depends

on finding the most appropriate values of these parameters.

4.2 Components of the ACO Algorithm

The components of ACO include solution space and cost function, request and fre-

quency selection, visibility definitions, trail definitions and descent method.

4.2.1 Solution Space and Cost Function

The solution space of ACO is defined as the set of all possible feasible assignments,

that is, satisfying all of the constraints. The corresponding cost function is defined as

the number of unassigned requests. Note that requests and frequencies in this algo-

rithm are considered as pairs based on the bidirectional constraints (see Equation 1.1)

because this configuration showed promising performance (see Section 3.5.1.2)

4.2.2 Request and Frequency Selection

ACO selects a frequency 𝑓𝑗 greedily by selecting the one which can be assigned feasi-

bly to the most requests. If there is more than one candidate frequency, then one of

them is randomly selected. After that, the frequency 𝑓𝑗 is sequentially feasibly as-

signed to all possible requests until no more can be feasibly assigned. The order of

selecting requests from among those that are feasible for 𝑓𝑗 is based on probability

𝑝𝑟𝑖𝑓𝑗
 given by Formula 4.5.

 ∆𝜏𝑖𝑗
𝑘 =

 where

 (4.4)

Chapter 4. Ant Colony Optimization for the Static FAP

76

𝜏𝑟𝑖𝑓𝑗

𝛼 .𝜂𝑟𝑖𝑓𝑗

𝛽

∑ 𝜏𝑟𝑖𝑓𝑘
𝛼 .𝜂𝑟𝑖𝑓𝑘

𝛽
𝟏

𝑓𝑘∈𝑮

 if 𝑓𝑗 ∈ 𝐺𝑟𝑖

 0 otherwise

where 𝐺𝑟𝑖
 is the set of frequencies which can be feasibly assigned by an artificial ant

to the request 𝑟𝑖, The visibility 𝜂𝑟𝑖𝑓𝑗
 of a request 𝑟𝑖 to be assigned a frequency 𝑓𝑗 is

defined in Section 4.2.3 and the trail 𝜏𝑟𝑖𝑓𝑗
 is defined in Section 4.2.4.

After that, a different frequency is selected in the same way and this process is repeat-

ed until all requests are feasibly assigned, if possible. This process is inherited from a

well-known graph colouring algorithm, namely recursive largest first (see Section

2.3). In contrast, ACO for the static FAP in the literature (see e.g. [109, 124]) fre-

quently selects a request based on probability and then assign it to a feasible frequen-

cy.

4.2.3 Visibility Definitions

The visibility gives some indication of the desirability of choosing a request based on

the experience of previous ants. Hence, the visibility of a request acts as a greedy heu-

ristic. In this study, two types of visibility definition are applied and compared. These

two visibilities are defined as follows:

i) Visibility 𝜂𝑟𝑖𝑓𝑗
 of a request 𝑟𝑖 to be assigned a frequency 𝑓𝑗 is based on the number

of feasible frequencies for 𝑟𝑖 (𝑁𝐹𝐹𝑟𝑖
), which is given by Formula 4.6.

 𝜂𝑟𝑖𝑓𝑗
=

1

𝑁𝐹𝐹𝑟𝑖

 (4.6)

This definition prioritises those requests that have fewer feasible frequencies. This

type of visibility definition was previously used in ACO for the graph colouring prob-

lem (GCP) [33].

ii) Visibility 𝜂𝑟𝑖𝑓𝑗
 of a request 𝑟𝑖 to be assigned a frequency 𝑓𝑗 is based on the degree

of 𝑟𝑖 (𝐷𝐸𝐺𝑟𝑖
), which is defined as the numbers of unassigned requests that cannot be

assigned feasibly to 𝑓𝑗 and have a common interference constraint with 𝑟𝑖. This visi-

bility is given by Formula 4.7.

𝑝𝑟𝑖𝑓𝑗
 = (4.5)

Chapter 4. Ant Colony Optimization for the Static FAP

77

 𝜂𝑟𝑖𝑓𝑗
= 𝐷𝐸𝐺𝑟𝑖

+ 1 (4.7)

This visibility looks ahead and prioritises requests that have more constraints in com-

mon with other requests that cannot be assigned to the frequencies being considered

currently. This visibility definition was previously used in ACO for the GCP [49].

Example 4.1 clarifies the probability of selecting a request based on the two different

visibility definitions.

Example 4.1:

Assume one of the requests 𝑟1, 𝑟3, 𝑟5 and 𝑟7 needs to be assigned to the selected

frequency 𝑓𝑗, where the requests 𝑟9, 𝑟11 and 𝑟13 represent unassigned requests

that cannot be assigned feasibly to 𝑓𝑗 and have a common interference con-

straint with at least one of the requests 𝑟1, 𝑟3, 𝑟5 and 𝑟7 . The graph colouring

model for this problem is shown in Figure 4.4.

 Figure 4.4: Graph colouring model of Example 4.1.

A request from among those that are feasible for the selected frequency 𝑓𝑗 is

selected based on the probability given by Formula 4.5. Here, assume that the

trail and the parameters 𝛼 and 𝛽 in Formula 4.5 are set to one. Then, the prob-

ability of selecting a request based on the two visibility definitions would be

calculated as follows:

i) The probability of selecting each request using the first visibility definition

is given in Table 4.1. Note that the number of feasible frequencies of each re-

quest (𝑁𝐹𝐹𝑟𝑖
) is invented and cannot be deduced from Figure 4.4.

𝑟3 𝑟5

𝑟7

𝑟9 𝑟11

𝑟13

Interference constraint

𝑟1

Requests can be assigned feasibly to the selected frequency

Requests cannot be assigned feasibly to the selected frequency

Chapter 4. Ant Colony Optimization for the Static FAP

78

 𝑟1 𝑟3 𝑟5 𝑟7 Σ

𝑁𝐹𝐹𝑟𝑖
 1 2 3 4

1 / 𝑁𝐹𝐹𝑟𝑖
 1 1/2 1/3 1/4 25/12

𝑝𝑟𝑖𝑓𝑗
 0.48 0.24 0.16 0.12 1

 Table 4.1: Requests selection based on probability using the first definition of visibility.

ii) The probability of selecting each request using the second visibility defini-

tion is given in Table 4.2. Note that the degree of each request (𝐷𝐸𝐺𝑟𝑖
) can be

deduced from Figure 4.4.

 𝑟1 𝑟3 𝑟5 𝑟7 Σ

𝐷𝐸𝐺𝑟𝑖
 3 0 1 1

𝐷𝐸𝐺𝑟𝑖
+1 4 1 2 2 9

𝑝𝑟𝑖𝑓𝑗
 0.44 0.11 0.22 0.22 1

 Table 4.2: Requests selection based on probability using the second definition of visibility.

In both cases, once the probabilities have been calculated, one request is se-

lected probabilistically.

4.2.4 Trail Definitions

The purpose of the trail within ACO is to provide information about previous con-

struction solutions to influence future constructions. In this study, two different trails

are defined, where the initial values of these trails are set to one. Moreover, evapora-

tion and updating of these trails are discussed. The definitions of these trails are given

as follows:

i) Trail between requests and frequencies (𝑇𝐴 𝑅𝐹): the key component of a solution is

to decide to which frequency each request is assigned. Therefore, the most obvious

trail definition is between each request and each frequency, which is also previously

used in ACO for the static FAP [124]. The value of the trail indicates the quality of

previous solutions when a request is assigned to a frequency.

ii) Trail between requests and requests (𝑇𝐴 𝑅𝑅): previous work on the graph colour-

ing problem (GCP) in [49] found that a trail between nodes and nodes was more suc-

cessful than a trail between nodes and colours. This is because the important aspect of

a graph colouring solution is not in which colour each node is placed, as the colours

are interchangeable. The important aspect is which nodes are placed together in the

same colour class. When considering the static FAP, clearly the actual frequency to

which each request is assigned is important. However, given the static FAP has the

Chapter 4. Ant Colony Optimization for the Static FAP

79

same underlying model as the GCP, we decided to investigate whether a trail based on

which requests are assigned to the same frequencies could be advantageous.

This trail measures the success of previous solutions when requests are assigned to the

same frequency using 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝐴 𝑅𝑅, which is the average trail between the pro-

spective request and all requests already assigned to the candidate frequency 𝑓𝑗, which

is defined by Formula 4.8.

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝐴 𝑅𝑅{𝑟𝑖} = ∑
 𝑇𝐴 𝑅𝑅{𝑟𝑖,𝑟𝑗}

|𝐻| 𝑟𝑗∈𝐻,𝑖≠𝑗 (4.8)

where 𝐻 is the set of requests already assigned to frequencies 𝑓𝑗.

Example 4.2 clarifies the concept of calculating 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝐴 𝑅𝑅, which is given by

Formula 4.8.

Example 4.2:

The probability of selecting a request 𝑟𝑖 to be assigned a frequency 𝑓𝑗, which is

already assigned to three requests, namely 𝑟𝑠 , 𝑟𝑡 and 𝑟𝑢 , and the trail values

between 𝑟𝑖 and these requests are as follows:

𝑇𝐴 𝑅𝑅{𝑟𝑖, 𝑟𝑠} = 2.0

𝑇𝐴 𝑅𝑅{𝑟𝑖, 𝑟𝑡} = 1.0

𝑇𝐴𝑅𝑅{𝑟𝑖, 𝑟𝑢} = 0.5

Based on Formula 4.8, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝐴 𝑅𝑅 {𝑟𝑖} =
2.0 + 1.0 + 0.5

3
 = 1.17

4.2.4.1 Trail Evaporation

Both types of trail are evaporated after each generation by multiplying the trail by the

evaporation parameter, which will be determined experimentally (see Section 4.3.1.4).

The trail evaporation can be defined by Formula (4.9).

 𝜏𝑟𝑖𝑓𝑗
← 𝜌 . 𝜏𝑟𝑖𝑓𝑗

 (4.9)

where the evaporation parameter 𝜌 is in the range [0, 1).

Chapter 4. Ant Colony Optimization for the Static FAP

80

4.2.4.2 Trail Updates

The trails are updated using two reward functions, namely Cost1 and Cost2, which are

defined as follows:

Cost1: counts the number of used frequencies in the current solution. This is

appropriate when a solution is feasible.

Cost2: counts the number of unassigned requests in the current solution. This

is appropriate when a solution is infeasible.

The values of 𝑇𝐴 𝑅𝐹 could have been updated using Formula 4.10.

 𝑇𝐴 𝑅𝐹 {𝑟𝑖, 𝑓
𝑗
} = 𝑇𝐴 𝑅𝐹 {𝑟𝑖, 𝑓

𝑗
} +

𝑄

𝐶𝑜𝑠𝑡1+𝐶𝑜𝑠𝑡2
 (4.10)

However, this proved unsatisfactory for two reasons. Firstly, the range of possible

amounts added to the trail is relatively small, and therefore fails to distinguish suffi-

ciently between good and bad solutions. So for example, if the optimal number of fre-

quencies is 40, and 𝑄 is equal to 10, then the amounts added to the trail for 4 different

feasible solutions are given in Table 4.3.

 Solution 1 Solution 2 Solution 3 Solution 4

No. used frequencies 41 42 43 44

Trail update 0.24 0.24 0.23 0.23

Table 4.3: Example of trail update values.

These values are not significantly different, making it difficult for ACO to learn. Ad-

ditionally, the amount added to the trail differs from instance to instance depending on

the typical number of frequencies. In order to avoid this problem, a better way of trail

updates is applied and given by Formula 4.11.

 𝑇𝐴 𝑅𝐹 {𝑟𝑖, 𝑓
𝑗
} = 𝑇𝐴 𝑅𝐹 {𝑟𝑖, 𝑓

𝑗
} +

𝑄

𝐶𝑜𝑠𝑡1+ 𝐶𝑜𝑠𝑡2− 𝐵𝑒𝑠𝑡 + 1
 (4.11)

where 𝐵𝑒𝑠𝑡 is the best minimum number of used frequencies found so far in the

search. Note that 𝐶𝑜𝑠𝑡1 + 𝐶𝑜𝑠𝑡2 − 𝐵𝑒𝑠𝑡 can be equal to 0 when 𝐶𝑜𝑠𝑡1 = 𝐵𝑒𝑠𝑡 and

𝐶𝑜𝑠𝑡2 = 0. Thus, we add 1 to the denominator of the last term in Formula 4.11. A sim-

ilar trail update function was previously used in ACO for the GCP [49].

Formula 4.11 has the advantage that any solution that uses a number of frequencies

more than the best solution does will have significantly larger trail update values. So

Chapter 4. Ant Colony Optimization for the Static FAP

81

for example, if the optimal number of frequencies is 40, and 𝑄 is equal to 10, then the

amounts added to the trail for 4 different feasible solutions are given in Table 4.4.

 Solution 1 Solution 2 Solution 3 Solution 4

No. used frequencies 41 42 43 44

Trail update 10 5 3.33 2.50

Table 4.4: Example of trail update values with improved trail update function.

Similarly, the values of 𝑇𝐴 𝑅𝑅 are updated using Formula 4.12.

 𝑇𝐴 𝑅𝑅{𝑟𝑖, 𝑟𝑗} = 𝑇𝐴 𝑅𝑅{𝑟𝑖, 𝑟𝑗} +
𝑄

𝐶𝑜𝑠𝑡1+ 𝐶𝑜𝑠𝑡2− 𝐵𝑒𝑠𝑡 + 1
 (4.12)

Another problem of trail updates is that only requests that have been assigned to fre-

quencies are updated. Therefore, the trail values on any unassigned requests are not

increased, meaning such requests are likely to be selected even later in the following

construction processes. As we would prefer to consider them earlier in the construc-

tion process, the trail is increased on each unassigned request for all available fre-

quencies. This idea was previously used in ACO for the examination scheduling prob-

lem [48].

4.2.5 Descent Method

This method is executed only when no feasible solution can be found by all ants in a

generation. In such generations, the descent method is executed only for one ant

which constructs the infeasible solution with the minimum number of unassigned re-

quests. First, these requests are assigned to the frequencies which lead to the least

number of violations. Then, the descent method aims to reduce the number of viola-

tions with a fixed number of frequencies to find a feasible solution, if possible. The

description of the descent method can be found in Section 3.4.4.3.

4.2.6 The ACO Algorithm Implementation

ACO consists of a given number of generations, each of which contains a given num-

ber of ants, where each ant individually constructs a solution. Each ant starts con-

structing a solution by selecting a frequency to be assigned to all possible feasible

requests. The process is repeated until no frequencies can be selected (see Section

4.2.2). After all ants in the current generation construct their solutions, if no feasible

solution can be found, then the descent method (see Section 4.2.5) is used to attempt

to achieve a feasible solution. Then, the trail is evaporated and updated (see Section

Chapter 4. Ant Colony Optimization for the Static FAP

82

No

Yes

No

Yes

No

Yes

Yes

Initialize the pheromone trail and parameters
Set number of generations = 0

Stop

Return the best solution

number of generations = number of generations + 1

Set number of ants = 0

Is the number of

generations > a given

number?

number of ants = number of ants + 1

Is the number of ants

> a given number?

Choose a request (Section 4.2.2)

No

Yes

No

Choose a frequency (Section 4.2.2)

Can a request be

chosen?

Can a feasible

solution be found?

Descent method (Section 4.2.5)

Can a frequency be

chosen?

Assign the chosen frequency to the

chosen request

Trail evaporation (Section 4.2.4.1)

Trail updates (Section 4.2.4.2)

4.2.4.1 and 4.2.4.2). After that, the next generation is executed by the same process.

The overall structure of the ACO algorithm is illustrated in Figure 4.5.

Figure 4.5: Overall structure of our ACO algorithm for the static FAP.

Chapter 4. Ant Colony Optimization for the Static FAP

83

4.3 Experiments and Results

This section presents and compared the performance of ACO in three sections. The

first section gives the results of ACO for the static FAP. The second section compares

the performance of ACO with existing ACO algorithms in the literature. Finally, the

performance of ACO is compared with other algorithms in the literature.

ACO is implemented in FORTRAN 95 and all experiments were conducted on a 3.0

GHz Intel Core I3-2120 Processor (2nd Generation) with 8GB RAM and a 1TB Hard

Drive.

4.3.1 Results Comparison of the ACO Algorithm

In this study, the number of generation of ACO is 100, where this number is selected

based on experiments. Moreover, the performance of ACO is compared based on sev-

eral options of the following components:

1. The number of ants,

2. The trail definition,

3. The visibility definition,

4. The parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝜌 (described in Section 4.1.1).

Different values of the number of ants, two options of the trail definition and two op-

tions for visibility definition are compared. For the parameters 𝛼, 𝛽 and 𝜌, three val-

ues of each parameter are tested. The values considered for each parameter in this

study are given in Table 4.5.

𝛼 𝛽 𝜌

1 1 0.80

3 2 0.90

5 3 0.95

Table 4.5: The considered values of the parameters 𝛼, 𝛽 and 𝜌.

Another parameter that might need to be considered is the parameter 𝑄 for trail up-

dates. However, from literature and our experiments, it was found that this parameter

has no major effect on the algorithm [45]. Therefore, the value of 𝑄 is set to 10

throughout this study.

By considering all these options, there are 756 versions of ACO to be compared.

Moreover, each version is tested on 10 instances with 5 runs being performed on each

Chapter 4. Ant Colony Optimization for the Static FAP

84

instance. Therefore, considering all the versions of ACO take excessive time. Hence,

the comparison is made for each component while fixing the others; i.e. first, different

numbers of ants are compared while fixing the remaining components. After selecting

the best number of ants, the two different trail definitions are compared. After that,

two definitions of the visibility are compared and finally, different values of the pa-

rameters (𝛼, 𝛽 and 𝜌) are compared in the same way.

The experiments are run using CELAR and GRAPH datasets for the static FAP. Re-

call that the results of the MO-FAP refer to the number of used frequencies in a feasi-

ble solution. ACO is run on each instance five times and each run uses a different

random number stream, where this number is chosen based on experiments. Moreo-

ver, the best, the worst and the average solution, and the average run time are calcu-

lated.

4.3.1.1 The Number of Ants

This section discusses the effects of the number of ants on the performance of ACO.

Different numbers of ants are chosen to be compared, where these numbers are select-

ed based on experiments. The selected numbers of ants are 5, 10, 15, 20, 25, 30 and

35. In order to observe the impact of the number of ants on the performance of ACO,

other options are fixed, which are the visibility definition, the trail definition and the

values of the parameters 𝛼, 𝛽 and 𝜌. In this stage, the visibility definition is based on

the number of feasible frequencies, the trail definition is 𝑇𝐴 𝑅𝐹 and the parame-

ters 𝛼, 𝛽 and 𝜌 take the default values as given in Table 4.6.

𝛼 𝛽 𝜌 𝑄

5 2 0.90 10

Table 4.6: The default values of the parameters.

The ACO algorithm is tested on a subset of instances (specifically, CELAR 01,

CELAR 03, GRAPH 01 and GRAPH 02). The selected subset of instances represents

different numbers of requests and constraints. The effect of the number of ants on the

performance of this algorithm is shown in Figure 4.6.

Chapter 4. Ant Colony Optimization for the Static FAP

85

0

5

10

15

20

25

30

5 10 15 20 25 30 35

A
ve

ra
ge

 n
u

m
b

e
rs

 o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Number of ants

CELAR 01

0

5

10

15

20

25

5 10 15 20 25 30 35

A
ve

ra
ge

 n
u

m
b

e
rs

 o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Number of ants

CELAR 03

0

5

10

15

20

25

30

5 10 15 20 25 30 35A
ve

ra
ge

 n
u

m
b

e
rs

 o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Number of ants

GRAPH 01

0

5

10

15

20

25

5 10 15 20 25 30 35

A
ve

ra
ge

 n
u

m
b

e
rs

 o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Number of ants

GRAPH 02

 Figure 4.6: The effect of the number of ants on the performance of the ACO algorithm.

Figure 4.6 shows that the best results are found when the number of ants is 20. Hence,

the selected number of ants in our ACO algorithm is 20.

4.3.1.2 The Trail Definitions

Two different trails are compared by fixing the number of ants to 20, the visibility to

the number of feasible frequencies, and the parameters to the default values (see Table

4.6). The results of ACO using the first trail definition 𝑇𝐴 𝑅𝐹 are given in Table 4.7,

while Table 4.8 gives the results of ACO using the second trail definition 𝑇𝐴 𝑅𝑅. The

best, the worst and the average solution, and the average run time of these two tables

are compared and the better ones are shown in bold. Note that a dash “-” means that a

feasible solution could not be found.

Chapter 4. Ant Colony Optimization for the Static FAP

86

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 18 20 19.2 16 1.4 hrs

CELAR 02 14 14 14.0 14 11.2 min

CELAR 03 16 18 16.8 14 31.1 min

CELAR 04 46 46 46.0 46 55.8 min

CELAR 11 - - - 22 -

GRAPH 01 20 20 20.0 18 18.3 min

GRAPH 02 16 18 16.4 14 29.8 min

GRAPH 08 24 24 24.0 18 30.1 min

GRAPH 09 - - - 18 -

GRAPH 14 10 12 11.6 8 59.8 min

Table 4.7: Results of ACO for the MO-FAP using the trail 𝑇𝐴 𝑅𝐹.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 22 24 23.2 16 1.6 hrs

CELAR 02 14 14 14.0 14 18.2 min

CELAR 03 16 18 17.6 14 41.8 hrs

CELAR 04 - - - 46 -

CELAR 11 - - - 22 -

GRAPH 01 20 22 21.2 18 27.8 min

GRAPH 02 18 20 19.6 14 44.2 min

GRAPH 08 - - - 18 -

GRAPH 09 - - - 18 -

GRAPH 14 10 12 11.6 8 1.3 hrs

Table 4.8: Results of ACO for the MO-FAP using the trail 𝑇𝐴 𝑅𝑅.

The performance of ACO using 𝑇𝐴 𝑅𝐹 is better than using 𝑇𝐴 𝑅𝑅 for 6 out of 10 in-

stances. Moreover, using 𝑇𝐴 𝑅𝐹 has better run times for all the instances. The perfor-

mance of ACO using the two types of trail definitions is shown in Figure 4.7 (for the

instances in which feasible solutions are found).

Figure 4.7: The performance of ACO using two types of trail definitions.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is

a significant difference between the performances of ACO using 𝑇𝐴 𝑅𝐹 and 𝑇𝐴 𝑅𝑅.

0

5

10

15

20

25

A
ve

ra
ge

 n
u

m
b

e
rs

 o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

𝑇𝐴 𝑅𝐹

𝑇𝐴 𝑅𝑅

Chapter 4. Ant Colony Optimization for the Static FAP

87

The run time of ACO using these two trails is shown in Figure 4.8 (for the instances

in which feasible solutions are found).

Figure 4.8: The average run time of ACO using two types of trail definitions.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is

a significant difference between the run times of ACO using 𝑇𝐴 𝑅𝐹 and 𝑇𝐴 𝑅𝑅.

Overall, using 𝑇𝐴 𝑅𝐹 resulted in better performance of ACO, hence it is selected as

the definition of trail in this algorithm.

4.3.1.3 The Visibility Definitions

Here, the performance of ACO using the two different visibility definitions is com-

pared. The results of ACO using the first visibility definition were previously shown

in Table 4.7, while those for the second visibility definition are given in Table 4.9.

Note that a bold number in Table 4.9 means it is not worse than the corresponding one

in Table 4.7 and a dash “-” means that a feasible solution could not be found.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 20 22 20.8 16 1.8 hrs

CELAR 02 14 14 14.0 14 27.2 min

CELAR 03 18 18 18.0 14 51.1 min

CELAR 04 46 46 46.0 46 1.2 hrs

CELAR 11 - - - 22 -

GRAPH 01 22 22 22.0 18 29.8 min

GRAPH 02 20 22 20.4 14 59.2 min

GRAPH 08 - - - 18 -

GRAPH 09 - - - 18 -

GRAPH 14 12 12 12.0 8 1.5 hrs

Table 4.9: Results of ACO for the MO-FAP using the second definition of visibility.

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 r
u

n
 t

im
e

 (
m

in
)

𝑇𝐴 𝑅𝐹

𝑇𝐴 𝑅𝑅

Chapter 4. Ant Colony Optimization for the Static FAP

88

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the per-

formance of ACO is significantly better when the first definition of visibility is used.

4.3.1.4 The Parameters Values

Here, different values of each parameter are compared to find the appropriate values.

In order to observe the impact of each parameter on the performance of ACO, the val-

ues of each parameter are compared as follows: different values of the parameter 𝛼

are compared while fixing the other parameters (𝛽 and 𝜌) to the default values (see

Table 4.6). After that, the best value of the parameter 𝛼 is fixed to compare different

values of the parameter 𝛽. Finally, different values of the last parameter 𝜌 are com-

pared. Note that a bold number shows the best result among different values of the

parameter being considered and a dash “-” means that a feasible solution could not be

found.

The performance of ACO with different values of the parameter 𝛼 while 𝛽 = 2

and 𝜌 = 0.90 (their default values) is shown in Table 4.10.

Instance
Average solution

𝛼 = 1 𝛼 = 3 𝛼 = 5

CELAR 01 20.4 20.0 19.2

CELAR 02 14.0 14.0 14.0

CELAR 03 18.0 18.0 16.8

CELAR 04 - 46.0 46.0

CELAR 11 - - -

GRAPH 01 24.0 22.0 20.0

GRAPH 02 20.0 18.4 16.4

GRAPH 08 - 24.0 24.0

GRAPH 09 - - -

GRAPH 14 12.1 12.4 11.6

Table 4.10: Results of ACO using different values of the parameter 𝛼.

Table 4.10 shows that the best value of the parameter 𝛼 is 5. The performance of

ACO with different values of the parameter 𝛽 while 𝛼 = 5 (its best value) and 𝜌 =

0.90 (its default value) is shown in Table 4.11.

Chapter 4. Ant Colony Optimization for the Static FAP

89

Instance
Average solution

𝛽 = 1 𝛽 = 2 𝛽 = 3

CELAR 01

CELAR 02

CELAR 03

CELAR 04

CELAR 11

GRAPH 01

GRAPH 02

GRAPH 08

GRAPH 09

GRAPH 14

20.0 19.2 20.4

14.2 14.0 14.0

18.8 16.8 18.8

46.0 46.0 46.0

- - -

22.0 20.0 20.0

18.4 16.4 16.8

- 24.0 -

- - -

12.2 11.6 12.4

Table 4.11: Results of ACO using different values of the parameter 𝛽.

Table 4.11 shows that the best value of the parameter 𝛽 is 2. The performance of

ACO with different values of the parameter 𝜌 while 𝛼 = 5 and 𝛽 = 2 (their best val-

ues) is shown in Table 4.12.

 Instance
Average solution

𝜌 = 0.80 𝜌 = 0.90 𝜌 = 0.95

CELAR 01

CELAR 02

CELAR 03

CELAR 04

CELAR 11

GRAPH 01

GRAPH 02

GRAPH 08

GRAPH 09

GRAPH 14

19.2 19.2 19.4

14.0 14.0 14.0

16.8 16.8 18.4

46.0 46.0 46.0

- - -

20.0 20.0 20.4

18.0 16.4 16.8

24.0 24.0 24.0

- - -

12.6 11.6 12.8

Table 4.12: Results of ACO using different values of the parameter 𝜌.

Table 4.12 shows that the best value of the parameter 𝜌 is 0.90.

The results of ACO using the best values of the parameters (𝛼 = 5, 𝛽 = 2, 𝜌 = 0.90)

are shown in Table 4.13, where a bold number means the optimal solution is found.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 18 20 19.2 16 1.4 hrs

CELAR 02 14 14 14.0 14 11.2 min

CELAR 03 16 18 16.8 14 31.1 min

CELAR 04 46 46 46.0 46 55.8 min

CELAR 11 - - - 22 -

GRAPH 01 20 20 20.0 18 18.3 min

GRAPH 02 16 18 16.4 14 29.8 min

GRAPH 08 24 24 24.0 18 30.1 min

GRAPH 09 - - - 18 -

GRAPH 14 10 12 11.6 8 59.8 min

Table 4.13: The best results of the ACO algorithm for the MO-FAP.

Chapter 4. Ant Colony Optimization for the Static FAP

90

Table 4.16 shows that ACO managed to achieve a feasible solution for all the instanc-

es except two (CELAR 11 and GRAPH 09). In fact, ACO achieved the optimal solu-

tions for only two instances (CELAR 02 and CELAR 04).

Furthermore, it is of interest to investigate whether ACO without significant changes

can be successfully applied to other variants of the static FAP (MS-FAP and MI-

FAP). Notice that ACO is mainly designed to solve the MO-FAP. Therefore, a small

number of changes are made to ACO. For the MS-FAP, the same ACO algorithm is

used, but in the frequency selection, the selected frequency is changed to be the one

that has the minimum value and is feasible for the most requests. It is found that ACO

has poor performance for MS-FAP and MI-FAP, which agrees with what has been

found by the tabu search algorithm in Chapter 3. It is likely that more significant

changes are required to work well on other variants of the static FAP.

4.3.1.5 The Descent Method

Here, we investigate whether it is beneficial to combine ACO with a descent method

by implementing ACO without it. After that, the performance of ACO with and with-

out the descent method is compared. The performance of ACO without the descent

method is shown in Table 4.14.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 18 20 18.7 16 1.2 hrs

CELAR 02 14 14 14.0 14 9.8 min

CELAR 03 16 18 16.8 14 26.8 min

CELAR 04 46 46 46.0 46 46.1 min

CELAR 11 - - - 22 -

GRAPH 01 20 20 20.0 18 12.2 min

GRAPH 02 16 18 16.4 14 22.4 min

GRAPH 08 - - - 18 -

GRAPH 09 - - - 18 -

GRAPH 14 10 12 11.6 8 52.8 min

Table 4.14: Results of ACO for the MO-FAP without using the descent method.

Table 4.14 shows that ACO without the descent method struggled to find a feasible

solution for CELAR 11, GRAPH 08 and GRAPH 09. Using the descent method

helped ACO to achieve feasible solutions for GRAPH 08 (see Table 4.13). Overall,

combining ACO with the descent method led to a better performance compared with

ACO without the descent method.

Chapter 4. Ant Colony Optimization for the Static FAP

91

4.3.2 Results Comparison with Existing ACO Algorithms

The performance of our ACO is compared with existing ACO in the literature. To the

best of my knowledge, only one published research [109] (described in Section 2.5.1)

applied ACO for the MO-FAP using CELAR and GRAPH datasets. Table 4.15 shows

the results in the form given in [109], i.e. in the form of (y) where y is the number of

violations. Note that y is equal to 0 means a feasible solution is found.

Instance

A
C

O
 [

1
0

9
]

O
u

r
A

C
O

CELAR 01 (0) (0)

CELAR 02 (0) (0)

CELAR 03 (0) (0)

CELAR 04 (8) (0)

CELAR 11 (2) (6)

GRAPH 01 (0) (0)

GRAPH 02 (0) (0)

GRAPH 08 (0) (0)

GRAPH 09 (0) (12)

GRAPH 14 (0) (0)

Table 4.15: Results of ACO and existing ACO algorithm in the literature.

Table 4.15 shows that both of the algorithms struggled to find a feasible solution for

CELAR 11. Moreover, ACO in [109] could not achieve a feasible solution for

CELAR 04, whereas our ACO could. In contrast, our ACO could not achieve a feasi-

ble solution for GRAPH 09, whereas ACO in [109] could. Overall, both of the ACO

algorithms performing equally well.

4.3.3 Results Comparison with Other Algorithms

This section compares the best found results of our ACO algorithm with those of oth-

er algorithms in the literature and our tabu search algorithm (see Chapter 3) as shown

in Table 4.16, where a bold number means that the optimal solution is achieved and a

dash “-” means that the result is not available.

http://fap.zib.de/biblio/content.html#TiHuLe99

Chapter 4. Ant Colony Optimization for the Static FAP

92

Instance

T
ab

u
 s

ea
rc

h
 [

1
5

]

G
E

N
E

T
 [

1
6
]

G
en

et
ic

 a
lg

o
ri

th
m

 [
9
4

]

P
o

te
n

ti
al

 r
ed

u
ct

io
n
 [

1
5

1
]

A
 n

o
n

li
n

ea
r

 a
p

p
ro

ac
h

 [
1
5

0
]

E
v

o
lu

ti
o

n
ar

y
 s

ea
rc

h
 [

3
4

]

T
ab

u
 s

ea
rc

h
 [

1
4

5
]

S
im

u
la

ti
n
g

 a
n
n

ea
li

n
g
 [

1
4

5
]

V
ar

ia
b

le
 d

ep
th

 s
ea

rc
h

 [
1

4
5

]

O
u

r
ta

b
u
 s

ea
rc

h
 a

lg
o

ri
th

m

O
u

r
A

C
O

Optimal

solution

CELAR 01 18 16 20 16 16 - 16 16 16 16 18 16

CELAR 02 14 14 14 14 - 14 14 14 14 14 14 14

CELAR 03 14 14 16 16 16 14 14 14 14 14 16 14

CELAR 04 46 46 46 46 - - 46 46 46 46 46 46

CELAR 11 24 24 32 - - - 22 24 24 38 - 22

GRAPH 01 18 18 20 18 18 18 18 - - 18 20 18

GRAPH 02 16 14 16 14 14 14 14 - - 14 16 14

GRAPH 08 24 22 - 18 18 - 20 - - 18 24 18

GRAPH 09 22 22 28 18 18 - 22 - - 18 - 18

GRAPH 14 12 - 14 10 10 - 10 - - 8 10 8

Table 4.16: Results of ACO and other algorithms in the literature.

Table 4.16 shows that our ACO algorithm achieved competitive results for CELAR

02, CELAR 04 and GRAPH 14, while it achieved reasonable results for other instanc-

es. In contrast, our ACO algorithm struggled to achieve a feasible solution for

CELAR 11 and GRAPH 09. Additionally, our ACO algorithm and the genetic algo-

rithm in [34] are less satisfactory than the other algorithms as these achieved the op-

timal solutions for only two instances. Note that our tabu search algorithm found the

optimal solution for the highest number of instances in Table 4.16.

4.4 Time Complexity and Convergence of ACO

The time complexity of ACO can be expressed using the big O notation by counting

the number of times the key operation, which is assigning a frequency to a request, is

performed. The first step of ACO is selecting a frequency and this requires O(𝑁𝑅2 ∗

𝑁𝐹), while selecting requests to be assigned the selected frequency is of order

O(𝑁𝑅2 ∗ 𝑁𝐹). For each ant, the cost function must be calculated from scratch and this

has complexity of O(𝑁𝑅2). The trail update requires O(𝑁𝑅 ∗ 𝑁𝐹) and the descent

method requires O(𝑁𝑅2 ∗ 𝑁𝐹). Hence, the time complexity of ACO is of order

O(𝑁𝑅2 ∗ 𝑁𝐹).

To investigate the convergence of ACO, this algorithm is executed for 500 genera-

tions for the GRAPH 01 instance. It is run with five different random streams and the

average of the solutions is shown in Figure 4.10.

Chapter 4. Ant Colony Optimization for the Static FAP

93

18

19

20

21

22

23

24

A
ve

ra
ge

 n
u

m
b

e
r

o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Generation

Figure 4.9: The convergence of the ACO algorithm on the GRAPH 01 instance.

Figure 4.9 shows the ACO algorithm converged within 100 generations. Furthermore,

similar convergence has been found for other instances. Therefore, this convergence

experiment suggests that the appropriate number of generations in our ACO for the

static FAP is 100.

4.5 Conclusions

In this study, an improved ACO was introduced for the static FAP, where ACO is

mainly designed to solve the MO-FAP. One of the techniques which was applied to

improve the performance of ACO is the recursive largest first (RLF). In fact, applying

RLF aims to improve the performance of selecting frequencies and requests to be as-

signed. Moreover, ACO was compared using two trail definitions and two visibility

definitions. It was found that using the trail between requests and frequencies led to

better performance than the other trail definition. Moreover, using the visibility defi-

nition based on the number of feasible frequencies (Formula 4.6) resulted in better

performance than another visibility definition. Furthermore, several values for the

parameters 𝛼, 𝛽, 𝜌 were compared and the best values are 5, 2 and 0.90, respectively.

ACO is combined with a descent method to achieve better results when no feasible

solution can be found in a generation. In such generations, the descent method is exe-

cuted for only one ant which constructs the infeasible solution with the minimum

number of unassigned requests. Overall, our ACO algorithm performed similarly to

ACO in the literature, whereas it showed poor performance compared with other algo-

Chapter 4. Ant Colony Optimization for the Static FAP

94

rithms in the literature. Hence, other heuristic algorithms need to be considered to

achieve the optimal solution or better results. In chapter 5, one of the popular heuristic

algorithms called hyper heuristics is considered to solve the static FAP.

Finally, the research questions of this chapter can be answered as follows:

 Can ACO perform better than tabu search on the static FAP?

ACO cannot perform better than tabu search on the static FAP (see Section 4.3.3).

Indeed, ACO struggled to find a feasible solution for some instances (see Table

4.13), so this algorithm is not strong enough.

 Is it beneficial to combine ACO with a local search?

Combining ACO with a local search improves the results of our ACO algorithm

(see Section 4.3.1.5).

 Is ACO an appropriate solution method for the static FAP?

The comparison of the performance of ACO with other algorithms in the literature

(see Table 4.16) suggests that ACO is not the appropriate solution method for the

static FAP due to the poor performance of this algorithm.

Chapter 5. Hyper Heuristic for the Static FAP

95

Chapter 5

Hyper Heuristic for the Static FAP

5.1 Introduction

Hyper heuristic (HH) can be thought of as an algorithm that combines multiple heu-

ristics to solve hard combinatorial optimization problems. The concept of HH is based

on the idea that, as each heuristic has strengths and weaknesses, combining several

heuristics may lead to an improved performance. Such heuristics are called low level

heuristics (LLHs) and are managed by HH. The criteria to select one of these at each

step is usually problem independent. This algorithm is an iterative process of two

stages: heuristic selection and move acceptance.

There are two main types of HH, namely constructive and improvement algorithms

[22]. The constructive HH algorithm constructs a solution from scratch, whereas the

improvement HH algorithm starts with an initial solution and aims to improve it. In

this thesis, an improvement heuristic algorithm was considered in Chapter 3, namely

tabu search (TS), whereas a constructive heuristic algorithm was discussed in Chapter

4, namely ant colony optimization (ACO), and the former proved far superior. There-

Chapter 5. Hyper Heuristic for the Static FAP

96

fore, the improvement approach is adopted for HH in this study. There are relatively

few papers that apply HH for the static frequency assignment problem (FAP). How-

ever, to the best of my knowledge, no existing papers in the literature apply HH on the

static FAP datasets considered in this thesis. Hence, this is the first attempt to solve

such datasets using HH.

In this chapter, a HH algorithm is applied to the static FAP and is mainly designed for

the minimum order FAP (MO-FAP) using several novel and existing techniques. One

of these is using a lower bound on the number of frequencies that are required from

each domain for a feasible solution to exist, based on the underlying graph colouring

model (see Section 3.2). These lower bounds are used to ensure that we never waste

time trying to find a feasible solution with a set of frequencies that do not satisfy the

lower bounds. Moreover, applying simple and advanced LLHs associated with an in-

dependent tabu list for each LLH is aimed to make this algorithm more efficient and

different from other HHs for the static FAP in the literature (see e.g. [96, 97]). This

chapter focuses on the following research questions:

 Can HH perform better than TS and ACO on the static FAP?

 What is the best mechanism for selecting the LLHs?

 Is HH an appropriate solution method for the static FAP?

This chapter is organized as follows: Section 5.2 presents an overview of our HH al-

gorithm for the static FAP. Section 5.3 gives the main components of our HH algo-

rithm. In Section 5.4, the results of HH are given and analysed. Then, the performance

of HH is compared with the algorithms considered in this thesis and other algorithms

in the literature. The time complexity and the convergence of our HH algorithm are

discussed in Section 5.5. Finally, this chapter is closed with conclusions.

5.2 Overview of the Hyper Heuristic Algorithm

5.2.1 Solution Space and Cost function

It was found in [47] that the interference constraints are the most difficult constraints

to be satisfied. Hence, this type of constraint can be relaxed and the solution space is

defined here as the set of all possible solutions that satisfy bidirectional, domain and

pre-assignment constraints. The cost function is defined as the number of broken in-

Chapter 5. Hyper Heuristic for the Static FAP

97

terference constraints, also known as the number of violations. This configuration is

different from other configurations in HH for the static FAP in the literature where no

constraints are relaxed (see e.g. [96, 97]). Note that requests and frequencies are con-

sidered as pairs based on the bidirectional constraints (see Equation 1.1) because this

configuration showed promising performance (see Section 3.5.1.2).

Using the solution space which relaxes the interference constraints creates the follow-

ing sub-problem: minimizing the number of violations with a fixed number of used

frequencies. If a solution with zero violations (a feasible solution) is found, then the

number of used frequencies is reduced using the creating violations phase (see Section

5.3.2) and then the sub-problem is revisited. The process is repeated until a feasible

solution can no longer be found. This process is the same as tabu search in Chapter 3.

5.2.2 Structure of the Hyper Heuristic Algorithm

HH starts with the initial solution phase (see Section 5.3.1). Assume the initial solu-

tion is feasible. Then, the creating violations phase (see Section 5.3.2) is used to re-

duce the number of used frequencies. After that, HH is applied using LLHs (see Sec-

tion 5.3.3) to find a feasible solution with a fixed number of used frequencies. One of

the LLHs is selected in each iteration based on the selection mechanism (see Section

5.3.4) to find a new solution. This solution is accepted or rejected based on the move

acceptance criteria (see Section 5.3.5), which accepts worse solutions a limited num-

ber of times to diversify the search. After that, the process continues until one of the

stopping criteria is met (see Section 5.3.6). If the initial solution is infeasible, then the

creating violations phase is skipped and all available frequencies are allowed. The

overall structure of the HH algorithm considered in this study is illustrated in Figure

5.1.

Chapter 5. Hyper Heuristic for the Static FAP

98

Yes

Initial Solution Phase

 Set number of iterations = 0

Is the number of

violations equal to zero?

 Creating violations phase

Is the number of used
frequencies equal to the

lower bound?

Yes

No

Is the number of

violations equal to zero?

Is the number of used
frequencies equal to

the lower bound?

Yes

Yes

No

Stop
Return a solution

Yes

Select one of the LLHs and apply it to

the current solution

number of iterations = number of iterations + 1

Is the number of iterations > a given

number or the number of used
frequencies equal to the lower bound? Yes

No Is the number of violations

unchanged for more than a given

number of iterations and no more

diversifications are allowed?

No

No

Set number of iterations = 0

Stop

Return a solution

Figure 5.1: Overall structure of the HH algorithm for the static FAP.

5.3 Components of the Hyper Heuristic Algorithm

5.3.1 The Initial Solution Phase

In this phase, the initial solution is generated in the same way as for TS (see Section

3.4.4) to allow a fair comparison between HH and TS. That is, a greedy algorithm

No

Chapter 5. Hyper Heuristic for the Static FAP

99

hybridised with a descent method to produce a feasible initial solution, if possible.

Similarly, a greedy constructive heuristic was used to generate an initial solution in

the HH algorithm for the static FAP in [97].

5.3.2 The Creating Violations Phase

This phase aims to reduce the number of used frequencies in a feasible solution by

removing a used frequency. The creating violations phase that we implement here is

the same as that in TS (see Section 3.4.5). To the best of my knowledge, this idea has

not been previously used in HH for the static FAP.

5.3.3 The Low Level Heuristics

HH involves a set of LLHs, each of which gives a new neighbour solution. In this

study, 13 LLHs are applied, where some of them are simple (and previously used, see

e.g. [97]) and the others are more advanced. Then, HH accepts or rejects each new

solution. In fact, some neighbour solutions are accepted sometimes even if these lead

to an increase in the number of violations in order to diversify the search. Hence, the

LLHs can be divided into two groups: intensification and diversification LLHs. As

this algorithm accepts neighbour solutions that are of the same cost as the current so-

lution, cycling is one of the problems which may be faced in each LLH. In order to

avoid this, each LLH has an independent local tabu list.

Each LLH starts by either choosing a frequency 𝑓𝑘 to be removed or choosing a re-

quest 𝑟𝑖 to be re-assigned. In the former type of the LLHs, the chosen frequency 𝑓𝑘

should satisfy the following conditions: (i) 𝑓𝑘 is not in the local tabu list, (ii) 𝑓𝑘 is in-

volved in most violations. If more than one frequency satisfies these conditions, then

one of them is chosen randomly.

In the latter type of the LLHs, the chosen request 𝑟𝑖 should satisfy the following con-

ditions: (i) 𝑟𝑖 is not in the local tabu list, (ii) 𝑟𝑖 is involved in most violations. If more

than one request satisfies those conditions, then one of them is chosen randomly.

A frequency 𝑓𝑗 to be assigned in place of the removed frequency 𝑓𝑘 or to be assigned

to the chosen request 𝑟𝑖 should satisfy the following conditions: (i) 𝑓𝑗 is not in the lo-

cal tabu list, (ii) 𝑓𝑗 results in the minimum number of violations. If more than one fre-

quency satisfies these conditions, then one of them is chosen randomly.

Chapter 5. Hyper Heuristic for the Static FAP

100

The descriptions of the LLHs which start by choosing a frequency 𝑓𝑘 are given as fol-

lows:

LLH1: the set of requests that are currently assigned to the chosen frequency 𝑓𝑘 is

swapped with its partner (based on the bidirectional constants).

LLH2: all requests assigned to 𝑓𝑘 are re-assigned to either the chosen unused frequen-

cy 𝑓𝑗 or one of the used frequencies. If the assignment to 𝑓𝑗 results in zero vio-

lations, then this is always made, otherwise each request is assigned to a used

frequency that results in the smallest number of violations. In the event of a

tie, the requests are assigned randomly.

LLH3: a request is randomly selected from the set of requests that are currently as-

signed to the chosen frequency 𝑓𝑘 to be re-assigned to the used frequency 𝑓𝑗.

The description of the LLHs which start by choosing a request 𝑟𝑖 is given as follows:

LLH4: the selected request 𝑟𝑖 is assigned to the chosen used frequency 𝑓𝑗.

LLH5: the selected request 𝑟𝑖 is swapped with its partner (based on the bidirectional

constraints).

LLH6: it is similar to LLH2 but the method of choosing the frequency to be removed

is different. Here, the frequency of the selected request 𝑟𝑖 is chosen to be re-

moved.

The following LLHs are not required to satisfy the condition (ii) for selecting 𝑓𝑘,

or 𝑟𝑖, or 𝑓𝑗.

LLH7: it is similar to LLH2 but the method of choosing the frequency to be removed

is different. Here, the frequency 𝑓𝑘 which is assigned to the fewest requests is

removed.

LLH8: a request 𝑟𝑖 is chosen randomly to be re-assigned to a used frequency 𝑓𝑗 which

is also chosen randomly.

LLH9: a request 𝑟𝑖 is chosen randomly to be swapped with its partner (based on the

bidirectional constraints).

Chapter 5. Hyper Heuristic for the Static FAP

101

LLH10: a used frequency 𝑓𝑘 is chosen randomly, and then one of the requests that is

assigned to 𝑓𝑘, say 𝑟𝑖, is randomly selected. After that, a used frequency

𝑓𝑗 which results in the minimum number of violations is assigned to 𝑟𝑖. In case

of a tie, one of them is chosen randomly.

LLH11: each request is swapped with its partner (based on the bidirectional con-

straints) as long as this does not increase the number of violations.

LLH12: for each request 𝑟𝑖, the used frequency 𝑓𝑗 that results in the minimum number

of violations is chosen. In case of a tie, one of them is chosen randomly.

LLH13: the search is diversified by assigning an unused frequency 𝑓𝑗 in place of a

used frequency 𝑓𝑘. In other words, the frequency 𝑓𝑗 is assigned to all requests

that are currently assigned 𝑓𝑘. Here, all the possible choices of 𝑓𝑗 and 𝑓𝑘 are

considered. Then, the choice that results in the lowest number of violations is

chosen.

Recall that LLHs can be divided into two groups: intensification and diversification

LLHs. Here, the former group contains LLH1, LLH3, LLH4, LLH5, LLH8, LLH9,

LLH10, LLH11 and LLH12, and the latter group contains LLH2, LLH6, LLH7 and

LLH13.

Any change made to the solution by each LLH is added to the local tabu list. All the

local tabu lists are cleared when a feasible solution is achieved, i.e. the sub-problem is

solved.

5.3.4 LLH Selection Mechanisms

The LLH selection mechanisms can be executed in two ways: a non-adaptive selec-

tion method such as random selection or an adaptive selection method such as proba-

bilistic selection [22]. In our HH algorithm, both of these selection mechanisms are

considered and compared to select the best one. These two selection mechanisms are

discussed in more detail in the following two subsections.

5.3.4.1 Random Selection of the LLHs

The first selection mechanism of the LLHs in this study is based on randomness.

Random selection of the LLHs is the oldest, the simplest and the most commonly

Chapter 5. Hyper Heuristic for the Static FAP

102

used selection mechanism of the LLHs in HH [27]. This type of selection mechanism

was previously used in HH for the static FAP in [97].

5.3.4.2 Probabilistic Selection of the LLHs

In this type of selection mechanism, the LLHs are selected probabilistically based on

the performance of each LLH. At the beginning, each of the intensification LLHs has

an equal chance of being selected. Note that the diversification LLHs are not probabil-

istically selected because they are intended to take the search to different parts of the

solution space, regardless of the effect on a solution cost. Moreover, the diversifica-

tion LLHs usually lead to worse results, which would result in a lower probability of

selecting them, where this is undesirable. Probabilistic selection was used previously

in HH for the static FAP in [135].

In order to reflect the performance of each LLH, the probabilities are updated by

measuring their contribution in terms of reducing the number of violations. When a

LLH reduces the number of violations, the probability of selecting that LLH increas-

es. Three different approaches can be considered to update the probability when a

LLH leads to a decrease or an increase in the number of violations. These three ap-

proaches are defined as follows (where N is a parameter, which is set to 50 in this

study):

Approach 1:

If the selected 𝐿𝐿𝐻𝑗 decreases the number of violations, the probability of selecting

𝐿𝐿𝐻𝑗 is increased using Formula 5.1.

 𝑃(𝐿𝐿𝐻𝑗) ← 𝑃(𝐿𝐿𝐻𝑗) +
1

𝑁
 (5.1)

In contrast, if 𝐿𝐿𝐻𝑗 increases the number of violations, the probability of selecting

𝐿𝐿𝐻𝑗 is decreased using Formula 5.2.

 𝑃(𝐿𝐿𝐻𝑗) ← 𝑃(𝐿𝐿𝐻𝑗) −
1

𝑁
 (5.2)

Approach 2:

If the selected 𝐿𝐿𝐻𝑗 decreases the number of violations by M, the probability of 𝐿𝐿𝐻𝑗

is increased using Formula 5.3.

Chapter 5. Hyper Heuristic for the Static FAP

103

∑ 𝑃(𝐿𝐿𝐻𝑖)

12

𝑖=1
𝑖≠2,6,7

 𝑃(𝐿𝐿𝐻𝑗) ←
𝑃(𝐿𝐿𝐻𝑗)

1

 𝑃(𝐿𝐿𝐻𝑗) ←
𝑃(𝐿𝐿𝐻𝑗) + 𝑀

𝑁
 (5.3)

Therefore, the probability is increased by a greater amount if 𝐿𝐿𝐻𝑗 causes a large im-

provement in the number of violations.

In contrast, if 𝐿𝐿𝐻𝑗 increases the number of violations, the probability of 𝐿𝐿𝐻𝑗 is un-

changed using Formula 5.4.

 𝑃(𝐿𝐿𝐻𝑗) ← 𝑃(𝐿𝐿𝐻𝑗) (5.4)

Approach 3:

This approach is a mixture of the first two approaches and rewards changes that im-

prove a solution and penalises changes that worsen a solution. If the selected 𝐿𝐿𝐻𝑗

decreases the number of violations by M, then the probability of 𝐿𝐿𝐻𝑗 is increased

according to Formula 5.3. In contrast, if 𝐿𝐿𝐻𝑗 increases the number of violations, the

probability of 𝐿𝐿𝐻𝑗 is decreased according to Formula 5.2.

After increasing or decreasing the probability of the selected LLH using one of the

above approaches, the probabilities are normalised using Formula 5.5.

 (5.5)

Example 5.1 clarifies the concept of the probabilistic selection of the LLHs.

Example 5.1:

Assume the probabilistic selection of the LLHs is based on Approach 3. In the

first iteration, LLH1 is selected and reduces the number of violations by 6. In

the second iteration, LLH4 is selected and reduces the number of violations by

20. The probability of selecting of each LLH is shown in Table 5.1.

Chapter 5. Hyper Heuristic for the Static FAP

104

LLHs
Initial

probability
M P(LLH)

First

updated

probability

M P(LLH)

Second

updated

probability

 LLH 1 0.1111 6 0.12222 0.12088 - 0.12088 0.0935

 LLH 2 0.1111 - 0.11111 0.10989 - 0.10989 0.08503

 LLH 3 0.1111 - 0.11111 0.10989 - 0.10989 0.08503

 LLH 4 0.1111 - 0.11111 0.10989 20 0.40219 0.31122

 LLH 5 0.1111 - 0.11111 0.10989 - 0.10989 0.08503

 LLH 6 0.1111 - 0.11111 0.10989 - 0.10989 0.08503

 LLH 7 0.1111 - 0.11111 0.10989 - 0.10989 0.08503

 LLH 8 0.1111 - 0.11111 0.10989 - 0.10989 0.08503

 LLH 9 0.1111 - 0.11111 0.10989 - 0.10989 0.08503

 Total 1 6 1.011102 1 20 1.29230 1

 Table 5.1: An example of updating the probability of selecting each LLH.

Table 5.1 shows that the probability of selecting LLH1 is increased from

0.1111 to 0.12088, reflecting its success and making it more likely to be se-

lected in the future. In the second iteration, the probability of selecting LLH4 is

increased by 0.20133, which reflects its success. It can be seen that a bigger

reduction in the number of violations results in a bigger increase in the corre-

sponding probability.

Limitation on probabilities

Probabilistic selection of the LLHs can be implemented in two different ways:

1. Probabilistic selection of the LLHs without a limit.

2. Probabilistic selection of the LLHs with a limit.

In the first type of implementation, the probabilities have freedom to be increased or

decreased without a limit. This may lead to some LLHs being ignored because their

probabilities reach approximately zero. In order to avoid this, the second type of im-

plementation restricts the probabilities by giving a minimum limit of the probability

of selecting each LLH. The reason behind using this limit is to make sure there is a

balance between selecting all the LLHs.

In order to avoid probabilities dropping below the limit value, which is set to 0.05 in

this study, the probability of 𝐿𝐿𝐻𝑗 is updated using Formula 5.6. This may lead to an

increase in the probability in some LLHs.

 𝑃(𝐿𝐿𝐻𝑗) ← 𝑀𝑎𝑥 (0.05 , 𝑃(𝐿𝐿𝐻𝑗)) (5.6)

Chapter 5. Hyper Heuristic for the Static FAP

105

Using a limit for the probability of selecting each LLH was previously used in [29],

but this technique is implemented differently in our HH algorithm by considering two

stages of removing the extra probability, which is given by Formula 5.7.

 𝐸𝑥𝑡𝑟𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.05 − 𝑃(𝐿𝐿𝐻𝑗) (5.7)

Note that the second stage is used when the first stage fails to remove the extra proba-

bility. These two stages are described as follows:

a) Removing the extra probability by equivalent division

The extra probability is equally removed from those LLHs which do not reach the

limit of the probability value. Assume that we have n LLHs that do not reach the limit

of the probability. Then, the extra probability is divided by n, which gives the reduc-

tion probability as given by Formula 5.8.

 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐸𝑥𝑡𝑟𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑛
 (5.8)

Then, the reduction probability is subtracted from each probability of the n LLHs. In

order to clarify this, consider Example 5.2.

Example 5.2:

Assume there are five LLHs and their probabilities are given in Table 5.2.

Table 5.2: An example of probabilities of selecting the LLHs.

Then, assume the probability of LLH1 is increased by 0.05. After that, the

probability is updated using Formula 5.5 and the limit of the probability is ap-

plied using Formula 5.6 as shown in Table 5.3.

LLHs P(LLH)

LLH 1 0.40

LLH 2 0.30

LLH 3 0.20

LLH 4 0.05

LLH 5 0.05

Total 1

Chapter 5. Hyper Heuristic for the Static FAP

106

LLHs P(LLH)
Updated

probability

Applying the

limitation

LLH 1 0.45 0.428571 0.428571

LLH 2 0.30 0.285714 0.285714

LLH 3 0.20 0.190476 0.190476

LLH 4 0.05 0.047619 0.050000

LLH 5 0.05 0.047619 0.050000

Total 1.05 1 1.004762

Table 5.3: Applying the limit on the probabilities of selecting the LLHs.

Hence, the extra probability 0.004762 is removed from the other three LLHs

which do not reach the limit of the probability. Using equivalent division ac-

cording to Formula 5.8, each of these is reduced by
0.004762

3
 = 0.00159 as

shown in Table 5.4.

LLHs P(LLH)
Appling the

equivalent division

LLH 1 0.428571 0.426984

LLH 2 0.285714 0.284127

LLH 3 0.190476 0.188889

LLH 4 0.050000 0.050000

LLH 5 0.050000 0.050000

Total 1.004762 1

Table 5.4: Applying the equivalent division to the probabilities of selecting the LLHs.

b) Removing the extra probability by proportional division

Occasionally, the previous stage resulted in at least one LLH with probability still

being less than the limit. This happens when the probability of a particular LLH is

narrowly above 0.05, but becomes smaller than 0.05 by the equivalent division pro-

cess. In this stage, the extra probability is removed proportionally from the probabili-

ties of LLHs which do not reach the limit. Say there are m such LLHs. Therefore, the

probability of selecting each of the m LLHs is reduced by a different value based on

proportional division. The reduction probabilities are given by Formula 5.9.

 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐿𝐿𝐻𝑗) =
𝑃(𝐿𝐿𝐻𝑗)

∑ 𝑃(𝐿𝐿𝐻𝑖)𝑚
𝑖=1

 × 𝐸𝑥𝑡𝑟𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (5.9)

In order to clarify this concept, consider Example 5.3.

Example 5.3:

Assume removing the extra probability by equivalent division results in an ex-

tra probability as shown in Table 5.5. Hence, the extra probability is removed

by proportional division. As a result, each probability of LLHs which is higher

Chapter 5. Hyper Heuristic for the Static FAP

107

than the limit is reduced by different values based on proportional division us-

ing Formula 5.9. These results are shown in Table 5.5.

LLHs P(LLH)

Updated

probability

Applying the

limitation

Reduction

probability

Updated

probability

 LLH 1 0.450000 0.428571 0.428571 0.002255 0.426316

 LLH 2 0.300000 0.285714 0.285714 0.001504 0.284210

 LLH 3 0.200000 0.190476 0.190476 0.001003 0.189473

 LLH 4 0.050000 0.047619 0.050000 0 0.050000

 LLH 5 0.050000 0.047619 0.050000 0 0.050000

 Total 1.050000 1 1.004762 0.004762 1

 Table 5.5: Applying the proportional division to the probabilities of selecting the LLHs.

The extra probability in Table 5.5 is removed using proportional division

based on Formula 5.9 which is calculated as follows:

 Reduction probability (LLH1) =
0.428571

0.904761
 × 0.004762 = 0.002255

 Reduction probability (LLH2) =
0.285714

0.904761
 × 0.004762 = 0.001504

 Reduction probability (LLH3) =
0.190476

0.904761
 × 0.004762 = 0.001003

Finally, each different reduction probability is removed from each correspond-

ing probability of the LLHs as shown in Table 5.5.

5.3.5 Acceptance Criteria

A combination of two types of acceptance criteria is applied. This concept was previ-

ously used in the literature (see e.g. [129]). The first one is applied when one of the

intensification LLHs is selected, where only neighbour solutions that are not worse

than the current solution are accepted. This type of criteria is commonly used and one

of the successful acceptance criteria in the literature [122]. The second types of ac-

ceptance criteria is applied when one of the diversification LLHs is selected, where

neighbour solutions are accepted regardless of the effect on the solution cost, i.e. even

if these lead to an increase in the number of violations. Note that one of the diversifi-

cation LLHs is selected when no better neighbour solution has been found for a cer-

tain number of iterations using the intensification LLHs. This allows the search to

diversify by moving into a new area of the search space. Note that each of the diversi-

fication LLHs is allowed to give a worse solution for no more than a given number of

times.

Chapter 5. Hyper Heuristic for the Static FAP

108

5.3.6 Stopping Criteria

The HH algorithm has three stopping criteria as follows: (i) a feasible solution whose

number of frequencies is equal to the lower bound is found (as this is the optimal so-

lution), (ii) the number of iterations is equal to a given number without successfully

solving the sub-problem (see Section 5.2.1), i.e. a feasible solution could not be

achieved (note that the number of iterations is reset to zero each time the sub-problem

is solved), and (iii) the number of violations remains unchanged for more than a given

number of iterations and the number of times each diversification LLH is executed

reaches a given number.

5.4 Experiments and Results

This section presents and compares the results of HH for the static FAP in three stages

using CELAR and GRAPH datasets (available on the FAP website1). The first stage

presents and compares the results of HH in this study. The second stage compares the

performance of HH with other algorithms in the literature. Finally, the performance of

HH is compared with the algorithms considered in this thesis. The parameters of our

HH algorithm are set based on experimentations for solving the sub-problem as fol-

lows:

 The maximum number of iterations is 2,500.

 The tabu tenure of a local tabu list for each LLH is 5.

 When no better neighbour solution can be achieved using the intensification

LLHs for 50 consecutively iterations, a solution is produced using one of the

diversification LLHs. This will usually be worse than the current solution.

Each of the diversification LLHs is allowed to give a worse solution for no

more than 6 times.

In this study, the algorithm was coded using FORTRAN 95 and all experiments were

conducted on a 3.0 GHz Intel Core I3-2120 Processor (2nd Generation) with 8GB

RAM and a 1TB Hard Drive.

5.4.1 Results Comparison of the Hyper Heuristic Algorithm

This section compares the performance of HH for the static FAP using random and

probabilistic selection mechanism for the LLHs. The optimal solutions of these da-

Chapter 5. Hyper Heuristic for the Static FAP

109

tasets are known (available on the FAP website1). Therefore, the results are compared

with the known optimal solutions. Note that the initial solutions in this algorithm are

the same as given in Section 3.5.1.1.

As HH is mainly designed for the MO-FAP, applying HH to solve this problem is

considered first. For each instance, HH is run 5 times, where each run uses different

random number streams. The selected number of runs is chosen based on the experi-

ments. The results of HH include the best, the worst and the average solution, and the

average run time. Notice that a bold number means that the optimal solution is

achieved.

5.4.1.1 Random Selection of the LLHs

Three different versions of HH are examined and compared using different subsets of

the LLHs to investigate the importance of each subset. The first version of HH con-

siders all the LLHs (this version of HH is denoted by approach A). The second ver-

sion of HH considers all the LLHs except the diversification LLHs (this version of

HH is denoted by approach B). The third version of HH considers all the LLHs except

the LLHs which do not contribute to reducing the number of violations in approach A

(this version of HH is denoted by approach C). The results of these approaches are

given and compared as follows:

Approach A: this approach considers the performance of HH including all the LLHs.

The results of this approach are given in Table 5.6.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 16 24 19.2 16 18.03 min

CELAR 02 14 14 14.0 14 0.62 sec

CELAR 03 16 18 16.8 14 3.20 min

CELAR 04 46 46 46.0 46 54.34 sec

CELAR 11 36 48 40.0 22 10.41 min

GRAPH 01 18 20 18.4 18 48.03 sec

GRAPH 02 14 16 14.8 14 3.00 min

GRAPH 08 20 20 20.0 18 13.20 min

GRAPH 09 20 24 22.0 18 19.21 min

GRAPH 14 10 12 10.8 8 15.61 min

Table 5.6: Results of HH for the MO-FAP using approach A.

1 http://fap.zib.de/problems/CALMA/ (last accessed 25 February 2015).

http://fap.zib.de/problems/CALMA/%20(last

Chapter 5. Hyper Heuristic for the Static FAP

110

0

100

200

300

400

500

600

To
ta

l n
u

m
b

e
r

o
f

ca
lls

CELAR 01

CELAR 03

GRAPH 02

0

100

200

300

400

500

600

To
ta

l n
u

m
b

e
r

o
f

e
xe

cu
ti

o
n

s

CELAR 01

CELAR 03

GRAPH 02

Table 5.6 shows that the optimal solution is achieved for CELAR 02 and CELAR 04,

and most of the runs for GRAPH 01 and GRAPH 02. In contrast, for some instances,

HH achieved solutions that use considerably more frequencies than the optimal.

Three instances are selected to analyse the number of calls (the number of times each

LLH is selected) and the number of executions (the number of times each LLH is se-

lected and accepted) of the LLHs. The selected instances represent different instances

with different number of requests and constraints. Figure 5.2 shows the total number

of calls of the LLHs for the selected instances.

Figure 5.2: The total number of calls of the LLHs for the selected instances.

Figure 5.2 shows that the lowest numbers of calls of the LLHs correspond to LLH2,

LLH6, LLH7 and LLH13 (the diversification LLHs). The reason behind that is that

these LLHs are applied to diversify the search and the use of these is limited. The to-

tal number of times each LLH is executed for the same selected instances is shown in

Figure 5.3.

Figure 5.3: The total number of executions of the LLHs for the selected instances.

Chapter 5. Hyper Heuristic for the Static FAP

111

0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 r
e

d
u

ct
io

n
 in

 t
h

e
 n

u
m

b
e

r
o

f
vi

o
la

ti
o

n
s

CELAR 01

CELAR 03

GRAPH 02

0

200

400

600

800

1000

1200

To
ta

l r
e

d
u

ct
io

n
 in

 t
h

e
 n

u
m

b
e

r
o

f
vi

o
la

ti
o

n
s

CELAR 01

CELAR 03

GRAPH 02

Figure 5.3 shows that the lowest numbers of executions of the LLHs correspond to the

diversification LLHs (LLH2, LLH6, LLH7 and LLH13), as well as LLH1. This is be-

cause LLH1 involves the swapping of a set of pairs of requests, which is a small

change in the solution compared with the other LLHs, so this is less likely to be ac-

cepted. However, the importance of LLH1 is investigated by considering the total and

average number of violations which has been reduced by each LLH. Figure 5.4 and

Figure 5.5 show the total and the average reduction in the number of violations due to

each LLH, respectively.

Figure 5.4: Total reduction in the number of violations due to each LLH.

Figure 5.5: Average reduction in the number of violations due to each LLH.

Figure 5.4 and Figure 5.5 shows that LLH2, LLH6, LLH7 and LLH13 did not contrib-

ute to reducing the number of violations as was explained earlier. Moreover, LLH8,

Chapter 5. Hyper Heuristic for the Static FAP

112

LLH9 and LLH10 did not contribute to reducing the number of violations either, but

these LLHs are accepted as can be seen in Figure 5.3 because they keep the number of

violations unchanged. To investigate whether these LLHs are important for optimiz-

ing the solution, approach B excludes the diversification LLHs and approach C ex-

cludes LLH8, LLH9 and LLH10 as shown next.

Approach B: this approach considers the performance of HH including all LLHs ex-

cept the diversification LLHs (LLH2, LLH6, LLH7 and LLH13). The results of this ap-

proach are given in Table 5.7.

Table 5.7: Results of HH for the MO-FAP using approach B.

Table 5.7 shows that this approach struggled to find the optimal solutions in most of

the instances, whereas in approach A the optimal solutions are found in almost half of

the instances. Moreover, this approach struggled to improve the initial solution in

some of the instances (see Table 3.6). Therefore, these results demonstrate the im-

portance of the diversification LLHs to achieve better quality solutions.

Approach C: this approach excludes some LLHs which do not contribute to reducing

the number of violations using approach A. In other words, HH is executed without

LLH8, LLH9 and LLH10. The results of this approach are shown in Table 5.8.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 18 22 20.4 16 18.03 min

CELAR 02 14 14 14.0 14 0.62 sec

CELAR 03 16 18 17.2 14 3.60 min

CELAR 04 46 46 46.0 46 54.34 sec

CELAR 11 34 48 41.2 22 13.21 min

GRAPH 01 18 18 18.0 18 25.23 min

GRAPH 02 14 16 14.8 14 2.20 min

GRAPH 08 20 24 22.0 18 14.40 min

GRAPH 09 20 24 21.6 18 31.21 min

GRAPH 14 10 12 10.4 8 25.21 min

Table 5.8: Results of HH for the MO-FAP using approach C.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 20 24 21.6 16 8.63 min

CELAR 02 14 14 14.0 14 0.62 sec

CELAR 03 16 20 18.0 14 2.00 min

CELAR 04 46 46 46.0 46 54.34 sec

CELAR 11 44 48 44.8 22 7.61 min

GRAPH 01 20 22 21.2 18 1.83 min

GRAPH 02 16 20 17.2 14 3.40 min

GRAPH 08 20 28 23.2 18 7.60 min

GRAPH 09 22 28 24.4 18 13.21 min

GRAPH 14 10 12 11.6 8 10.21 min

Chapter 5. Hyper Heuristic for the Static FAP

113

0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 n
u

m
b

e
rs

 o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Approach A

Approach B

Approach C

0

5

10

15

20

25

30

35

A
ve

ra
ge

 r
u

n
 t

im
e

 (
m

in
)

 Approach A

 Approach C

By comparing the average solutions of approach A and approach C, it can be seen that

approach C is better than approach A for three instances, but worse for four instances.

The run time is generally slower for approach C. In order to give a clear picture about

the performance of each approach given earlier, the average solutions of the three dif-

ferent approaches are presented in Figure 5.6.

Figure 5.6: Average solutions of the three different approaches of the HH algorithm.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that ap-

proach A is significantly better than approach B. Furthermore, there is no significant

difference between approach A and approach C. Hence, these two approaches are

compared by considering the run time. Figure 5.7 presents a comparison of the run

time between approach A and approach C.

Figure 5.7: Average run time of approach A and approach C.

Chapter 5. Hyper Heuristic for the Static FAP

114

0

0.2

0.4

0.6

0.8

1

1.2

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

1
0

5
0

1
1

0
0

P
ro

b
ab

ili
ti

e
s

o
f

th
e

 L
LH

s

Iterations

LLH1

LLH3

LLH4

LLH5

LLH8

LLH9

LLH10

LLH11

LLH12

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the av-

erage run time of approach A is significantly better than the average run time of ap-

proach C. Therefore, approach A is selected in this stage as the best approach.

5.4.1.2 Probabilistic Selection of the LLHs

In this section, the performance of the three different approaches, namely approach 1,

2 and 3 (see Section 5.3.4.2), are compared in two different ways: allowing the proba-

bilities of the LLHs to vary without and with a limit. Adding a limit to the probabili-

ties of the LLHs creates a balance which makes sure no LLH is ignored. Three in-

stances, namely CELAR 01, CELAR 03 and GRAPH 08, are used to test these differ-

ent approaches. The selected instances represent different instances with different

numbers of requests and constraints. The following subsections discuss this compari-

son in detail.

5.4.1.2.1 Probabilistic Selection of the LLHs without a Limit

Here, the LLHs probabilities have freedom to be increased or decreased without a

limit. The results of each approach are given as follows:

Approach 1:

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 20 24 21.6 16 50.43 min

CELAR 03 16 18 17.2 14 9.60 min

GRAPH 08 20 28 23.2 18 3.70 min

Table 5.9: Results of approach 1 based on the probabilistic selection of the LLHs without a limit.

Figure 5.8: Probabilities of the LLHs in CELAR 01 during the iterations using approach 1 without a limit.

Chapter 5. Hyper Heuristic for the Static FAP

115

0

0.2

0.4

0.6

0.8

1

1.2

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

1
0

5
0

1
1

0
0

P
ro

b
ab

ili
ti

e
s

o
f

th
e

 L
LH

s

Iterations

LLH1

LLH3

LLH4

LLH5

LLH8

LLH9

LLH10

LLH11

LLH12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

1
0

5
0

1
1

0
0

P
ro

b
ab

ili
ti

e
s

o
f

th
e

 L
LH

s

Iterations

LLH1

LLH3

LLH4

LLH5

LLH8

LLH9

LLH10

LLH11

LLH12

Approach 2:

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 18 24 20.4 16 32.43 min

CELAR 03 16 18 16.8 14 9.40 min

GRAPH 08 20 22 20.4 18 37.20 min

Table 5.10: Results of Approach 2 based on the probabilistic selection of the LLHs without a limit.

Figure 5.9: Probabilities of the LLHs in CELAR 01 during the iterations using approach 2 without a limit.

Approach 3:

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 18 22 19.2 16 50.43 min

CELAR 03 14 18 16.4 14 9.40 min

GRAPH 08 18 22 20.4 18 37.20 min

Table 5.11: Results of approach 3 based on the probabilstic selection of the LLHs without a limit.

Figure 5.10: Probabilities of the LLHs in CELAR 01 during the iterations using approach 3 without a limit.

Chapter 5. Hyper Heuristic for the Static FAP

116

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0
1

1
0

0
1

2
0

0
1

3
0

0
1

4
0

0
1

5
0

0
1

6
0

0
1

7
0

0
1

8
0

0
1

9
0

0
2

0
0

0
2

1
0

0
2

2
0

0
2

3
0

0
2

4
0

0

P
ro

b
ab

ili
ti

e
s

o
f

th
e

 L
LH

s

Iterations

LLH1

LLH3

LLH4

LLH5

LLH8

LLH9

LLH10

LLH11

LLH12

It can be seen from Figures 5.8, 5.9 and 5.10 that typically the probability of one LLH

becomes close to 1. Interestingly, it is not the same LLH in each case. On the other

hand, the probabilities of the majority of the LLHs reach 0. This means there is no

chance of them being selected in the future. Hence, it is essential to add a limit for

each LLH probability, which is discussed next.

5.4.1.2.2 Probabilistic Selection of the LLHs with a Limit

The probability of each LLH is restricted by a limit, that is, it is not permitted to de-

crease below 0.05. The results of these approaches are given as follows:

Approach 1:

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 18 22 20.0 16 37.63 min

CELAR 03 16 18 17.2 14 7.20 min

GRAPH 08 18 22 19.6 18 26.40 min

Table 5.12: Results of approach 1 based on the probabilistic selection of the LLHs with a limit.

Figure 5.11: Probabilities of the LLHs in CELAR 01 during the iterations using approach 1 with a limit.

Approach 2:

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 18 24 20.0 16 33.63 min

CELAR 03 16 18 16.4 14 9.40 min

GRAPH 08 20 22 21.2 18 25.20 min

Table 5.13: Results of approach 2 based on the probabilistic selection of the LLHs with a limit.

Chapter 5. Hyper Heuristic for the Static FAP

117

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0
1

1
0

0
1

2
0

0
1

3
0

0
1

4
0

0
1

5
0

0
1

6
0

0
1

7
0

0
1

8
0

0
1

9
0

0
2

0
0

0
2

1
0

0
2

2
0

0
2

3
0

0
2

4
0

0

P
ro

b
ab

ili
ti

e
s

o
f

th
e

 L
LH

s

Iterations

LLH1

LLH3

LLH4

LLH5

LLH8

LLH9

LLH10

LLH11

LLH12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

4
2

0
0

4
4

0
0

4
6

0
0

4
8

0
0

5
0

0
0

P
ro

b
ab

ili
ti

e
s

o
f

th
e

 L
LH

s

Iterations

LLH1

LLH3

LLH4

LLH5

LLH8

LLH9

LLH10

LLH11

LLH12

Figure 5.12: Probabilities of the LLHs in CELAR 01 during the iterations using approach 2 with a limit.

Approach 3:

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 16 22 18.8 16 26.03 min

CELAR 03 16 18 16.4 14 6.60 min

GRAPH 08 18 20 19.2 18 20.80 min

Table 5.14: Results of approach 3 based on the probabilistic selection of the LLHs with a limit.

Figure 5.13: Probabilities of the LLHs in CELAR 01 during the iterations using approach 3 with a limit.

It can be seen from Figures 5.11, 5.12 and 5.13 that giving the probability of each

LLH a limit is successful to ensure that all LLHs are involved in the search and prob-

abilistically chosen. The LLHs that have high probabilities are the same LLHs as in

Section 5.4.1.2.1, although here all LLHs have a reasonable chance of being selected.

Chapter 5. Hyper Heuristic for the Static FAP

118

50

52

54

56

58

60

62

64

Approach 1 Approach 2 Approach 3

To
ta

l a
ve

ra
ge

 n
u

m
b

e
rs

 o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Probabilistic selection of the
LLHs without a limit

Probabilistic selection of the
LLHs with a limit

0

5

10

15

20

25

CELAR 01 CELAR 03 GRAPH 08

A
ve

ra
ge

 n
u

m
b

e
r

o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Approach 1

Approach 2

Approach 3

5.4.1.2.3 Results Comparison and Analysis

This section compares the performance of HH which is based on the probabilistic se-

lection without and with a limit (see Section 5.4.1.2.1 and Section 5.4.1.2.2, respec-

tively). The total average numbers of used frequencies for all instances in each ap-

proach are shown in Figure 5.14.

Figure 5.14: Total average number of used frequencies for each approach.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the per-

formance of HH with a limit on the probabilities of LLHs is significantly better than

HH without a limit. Hence, the three approaches (see Section 5.3.4.2) of updating the

probabilities with a limit are compared as shown in Figure 5.15

Figure 5.15: The average number of used frequencies in each instance for all approaches based on the probabilistic selection.

Chapter 5. Hyper Heuristic for the Static FAP

119

0

5

10

15

20

25

30

35

40

CELAR 01 CELAR 03 GRAPH 08

A
ve

ra
ge

 r
u

n
 t

im
e

 (
m

in
)

Approach 1

Approach 2

Approach 3

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is

no significant difference between the average results over the selected three instances

of these approaches. Hence, these approaches are compared based on the average run

time as shown in Figure 5.16.

Figure 5.16: The average run time in each instance for all approaches based on the probabilistic selection.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is

a significant difference between the average run times over the selected three instanc-

es of these approaches. Therefore, the selected approach in this stage is approach 3.

Finally, Table 5.15 presents the best results of the HH algorithm using the LLHs

probability selection with a limit and updating the probability using approach 3.

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 16 22 18.8 16 36.03 min

CELAR 02 14 14 14.0 14 0.82 sec

CELAR 03 16 18 16.4 14 7.60 min

CELAR 04 46 46 46.0 46 54.34 sec

CELAR 11 38 48 43.2 22 19.21 min

GRAPH 01 18 18 18.0 18 1.13 min

GRAPH 02 14 18 14.8 14 4.60 min

GRAPH 08 18 20 19.2 18 28.80 min

GRAPH 09 22 24 22.4 18 38.41 min

GRAPH 14 10 12 10.8 8 38.4 1min

Table 5.15: The best results of the HH algorithm for the MO-FAP based on the probabilistic selection.

5.4.1.3 Comparison of the LLH Selection Mechanisms

The results of the HH algorithm based on the LLH selections mechanisms, which are

random and probabilistic selection mechanism, are shown in Figure 5.17.

Chapter 5. Hyper Heuristic for the Static FAP

120

0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 n
u

m
b

e
rs

 o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

 Random selection

 Probabilistic selection

0

5

10

15

20

25

30

35

40

45

A
ve

ra
ge

 r
u

n
 t

im
e

 (
m

in
)

 Random selection

 Probabilistic selection

Figure 5.17: The average results of the HH algorithm using two types of the LLH selection mechanisms.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that there is

no significant difference between the average results of HH based on the LLHs selec-

tion mechanisms. Therefore, these approaches are compared based on the run time as

shown in Figure 5.18.

Figure 5.18: The average run time of the HH algorithm using two types of the LLH selection mechanisms.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the av-

erage run time using the random selection is significantly better than using the proba-

bilistic selection of the LLHs. Hence, the random selection of the LLHs is selected.

The best results of the HH algorithm are given in Table 5.16. Note that the run time of

finding the lower bound of the number of frequencies for each domain (see Table 3.3)

is included.

Chapter 5. Hyper Heuristic for the Static FAP

121

Instance
Best

solution

Worst

solution

Average

solution

Optimal

solution

Average

run time

CELAR 01 16 24 19.2 16 18.03 min

CELAR 02 14 14 14.0 14 0.62 sec

CELAR 03 16 18 16.8 14 3.20 min

CELAR 04 46 46 46.0 46 54.34 sec

CELAR 11 36 48 40.0 22 10.41 min

GRAPH 01 18 20 18.4 18 48.03sec

GRAPH 02 14 16 14.8 14 3.00 min

GRAPH 08 20 20 20.0 18 13.20 min

GRAPH 09 20 24 22.0 18 19.21 min

GRAPH 14 10 12 10.8 8 15.61 min

Table 5.16: The best results of the HH algorithm for the MO-FAP.

Table 5.16 shows that HH achieved the optimal solution for CELAR 01, CELAR 02,

CELAR 04, GRAPH 01 and GRAPH 02. However, for some instances, it used con-

siderably more frequencies than the optimal solution. Moreover, these results were

achieved in a reasonable time, mostly less than 18 minutes.

Furthermore, it is of interest to investigate whether HH without significant changes

can be successfully applied to other variants of the static FAP (MS-FAP and MI-

FAP). Notice that our HH algorithm has been mainly designed to solve the MO-FAP.

Therefore, a small number of changes are made to the HH algorithm to solve the MS-

FAP. For example, in the creating violations phase, the removed frequency is changed

to be the frequency that reduces the maximum value of the used frequencies. For the

MI-FAP, the creating violations phase is omitted as minimizing the number of used

frequencies is not required. It was found that HH showed poor performance for both

MS-FAP and MI-FAP, which agrees with the findings for tabu search (TS) and ant

colony optimization (ACO) (see Chapters 3 and 4, respectively). It is likely that more

significant changes are required for HH to work well on other variants of the static

FAP.

5.4.2 Results Comparison with Other Algorithms

This section compares the performance of our HH algorithm with other algorithms in

the literature and the algorithms considered in this thesis, namely TS and ACO. The

comparison is shown in Table 5.17, where a bold number means that the optimal solu-

tion was achieved and a dash “-” means that this result is not available.

Chapter 5. Hyper Heuristic for the Static FAP

122

Instance

G
E

N
E

T
 [

1
6
]

G
en

et
ic

 a
lg

o
ri

th
m

 [
9
4

]

P
o

te
n

ti
al

 r
ed

u
ct

io
n
 [

1
5

1
]

A
 n

o
n

li
n

ea
r

 a
p

p
ro

ac
h

 [
1
5

0
]

E
v

o
lu

ti
o

n
ar

y
 s

ea
rc

h
 [

3
4

]

S
im

u
la

ti
n
g

 a
n
n

ea
li

n
g
 [

1
4

5
]

V
ar

ia
b

le
 d

ep
th

 s
ea

rc
h

 [
1

4
5

]

T
S

 [
1
5

]

T
S

 [
1
4

5
]

O
u

r
T

S
 a

lg
o

ri
th

m

O
u

r
A

C
O

 a
lg

o
ri

th
m

O
u

r
H

H
 a

lg
o

ri
th

m

Optimal

solution

CELAR 01 16 20 16 16 - 16 16 18 16 16 18 16 16

CELAR 02 14 14 14 - 14 14 14 14 14 14 14 14 14

CELAR 03 14 16 16 16 14 14 14 14 14 14 16 16 14

CELAR 04 46 46 46 - - 46 46 46 46 46 46 46 46

CELAR 11 24 32 - - - 24 24 24 22 38 - 36 22

GRAPH 01 18 20 18 18 18 - - 18 18 18 20 18 18

GRAPH 02 14 16 14 14 14 - - 16 14 14 16 14 14

GRAPH 08 22 - 18 18 - - - 24 20 18 24 20 18

GRAPH 09 22 28 18 18 - - - 22 22 18 - 20 18

GRAPH 14 - 14 10 10 - - - 12 10 8 10 10 8

Table 5.17: Results of HH and other algorithms in the literature.

Table 5.17 shows that our HH algorithm achieved the optimal solution for half of the

instances and came as the fifth best algorithm (based on the number of optimal solu-

tions achieved by each algorithm). However, the majority of the optimal solutions

were achieved by our TS algorithm, which is the best performing algorithm in Table

5.17 and in this thesis. In contrast, the genetic algorithm in [94] and our ACO algo-

rithm showed poor performance compared with the other algorithms. In fact, the op-

timal solution was achieved for only two instances. Overall, our HH algorithm came

as the second best algorithm in this study and shows reasonable results compared

with other algorithms in the literature.

5.4.3 Results Comparison with TS and ACO Algorithms

This section compares the performance of the three heuristic algorithms considered in

this study, which are TS, ACO and HH, in order to identify an appropriate solution

method for the static FAP and to determine the appropriate heuristic algorithms to be

used to construct an approach to solve the dynamic FAP, where the run time is im-

portant. Table 5.18 shows the results comparison of these heuristic algorithms includ-

ing the best found solution, the average run time and the optimal solution. Note that a

bold number means that the optimal solution was achieved and a dash “-” means that

a feasible solution could not be found.

Chapter 5. Hyper Heuristic for the Static FAP

123

0

1

2

3

4

5

6

7

8

9

10

TS ACO HH

N
u

m
b

e
r

o
f

th
e

 in
st

an
ce

s

Number of the instances
where the optimal solution is
not achieved.

Number of the instances
where the optimal solution is
achieved.

Instance
Best found Average run time Optimal

solution TS ACO HH TS ACO HH

CELAR 01 16 18 16 3.6 min 1.4 hrs 18.0 min 16

CELAR 02 14 14 14 0.5 sec 11.2 min 0.6 sec 14

CELAR 03 14 16 16 1.0 min 31.1 min 3.2 min 14

CELAR 04 46 46 46 54.3 sec 55.8 min 54.3 sec 46

CELAR 11 38 - 36 8.8 min - 10.4 min 22

GRAPH 01 18 20 18 5.4 sec 18.0 min 48.3 sec 18

GRAPH 02 14 16 14 2.2 sec 29.8 min 3.0 min 14

GRAPH 08 18 24 20 24.3 sec 30.1 min 13.2 min 18

GRAPH 09 18 - 20 3.0 min - 19.2 min 18

GRAPH 14 8 10 10 4.8 min 59.8 min 15.6 min 8

Table 5.18: The best solutions and the average run time of TS, ACO and HH in this study.

Table 5.18 shows that the best performing algorithm in this study is TS while HH

came as the second best algorithm. In contrast, ACO is the worst performing among

these heuristic algorithms. Figure 5.19 compares the quality of the solution of these

heuristic algorithms by showing the number of instances where the optimal solution is

achieved and the number of instances where the optimal solution is not achieved.

Figure 5.19: The numbers of instances where the optimal solution is achieved by TS, ACO and HH.

Figure 5.19 shows TS is the best performing algorithm for the static FAP, followed by

HH and finally ACO. This suggests that local search-based algorithms perform better

than population-based algorithms and HH for solving the static FAP.

The run time is considered as the best algorithm will be used to construct an approach

to solve the dynamic FAP in the next chapter, where time is limited. Figure 5.20

shows the total of average run times for each heuristic algorithm.

Chapter 5. Hyper Heuristic for the Static FAP

124

0

50

100

150

200

250

300

350

TS ACO HH

To
ta

l o
f

av
e

ra
ge

 r
u

n
 t

im
e

s
(m

in
)

Figure 5.20: Total of average run times for TS, ACO and HH.

Figure 5.20 shows that the best heuristic algorithm in this study in terms of the run

time is TS, followed by HH and the worst one is ACO. Overall, TS and HH have the

best performance in this study. Hence, these heuristic algorithms are selected to be

used in Chapter 6 to construct an approach to solve the dynamic FAP.

5.5 Time Complexity and Convergence of HH

The time complexity of the HH algorithm can be expressed using the big O notation

by counting the number of times the key operation are performed, which is assigning

a frequency to a request. In terms of the initial solution phase, the time complexity of

the assignment stage is of order O(𝑁𝑅2 ∗ 𝑁𝐹), where 𝑁𝑅 is the number of requests

and 𝑁𝐹 is the number of frequencies, the allowing infeasible assignment stage is of

order O(𝑁𝑅 ∗ 𝑁𝐹) and the descent method stage is of order O(𝑁𝑅 ∗ 𝑁𝐹). In terms of

the creating violations phase, the time complexity is of order O(𝑁𝑅 ∗ 𝑁𝐹). For each

LLH, the initial cost is calculated, which is of order O(𝑁𝑅2). Then, the cost is updated

each step, which requires a number of calculations proportional to O(𝑁𝑅). The high-

est order of time complexity in the LLHs is LLH13, which have complexity O(𝑁𝑅2 ∗

𝑁𝐹2). Hence, the overall time complexity of HH is of order O(𝑁𝑅2 ∗ 𝑁𝐹2).

To investigate the convergence of this algorithm, first note that the number of used

frequencies in our HH algorithm never increases. This is because the algorithm con-

sists of reducing the number of used frequencies and seeking for a feasible solution

with a fixed number of used frequencies. If a feasible solution is found (i.e. the sub-

Chapter 5. Hyper Heuristic for the Static FAP

125

problem (see Section 5.2.1) is solved), then the number of used frequencies is reduced

and the number of iterations is reset to zero. This process is repeated until a feasible

solution can no longer be found.

Here, HH is run on GRAPH 09 for more iterations for each sub-problem (say 20,000

iterations) and the stopping criteria (see Section 5.3.6) are ignored to investigate the

convergence of this algorithm. Moreover, HH is executed for five runs, where each

run uses different random number streams. Figure 5.21 shows the convergence of HH

using the average solutions of the five runs.

Figure 5.21: The convergence of the HH algorithm on the GRAPH 09 instance.

Figure 5.21 shows that HH converged within 2,500 iterations with a fixed number of

used frequencies. Furthermore, similar convergence has been found for other instanc-

es. This convergence experiment justifies the selected number of iterations in this

study.

5.6 Conclusions

This chapter discussed HH for the static FAP, where this algorithm is mainly designed

to solve the MO-FAP. Note that this is the first attempt to solve the static FAP by HH

using the datasets considered in this study (CELAR and GRAPH). Several novel and

existing techniques have been used to attempt to improve the performance of this al-

gorithm. One of these is applying the lower bound on the number of frequencies that

are required from each domain for a feasible solution to exist, based on the underlying

0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 n
u

m
b

e
r

o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

Iterations

Chapter 5. Hyper Heuristic for the Static FAP

126

graph colouring model. These lower bounds are used to ensure that we never waste

time trying to find a feasible solution with a set of frequencies that do not satisfy the

lower bounds. Moreover, our HH includes 13 simple and advanced LLHs, some of

which are used for diversification. Furthermore, each LLH has an independent tabu

list in order to avoid cycling. Additionally, two different methods of the LLHs selec-

tion were compared: random and probabilistic selection. The probabilistic selection

gives a higher probability to the LLHs which reduce the number of violations. More-

over, two types of the LLH probabilistic selection were tested: without and with a

limit.

It was found that random selection of the LLHs performed better than probabilistic

selection. Moreover, the performance of HH does not seem to be as efficient as TS

(see Chapter 3), but does perform much better than ACO (see Chapter 4). Hence, this

algorithm recorded the second best performance in this thesis. As a result, this sug-

gests that local search-based algorithms are more suitable for the static FAP than pop-

ulation-based algorithms and HH. Furthermore, applying HH without significant

changes on other variants of the static FAP (MS-FAP and MI-FAP) were not success-

ful. This finding agrees with what has been found for TS (see Chapter 3). It is likely

that more significant changes are required for HH to work well on these problems.

Finally, the research questions which were presented in the beginning of this chapter

can be answered as follows:

 Can HH perform better than TS and ACO on the static FAP?

HH does not seem to be as efficient as TS, but does perform much better than

ACO (see Section 5.4.3).

 What is the best mechanism for selecting the LLHs?

Based on the investigation in this study, the best selection mechanism for the

LLHs is based on random selection (see Section 5.4.1.3).

 Is HH an appropriate solution method for the static FAP?

HH showed competitive performance compared with other algorithms in the liter-

ature (see Sections 5.4.2). Moreover, HH came as the second best performing heu-

ristic algorithm in this study (see Section 5.4.3). Therefore, HH is considered as

an appropriate solution method for the static FAP after TS.

Chapter 6. Approaches for Dynamic and Static FAP

127

Chapter 6

Approaches for Dynamic and Static FAPs

6.1 Introduction

There has been an increasing interest in variants of dynamic optimization problems, in

which some attributes of the problem change over time. Decisions have to be made at

different points of time, and the quality of the solution depends on all the decisions

made over time periods. The major difficulties of dynamic problems come from igno-

rance of how the problem is going to change in the future. Many real-life problems

can be considered to be dynamic, but up until recently, research has focused on static

problems, where all the data is known in advance. Research into dynamic problems is

growing in some areas such as graph colouring problems, scheduling problems and

vehicle routing problems [54].

One of the dynamic problems is the dynamic frequency assignment problem (FAP),

which was proposed in [55]. In the dynamic FAP, new requests become known over

time periods and frequencies need to be assigned to them effectively and promptly

while satisfying a set of constraints (see Section 1.4.1). Hence, solving the dynamic

Chapter 6. Approaches for Dynamic and Static FAP

128

FAP needs to deal with uncertain data as new data arrive in a dynamic process. There

are two possible types of uncertain data: entirely accessible data and partially accessi-

ble data. The first type belongs to the area of robust optimization [102], where we

need to find solution methods able to accommodate different realizations of data. The

second type, which is considered in this study, corresponds to dynamic optimization

[84], which has three features: 1) new decisions are made one by one; 2) the decisions

are non-adjustable unless necessary; 3) no information about the future is accessible.

During solving the dynamic FAP using uncertain data, if no feasible solution can be

found, it is essential to change the previous decisions to improve the solution with the

minimum number of changes. Although changing frequencies that have been assigned

previously is technically allowed, in practice this can be time consuming and takes up

human resources. Hence, the dynamic FAP states that changing frequencies of re-

quests that are previously assigned should be avoided unless no other means of find-

ing a feasible solution exists. Therefore, the objective of the dynamic FAP is to find a

feasible solution with the minimum number of re-assigned requests.

In order to clarify the dynamic FAP, a dynamic FAP instance over 3 time periods is

illustrated in Figure 6.1, where each node represents a request, each edge represents a

bidirectional or an interference constraint (see Equations 1.1 and 1.2, respectively)

and each colour represents a time period in which a request becomes known for the

first time.

Figure 6.1: A dynamic FAP instance over 3 time periods.

𝑟1

𝑟5

𝑟3

𝑟2

𝑟4

𝑟6

Requests known at time period 1

Requests known at time period 0

Requests known at time period 2

𝑟1

𝑟3

𝑟4

𝑟1

𝑟5

𝑟3

𝑟2

𝑟6

𝑟11

𝑟12

𝑟9 𝑟10

𝑟4
𝑟2

Bidirectional constraint

 Interference constraint

𝑟7

𝑟8

𝑟8
𝑟7

Time period 0 Time period 1 Time period 2

Chapter 6. Approaches for Dynamic and Static FAP

129

Figure 6.1 shows that requests are partitioned into three sub-problems based on 3 time

periods, where each sub-problem is considered in its respective time period.

In this chapter, various approaches are designed to solve the dynamic FAP. The best

performing heuristic algorithms for the static FAP in this thesis (tabu search (TS) and

hyper heuristic (HH)) are used to construct these approaches for the dynamic FAP. It

is interesting to investigate whether heuristic algorithms which work well on static

FAP also prove efficient on the dynamic FAP. Several novel and existing techniques

are applied to improve the performance of these approaches. These include a novel

technique called the Gap technique, which aims to identify a good frequency to be

assigned to a given request. To assess these approaches, new dynamic FAP datasets

are generated from the static FAP datasets (CELAR and GRAPH). Moreover, the new

dynamic FAP datasets have been made available for other researchers, which can be

found on the dynamic FAP website1.

Furthermore, this chapter proposes a novel approach to solve the minimum order FAP

(MO-FAP), which is a variant of the static FAP. The objective of the MO-FAP is to

find the optimal solution with no restriction on the number of re-assigned requests.

The idea of this approach is inherited from the dynamic concept, where the computa-

tional time is important. It can be extremely time consuming to solve a large static

problem and it may be a better strategy to break it into smaller parts and solve these in

turn, rather than try to solve it in its entirety. Hence, the static FAP is modelled as a

dynamic FAP through dividing this problem into smaller sub-problems, which are

then solved consecutively. This novel approach is constructed using TS (see Chapter

3) because it was the best performing heuristic algorithm in this thesis. Several tech-

niques are applied to make this approach more efficient. These include applying the

lower bound on the number of frequencies that are required from each domain for a

feasible solution to exist, based on the underlying graph colouring model (see Section

3.2), and the Gap technique.

In this chapter, we focus on the following research questions:

 Can TS and HH for the static FAP be successful on the dynamic FAP?

 Can the proposed approach that models the static FAP as a dynamic FAP be an

effective method for the static FAP?

1 https://dynamicfap.wordpress.com/

Chapter 6. Approaches for Dynamic and Static FAP

130

This chapter is organised as follows: Section 6.2 describes how to generate the new

dynamic FAP datasets. In Section 6.3, an overview of approaches for the dynamic

FAP is presented. Section 6.4 presents the main components of approaches for the

dynamic FAP. In Section 6.5, the results of these approaches are given and compared.

In Section 6.6, a novel approach for solving the static FAP that models it as a dynamic

FAP is proposed and discussed. Finally, this chapter is closed with some conclusions.

6.2 Generating the Dynamic FAP Datasets

For the purpose of the present study, new dynamic FAP datasets are generated from

the static FAP datasets (CELAR and GRAPH) to assess the proposed approaches. The

dynamic FAP instances are generated by breaking down the static FAP instances into

smaller sub-problems, where each sub-problem is considered at a specific time period.

To achieve this, each request is given an integer number between 0 and 𝑛 (where 𝑛 is

a positive integer) indicating the time period in which it becomes known. In effect, the

problem is divided into 𝑛 + 1 smaller sub-problems 𝑃0 , 𝑃1, … , 𝑃𝑛, where n is the

number of sub-problems after the initial sub-problem 𝑃0. Each sub-problem 𝑃𝑖 con-

tains a subset of requests which become known at time period 𝑖. In this study, we

found that the number of sub-problems does not impact on the performance of the

approaches for solving the dynamic FAP, so the number of sub-problems is fixed at

21 (i.e. n = 20).

Based on the number of the requests known at time period 0 (belonging to the initial

sub-problem 𝑃0), 10 different dynamic FAP instances are generated from each static

FAP instance. These dynamic FAP instances are named using percentages which in-

dicate the number of requests known at time period 0, namely 0%, 10%, 20%, 30%,

40%, 50%, 60%, 70%, 80%, 90% (note that 100% means all the requests are known at

time period 0 and so corresponds to the static FAP instance).

6.3 Overview of the Approaches for the Dynamic FAP

In this section, the solution space and the cost function of the approaches for the dy-

namic FAP are given. Moreover, this section presents an overview of the structure of

these approaches.

Chapter 6. Approaches for Dynamic and Static FAP

131

6.3.1 Solution Space and Cost function

As the objective of the dynamic FAP is to find a feasible solution with the minimum

number of re-assigned requests, the solution space is defined as the set of all possible

solutions that satisfies all the constraints (see Section 1.4.1) and the cost function is

defined as the number of re-assigned requests. This configuration was previously used

in [55] for the dynamic FAP.

6.3.2 Structure of the Approaches for the Dynamic FAP

The dynamic FAP can be divided into three underlying problems, namely the static

problem, the online problem and the repair problem. Hence, as in [55], the proposed

approaches for the dynamic FAP apply three solution phases, which are the initial

solution phase, the online assignment phase and the repair phase. The initial solution

phase aims to solve the static problem (the initial sub-problem 𝑃0). Note that if the

static problem could not be solved by the initial solution phase, then the repair phase

is applied.

After that, the online assignment phase is executed to solve the online problem (the

sub-problems 𝑃1, . . . , 𝑃20, consecutively). In this phase, no existing assignments are

changed. If any request cannot be feasibly assigned, this creates the repair problem,

which is solved in the repair phase by attempting to feasibly assign the unassigned

requests with the minimum number of re-assigned requests. This phase includes two

phases, namely the initial and the advanced repair phases. If the initial repair phase

manages to achieve a feasible solution for the current time period, then the next time

period is considered. Otherwise, the advanced repair phase is executed, then the ap-

proach proceeds to the next time period. The overall structure of the approach for the

dynamic FAP is illustrated in Figure 6.2

Chapter 6. Approaches for Dynamic and Static FAP

132

No

Yes

No

Initial solution phase

time period = time period + 1

Online assignment phase

Initial repair phase

Is the current time period greater than

the given number of sub-problems?

Are there any requests at time period

0 that cannot be assigned?

 Are there any requests at the current

time period that cannot be assigned?

Advanced repair phase

Stop

Return a solution

No

Set time period = 0

Yes

Yes

No

Yes

 Are there any requests at the current

time period that cannot be assigned?

Figure 6.2: Overall structure of the approach for the dynamic FAP.

6.4 Components of the Approaches for the Dynamic FAP

In this section, the descriptions of the three phases of the approaches for the dynamic

FAP, namely the initial solution phase, the online assignment phase and the repair

phase, are given. Differences between our approaches and existing approaches are

also specified in appropriate sections.

6.4.1 The Initial Solution Phase

The aim of this phase is to solve the initial sub-problem 𝑃0. Hence, the initial solution

phase which was proposed for TS (see Section 3.4.4) is applied here. If no feasible

Chapter 6. Approaches for Dynamic and Static FAP

133

solution can be found, then the repair phase (see Section 6.4.3) is applied. In contrast,

the initial solution phase in Dupont’s approach for the dynamic FAP in [55] aims to

only find a feasible solution using the minimum frequency greedy algorithm (see Sec-

tion 2.7) and if no feasible solution can be found, then the consistent neighbourhood

in tabu search (CN-tabu) (see Section 2.7) is applied.

6.4.2 The Online Assignment Phase

The online assignment phase is considered after solving the initial sub-problem 𝑃0.

Hence, this phase aims to solve the remaining sub-problems 𝑃1, . . . , 𝑃20, consecutive-

ly based on their time periods. In this phase, several techniques are applied and com-

pared to solve these sub-problems, whereas Dupont’s approach in [55] applied the

minimum frequency greedy algorithm (see Section 2.7).

Several decisions need to be made in each time period in order to select requests and

frequencies to be feasibly assigned. These decisions are related to the following ques-

tions:

 In what order should the new requests be considered?

 For the chosen request, which used feasible frequencies (if available) should be

selected?

 For the chosen request, which unused feasible frequencies should be selected, if

necessary?

The following stages give answers to the above questions consecutively.

i) Request selection stage

There are two ways to select requests from a sub-problem 𝑃𝑖, where requests can be

considered either as individuals or as pairs based on the bidirectional constraints (see

Equation 1.1). In the request selection stage, 8 different techniques are discussed as

follows:

 Technique 1: the request that has the least number of feasible frequencies is se-

lected. In case of a tie, the request that is involved in the highest number of con-

straints (based on only the currently known data) is selected. In case of a tie, one

of them is randomly selected.

Chapter 6. Approaches for Dynamic and Static FAP

134

 Technique 2: the request that has the least number of feasible frequencies is se-

lected. In case of a tie, one of them is randomly selected.

 Technique 3: the request that is involved in the highest number of constraints

(based on only the currently known data) is selected. In case of a tie, one of them

is randomly selected.

 Technique 4: the request is randomly selected.

The remaining techniques 5, 6, 7 and 8 are the same as techniques 1, 2, 3 and 4 re-

spectively except that the requests are considered as pairs (instead of individuals)

based on the bidirectional constraints (see Equation 1.1).

ii) Used feasible frequency selection stage

This stage is based on one of the following techniques:

 The Ran technique: one of the used feasible frequencies is randomly selected.

 The Min technique: the lowest value of the set of used feasible frequencies is se-

lected. In case of a tie, one of them is randomly selected.

 The Most technique: the most occupied frequency (i.e. the frequency assigned to

the most requests) in the set of used feasible frequencies is selected. In case of a

tie, one of them is randomly selected.

The Min and Most techniques aim to maximize the number of frequencies that are not

selected from the set of used frequencies. This allows more choices of used frequen-

cies for requests that will appear at later time periods.

iii) Unused feasible frequency selection stage

This stage is based on one of the following techniques:

 The Feas technique: the frequency that is feasible for the most requests is select-

ed. In case of a tie, one of them is randomly selected.

 The Low technique: the lowest value of the set of unused feasible frequencies is

selected. In case of a tie, one of them is randomly selected.

 The Gap technique: this is a novel technique that aims to select a frequency from

the set of unused feasible frequencies with the largest minimum gap between it

and an already used frequency. In case of a tie, one of them is randomly selected.

Chapter 6. Approaches for Dynamic and Static FAP

135

The largest minimum gap leads to a greater probability that the interference con-

straints are satisfied. Example 6.1 clarifies the concept of the Gap technique.

Example 6.1:

Assume a request needs to be assigned to one of the unused feasible frequen-

cies 𝑓1 and 𝑓2, whereas 𝑓3 and 𝑓4 are used infeasible frequencies. Figure 6.3

shows the gaps between these frequencies, where the red colour indicates a

used infeasible frequency and the green colour indicates an unused feasible

frequency.

Figure 6.3: An example of the Gap technique.

The Gap technique starts by finding the minimum gap between each unused

feasible frequency and the set of used frequencies as shown in Figure 6.3. Af-

ter that, the unused feasible frequency that has the largest minimum gap is se-

lected. In Figure 6.3, this corresponds to 𝑓2.

Overall, the Feas, Low and Gap techniques aim to maximize the number of unused

frequencies, which allows more choices of unused frequencies for requests that will

appear at later time periods.

6.4.3 The Repair Phase

The repair phase is executed only if there is at least one request that could not be fea-

sibly assigned by the online assignment phase as it was previously used in [55].

Hence, the aim of this phase is to attempt to feasibly assign the unassigned requests

with the minimum number of re-assigned requests. This phase consists of two stages,

namely the initial repair phase and the advanced repair phase.

𝑓1 𝑓2 𝑓4 𝑓3

The minimum gap between

each unused feasible frequency

and the set of used frequencies.

An unused feasible frequency

= A used infeasible frequency

Chapter 6. Approaches for Dynamic and Static FAP

136

6.4.3.1 The Initial Repair Phase

The initial repair phase is based on the following simple method: given that a request

𝑟𝑖 cannot be feasibly assigned by the online assignment phase, then all the available

frequencies for 𝑟𝑖 are ordered according to the number of violations that would result

when 𝑟𝑖 is assigned to each of them. After that, these frequencies are considered in

turn starting with the frequency which would result in the minimum number of viola-

tions. Assume that the minimum number of violations corresponds to the frequen-

cy 𝑓𝑘. Then, the set of requests that clash with 𝑟𝑖 with respect to some constraints

when 𝑓𝑘 is assigned to 𝑟𝑖 is produced. After that, each clashed request is attempted to

be feasibly re-assigned. In case one of these cannot be feasibly re-assigned, then all

re-assigned requests are reversed and the next frequency is considered. Example 6.2

clarifies the concept of the initial repair phase. Hence, this phase is based on greedy

assignments; whereas the initial repair phase in Dupont’s approach in [55] is based on

the branch and bound algorithm (see Section 2.7).

Example 6.2:

Assume 𝑟𝑖 could not be feasibly assigned by the online assignment phase, then

we attempt to feasibly assign 𝑟𝑖 by the initial repair phase. Assume that the

available frequencies for 𝑟𝑖 are 𝑓𝑗 , 𝑓𝑘 and 𝑓𝑙 . Each frequency is assigned to 𝑟𝑖 in

turn and the number of violations is given in Table 6.1.

Available frequencies Number of violations

𝑓𝑗 6

𝑓𝑘 4

𝑓𝑙 10

Table 6.1: Number of violations for each available frequency when it is assigned to 𝑟𝑖.

The first selected frequency is 𝑓𝑘 because it results in the minimum number of

violations. If this does not result in feasible assignments, then the second se-

lection is 𝑓𝑗, which results in the next smallest number of violations. In case

this does not lead to feasible assignments, then the last selection is 𝑓𝑙 .

6.4.3.2 The Advanced Repair Phase

This phase is only executed if the initial repair phase results in some unassigned re-

quests. Then, each unassigned request is assigned to the frequency that results in the

Chapter 6. Approaches for Dynamic and Static FAP

137

minimum number of violations. After that, the number of violations is reduced using

the advanced repair phase which is based on either a tabu search repair phase (TSRP),

or a hyper heuristic repair phase (HHRP). TSRP is based on the tabu search algorithm

described in Chapter 3 and HHRP is based on the hyper heuristic described in Chapter

5, where the objective of these algorithms are modified to find a feasible solution in-

stead of the optimal solution. In contrast, the advanced repair phase in the Dupont’s

approach in [55] is based on the CN-tabu algorithm (see Section 2.7).

6.5 Experiments and Results

This section compares the performance of various approaches for the dynamic FAP in

the online assignment phase and the repair phase. After that, the best approach is

compared with Dupont’s approach in [55] using the generated datasets in this thesis.

In this study, these approaches were coded using FORTRAN 95 and all experiments

were conducted on a 3.0 GHz Intel Core I3-2120 Processor (2nd Generation) with

8GB RAM and a 1TB Hard Drive.

6.5.1 The Online Assignment Phase

The performance of various approaches using different techniques in each selection

stage (see Section 6.4.2) is compared using TSRP as the advanced repair phase. In

this phase, we have 8 potential techniques in the first stage (request selection stage), 3

potential techniques in the second stage (used feasible frequency selection stage) and

3 potential techniques in the third stage (unused feasible frequency selection stage). In

total, this gives 72 different various approaches to be compared. Moreover, each ap-

proach is tested using 100 dynamic FAP instances. Therefore, considering all the var-

ious approaches takes excessive time. Hence, these approaches are compared based

on 3 experiments as follows: Experiment 1 fixes the technique of the second and third

stage to the Ran and Feas techniques, respectively, and compares the 8 techniques of

the first stage. Experiment 2 tests the techniques of the second stage by fixing the best

technique of the first stage and using the Feas technique for the third stage, as before.

Experiment 3 tests the techniques of the third stage while the best techniques of the

first and second stages are fixed.

Chapter 6. Approaches for Dynamic and Static FAP

138

In order to select the best approach in each experiment, three types of comparisons are

used, namely comparisons A, B and C. These comparisons firstly rank the approach-

es, where the best approach is given the lowest rank. In case of a tie, these are given

the average rank.

 Comparison A applies the instance average rank, which is calculated for each

instance by taking the average rank of all dynamic FAP instances that are generat-

ed from that instance.

 Comparison B applies the dynamic average rank, which is calculated for each

percentage of the number of requests known at time period 0 by taking the aver-

age rank of all dynamic FAP instances corresponding to that percentage.

 Comparison C applies the total rank, which is calculated by summing the ranks of

all the dynamic FAP instances for each approach.

The objective of the three types of comparisons is to find the minimum average rank

and the minimum total rank. These comparisons are not independent of one another,

but should indicate whether certain techniques work better for different levels of dy-

namism or for different instances.

Experiment 1: this experiment compares 8 different techniques of the request selec-

tion stage, while selecting the Ran and Feas techniques for used and unused feasible

frequency selection stages, respectively. The results of the three types of comparisons

are presented in Table 6.2, Table 6.3 and Figure 6.4. Note that a bold number shows

the best results among these approaches with different techniques of the requests se-

lection stage.

 Comparison A

Instance
Techniques of the request selection stage

1 2 3 4 5 6 7 8

CELAR 01 5.45 4.70 7.00 7.70 2.55 2.10 3.45 3.05

CELAR 02 4.65 4.45 7.05 7.00 3.15 3.25 3.55 3.90

CELAR 03 6.40 3.45 7.05 7.30 3.00 2.70 2.70 3.40

CELAR 04 2.70 3.00 7.40 7.10 3.20 3.90 5.20 11.60

CELAR 11 5.85 5.15 6.40 7.55 2.50 3.35 3.15 2.05

GRAPH 01 5.70 6.00 6.30 7.80 2.50 2.35 3.05 2.30

GRAPH 02 5.70 5.60 7.00 7.70 2.15 2.30 2.60 2.95

GRAPH 08 5.55 5.65 7.10 7.70 2.00 3.15 2.55 2.30

GRAPH 09 5.90 6.00 7.10 5.80 2.45 2.85 2.20 3.70

GRAPH 14 5.55 5.85 7.00 7.60 2.80 2.50 1.85 2.85

Total 53.50 49.80 69.40 73.30 26.30 28.50 30.30 38.10

Table 6.2: The instance average rank for each approach based on Experiment 1.

Chapter 6. Approaches for Dynamic and Static FAP

139

521
483.5

657
697

247 265 277 272.5

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8

To
ta

l r
an

k

Techniques of the request selection stage

Table 6.2 shows that using techniques 5, 6, 7 and 8 are better than using techniques 1,

2, 3 and 4. This indicates that considering requests as pairs based on bidirectional

constraints (see Equation 1.1) led to better results than considering them individually.

In this comparison, the approach that applies technique 5 is the best approach.

 Comparison B

Dynamic

instances

Techniques of the request selection stage

1 2 3 4 5 6 7 8

0% 6.05 5.90 7.85 8.76 2.95 2.85 2.83 2.81

10% 5.22 5.67 6.88 7.78 2.00 2.56 3.33 2.56

20% 5.67 5.11 7.00 7.78 2.39 2.44 2.50 3.11

30% 5.44 5.11 6.61 7.89 2.56 2.61 3.00 2.78

40% 5.61 5.11 7.00 7.89 2.11 2.89 2.06 3.33

50% 5.25 5.15 7.40 7.30 1.80 2.80 3.25 3.05

60% 5.80 3.75 7.30 7.60 3.20 2.80 3.10 2.45

70% 5.20 5.5 6.70 6.85 3.30 2.00 3.25 3.20

80% 5.70 4.95 6.40 6.65 2.60 4.00 2.45 3.25

90% 5.50 5.30 6.75 6.00 3.25 3.15 3.60 2.45

Total 55.40 51.50 69.80 74.50 26.20 28.10 29.40 28.90

Table 6.3: The dynamic average rank for each approach based on Experiment 1.

This comparison confirms that considering the requests as pairs improved the perfor-

mance of the approach for the dynamic FAP. Therefore, we focus on techniques 5, 6,

7 and 8, where each of them produced the best result for at least one instance, but

technique 5 achieves the best performance based on the total dynamic average rank.

Additionally, it produced the best result on 4 instances, more than any other tech-

niques. Hence, technique 5 is recommended.

 Comparison C

Figure 6.4: The total rank for each approach based on Experiment 1.

Chapter 6. Approaches for Dynamic and Static FAP

140

Figure 6.4 shows that the minimum total rank is 247, which suggests that the best

technique based on comparison C is also technique 5.

Overall, all the three types of comparisons suggest that the best approach is based on

using technique 5, which considers requests as pairs based on the bidirectional con-

straints (see Equation 1.1). In terms of the run time, based on the Wilcoxon signed-

rank test, there is no significant difference between them. Hence, in the request selec-

tion stage the best technique is technique 5.

Experiment 2: this experiment compares 3 different techniques of the used feasible

frequency selection stage, while fixing the remaining techniques by selecting tech-

nique 5 for the request selection stage (see Experiment 1) and the Feas technique for

the unused feasible frequency selection stage. The results of the three comparisons are

presented in Table 6.4, Table 6.5 and Figure 6.5. Note that a bold number shows the

best results among these approaches with different techniques of the used feasible

frequency selection stage.

 Comparison A

Instance

Techniques of the used feasible

frequency selection stage

Ran Min Most

CELAR 01 2.20 2.15 1.65

CELAR 02 2.15 1.80 2.05

CELAR 03 2.20 1.95 1.85

CELAR 04 1.90 1.90 2.20

CELAR 11 1.95 2.45 1.60

GRAPH 01 2.10 1.70 2.20

GRAPH 02 1.70 2.10 2.20

GRAPH 08 1.65 1.95 2.40

GRAPH 09 2.05 1.75 2.20

GRAPH 14 2.70 2.30 1.00

Total 20.60 20.10 19.40

Table 6.4: The instance average rank for each approach based on Experiment 2.

Although there is little difference in the performance between these approaches as

shown in Table 6.4, the best total instance average rank is found by the Most tech-

nique. Hence, comparison A recommends the Most technique for the used feasible

frequency selection stage.

Chapter 6. Approaches for Dynamic and Static FAP

141

196.5

191

182.5

175

180

185

190

195

200

Ran Min Most

To
ta

l r
an

k

Techniques of the used feasible frequency selection stage

 Comparison B

Table 6.5: The dynamic average rank for each approach based on Experiment 2.

Table 6.5 shows that the majority of the minimum dynamic average rank is found by

the Most technique, which records the best results for 6 out of the 10 instances. In this

comparison, the total dynamic average rank also recommends the Most technique.

 Comparison C

Figure 6.5 The total rank for each approach based on Experiment 2.

Figure 6.5 shows that the minimum total rank is 182.5, which indicates that the best

technique based on comparison C is again the Most technique.

Overall, although there is little difference in the results achieved by the 3 different

techniques in the used feasible frequency selection stage, all the three types of com-

parisons show that the best approach is based on using the Most technique. In terms of

the run time, based on the Wilcoxon signed-rank test, there is no significant difference

between them.

Dynamic

instances

Techniques of the used feasible

frequency selection stage

Ran Min Most

0% 2.53 2.50 1.64

10% 2.33 1.83 1.83

20% 1.78 2.22 2.00

30% 2.28 2.00 1.72

40% 1.83 1.72 2.44

50% 1.70 2.30 2.00

60% 2.10 1.95 1.95

70% 2.25 1.90 1.85

80% 1.85 1.95 2.20

90% 2.30 1.95 1.75

Total 20.90 20.30 19.40

Chapter 6. Approaches for Dynamic and Static FAP

142

Experiment 3: this experiment compares 3 different techniques of the unused feasible

frequency selection stage, while fixing the remaining techniques by selecting tech-

nique 5 for the request selection stage (see Experiment 1) and the Most technique for

the used feasible frequency selection stage (see Experiment 2). The results of the three

comparisons are presented in Table 6.6, Table 6.7 and Figure 6.6. Note that a bold

number shows the best results among these approaches with different techniques of

the unused feasible frequency selection stage.

 Comparison A

Instance

Techniques of the unused feasible

frequency selection stage

Feas Low Gap

CELAR 01 2.20 1.65 2.15

CELAR 02 1.90 2.35 1.75

CELAR 03 2.05 1.95 2.00

CELAR 04 2.10 1.80 2.10

CELAR 11 1.50 2.15 2.35

GRAPH 01 1.90 2.40 1.70

GRAPH 02 2.35 1.95 1.70

GRAPH 08 2.15 1.60 2.25

GRAPH 09 2.00 2.35 1.65

GRAPH 14 1.60 3.00 1.40

Total 19.80 21.20 19.10

Table 6.6: The instance average rank for each approach based on Experiment 3.

Table 6.6 shows that the Gap techniques give the best results on five instances. More-

over, the total instance average rank shows that the Gap technique achieved the best

performance. Hence, comparison A recommends the Gap technique.

 Comparison B

Table 6.7: The dynamic average rank for each approach based on Experiment 3.

Dynamic

instances

Techniques of the unused feasible

frequency selection stage

Feas Low Gap

0% 2.17 2.62 1.88

10% 2.06 2.11 1.83

20% 1.78 1.78 2.44

30% 2.00 2.11 1.89

40% 2.38 1.94 1.67

50% 2.00 2.00 2.00

60% 1.75 2.15 2.10

70% 1.65 2.35 2.00

80% 2.30 2.40 1.30

90% 1.85 2.10 2.05

Total 19.90 21.60 19.20

Chapter 6. Approaches for Dynamic and Static FAP

143

187

203

180

165

170

175

180

185

190

195

200

205

Feas Low Gap

To
ta

l r
an

k

Techniques of the unused feasible frequency selection stage

Table 6.7 shows that using the Feas technique for the unused feasible frequency se-

lection stage achieved 5 minimum dynamic average ranks, the Low technique

achieved 2 and the Gap technique achieved 6 out of 10. Hence, the Gap technique is

recommended, which agrees with the total dynamic average rank.

 Comparison C

Figure 6.6: The total rank for each approach based on Experiment 3.

Figure 6.6 shows that the minimum number of the total rank was 180, which resulted

from using the Gap technique. Hence, the best technique based on the comparison C

is the Gap technique for the unused feasible frequency selection stage.

Overall, the three types of comparisons suggest that the Gap technique should be

adopted in the unused feasible frequency selection stage. In terms of the run time,

based on the Wilcoxon signed-rank test, there is no significant difference between

them.

Based on the above three experiments, the best approach for the dynamic FAP is

based on technique 5 in the request selection stage, the Most technique in the used

feasible frequency selection stage and the Gap technique in the unused feasible fre-

quency selection stage. This gives a complete description of the online assignment

phase.

Chapter 6. Approaches for Dynamic and Static FAP

144

6.5.2 The Repair Phase

This section presents and compares the performance of various approaches for the

dynamic FAP in two stages: the first uses the initial repair phase only and the second

includes the advanced repair phase. The results in this section include the number of

used frequencies in a feasible solution, the run time and the number of re-assigned

requests in the repair phase (denoted by Repair). Note that a dash “-” means that no

feasible solution is found.

6.5.2.1 The Initial Repair Phase

The performance of the approach for the dynamic FAP using only the initial repair

phase is given in Table 6.8.

Instance
Number of requests known at time period 0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

CELAR 01 26 28 - 30 - - - 26 - 30

Time 8.5 sec 19.5 sec - 2 min - - - 7 min - 11 min

Repair 54 854 - 252 - - - 250 - 102

CELAR 02 16 18 18 20 16 16 18 18 16 14

Time 0.6 sec 2.9 sec 8.5 sec 13 sec 30 sec 33 sec 1 min 49 sec 54 sec 59 sec

Repair 200 182 160 146 114 114 10 50 48 10

CELAR 03 24 26 20 24 - 26 26 24 28 -

Time 1.7 sec 7.3 sec 16.1 sec 54.1 sec - 1 min 1.2 min 3.2 min 2.5 min -

Repair 38 46 334 268 - 228 24 106 4 -

CELAR 04 46 46 46 46 46 46 46 46 46 46

Time 24 sec 24.3 sec 56.3 sec 1.1 min 1.5 min 1.5 min 1.6 min 2.1 min 2.3 min 2.3 min

Repair 18 24 20 18 21 18 24 12 10 16

CELAR 11 - - - - - - - - - -

Time - - - - - - - - - -

Repair - - - - - - - - - -

GRAPH 01 - 24 28 - - - 22 22 22 20

Time - 2.8 sec 7.5 sec - - - 47 sec 1.1 min 1 min 2.1 min

Repair - 18 16 - - - 72 52 48 20

GRAPH 02 22 - 26 - - 28 20 26 18 22

Time 1.7 sec - 38 sec - - 1.5 min 2.8 min 3.1 min 4.5 min 4.8 min

Repair 400 - 26 - - 6 112 50 86 44

GRAPH 08 - - - - - - - - - -

Time - - - - - - - - - -

Repair - - - - - - - - - -

GRAPH 09 - - - - - - - - - -

Time - - - - - - - - - -

Repair - - - - - - - - - -

GRAPH 14 16 12 14 16 14 16 20 16 14 14

Time 7.5 sec 42.5 sec 58.5 sec 2.1 min 3.6 min 4.2 min 6.9 min 19 min 13 min 18 min

Repair 916 808 760 634 564 464 152 280 166 76

Table 6.8: Results of the approach for the dynamic FAP using the initial repair phase.

Table 6.8 shows that this approach achieved feasible solutions for all dynamic FAP

instances for CELAR 02, CELAR 04 and GRAPH 14. In contrast, this approach could

not achieve a feasible solution for all dynamic FAP instances for GRAPH 08 and

GRAPH 09. In terms of the number of re-assigned requests (labelled as Repair), this

number fluctuates, but a significant number of re-assignments are needed for most

Chapter 6. Approaches for Dynamic and Static FAP

145

instances. Moreover, Table 6.8 shows that the run time increased with the number of

requests known at the time period 0.

6.5.2.2 The Advanced Repair Phase

The performance of the approach for the dynamic FAP using two types of advanced

repair phase is compared.

i) The tabu search repair phase (TSRP): the results of the approach for the dynamic

FAP using TSRP as the advanced repair phase are presented in Table 6.9.

Instance
Number of requests known at time period 0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

CELAR 01 26 26 34 26 32 30 30 26 32 26

Time 5.8 sec 9.2 sec 15.5 sec 38.5 sec 48.5 sec 57.5 sec 1 min 2.13 min 2.8 min 3.7 min

Repair 54 172 40 54 16 22 36 250 42 4

CELAR 02 16 16 18 16 18 16 18 16 16 14

Time 0.4 sec 0.5 sec 0.7 sec 1.1 sec 3.3 sec 4.8 sec 7 sec 3.4 sec 12 sec 11 sec

Repair 200 182 160 146 114 114 10 50 48 10

CELAR 03 24 24 22 28 22 26 22 20 24 18

Time 2.1 sec 3.3 sec 5.9 sec 6.2 sec 13.1 sec 5.5 sec 19.1 sec 24.1 sec 28.1 sec 29.1 sec

Repair 38 46 90 268 208 66 60 106 70 50

CELAR 04 46 46 46 46 46 46 46 46 46 46

Time 24 sec 24.3 sec 44 sec 1.1 min 1.1 min 1.3 min 1.5 min 2.1 min 2.3 min 2.3 min

Repair 18 24 8 20 10 18 20 12 10 16

CELAR 11 42 42 40 42 44 32 42 42 42 40

Time 26.3 sec 23.3 sec 2.6 min 1.9 min 3.9 min 1.6 min 3.7 min 4 min 4.7 min 9.3 min

Repair 28 52 418 336 432 24 424 376 376 350

GRAPH 01 20 30 24 26 24 22 22 24 22 22

Time 0.5 sec 0.5 sec 2.1 sec 1.1 sec 11 sec 3.8 sec 11 sec 4.2 sec 15 sec 6.7 sec

Repair 52 6 10 14 10 34 72 52 48 20

GRAPH 02 22 22 28 20 24 24 24 28 22 20

Time 1.2 sec 1.4 sec 3 sec 2.9 sec 5.1 sec 8.1 sec 30.1 sec 30.1 sec 43.1 sec 1.1 min

Repair 400 4 28 22 256 210 46 60 86 42

GRAPH 08 30 36 44 38 36 32 40 36 34 32

Time 10.3 sec 17.3 sec 15.3 sec 14.3 sec 19.3 sec 26.3 sec 59.3 sec 1.1 min 1.5 min 2.1 min

Repair 24 24 44 24 38 78 28 16 34 30

GRAPH 09 40 44 42 38 42 42 44 42 40 30

Time 18.5 sec 20.5 sec 29.5 sec 42.5 sec 1.1 min 1.2 min 1.9 min 2.2 min 3.9 min 4.1 min

Repair 22 24 46 38 46 58 30 10 2 6

GRAPH 14 16 16 16 18 18 14 12 12 14 14

Time 4.5 sec 5.5 sec 7.5 sec 16.5 sec 31.5 sec 1.1 min 2.2 min 3.1 min 7.3 min 15 min

Repair 916 916 760 634 564 6 344 286 166 76

Table 6.9: Results of the approach for the dynamic FAP using TSRP as the advanced repair phase.

Table 6.9 shows that using TSRP as the advanced repair phase resulted in feasible

solutions for all instances. The number of re-assigned requests (labelled as Repair)

fluctuates and does not have a relationship with the number of requests known at time

period 0. Moreover, Table 6.9 shows that the run time increased with the number of

requests known at the time period 0. The effect of the number of requests known at

time period 0 on the run time is shows in Figure 6.7.

Chapter 6. Approaches for Dynamic and Static FAP

146

0

100

200

300

400

500

600

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

R
u

n
 t

im
e

 (
 s

e
co

n
d

)

Number of requests known at time period 0

CELAR 01

CELAR 02

CELAR 03

CELAR 11

Figure 6.7: The run time for all dynamic FAP instances of the selected instances.

Figure 6.7 shows that the run time of each instance increased with the number of re-

quests known at time period 0. Moreover, it indicates that the approach is fastest when

no requests are known at time period 0. In contrast, the approach is slowest when 90%

of the requests are known at time period 0.

ii) The hyper heuristic repair phase (HHRP): the results of the approach for the dy-

namic FAP using HHRP as the advanced repair phase are given in Table 6.10.

Instance
Number of request known at time period 0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

CELAR 01 26 28 38 30 30 28 26 26 26 30

Time 8.5 sec 19.5 sec 9.8 min 2 min 6.2 min 6 min 6.1 min 7 min 10 min 11 min

Repair 54 854 592 252 322 28 94 250 174 102

CELAR 02 16 18 18 20 16 16 18 18 18 14

Time 0.6 sec 2.9 sec 8.5 sec 13 sec 30 sec 33 sec 1 min 49 sec 54 sec 59 sec

Repair 200 182 160 146 24 114 10 50 48 10

CELAR 03 24 26 20 24 22 26 26 24 28 20

Time 1.7 sec 7.3 sec 16.1 sec 54.1 sec 30 sec 1 min 1.2 min 3.2 min 2.5 min 3.4 min

Repair 38 46 334 268 114 228 24 106 4 50

CELAR 04 46 46 46 46 46 46 46 46 46 46

Time 24 sec 24.3 sec 56.3 sec 1.1 min 1.5 min 1.5 min 1.6 min 2.1 min 2.3 min 2.3 min

Repair 18 24 20 18 21 18 24 12 10 16

CELAR 11 44 44 46 - - 46 - - 46 -

Time 28 min 22 min 20 min - - 29 min - - 21 min -

Repair 656 656 652 - - 650 - - 646 -

GRAPH 01 26 24 28 26 26 28 22 22 22 20

Time 0.6 sec 2.8 sec 7.5 sec 11 sec 40 sec 37 sec 47 sec 1.1 min 1 min 2.1 min

Repair 6 18 16 0 2 6 72 52 48 20

GRAPH 02 22 22 26 22 20 28 20 26 18 22

Time 1.7sec 6.8 sec 38 sec 25 sec 48 sec 1.5 min 2.8 min 3.1 min 4.5 min 4.8 min

Repair 400 12 26 24 58 6 112 50 86 44

GRAPH 08 34 34 38 38 30 34 32 32 32 28

Time 1.1 min 26.3 sec 51.3 sec 1.2 min 2.1 min 2.2 min 4.4 min 3.1 min 3.8 min 6.1 min

Repair 258 216 172 118 208 262 84 206 78 292

GRAPH 09 40 38 38 38 38 38 40 38 38 24

Time 20.5 sec 1.1 min 1.4 min 2.2 min 2.9 min 5.7 min 5.9 min 11 min 10 min 17 min

Repair 180 100 244 102 74 200 322 358 48 18

GRAPH 14 16 12 14 16 14 16 20 16 14 14

Time 7.5 sec 42.5 sec 58.5 sec 2.1 min 3.6 min 4.2 min 6.9 min 19 min 13 min 18 min

Repair 916 808 760 634 564 464 152 280 166 76

Table 6.10: Results of the approach for the dynamic FAP using the HHRP as the advanced repair phase.

Chapter 6. Approaches for Dynamic and Static FAP

147

Table 6.10 shows that using HHRP as the advanced repair phase resulted in feasible

solutions for almost all the instances. The number of re-assigned requests (labelled as

Repair) fluctuates with no clear pattern. Moreover, the run time increased with the

number of requests known at time period 0.

iii) Results comparison of using TSRP and HHRP as the advanced repair phase: the

results of the approach using TSRP (see Table 6.9) achieved feasible solutions for all

the instances, whereas the approach using HHRP (see Table 6.10) did not achieve

feasible solutions for all the instances. The number of dynamic FAP instances for

each CELAR or GRAPH instance for which TSRP or HHRP re-assigned fewer re-

quests is given in Table 6.11.

Instance TSRP HHRP Total

CELAR 01

CELAR 02

CELAR 03

CELAR 04

CELAR 11

GRAPH 01

GRAPH 02

GRAPH 08

GRAPH 09

GRAPH 14

8 0 8

0 1 1

2 3 5

3 1 4

10 0 10

2 4 6

4 4 8

10 0 10

10 0 10

1 3 4

Total 50 16 -

Table 6.11: The number of dynamic FAP instances for each CELAR or GRAPH instance for which TSRP or HHRP re-assigned

fewer requests.

Note that the sum of each row in Table 6.11 may not be equal to 10 because the same

numbers of re-assigned requests were achieved by both approaches using TSRP or

HHRP, or the initial repair phase was able to find feasible solutions without requiring

the use of the advanced repair phase. Furthermore, Table 6.11 shows that TSRP re-

assigned fewer requests in 50 instances, whereas HHRP re-assigned fewer requests in

16 instances. This suggests that TSRP is the best type of the advanced repair phase in

terms of achieving feasible solutions with the minimum number of re-assigned re-

quests.

Chapter 6. Approaches for Dynamic and Static FAP

148

0

50

100

150

200

250

To
ta

l r
u

n
 t

im
e

 o
f

al
l v

e
rs

io
n

s
(m

in
)

TSRP

HHRP

110.8

483.7

0

100

200

300

400

500

600

TSRP HHRP

To
ta

l r
u

n
 t

im
e

 (
m

in
)

The total run time of all dynamic FAP instances for each CELAR or GRAPH instance

of two approaches using TSRP or HHRP as the advanced repair phase are shown in

Figure 6.8.

Figure 6.8 The total run time of all dynamic FAP instances for each CELAR or GRAPH instance using two different types of the

advanced repair phase.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the per-

formance using TSRP as the advance repair phase gives significantly better results

than using HHRP. The total run time for each approach using TSRP or HHRP for all

instances is shown in Figure 6.9.

Figure 6.9: The total run time of all dynamic FAP instances using two different types of the advanced repair phase.

To sum up, using TSRP as the advanced repair phase for the dynamic FAP achieved

the best results in terms of the objective of the dynamic FAP, i.e. achieving feasible

solutions with the minimum number of re-assigned requests. Moreover, using TSRP

resulted in the best run time, indicating that this is more appropriate than HHRP.

Chapter 6. Approaches for Dynamic and Static FAP

149

6.5.3 Results Comparison with Other Approaches

The performance of the Dupont’s approach in [55] is compared with our approach for

the dynamic FAP. Private correspondence with the authors in [55] revealed that they

had not kept copies of either their dynamic datasets or their software, so we re-

implemented Dupont’s approach in [55] to solve the dynamic FAP using our generat-

ed dynamic FAP datasets in this thesis and the results are shown in Table 6.12.

Instance
Number of requests known at time period 0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

CELAR 01 36 30 42 34 30 32 30 34 30 34

Time 7.2 min 8.9 min 9.2 min 11 min 11.5 min 21 min 24 min 26 min 30 min 31 min

Repair 230 912 620 340 322 320 240 430 234 420

CELAR 02 18 18 18 22 22 18 18 18 18 16

Time 2 sec 4.8 sec 6.2 sec 10 sec 18 sec 38 sec 55 sec 57 sec 1.3 min 1.8 min

Repair 200 190 190 160 70 30 90 40 80 30

CELAR 03 32 30 34 24 30 32 36 30 30 30

Time 20 sec 45 sec 50 sec 54 sec 52 sec 1.8 min 2.1 min 4.1 min 4.7 min 5.2 min

Repair 70 200 430 330 204 220 110 98 60 40

CELAR 04 46 46 46 46 46 46 46 46 46 46

Time 1.7 min 2.3 min 4.1 min 6.1 min 6.2 min 8.1 min 10.2 min 11.9 min 20.1 min 30 min

Repair 42 80 32 22 52 24 92 88 22 72

CELAR 11 42 44 44 42 44 44 44 42 40 40

Time 8.1 min 8 min 9.5 min 9.7 min 10 min 11 min 13 min 14.7 min 17 min 18 min

Repair 356 556 312 400 334 366 342 322 398 338

GRAPH 01 40 40 42 32 36 40 42 44 38 38

Time 38 sec 54 sec 2.3 min 3.1 min 3.4 min 3.7 min 4.7 min 5.5 min 7.1 min 7.2 min

Repair 110 42 146 204 172 190 176 144 142 120

GRAPH 02 36 40 40 40 40 40 42 38 40 42

Time 1.7 min 2.8 min 2.9 min 3 min 3.1 min 4.2 min 4.8 min 5.2 min 5.3 min 6.8 min

Repair 212 76 252 302 294 306 258 256 256 242

GRAPH 08 48 46 48 44 44 44 48 48 42 44

Time 1.6 min 1.5 min 2 min 2.1 min 2.8 min 3.5 min 3.4 min 4.5 min 4.8 min 5.1 min

Repair 252 194 264 306 276 300 286 288 318 302

GRAPH 09 46 46 42 46 46 44 44 46 44 42

Time 4 min 4.1 min 5.3 min 6.2 min 6.7 min 8.5 min 8.8 min 10.2 min 12 min 17 min

Repair 308 178 300 298 280 278 274 290 308 302

GRAPH 14 26 26 36 34 34 32 34 34 34 28

Time 9.1 min 10 min 11 min 12 min 13.4 min 14 min 15.5 min 19.2 min 24.1 min 26 min

Repair 916 916 840 744 564 912 340 230 850 420

Table 6.12: Results of Dupont’s approach for the dynamic FAP.

Table 6.12 shows that Dupont’s approach achieved feasible solutions for all instances.

By looking at the number of re-assigned requests (labelled as Repair), it can be seen

that this number fluctuates and does not have a relationship with the number of re-

quests known at time period 0.

By comparing the performance of Dupont’s approach (see Table 6.12) with our ap-

proach (see Table 6.9), it is found that Dupont’s approach gave a higher number of re-

assigned requests compared with our approach. Figure 6.10 shows the average num-

ber of re-assigned requests for each instance in our approach and Dupont’s approach.

Chapter 6. Approaches for Dynamic and Static FAP

150

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 n
u

m
b

e
r

o
f

re
-a

ss
ig

n
d

 r
e

q
u

e
st

s

Our approach

Dupont's approach

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 r
u

n
 t

im
e

 (
m

in
)

Our approach

Dupont's approach

Figure 6.10: Average number of re-assigned requests of our approach and Dupont’s approach.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the total

number of re-assigned requests of our approach is significantly better than Dupont’s

approach. Hence, our approach achieved better results in terms of achieving feasible

solutions with the minimum number of re-assigned requests. The average run time of

our approach and Dupont’s approach is shown in Figure 6.11

Figure 6.11: The average run time of our approach and Dupont’s approach.

It is found by the Wilcoxon signed-rank test at the 0.05 significance level that the av-

erage run time of our approach is significantly better than Dupont’s approach.

Overall, based on the comparisons above, it is found that our approach is competitive

compared with Dupont’s approach.

Chapter 6. Approaches for Dynamic and Static FAP

151

6.6 An Approach for the Static FAP

In this study, a novel approach called the dynamic tabu search (DTS) is proposed to

solve the MO-FAP, which is a variant of the static FAP. This approach is inherited

from the approach for the dynamic FAP (see Section 6.3). It models the static FAP as

a dynamic FAP through dividing this problem into smaller sub-problems, which are

then solved in turn in a dynamic process. As TS is the best heuristic algorithm consid-

ered in this study (see Chapter 3), it is used to construct DTS. This approach aims to

find a feasible solution for each sub-problem with the minimum number of used fre-

quencies. Note that there are no restrictions on the number of re-assigned requests

because the static FAP does not concern the number of re-assignments (while the dy-

namic FAP does). Moreover, we aim to investigate whether applying DTS to solve

the static FAP has better performance than solving the entire problem as a whole.

In order to implement this approach, the static FAP needs to be broken down into

smaller sub-problems, which can be done as described in Section 6.2. Breaking the

static FAP into smaller sub-problems can be viewed as modelling the static FAP into

a dynamic FAP. An example of how a static FAP instance is modelled as a dynamic

FAP instance is illustrated in Figure 6.12, where each node indicates a request, each

edge represents a bidirectional or an interference constraint and each colour reflects a

time period in which a request becomes known for the first time.

Chapter 6. Approaches for Dynamic and Static FAP

152

Figure 6.12: An example of modelling a static FAP instance as a dynamic FAP instance over 3 time periods.

6.6.1 Experiments and Results of the DTS Approach

The results of the DTS approach for the static FAP are presented and compared in the

following three subsections. The first subsection gives the results of the DTS ap-

proach. The second subsection compares the performance of DTS with our TS algo-

rithm. The third subsection compares the performance of DTS with other algorithms

in the literature.

𝑟1

𝑟5

𝑟3

𝑟2

𝑟4

𝑟6

Requests known at time period 1

Requests known at time period 0

Requests known at time period 2

𝑟1

𝑟3

𝑟4

𝑟1

𝑟5

𝑟3

𝑟2

𝑟6

𝑟11

𝑟12

𝑟9 𝑟10

𝑟4
𝑟2

Bidirectional constraint

 Interference constraint

𝑟7

𝑟8

𝑟8
𝑟7

𝑟1

𝑟5

𝑟3

𝑟2

𝑟6

𝑟11

𝑟12

𝑟9 𝑟10

𝑟4

𝑟8
𝑟7

Time period 0 Time period 1 Time period 2

A static FAP instance

The static FAP instance is modelled as a dynamic FAP instance

Chapter 6. Approaches for Dynamic and Static FAP

153

6.6.1.1 Results Comparison of the DTS Approach

The results of the DTS approach for the MO-FAP, where each instance is modelled as

a dynamic FAP in 10 different versions (based on the number of requests known at

time period 0), are given in Table 6.13. Note that a bold number means that the opti-

mal solution was achieved by DTS.

Instance
Number of requests known at time period 0 Optimal

Solution 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

CELAR 01
16 16 16 16 16 16 18 16 16 16

16
2.9 min 3 min 4.3 min 4.5 min 4.8 min 4.2 min 5.2 min 5.1 min 6 min 6.7 min

CELAR 02
14 14 14 14 14 14 14 14 14 14

14
27 sec 46 sec 63 sec 1.1 min 1.5 min 1.2 min 2 min 1.4 min 2.3 min 2.1 min

CELAR 03
14 14 14 14 16 14 14 14 14 14

14
51 sec 1.7 min 1.6 min 3.9 min 4.3 min 3.9 min 4.6 min 5.3 min 5.8 min 5.9 min

CELAR 04
46 46 46 46 46 46 46 46 46 46

46
42 sec 45 sec 51 sec 56 sec 58 sec 58 sec 1 min 1.1 min 1.3 min 1.8 min

CELAR 11
28 36 32 30 28 32 32 36 32 32

22
5.2 min 7 min 6.9 min 11 min 13 min 17 min 21 min 26 min 29 min 31 min

GRAPH 01
18 18 18 18 18 18 20 20 20 24

18
52 sec 48 sec 1.8 min 4.7 min 5.1 min 4.8 min 6.9 min 6.4 min 7.1 min 7.4 min

GRAPH 02
14 14 14 14 14 14 14 14 14 14

14
41 sec 1.1 min 1.9 min 1.3 min 2.2 min 3.6 min 7.8 min 6.5 min 11 min 16 min

GRAPH 08
18 18 18 18 18 18 18 18 20 18

18
1.9 min 2.2 min 2.1 min 3.6 min 3.8 min 4.6 min 4.4 min 4.8 min 4.5 min 5.5 min

GRAPH 09
18 18 18 18 18 18 18 18 18 18

18
3 min 11 min 15 min 17 min 28 min 33 min 41 min 1.1 hrs 1.4 hrs 1.9 hrs

GRAPH 14
8 8 8 8 8 8 8 8 8 8

8
20 sec 2.1 min 2.1 min 4.2 min 6.3 min 13 min 19 min 39 min 1.1 hrs 1.8 hrs

Table 6.13: Results of the DTS approach for the MO-FAP.

Table 6.13 shows that DTS achieved feasible solutions for all instances. Moreover,

this approach achieved the optimal solutions for all instances except CELAR 11. Note

that the run time gradually increases with the number of requests known at time peri-

od 0. To clarify that, the run times of all versions of CELAR 01, GRAPH 01 and

GRAPH 02 are shown in Figure 6.13. The selected instances represent different num-

bers of requests and constraints.

Chapter 6. Approaches for Dynamic and Static FAP

154

0

2

4

6

8

10

12

14

16

18

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

R
u

n
 t

im
e

 (
 m

in
)

Number of requests known at time period 0

CELAR 01

GRAPH 01

GRAPH 02

0

5

10

15

20

25

30

35

40

45

50

N
u

m
b

e
r

o
f

u
se

d
 f

re
q

u
e

n
ci

e
s

TS

DTS

Figure 6.13: The run time of all versions of the selected instances.

Figure 6.13 shows that the run time increased with the number of requests known at

time period 0. In terms of both the quality of the solution and the run time, 0% is the

best number of requests known at time period 0. As the decision of what percentage

of requests are known at time period 0 is not fixed but can be chosen as part of the

approach, we choose to apply DTS with no requests being known at time period 0.

6.6.1.2 Results Comparison with the Tabu Search Algorithm

The performance of TS (see Table 3.7) and DTS (see Table 6.13) are shown in Figure

6.14.

Figure 6.14: The solutions quality of TS and DTS.

Chapter 6. Approaches for Dynamic and Static FAP

155

0

1

2

3

4

5

6

7

8

9

10

R
u

n
 t

im
e

 (
m

in
)

TS

DTS

39.85

28.87

0

5

10

15

20

25

30

35

40

45

TS DTS

To
ta

l r
u

n
 t

im
e

 (
m

in
)

Figure 6.14 shows that DTS improved the results of CELAR 03 and CELAR 11,

whereas both approaches achieved the optimal solutions in the rest of the instances.

Furthermore, the run time of TS and DTS is shown in Figure 6.15.

Figure 6.15: The run time of TS and DTS.

Figure 6.15 shows that DTS achieved better run times than TS on CELAR 01,

CELAR 03, CELAR 04, CELAR 11 and GRAPH 14. In contrast, TS achieved better

run time on the other instances. Furthermore, DTS achieved better total run time (of

all instances) than TS as shown in Figure 6.16.

Figure 6.16: The total run time of TS and DTS

Chapter 6. Approaches for Dynamic and Static FAP

156

Overall, this study suggests that solving the static FAP through modelling it as a dy-

namic FAP gives competitive results compared with the approach that solves the stat-

ic FAP as a whole. Hence, this shows the ability of this approach to achieve better

performance, which gives a good indication that this should be studied extensively as

future work.

6.6.1.3 Results Comparison with Other Algorithms

This section compares the performance of DTS with the algorithms considered in this

thesis and other algorithms in the literature. Table 6.14 shows the best found results of

these algorithms. Note that a bold number means that the optimal solution was

achieved and a dash “-” means that the result is not available.

Instance

G
E

N
E

T
 [

1
6
]

G
en

et
ic

 a
lg

o
ri

th
m

 [
9
4

]

P
o

te
n

ti
al

 r
ed

u
ct

io
n
 [

1
5

1
]

A
 n

o
n

li
n

ea
r

 a
p

p
ro

ac
h

 [
1
5

0
]

E
v

o
lu

ti
o

n
ar

y
 s

ea
rc

h
 [

3
4

]

S
im

u
la

ti
n
g

 a
n
n

ea
li

n
g
 [

1
4

5
]

V
ar

ia
b

le
 d

ep
th

 s
ea

rc
h

 [
1

4
5

]

T
S

 [
1
5

]

T
S

 [
1
4

5
]

O
u

r
T

S
 a

lg
o

ri
th

m

O
u

r
A

C
O

 a
lg

o
ri

th
m

O
u

r
H

H
 a

lg
o

ri
th

m

D
T

S

Optimal

solution

CELAR 01 16 20 16 16 - 16 16 18 16 16 18 16 16 16

CELAR 02 14 14 14 - 14 14 14 14 14 14 14 14 14 14

CELAR 03 14 16 16 16 14 14 14 14 14 14 16 16 14 14

CELAR 04 46 46 46 - - 46 46 46 46 46 46 46 46 46

CELAR 11 24 32 - - - 24 24 24 22 38 - 36 28 22

GRAPH 01 18 20 18 18 18 - - 18 18 18 20 18 18 18

GRAPH 02 14 16 14 14 14 - - 16 14 14 16 14 14 14

GRAPH 08 22 - 18 18 - - - 24 20 18 24 20 18 18

GRAPH 09 22 28 18 18 - - - 22 22 18 - 20 18 18

GRAPH 14 - 14 10 10 - - - 12 10 8 10 10 8 8

Table 6.14: Results of DTS and the algorithms considered in this thesis, and other algorithms in the literature.

Table 6.14 shows that DTS achieved the optimal solution for all the instances except

for CELAR 11. Additionally, DTS achieved a better result for CELAR 11 compared

with the result which was found by our TS algorithm. Moreover, DTS and our TS

algorithm are the only approaches that achieved the optimal solution for GRAPH 14.

In contrast, the optimal solution for CELAR 11 was found in [145] using TS. Overall,

DTS showed competitive performance compared with the algorithms considered in

this thesis and other algorithms in the literature.

Chapter 6. Approaches for Dynamic and Static FAP

157

6.7 Conclusions

This chapter discussed and compared various approaches for the dynamic FAP, where

the best heuristic algorithms considered in this thesis were used to construct these ap-

proaches. Several techniques are applied to improve the performance of these ap-

proaches. One of these, called the Gap technique, is novel. This technique aims to

identify a good frequency to be assigned to a given request. For the purpose of this

study, new dynamic datasets were generated from the static benchmark datasets

(CELAR and GRAPH). Moreover, the new dynamic FAP datasets have been made

available for other researchers, which can be found on the dynamic FAP website1.

These approaches solve the dynamic FAP through solving three underlying problems

of the dynamic FAP, which are the static problem, the online problem and the repair

problem. Hence, these approaches consist of three solution phases: the initial solution

phase (where the requests known at time period 0 are feasibly assigned, if possible),

the online assignment phase (where the requests which dynamically arrive are feasi-

bly assigned, if possible) and the repair phase (where the unassigned requests from the

previous phases are feasibly assigned, if possible). The repair phase includes two

stages: the initial repair phase and the advanced repair phase. Furthermore, the two

best heuristic algorithms in this study were implemented and compared as the ad-

vanced repair phase, which are TSRP and HHRP. It was found that the best type of

advanced repair phase is TSRP. Moreover, the best approach for the dynamic FAP

showed competitive performance compared with other approaches in the literature.

Later in this chapter, a novel approach (called DTS) was proposed to solve the MO-

FAP, which is a variant of the static FAP, by modelling it as a dynamic FAP through

dividing the static FAP into smaller sub-problems. Then, these sub-problems are con-

secutively solved using TS (which is the best heuristic algorithm in this study) as the

advanced repair phase. The proposed approach showed the ability to improve the per-

formance of TS which solves the static FAP as a whole and showed competitive per-

formance compared with other algorithms in the literature.

Finally, the research questions given in the beginning of this chapter can be answered

as follows:

1 https://dynamicfap.wordpress.com/

Chapter 6. Approaches for Dynamic and Static FAP

158

 Can TS and HH for the static FAP be successful on the dynamic FAP?

TS and HH were shown to successfully tackle the dynamic FAP, where TS

achieved the best performance as advanced repair phase (see Section 6.5.2.2).

 Can the proposed approach that models the static FAP as a dynamic FAP be an

effective method for the static FAP?

The proposed approach, namely DTS, achieved competitive performance com-

pared with the algorithms considered in this thesis and other algorithms in the lit-

erature which solved the static FAP as a whole (see Table 6.14). This suggests that

solving the static FAP through modelling it as a dynamic FAP can improve the so-

lutions compared with the solutions which have been found by solving the static

problem as a whole. Moreover, this suggests that this approach can be extensively

studied as future work.

Chapter 7. Conclusions and Future Work

159

Chapter 7

Conclusions and Future Work

7.1 Introduction

This thesis considered the frequency assignment problem (FAP), which is related to

wireless communication networks. This problem has many applications such as mo-

bile phones, TV broadcasting and Wi-Fi. The aim of the FAP is to assign frequencies

to wireless communication connections (also known as requests) while satisfying a set

of constraints, which are usually related to prevention of a loss of signal quality. In

this thesis, two variants of the FAP were considered, namely the static and the dynam-

ic FAPs.

This thesis consists of two parts. In the first part, three heuristic algorithms, namely

tabu search (TS), ant colony optimization (ACO) and hyper heuristic (HH), were de-

signed and developed for the static FAP to identify an appropriate solution method for

such problem. In the second part, various approaches for the dynamic FAP were de-

signed using the best performing heuristic algorithms considered in the first part of

this thesis. We investigated whether heuristic algorithms which work well on the stat-

ic FAP also prove efficient on the dynamic FAP. Finally, this thesis proposed a novel

Chapter 7. Conclusions and Future Work

160

approach to solve the static FAP by modelling it as a dynamic FAP through dividing

this problem into smaller sub-problems, which are then solved consecutively based on

their time periods.

This chapter is organized as follows: Section 7.2 summarizes the study of the three

heuristic algorithms for the static FAP as discussed in Chapters 3, 4 and 5. Section 7.3

summarizes the study of the various approaches for the dynamic FAP and the pro-

posed approach for the static FAP which models it as a dynamic FAP as presented in

Chapter 6. Finally, this chapter is closed with some suggestions of future work in Sec-

tion 7.4.

7.2 Heuristic Algorithms for the Static FAP

This thesis investigated three heuristic algorithms (TS, ACO and HH), which were

mainly designed to solve the minimum order FAP (MO-FAP), which is a variant of

the static FAP. Each of these represents a different characteristic of heuristic algo-

rithms. TS and ACO represent two different classes of meta-heuristics, where TS rep-

resents a class of a local search-based algorithm and ACO represents a construction-

based algorithm. HH represents a different characteristic of heuristic algorithms

which work at a higher level. HH is based on the idea that each heuristic has strengths

and weaknesses, and therefore combining several heuristics may lead to an improved

algorithm capable of solving problems with a wide range of characteristics. The se-

lected heuristic algorithms have been successfully implemented on many difficult

combinatorial problems in the literature.

Tabu Search Algorithm

In this thesis, several techniques were used to improve the performance of this algo-

rithm and to make it different from existing TS algorithms for the static FAP. One of

the novel techniques was applying a lower bound on the number of frequencies that

are required from each domain for a feasible solution to exist, based on the underlying

graph colouring model. These lower bounds were used to ensure that we never waste

time trying to find a feasible solution with a set of frequencies that do not satisfy the

lower bound of each domain as there is no feasible solution in this search area. An-

other novel technique was hybridising TS with multiple neighbourhood structures,

one of which was used as a diversification technique. In contrast, existing TS algo-

Chapter 7. Conclusions and Future Work

161

rithms for the static FAP in the literature implemented only a single neighbourhood

structure.

Moreover, two different configurations of the TS algorithm were discussed and com-

pared. One configuration relaxes interference constraints, while the other configura-

tion relaxes bidirectional and interference constraints (see Equation 1.1 and 1.2, re-

spectively). In both configurations, the cost function is defined as the number of vio-

lations. Relaxing some constraints creates the following sub-problem: minimizing the

number of violations with a fixed number of used frequencies.

In this study, the TS algorithm consists of three phases, namely the initial solution

phase, the creating violations phase and the improvement phase. This algorithm starts

with the initial solution phase to generate an initial solution using a greedy heuristic.

If the initial solution is feasible but not optimal, then the creating violations phase is

used to produce an infeasible solution that uses fewer frequencies. After that, the im-

provement phase is used to reduce the number of violations to zero (by solving the

sub-problem). If a solution with zero violations, i.e. a feasible solution, is found using

this phase, then the number of used frequencies is reduced in the creating violations

phase and the sub-problem is reconsidered. The process is repeated until a feasible

solution can no longer be found. In case the initial solution is infeasible, the creating

violations phase can be omitted and the search moves immediately to the improve-

ment phase.

Based on the experimental results using the CELAR and the GRAPH datasets, it was

found that the best approach of TS was based on the first configuration, which relaxes

interference constraints. Moreover, this algorithm outperformed other algorithms in

the literature. Furthermore, it is noted that applying the same TS algorithm, which has

been mainly designed to solve the MO-FAP, on other variants of the static FAP with-

out significant changes was not successful. This finding agrees with what has been

found in the literature. It is likely that more significant changes were required for this

algorithm to work well on these problems.

Ant Colony Optimization Algorithm

In this thesis, some techniques were used to improve the performance of the ACO

algorithm and make it different from other ACO algorithms for the static FAP in the

Chapter 7. Conclusions and Future Work

162

literature. One of these was applying the concept of a well-known graph colouring

algorithm, namely recursive largest first, to improve the process of selecting frequen-

cies and requests to be assigned. Moreover, another technique was applied to improve

the trail updates by increasing the level of trail between the unassigned requests and

all available frequencies for them to be more likely assigned in the next generation.

Furthermore, some of the key factors in producing a high quality ACO implementa-

tion are examined such as different definitions of trail (𝑇𝐴 𝑅𝐹 and 𝑇𝐴 𝑅𝑅) and visibil-

ity (based on the number of feasible frequencies and based on the degree), and the

optimization of numerous parameters.

In this study, ACO consists of a given number of generations, each of which contains

a given number of ants. Each ant starts constructing a solution by selecting a frequen-

cy to be assigned to all feasible requests. The process is repeated until no frequencies

can be selected. After all ants in the current generation construct their solutions, if no

feasible solution can be found, then a local search is used to attempt to achieve a fea-

sible solution. Then, the trail is evaporated and updated. After that, the next genera-

tion creates solutions by the same process.

Based on the experimental results using the CELAR and the GRAPH datasets, it was

found that the best trail of ACO was based on 𝑇𝐴 𝑅𝐹 and the visibility definition was

based on the number of feasible frequencies. ACO did not prove to be as efficient as

TS, although this algorithm performed equally well compared with existing ACO al-

gorithms in the literature.

Hyper Heuristic Algorithm

In this thesis, some techniques are applied in HH to make our algorithm more effi-

cient and different from existing HH algorithms for the static FAP. One of the novel

techniques was applying a lower bound on the number of frequencies that are required

from each domain for a feasible solution to exist, based on the underlying graph col-

ouring model. These lower bounds are used to ensure that we never waste time trying

to find a feasible solution with a set of frequencies that do not satisfy the lower

bounds, since there is no feasible solution in this search area. Another technique was

applying simple and advanced LLHs associated with an independent tabu list for each

LLH.

Chapter 7. Conclusions and Future Work

163

In this study, the HH algorithm consists of three phases, namely the initial solution

phase, the creating violations phase and the low level heuristic (LLHs) phase. The

first two phases were inherited from our TS algorithm to allow fair comparison. The

process of the LLHs phase can be divided into two stages: the LLHs selection mecha-

nism and the move acceptance criteria. One of the LLHs is selected each iteration

based on the selection mechanism to find a new solution. Two types the selection

mechanism are compared for HH, which are random and probabilistic selection. After

that, this solution is accepted or rejected based on the move acceptance criteria, which

accepts worse solutions for a limited number of times to diversify the search.

To the best of my knowledge, there are no published papers using HH to solve the

static FAP using the datasets considered in this thesis (CELAR and GRAPH). Hence,

this is the first attempt to solve such datasets using HH. The experimental results

showed that random selection performed better than probabilistic selection. Overall,

the performance of HH was superior to ACO and competitive with TS, although gen-

erally not of the same standard. However, HH was of sufficient quality to be applied

to the dynamic FAP.

To sum up, the best performing heuristic algorithm in this study was TS, with HH

also being competitive, whereas ACO achieved poor performance. This suggests that

local search-based algorithms are more suitable for solving the static FAP than popu-

lation-based algorithms and HH algorithms.

7.3 Approaches for Dynamic and Static FAPs

In the dynamic FAP, new requests become known over a period of time and frequen-

cies need to be assigned to those requests effectively and promptly. This problem has

received little attention so far in the literature compared with the static FAP. In this

thesis, various approaches are designed to solve the dynamic FAP. In order to assess

these approaches, new dynamic FAP datasets were generated from the static FAP da-

tasets and have been made available to other researchers on the dynamic FAP web-

site1. The objective of the dynamic FAP is to find a feasible solution with the mini-

mum number of re-assigned requests. Changing frequencies which have been as-

1 https://dynamicfap.wordpress.com/

Chapter 7. Conclusions and Future Work

164

signed previously is technically allowed. However, in practice this can be time con-

suming and can take up human resources.

The best heuristic algorithms for the static FAP considered in this thesis were used to

construct approaches for the dynamic FAP. This allowed us to investigate whether

heuristic algorithms which work well on the static FAP also prove efficient on the

dynamic FAP. Additionally, several techniques are applied to improve the perfor-

mance of these approaches. One of these, called the Gap technique, is novel. This

technique aims to identify a good frequency to be assigned to a given request. As the

dynamic FAP consists of three underlying problems, which are the static problem, the

online problem and the repair problem, these approaches consist of three different

solution phases. These are the initial solution phase (which aims to feasibly assign

requests known at time period 0), the online assignment phase (which aims to feasibly

assign requests that arrive dynamically) and the repair phase (which aims to feasibly

assign unassigned requests from the previous phase by re-assigning other requests).

The repair phase includes two stages, which are the initial repair phase and the ad-

vanced repair phase. Two types of the advanced repair phase were implemented and

compared, namely the tabu search repair phase (TSRP) and the hyper heuristic repair

phase (HHRP), as these were the best heuristic algorithms for the static FAP in this

study. It was found that the best performing approach was based on TSRP as the ad-

vanced repair phase. Overall, the performance of the best approach for the dynamic

FAP in this study was competitive compared with existing approaches in the litera-

ture.

Furthermore, this thesis proposed a novel approach, which is called the dynamic tabu

search (DTS) approach, to solve the MO-FAP, which is a variant of the static FAP.

This approach modelled the MO-FAP as a dynamic FAP through dividing it into

smaller sub-problems, which are then solved consecutively based on their time peri-

ods. DTS is inherited from the approach for the dynamic FAP in this study using TS

as an advanced repair phase. Several techniques were used to improve the perfor-

mance of this approach. One of these was applying a lower bound on the number of

frequencies that are required from each domain for a feasible solution to exist. More-

over, the Gap technique was applied, which aims to identify a good frequency to be

assigned to a given request. The proposed approach showed the ability to improve the

Chapter 7. Conclusions and Future Work

165

1

2

3

4 6

7 5

8

results which were found by the heuristic algorithms in this thesis that solve the MO-

FAP as a whole. Moreover, it showed competitive performance compared with other

algorithms in the literature. This suggests that this could be extensively studied as fu-

ture work.

7.4 Future Work

The study presented in this thesis leads to many possible directions for future work,

either of applying new or existing techniques to the heuristic algorithms considered in

this thesis for solving the static and dynamic FAPs. One of the ideas which may im-

prove the performance of TS is applying more advanced neighbourhood structures

such as swapping requests based on forming chains similar to Kempe chains in the

graph colouring problem (GCP). A Kempe chain can be defined as a set of vertices in

two colours that form a chain of clashing vertices with respect to some constraints and

if they are all swapped between the two colours then feasibility is maintained. Exam-

ple 7.1 clarifies the concept of Kempe chains in a GCP.

Example 7.1:

Assume a GCP instance consists of 8 vertices, 2 colours, and 6 edges between

these vertices as shown in Figure 7.1.

 Figure 7.1: A GCP instance in Example 7.1.

Figure 7.1 shows that there are two chains. The first chain includes the verti-

ces 1, 2, 3, and 6, and the second chain includes 4, 5, 8 and 7. The colours of

the vertices within each chain can be swapped without any constraint being af-

fected and feasibility is maintained. For example, in the first chain, it is possi-

ble to swap the colour of 1 and 3 with the colour of 2 and 6.

When Kempe chains are applied in the static FAP, we have to take into account dif-

ferent types of constraints (see Section 1.4.1), which make feasibility more complicat-

Chapter 7. Conclusions and Future Work

166

𝑟1

𝑟11

𝑟3

𝑟20

𝑟5

𝑟13

𝑟7

𝑟15 𝑟17

Interference constraint

𝑓1

𝑓2

𝑓3

ed to achieve compared with the GCP. In other words, swapping a chain based on one

type of constraint may break another type of constraint. Example 7.2 clarifies the dif-

ficulties of applying Kempe chains in the static FAP by considering only bidirectional

and interference constraints.

Example 7.2:

Assume a static FAP instance consists of 9 requests, 3 frequencies 𝑓1, 𝑓2 ,

and 𝑓3, where 𝑓1 ≤ 𝑓2 ≤ 𝑓3, and a set of interference constraints. Figure 7.2

shows this instance, where each node represents a request, each colour repre-

sents a frequency and each edge represents an interference constraint.

 Figure 7.2: The static FAP instance considered in Example 7.2.

Figure 7.2 shows that there is a chain including the requests 𝑟1, 𝑟11, 𝑟3

and 𝑟15. Note that swapping the frequencies of 𝑟11 and 𝑟3 may break the inter-

ference constraint between 𝑟11 and 𝑟20 because 𝑓2 ≤ 𝑓3. Therefore, we need to

take into account the interference constraint which links a request outside the

chain to a request in the chain. Furthermore, as each request is linked to its

partner by a bidirectional constraint (see Equation 1.1), swapping this chain

may also break the bidirectional constraints.

Furthermore, as this thesis introduced interesting techniques to solve the static and

dynamic FAPs, it would be worthwhile applying these to solve other problems. More-

over, we could extend our study by including other heuristic algorithms for the static

and dynamic FAPs.

Bibliography

167

Bibliography

1. Aardal, K.I., Hipolito, A., Van Hoesel, C.P.M., Jansen, B., Roos, C. and Terlaky, T.,

1996. A branch-and-cut algorithm for the frequency assignment problem. METEOR,

Maastricht research school of Economics of Technology and Organizations.

2. Aardal, K., Hurkens, C., Lenstra, J.K. and Tiourine, S., 2002. Algorithms for radio

link frequency assignment: The CALMA project. Operations Research, 50(6),

pp.968-980.

3. Aardal, K.I., Van Hoesel, S.P., Koster, A.M., Mannino, C. and Sassano, A., 2003.

Models and solution techniques for frequency assignment problems. Quarterly Jour-

nal of the Belgian, French and Italian Operations Research Societies, 1(4), pp.261-

317.

4. Aladağ, Ç.H. and Hocaoğlu, G., 2007. A tabu search algorithm to solve a course time-

tabling problem. Hacettepe Journal of Mathematics and Statistics, 36(1).

5. Al‐Sultan, K.S. and Al‐Fawzan, M.A., 1999. A tabu search approach to the uncapaci-

tated facility location problem. Annals of Operations Research, 86, pp.91-103.

6. Altiparmak, F. and Karaoglan, I., 2007. A genetic ant colony optimization approach

for concave cost transportation problems. In Evolutionary Computation, 2007. CEC

2007. IEEE Congress on, pp. 1685-1692. IEEE.

7. Archetti, C., Speranza, M.G. and Hertz, A., 2006. A tabu search algorithm for the

split delivery vehicle routing problem. Transportation Science, 40(1), pp.64-73.

8. Ayob, M. and Kendall, G., 2003. A monte carlo hyper-heuristic to optimise compo-

nent placement sequencing for multi head placement machine. In Proceedings of the

International Conference on Intelligent Technologies, InTech, 3, pp. 132-141.

9. Basu, S., 2012. Tabu search implementation on traveling salesman problem and its

variations: a literature survey, American Journal of Operations Research, 2, pp. 163-

173.

10. Bessière, C. and Régin, J.C., 2001. Refining the Basic Constraint Propagation Algo-

rithm. In Proceedings of the 17th International Joint Conference on Artificial Intelli-

gence, IJCAI, 1, pp. 309-315.

11. Blum, C., 2005. Ant colony optimization: Introduction and recent trends. Physics of

Life reviews, 2(4), pp.353-373.

12. Blum, C. and Roli, A., 2003. Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys (CSUR), 35(3), pp.268-308.

13. Bonabeau, E., Dorigo, M. and Theraulaz, G., 1999. Swarm intelligence: from natural

to artificial systems, 1, Oxford University press.

Bibliography

168

14. Bouhafs, L. and Koukam, A., 2006. A combination of simulated annealing and ant

colony system for the capacitated location-routing problem. In Knowledge-Based In-

telligent Information and Engineering Systems, pp. 409-416. Springer Berlin Heidel-

berg.

15. Bouju, A., Boyce, J.F., Dimitropoulos, C.H.D., Vom Scheidt, G. and Taylor, J.G.,

1995. Tabu search for the radio links frequency assignment problem. Applied Deci-

sion Technologies (ADT’95), London.

16. Bouju, A., Boyce, J.F., Dimitropoulos, C.H.D., Vom Scheidt, G., Taylor, J.G., Likas,

A., Papageorgiou, G. and Stafylopatis, A., 1995, June. Intelligent search for the radio

link frequency assignment problem. In Proceedings of the International Conference

on Digital Signal Processing, Cyprus.

17. Bron, C. and Kerbosch, J., 1973. Algorithm 457: finding all cliques of an undirected

graph. Communications of the ACM, 16(9), pp.575-577.

18. Bullnheimer, B., Hartl, R.F. and Strauss, C., 1997. A new rank based version of the

Ant System. A computational study, Central European Journal for Operational Re-

search and Economic, 7(1), pp.25-38.

19. Bullnheimer, B., Hartl, R.F. and Strauss, C., 1999. An improved ant system algorithm

for thevehicle Routing Problem. Annals of Operations Research, 89, pp.319-328.

20. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. and Qu, R.,

2013. Hyper-heuristics: A survey of the state of the art. Journal of the Operational

Research Society, 64(12), pp.1695-1724.

21. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P. and Schulenburg, S., 2003. Hy-

per-heuristics: An emerging direction in modern search technology. International Se-

ries in Operations Research and Management Science, pp.457-474.

22. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. and Woodward, J.R., 2010.

A classification of hyper-heuristic approaches. In Handbook of metaheuristics, pp.

449-468. Springer US.

23. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E. and Qu, R., 2009. A survey

of hyper-heuristics. Computer Science Technical Report No. NOTTCS-TR-SUB-

0906241418-2747, School of Computer Science and Information Technology, Univer-

sity of Nottingham.

24. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. and Woodward, J.R., 2010.

A classification of hyper-heuristic approaches. In Handbook of metaheuristics, pp.

449-468. Springer US.

25. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S. and Qu, R., 2007. A graph-

based hyper-heuristic for educational timetabling problems. European Journal of Op-

erational Research, 176(1), pp.177-192.

Bibliography

169

26. Camazine, S., 2003. Self-organization in biological systems. Princeton University

Press.

27. Chakhlevitch, K. and Cowling, P., 2008. Hyperheuristics: recent developments. In

Adaptive and Multilevel Metaheuristics, pp. 3-29. Springer Berlin Heidelberg.

28. Charon, I. and Hudry, O., 1993. The noising method: a new method for combinatorial

optimization. Operations Research Letters, 14(3), pp.133-137.

29. Chaves-González, J.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A. and Sánchez-

Pérez, J.M., 2011. Optimizing a realistic large-scale frequency assignment problem

using a new parallel evolutionary approach. Engineering Optimization, 43(8), pp.813-

842.

30. Chiarandini, M. and Stützle, T., 2007. Stochastic local search algorithms for graph set

T-colouring and frequency assignment. Constraints, 12(3), pp.371-403.

31. Coffman, Jr, E.G., Garey, M.R. and Johnson, D.S., 1983. Dynamic bin packing. SIAM

Journal on Computing, 12(2), pp.227-258.

32. García, O.C., Triguero, F.H. and Stützle, T., 2002. A review on the ant colony opti-

mization metaheuristic: Basis, models and new trends. Mathware & Soft Computing,

9(3), pp.141-175.

33. Costa, D. and Hertz, A., 1997. Ants can colour graphs. Journal of the Operational

Research Society, 48(3), pp.295-305.

34. Crisan, C. and Mühlenbein, H., 1997. The frequency assignment problem: A look at

the performance of evolutionary search. In Artificial Evolution, pp. 263-273. Springer

Berlin Heidelberg.

35. de Werra, D. and Gay, Y., 1994. Chromatic scheduling and frequency assignment.

Discrete Applied Mathematics, 49(1), pp.165-174.

36. De Werra, D. and Hertz, A., 1989. Tabu search techniques. Operations-Research-

Spektrum, 11(3), pp.131-141.

37. Denzinger, J., Fuchs, M. and Fuchs, M., 1996. High performance ATP systems by

combining several AI methods. Technische Universität Kaiserslautern, Fachbereich

Informatik.

38. Di Caro, G. and Dorigo, M., 1998. AntNet: Distributed stigmergetic control for com-

munications networks. Journal of Artificial Intelligence Research, pp.317-365.

39. Dias, T.M., Ferber, D.F., De Souza, C.C. and Moura, A.V., 2003. Constructing nurse

schedules at large hospitals. International Transactions in Operational Research,

10(3), pp.245-265.

40. Dorigo, M., 1992. Optimization, learning and natural algorithms. Ph. D. Thesis,

Politecnico di Milano, Italy.

Bibliography

170

41. Dorigo, M. and Gambardella, L.M., 1997. Ant colony system: a cooperative learning

approach to the traveling salesman problem. Evolutionary Computation, IEEE Trans-

actions on, 1(1), pp.53-66.

42. Dorigo, M. and Socha, K., 2006. An introduction to ant colony optimization. Hand-

book of approximation algorithms and metaheuristics, pp.1-26.

43. Dorigo, M. and Stützle, T., 2003. The ant colony optimization metaheuristic: Algo-

rithms, applications, and advances. In Handbook of metaheuristics, pp.250-285.

Springer US.

44. Dorigo, M., Di Caro, G. and Gambardella, L.M., 1999. Ant algorithms for discrete

optimization. Artificial life, 5(2), pp.137-172.

45. Dorigo, M., Maniezzo, V. and Colorni, A., 1996. Ant system: optimization by a colo-

ny of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, 26(1), pp.29-41.

46. Dorigo, M., Colorni, A. and Maniezzo, V., 1991. Ant system: An autocatalytic opti-

mizing process. Tech. Report 91-016, Politecnico di Milano, Italy.

47. Dorne, R. and Hao, J.K., 1996. Constraint handling in evolutionary search: A case

study of the frequency assignment. In Parallel Problem Solving from Nature—PPSN

IV, pp. 801-810. Springer Berlin Heidelberg.

48. Dowsland, K.A. and Thompson, J.M., 2005. Ant colony optimization for the exami-

nation scheduling problem. Journal of the Operational Research Society, pp.426-438.

49. Dowsland, K.A. and Thompson, J.M., 2008. An improved ant colony optimisation

heuristic for graph colouring. Discrete Applied Mathematics, 156(3), pp.313-324.

50. Dror, M. and Trudeau, P., 1989. Savings by split delivery routing. Transportation

Science, pp.141-145.

51. Dueck, G., 1993. New optimization heuristics: the great deluge algorithm and the rec-

ord-to-record travel. Journal of Computational Physics, 104(1), pp.86-92.

52. Dueck, G. and Scheuer, T., 1990. Threshold accepting: a general purpose optimiza-

tion algorithm appearing superior to simulated annealing. Journal of Computational

Physics, 90(1), pp.161-175.

53. Dumitrescu, I. and Stützle, T., 2003. Combinations of local search and exact algo-

rithms. In Applications of Evolutionary Computing, pp. 211-223. Springer Berlin

Heidelberg.

54. Dupont, A. and Vasquez, M., 2005. Solving the dynamic frequency assignment prob-

lem. In MIC2005: The Sixth Metaheuristics International Conference, Vienna, Aus-

tria.

Bibliography

171

55. Dupont, A., Linhares, A.C., Artigues, C., Feillet, D., Michelon, P. and Vasquez, M.,

2009. The dynamic frequency assignment problem. European Journal of Operational

Research, 195(1), pp.75-88.

56. Einsenblatter, A., Grotschel, M. and Koster, A.M.C.A., 2000. Frequency assignment

and ramifications of coloring. Technical Report 00-47, Konrad-Zuse-Zentrum fur In-

formationstechnik Berlin, December 2000.

57. Elkhyari, A., Guéret, C. and Jussien, N., 2004. Constraint programming for dynamic

scheduling problems. In Proceedings of International Scheduling Symposium, Hiroshi

Kise, editor, (04), pp.84-89.

58. Eshghi, K. and Salari, E., 2008. An ACO algorithm for the graph coloring problem.

International Journal of Contemporary Mathematical Sciences, 3(6), pp.293-304.

59. Feo, T.A. and Resende, M.G., 1995. Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6(2), pp.109-133.

60. Fisher, H. and Thompson, G.L., 1963. Probabilistic learning combinations of local

job-shop scheduling rules. Industrial Scheduling, 3(2), pp.225-251.

61. Fleurent, C. and Ferland, J.A., 1996. Genetic and hybrid algorithms for graph color-

ing. Annals of Operations Research, 63(3), pp.437-461.

62. Fogel, D.B., 1995. Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence (Piscataway, NJ: IEEE).

63. Galinier, P., Gendreau, M., Soriano, P. and Bisaillon, S., 2005. Solving the frequency

assignment problem with polarization by local search and tabu. 4OR, 3(1), pp.59-78.

64. Gambardella, L.M. and Dorigo, M., 1997. HAS-SOP: Hybrid ant system for the se-

quential ordering problem. Technical Report IDSIA, pp. 11-97, Lugano, Switzerland.

65. Gambardella, L.M. and Dorigo, M., 1996. Solving Symmetric and Asymmetric TSPs

by Ant Colonies. In International Conference on Evolutionary Computation, pp. 622-

627.

66. Garey, M.R. and Johnson, D.S., 1979. A Guide to the Theory of NP-Completeness.

WH Freemann, New York.

67. Garrido, P. and Riff, M.C., 2010. DVRP: a hard dynamic combinatorial optimisation

problem tackled by an evolutionary hyper-heuristic. Journal of Heuristics, 16(6),

pp.795-834.

68. Gendreau, M. and Potvin, J.Y., 2010. Handbook of metaheuristics, 2. Springer New

York.

69. Gendreau, M., Guertin, F., Potvin, J.Y. and Taillard, E., 1999. Parallel tabu search for

real-time vehicle routing and dispatching. Transportation Science, 33(4), pp.381-390.

70. Glover, F., 1977. Heuristics for integer programming using surrogate constraints. De-

cision Sciences, 8(1), pp.156-166.

Bibliography

172

71. Glover, F., 1986. Future paths for integer programming and links to artificial intelli-

gence. Computers & Operations Research, 13(5), pp.533-549.

72. Glover, F., 1989. Tabu search-part I. ORSA Journal on Computing, 1(3), pp.190-206.

73. Glover, F., 1990. Tabu search—part II. ORSA Journal on Computing, 2(1), pp.4-32.

74. Glover, F., 1990. Tabu search: A tutorial. Interfaces, 20(4), pp.74-94.

75. Glover, F. and Laguna, M., 1997. Tabu Search Applications. In Tabu Search (pp.

267-303). Springer US.

76. Goldberg, D.E., 1989. Genetic algorithms in search optimization and machine learn-

ing (Vol. 412). Reading Menlo Park: Addison-wesley.

77. Gonzalez, T.F. ed., 2007. Handbook of approximation algorithms and metaheuristics.

CRC Press.

78. Gözüpek, D., Genç, G. and Ersoy, C., 2009, September. Channel assignment problem

in cellular networks: A reactive tabu search approach. In Computer and Information

Sciences, 2009. ISCIS 2009. 24th International Symposium on (pp. 298-303). IEEE.

79. Grove, E.F., 1995, Online Bin Packing with Lookahead. In Preceding of the 6th An-

nual ACM-SIAM Symposium on Discrete Algorithms, pp. 430-436. Society for Indus-

trial and Applied Mathematics.

80. Guntsch, M. and Middendorf, M., 2002. Applying population based ACO to dynamic

optimization problems. In Ant Algorithms, pp. 111-122. Springer Berlin Heidelberg.

81. Gutjahr, W.J., 2003. A generalized convergence result for the graph-based ant system

metaheuristic. Probability in the Engineering and Informational Sciences, 17(04),

pp.545-569.

82. Gutjahr, W.J., 2004. S-ACO: An ant-based approach to combinatorial optimization

under uncertainty. In Ant Colony Optimization and Swarm Intelligence, pp. 238-249.

Springer Berlin Heidelberg.

83. Hale, W.K., 1980. Frequency Assignment: Theory and applications. Proceedings of

the IEEE, 68(12), pp.1497-1514.

84. Halldórsson, M.M. and Szegedy, M., 1992, September. Lower bounds for on-line

graph coloring. In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete

Algorithms, pp. 211-216. Society for Industrial and Applied Mathematics.

85. Hao, J.K. and Perrier, L., 1996. Tabu search for the frequency assignment problem in

cellular radio networks. Technical Report LG12P, EMA-EERIE, Parc Scientifique

Georges Besse, Names France.

86. Hao, J.K., Dorne, R. and Galinier, P., 1998. Tabu search for frequency assignment in

mobile radio networks. Journal of Heuristics, 4(1), pp.47-62.

87. Hertz, A. and de Werra, D., 1987. Using tabu search techniques for graph coloring.

Computing, 39(4), pp.345-351.

Bibliography

173

88. Hertz, A. and de Werra, D., 1990. The tabu search metaheuristic: how we used it. An-

nals of Mathematics and Artificial Intelligence, 1(1), pp.111-121.

89. Hertz, A. and Zufferey, N., 2006. A new ant algorithm for graph coloring. In Work-

shop on Nature Inspired Cooperative Strategies for Optimization NICSO, pp. 51-60.

90. Holder, A., 2006. Mathematical Programming Glossary. INFORMS Computing Soci-

ety, http://glossary.computing.society. informs.org/, 2006-2007, originally authored

by Harvey Greenberg, 1999-2006.

91. Holland, J.H., 1975. Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. U Michigan

Press.

92. Hopfield, J.J., 1982. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences, 79(8), pp.

2554-2558.

93. Iredi, S., Merkle, D. and Middendorf, M., 2001, March. Bi-criterion optimization with

multi colony ant algorithms. In Evolutionary Multi-Criterion Optimization, pp. 359-

372. Springer Berlin Heidelberg.

94. Kapsalis, A., Chardaire, P., Rayward-Smith, V.J. and Smith, G.D., 1995. The radio

link frequency assignment problem: A case study using genetic algorithms. In Evolu-

tionary Computing, pp. 117-131. Springer Berlin Heidelberg.

95. Kendall, G. and Hussin, N.M., 2005. An investigation of a tabu-search-based hyper-

heuristic for examination timetabling. In Multidisciplinary Scheduling: Theory and

Applications, pp. 309-328. Springer US.

96. Kendall, G. and Mohamad, M., 2004. Channel assignment in cellular communication

using a great deluge hyper-heuristic. In Networks, 2004.(ICON 2004). Proceedings.

12th IEEE International Conference on, 2, pp. 769-773. IEEE.

97. Kendall, G. and Mohamad, M., 2004. Channel assignment optimisation using a hy-

per-heuristic. In Cybernetics and Intelligent Systems, 2004 IEEE Conference on, 2,

pp. 791-796. IEEE.

98. Kirkpatrick, S. Gelatt, C. D. and Vecchi, M. P., 1983. Optimization by simulated an-

nealing. Science, 4220, pp. 671–680.

99. Knuth, D.E., 1976. Big omicron and big omega and big theta. ACM Sigact News,

8(2), pp.18-24.

100. Koster, A.M.C.A., 1999. Frequency assignment: Models and algorithms. Arie Koster.

101. Koster, A.M., van Hoesel, S.P. and Kolen, A.W., 1999, June. Optimal solutions for

frequency assignment problems via tree decomposition. In Graph-theoretic concepts

in computer science, pp. 338-350. Springer Berlin Heidelberg.

Bibliography

174

102. Kouvelis, P. and Yu, G., Robust discrete optimization and its applications. 1997.

Kluwer Academic Publishers, Boston.

103. Kunz, D., 1991. Channel assignment for cellular radio using neural networks. Vehicu-

lar Technology, IEEE Transactions on, 40(1), pp.188-193.

104. Leighton, F.T., 1979. A graph coloring algorithm for large scheduling problems.

Journal of Research of the National Bureau of Standards, 84(6), pp.489-506.

105. Likas, A. and Stafylopatis, A., 1996. Group updates and multiscaling: An efficient

neural network approach to combinatorial optimization. Systems, Man, and Cybernet-

ics, Part B: Cybernetics, IEEE Transactions on, 26(2), pp.222-232.

106. Linhares, A.C., Michelon, P. and Feillet, D., 2010. An exact site availability approach

to modeling the D-FAP. Electronic Notes in Discrete Mathematics, 36, pp.1-8.

107. Luna, F., Blum, C., Alba, E. and Nebro, A.J., 2007. ACO vs EAs for solving a real-

world frequency assignment problem in GSM networks. In Proceedings of the 9th An-

nual Conference on Genetic and Evolutionary Computation, pp. 94-101.

108. Maniezzo, V., 1999. Exact and approximate nondeterministic tree-search procedures

for the quadratic assignment problem. INFORMS Journal on Computing, 11(4),

pp.358-369.

109. Maniezzo, V. and Carbonaro, A., 2000. An ANTS heuristic for the frequency assign-

ment problem. Future Generation Computer Systems, 16(8), pp.927-935.

110. Maximiano, M.D.S., Vega-Rodriguez, M.A., Gomez-Pulido, J.A. and Sánchez-Pérez,

J.M., 2009, December. Multiobjective frequency assignment problem using the MO-

VNS and MO-SVNS algorithms. In Nature & Biologically Inspired Computing, 2009.

NaBIC 2009. World Congress on, pp. 221-226. IEEE.

111. Metzger, B.H., 1970. Spectrum Management Technique presented at 38th National

ORSA meeting. Detroit, MI (Fall 1970).

112. Mladenović, N. and Hansen, P., 1997. Variable neighborhood search. Computers &

Operations Research, 24(11), pp.1097-1100.

113. Mohr, R. and Henderson, T.C., 1986. Arc and path consistency revisited. Artificial In-

telligence, 28(2), pp.225-233.

114. Montemanni, R. and Smith, D.H., 2010. Heuristic manipulation, tabu search and fre-

quency assignment. Computers & Operations Research, 37(3), pp.543-551.

115. Montemanni, R., Smith, D.H. and Allen, S.M., 2002. An ANTS algorithm for the

minimum-span frequency-assignment problem with multiple interference. Vehicular

Technology, IEEE Transactions on, 51(5), pp.949-953.

116. Nowicki, E. and Smutnicki, C., 1996. A fast taboo search algorithm for the job shop

problem. Management Science, 42(6), pp.797-813.

Bibliography

175

117. Nowicki, E. and Smutnicki, C., 2005. An advanced tabu search algorithm for the job

shop problem. Journal of Scheduling, 8(2), pp.145-159.

118. OFCOM, 2013. Annual licence fees for 900 MHz and 1800 MHz spectrum consulta-

tion, United Kingdom Frequency Allocation Table, Issue No. 17

119. Osman, I.H., 2003. Focused issue on applied meta-heuristics. Computers & Industrial

Engineering, 44(2), pp.205-207.

120. Osman, I.H. and Kelly, J.P. eds., 2012. Meta-heuristics: Theory and Applications.

Springer Science & Business Media.

121. Ouelhadj, D. and Petrovic, S., 2009. A survey of dynamic scheduling in manufactur-

ing systems. Journal of Scheduling, 12(4), pp.417-431.

122. Özcan, E., Bilgin, B. and Korkmaz, E.E., 2008. A comprehensive analysis of hyper-

heuristics. Intelligent Data Analysis, 12(1), pp.3-23.

123. Park, T. and Lee, C.Y., 1996. Application of the graph coloring algorithm to the fre-

quency assignment problem. Journal of the Operations Research Society of Japan,

39(2), pp.258-265.

124. Parsapoor, M. and Bilstrup, U., 2013. Ant colony optimization for channel assign-

ment problem in a clustered mobile ad hoc network. In Advances in Swarm Intelli-

gence, pp. 314-322. Springer Berlin Heidelberg.

125. Pirim, H., Eksioglu, B. and Bayraktar, E., 2008. Tabu Search: a comparative study

(pp. 1-27). INTECH Open Access Publisher.

126. Plumettaz, M., Schindl, D. and Zufferey, N., 2010. Ant local search and its efficient

adaptation to graph colouring. Journal of the Operational Research Society, 61(5),

pp.819-826.

127. Pour, H.D. and Nosraty, M., 2006. Solving the facility and layout and location prob-

lem by ant-colony optimization-meta heuristic. International Journal of Production

Research, 44(23), pp.5187-5196.

128. Psaraftis, H.N., 1988. Vehicle routing: Methods and studies. Dynamic Vehicle Rout-

ing Problems. North Holland, Amsterdam, The Netherlands, pp.223-248.

129. Rattadilok, P., Gaw, A. and Kwan, R.S., 2004. Distributed choice function hyper-

heuristics for timetabling and scheduling. In Practice and Theory of Automated Time-

tabling V, pp. 51-67. Springer Berlin Heidelberg.

130. Ribeiro, C.C. and Hansen, P. eds., 2012. Essays and surveys in metaheuristics, 15.

Springer Science & Business Media.

131. Roberts, F.S., 1991. T-colorings of graphs: recent results and open problems. Discrete

mathematics, 93(2-3), pp.229-245.

132. Ross, P., 2005. Hyper-heuristics. In Search methodologies, pp. 529-556. Springer US.

Bibliography

176

133. Rubinstein, R.Y., 2001. Combinatorial optimization via the simulated cross-entropy

method. Encyclopedia of Operations Research and Management Science. Boston,

Kluwer Academic Publishers.

134. Schulz, M. and Eisenblätter, A., 2003. Solving Frequency Assignment Problems with

Constraint Programming. Technische Universität Berlin, Institut für Mathematik.

135. Segura, C., Miranda, G. and León, C., 2011. Parallel hyperheuristics for the frequency

assignment problem. Memetic Computing, 3(1), pp.33-49.

136. Skiena, S.S., 1998. The algorithm design manual: Text, 1. Springer Science & Busi-

ness Media.

137. Smith, D.H., Allen, S.M., Hurley, S. and Watkins, W.J., 1998, October. Frequency

assignment: Methods and algorithms. In Proceedings of the NATO RTA SET/ISET

symposium on frequency assignment, sharing and conservation in systems (aero-

space), Aalborg, Denmark, pp. K1-K18.

138. Smith, K. and Palaniswami, M., 1997. Static and dynamic channel assignment using

neural networks. Selected Areas in Communications, IEEE Journal on, 15(2), pp.238-

249.

139. Socha, K., 2004. ACO for continuous and mixed-variable optimization. In Ant Colony

Optimization and Swarm Intelligence, pp. 25-36. Springer Berlin Heidelberg.

140. Socha, K. and Dorigo, M., 2008. Ant colony optimization for continuous domains.

European Journal of Operational Research, 185(3), pp.1155-1173.

141. Sörensen, K. and Glover, F.W., 2013. Metaheuristics. In Encyclopedia of Operations

Research and Management Science, pp. 960-970. Springer US.

142. Stützle, T. and Dorigo, M., 1999. ACO algorithms for the traveling salesman prob-

lem. Evolutionary Algorithms in Engineering and Computer Science, pp.163-183.

143. Stützle, T. and Hoos, H.H., 2000. MAX–MIN ant system. Future Generation Com-

puter Systems, 16(8), pp.889-914.

144. Talbi, E.G., 2009. Metaheuristics: from design to implementation, 74. John Wiley &

Sons.

145. Tiourine, S.R., Hurkens, C.A.J. and Lenstra, J.K., 2000. Local search algorithms for

the radio link frequency assignment problem. Telecommunication Systems, 13(2-4),

pp.293-314.

146. Van Benthem, H.P., 1995. GRAPH-Generating Radio link frequency Assignment

Problems Heuristically. Master thesis, Delft University of Technology.

147. Vasquez, M., Dupont, A. and Habet, D., 2005. Consistent neighbourhood in a tabu

search. In Metaheuristics: Progress as Real Problem Solvers, pp. 369-388. Springer

US.

Bibliography

177

148. Vishwanathan, S., 1992. Randomized online graph coloring. Journal of Algorithms,

13(4), pp.657-669.

149. Voß, S., Martello, S., Osman, I.H. and Roucairol, C. eds., 2012. Meta-heuristics: Ad-

vances and trends in local search paradigms for optimization. Springer Science &

Business Media.

150. Warners, J.P., 1998. A nonlinear approach to a class of combinatorial optimization

problems. Statistica neerlandica, 52(2), pp.162-184.

151. Warners, J.P., Terlaky, T., Roos, C. and Jansen, B., 1997. A potential reduction ap-

proach to the frequency assignment problem. Discrete Applied Mathematics, 78(1),

pp.251-282.

152. Watkins, W.J., Hurley, S. and Smith, D.H., 1998. Evaluation of models for area cov-

erage. Report to UK Radiocommunications Agency, Department of Computer Science,

Cardiff University.

153. White, G.M. and Xie, B.S., 2000. Examination timetables and tabu search with long-

er-term memory. In Practice and Theory of Automated Timetabling III, pp.85-103.

Springer Berlin Heidelberg.

154. Wu Q., Zhang J.and Xu X., 1999. Variability of ant colony algorithm. Computer Re-

search and Development, 36(10).

155. Yu-Bin, Z., Yu-Cai, Z. and Hui, X., 2009, September. A tabu search algorithm for

frequency assignment problem in wireless communication networks. In Wireless

Communications, Networking and Mobile Computing, 2009. WiCom'09. 5th Interna-

tional Conference on, pp.1-4. IEEE.

