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Résumé. Nous étudions les suites de Fibonacci entrelacées mul-
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nombre entier m, il y a une forme rationnelle et une forme entière
de ces suites, et la suite entière peut être recouvrée en utilisant la
structure de congruences modulo des nombres premiers des déno-
minateurs de la suite rationnelle.

À partir des suites, rationnelles ou entières, on construit des
suites vectorielles dans Qm, convergeant vers des points irration-
nels algébriques dans Rm. Les termes de la suite rationnelle
peuvent être décrits par des récurrences simples, des polynômes
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de Rodrigues et les opérateurs d’échelle. En outre, on démontre
que les transformations de Mellin de ces polynômes satisfont une
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Abstract. We study higher-dimensional interlacing Fibonacci
sequences, generated via both Chebyshev type functions and m-
dimensional recurrence relations. For each integer m, there exist
both rational and integer versions of these sequences, where the
underlying prime congruence structures of the rational sequence
denominators enables the integer sequence to be recovered.

From either the rational or the integer sequences we construct
sequences of vectors in Qm, which converge to irrational alge-
braic points in Rm. The rational sequence terms can be expressed
as simple recurrences, trigonometric sums, binomial polynomials,
sums of squares, and as sums over ratios of powers of the signed
diagonals of the regular unit n-gon. These sequences also exhibit
a “rainbow type” quality, and correspond to the Fleck numbers at
negative indices, leading to some combinatorial identities involv-
ing binomial coefficients.

It is shown that the families of orthogonal generating polynomi-
als defining the recurrence relations employed, are divisible by the
minimal polynomials of certain algebraic numbers, and the three-
term recurrences and differential equations for these polynomials
are derived. Further results relating to the Christoffel-Darboux
formula, Rodrigues’ formula and raising and lowering operators
are also discussed. Moreover, it is shown that the Mellin trans-
forms of these polynomials satisfy a functional equation of the
form pn(s) = ±pn(1 − s), and have zeros only on the critical line
ℜ(s) = 1/2.

1. Introduction

Let F0 = 0, F1 = 1, L0 = 2 and L1 = 1 and define the nth Fibonacci
number, Fn, and the nth Lucas number, Ln, in the usual fashion [22], so
that Fn+2 = Fn+1 + Fn, and the same recurrence for the Lucas numbers.
We begin by examining the relationship that exists between the Fibonacci
and Lucas numbers, binomial coefficients and the Chebyshev polynomials
of the first and second kinds, which we now define.

Definition 1.1 (Chebyshev polynomials). For 0 ≤ θ ≤ π, and n a non-
negative integer, the Chebyshev polynomials (see for example [14, 16]) of
the first and second kinds, Tn(x) and Un(x), are defined by

(1.1) Tn(cos θ) = cosnθ, Un(cos θ) =
sin (n+ 1)θ

sin θ
.

The related functions Cn(x) and Sn(x), are then defined to be Cn(x) =
2Tn(x/2), Sn(x) = Un(x/2).

Explicit forms for the Chebyshev polynomials are given in Lemma 1.2,
with equivalent Fibonacci and Lucas number expressions given in
Lemma 1.3.
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Lemma 1.2 (Chebyshev identity lemma). From the definitions of the
Chebyshev polynomials Tn(x) and Un(x) in (1.1), we obtain the equivalent
polynomial definitions

Tn(x) = 2n−1
n
∏

k=1

(

x− cos
(

(2k−1)π
2n

))

,(1.2)

Un(x) = 2n
n
∏

k=1

(

x− cos
(

kπ
n+1

))

,(1.3)

and similarly for Cn(x) and Sn(x), valid for all x ∈ C, and obeying the
identities

Un(x) = 2
n
∑

j odd

Tj(x), n odd, Un(x) = 2
n
∑

j even
Tj(x) − 1, n even,(1.4)

Un(x) =
[n/2]
∑

r=0

(−1)r

(

n− r

r

)

(2x)n−2r =
[n/2]
∑

r=0

(

n+ 1
2r + 1

)

xn−2r(x2 − 1)r,(1.5)

Tn+1(x) = 2xTn(x) − Tn−1(x),

2Tm(x)Tn(x) = Tm+n(x) + T|m−n|(x).
(1.6)

Proof. For proofs of the above identities we refer the reader to Chapters 1
and 2 of [16]. �

Lemma 1.3 (Fibonacci identity lemma). With i2 = −1, the Fibonacci and
Lucas numbers can be expressed in terms of Chebyshev polynomials by

(1.7) Fn+1 =
Sn(i)
in

, Ln =
Cn(i)
in

, n = 0, 1, 2, . . . ,

and in terms of binomial coefficients such that

(1.8) Fn+1 =
[n/2]
∑

k=0

(

n− k

k

)

, Ln =
[n/2]
∑

k=0

n

n− k

(

n− k

k

)

.

The binomial sum for the Fibonacci numbers is often referred to as the shal-
low diagonal sum of the Pascal triangle. The second sum can be viewed as a
scaling of the terms in the previous sum, highlighting the interconnectedness
that exists between the Fibonacci and Lucas sequences.

Proof. For proofs of these Chebyshev and Fibonacci identities, we refer
the reader to p. 60–64 of [16], where it is shown that one can deduce the
binomial sums in (1.8) from the Chebyshev expressions in (1.7). �
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Definition 1.4 (Cosine functions). For k ∈ Z, let φm k, ψm k, µm k and
νm k be defined such that

φm k = 2 cos
(

2π k
2m+1

)

, ψm k = 2 cos
(

(2k−1)π
2m

)

,

µm k = φm k − 2, νm k = ψm k − 2,

and
e(x) = e2πix = cos (2πx) + i sin (2πx),

so that e(k/n) is an nth root of unity. Then working (mod 2m + 1)
the second subscript, we have φm jφm k = φm (j+k) + φm (j−k), as well as
−ψm (m−k+1) = ψm k, and in terms of the mth roots of unity

φm k = e
(

k
2m+1

)

+ e
(

−k
2m+1

)

, ψm k = e
(

2k−1
4m

)

+ e
(

−2k+1
4m

)

.

Hence −φ2 2 = (1 +
√

5)/2 = φ, is the Golden Ratio, from which it can be
seen that −φ2 1 = (1 −

√
5)/2 = φ̄ = 1/φ2 2.

Definition 1.5 (Vector convergents). We say that the sequence of vectors
{vr}∞

r=1 in Qm converges to the limit v ∈ Rm, if for any ǫ > 0, there exists
an rǫ ∈ N, such that |vr − v| < ǫ for r > rǫ, where | | denotes the standard
Euclidean distance in Rm.

In this paper we identify the two (countably) infinite rational interlacing
Fibonacci and Lucas sequences F

(2,1)
r and F

(2,2)
r , for r = 1, 2, 3, . . ., and

their multi-dimensional analogues F
(m,j)
r , with 1 ≤ j ≤ m. From ratios of

these sequence terms we construct recursively (countably) infinite sequences
of vectors Ψ

(m)
r ∈ Qm, which converge (as per Definition 1.5) to the irra-

tional algebraic points Φ(m) = (φm 1, . . . , φm m) ∈ Rm. These sequences of
convergent vectors are a natural generalisation of the convergence of ratios
of consecutive Fibonacci numbers Fr+1/Fr, to φ = (1 +

√
5)/2, so that

lim
r→∞

Fr+1

Fr
= φ.

To give a structural overview of this work, in Section 2 we use a rational
recurrence relation to construct the two interlacing Fibonacci and Lucas
sequences

N
(2,1)

r
r=1,2,3,...

= L0,−F1,L2,−F3,L4,−F5, . . . = {L2r}∞
r=0 ∪ {−F2r+1}∞

r=0 ,

N
(2,2)

r
r=1,2,3,...

= L1,−F2,L3,−F4,L5,−F6, . . . = {L2r+1}∞
r=0 ∪ {−F2r}∞

r=1 ,

(1.9)

as the numerator sequences of the respective rational sequences F
(2,1)
r and

F
(2,2)
r . The divisibility and continued fraction properties of these sequences

are examined, and closed form expressions analogous to Binet’s formula are
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derived. The denominators of these rational sequence terms are powers of
5, thus indicating a 5-adic structure. To achieve alignment of the denomi-
nator factors between the two sequences, both sequences (as ordered above)
commence with the term r = 1.

Central to our results are the four families of polynomial functions Pm(x),
Qm(x), Pm(x), and Qm(x), which are introduced in Section 3, with con-
necting trigonometric, binomial, Fibonacci, Lucas and Chebyshev identities
for these polynomials given in Theorem 3.2. The m-dimensional interlacing
Fibonacci sequences of the title {F

(m,j)
r }∞

r=1, with 1 ≤ j ≤ m, along with
the sister sequences {G

(m,j)
r }∞

r=1, are subsequently defined, and in Theo-
rem 3.6 we obtain the generating functions for these sequences. As detailed
in Corollary 3.7 and Lemma 3.9, this yields a number of ways to express
F

(m,j)
r (and G

(m,j)
r ), such as

F
(m,j)
r =

m
∑

t=1

(µm t)
−r
(

φm jt − φm (j−1)t

)

= (−1)r−1
m
∑

t=1

(

2 sin
(

π(2j−1)t
2m+1

))

(

2 sin
(

πt
2m+1

))2r−1 .

With n = 2m + 1, the right-hand display allows for the geometric rep-
resentation of the sequence terms as ratios of the diagonal lengths of an
odd-sided regular n-gon inscribed in the unit circle (Theorem 3.22).

The convergence properties of the pairwise ratios of these sequences
are then considered (Theorem 3.11), enabling the construction of the ra-
tional vector sequences Ψ

(m)
r ∈ Qm, which converge to the limit point

Φ(m) ∈ Rm. Bounds for the remainder term and connections with simple
continued fractions are briefly discussed in Corollaries 3.12 and 3.13. In
Theorem 3.19 we show that the sequences F

(m,j)
r (and G

(m,j)
r ) are “rain-

bow sequences”, consisting of n times a renumbering of the Fleck Numbers
(alternating sums of binomial coefficients modulo n) for r at negative inte-
ger values. The non-reduced numerators N

(m,j)
r of F

(m,j)
r are described in

Theorem 3.24, where in particular for n an odd prime number p = 2m+ 1,
it is shown that for all r ∈ Z, we have
{

p⌊ r−1
m ⌋F

(m,j)
r

}+∞

r=−∞
=
{

N
(m,j)

r

}+∞

r=−∞
, so that p⌊ r−1

m ⌋F
(m,j)
r ∈ Z.

In Theorem 3.29, we obtain sums of squares identities via the sequence
term relations

(1.10)

m
∑

j=1

(

F
(m,j)
r

)2
= −nF

(m,1)
2r ,

(

G
(m,0)
r

)2
+ 2

m
∑

j=1

(

G
(m,j)
r

)2
= 2nF

(m,1)
2r+1 ,
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from which we deduce some combinatorial identities (not given in [7]),
including

(1.11)
m
∑

j=1

( ∞
∑

a=−∞
(−1)r+j+a

(

2r + 1
r + j + a(2m+ 1)

))2

=
∞
∑

a=−∞
(−1)a

(

4r + 1
2r + 1 + a(2m+ 1)

)

.

In Section 4 we examine in greater detail our Fibonacci, Lucas and Cheby-
shev polynomial functions, deriving orthogonality conditions, differential
and recurrence relations, Mellin transforms with zeros only on the critical
line ℜ(s) = 1/2, a Christoffel-Darboux identity, and minimal polynomial
relations. To conclude, in Section 5 we take a brief look at the sequences of
matrix minors.

Aside from the binomial Fleck number representation given in Theo-
rem 3.19, as far as the authors are aware, the results contained herein
are seemingly new and unpublished. Before deriving our results, we first
reacquaint ourselves with the convergence properties of the Fibonacci and
Lucas sequences.

Fibonacci Convergents. The method known as Euclid’s algorithm or the
highest common factor rule or the continued fraction rule is central to clas-
sical number theory. This algorithm produces all “good approximations” to
a given real number α which can be rephrased in terms of 2 × 2 matrices
such that, given a fraction a/c in its lowest terms so that hcf (a, c) = 1, find
a matrix of integers

(

a b
c d

)

with determinant
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad− bc = 1.

As a consequence it means that much of number theory is fundamentally
concerned with how pairs of integers behave, and so it is natural to study
them accordingly.

Taking a0 = [α], the simple continued fraction algorithm produces
a series of positive integers a1, a2, . . ., from which one obtains p0/q0, p1/q1,
p2/q2, . . ., the sequence of convergents to α, defined such that p0/q0 = a0/1,
and thereafter by
(1.12)
p1

q1
= a0 +

1
a1
,
p2

q2
= a0 +

1

a1 +
1
a2

, . . . ,
pn

qn
= a0 +

1

a1 +
1

a2 +
.. .

1
an

.
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This algorithm allows the matrix representation

(1.13)
(

pr+1 pr

qr+1 qr

)

=
(

pr pr−1

qr qr−1

)(

ar+1 1
1 0

)

=
(

ar+1pr + pr−1 pr

ar+1qr + qr−1 qr

)

,

and by Dirichlet’s theorem for continued fractions (see [5, p. 81], or [6,
p. 136]), the convergents have a remainder term satisfying

(1.14)
∣

∣

∣

∣

pr

qr
− α

∣

∣

∣

∣

≤ 1
qrqr+1

<
1
q2

r

.

As every real irrational number α has an infinite simple continued fraction
expansion, one can think of R as being the completion of Q with respect
to its Cauchy sequence limit points.

The continued fraction expansion for the Golden Ratio φ = (1 +
√

5)/2
is [1; 1̇], and so in terms of construction, it is the slowest converging simple
continued fraction possible. From the expansion [1; 1̇] we deduce that the
sequence of convergents obey the relation pr+1

qr+1
= 1 + qr

pr
, with the first few

terms in this sequence given below.

1
1
,
2
1
,
3
2
,
5
3
,
8
5
,
13
8
,
21
13
,
34
21
,
55
34
, . . .

Hence

(1.15)
pr

qr
=

Fr+2

Fr+1
with lim

r→∞
Fr+2

Fr+1
= φ, and

pr+2

qr+2
=
pr+1 + pr

qr+1 + qr
,

by (1.13), concurring with the three term recurrence relation Fr+2 = Fr+1+
Fr. The corresponding recurrence equation is x2 − x − 1 = 0, which has
largest root φ. As the sequence of Lucas numbers [22] obeys the same
recurrence relation, with the initial values L0 = 2 and L1 = 1, we again
find that the sequence of ratios of successive Lucas numbers converges to φ,
and their reciprocals to 1/φ = φ2 1.

In terms of φ2 r, Binet’s closed form expression for the Fibonacci se-
quence, and the Lucas sequence analogue (see [9, Theorems 5.6 and 5.8])
equate to

(1.16) Fn =
(−1)n

√
5

(φn
2 2 − φn

2 1) =
2
∑

r=1

(−1)r+n

√
5

φn
2 r,

and

(1.17) Ln = (−1)n (φn
2 2 + φn

2 1) =
2
∑

r=1

(−φ2 r)n.

Subtracting the limit point of φ = −φ2 2 from the sequence ratios
Fn+1/Fn; rewriting using the closed form (1.16), and applying Dirichlet’s
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theorem (1.14), we have that the Fibonacci convergent remainder terms
satisfy

∣

∣

∣

∣

Fn+1

Fn
− φ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

√
5

φ2n − (−1)n

∣

∣

∣

∣

∣

<
1

F2
n

.

Regarding the Lucas numbers for n > 3, and using (1.17), we obtain the
slightly weaker bound

∣

∣

∣

∣

Ln+1

Ln
− φ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

√
5

φ2n + (−1)n

∣

∣

∣

∣

∣

<
1

L2
n−2

.

Other variations on Binet’s formula, connecting the fifth roots of unity and
the Fibonacci sequence, are

(1.18) (1 + φ2 k)n = Fn+1 + φ2 kFn, k ∈ {1, 2},
discussed by Grzymkowski and Witula in [8], and (−φ2 2)n = −φ2 2Fn +
Fn−1, given by Vajda in [22].

From the relations given in (1.7), (1.17) and (1.18) one can deduce a
multitude of identities, of which some of the better known are

Fm+n+1 = Fm+1Fn+1 + FmFn,
n
∑

k=1

F2
k = FnFn+1,(1.19)

Fn+1Fn−1 − F2
n = (−1)n, Ln+1Ln−1 − L2

n = (−1)n−15,(1.20)

Fm+n = LmFn+1 − Fm−1Ln, Lm+n = 5FmFn+1 − Lm−1Ln.(1.21)

The two identities in (1.11) (see Theorem 3.29) are a variation on the right-
hand display in (1.19), leading to representations of the sequence terms
F

(m,1)
2r as a sum of the squares of m non-zero integers, and the sequence

terms F
(m,1)
2r+1 as a sum of the squares of 2m + 1 positive integers. The

relations (1.20) and (1.21) highlight the interconnectedness that exists be-
tween these two sequences and also to the number 5. As a motivation for our
general theories, we now describe an alternative recurrence approach that
yields two rational sequences, whose numerators are interlacing Fibonacci
and Lucas numbers, and denominators powers of 5.

2. Interlacing Fibonacci and Lucas Sequences

Let F
(2,1)
1 = 2, F

(2,1)
2 = −1, F

(2,2)
1 = 1, F

(2,2)
2 = −1, and thereafter

F
(2,j)
r+2 = −F

(2,j)
r+1 − 1

5
F

(2,j)
r , j ∈ {1, 2}, r = 1, 2, 3, . . .

so that in matrix notation
(

F
(2,1)
r+1 F

(2,1)
r

F
(2,2)
r+1 F

(2,2)
r

)

=
( −1 2

−1 1

)( −1 1
−1

5 0

)r−1

,



On Higher-Dimensional Fibonacci Numbers 9

where F
(2,1)
r is the rth term of the first sequence and F

(2,2)
r the rth term of

the second sequence. Then both sequences satisfy a three-term recurrence
relation, with recurrence equation x2 + x+ 1/5 = 0, whose roots are

x =
1 −

√
5

2
√

5
=

−1

φ
√

5
, and x =

−1 −
√

5

2
√

5
=

−φ√
5
.

Lemma 2.1. The generating functions for the sequences F
(2,1)
r and F

(2,2)
r

are given by

F
(2,1)
r :

5(x+ 2)
x2 + 5x+ 5

= 2−x+
3x2

5
− 2x3

5
+

7x4

25
− 5x5

25
+

18x6

125
− 13x7

125
+ . . . ,

(2.1)

F
(2,2)
r :

5
x2 + 5x+ 5

= 1−x+
4x2

5
− 3x3

5
+

11x4

25
− 8x5

25
+

29x6

125
− 21x7

125
+. . . ,

so that F
(2,1)
r can be expressed in terms of F

(2,2)
r as

F
(2,1)
r = 2F

(2,2)
r + F

(2,2)
r−1 .

Proof. The result follows by applying the method of summation over the
recurrence relation terms and rearranging. The relationship between the
two sequences can then easily be seen by comparing the generating function
structures. �

Lemma 2.2. For r = 1, 2, 3, . . . we have

F
(2,1)
r =

(−φ2 1√
5

)r−1

+
(

φ2 2√
5

)r−1

, F
(2,2)
r =

√
5
((−φ2 1√

5

)r

−
(

φ2 2√
5

)r)

,

so that there exist closed form expressions for the sequences F
(2,1)
r and

F
(2,2)
r in terms of φ2 1 and φ2 2.

Corollary 2.3. The sequence of ratios of consecutive terms F
(2,j)
r+1 /F

(2,j)
r ,

with j ∈ {1, 2}, approximates −φ/
√

5 with an accuracy
∣

∣

∣

∣

∣

∣

F
(2,1)
r+1

F
(2,1)
r

+
φ√
5

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1
φ2r−2 + 1

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

F
(2,2)
r+1

F
(2,2)
r

+
φ√
5

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1
φ2r − 1

∣

∣

∣

∣

.

Proof. We give the proof for F
(2,2)
r . Applying Cauchy’s Residue Theorem

to the generating function (2.1) of F
(2,2)
r yields

∮

f(z)
zr+1

dz =
∮

5z
zr+1(z2 + 5z + 5)

dz,

where the contour contains the poles at z = 0 and z = −5±
√

5
2 , or equiva-

lently z = −
√

5φ2 1 = µ2 1 and z =
√

5φ2 2 = µ2 2. The residue at 0 gives
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the term F
(2,2)
r , and as the sum of the residues is 0, one obtains

F
(2,2)
r = − 5

µr
2 1(µ2 1 − µ2 2)

− 5
µr

2 2(µ2 2 − µ2 1)
.

Using

µ2 1 − µ2 2 =
√

5 and φ2 2 =
−1
φ2 1

,

we deduce the desired closed form for F
(2,2)
r , and similarly for F

(2,1)
r .

The Corollary then follows from rearrangement of the closed form ex-
pressions of Lemma 2.2 in conjunction with −φ/

√
5 being the root of the

recurrence equation with largest absolute value. �

Lemma 2.4 (Numerator sequence lemma). Let N
(2,j)

r be the non-reduced

numerator of the rth term of the jth sequence F
(2,j)
r , so that

N
(2,j)

r = 5⌊ r−1
2

⌋
F

(2,j)
r , j ∈ {1, 2}.

with ⌊.⌋ the floor function. Then for r = 1, 2, 3, . . ., we have

N
(2,1)

2r−1 = L2r−2, N
(2,1)

2r = F2r−1, and N
(2,2)

2r−1 = L2r−1, N
(2,2)

2r = F2r.

Proof. Comparing the closed forms for F
(2,1)
r and F

(2,2)
r given in

Lemma 2.2, with Binet’s formula for the Fibonacci and Lucas numbers
given in (1.17), it then follows that the non-reduced numerators of the two
sequences F

(2,1)
r and F

(2,2)
r are comprised of alternating Lucas and nega-

tive Fibonacci numbers (by non-reduced we mean that any common factors
between numerator and denominator, such as in 5/25 in the sequence term
F

(2,1)
5 , are not cancelled). �

As described in Corollary 2.3, the ratios of consecutive sequence terms
yields two sequences of convergents with common limit point −φ/

√
5. The

initial terms of these two convergent sequences are given below.

−F
(2,1)
r+1

F
(2,1)
r

=
1
2
,

3
5
,

2
3
,

7
10
,

5
7
,

18
25
,

13
18
,

47
65
,

34
47
,

123
170

,
89
123

, . . .

−F
(2,2)
r+1

F
(2,2)
r

= 1,
4
5
,

3
4
,

11
15
,

8
11
,

29
40
,

21
29
,

76
105

,
55
76
,

199
275

,
144
199

, . . .

Lemma 2.5. Non-standard recurring integer continued fraction expansions

for the two consecutive term ratio sequences formed from F
(2,1)
r and F

(2,2)
r

are given by

F
(2,1)
r = [0; 1, 2, 3,−1̇, 5̇], F

(2,2)
r = [1; −5̇, 1̇].

Here we mean that for F
(2,1)
r , we have a2i+2 = −1 and a2i+3 = 5, with

i = 1, 2, 3, . . ., in the continued fraction construction given in (1.12), and
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the corresponding matrix recurrence form (1.13). Similarly for F
(2,2)
r , we

mean that a2i = 1 and a2i−1 = −5, in (1.12) and (1.13).

Proof. For F
(2,1)
r we assume that [a0, a1, a2, a3] = [0, 1, 2, 3], and then apply

the continued algorithm to deduce that a4 = a6 = −1, and a5 = a7 = 5, so
that the expansion recurs from that point onwards. The continued fraction
expansion for F

(2,1)
r can be deduced similarly. �

Definition 2.6 (Divisibility sequences). Let a1, a2, a3, . . . be a sequence of
integers satisfying the divisibility property s | t ⇒ as | at, with s and t
positive integers. Then we say that the sequence of integers {ar}∞

r=1 is a
divisibility sequence. Moreover, if we have the stronger condition

hcf(s, r) = d ⇒ hcf(as, ar) = ad,

then we say that it is a strong divisibility sequence.

Lemma 2.7. Let s and t be positive integers with s | t, so that t/s is an

integer. Then N
(2,2)

s | N
(2,2)

t , and the numerator sequence {N
(2,2)

r }∞
r=1

is a divisibility sequence. Moreover, we have that N
(2,2)

2r = N
(2,1)

r+1 N
(2,2)

r ,
and if s/d and t/d are both odd integers, then hcf(s, t) = d implies that

hcf
(

N
(2,1)

s+1 ,N
(2,1)

t+1

)

= |N (2,1)
d+1 |.

As a preamble to proving this lemma we now introduce the Gauss hy-
pergeometric functions, as well as the Fibonacci and Lucas polynomials,
which underpin many of the results discussed later on.

Definition 2.8. For integers r, k, with k ≥ 0 let the rising factorial, falling
factorial and hypergeometric functions be respectively defined in the usual
manner such that

rk = r(r + 1) . . . (r + k − 1), rk = r(r − 1) . . . (r − k + 1),

and

mFn

(

a1, . . . , am

b1, . . . , bn
z

)

=
∑

k≥0

tk, where tk =
ak

1 . . . a
k
mz

k

bk
1 . . . b

k
nk!

,

with none of the bi zero or a negative integer (to avoid division by zero).

Definition 2.9 (Fibonacci and Lucas polynomials). Let the Fibonacci
polynomials Fn(x), be defined by the recurrence relation

(2.2) Fn+1(x) = xFn(x) + Fn−1(x), with F1(x) = 1, F2(x) = x,
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or equivalently by the explicit sum formula Fn(x) =

(2.3)
[(n−1)/2]
∑

j=0

(

n− j − 1
j

)

xn−2j−1

= xn−1
2F1

(

1
2

− n

2
, 1 − n

2
; 1 − n; − 4

x2

)

.

Similarly, define the Lucas polynomials Ln(x) by the recurrence relation
in (2.2), but with initial values L1(x) = x, L2(x) = x2 + 2, or equivalently
by the explicit sum formula

(2.4) Ln(x) =
⌊n/2⌋
∑

j=0

n

n− j

(

n− j

j

)

xn−2j

= xn
2F1

(

1
2

− n

2
,−n

2
; 1 − n; − 4

x2

)

.

Lemma 2.10 (Factorisation and divisibility lemma). The Fibonacci and
Lucas polynomials and numbers have the following factorisation and divis-
ibility properties.

(1) With i2 = −1, the roots of the Fibonacci and Lucas polynomials
can be expressed in terms of i multiplied by the cosine of rational
multiples of π, so that the polynomials can be factorised as

(2.5) Fn(x) =
n−1
∏

k=1

(

x− 2i cos
(

kπ
n

))

,

and

(2.6) Ln(x) =
n−1
∏

k=0

(

x− 2i cos
(

(2k+1)π
2n

))

.

(2) The Fibonacci and Lucas polynomials have the divisibility properties

(2.7) Fn(x) | Fm(x) ⇔ n | m, Fn

(

Up−1

(√
5/2

))

= Fnp/Fp,

and

(2.8) Ln(x) | Lm(x) ⇔ m = (2k + 1)n, for some integer k.

(3) The Fibonacci sequence is obtained by setting x = 1, so that Fn =
Fn(1), and similarly for the Lucas sequence with Ln = Ln(1). Tak-
ing x ∈ N≥2, then produces one possible definition of higher di-
mensional Fibonacci and Lucas sequences which obey the divisibility
properties as stated.

(4) Two important divisibility characteristics of the Fibonacci sequence

are that for p a prime, p divides F
p−
(

5
p

), with
(

5
p

)

the Legendre

symbol, and that hcf (s, r) = d ⇒ hcf (Fs,Fr) = Fd, so that it is a
strong divisibility sequence.
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(5) With the extra constraint that s/d and t/d are both odd integers, an
analogous divisibility sequence result holds for the Lucas numbers
where we have hcf (s, r) = d ⇒ hcf (Ls,Lt) = Ld. It follows that if
s/d is an odd integer, then Ld divides Ls. The Lucas numbers also
have the factoring property F2r = FrLr, so that Lr | F2r.

Proof. For proofs of these divisibility properties see T. Koshy [9, p. 196–
214, and p. 451–479]. The proof of Lemma 2.7 then follows by divisibility
properties (2), (3) and (5) and Lemma 2.4. �

3. Higher-Dimensional Interlacing Fibonacci Sequences

In order that we may generalise our previous results for F
(2,1)
r and F

(2,2)
r ,

to F
(m,j)
r with 1 ≤ j ≤ m, we now introduce families of polynomials related

to the Fibonacci and Lucas polynomials, that are central to our theories.

Definition 3.1 (Generating function polynomials). For positive integer m,
we define Pm(x), Qm(x), Pm(x), Qm(x) and Vm(x), to be the polynomials
of degree m given by

Pm(x) =
m
∑

k=0

2m+ 1
2k+ 1

(

m+ k

2k

)

xk, Qm(x) =
m
∑

k=0

m

k

(

m+ k− 1
2k− 1

)

xk,(3.1)

Pm(x) =
m
∑

k=0

(

m+ k

2k

)

xk, Qm(x) =
m
∑

k=0

(

m+ k+ 1
2k+ 1

)

xk,(3.2)

and

Vm(x) =
m
∑

k=0

(−1)m+[ k
2

+ m
2 ]
(

[

k
2 + m

2

]

k

)

xk,(3.3)

where the identity

(3.4) lim
k→0

j

k

(

j + k − 1
2k − 1

)

= 2,

ensures that Qm(x) is well defined.
We label the roots of Pm(x), ordered in terms of increasing absolute

value, by µm 1, µm 2, . . . , µm m, and similarly νm 1, νm 2, . . . , νm m the ordered
m roots of Qm(x), so that we may write

(3.5) Pm(x) =
m
∏

i=1

(x− µm i), Qm(x) =
m
∏

i=1

(x− νm i),

where for i < j, we have |µm i| ≤ |µm j |, and |νm i| ≤ |νm j |.
In Theorem 3.2 we show that the above definitions for µm i and νm i agree

with those previously given in Definition 1.4. This leads to simple identities
for the polynomials Pm(x), Qm(x), Pm(x), Qm(x) and Vm(x), in terms of
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Chebyshev Sm(x) and Cm(x) polynomials, as well as Fibonacci and Lucas
polynomials.

Theorem 3.2. The roots of the equations Pm(x) = 0 and Qm(x) = 0 are
real, simple, negative, contained within the interval [−4, 0], and with the
above definitions for µm k and νm k, 1 ≤ k ≤ m, we have

(3.6)
µm k = φm k − 2 = 2 cos

(

2πk
2m+1

)

− 2,

νm k = ψm k − 2 = 2 cos
(

π(2k−1)
2m

)

− 2,

so that

Pm(x) =
m
∏

k=1

(

x+ 2 − 2 cos
(

2πk
2m+1

))

=
L2m+1√

x

(√
x
)

(3.7)

=
1√
x

(

F2m+2(
√
x) + F2m(

√
x)
)

= U2m

(
√

1 +
x

4

)

= S2m

(√
x+ 4

)

= S2m (2 cos y) ,(3.8)

and

Qm(x) =
m
∏

k=1

(

x+ 2 − 2 cos
(

π(2k−1)
2m

))

(3.9)

= L2m
(√
x
)

= F2m+1(
√
x) + F2m−1(

√
x)

= 2T2m

(
√

1 +
x

4

)

= C2m

(√
x+ 4

)

= C2m (2 cos y) ,(3.10)

with x = 2 cos 2y − 2,

Pm(x) =
m
∏

k=1

(

x+ 2 + 2 cos
(

2πk
2m+1

))

= F2m+1
(√
x
)

,(3.11)

= U2m

(

√

−x
4

)

= S2m

(√
−x
)

= S2m (2i cos y) ,(3.12)

and

(3.13) Qm(x) =
1√
x

F2m+2
(√
x
)

,

with x = 2 cos 2y + 2, and

Vm(x) = Pm(x− 2) =
m
∏

k=1

(

x− 2 cos
(

2πk
2m+1

))

(3.14)

= U2m





√

1 + x/2
2



 = S2m

(√
x+ 2

)

= S2m (2 cos y) ,(3.15)

with x = 2 cos 2y.
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Corollary 3.3. We also have the relations

xPm−1(x) = Qm(x) −Qm−1(x), Qm(x) = Pm(x) − Pm−1(x),(3.16)

xPm−1(x) = Qm(x) − Qm−1(x), Qm(x) = Pm(x) − Pm−1(x).(3.17)

Pm(x) = (−1)mPm(−x− 4),(3.18)

xPm(−x2) = (−1)m−1Q2m+1(−x− 2) ,(3.19)

Qm(−x2) = (−1)mQ2m(−x− 2),

and

(3.20) Qm(x) =

{

xPm1(x)Pm1(x) if m = 2m1 + 1 is odd,

Qm1+1(x)Qm1(x) if m = 2m1 is even,

along with the integral identity

(3.21) (2m+ 1)
∫

√
x

0
Pm(t2)dt =

√
xPm(x)

⇒ (2m+ 1)Pm(x) = Pm(x) + 2xP ′
m(x).

Proof of Theorem 3.2. For k = 1, 2, . . . ,m, the function cos
(

2πk
2m+1

)

is a
decreasing function of k. It follows that φm k is a decreasing function of k,
and so in terms of absolute values we have, µm 1 < µm 2 < . . . < µm m. A
similar argument holds for the νm k, 1 ≤ k ≤ m, and hence (3.5).

Although it follows from (3.6) that the roots of Pm(x) are simple and
lie in the interval [−4, 0], we demonstrate this by two other methods in
order to highlight the links that exist between Pm(x) and the Legendre and
Chebyshev functions .

Method 1. By using manipulations with Pochhammer symbols which we
omit, Pm(x) may be written in terms of the Gauss hypergeometric function
2F1. Letting Pm

n (x) denote the associated Legendre function, in turn Pm(x)
may be expressed as

(3.22) Pm(x) =
(2m+ 1)

√
π

2
(x+ 4)1/4

(−x)1/4
P−1/2

m

(

1 +
x

2

)

.

The functions P−1/2
m (z) are orthogonal on the interval [−1, 1]. With x =

2(z− 1), it follows from a standard result in the theory of orthogonal poly-
nomials [21] that the zeros of P−1/2

m
(

1 + x
2

)

are contained in [−4, 0] and
simple and hence for Pm(x) too. �

Method 2. It is known (e.g., [13, p. 64]) that

P−1/2
ν (cosϕ) =

√

2
π sinϕ

sin[(ν + 1/2)ϕ]
(ν + 1/2)

.
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Then with ϕ replaced by cos−1 ϕ and x = 2(ϕ− 1) it again follows that the
zeros of Pm(x) are in [−4, 0] and simple. �

Remark. It is then possible to write

P−1/2
ν (ϕ) =

√

2
π

(1 − ϕ2)1/4

(ν + 1/2)
Uν−1/2(ϕ),

where Uν−1/2 is the Chebyshev function of the second kind.

To see (3.14) and the first part of (3.7), we have

(3.23)
n
∏

k=1

(

x− 2 cos
(

2πk
2n+1

))

= 2n
n
∏

k=1

(

x

2
− cos

(

2πk
2n+1

)

)

= 1 + 2
n
∑

k=1

Tk

(

x

2

)

= Un

(

x

2

)

+ Un−1

(

x

2

)

= U2n





√

1 + x/2
2



 = Pn(x− 2) = Vn(x),

where we have used the relations (1.3), (1.4) and (1.5), of Lemma 1.2.
Hence

(3.24)
n
∏

k=1

(

x+ 2 − 2 cos
(

2πk
2n+1

))

= 1 + 2
n
∑

k=1

Tk

(

x

2
+ 1

)

= Un

(

x

2
+ 1

)

+ Un−1

(

x

2
+ 1

)

= U2n

(
√

1 +
x

4

)

= Pn(x),

and the result follows. Similar arguments can be used to obtain the first
statements of (3.9) and (3.11).

The latter statements in (3.7), (3.9), (3.11), and that of (3.13), concern-
ing expressions for Pm(x), Qm(x),Pm(x) and Qm(x) in terms of Fibonacci
and Lucas polynomials, can be deduced via binomial relations as follows.
We have

1√
x

L2m+1(
√
x) =

1√
x

m
∑

j=0

2m+ 1
2m+ 1 − j

(

2m+ 1 − j

j

)

(√
x
)2m+1−2j

=
m
∑

j=0

2m+ 1
2m+ 1 − j

(

2m+ 1 − j

j

)

xm−j

=
m
∑

j=0

2m+ 1
2j + 1

(

m+ j

m− j

)

xj

=
m
∑

j=0

2m+ 1
2j + 1

(

m+ j

2j

)

xj = Pm(x),
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and

L2m(
√
x) =

m
∑

j=0

2m
2m− j

(

2m− j

j

)

(√
x
)2m−2j

=
m
∑

j=0

2m
2m− j

(

2m− j

j

)

xm−j =
m
∑

j=0

m

j

(

m+ j − 1
2j − 1

)

xj = Qm(x).

The Fibonacci polynomial identities follow similarly. The respective gener-
ating functions for the Lucas and Fibonacci polynomials (see [9, p. 447])
are

GL(x, t) =
∞
∑

n=0

Ln(x)tn =
1 + t2

1 − t2 − tx
,

GF (x, t) =
∞
∑

n=0

Fn(x)tn =
t

1 − t2 − tx
,

so that tGL(x, t) = (1 + t2)GF (x, t). Hence we have Ln(x) = Fn+1(x) +
Fn−1(x), giving

Pm(x) =
F2m+2(

√
x) + F2m(

√
x)√

x
, Qm(x) = F2m+1(

√
x) + F2m−1(

√
x),

and so the ordinary generating functions of Pm(x) and Qm(x) can be writ-
ten as

GP (x, t) =
∞
∑

n=0

Pn(x)tn =
1 + t

1 − (2 + x)t+ t2
,

GQ(x, t) =
∞
∑

n=0

Qn(x)tn =
2 − (2 + x)t

1 − (2 + x)t+ t2
.

Combining the above relations with the identity F2m(x) = Fm(x)Lm(x),
we obtain

Pm(x)Pm(x) =
L2m+1(

√
x)F2m+1(

√
x)√

x
=

1√
x

F4m+2(
√
x) = Q2m(x),

Qm+1(x)Qm(x) =
L2m+2(

√
x)F2m+2(

√
x)√

x
=

1√
x

F4m+4(
√
x) = Q2m+1(x).

The Chebyshev identities in (3.8), (3.10), (3.12) and (3.15) can be derived
directly from the definition (1.1), with further connections to the Chebyshev
polynomials established via the expression for Pm(x) given by

Pm(x) = Tm(1 + x/2) +
√

1 + 4/x sinh[2m csch−1(2/
√
x)].

The expressions (3.16) and (3.17) of the Corollary, follow from direct ma-
nipulation of the binomial coefficient polynomials (see [4, Lemma 2.2]) given
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in the definitions for Pm(x), Qm(x), Pm(x), and Qm(x). To see (3.19), sub-
stituting −(x+2) in the product formula for Pm(x) in (3.7) and comparing
with (3.14), gives us Pm(x− 2) = Vm(x), and writing

Q2m+1(−(x+ 2))

=
2m+1
∏

k=1

(

−x− 2 cos
(

π(2k−1)
4m+2

))

=
(

−x− 2 cos
(

π
2

))

m
∏

k=1

(

−x− 2 cos
(

π(2k−1)
4m+2

)) (

−x+ 2 cos
(

π(2k−1)
4m+2

))

= (−x)
m
∏

k=1

(

x2 − 4 cos2
(

π(2k−1)
4m+2

))

= (−x)
m
∏

k=1

(

x2 − 2
(

1 + cos
(

π(2k−1)
2m+1

)))

= (−1)m−1 x
m
∏

k=1

(

−x2 + 2 − φm k

)

= (−1)m−1xPm(−x2),

we obtain the first expression in (3.19). Similar arguments produce (3.18),
the second expression in (3.19), and (3.20). Considering (3.21) we have

∫

√
x

0

m
∑

k=0

(

m+ k

2k

)

t2kdt = t
m
∑

k=0

(m+k
2k

)

t2k

2k + 1

∣

∣

∣

∣

∣

√
x

t=0

=
√
xPm(x),

and differentiating we obtain the final display. �

Definition 3.4 (m-dimensional interlacing Fibonacci sequences). Let the
matrices of binomial coefficients Bodd and Beven be defined such that

Bodd = (bi,j)m×m, with bi,j = (−1)i+j−1

(

2j − 1
j − i

)

,

and

Beven = (bi,j)m×m, with bi,j = (−1)i+j

(

2j
j − i

)

,

and let the recurrence matrix Rm be given by

(3.25) Rm =

















−h1 1 0 . . . 0
−h2 0 1 . . . 0

...
...

...
. . .

...
−hm−1 0 0 0 1
−hm 0 0 0 0

















, with hk =
1

2k + 1

(

m+ k

2k

)

.
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Also let the sequences of m × m matrices Mo(m, k) and Me(m, k) be re-
spectively defined such that

Mo(m, r) = (2m+ 1)BoddR
m+r
m , and Me(m, r) = (2m+ 1)BevenR

m+r
m ,

so that each row of Mo(m, 0) or Me(m, 0) corresponds to a list of consec-
utive sequence values. The matrices Mo(m, 0) or Me(m, 0) are then taken
as the initial value matrices for the two sets of m interlacing Fibonacci
sequences that they generate, under repeated multiplication on the right,
by the recurrence matrix Rm.

We denote by F
(m,j)
r , 1 ≤ j ≤ m, the rth term in the jth rational

interlacing Fibonacci sequence of dimension m, and by G
(m,j)
r , 1 ≤ j ≤ m,

the type G jth rational interlacing Fibonacci sequence of dimension m.
The case m = 2, then corresponds to the interlacing Fibonacci and Lucas
sequences F

(2,1)
r and F

(2,2)
r , defined in Section 2, and for the case m = 1,

we simply have

F
(1,1)
r =

(−1
3

)r

, r = 1, 2, 3, . . . .

It follows that row j of Mo(m, r) contains the jth m-dimensional rational
interlacing Fibonacci sequence terms F

(m,j)
r+m ,F

(m,j)
r+m−1, . . . ,F

(m,j)
r+1 , and row

j of Me(m, r) contains the type G , jth m-dimensional rational interlacing
Fibonacci sequence terms G

(m,j)
r+m ,G

(m,j)
r+m−1, . . . ,G

(m,j)
r+1 , where both sequences

satisfy the recurrence relation (given here in terms of F
(j,m)
r )

F
(m,j)
r+m = −1

3

(

m+ 1
2

)

F
(m,j)
r+m−1 − 1

5

(

m+ 2
4

)

F
(m,j)
r+m−2 − . . .

− 1
2m+ 1

(

m+m

2m

)

F
(m,r)
r .

For example, when m = 5 and r = 2, we have Mo(5, 2) =

(2m+ 1)













−1 3 −10 35 −126
0 −1 5 −21 84
0 0 −1 7 −36
0 0 0 −1 9
0 0 0 0 −1



























−5 1 0 0 0
−7 0 1 0 0
−4 0 0 1 0
−1 0 0 0 1
− 1

11 0 0 0 0















7

=



















F
(5,1)
7 F

(5,1)
6 . . . F

(5,1)
3

F
(5,2)
7 F

(5,2)
6 . . . F

(5,2)
3

F
(5,3)
7 F

(5,3)
6 . . . F

(5,3)
3

F
(5,4)
7 F

(5,4)
6 . . . F

(5,4)
3

F
(5,5)
7 F

(5,5)
6 . . . F

(5,5)
3



















=















10744
11 −3415

11 99 −32 11
28817

11 −9156
11 265 −85 28

37734
11 −11982

11 346 −110 35
34669

11 −11002
11 317 −100 31

20602
11 −6535

11 188 −59 18















.
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Lemma 3.5. The product of the eigenvalues of the recurrence matrix Rm

(and so its determinant) is given by (−1)m/(2m + 1), and the sum of
the eigenvalues by −h1 = −m(m + 1)/6. The binomial matrices satisfy
Det(Bodd) = (−1)m and Det(Beven) = 1, so that the two sequences of de-
terminants of the matrices Mo(m, k) and Me(m, k), for k = 0, 1, 2, 3, . . .,
consists of terms of the form ± 1

(2m+1)k .

The inverse matrix of Rm is given by

R−1
m =

















0 0 0 0 −(2m+ 1)
1 0 0 0 −(2m+ 1)h1

0 1 0 0 −(2m+ 1)h2
...

...
. . .

...
...

0 0 0 1 −(2m+ 1)hm−1

















=

















0 0 0 0 −gm

1 0 0 0 −gm−1

0 1 0 0 −gm−2
...

...
. . .

...
...

0 0 0 1 −g1

















,

where

(3.26) gk =
2m+ 1

2m+ 1 − 2k

(

2m− k

k

)

, so that gk = (2m+ 1)hm−k.

Denoting by Rm(x) and R−1
m (x) the respective characteristic polynomials of

Rm and R−1
m , we have

Rm(x) = −
m
∑

j=0

hm−j x
j , R−1

m (x) = −(2m+ 1)
m
∑

j=0

hj x
j = −Pm(x),

where the eigenvalues of the inverse recurrence matrix R−1
m are the roots of

the polynomial Pm(x) and the eigenvalues of the recurrence matrix Rm are
the roots of the polynomial P−1

m (x) (say). By (3.6), the roots of P−1
m (x) are

given in descending order by µ−1
m 1, µ

−1
m 2, . . . , µ

−1
m m. Hence, with a suitable

choice of (algebraic number) coefficients a
(m,j)
i we can write

(3.27) F
(m,j)
r = a

(m,j)
1 µ−r

m 1 + a
(m,j)
2 µ−r

m 2 + . . . a(m,j)
m µ−r

m m.

Moreover, if 2m + 1 is an odd prime number, then Rm
m contains inte-

gers above the principal diagonal and rational numbers with denominator
(2m+ 1) in its lower triangular matrix part. Consequently, the initial value

matrices Mo(m, 0) and Me(m, 0) for the respective sequences F
(m,j)
r and

G
(m,j)
r are integer matrices if and only if 2m+ 1 is an odd prime number.

Proof. For a general m×m recurrence matrix Km of the form

(3.28) Km =

















−a1 1 0 0 . . . 0
−a2 0 1 0 . . . 0

...
...

...
...

. . .
...

−am−1 0 0 0 . . . 1
−am 0 0 0 . . . 0

















,
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evaluating the determinant along the first column yields |Km| = (−1)mam,
and similarly we obtain the characteristic polynomial

(3.29)

Km(x) = |Km − xIm| = (−1)m(am + am−1x+ . . .+ a1x
m−1 + xm)

= (−1)m
m
∑

j=0

am−j x
j .

Hence if am 6= 0, then the inverse recurrence matrix K−1
m exists, and is

given by

K−1
m =

















0 0 . . . 0 − 1
am

1 0 . . . 0 − a1
am

0 1 . . . 0 − a2
am

...
...

. . .
...

...
0 0 . . . 1 −am−1

am

















,

with characteristic polynomial

(3.30)

K−1
m (x) =

(−1)m

am

(

1 + a1x+ . . .+ am−1x
m−1 + amx

m
)

=
(−1)m

am

m
∑

j=0

ajx
j ,

and the expressions for Rm, R−1
m , Rm(x), and R−1

m (x) follow.
If the m eigenvalues λm 1, λm 2, . . . , λm m,of the recurrence matrix Km,

are non-zero, real, algebraic, distinct, and listed in descending order in
terms of absolute value, then the sequences

Y (j)
m =

(

1, λm j , λ
2
m j , λ

3
m j , . . .

)

, j = 1, 2, . . .m,

form a basis for the solution space of all possible sequences satisfying the
recurrence, for any possible initial values. Similarly for λ−1

m m, . . . , λ
−1
m 1, the

ordered eigenvalues of the recurrence matrix K−1
m , form a basis for the solu-

tion space of all possible sequences satisfying the inverse recurrence relation.
It follows that each sequence term generated by the recurrence relation can
be expressed as a linear combination of powers of the eigenvalues of the
recurrence matrix. With regard to our sequences F

(m,j)
r , and recurrence

matrix Rm, we have λm i = 1/µm i, and hence (3.27).
The statements concerning the entries of Rm

m and that Mo(m, 0) or
Me(m, 0) are integer matrices when 2m+ 1 is a prime number follow from
the property

2m+ 1
2k + 1

(

m+ k

2k

)

∈ N0. �
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Theorem 3.6. For m a positive integer, and 0 ≤ j ≤ m− 1, we have

(3.31)

F
(m,m−j)
r =

j
∑

k=0

(

j + k + 1
2k + 1

)

F
(m,m)
r−k ,

G
(m,m−j)
r = −

j
∑

k=0

(

j + k

2k

)

F
(m,m)
r−k ,

so that each of the terms in the sequence {F
(m,j)
r }∞

r=1 can be expressed as
a binomial coefficient linear combination of (m + 1 − j) terms from the

sequence {F
(m,m)
r }∞

r=1, where we note that F
(m,m)
r = −G

(m,m)
r ∀ r ∈ Z.

The generating functions for F
(m,m−j)
r and G

(m,m−j)
r are given by

(3.32)

∞
∑

r=0

F
(m,m−j)
r xr =

(2m+ 1)Qj(x)
Pm(x)

,

∞
∑

r=0

G
(m,m−j)
r xr = −(2m+ 1)Pj(x)

Pm(x)
,

so that the sum of the numerator coefficients of each generating function is
a Fibonacci number.

Inverting the expressions for F
(m,j)
r and G

(m,j)
r in (3.31), we obtain

(3.33) F
(m,j)
r =

j−1
∑

k=0

2j − 1
2k + 1

(

j + k − 1
2k

)

F
(m,1)
r−k , 1 ≤ j ≤ m,

and

(3.34) G
(m,j)
r =

j
∑

k=0

j

k

(

j + k − 1
2k − 1

)

F
(m,1)
r−k , 1 ≤ j ≤ m− 1.

Corollary 3.7. In terms of the roots µm 1, . . . , µm m of the polynomial equa-
tion Pm(x) = 0, we have

F
(m,m)
r = −G

(m,m)
r = −

m
∑

k=1

2m+ 1
µr

m k

∏

j 6=k(µm k − µm j)
(3.35)

= −(2m+ 1)
m
∑

k=1

(

2 cos
(

2πk
2m+1

)

− 2
)−r

(3.36)

×
∏

j 6=k

(

2 cos
(

2πk
2m+1

)

− 2 cos
(

2πj
2m+1

))−1
,

(3.37) F
(m,1)
r = µ1−r

m 1 + . . .+ µ1−r
m m =

m
∑

k=1

(

2 cos
(

2πk
2m+1

)

− 2
)1−r

,
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F
(m,j)
r =

m
∑

t=1

(µm t)
1−r Pj−1 (µm t) =

m
∑

t=1

(µm t)
1−r

j−1
∏

k=1

(

µm t − µ(j−1) k

)

=
m
∑

t=1

(µm t)
1−r

j−1
∏

k=1

(

φm t − φ(j−1) k

)

(3.38)

=
m
∑

t=1

(µm t)
1−r S2j−2

(

2 cos
(

πt
2m+1

))

= (−1)r−1
m
∑

t=1

2 sin
(

(2j−1)πt
2m+1

)

(

2 sin
(

πt
2m+1

))2r−1 =
m
∑

t=1

(µm t)
1−r Vj−1 (φm t) ,

and

G
(m,j)
r =

m
∑

t=1

(µm t)
1−r Qj (µm t) =

m
∑

t=1

(µm t)
1−r

j
∏

k=1

(µm t − νj k)(3.39)

=
m
∑

t=1

(µm t)
1−r C2j

(

2 cos
(

πt
2m+1

))

= (−1)r−1
m
∑

t=1

2 cos
(

2jπt
2m+1

)

(

2 sin
(

πt
2m+1

))2r−2 .

Proof of Theorem 3.6. The denominator polynomial of 1
2m+1Pm(x) in the

generating functions for F
(m,m)
r (and so G

(m,m)
r ) is a direct consequence

of −1
2m+1Pm(x) being the recurrence polynomial for F

(m,m)
r . The simple

numerator follows from the starting vector for F
(m,m)
r in the initial value

matrix consisting of (0, 0, 0, . . . ,−1).
The two identities in (3.31) follow directly from (6.8) and (6.9) of

Lemma 6.2 in [11]. Applying (3.31) to the generating function polynomial
for F

(m,m)
r thus establishes the numerator polynomials in the generating

functions of F
(m,m−j)
r and G

(m,m−j)
r in (3.32).

With the binomial matrices of initial conditions Mo(m, r) and Me(m, r),
so defined, it is possible to invert the identities in (3.31) using a binomial
convolution to obtain (3.33) and (3.34).

To see (3.35), we know that Pm(x) factors as Pm(x) =
∏m

k=1(x− µm k).
Our contour integrals from the generating function have the form

1
2πi

∮

(2m+ 1)z
zr+1Pm(z)

dz.

The contour encloses the origin and at least the interval (−4, 0] of the
negative axis, in order to contain all of the simple poles of Pm(z) and the
higher order pole at the origin.
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Pm(x) has distinct roots, we have the partial fractional decomposition

1
Pm(x)

=
m
∑

k=1

ck

x− µm k
,

where

ck = Res
x=µm k

1
Pm(x)

=
1

P ′
m(µm k)

.

Hence
1

Pm(x)
=

m
∑

k=1

ck

x− µm k
=

m
∑

k=1

1
(x− µm k)

1
P ′

m(µm k)
,

with P ′
m(µm k) =

∏m
j=1,j 6=k(µm k − µm j). Then

1
2πi

∮

2m+ 1
zr+1Pm(z)

dz =
1

2πi

∮

2m+ 1
zr+1

m
∑

k=1

1
(z − µm k)

1
P ′

m(µm k)
dz,

and the residue at z = µm k is given by

(2m+ 1)
µr+1

m k

1
P ′

m(µm k)
=

(2m+ 1)
µr+1

m k

1
∏m

j=1,j 6=k(µm k − µm j)
.

The pole at the origin gives the F
(m,m)
r term generally. Using 2πi times

the sum of all residues gives

(3.40) F
(m,m)
r +

m
∑

k=1

2m+ 1
µr

m k

∏

j 6=k(µm k − µm j)
= 0, r = 1, 2, 3, . . . ,

and hence the result and (3.36).
The identity F

(m,1)
r = µ1−r

m 1 +µ1−r
m 2 + . . .+µ1−r

m m in (3.37) follows similarly
to (3.35). Combining these results with (3.33) and (3.34) then gives for
1 ≤ j ≤ m, that

F
(m,j)
r

=
m
∑

t=1

j−1
∑

k=0

2j− 1
2k+ 1

(

j+ k− 1
2k

)

(

2 cos
(

2πt
2m+1

)

− 2
)k+1−r

=
m
∑

t=1

(

2 cos
(

2πt
2m+1

)

− 2
)1−r

j−1
∑

k=0

2j− 1
2k+ 1

(

j+ k− 1
2k

)

(

2 cos
(

2πt
2m+1

)

− 2
)k

=
m
∑

t=1

(

2 cos
(

2πt
2m+1

)

− 2
)1−r

Pj−1

(

2 cos
(

2πt
2m+1

)

− 2
)

=
m
∑

t=1

(µmt)
1−r Pj−1 (µmt) =

m
∑

t=1

(µmt)
1−r

j−1
∏

k=1

(

µmt −µ(j−1)k

)

,
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and

G
(m,j)
r =

j
∑

k=0

j

k

(

j + k − 1
2k − 1

)

F
(m,1)
r−k , 1 ≤ j ≤ m− 1,

=
m
∑

t=1

j
∑

k=0

2j
2k

(

j + k − 1
2k − 1

)

(

2 cos
(

2πt
2m+1

)

− 2
)k+1−r

=
m
∑

t=1

(

2 cos
(

2πt
2m+1

)

− 2
)1−r

j
∑

k=0

2j
2k

(

j + k − 1
2k − 1

)

(

2 cos
(

2πt
2m+1

)

− 2
)k

=
m
∑

t=1

(

2 cos
(

2πt
2m+1

)

− 2
)1−r

Qj

(

2 cos
(

2πt
2m+1

)

− 2
)

=
m
∑

t=1

(µmt)
1−r Qj (µmt) =

m
∑

t=1

(µmt)
1−r

j
∏

k=1

(µmt − νjk) .

We have thus established (3.38) and (3.39). �

Remark 3.8 (to Theorem 3.6). For 1 ≤ j ≤ m, the sequence terms F
(m,j)
r

and G
(m,j)
r naturally occur in matrix powers of particular circulant matrices

as described in [11]. In this setting there exists an additional sequence
G

(m,0)
r , which appears in the leading diagonal of the powers of this circulant

matrix, thus bringing the total number of sequences to n = 2m + 1. This
sequence satisfies the relation

(3.41) G
(m,0)
r = 2F

(m,1)
r = −2

m
∑

k=1

G
(m,k)
r .

so it also obeys the recurrence relation Rm, and we can write

(3.42) 2G
(m,j)
r = −

j
∑

k=0

j

k

(

j + k − 1
2k − 1

)

G
(m,0)
r−k , 1 ≤ j ≤ m− 1.

By Lemma 6.1 of [11], (see also Lemma 3.3 of [12]) these type of recurrence
relations can be written as half-weighted minor corner lattice determinants.
For example F

(m,1)
r has the form

F
(m,1)
r = (−1)r+m−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(m
1

)

1 0 0 0 . . . 0
(m+1

3

)

h1 1 0 0 . . . 0
(m+2

5

)

h2 h1 1 0 . . . 0
...

...
...

...
...

. . .
...

(m+r−1
2r−1

)

hr−1 hr−2 hr−3 hr−4 . . . 1
(m+r

2r+1

)

hr hr−1 hr−2 hr−3 . . . h1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Hence for r ∈ N, the sequence terms F
(m,j)
r , 1 ≤ j ≤,m, are rational

numbers corresponding to a rational multiple of either the r or the (r+ 1)-
dimensional volume of the simplex with vertex coordinates given by the
row entries of the determinant.

Lemma 3.9 (Ratio lemma). For j ≥ 0, and 1 ≤ t ≤ m, we have

(3.43)
µm t Pj(µm t) = µm (j+1)t − µm jt, µm tQj(µm t)

= µm (j+1)t − 2µm jt + µm (j−1)t.

Accordingly, for 1 ≤ j ≤ [ m
2

], we find that

(3.44)
µm (m−2j+1)t − µm (m−2j)t

µm (m−j+1)t − µm (m−j)t
=
φm (m−2j+1)t − φm (m−2j)t

φm (m−j+1)t − φm (m−j)t
= φm jt,

and for [ m
2

] + 1 ≤ j ≤ m that

(3.45)
µm (2j−m)t − µm (2j−m−1)t

µm (m−j+1)t − µm (m−j)t
=
φm (2j−m)t − φm (2j−m−1)t

φm (m−j+1)t − φm (m−j)t
= −φm jt.

Moreover we have

(3.46)

µm t

j−1
∏

k=1

(

µm t − µ(j−1) k

)

= µm jt − µm (j−1)t = φm jt − φm (j−1)t,

µm t

j
∏

k=1

(µm t − νj k) = φm (j+1)t − 2φm jt + φm (j−1)t,

so that

F
(m,j)
r =

m
∑

t=1

(µm t)
−r
(

φm jt − φm (j−1)t

)

,(3.47)

G
(m,j)
r =

m
∑

t=1

(µm t)
−r
(

φm (j+1)t − 2φm jt + φm (j−1)t

)

.(3.48)

Definition 3.10 (Convergent vector sequences in Qm). We define the con-
vergent vector sequences Ψ

(m)
r , and their limit points Φ(m), by

Φ(m) = (φm 1, φm 2, . . . , φm m) ,

and

Ψ(m)
r =

(

F
(m,m−1)
r

F
(m,m)
r

, . . . ,
F

(m,m−2r+1)
r

F
(m,m−r+1)
r

, . . .
−F

(m,1)
r

F
(m,[m/2]+1)
r

, . . .

. . . ,
−F

(m,2r−m)
r

F
(m,m−r+1)
r

, . . . ,
−F

(m,m)
r

F
(m,1)
r

)

,

where from the definition of N
(m,j)

r , we can replace F
(m,j)
r by N

(m,j)
r in

the above expression for Ψ
(m)
r , without affecting the ratios.
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Theorem 3.11 (Limit theorem). We have

(3.49) lim
r→∞ Ψ(m)

r =
(

µm (m−1)−µm (m−2)

µm m−µm (m−1)
, . . . ,

µm (m−2r+1)−µm (m−2r)

µm (m−r+1)−µm (m−r)
, . . . ,

−(µm 1−µm 0)
µm ([m/2]+1)−µm [m/2]

, . . . ,
−(µm (2r−m)−µm (2r−m−1))

µm (m−r+1)−µm (m−r)
, . . . ,

−(µm m−µm (m−1))
µm 1−µm 0

)

= Φ(m),

so that

lim
r→∞

(

x2 − F
(m,m−1)
r

F
(m,m)
r

x+ 1

)

× . . .×
(

x2 +
F

(m,m)
r

F
(m,1)
r

x+ 1

)

= lim
r→∞

(

x2 − N
(m,m−1)

r

N
(m,m)

r

x+ 1

)

× . . .×
(

x2 +
N

(m,m)
r

N
(m,1)

r

x+ 1

)

= x2m + x2m−1 + . . .+ x+ 1,

where we note that as (µm j −µm k) = (φm j −2−(φm k −2)) = (φm j −φm k),

we can replace µm i by φm i in the above expression for Ψ
(m)
r .

Corollary 3.12 (Convergence corollary). For 1 ≤ j ≤ m, let σm j =
µm 1/µm j, so that σm 1 = 1, σm 2 = (φm 1 + 1)−1, and for j ≥ 2, 0 <

|σm j | < 1. Let a
(m,j)
t = φm jt − φm (j−1)t, so that a

(m,j)
t is the coefficient of

µ−r
m t in the closed form expression for F

(m,j)
r given in (3.38) and (3.47).

Now define

Bj k =
4m

(

|φm j − φm (j−1)| + |φm k − φm (k−1)|
)

|φm k − φm (k−1)|2

−
−2|φm j − φm (j−1)||φm k − φm (k−1)|

|φm k − φm (k−1)|2
,

and let rk be the least positive integer satisfying
∣

∣

∣

∣

1
φm 1 + 2

∣

∣

∣

∣

rk

≤
|φm k − φm (k−1)|

2
(

4m− |φm k − φm (k−1)|
) .

Then for r > rk we have
∣

∣

∣

∣

∣

F
(m,j)
r

F
(m,k)
r

− a
(m,j)
1

a
(m,k)
1

∣

∣

∣

∣

∣

≤ 2Bj k |σm 2|r ,

so that F
(m,j)
r /F

(m,k)
r , approximates a

(m,j)
1 /a

(m,k)
1 , with remainder term

bounded above by 2Bj k |σm 2|r. Furthermore, let r′ be the maximum of all
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the rk, B′ be the maximum of all the Bj k, and for ǫ > 0, let r∗ be the least
positive integer with r∗ > r′ satisfying

2B′√m |σm 2|r∗

< ǫ.

Then |Ψ(m)
r − Φ(m)| < ǫ for r > r∗, and (by the standard definition in

Section 1) the vector sequence Ψ
(m)
r is a sequence of vector convergents to

the limit point Φ(m).
When j = m−2u+1 with k = m−u+1 = j+u, as described in (3.44), or

similarly as in (3.45), then |a(m,j)
1 /a

(m,k)
1 | = |φm u|, and the above simplifies

to

Bj k =
4m (|φm u| + 1)

|φm k − φm (k−1)|
− 2|φm u|,

so that for r > rk we have

∣

∣

∣

∣

∣

F
(m,j)
r

F
(m,k)
r

− a
(m,j)
1

a
(m,k)
1

∣

∣

∣

∣

∣

≤
(

8m (|φm u| + 1)
|φm k − φm (k−1)|

− 2|φm u|
)

∣

∣

∣

∣

1
φm 1 + 2

∣

∣

∣

∣

r

.

Corollary 3.13 (Continued fraction corollary). For each sequence of con-

vergents to the limit point a
(m,j)
1 /a

(m,k)
1 generated by F

(m,j)
r /F

(m,k)
r , there

will exist a corresponding sequence of simple continued fractions, which will
converge to the simple continued fraction expansion of the limit point itself.

Proof of Lemma 3.9. From (3.23) and (3.24), we can write

µm t Pj(µm t) = µm t

(

Uj

(

cos
(

2πt
2m+1

))

+ Uj−1

(

cos
(

2πt
2m+1

)))

,

and using the identity µm t = −4 sin2
(

πt
2m+1

)

, yields

µm t Pj(µm t)

= −4 sin2
(

πt
2m+1

)





sin
(

2π(j+1)t
2m+1

)

sin
(

2πt
2m+1

) +
sin
(

2πjt
2m+1

)

sin
(

2πt
2m+1

)





=
−2 sin

(

πt
2m+1

)

cos
(

πt
2m+1

)

(

sin
(

2πt(j+1)
2m+1

)

+ sin
(

2πtj
2m+1

))

=
(

cos
(

πt
2m+1

))−1 (

cos
(

πt(2j+3)
2m+1

)

− cos
(

πt(2j−1)
2m+1

))

,

=
(

cos
(

πt
2m+1

))−1 (

T2j+3

(

cos
(

πt
2m+1

))

− T2j−1

(

cos
(

πt
2m+1

)))

,(3.50)



On Higher-Dimensional Fibonacci Numbers 29

by the definition of Tn(x). Applying the relation Tn+1(x) = 2xTn(x) −
Tn−1(x) from (1.6) and cancelling, we obtain

(3.51) T2j+3

(

cos
(

πt
2m+1

))

− T2j−1

(

cos
(

πt
2m+1

))

= 2 cos
(

πt
2m+1

) (

T2j+2

(

cos
(

πt
2m+1

))

− T2j

(

cos
(

πt
2m+1

)))

,

and substituting into (3.50) then gives

µm t Pj(µm t) = T2j+2

(

cos
(

πt
2m+1

))

− T2j

(

cos
(

πt
2m+1

))

= µm (j+1)t − µm jt = φm (j+1)t − φm jt,

which is (3.43).
For (3.44), we write

φm rt(φm (m−r+1)t − φm (m−r)t)

= Tr(φm t/2) (Tm−r+1(φm t/2) − Tm−r(φm t/2)) ,

and using the identity

2Tm(x)Tn(x) = Tm+n(x) + T|m−n|(x)

from (1.6), after cancellation then gives us

2 (Tm−2r+1 (φm t/2) − Tm−2r (φm t/2) + Tm+1 (φm t/2) − Tm (φm t/2))

= φm (m−2r+1)t − φm(m−2r)t + φm (m+1)t − φm mt

= φm (m−2r+1)t − φm (m−2r)t,

as required. Similarly we deduce (3.45). �

Proof of Theorem 3.11. From (3.38), we have

F
(m,j+1)
r =

m
∑

t=1

(µm t)
1−r Pj (µm t) =

m
∑

t=1

(µm t)
1−r

j
∏

k=1

(µm t − µj k) ,

and we consider

F
(m,m−2k+1)
r

F
(m,m−k+1)
r

=
N

(m,m−2k+1)
r

N
(m,m−2k+1)

r

=
∑m

t=1 (µm t)
1−r Pm−2k (µm t)

∑m
t=1 (µm t)

1−r Pm−k (µm t)
,

by (3.43).
In the numerator sum above, for large positive values of r, the (µm 1)1−r

factor will dominate as the µm t are ordered in terms of increasing absolute
value. Hence, as r → ∞ the above expression will converge to the ratio of
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the coefficients of (µm 1)1−r in the numerator and denominator. Therefore
we can write

lim
r→∞

(

F
(m,m−2k+1)
r

F
(m,m−k+1)
r

)

= lim
r→∞

(

N
(m,m−2k+1)

r

N
(m,m−k+1)

r

)

= lim
r→∞

(

(µm 1)1−r Pm−2k (µm 1)

(µm 1)1−r Pm−k (µm 1)

)

=
(µm 1)Pm−2k (µm 1)
(µm 1)Pm−k (µm 1)

=
φm (m−2k+1) − φm (m−2k)

φm (m−k+1) − φm (m−k)
= φm k,

by (3.43) and (3.44), and hence the result. The polynomial identity in the
limit then follows immediately .

Regarding Corollary 3.12, let H
(m,j)

r = F
(m,j)
r µr

m 1, so that by (3.47)

H
(m,j)

r = a
(m,j)
1 + a

(m,j)
2 σr

m 2 + . . .+ a(m,j)
m σr

m m,

and
∣

∣

∣

∣

∣

F
(m,j)
r

F
(m,k)
r

− a
(m,j)
1

a
(m,k)
1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

H
(m,j)

r

H
(m,k)

r

− a
(m,j)
1

a
(m,k)
1

∣

∣

∣

∣

∣

,

=

∣

∣

∣

∣

∣

∣

(

H
(m,j)

r − a
(m,j)
1

)

a
(m,k)
1 −

(

H
(m,k)

r − a
(m,k)
1

)

a
(m,j)
1

a
(m,k)
1

(

a
(m,k)
1 +

(

H
(m,k)

r − a
(m,k)
1

))

∣

∣

∣

∣

∣

∣

.

Now for 1 ≤ j ≤ m, we have
∑m

t=2 |a(m,j)
t | ≤ 4m− |a(m,j)

1 |, and
∣

∣

∣H
(m,j)

r − a
(m,j)
1

∣

∣

∣ <
(

|a(m,j)
2 | + . . . |a(m,j)

m |
)

|σr
m 2|,

so that
∣

∣

∣

∣

∣

H
(m,j)

r

H
(m,k)

r

− a
(m,j)
1

a
(m,k)
1

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

∣

|a(m,k)
1 |(|a(m,j)

2 | + . . . |a(m,j)
m |) + |a(m,j)

1 |(|a(m,k)
2 | + . . . |a(m,k)

m |)
|a(m,k)

1 |
(

|a(m,k)
1 | −

(

|a(m,k)
2 | + . . . |a(m,k)

m |
))

|σr−1
m 2 |

∣

∣

∣

∣

∣

∣

|σr−1
m 2 |.

Hence for r > rk with rk as defined, the results follow.
Regarding the vector distance |Ψ(m)

r − Φ(m)|, by the definition of B′

and r′ it follows that for any specific values for j and k with r > r′, the
remainder term will be < B′|σm 2|r−1. Taking the square root of m times
the square of this bound to obtain the Euclidean distance, we see that the
remainder term is now < B′√m|σm 2|r−1. As |σm 2| < 1, we can always find
such an r∗ > r′ satisfying the inequality, as required.
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To see Corollary 3.13, for an irrational number α, the simple contin-
ued fraction algorithm begins with the largest integer not exceeding α and
then proceeds to generate what can be thought of as one infinite branch of
number plus fraction. For the (m + 1) term recurrence relation that gen-
erates the sequence of numerators and denominators in F

(m,j)
r /F

(m,k)
r , at

each step the continued fraction branch will have number plus m− 1 frac-
tions, so at each step the number of branches will increase by a factor of
m − 1. For m ≥ 3, it is expected that in general the resulting sequence of
rational numbers will converge at a slower rate than that for the simple
continued fraction expansion of a(m,j)

1 /a
(m,k)
1 , as guaranteed by Dirichlet’s

theorem (1.14). However, the resulting sequence can itself always be trans-
lated into a sequence of simple continued fraction expansions, and by the
theory, this must converge to the unique simple continued fraction expan-
sion of the limit point a(m,j)

1 /a
(m,k)
1 , as required. �

Definition 3.14 (Unlaced Fibonacci sequences). For 1 ≤ j ≤ m, denote by
∗F (m,j)

r , the rth term in the jth unlaced Fibonacci sequence of dimension
m, defined in terms of the interlaced Fibonacci sequences of dimension m
such that

∗
F

(m,j)
mq+2r−1 = F

(m,r)
mq+j , 1 ≤ r ≤

[

m+ 1
2

]

,

and
∗
F

(m,j)
mq+2r = F

(m,m+1−r)
mq+j , 1 ≤ r ≤

[

m

2

]

.

It follows that the unlaced sequences of Fibonacci numbers correspond to
the ordered union of the ordered sets, given by
{

∗
F

(m,j)
r

}∞

r=1

=
∞
⋃

q=0
n=qm+j

{

F
(m,1)
n ,F (m,m−1)

n ,F (m,2)
n ,F (m,m−2)

n , . . . ,F (m,[m/2]+1)
n

}

.

Here the ordering mimics that displayed in the construction of the conver-
gent vectors terms Ψ

(m)
r , where as before, we define the unlaced numerator

terms ∗N (m,j)
r , to be the non-reduced numerators of the terms ∗F (m,j)

r .

Lemma 3.15. For 1 ≤ a, b ≤ m, a 6= b, and with the above construction,
the ratios of the terms of the jth unlaced Fibonacci sequences of dimension
m, given by







∗F (m,j)
mt+a

∗F (m,j)
mt+b







∞

t=0

=







∗N (m,j)
mt+a

∗N (m,j)
mt+b







∞

t=0

,



32 M. W. Coffey, J. L. Hindmarsh, M. C. Lettington, J. D. Pryce

are a rational sequence of convergents to some real limit points, including

those of the form 2 cos
(

2kπ
2m+1

)

.

Proof. The proof follows immediately from the construction of the unlaced
Fibonacci sequences of dimension m from the interlaced sequences of di-
mension m. �

Example 3.16 (Three-dimensional interlacing and unlaced case). By con-
struction, the interlacing Fibonacci sequences of dimension 3 are given by
(3.52)








F
(3,1)
3 F

(3,1)
2 F

(3,1)
1

F
(3,2)
3 F

(3,2)
2 F

(3,2)
1

F
(3,3)
3 F

(3,3)
2 F

(3,3)
1









=







−
(0

0

)

−3
(1

0

)

−5
(2

0

)

−1
3

(1
2

)

−3
3

(2
2

)

−5
3

(3
2

)

−1
5

(2
4

)

−3
5

(3
4

)

−5
5

(4
4

)







−1

=





2 −2 3
4 −3 2
3 −2 1



 ,

and thereafter for j ∈ {1, 2, 3} by

F
(3,j)
r+3 = −2F

(3,j)
r+2 − F

(3,j)
r+1 − 1

7
F

(3,j)
r ,

so that








F
(3,1)
r+3 F

(3,1)
r+2 F

(3,1)
r+1

F
(3,2)
r+3 F

(3,2)
r+2 F

(3,2)
r+1

F
(3,3)
r+3 F

(3,3)
r+2 F

(3,3)
r+1









=









F
(3,1)
r+2 F

(3,1)
r+1 F

(3,1)
r

F
(3,2)
r+2 F

(3,2)
r+1 F

(3,2)
r

F
(3,3)
r+2 F

(3,3)
r+1 F

(3,3)
r













−2 1 0
−1 0 1
−1

7 0 0



.

By (3.32), the generating functions for the sequences F
(1)
r , F

(2)
r and F

(3)
r

are given by

F
(3,1)
r :

7(x2 + 4x+ 3)
x3 + 7x2 + 14x+ 7

= 3 − 2x+ 2x2 − 17x3

7
+

22x4

7
− 29x5

7
+

269x6

49
− . . . ,

F
(3,2)
r :

7(x+ 2)
x3 + 7x2 + 14x+ 7

= 2 − 3x+ 4x2 − 37x3

7
+

49x4

7
− 65x5

7
+

604x6

49
− . . . ,

F
(3,3)
r :=

7
x3 + 7x2 + 14x+ 7

= 1 − 2x+ 3x2 − 29x3

7
+

39x4

7
− 52x5

7
+

484x6

49
− . . . .

and by (3.33) F
(3,1)
r and F

(3,2)
r can be expressed in terms of F

(3,3)
r as

F
(3,1)
r = 3F

(3,3)
r + 4F

(3,3)
r−1 + F

(3,3)
r−2 , F

(2)
r = 2F

(3,3)
r + F

(3,3)
r−1 .

For with j ∈ {1, 2, 3}, the first few terms of the three unlaced sequences
∗F (3,j)

r , and their corresponding non-reduced numerator integer sequences
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∗N (3,j)
r are given below.

m j/r 1 2 3 4 5 6 7 8 9

∗F (3,1)
r 1 3 1 2 −17

7
−29

7
−37

7
269
49

484
49

604
49

∗F (3,2)
r 2 −2 −2 −3 22

7
39
7

49
7

−357
49

−643
49

−802
49

∗F (3,3)
r 3 2 3 4 −29

7
−52

7
−65

7
474
49

854
49

1065
49

∗N (3,1)
r 1 3 1 2 −17 −29 −37 269 484 604

∗N (3,2)
r 2 −2 −2 −3 22 39 49 −357 −643 −802

∗N (3,3)
r 3 2 3 4 −29 −52 −65 474 854 1065

Hence, from the definition of ∗F (m,j)
r , and by Theorem 3, we have

lim
r→∞

∗F (3,1)
3r

∗F (3,1)
3r−1

= lim
r→∞

∗F (3,2)
3r

∗F (3,2)
3r−1

= lim
r→∞

∗F (3,3)
3r

∗F (3,3)
3r−1

= 2 cos
2π
7

= 1.24698 . . .

lim
r→∞

∗F (3,1)
3r−2

∗F (3,1)
3r

= lim
r→∞

∗F (3,2)
3r−2

∗F (3,2)
3r

= lim
r→∞

∗F (3,3)
3r−2

∗F (3,3)
3r

= −2 cos
4π
7

= 0.44504 . . .

lim
r→∞

∗F (3,1)
3r−1

∗F (3,1)
3r−2

= lim
r→∞

∗F (3,2)
3r−1

∗F (3,2)
3r−2

= lim
r→∞

∗F (3,3)
3r−1

∗F (3,3)
3r−2

= −2 cos
6π
7

= 1.80194 . . .

which is similar to the ratios of consecutive Lucas numbers or Fibonacci
numbers converging to −2 cos 4π

5 , or their reciprocals to 2 cos 2π
5 . We note

that due to these sequence structures, the rational sequences can be re-
placed with the non-reduced numerator integer sequences ∗N (3,j)

r , without
affecting the ratios.

Example 3.17 (Cyclotomic approximation when m = 5). In consideration
of the Euclidean distance regarding the 20th convergent when m = 5, we
have
∣

∣

∣Ψ
(5)
20 − Φ5

∣

∣

∣

=
∣

∣

∣

∣

(

F
(5,4)
20

F
(5,5)
20

,
F

(5,2)
20

F
(5,4)
20

,−F
(5,1)
20

F
(5,3)
20

,−F
(5,3)
20

F
(5,2)
20

,−F
(5,5)
20

F
(5,1)
20

)

− (φ5 1, φ5 2, φ5 3, φ5 4, φ5 5)
∣

∣

∣

∣

=
∣

∣

∣

(

42951850444254470
25528481467235249 ,

35685687021511133
42951850444254470 ,− 4434370056070408

15579436796165461 ,

−46738310388496383
35685687021511133 , −25528481467235249

13303110168211224

)

,

−
(

2 cos
(

2π
11

)

, 2 cos
(

4π
11

)

, 2 cos
(

6π
11

)

, 2 cos
(

8π
11

)

, 2 cos
(

10π
11

))∣

∣

∣

< 10−13.
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In terms of polynomials, this yields the remainder term
(

x2 − F
(5,4)
20

F
(5,5)
20

x+ 1
)(

x2 − F
(5,2)
20

F
(5,4)
20

x+ 1
)(

x2 + F
(5,1)
20

F
(5,3)
20

x+ 1
)

×
(

x2 + F
(5,3)
20

F
(5,2)
20

x+ 1
)(

x2 + F
(5,5)
20

F
(5,1)
20

x+ 1
)

−
(

x10 + x9 + x8 + . . .+ x+ 1
)

≈ 10−20(x2 + x4 + x6 + x8) − 10−13(x+ x3 + x5 + x7 + x9).

Definition 3.18 (Fleck’s and Weisman’s congruences). Let p be a prime
and a be an integer. In 1913, A. Fleck discovered that

(3.53)
∑

k≡a (mod p)

(−1)k

(

N

k

)

≡ 0

(

mod p

⌊

N−1
p−1

⌋

)

,

for all positive integers N > 0. In 1977 C. S. Weisman [24] extended Fleck’s
congruence to obtain

(3.54)
∑

k≡a (mod pα)

(−1)k

(

N

k

)

≡ 0 (mod pω) , ω =
⌊

N−pα−1

φ(pα)

⌋

,

where α ≥ 1, and N ≥ pα−1 are positive integers, and φ denotes the Euler
totient function. When α = 1 it can be seen that (3.54) reduces to (3.53).

We define the Fleck numbers, F(N, a (mod n)), such that

(3.55) F(N, a (mod n)) =
∑

k≡a (mod n)

(−1)k

(

N

k

)

.

These sums have many well known properties [18], [19] such as

(3.56) nF(N, a (mod n)) =
N
∑

k=0

(−1)k

(

N

k

)

∑

γn=1

γk−a =
∑

γn=1

γ−a(1 − γ)N ,

from which we can deduce the recurrence relation

(3.57) F(N + 1, a (mod n)) = F(N, a (mod n)) − F(N, (a− 1) (mod n)).

By modularity we also have F(N, a (mod n)) = F(N, (a+ n) (mod n)).

In the following theorem we give new expressions for the renumbered
Fleck numbers in terms of our polynomial functions.

Theorem 3.19. Let r be a non-negative integer and m be a positive integer,

so that n = 2m+ 1, is odd. Then the numbers in the sequences F
(m,j)
−r and

G
(m,j)
−r are given by the alternating binomial sums

(3.58)
F

(m,j)
−r = n

∞
∑

a=−∞
(−1)r+j+a

(

2r + 1
r + j + an

)

= nF(2r + 1, (r + j) (mod n)),
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(3.59)
G

(m,j)
−r = n

∞
∑

a=−∞
(−1)r+j+1+a

(

2r + 2
r + j + 1 + an

)

= nF(2r + 2, (r + j + 1) (mod n)),

and so when n is a prime power, they satisfy an analogue of Weisman’s
Congruence [24].

The renumbered Fleck numbers can be written as

(3.60) nF(2r + 1, (r + j) (mod n)) =
m
∑

t=1

(µm t)
r+1 Pj−1 (µm t)

=
m
∑

t=1

(µmt)
r+1 Vj−1 (φm t) =

m
∑

t=1

(µm t)
r
(

φm jt − φm (j−1)t

)

.

Similar expressions exist for the sequence terms G
(m,j)
−r , corresponding to

the renumbered Fleck numbers F(2r+ 2, (r+ j+ 1) (mod n)), formed from
the even numbered rows of Pascal’s triangle.

Proof of Theorem 3.19. These relations are obtained by Lemma 4.2 of [11]
and the closed form expressions (3.47), and (3.48). �

Example 3.20. When j = m = 5, so n = 11, and r = 8, we have

F
(5,5)
−8 = 11

∞
∑

a=−∞
(−1)8+5+a

(

17
8 + 5 + 11a

)

= 11
∞
∑

a=−∞
(−1)a

(

17
2 + 11a

)

=
5
∑

t=1

(µ5 t)
9 P4 (µ5 t) =

5
∑

t=1

(µ5 t)
8 (φ5 5t − φ5 4t)

= 11F(17, 2 (mod 11)) = −112.204.

Remark 3.21 (to Theorem 3.19). Using the recurrence Qm(x) and its
inverse recurrence, we can construct a similar family of sequences, which
at negative indices correspond to (2m) times the Fleck numbers obtained
using the even modulus (2m).

There are many geometric interpretations of the Fibonacci numbers and
the Golden Ratio, including the triangles inscribed in a circle represen-
tation, given by J. Rigby in [15]. In the following theorem we establish
geometric relations for our rational interlacing Fibonacci sequences F

(m,j)
r

(and G
(m,j)
r ), with the ratios of diagonal lengths between the vertices of the

regular n-gon inscribed in the unit circle.

Theorem 3.22. Let n a positive odd integer, with n = 2m + 1, and
vn 0, . . . vn (n−1) the n vertices of the regular n-gon Hn, inscribed in the unit
circle. Let dn k be the signed distance from vertex vn 0 to vertex vn k, so that
dn 1 = 2 sin (π/n) is the side length of Hn, dn k = 2 sin ((πk)/n) is the signed
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length of the kth diagonal of Hn, and dn n = 0. Then working (mod n) the
second subscript of dn k, we have

(3.61) F
(m,j)
r = (−1)r−1

m
∑

t=1

dn (2j−1)t

d2r−1
n t

= (−1)r−1
m
∑

t=1

2 sin
(

(2j−1)πt
2m+1

)

(

2 sin
(

πt
2m+1

))2r−1 ,

and

(3.62)

G
(m,j)
r = F

(m,j+1)
r − F

(m,j)
r = (−1)r−1

m
∑

t=1

dn (2j+1)t − dn (2j−1)t

d2r−1
n t

= (−1)r−1
m
∑

t=1

2 cos
(

2jπt
2m+1

)

(

2 sin
(

πt
2m+1

))2r−2 .

Hence for r a negative integer, these sums over the signed diagonal lengths
correspond to integers which are the renumbered Fleck numbers multiplied
by n.

Proof of Theorem 3.22. Combining the definitions of the diagonal distances
and ratios with the closed form trigonometric expressions for F

(m,j)
r , given

in Corollary 3.7, we obtain (3.61).
Applying the trigonometric identity

sin x− sin y = 2 cos
(x+ y)

2
sin

(x− y)
2

to F
(m,j+1)
r − F

(m,j)
r , we find that (dn (2j+1)t − dn (2j−1)t)/dn t = φm jt, and

hence (3.62) for all r ∈ Z. �

Remark 3.23 (to Theorem 3.22). Defining the diagonal to side length
ratio rn k, such that rn k = dn k/dn 1, we note that the sums over ratios
of signed diagonal lengths, corresponding to ratios in the unit n-gon, are
closely allied to Steinbach’s unsigned diagonal and ratio product formulae
(see [17] and [10]) given by

|dn kdn ℓ| = |dn 1|
ℓ−1
∑

j=0

|dn (k−ℓ+2j+1)|, |rn krn ℓ| =
ℓ−1
∑

j=0

|rn (k−ℓ+2j+1)|,

where we take (k − ℓ+ 2j + 1) (mod n).

In the following theorem we examine the non-reduced numerator integer
interlacing Fibonacci sequences of dimension m, N

(m,j)
r , in more detail.

Theorem 3.24 (Integer sequence theorem). Let p1, p2, . . . pt be all the
distinct prime factors of n = 2m + 1, so that for each pi we can write
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pi = 2qi + 1. Then for 1 ≤ j ≤ m, and r > 0, we have

N
(m,j)

r =





t
∏

i=1

p

⌊

r−1
qi

⌋

i



F
(m,j)
r ∈ Z.

For F
(m,j)
r with r ≤ 0, and n having at least two distinct prime factors, let

N
(m,j)

r = F
(m,j)
r , and when n = pα is a prime power, let

N
(m,j)

r =
(

pϑ
)

F
(m,j)
r , ϑ = −α−

⌊

−2r + 1 − pα−1

pα − pα−1

⌋

.

Then with n = pa1
1 . . . pat

t , we have for r = 0,−1,−2,−3, . . ., that the se-

quence terms N
(m,j)

r , are the renumbered Fleck numbers, and when n = pα

is a prime power, the sequence terms N
(m,j)

r are the (renumbered) Fleck
quotients discussed in [19].

Corollary 3.25. When n = p, a prime number, and for all r ∈ Z, we have
{

p⌊ r−1
m ⌋F

(m,j)
r

}+∞

r=−∞
=
{

N
(m,j)

r

}+∞

r=−∞
, so that p⌊ r−1

m ⌋F
(m,j)
r ∈ Z.

Proof of Theorem 3.24. The case n = p, a prime number, was proven in [11,
Lemma 7.5]. An expansion of this argument then leads to the deduction
that for n = pa1

1 p
a2
2 . . . pat

t , and r at positive integer values, the power of pi

in the denominator of the sequence terms never exceeds ⌊(r−1)/qi⌋. Hence
we can treat each prime number individually, replacing the denominator m
in the exponent of p⌊(r−1)/m⌋, with qi for each prime factor pi. It follows that
multiplying together the product of the prime numbers to their individual
exponents yields an integer sequence.

By Theorem 3.19, we know that the sequence terms F
(m,j)
r are the

renumbered Fleck numbers, and so are already integer values and satisfy
an analogue of Weisman’s congruence. The property relating to Fleck quo-
tients when n = (2m + 1) = p, a prime number, then follows from the
exponent so that

[

−2r − 1 − pα−1

pα − pα−1

]

α=1

=
[−2r − 2
p− 1

]

=
[−2r − 2

2m

]

=
[−r − 1

m

]

,

as required. �

Example 3.26. We give the table for the integer interlacing Fibonacci
sequence N

(m,j)
r , when m = 3, and r ∈ [−6, 6].

j/r −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
1 −35 66 −18 5 −10 3 −1 3 −2 2 −17 22 −29
2 26 −47 12 −3 5 −1 0 2 −3 4 −37 49 −65
3 −13 22 −5 1 −1 0 0 1 −2 3 −29 39 −52
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Remark 3.27 (to Theorem 3.24). When n = 2m + 1 has repeated prime
factors, it appears to be the case that particular sequences out of the m
sequences have further divisibility properties. One area for future investi-
gation would be to derive a concise formula that describes these patterns.

Lemma 3.28 (Sum of diagonal products lemma). Let Hn be the regular
odd-sided unit n-gon Hn, as defined in Theorem 5, so that n = 2m+ 1 > 0,
Hn has signed diagonal distances given by dn k = 2 sin ((πk)/n). Then we
have

m
∑

j=1

dn (2j−1)u dn (2j−1)v =

{

0 if u 6= v

2m+ 1 if u = v

Proof. This result is an exercise in trigonometric identities, whereby it is
established that the sum can be written as a difference of sine ratios such
that

m
∑

j=1

2 sin
(

πu(2j−1)
2m+1

)

2 sin
(

πv(2j−1)
2m+1

)

=
sin
(

2mπ(u−v)
1+2m

)

sin
(

π(u−v)
1+2m

) −
sin
(

2mπ(u+v)
1+2m

)

sin
(

π(u+v)
1+2m

) ,

thus eliminating the j variable. Using sin (π − x) = − sin x, we see that the
two terms cancel out if u 6= v, and when u = v, we deduce the result via
the identity

∑N
k=0 sin2(kx) = 1/4(1 + 2N − cscx sin [x(1 + 2N)]). �

Theorem 3.29. Let n = 2m + 1 be a positive integer. Then the sequence

terms F
(m,j)
r and G

(m,j)
r , obey the relations

F
(m,1)
2r =

−1
n

m
∑

j=1

(

F
(m,j)
r

)2
,

F
(m,1)
2r+1 =

1
2n





(

G
(m,0)
r

)2
+ 2

m
∑

j=1

(

G
(m,j)
r

)2



 ,

so that for all r ∈ Z we have

m
∑

t=1

(µm t)
−2r+1 =

−1
n

m
∑

j=1

(

m
∑

t=1

(µm t)
−r
(

φm jt − φm (j−1)t

)

)2

,

and
m
∑

t=1

(µm t)
−2r+2

=
2
n

(

m
∑

t=1

µ−r+1
m t

)2

+
1
n

m
∑

j=1

(

m
∑

t=1

(µm t)
−r
(

φm (j+1)t − 2φm jt + φm (j−1)t

)

)2

.

Hence each numerator of the sequence terms F
(m,j)
r and G

(m,j)
r can be

written as an integer linear combination of sums of square integers.
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Corollary 3.30. Let n = 2m + 1 be a positive integer. Then we have the
Fleck number relations

F(4r + 1, (2r + 1) (mod n)) = −
m
∑

j=1

(F(2r + 1, (r + j) (mod n)))2 ,

2F(4r+ 3, (2r+ 2) (mod n)) = F(4r+ 4, (2r+ 2) (mod n))

= (F(2r+ 2, (r+ 1) (mod n)))2 + 2
m
∑

j=1

(F(2r+ 2, (r+ j+ 1) (mod n)))2 .

The corresponding combinatorial identities (not given in [7]) are

∞
∑

a=−∞
(−1)a

( 4r+1
2r+1+an

)

=
m
∑

j=1

( ∞
∑

a=−∞
(−1)r+j+a

( 2r+1
r+j+an

)

)2

,

2
∞
∑

a=−∞
(−1)a

( 4r+3
2r+2+an

)

=
∞
∑

a=−∞
(−1)a

( 4r+4
2r+2+an

)

=

( ∞
∑

a=−∞
(−1)r+1+a

( 2r+2
r+1+an

)

)2

+ 2
m
∑

j=1

( ∞
∑

a=−∞
(−1)r+j+1+a

( 2r+2
r+j+1+an

)

)2

.

Explicit calculations suggest that the above combinatorial identities are
true for any positive integer n.

Proof. Writing the first display of the Theorem in terms of the signed di-
agonals of the unit n-gon Hn and rearranging, gives us

m
∑

u=1

m
∑

j=1

(dn u)−4r+2
(

dn (2j−1)u

)2

+ 2
m
∑

u=1

m
∑

v=u+1

(dn u)−2r+1 (dn v)−2r+1
m
∑

j=1

dn (2j−1)u dn (2j−1)v.

By Lemma 3.28, for u 6= v the inner sum is zero, and by (3.47) the result
follows. The second display can be obtained similarly.

To see that each sequence term numerator can be written as an integer
linear combination of sums of square integers, by the preceding results we
can write each term F

(m,1)
2r as a sum of m squares, and each term F

(m,1)
2r+1

as a sum of 2m + 1 squares. By (3.33) and (3.34), each of the sequence
terms F

(m,j)
r and G

(m,j)
r , can be written as an integer linear combination

of the F
(m,1)
r , and hence the result. �

Example 3.31 (Sum of squares representation). In consideration of the
non-reduced numerator N

(6,3)
10 , of the sequence term F

(6,3)
10 , by (3.33) can
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write

−N
(6,3)

10 = 29226191 = −5N
(6,1)

10 − 5N
(6,1)

9 − N
(6,1)

8

= 5 × 7480420 − 5 × 1713705 + 392616

= 5 × (15052 + 14212 + 12452 + 10102 + 7022 + 3652)

− 5 × (7022 + 6452 + 5432 + 4112 + (2 × 3652) + 2602 + 842)

+ 3442 + 3272 + 2832 + 2342 + 1592 + 852,

so that after simplification, this method enables N
(6,3)

10 to be written as an
integer linear combination of 16 square integers.

4. Properties of the Polynomial Generating Functions

Theorem 4.1. With P0(x) = 1, P1(x) = 1 + x/3, Q1(x) = 1 + x/2 and
Q2(x) = x2/4 + x + 1/2, the polynomials Pm(x) and Qm(x) respectively
satisfy the three-term recurrences

Pm+1(x) = (x+ 2)Pm(x) − Pm−1(x),(4.1)

Qm+1(x) = (x+ 2)Qm(x) −Qm−1(x),(4.2)

the ordinary differential equations

x(4 + x)P ′′
m(x) + 2(x+ 3)P ′

m(x) −m(m+ 1)Pm(x) = 0,(4.3)

x(4 + x)Q′′
m(x) + (2 + x)Q′

m(x) +m2Qm(x) = 0,(4.4)

and for integers k, ℓ, the explicit orthogonality condition

∫ 0

−4
Pℓ(x)Pk(x)

x1/2

(4 + x)1/2
dx = 2πiδℓ k, ℓ, k ≥ 0,(4.5)

∫ 0

−4

Qℓ(x)Qk(x)
x1/2(4 + x)1/2

dx = −2πiδℓ k, k 6= 0,(4.6)

where δℓ k is the Kronecker symbol.
Let

MP
m(s) ≡

∫ 0

−4

Pm(x)xs−3/4

(4 + x)3/4
dx, ℜ s > −1/4,(4.7)

MQ
m(s) ≡

∫ 0

−4

Qm(x)xs−5/4

(4 + x)3/4
dx.(4.8)
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Then up to normalisation, these Mellin transforms have the form

MP
m(s) = (−1)s+5/44s4−m−1Γ(1/4)pm(s)

Γ
(

s+ 1
4

)

Γ
(

s+ 2m+1
2

) ,(4.9)

MQ
m(s) = (−1)s+3/44s−1Γ(5/4)qm(s)

Γ
(

s− 1
4

)

Γ(s+m)
.(4.10)

Corollary 4.2. Closed form expressions for Pm(x− 2) and Qm(x− 2) are
given by

(4.11) Pm(x− 2) = 2−m−1

((

1−
√
x+2√
x−2

)

(

x−
√

x2 −4
)m

+

(

1+

√
x+2√
x−2

)

(

x+
√

x2 −4
)m
)

,

and

(4.12) Qm(x− 2) = 2−m
((

x−
√

x2 − 4
)m

+
(

x+
√

x2 − 4
)m)

,

where for r ≤ [m/2] we also have

(4.13) Pm(x) =
r
∑

j=0

(−1)r

(

r

j

)

(x+ 2)r−jPm−r−j(x),

and

(4.14) Qm(x) =
r
∑

j=0

(−1)r

(

r

j

)

(x+ 2)r−jQm−r−j(x).

We have the orthogonal polynomial relations

(4.15)
∫ 0

−4
x1/2(4 + x)−1/2Pk(x)(any polynomial of degree < k) dx = 0,

and

(4.16)
∫ 0

−4
x−1/2(4 + x)−1/2Qk(x)(any polynomial of degree < k) dx = 0.

The polynomial factors of MP
m(s) and MQ

m(s) satisfy the functional equa-
tions

(4.17) pn(s) = ±pn(1 − s), qn(s) = ±qn(1 − s)

and have zeros only on the critical line ℜ(s) = 1/2.
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Proof of Theorem 4.1. The three term recurrences for Pm(x) and Qm(x)
in (4.1) and (4.2) follow from the Legendre function expression for Pm(x)
given in (3.22), and using [1, p. 99, 247 or 295] with α = β = −1/2 the
Jacobi polynomial P (α,β)

n (x) relation

Qm(x) =
(2m)(m− 1)!

(1/2)m
P (−1/2,−1/2)

m

(

1 +
x

2

)

.

We sketch the details for Qm(x). The polynomial P (−1/2,−1/2)
n (z) obeys the

recurrence relation

(n+ 1)n(2n− 1)P (−1/2,−1/2)
n+1 (z)

= n(2n− 1)(2n+ 1)zP (−1/2,−1/2)
n (z) − (n− 1/2)2(2n+ 1)P (−1/2,−1/2)

n−1 (z),

and using the change of variable z = 1 + x/2 and [1, (2.5.14)], applied to
the polynomials Qm(x), we obtain (4.2).

Considering now the ordinary differential equation satisfied by Pµ
ν (z),

(1 − z2)
d2u

dz2
− 2z

du
dz

+

[

ν(ν + 1) − µ2

1 − z2

]

u = 0,

and an elementary application of the chain rule, we find

x(4 + x)P ′′
m(x) + 2(x+ 3)P ′

m(x) −m(m+ 1)Pm(x) = 0,

and hence (4.3).
By using an integrating factor x3/2(4 + x)1/2, the differential equation

for Pm(x) may be written as

x3/2(4 + x)1/2P ′′
m(x) + 2(x+ 3)x1/2(4 + x)−1/2P ′

m(x)

−m(m+ 1)x1/2(4 + x)−1/2Pm(x) = 0.

We then obtain
d

dx
[x3/2(4 + x)1/2P ′

m(x)] = m(m+ 1)x1/2(4 + x)−1/2Pm(x).

Writing this equation for Pk(x), multiplying the Pm(x) equation by Pk(x),
and the Pk(x) equation by Pm(x) and subtracting there follows

Pk(x)
d

dx
[x3/2(4 + x)1/2P ′

m(x)] − Pm(x)
d

dx
[x3/2(4 + x)1/2P ′

k(x)]

= [m(m+ 1) − k(k + 1)]x1/2(4 + x)−1/2]Pk(x)Pm(x).

Thus

d
dx

{

x3/2(4 + x)1/2[Pk(x)P ′
m(x) − Pm(x)P ′

k(x)]
}

= [m(m+ 1) − k(k + 1)]x1/2(4 + x)−1/2]Pk(x)Pm(x).
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By integrating between x = −4 and 0, we obtain the stated result (4.5).
The orthogonality of the sequence {Pm(x)}m≥0 allows the development

of integral transforms with zeros only along vertical lines in the complex
plane and hence (4.7) and (4.9).

For (4.4) we use the hyperbolic trigonometric function analogue for
Chebyshev polynomials to obtain

Qm(x) = 2 cosh

(

2m sinh−1

(√
x

2

))

= 2 2F1

(

−m,m;
1
2

; −x

4

)

.

The differential equation for the Gauss hypergeometric function

2F1(a, b; c; z) = z(1 − z)
d2y

dz2
+ [c− (a+ b+ 1)z]

dy
dz

− aby = 0,

becomes for Qm(x)

d2y

dx2
+

(2 + x)
x(4 + x)

dy
dx

+
m2

x(4 + x)
y = 0,

and the result follows.
In consequence, the family {Qm(x)}m≥1 is orthogonal, and with the in-

tegrating factor
√
x

√
4 + x, the differential equation may be written as

d
dx

(√
x

√
4 + x

dy
dx

)

=
m2

√
x

√
4 + x

y.

The integrating factor is obtained as the exponential of
∫

(2 + x)
x(4 + x)

dx =
1
2

ln[x(4 + x)].

We then obtain the orthogonality relation (4.6) [the steps being omitted]
∫ 0

−4

Qm(x)Qk(x)
x1/2(4 + x)1/2

dx = −2πiδmk, k 6= 0.

Accordingly, we have a (generalised) Mellin transform

MQ
m(s) ≡

∫ 0

−4

Qm(x)xs−5/4

(4 + x)3/4
dx,

of the form (4.10), so that

MQ
m(s) = (−1)s+3/44s−1Γ(5/4)qm(s)

Γ
(

s− 1
4

)

Γ(s+m)
.

In the Corollary, (4.11) and (4.12) are obtained by solving the recurrences
in (4.1) and (4.2), whereas (4.13) and (4.14) arise from iteratively applying
the recurrences.

The last part of the Corollary follows from properties of orthogonal poly-
nomials.
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The proof that the polynomial factors of MP
m(s) and MQ

m(s) satisfy the
functional equations pn(s) = ±pn(1 − s), and qn(s) = ±qn(1 − s), and have
zeros only on the critical line ℜ(s) = 1/2, follows that given in [3]. �

Theorem 4.3. The polynomials Pm(x) obey the Christoffel–Darboux for-
mula

(4.18)
n
∑

m=0

Pm(y)Pm(x) =
Pn+1(x)Pn(y) − Pn+1(y)Pn(x)

x− y
,

the confluent form of which (i.e., for y → x) is

(4.19)
n
∑

k=0

P 2
k (x) = P ′

n+1(x)Pn(x) − Pn+1(x)P ′
n(x).

They also satisfy the relation

(4.20)
dPm(x)

dx
=

1
x(4 + x)

{−(2m− 1)Pm−1(x) + [m(x+ 2) − 1]Pm(x)} ,

and have the raising and lowering operators

Rm = x(x+ 4)
d

dx
+m(x+ 2) + x+ 3,(4.21)

Lm = −x(x+ 4)
d

dx
+m(x+ 2) − 1,(4.22)

such that RmPm(x) = (2m+3)Pm+1(x), and LmPm(x) = (2m−1)Pm−1(x).
The ordinary differential equation for Pm(x) can then be written in terms
of these operators.

The polynomials Qm(x) obey the quadratic identity

(4.23) Q2
m(x) = Q2m(x) + 2,

have the generating function

(4.24)
∞
∑

m=0

(1/2)m

m!
Qm(x)rm = R−1(1 − r +R)1/2(1 + r +R)1/2,

where R = (1 − 2r − xr + r2)1/2, and satisfy the differential relation

(4.25)
d

dx
Qm(x) =

2m sin[m cos−1(1 + x/2)]
√

−x(4 + x)
.

Proof of Theorem 4.3. The polynomials Pm(x) have the hypergeometric
form

Pm(x) = 2F1

(

−m,m+ 1;
3
2

; −x

4

)

=
2

(2m+ 1)
√
x

sinh

[

(2m+ 1) sinh−1

(√
x

2

)]

.



On Higher-Dimensional Fibonacci Numbers 45

Hence their ODE may also be found from that of the 2F1 function.
If we normalize such that Pℓ(x) → Pℓ(x)/

√
2πi, so that

∫ 0

−4
P 2

k (x)
x1/2

(4 + x)1/2
dx = 1,

we obtain the Christoffel-Darboux formula of (4.18)

n
∑

m=0

Pm(y)Pm(x) =
Pn+1(x)Pn(y) − Pn+1(y)Pn(x)

x− y
,

and the confluent form of this result (4.19)

n
∑

k=0

P 2
k (x) = P ′

n+1(x)Pn(x) − Pn+1(x)P ′
n(x),

then follows.
When the relation

(1 − z2)
dP−1/2

m (z)
dz

=
(

m− 1
2

)

P
−1/2
m−1 (z) −mzP−1/2

m (z)

is transformed to the polynomials Pm(x), the result is

dPm(x)
dx

=
1

x(4 + x)
{−(2m− 1)Pm−1(x) + [m(x+ 2) − 1]Pm(x)} ,

which is (4.20). The raising and lowering operators of (4.21) and (4.22) can
then be deduced.

From the application of linear and quadratic transformation of the 2F1

function we have the following.

Qm(x) = 2
(

1 +
x

4

)m

2F1

(

−m, 1
2

−m;
1
2

;
x

x+ 4

)

=
(4 + x)m

22m

[

(

1 −
√

x

4 + x

)2m

+
(

1 +
√

x

4 + x

)2m
]

= 2
(

1 +
x

4

)−m

2F1

(

m,
1
2

+m;
1
2

;
x

x+ 4

)

= 2
(

1 +
x

4

)1/2

2F1

(

1
2

+m,
1
2

−m;
1
2

; −x

4

)

= 2 cosh
(

2m sinh−1
(√

x
2

))

.
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As

Qm(x) = 2 2F1

(

−m

2
,
m

2
;
1
2

; −x

4
(4 + x)

)

,

we find that Qm(x) = Qm/2[x(4 + x)]. As

Qm(x) = 2(−1)m
2F1

(

−m,m;
1
2

; 1 + x/4
)

,

we determine that Qm(x) = (−1)mQm(−4 − x). Furthermore,

Qm(x) =
2
√
π(2m−1)!

(m−1)!Γ(m+1/2)

(

1+
x

4

)m

2F1

(

−m, 1
2

−m; 1−2m;
1

1+x/4

)

=
2
√
π(2m−1)!

(m−1)!Γ(m+1/2)

(

x

4

)m

2F1

(

−m, 1
2

−m; 1−2m; − 4
x

)

.

With (a)n the Pochhammer symbol, we note the limit for j > 0

lim
a→−b

(a+ b)j

(2a+ 2b)j
=

1
2
,

otherwise this ratio is 1 for j = 0. We then obtain a reduction of Clausen’s
identity for the square of a special 2F1 function, Q2

m(x) = Q2m(x) + 2,
which is (4.23).

To see (4.24) we identify Qm(x) in terms of Jacobi polynomials P (α,β)
n (x).

We use [1, p. 99, 247 or 295] with α = β = −1/2 and obtain

Qm(x) =
2(m!)

(1/2)m
P (−1/2,−1/2)

m

(

1 +
x

2

)

,

which is the Gegenbauer polynomial case of Cλ→0
m .

A generating function for Jacobi polynomials is [1, p. 298]

F (z, r) =
∞
∑

n=0

P (α,β)
n (z)rn = 2α+βR−1(1 − r +R)−α(1 + r +R)−β,

whereR = (1−2zr+r2)1/2. Correspondingly we find the generating function

∞
∑

m=0

(1/2)m

m!
Qm(x)rm = R−1(1 − r +R)1/2(1 + r +R)1/2,

as required, where now R = (1 − 2r − xr + r2)1/2.
By [1, p. 297]

d
dx
P (−1/2,−1/2)

n (x) =
n

2
P

(1/2,1/2)
n−1 (x) =

Γ(n+ 1/2) sin(n cos−1 x)
√
π(n− 1)!

√
1 − x2

.
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We then obtain

d
dx
Qm(x) =

2m sin[m cos−1(1 + x/2)]
√

−x(4 + x)
,

which is (4.25).
We note that in terms of Jacobi polynomials Pm(x) can be written as

Pm(x) =
m!

(3/2)m
P (1/2,−1/2)

m

(

1 +
x

2

)

. �

Remark 4.4 (to Theorem 4.3 - Generalised raising operator and Rodrigues’
formula). It is possible to obtain a generalised Rodrigues’ formula for the
polynomials Pm(x), as we now present. Following the procedure of [2] we
put Rm = f1

d
dxg2 + h, where h is an arbitrary function and f1 and g2 are

functions to be determined. We find

g2(x) = exp
[

−
∫

h(x)
x(x+ 4)

dx
]

x(m+3/2)/2(x+ 4)(m+1/2)/2,

and

f1(x) =
x(x+ 4)
g2(x)

= exp
[∫

h(x)
x(x+ 4)

dx
]

x−m/2+1/4(x+ 4)−m/2+3/4.

By way of the iteration

Pm+1(x) =
1

(2m+ 3)
1

(2m+ 1)
· · · 1

5
· 1

3
· 1

1
RmRm−1 · · ·R1R0P0(x),

for h = 0 we obtain a generalised Rodrigues’ formula

Pm+1(x) =
1

(2m+ 3)!!
x−m/2+3/4(x+ 4)−m/2+5/4

× d
dx

(

x3/2(x+ 4)3/2 d
dx

)m−1

x3/4(4 + x)1/4,

where (2n+ 1)!! = (2n+ 1)(2n− 1) · · · 3 · 1.



48 M. W. Coffey, J. L. Hindmarsh, M. C. Lettington, J. D. Pryce

Theorem 4.5. Let Cn(x) be the minimal polynomial of 2 cos
(

π
n

)

, and

Θn(x) the minimal polynomial of 2 cos
(

2π
n

)

over Q. Then with the con-

vention that p denotes an odd prime number, we have

Pm(x− 2)
Θ2m+1(x)

=

{

= 1 if 2m+ 1 = p,

∈ Z[x] otherwise.
(4.26)

Qm(x− 2)
C2m(x)

=















= 1 if m = 2r,

= x if m = p,

∈ Z[x] otherwise.

(4.27)

−Q2m+1(−x− 2)
xC4m+2(x)

=
(−1)mPm(−x2)
C4m+2(x)

=

{

= 1 if 2m+ 1 = p,

∈ Z[x] otherwise.
(4.28)

Qm(−x− 2)
C4m(x)

=
(−1)mQm(−x2)

C4m(x)
=

{

= 1 if m = 2r,

∈ Z[x] otherwise.
(4.29)

(−1)mPm(−x− 2)
C2m+1(x)

=
Vm(x)

C2m+1(x)
=

{

= 1 if 2m+ 1 = p,

∈ Z[x] otherwise.
(4.30)

Corollary 4.6. Let ρn(x) be the minimal polynomial of 2 cos
(

2π
n

)

− 2,

τn(x) be the minimal polynomial of 2 cos
(

π
n

)

−2, and ϕn(x) be the minimal

polynomial of −2 cos
(

2π
n

)

− 2 over Q. Then

(4.31)
Pm(x) =

∏

d|2m+1
d≥3

ρd(x), Qm(x) =
∏

d|m
m/d is odd

τ2d(x), Pm(x) =
∏

d|2m+1
d≥3

ϕd(x),

and

(4.32) Qm(x) = Pm1(x)Pm1(x) =
∏

d|2m1+1
d≥3

ρd(x)ϕd(x),

when m = 2m1 is even. If m = 2m1 + 1 = 2r(mr + 1) − 1 is odd, with
mr = 2mr+1 even, so that for 1 ≤ j ≤ r − 1, mj = 2mj+1 + 1, we have

(4.33)
m1 + 1
m2 + 1

=
m2 + 1
m3 + 1

= . . . =
mr−1 + 1
mr + 1

= 2,

then

(4.34) Qm(x) = Qmr (x)
r−1
∏

j=1

Qmj+1(x) = Pmr+1(x)Pmr+1(x)
r−1
∏

j=1

Qmj+1(x).

Proof of Theorem 4.5. We recall that the minimal polynomial of an alge-
braic number β, is defined to be the monic polynomial of minimal degree,
with rational coefficients, which has β as one of its roots. Such polynomials
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often exhibit structural properties, such as Φn(x), the minimal polynomial
of a primitive nth root of unity, e(k/n), with (k, n) = 1, which satisfies

(4.35) xn − 1 =
∏

d|n
Φd(x).

It was shown in [20] that when n is a prime number p, then the minimal
polynomial Θn(x) of 2 cos (2π/n) is given by Θn(x) = fn(x), with

fn(x) =
[ n

2
]

∑

k=0

(−1)k

(

n− k

k

)

xn−2k −
[ n+1

2
]

∑

k=0

(−1)k

(

n− k

k − 1

)

xn−2k+1,

and that Θn(x) divides fn(x) for all n ∈ N. By algebraic manipulation we
have Pm(x− 2) = fm(x), and hence (4.26). In fact, for p a prime number,
we can write Θp(2x) = 2(p−1)/2Ψp(x), whereΨn(x) denotes the minimal
polynomial of the algebraic number β(n) = cos (2π/n).

It was shown by Watkins and Zeitlin [23] that analogous formulae
to (4.35) for Ψn(x) are given by

Tn1+1(x) − Tn1(x) = 2n1
∏

d|n
Ψd(x), n = 2n1 + 1 is odd,(4.36)

Tn1+1(x) − Tn1−1(x) = 2n1
∏

d|n
Ψd(x), n = 2n1 is even,(4.37)

from which we can establish the explicit formula

Ψn(x) =
[n/2]
∏

k=1
(n,k)=1

(

x− cos
(

2πk
n

))

,

so that deg Ψn(x) = 1 if n = 1, 2 and φ(n)/2 if n ≥ 3. From this one
deduces that Cn(x), the minimal polynomial of 2 cosπ/n, is given by

C1 = 2Ψ2

(

x

2

)

, Cn(x) = 2φ(2n)/2Ψ2n

(

x

2

)

, n ≥ 2.

It follows that deg Cn(x) = 1 if n = 1 and φ(2n)/2 if n ≥ 2, the zeros of
Cn(x), n ≥ 2, are 2 cos(πk/n), with k = 1, ..., n− 1 and (k, 2n) = 1. Hence
each of the expressions in (4.27), (4.28), (4.29) and (4.30) are in Z[x] and
equal to 1 for the prime conditions stated. In fact, for n an odd integer, we
have Θn(−x) = (−1)φ(2n)/2Cn(x).

When n is a power of 2 we use the identity 22m−2
Ψ2m(x) = 2T2m−2(x),

and the result follows.
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For completeness we state the case that n is an odd prime power pm,
with p = 2q + 1, for which we have

2pm−1(p−1)/2Ψpm(x) = 2





q
∑

j=1

Tpm−1j(x)



+ 1.

The Corollary can be deduced either from the relations (4.26), (4.27),
(4.28), (4.29) and (4.30), with x−2 replaced by x, in conjunction with (3.18),
(3.19) and (3.20), or directly from the properties of Fibonacci and Lucas
polynomials. In particular, for p a prime number, the p th Fibonacci and
Lucas polynomials are irreducible and so their roots are respectively 2i
times the real and imaginary parts of the pth cyclotomic polynomial, ex-
cept for the root 0 in the Lucas polynomial case (see for example Koshy [9,
p. 462]). �

Example 4.7 (Polynomial factorisation and special values). Taking m =
223 = 25(6 + 1) − 1, we have

Q223(x) =
223
∑

k=0

(

224 + k

2k + 1

)

xk

= P3(x)P3(x)Q7(x)Q14(x)Q28(x)Q56(x)Q112(x).

Without proof, some special values of the polynomials Pm(x) and Qm(x)
are

Qm(−4) = 2(−1)m, Pm(−4) = (−1)m, Qm(0) = 2, Pm(0) = 2m+ 1,

Qm(1) = L2m(1), Pm(1) = L2m+1, Qm(1) = F2m+2(1), Pm(1) = F2m+1.

5. On Minor Recurrence Relations

The matrices Mo(m, r) and Me(m, r), defined after the proof to Theo-
rem 3.2, respectively generate our sequences F

(m,j)
r and G

(m,j)
r , for 1 ≤

j ≤ m, via the recurrence matrix Rm. In consequence, the i × i minors of
these matrices sequence form a set of sequences in their own right, which
also obey (different) recurrence relations, for 2 ≤ i ≤ m − 1. The 2 × 2
minors then correspond to the difference between consecutive convergents
F

(m,j)
r+1 /F

(m,k)
r+1 − F

(m,j)
r /F

(m,k)
r , after multiplying through by the product

of the two sequence terms which form the denominators of the convergents.
We now briefly outline the general theories underpinning these i × i

minor recurrence sequence properties. For 1 ≤ j ≤ m, let the m sequences
{yj k}∞

k=1 be defined by an m × m initial value matrix, and an m-th order
rational linear recurrence matrix Km, of the form (3.28) with a0 = 1,
described in the proof of Lemma 3.5. Then yj k obeys the recurrence relation

yj k = −
(

a1yj (k−1) + a2yj (k−2) + . . .+ amyj (k−m)

)

,
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where

Km(x) =
m
∑

j=0

am−jx
j ,

is the characteristic polynomial of Km.
In this general setting we also assume that the system of polynomials

Km(x) are orthogonal, and so satisfy a three-term recurrence, whose mea-
sure is supported on some interval [a, b] ∈ R. This ensures that the roots
λm 1, . . . , λm m, of the polynomial equations Km(x) = 0, are distinct, real
algebraic numbers lying in the interval [a, b] and that these roots interlace.
Hence for m > n, there is a root of Km(x) = 0 between any two roots of
Kn(x) = 0.

We note that the condition a0 = 1 produces a system of normalised roots,
so that λm 1 × . . .× λm m = 1. We also note that the minimal polynomials
for each of the algebraic numbers λm j divides the characteristic polynomial
Km(x).

As stated in the proof of Lemma 3.5, the sequences Y (j)
m = (1, λm j ,

λ2
m j , . . .), with j = 1, 2, . . . ,m form a basis for the solution space for all

possible sequences satisfying this recurrence relation, and so for any possible
starting values.

Let {y1 k}∞
k=0, {y2 k}∞

k=0, . . . , {yi k}∞
k=0 be i sequences generated by an ini-

tial value matrix and the linear recurrence, so that in matrix form we can
write

Y =











y1 0 y1 1 y1 2 y1 3 . . .
y2 0 y2 1 y2 2 y2 3 . . .

...
...

...
...

...
yi 0 yi 1 yi 2 yi 3 . . .











,

and consider the sequence formed by successive i× i determinants

Dℓ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 ℓ y1 ℓ+1 y1 ℓ+2 . . . y1 ℓ+i−1

y2 ℓ y2 ℓ+1 y2 ℓ+2 . . . y2 ℓ+i−1
...

...
...

...
...

yi ℓ yi ℓ+1 yi ℓ+2 . . . yi ℓ+i−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

, ℓ = 0, 1, 2, 3, . . .

The space of all such sequences D(Y ) = (D0, D1, D2, . . .) is spanned by the
D’s that you get by choosing an array Y of the form

Y =











1 γ1 γ2
1 γ3

1 . . .
1 γ2 γ2

2 γ3
2 . . .

...
...

...
...

...
1 γi γ2

i γ3
i . . .











,

where the γr are i distinct values chosen from the m distinct, real eigen-
values λm j , of the recurrence matrix. Here the order of the rows of Y is
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irrelevant as we are simply looking at how to choose an i element subset
of an m element set. It follows that there are

(m
i

)

ways to choose such a
Y , and from determinant theory the resulting D(Y ) is itself a geometric
progression of the form (C,C∆, C∆2, . . .), where ∆ = γ1γ2 . . . γi. Hence,
generically, the space of all such “i× i minor sequences” must be the solu-
tion space of a linear constant coefficient recurrence of order at most

(m
i

)

.
We have just proved the following lemma.

Lemma 5.1. For i ≥ 1, the sequence formed by successive i × i determi-
nants Dℓ, as defined above, obeys a linear constant coefficient recurrence
of order at most

(m
i

)

. If the eigenvalues of the minor recurrence matrix all
have absolute value less than 1, then the sequence of i× i determinants Dℓ

will converge to some number α.

Example 5.2 (or minor recurrence relation coefficients). We illustrate this
lemma with the i minor recurrences corresponding to the denominator gen-
erating function P5(x).

(

−5,−7,−4,−1,− 1
11

)

(

7,−19, 292
11 ,−233

11 ,
1223
121 ,−356

121 ,
63
121 ,− 72

1331 ,
4

1331 ,− 1
14641

)

(

−4,−72
11 ,−63

11 ,−356
121 ,−1223

1331 ,− 233
1331 ,− 292

14641 ,− 19
14641 ,− 7

161051 ,− 1
1771561

)

(

1,− 4
11 ,

7
121 ,− 5

1331 ,
1

14641

)

(

− 1
11

)

Here the recurrence coefficients for the sequences F
(5,j)
r , are given in the

topmost entry, and those for the 2 × 2 minors the second from top entry,
so that they satisfy a recurrence relation with recurrence polynomial

x10 − 7x9 + 19x8 − 292
11

x7 +
233
11

x6 − 1223
112

x5 +
356
112

x4

− 63
112

x3 +
72
113

x2 − 4
113

x+
1

114
= 0.

Explicit calculations lead us to the following conjecture.

Conjecture 5.3. The sequences of m− 1 ×m− 1 minors constructed from

our sequence terms F
(m,j)
r , have the recurrence polynomials of degree m

given by

m
∑

k=0

(

(−1)m

2m+ 1

)k−1 1
2m+ 1 − 2k

(

2m− k

k

)

xm−k = 0,
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so that when m is odd the recurrence polynomial can be factorised as

m
∏

k=1



x−
2 − 2 cos

(

2πk
2m+1

)

2m+ 1



 = 0.

A final remark is that the
(m

2

)

+ 1 term recurrence relation that our se-
quences of 2×2 minors obey can be used iteratively to obtain the coefficients
Cj k(r), such that

N
(m,j)

r+1

N
(m,k)

r+1

− N
(m,j)

r

N
(m,k)

r

=
1

F
(m,k)
r F

(m,k)
r+1

∣

∣

∣

∣

∣

F
(m,j)
r+1 F

(m,j)
r

F
(m,k)
r+1 F

(m,k)
r

∣

∣

∣

∣

∣

≤ Cj k(r)
(

F
(m,k)
r

)2 ,

which is of a similar form to that of Dirichlet’s Theorem for standard con-
tinued fraction convergents.

Appendix

m j/r 1 2 3 4 5 6 7 8 9

1 1 1 −1 1 −1 1 −1 1 −1 1

2 1 2 −1 3 −2 7 −5 18 −13 47

2 1 −1 4 −3 11 −8 29 −21 76

3 1 3 −2 2 −17 22 −29 269 −357 474

2 2 −3 4 −37 49 −65 604 −802 1065

3 1 −2 3 −29 39 −52 484 −643 854

4 1 4 −10 46 −271 1702 −10855 69499 −445420 2855494

2 3 −18 108 −675 4293 −27459 175932 −1127763 7230222

3 2 −17 116 −755 4859 −31184 199988 −1282310 8221661

4 1 −10 73 −487 3160 −20332 130492 −836893 5366170

5 1 5 −5 11 −32 99 −3415 10744 −33830 106545

2 4 −10 28 −85 265 −9156 28817 −90746 285805

3 3 −11 35 −110 346 −11982 37734 −118845 374319

4 2 −9 31 −100 317 −11002 34669 −109210 343988

5 1 −5 18 −59 188 −6535 20602 −64906 204447

Table 5.1. m-dimensional integer interlacing Fibonacci se-
quences N

(m,j)
r , for m = 1, 2, 3, 4, 5, with 1 ≤ j ≤ m, and

1 ≤ r ≤ 9.
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m j/r −8 −7 −6 −5 −4 −3 −2 −1 0 1

1 1 −1 1 −1 1 −1 1 −1 1 −1 1

2 1 −34 47 −13 18 −5 7 −2 3 −1 2

2 21 −29 8 −11 3 −4 1 −1 0 1

3 1 −493 131 −35 66 −18 5 −10 3 −1 3

2 383 −100 26 −47 12 −3 5 −1 0 2

3 −204 52 −13 22 −5 1 −1 0 0 1

4 1 −8103 2145 −572 462 −126 35 −30 9 −3 4

2 6477 −1668 429 −330 84 −21 15 −3 0 3

3 −4080 996 −238 165 −36 7 −3 0 0 2

4 1836 −420 91 −54 9 −1 0 0 0 1

5 1 −2210 585 −156 42 −126 35 −10 3 −1 5

2 1768 −455 117 −30 84 −21 5 −1 0 4

3 −1125 273 −65 15 −36 7 −1 0 0 3

4 561 −124 26 −5 9 −1 0 0 0 2

5 −204 40 −7 1 −1 0 0 0 0 1

Table 5.2. negative index m-dimensional integer inter-
lacing Fibonacci sequences N

(m,j)
r , corresponding to the

renumbered Fleck number quotients obtained from the se-
quence terms F

(m,j)
r = nF(−2r + 1, (−r + j) (mod n)). Values

for m = 1, 2, 3, 4, 5, with 1 ≤ j ≤ m, and −8 ≤ r ≤ 1, are given.
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