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On Higher-Dimensional Fibonacci Numbers,
Chebyshev Polynomials and Sequences of Vector
Convergents

par MARK W. COFFEY, James L. HINDMARSH,
MATTHEW C. LETTINGTON et JOHN D. PRYCE

RESUME. Nous étudions les suites de Fibonacci entrelacées mul-
tidimensionnelles, générées avec des fonctions de type Tchebychev
ou des relations de récurrence m-dimensionnelles. Pour chaque
nombre entier m, il y a une forme rationnelle et une forme entiere
de ces suites, et la suite entiere peut étre recouvrée en utilisant la
structure de congruences modulo des nombres premiers des déno-
minateurs de la suite rationnelle.

A partir des suites, rationnelles ou entiéres, on construit des
suites vectorielles dans Q™, convergeant vers des points irration-
nels algébriques dans R™. Les termes de la suite rationnelle
peuvent étre décrits par des récurrences simples, des polynémes
trigonométriques, des polynémes binomiaux, des sommes de car-
rés, et aussi par sommes de quotients de puissances des diagonales
signées du polygone régulier a n cotés. Ces suites exhibent en plus
une qualité de type « arc-en-ciel », et correspondent aux nombres
de Fleck a indice négatif, ce qui amene a certaines identités com-
binatoires sur les coefficients binomiaux.

On montre que les familles de polynémes orthogonaux généra-
teurs, qui définissent les relations de récurrence, sont divisibles par
les polynémes minimaux de certains nombres algébriques, et on
en déduit les récurrences linéaires du second ordre et les équations
différentielles pour ces polyndémes. De plus, on discute de plusieurs
résultats concernant la formule de Christoffel-Darboux, la formule
de Rodrigues et les opérateurs d’échelle. En outre, on démontre
que les transformations de Mellin de ces polynomes satisfont une
équation fonctionnelle de la forme p,,(s) = £p, (1 —s), et que tous
leurs zéros sont situés sur la ligne critique £(s) = 1/2.

Manuscrit regu le 6 aott 2015, révisé le 4 juin 2016, accepté le 6 juin 2016.

Mathematics Subject Classification. 11B83, 11B39, 11J70, 33C45, 41A28.

Mots-clefs. Special Sequences and Polynomials, Generalised Fibonacci Numbers, Orthogonal
Polynomials, Vector Convergents.

The authors would like to thank Prof. M. N. Huxley, Dr K. M. Schmidt, and the referees for
their helpful comments.



M. W. CoFfrEY, J. L. HINDMARSH, M. C. LETTINGTON, J. D. PRYCE

ABSTRACT. We study higher-dimensional interlacing Fibonacci
sequences, generated via both Chebyshev type functions and m-
dimensional recurrence relations. For each integer m, there exist
both rational and integer versions of these sequences, where the
underlying prime congruence structures of the rational sequence
denominators enables the integer sequence to be recovered.

From either the rational or the integer sequences we construct
sequences of vectors in Q™, which converge to irrational alge-
braic points in R™. The rational sequence terms can be expressed
as simple recurrences, trigonometric sums, binomial polynomials,
sums of squares, and as sums over ratios of powers of the signed
diagonals of the regular unit n-gon. These sequences also exhibit
a “rainbow type” quality, and correspond to the Fleck numbers at
negative indices, leading to some combinatorial identities involv-
ing binomial coefficients.

It is shown that the families of orthogonal generating polynomi-
als defining the recurrence relations employed, are divisible by the
minimal polynomials of certain algebraic numbers, and the three-
term recurrences and differential equations for these polynomials
are derived. Further results relating to the Christoffel-Darboux
formula, Rodrigues’ formula and raising and lowering operators
are also discussed. Moreover, it is shown that the Mellin trans-
forms of these polynomials satisfy a functional equation of the
form p,(s) = £p,(1 — s), and have zeros only on the critical line

R(s) =1/2.

1. Introduction

Let 7o =0, F1 =1, Ly = 2 and £1 = 1 and define the nth Fibonacci
number, F,,, and the nth Lucas number, £,,, in the usual fashion [22], so
that Fp49 = Fnt1 + Fn, and the same recurrence for the Lucas numbers.
We begin by examining the relationship that exists between the Fibonacci
and Lucas numbers, binomial coefficients and the Chebyshev polynomials

of the first and second kinds, which we now define.

Definition 1.1 (Chebyshev polynomials). For 0 < # < 7, and n a non-
negative integer, the Chebyshev polynomials (see for example [14, 16]) of

the first and second kinds, 7;,(x) and U, (), are defined by

sin (n + 1)6

T, (cos6) = cosnb, Up(cosf) = o

The related functions C,(x) and Sy (z), are then defined to be Cp(z) =

2T, (x/2), Sp(x) = Up(z/2).

Explicit forms for the Chebyshev polynomials are given in Lemma 1.2,
with equivalent Fibonacci and Lucas number expressions given in

Lemma 1.3.
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Lemma 1.2 (Chebyshev identity lemma). From the definitions of the
Chebyshev polynomials Ty, (x) and Uy, (x) in (1.1), we obtain the equivalent

polynomial definitions
(o (8522))

(o oon(25)).

and similarly for Cy,(x) and Sp(x), valid for all x € C, and obeying the
identities

(1.2) = H
(1.3) =" ﬁ
k=1

(1.4) Up(z) =2 Z Tj(x), nodd, Up(z)=2 Z Tj(x) — 1, n even,

j odd j even
[n/2] [n/2]
_ 1\ n-—r n—2r __ n+1 n—2r¢(,.2 _ 1\T
09 Unte) = Lo ("] o = X (57 )y

Toyi1(x) = 22T, (x) — Th—1(2),

(1.6) 2T (2)Tn () = Tingn () + Tppen) (7).

Proof. For proofs of the above identities we refer the reader to Chapters 1
and 2 of [16]. O

Lemma 1.3 (Fibonacci identity lemma). With i> = —1, the Fibonacci and
Lucas numbers can be expressed in terms of Chebyshev polynomials by

Sn (i)

Z’n

) £n:

(1.7) Fg1 = ., n=012,...,

and in terms of binomial coefficients such that

[n/2] [n/2]
n—k n n—k
(1.8) Fry1 = E ( 1 ), L, = E n—k( 1 )

k=0 k=0

The binomial sum for the Fibonacci numbers is often referred to as the shal-
low diagonal sum of the Pascal triangle. The second sum can be viewed as a
scaling of the terms in the previous sum, highlighting the interconnectedness
that exists between the Fibonacci and Lucas sequences.

Proof. For proofs of these Chebyshev and Fibonacci identities, we refer
the reader to p. 60-64 of [16], where it is shown that one can deduce the
binomial sums in (1.8) from the Chebyshev expressions in (1.7). O
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Definition 1.4 (Cosine functions). For k € Z, let ¢k, YUmk, pmr and
Vm i be defined such that

¢mk:2cos(237’;fl), Yk = 2 €08 (%),

Mmk:¢mk_2a mG::d)mk_z

and

2T — cos (2mx) + isin (27x),

e(z) =e
so that e(k/n) is an nth root of unity. Then working (mod 2m + 1)
the second subscript, we have ¢m jomir = Pm(j4k) T Pm(j—k), as well as

—Vm (m—k+1) = Ymk, and in terms of the mth roots of unity

PmE = ¢ (2m+1)+€(2m+1) wmkze(zk 1)+e(_i’fjl).
Hence —¢o2 = (1 ++/5)/2 = ¢, is the Golden Ratio, from which it can be
seen that —¢o1 = (1 —v/5)/2 = ¢ = 1/¢ao.

Definition 1.5 (Vector convergents). We say that the sequence of vectors
{vr}o2, in Q™ converges to the limit v € R™, if for any e > 0, there exists
an e € N, such that |v, —v| < e for r > r, Where | | denotes the standard
Euclidean distance in R™.

In this paper we identify the two (countably) infinite rational interlacing

Fibonacci and Lucas sequences 9152’1) and ﬁ}@’z), for r =1,2,3,..., and
their multi-dimensional analogues ﬂ}(m’j ), with 1 < 7 < m. From ratios of

these sequence terms we construct recursively (countably) infinite sequences

of vectors B ¢ Q™, Which converge (as per Definition 1.5) to the irra-
tional algebraic points H(m = (dm1,---sOdmm) € R™. These sequences of
convergent vectors are a natural generalisation of the convergence of ratios
of consecutive Fibonacci numbers F,41/F,, to ¢ = (1 ++/5)/2, so that

. Frp
lim “2H = Q.
r—oo  F.
To give a structural overview of this work, in Section 2 we use a rational

recurrence relation to construct the two interlacing Fibonacci and Lucas
sequences

C/il{«(;;) = ﬁo,—fl,ﬁg,—f3,£4,—f5,... {EQT} OU{ ‘F27“+1}r 0>
(1.9)
J’f«(;f) =L, —F, L3, —F4, Ls, —F¢,... = {£2r+1}:io U {—]:27«}221 s

. . 2,1
as the numerator sequences of the respective rational sequences ﬂqg ) and

g}(zz)_ The divisibility and continued fraction properties of these sequences
are examined, and closed form expressions analogous to Binet’s formula are
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derived. The denominators of these rational sequence terms are powers of
5, thus indicating a 5-adic structure. To achieve alignment of the denomi-
nator factors between the two sequences, both sequences (as ordered above)
commence with the term r = 1.

Central to our results are the four families of polynomial functions Py, (x),
Qm(x), Pm(x), and Qp(z), which are introduced in Section 3, with con-
necting trigonometric, binomial, Fibonacci, Lucas and Chebyshev identities
for these polynomials given in Theorem 3.2. The m-dimensional interlacing

Fibonacci sequences of the title {f(m’J) 21, with 1 <5 < m, along with
the sister sequences {%ﬂ(mj ) 21, are subsequently defined, and in Theo-

rem 3.6 we obtain the generating functions for these sequences. As detailed
in Corollary 3.7 and Lemma 3.9, this yields a number of ways to express

ﬁvgm’j ) (and %«(m’j )), such as

m o (2sin (HE)
o A _ (_1yr-1 ]
; Homt) (¢>m1t ¢m(]—1)t) (1) ; <2 “in <2£il>)2r—1

With n = 2m + 1, the right-hand display allows for the geometric rep-
resentation of the sequence terms as ratios of the diagonal lengths of an
odd-sided regular n-gon inscribed in the unit circle (Theorem 3.22).

The convergence properties of the pairwise ratios of these sequences
are then considered (Theorem 3.11), enabling the construction of the ra-
tional vector sequences \IISY") € Q™, which converge to the limit point
&™) ¢ R™. Bounds for the remainder term and connections with simple

continued fractions are briefly discussed in Corollaries 3.12 and 3.13. In

(

Theorem 3.19 we show that the sequences FLm™ ) (and %(m’j )) are “rain-
bow sequences”, consisting of n times a renumbering of the Fleck Numbers
(alternating sums of binomial coefficients modulo n) for r at negative inte-

(

ger values. The non-reduced numerators J{n(m’j ) of firm’j ) are described in
Theorem 3.24, where in particular for n an odd prime number p = 2m + 1,
it is shown that for all » € Z, we have

{ L5 ] g (mid }:j_oo = {Ji{,(m’j)}::ioo, so that er;llJﬁT(m’j) €Z.

In Theorem 3.29, we obtain sums of squares identities via the sequence
term relations

(g (mad) (m.1)
jzl(ﬁr J) —nFs,. ",

(4m9) 123" (479} = 2nF e,

i=1

(1.10)
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from which we deduce some combinatorial identities (not given in [7]),
including

o0

m it 2 + 1 ?
(1.11) ;( Z (=) <r+j+a(2m+1)>>

> a 4r +1
=2 (D <2r+1+a(2m+1)>‘

a=—00

In Section 4 we examine in greater detail our Fibonacci, Lucas and Cheby-
shev polynomial functions, deriving orthogonality conditions, differential
and recurrence relations, Mellin transforms with zeros only on the critical
line N(s) = 1/2, a Christoffel-Darboux identity, and minimal polynomial
relations. To conclude, in Section 5 we take a brief look at the sequences of
matrix minors.

Aside from the binomial Fleck number representation given in Theo-
rem 3.19, as far as the authors are aware, the results contained herein
are seemingly new and unpublished. Before deriving our results, we first
reacquaint ourselves with the convergence properties of the Fibonacci and
Lucas sequences.

Fibonacci Convergents. The method known as Euclid’s algorithm or the
highest common factor rule or the continued fraction rule is central to clas-
sical number theory. This algorithm produces all “good approximations” to
a given real number o which can be rephrased in terms of 2 x 2 matrices
such that, given a fraction a/c in its lowest terms so that hef (a,c) = 1, find
a matrix of integers

a b with determinant b =ad — bc = 1.
c d d

a
C

As a consequence it means that much of number theory is fundamentally
concerned with how pairs of integers behave, and so it is natural to study
them accordingly.

Taking ag = [a], the simple continued fraction algorithm produces
a series of positive integers ay, ag, ..., from which one obtains py/qo, p1/q1,
p2/q2, . . ., the sequence of convergents to «, defined such that py/qo = ap/1,
and thereafter by

(1.12)
1 1 1
&:CLO—F*, pﬁzao_}'ia"'a &ZGO‘F
1 a2 1 n 1
ay + — a+ ——
as . 1
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This algorithm allows the matrix representation

Pret Pr\_(Pr Pr—1\( @41 LY\ _ [ Gryipr+pro1 pr
(1.13) = = ,

Irt1 G I Gr-1 10 Ar+1Gr +@r-1 qr
and by Dirichlet’s theorem for continued fractions (see [5, p. 81], or [6,
p. 136]), the convergents have a remainder term satisfying

’ 1 1

~ —al < < 5.

Arqr+1 qr

(1.14)

As every real irrational number « has an infinite simple continued fraction
expansion, one can think of R as being the completion of Q with respect
to its Cauchy sequence limit points.

The continued fraction expansion for the Golden Ratio ¢ = (1 + /5)/2
s [1; i], and so in terms of construction, it is the slowest converging simple
continued fraction possible. From the expansion [1;1] we deduce that the
sequence of convergents obey the relation 2 :ﬁ =1+ g—:, with the first few
terms in this sequence given below.

1235 8 13 21 34 55

1’17235 87137217347

Hence

F, iy ’ )
(1.15) Pr_ 72 Gith  lim 2 _ 4 and Pri2 _ Pry1+p

)
qr r+1 r—00 F7'+1 dr+2 qr+1 + qr

by (1.13), concurring with the three term recurrence relation F, 19 = F, 41+
F,. The corresponding recurrence equation is 22 — 2 — 1 = 0, which has
largest root ¢. As the sequence of Lucas numbers [22] obeys the same
recurrence relation, with the initial values Lo = 2 and £; = 1, we again
find that the sequence of ratios of successive Lucas numbers converges to ¢,
and their reciprocals to 1/¢ = ¢21.

In terms of ¢o,, Binet’s closed form expression for the Fibonacci se-
quence, and the Lucas sequence analogue (see [9, Theorems 5.6 and 5.8])
equate to

R 2 (1t
(1-16) Fn = 3 (¢22 <7521 :Z 5 ¢2r7
r=1
and
2
(1.17) Ln=(=1)"(¢52 +¢51) =D _(~2,)".
r=1
Subtracting the limit point of ¢ = —¢oo from the sequence ratios

Fnt1/Fn; rewriting using the closed form (1.16), and applying Dirichlet’s
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theorem (1.14), we have that the Fibonacci convergent remainder terms

satisfy
F 5 1
‘ n+l_¢’: QL <72'
Jn ¢ "= (_1)n ‘Fn
Regarding the Lucas numbers for n > 3, and using (1.17), we obtain the
slightly weaker bound

£n+1 \/5 < 1
Ln P+ (=1 Ly
Other variations on Binet’s formula, connecting the fifth roots of unity and
the Fibonacci sequence, are

(1.18) (1 + ¢2k)n = Fnt1 + 021 Fn, ke {L 2}3
discussed by Grzymkowski and Witula in [8], and (—¢22)" = —¢29F, +
Fn—1, given by Vajda in [22].

From the relations given in (1.7), (1.17) and (1.18) one can deduce a
multitude of identities, of which some of the better known are

-

(1.19) .Fm+n+1 = fm+1fn+1 + fmfn, Z ]:]? - ]:n]:nJrla

k=1
(1.20) Fpa1Fpoy — F2 = (—1)", Loi1Lny — Ly = (-1)""'5,
(121) fm—‘rn = Emfn—i-l - ]:m—lﬁna Em—‘rn = 5]:m]:n+1 — Lin1Ly.

The two identities in (1.11) (see Theorem 3.29) are a variation on the right-
hand display in (1.19), leading to representations of the sequence terms
,9’2(:1 M) as a sum of the squares of m non-zero integers, and the sequence

terms ﬁéﬁ? as a sum of the squares of 2m + 1 positive integers. The

relations (1.20) and (1.21) highlight the interconnectedness that exists be-
tween these two sequences and also to the number 5. As a motivation for our
general theories, we now describe an alternative recurrence approach that
yields two rational sequences, whose numerators are interlacing Fibonacci
and Lucas numbers, and denominators powers of 5.

2. Interlacing Fibonacci and Lucas Sequences

2,1) 2,2)

Let ﬁl( =2, 92(2’1) = -1, 91(2’2) =1, 92( = —1, and thereafter

Y =7 F2) 0 je{1,2}, r=1,2,3,...

o] =

so that in matrix notation

FE) FPVN -1 2N -1 1\
g Y ) AL =5 0)
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where 9}(2’1) is the rth term of the first sequence and 977@’2) the rth term of
the second sequence. Then both sequences satisfy a three-term recurrence
relation, with recurrence equation x? + z + 1/5 = 0, whose roots are

a:—l_\/g—_—l and x—i_l_\/g—_—qb
NN 2v6 VB

Lemma 2.1. The generating functions for the sequences fg’l) and ﬁr(2’2)
are given by

5(x+2 322 223 Tzt 5a® 1820 1327
RO AR NPVE L
22 +5x+5 5 5 25 25 125 125
(2.1)
5 422 322 11z* 8x5 2925 2127
F@). ° gy 2 - — 4
r 22 +52+5 Tt T 5 T o5 To5 125 135

so that 0\52’1) can be expressed in terms of 9}(2’2) as

TRV = 2722 4 72D,

Proof. The result follows by applying the method of summation over the
recurrence relation terms and rearranging. The relationship between the
two sequences can then easily be seen by comparing the generating function

structures. O
Lemma 2.2. Forr=1,2,3,... we have
r—1 r—1 r r
o= () () () - (32))
Vb Vb V5 V5
so that there exist closed form expressions for the sequences J}Q’l) and

ﬁ,gm) in terms of ¢21 and ¢ao.

Corollary 2.3. The sequence of ratios of consecutive terms ﬂfi{)/ﬁrw’j),

with j € {1,2}, approzimates —¢/\/5 with an accuracy

%(-2#11)+i _ 1 %(-2#12)+£ 1
thT(Q,l) \/5 - ¢2r=2 41|’ ﬁr(2,2) \/5 - $2r — 1|

Proof. We give the proof for %, ;2’2). Applying Cauchy’s Residue Theorem

to the generating function (2.1) of .%, (22 yields

f(z) f{ 5z
dz = d
1 2" 1(22 + 524 5) .

where the contour contains the poles at z = 0 and z = 75%‘/5, or equiva-

lently z = —\/5<;521 = o1 and z = \/5@2 = pg22. The residue at 0 gives
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the term %, 22 , and as the sum of the residues is 0, one obtains

FED = O
phy(p21 — p22)  pho(p22 — p21)
Using
-1
H21 — 422 = V5 and P29 = —,
P21
we deduce the desired closed form for ﬁ7«(2’2), and similarly for ffr@’l).

The Corollary then follows from rearrangement of the closed form ex-
pressions of Lemma 2.2 in conjunction with —¢/y/5 being the root of the
recurrence equation with largest absolute value. O

Lemma 2.4 (Numerator sequence lemma). Let %(Q’j ) be the non-reduced
numerator of the rth term of the jth sequence ﬂr(z’]), so that

AED =5l F P, e {1,2).
| the floor function. Then for r =1,2,3,..., we have
11) = Lo 2, =/V2( Y= Fpy, and </V2(2 2 = Lo 1, =/V2( D = Fyp

T T

with |.
M

Proof. Comparing the closed forms for ﬂr(m) and ﬂT@’Q) given in
Lemma 2.2, with Binet’s formula for the Fibonacci and Lucas numbers
given in (1.17), it then follows that the non-reduced numerators of the two

sequences 91(2’1) and L%ﬂ(m) are comprised of alternating Lucas and nega-
tive Fibonacci numbers (by non-reduced we mean that any common factors
between numerator and denominator, such as in 5/25 in the sequence term
F (1) "are not cancelled). O

As described in Corollary 2.3, the ratios of consecutive sequence terms
yields two sequences of convergents with common limit point —¢/v/5. The
initial terms of these two convergent sequences are given below.

—Z2D 1 3 2 7 5 18 13 47 34 123 89

Z&D T 253 100 7 25" 18’ 65’ 477 170" 123’
—%(i’f)_l 4 3 11 8 29 21 76 55 199 144
Z&2 547 157 117 407 297 1057 767 2757 1997 77

Lemma 2.5. Non-standard recurring integer continued fraction expansions
for the two consecutive term ratio sequences formed from 97@’1) and %?2’2)
are given by

F2D =0;1,2,3,-1,5],  F*Y =[1;-5,1].

Here we mean that for ﬂ}(z’l), we have agiyas = —1 and agiys = b, with

i=1,2,3,..., in the continued fraction construction given in (1.12), and
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the corresponding matriz recurrence form (1.13). Similarly for 9}(2’2), we
mean that az; = 1 and ag;—1 = =5, in (1.12) and (1.13).
Proof. For 274(2,1) we assume that [ag, a1, a2, as] = [0, 1, 2, 3], and then apply
the continued algorithm to deduce that a4 = ag = —1, and a5 = a7 = 5, so
that the expansion recurs from that point onwards. The continued fraction
expansion for 9}(2’1) can be deduced similarly. O
Definition 2.6 (Divisibility sequences). Let a1, as,as, ... be a sequence of
integers satisfying the divisibility property s | ¢ = as | at, with s and ¢
positive integers. Then we say that the sequence of integers {a,}52, is a
divisibility sequence. Moreover, if we have the stronger condition

hef(s,r) = d = hef(as, ar) = aq,
then we say that it is a strong divisibility sequence.

Lemma 2.7. Let s and t be positive integers with s | t, so that t/s is an
integer. Then Ny A ] %(2’2), and the numerator sequence {%(2’2)},?‘;1
s a divisibility sequence. Moreover, we have that :/1/25"2’2) = %fil)«/ﬂ(M),

and if s/d and t/d are both odd integers, then hcf(s,t) = d implies that
2,1 2,1 2,1
th(%Srl )a/%j(q )> = ’%(H )|-

As a preamble to proving this lemma we now introduce the Gauss hy-
pergeometric functions, as well as the Fibonacci and Lucas polynomials,
which underpin many of the results discussed later on.

Definition 2.8. For integers r, k, with & > 0 let the rising factorial, falling
factorial and hypergeometric functions be respectively defined in the usual
manner such that

TkZT(T+1)"'(T+k_1)a TE:T(T_1>"'(T_IC+1)’

and

= Z tr, where t; =

z) ab...ak 2*
=
k>0 by ... bEE!

Aly...,Qm
mFn ( bi,..., by
with none of the b; zero or a negative integer (to avoid division by zero).

Definition 2.9 (Fibonacci and Lucas polynomials). Let the Fibonacci
polynomials F,,(z), be defined by the recurrence relation

(2.2)  Fopi(z) =aFn(z) + Fooa(z), with Fi(z) =1, Fa(x) ==,
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or equivalently by the explicit sum formula F,(z) =

[(n=1)/2] v~ . .
(2.3) Z (n J 1) 251
=0

1 4
=" oF <_n71_n;1_n;_2>‘
x
Similarly, define the Lucas polynomials £, (z) by the recurrence relation
n (2.2), but with initial values £;(z) = z, L2(z) = 22 + 2, or equivalently
by the explicit sum formula

2l - j '
(24) Lu(z)= Y 1 R Pl
j=0 "IN 1 4
=a"oF <_n —n'l—n'—>
201 2 2 ) 2 ) ) 332 .
Lemma 2.10 (Factorisation and divisibility lemma). The Fibonacci and
Lucas polynomials and numbers have the following factorisation and divis-
ibility properties.
(1) With i> = —1, the roots of the Fibonacci and Lucas polynomials
can be expressed in terms of i multiplied by the cosine of rational
multiples of w, so that the polynomials can be factorised as

n—1

(2.5) Fo(z) = H (:c — 2icos (%’T)) ,

k=1
and

(2.6) Lo(z) = nff (= — 2icos (250)).

(2) The Fibonacci and Lucas polynomials have the divisibility properties
(2.7) Fal@) | Ful@) @ n|m, Fu(Upa (V5/2)) = Fup/ Fp,
and
(2.8) Ln(z) | Ln(z) & m = (2k+ 1)n, for some integer k.

(3) The Fibonacci sequence is obtained by setting x = 1, so that F, =
Fn(1), and similarly for the Lucas sequence with L, = L,(1). Tak-
ing © € N>o, then produces one possible definition of higher di-
mensional Fibonacci and Lucas sequences which obey the divisibility
properties as stated.

(4) Two important divisibility characteristics of the Fibonacci sequence

are that for p a prime, p divides .7-"p_<§), with (%) the Legendre

symbol, and that hef(s,r) = d = hcf(]:z,fr) = F4, so that it is a
strong divisibility sequence.
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(5) With the extra constraint that s/d and t/d are both odd integers, an
analogous divisibility sequence result holds for the Lucas numbers
where we have hef(s,r) = d = hef(Ls, Li) = Lg. It follows that if
s/d is an odd integer, then L4 divides Ls. The Lucas numbers also
have the factoring property For = Fr Ly, so that L, | For.

Proof. For proofs of these divisibility properties see T. Koshy [9, p. 196—
214, and p. 451-479]. The proof of Lemma 2.7 then follows by divisibility
properties (2), (3) and (5) and Lemma 2.4. O

3. Higher-Dimensional Interlacing Fibonacci Sequences

In order that we may generalise our previous results for ﬁ}(zl) and 9}(2’2),

to L%ﬂ(m’j ) with 1 < j < m, we now introduce families of polynomials related
to the Fibonacci and Lucas polynomials, that are central to our theories.

Definition 3.1 (Generating function polynomials). For positive integer m,
we define P, (x), Qm(x), Pm(z), Qn(z) and V,,(z), to be the polynomials
of degree m given by

" om+1{m+k " mi{m+k—1
(3.1) Pm(x)_,;)%il( 2; )xk Qm(x)_,;)k< 22—1 >xk
N (m+k "o (mk+1
(3.2) Pm@g::g%< o )xa Qm@Q::g%< S )xﬂ
and
(3.3) vh@g::ff@;um+ﬁ+?]<w’zg}>xa
k=0

where the identity

. J(itk—1
A4 lim = =2
(3:4) k50 k<2k—1> ’
ensures that Q,,(x) is well defined.
We label the roots of P, (x), ordered in terms of increasing absolute

value, by pm 1, hm 2y - - -y bmm, and similarly v, 1, vmeo, . . ., Umm the ordered
m roots of @, (), so that we may write

(3.5) P (z) = H(m‘ = tmi);  Qm(x) = H(w ~ Vmi),
=1 =1

where for ¢ < j, we have |fmi| < |pm ], and V| < |vim ]

In Theorem 3.2 we show that the above definitions for u.,; and v, ; agree
with those previously given in Definition 1.4. This leads to simple identities
for the polynomials Py, (z), Qm (), Pm(x), Qm(z) and Vi, (x), in terms of
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Chebyshev Sy, (x) and Cy,(x) polynomials, as well as Fibonacci and Lucas
polynomials.

Theorem 3.2. The roots of the equations Pp,(z) =0 and Qp(z) = 0 are
real, simple, negative, contained within the interval [—4,0], and with the
above definitions for pmr and vy, 1 < k < m, we have

ok = S — 2 = 2c0s (2 ) — 2,

(36) Umk = Ymk — 2 = 2cos (W(ZQIZI)) -2,
so that
(3.7) Pu(z) =[] (a: +2 — 2cos (;ﬂfl)) _ Lomnn (V)
o1 Ve
= = (FausalVa) + Fan (V)
(3.8) = U (14 5) = Son (VT 1) = San (2¢05),
and
(3.9) Qm(z) = ﬁ (a:+2—2(:os (%ﬂ:l)))
k=1
= Lom (V) = Foms1(Vx) + Fom—-1(V)
(3.10) = 2T <m> = Com (Vz+4) = Cop (2c08y),
with = 2 cos 2y — 2,
(3.11) Pm(z) = ﬁ (:c+2+2cos (237?4]?1)) = Fom+1 (V) ,
k=1
(3.12) = Uam ( f) = Som (V=) = Sam (2i cosy),
and
(313) Q1 (w) = == Faura (V)

(3.15) = Uz ( 1 ”/2) = S (V& 2) = S (2c0sy),

with x = 2 cos 2y.
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Corollary 3.3. We also have the relations
(3.16)  zPp_1(z) = Qm(z) — Qm-1(z), Qm(x) = Pn(2) — Pn-1(z),
( ) ZPpoi(z) = Qn(z) = Qu-1(z),  Qm(x) = Pm(z) — Pm-1(2).
(3.18) Pm(z) = (=1)"Py(—x —4),
(3.19)  @Pp(—2) = (—=1)""! Qams1(—2 — 2),

Qm(=2%) = (=1)"Qam(-z - 2),

x P, ()P, () if m =2mq + 1 is odd,

Qmy+1(2)Om, () if m = 2my is even,

(3.20) Q) = {

along with the integral identity

(3.21) (2m+1) /Oﬁ P (t?)dt = \/z Py, (1)
= (2m + 1)Pp(z) = Pp(x) + 22P, ().

Proof of Theorem 3.2. For k = 1,2,...,m, the function cos (23:-{31) is a
decreasing function of k. It follows that ¢, is a decreasing function of k,
and so in terms of absolute values we have, ;1 < tma < ... < Umm- A
similar argument holds for the v,,, 1 < k < m, and hence (3.5).
Although it follows from (3.6) that the roots of P, (x) are simple and
lie in the interval [—4,0], we demonstrate this by two other methods in
order to highlight the links that exist between P,,(z) and the Legendre and

Chebyshev functions .

Method 1. By using manipulations with Pochhammer symbols which we
omit, P, (z) may be written in terms of the Gauss hypergeometric function
9F 1. Letting P/ (x) denote the associated Legendre function, in turn P, (x)
may be expressed as

m ™ (x 1/4 T
(3.22) Py (z) = (2 zl)f((t;)?m P12 (1+2).

The functions P,ZI/Q(Z) are orthogonal on the interval [—1,1]. With = =
2(z—1), it follows from a standard result in the theory of orthogonal poly-

nomials [21] that the zeros of P/ (1+ %) are contained in [—4,0] and
simple and hence for P,,(x) too. O

Method 2. Tt is known (e.g., [13, p. 64]) that

P2 (cosg) = 4 | - S?n " Sing(:jll/;))so] :
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Then with ¢ replaced by cos™! ¢ and 2 = 2(¢ — 1) it again follows that the
zeros of Pp,(z) are in [—4, 0] and simple. O

Remark. It is then possible to write

o1/
P o) = [2EZ 8 2, e,

where U,_y  is the Chebyshev function of the second kind.
To see (3.14) and the first part of (3.7), we have

(3.23) ﬁ (x — 2cos (2?17161))

k=1
n n
= Q"kli[l <§ — cos (ﬁ:rfl)) =1 —i-QI;Tk <;C>

where we have used the relations (1.3), (1.4) and (1.5), of Lemma 1.2.
Hence

(3.24) ﬁ (a:+2—2605 (2317:]_“1)) = 1—i—2ki1Tk (;U—i-l)

k=1
X X xr
e n — 1 n— — 1 = n 1 - :PTL 9
U, <2+ >+U 1<2+ ) U, (\/ +4> (x)

and the result follows. Similar arguments can be used to obtain the first
statements of (3.9) and (3.11).

The latter statements in (3.7), (3.9), (3.11), and that of (3.13), concern-
ing expressions for P, (z), Qm(z), Pm(z) and Q,(z) in terms of Fibonacci
and Lucas polynomials, can be deduced via binomial relations as follows.
We have

1 1 & 2m+1 2m+1—3 m-+1—2;
—= amﬂ(mzzz.( . 3) (V)2
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and
To2m (2m—j 2m—2j
Lom(VT) =) < 4 )(\/5)
j:02m—j J
T 2m 2m —j m—j “mim+j—1 j
= - ) x = — . ) = Qm(x).
3 R S v | (P RETHE

The Fibonacci polynomial identities follow similarly. The respective gener-
ating functions for the Lucas and Fibonacci polynomials (see [9, p. 447])
are

)= Lola)t" = ——,
o0 t
)= Fala)t" = ——5——,

so that tGp(x,t) = (1 + t?)Gp(x,t). Hence we have L, (z) = Fni1(z) +
~Fn—l(x)v givjng

Fom, ) + Fom (/T
Py () = = HM\)/E VD) Q@) = Fansr (V) + Fana (V).
and so the ordinary generating functions of P,,(z) and Q,,(x) can be writ-
ten as

0 . 1+t

Gp(ib,t):gpn('r)t = 1— (24 z)t + 12
= n_ 2—(24ax)

Golz,t) = ;)Qn(x)t TI_@ratt

Combining the above relations with the identity Fo,(x) = Fo(x) L (),
we obtain

_ Lom1(vVT) Fam1(v/) 1

Py (2) P () Y = ﬁf4m+2(\/5) = Qom(),
Qs (2) Qo) = 527”“(‘/5\)/?%”(@ — = Funa(VE) = Qamia(o)

The Chebyshev identities in (3.8), (3.10), (3.12) and (3.15) can be derived
directly from the definition (1.1), with further connections to the Chebyshev
polynomials established via the expression for P, (x) given by

Po(2) = Ty (14 2/2) + /1 4+ 4/ sinh[2m csch™1(2/v/)].

The expressions (3.16) and (3.17) of the Corollary, follow from direct ma-
nipulation of the binomial coefficient polynomials (see [4, Lemma 2.2]) given
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in the definitions for P, (z), Qm(x), Pm(x), and Q,,(x). To see (3.19), sub-
stituting —(x 4 2) in the product formula for P, (x) in (3.7) and comparing
with (3.14), gives us Py, (z — 2) = Vj,(z), and writing

Qamt1(—(2 +2))

2m+1
= H (—a: — 2cos (Wﬁ’f;;)»

k=1
= (—z —2cos (%)) ﬁ (—CC — 2cos (ﬂiiﬁé))) (—x +2cos (%D

k=1
= (—z) ﬁ <x2 — 4cos? (ng;;)))
k=1

= (—x) kl;[l <x2 -2 (1 + cos (%i’:;p)))

— ()" ﬁ (=% +2 = ém)
k=1
= (1" "2 P (=2%),

we obtain the first expression in (3.19). Similar arguments produce (3.18),
the second expression in (3.19), and (3.20). Considering (3.21) we have

m m \/>
tdt =t x Py,
L8 ()= o8 GO
and differentiating we obtain the final display. O

Definition 3.4 (m-dimensional interlacing Fibonacci sequences). Let the
matrices of binomial coeficients Byqq and Beven be defined such that

L 27 —1
Bodd = (bij)mxm, with b;j = (—1)"7~1 < ;_ ; >7

and

o 29
Beven = (bi,j)mxma with bi,j — (_1)Z+] ( J .)7
] —1

and let the recurrence matrix R,, be given by

—hy 1 0 ... 0
—hy 0 1 ... 0 1 Tk
. . . . . : - m
(3.25) Ry = : oot |, with hk_?k‘—i—l( ok )
~hp—1 00 0 1
—hym 0 0 0 O
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Also let the sequences of m x m matrices M,(m, k) and M.(m,k) be re-
spectively defined such that

My(m,r) = (2m + 1) Bogq Rm'w, and  M.(m,r) = (2m + 1) Beyen R%*’T,

so that each row of M,(m,0) or M.(m,0) corresponds to a list of consec-
utive sequence values. The matrices M,(m,0) or M.(m,0) are then taken
as the initial value matrices for the two sets of m interlacing Fibonacci
sequences that they generate, under repeated multiplication on the right,
by the recurrence matrix R,,.

We denote by ﬁ,gmd), 1 < j < m, the rth term in the jth rational
interlacing Fibonacci sequence of dimension m, and by %«(m’]), 1 <5 <m,
the type ¥4 jth rational interlacing Fibonacci sequence of dimension m.
The case m = 2, then corresponds to the interlacing Fibonacci and Lucas
sequences 07«(2’1) and 5}(2’2)
we simply have

, defined in Section 2, and for the case m =1,

—1 r
9}(171):(3> s ’]”:1’273,....

It follows that row j of M,(m,r) contains the jth m-dimensional rational

interlacing Fibonacci sequence terms ﬁ;_ﬁ;{b), ﬂr(rnjl)_l, . ,ﬂ‘r(fl’j ), and row

j of M.(m,r) contains the type ¢, jth m-dimensional rational interlacing

Fibonacci sequence terms ¢, (m.3) o %{Zh . ,gffl’j ), where both sequences

r+m o <Jr
satisfy the recurrence relation (given here in terms of f}}(] ’m))

m,j 1/fm+1 m,j 1/m+2 m,j

1 m+m (m,r)
2m+1< 2m )ﬁT '

For example, when m =5 and r = 2, we have M,(5,2) =

-1 3 -10 35 -126 —5 100 0\’
0 -1 5 -21 &4 -7 0100
@m+1)| 0 0 -1 7 -36 -4 0010
o 0 0 -1 9 -1 0001
o 0 o0 0 -1 -L 000 0
70 7Y 7, lordd 3415 g9 32 11
FD g3 TP 2t _olss 965 g5 9
— <9-7(5,3) <g-éﬁ’),tg) 3;3(5,3) — 37]7]34 _11]9]82 346 —110 35
(5:4)  g(5.4) (5.4) sy 11802 317 100 31
Ty Fe F3 1 1
763 265 Z2(59) 20002 6535 188 59 18
7 6 3
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Lemma 3.5. The product of the eigenvalues of the recurrence matrix Ry,
(and so its determinant) is given by (—1)""/(2m + 1), and the sum of
the eigenvalues by —hy = —m(m + 1)/6. The binomial matrices satisfy
Det(Bogq) = (—1)™ and Det(Beyen) = 1, so that the two sequences of de-
terminants of the matrices My,(m,k) and Mc(m,k), for k = 0,1,2,3,...,

consists of terms of the form im.
The inverse matriz of Ry, is given by
00 0 O —(2m+1) 00 0 0 —gnm
10 0 0 —2m+1)h 10 0 0 —gm-a
R = 01 0 0 —2m+1he =01 0 0 —gmo |,
00 0 1 —2m+1Dhy_ 00 0 1 —g
where
2m +1 2m — k
3.26 = — that = (2 Dhyk-
(326) gk 2m+1_2k< . >, so that gy = (2m + 1)hp—k

Denoting by Ry, (x) and R, (x) the respective characteristic polynomials of
Ry, and R}, we have

Ry (z) = — Z hm—jx?,  Rpl(z)=—(2m+1) Z hjal = — Py (),
=0 =0

where the eigenvalues of the inverse recurrence matriz R,' are the roots of
the polynomial P, (x) and the eigenvalues of the recurrence matriz R, are
the roots of the polynomial P, (z) (say). By (3.6), the roots of P! (x) are
given in descending order by ,u;nll,u;lz, ooy u k. Hence, with a suitable

m?])

choice of (algebraic number) coefficients a; we can write

(3.27) FD = o™+ o™t 4 el

Moreover, if 2m + 1 is an odd prime number, then R contains inte-
gers above the principal diagonal and rational numbers with denominator

(2m +1) in its lower triangular matriz part. Consequently, the initial value

matrices My(m,0) and M.(m,0) for the respective sequences Fy and
S%(mg) are integer matrices if and only if 2m + 1 is an odd prime number.
Proof. For a general m x m recurrence matrix K, of the form

—aq 1 0 0 ... 0

—an 010 ... 0
(3.28) Ky = : S

—am—1 0 0 0 1
—am 0 0 0 0
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evaluating the determinant along the first column yields |K,,| = (=1)"am,
and similarly we obtain the characteristic polynomial

Kp(z) = | Ky — zln| = (=1)™(am + am_17 + ... +arz™ L+ 2™)

(3.29) — (_1)m iam—j .I‘j.
j=0

Hence if a,, # 0, then the inverse recurrence matrix K, ' exists, and is
given by

0 0 0 —i

10 0 ‘Zl
K&lz 0 1 a?zl 9

00 ... 1 -t

_1)ym
Knjl(x) = ! (1 +ar1z+ ...+ apmz™ 4 amq:m>

am
(3.30) (1ym
= Zajxj,
am =

and the expressions for R,,, R, Rn(7), and R, (z) follow.

If the m eigenvalues A1, Am2, - - -, Amm,of the recurrence matrix K,,,
are non-zero, real, algebraic, distinct, and listed in descending order in
terms of absolute value, then the sequences

m mjrvmjo

Y(j):(l,)\mj,)\2 A3 ) j=1,2,...m,

form a basis for the solution space of all possible sequences satisfying the
recurrence, for any possible initial values. Similarly for AL ... ;111, the
ordered eigenvalues of the recurrence matrix K.!, form a basis for the solu-
tion space of all possible sequences satisfying the inverse recurrence relation.
It follows that each sequence term generated by the recurrence relation can
be expressed as a linear combination of powers of the eigenvalues of the
recurrence matrix. With regard to our sequences .%, r(mJ ), and recurrence
matrix R,,, we have Ay, ; = 1/, and hence (3.27).

The statements concerning the entries of R]' and that M,(m,0) or

Me(m,0) are integer matrices when 2m + 1 is a prime number follow from

the property

2m+1({m+k

—_— Np. O
2/<:+1< 2% >€ 0
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Theorem 3.6. For m a positive integer, and 0 < j < m — 1, we have

J
mmj }: ]+k+1 gr(m,m)
<2k+1 ek

(mym—j3) _ _ Jtk gr(m.m)
gr ];)( 2% ‘/r—k ’

(3.31)

so that each of the terms in the sequence {er ‘ }T 1 can be expressed as
a binomial coeﬂiczent linear combination of (m + 1 — j) terms from the
sequence {J m.m) 122, where we note that .Z, Zimm = _gmm) e 7.

The generating functions for ﬁ,ﬂ(mm D and gr(mm D are given by

i y(m,mfj)l_r _ (2m + 1)Qj(x)
r=0 ' Pm(x) ’

— (m,m—73) .1 - _ (2m + 1)73](x)
2 A Pu(@)

(3.32)

so that the sum of the numerator coefficients of each generating function is
a Fibonacci number.

Inverting the expressions for ﬁ}(m’j) and %n(m’j) in (3.31), we obtain
=1 . .
j 2j—1(j+k—-1
g (myj) _ J J Fmb) .
(3.33) F ,;)%H( o )Jrk L 1<j<m,
and
i ..
( ) T kzok 2k_1 r—k > _]_m

Corollary 3.7. In terms of the 100ts phm 1, - - - , mm Of the polynomial equa-
tion Pp,(x) =0, we have

m

2m + 1
(3.35) Z(mm) = _g(mm) _ _ mt

= Fore Loz (o e — o 5)

(3.36) =—(2m+1) i (2 cos (zﬁffl) - 2)4

k=1
) — 2cos (2727;{1»_1 )

X H (2 cos (212114]?1

ik
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Fmi) = i(,umt) " Pjo1 (Hmt) = i ()" 1:[ (Mmt —M(j—l)k)
t=1 t=1 k=1
m j—1
(338) :Z(Mmt) Jl_l ((Zsmt _(b] 1)k)
t=1 k=1
ij(umt SQJ 2(2COS( ))
t=1
() .
-y Z(zsm( A bt Vit ()
and

m J
(3.39) =3 (mt) Qs (pme) =Y (me)' ™" I (e — vie)

=3 ()" oy (2008 (5527

= (_1)r71 i 2 cos (Qij@j‘tl)
=

=1 (2 sin (217211))271_2'

Proof of Theorem 3.6. The denominator polynomial of

5 +1P (z) in the
generating functions for Jygm m) (and so %1( )) is a direct consequence
of 5 JrlP (z) being the recurrence polynomial for Z™™)  The simple
numerator follows from the starting vector for %, (mm) 4

matrix consisting of (0,0,0,...,—1).

The two identities in (3.31) follow directly from (6.8) and (6.9) of
Lemma 6.2 in [11]. Applying (3.31) to the generating function polynomial

in the initial value

for ﬁr(m’m) thus establishes the numerator polynomials in the generating
functions of g‘}(m’m_]) and %,Sm’m_]) in (3.32).

With the binomial matrices of initial conditions M,(m,r) and M.(m,r),
so defined, it is possible to invert the identities in (3.31) using a binomial
convolution to obtain (3.33) and (3.34).

To see (3.35), we know that P, (x) factors as Pp,(z) = [T{L1(z — tmk)-
Our contour integrals from the generating function have the form

1 (@2m+1)z
2mi ) 2P, (2)
The contour encloses the origin and at least the interval (—4,0] of the

negative axis, in order to contain all of the simple poles of P,,(z) and the
higher order pole at the origin.

dz.
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P,,(x) has distinct roots, we have the partial fractional decomposition

m
r Ck
Pm(l') kzlx_ﬂmk7
where
1 1
¢t = Res =
v=pmr Pm(2)  Pl(Umk)
Hence

1 m

P (x) :kZ::lx Z

with P,fn(,umk) = Hj:l,j;ék Hmk — Mmj) Then

1 2m +1 1 2m + 1 — 1 1
i 5B Y ot | T 2 G ) P
and the residue at z = pu,, 1 is given by
(2m+1) 1 _ (2m+1) 1
MTerkl Ph(pmk) MTerkl T2y jn (bom ke — Pomj)
The pole at the origin gives the ﬁ}(m’m) term generally. Using 27i times
the sum of all residues gives

1
(z — Mmk) P (ttm k)’

(3.40) gr(m,m) 4 i . 2m +1 =0, r=1,2,3,...,
= B g Tl (Bom ke — b )

and hence the result and (3.36).

The identity FimD = pT k4 ko in (3.37) follows similarly
o (3.35). Combining these results with (3.33) and (3.34) then gives for
1 < j <m, that

yyﬂ(mﬂj)

m j—1 - _ —r
ST R () e () -2
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ik
g<m,j>:23<ﬂ+’“ 1)9}2‘,;”, 1<j<m-—1,

" P 2k —1
S (I e () o)
-3 (zvon (g2e) ~2) T3 2 (000 (ovon (32) )
- i (2008 (52) ~2)" 7@y (2005 (52Ly) —2)
=3 (i)'~ @ ) = 3= () kr:[ ——
We have thus established (3.38) and (3.39). O

Remark 3.8 (to Theorem 3.6). For 1 < j < m, the sequence terms ﬁﬁm’j )

and %a(m’j ) naturally occur in matrix powers of particular circulant matrices
as described in [11]. In this setting there exists an additional sequence
%(m,o)7 which appears in the leading diagonal of the powers of this circulant
matrix, thus bringing the total number of sequences to n = 2m + 1. This

sequence satisfies the relation

(3.41) gm0 — o g1 — 93" gk,
k=1
so it also obeys the recurrence relation R,,, and we can write
(3.42) 2g(MJ) = zj: J <j Tk 1) gmO | <j<m—1.
=k\ 2k—1 rk oo T =J =

By Lemma 6.1 of [11], (see also Lemma 3.3 of [12]) these type of recurrence
relations can be written as half-weighted minor corner lattice determinants.

For example ﬁ}(m’l) has the form
”f) 1 0 0 0 0
G 1 0 0 0
(%) hy h 1 0 0
y(m,l) _ (_1)T+m—1 5 .2 .1
(m;qul) hr—l hr—2 hr—3 h'r—4 cee 1
G5 he hey hea hes o B
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Hence for r € N, the sequence terms ﬁﬁm’j ), 1 < j <,m, are rational

numbers corresponding to a rational multiple of either the r or the (r 4+ 1)-
dimensional volume of the simplex with vertex coordinates given by the
row entries of the determinant.

Lemma 3.9 (Ratio lemma). For j >0, and 1 <t < m, we have
Nmtpj()umt) = HKm (j+1)t — Hmjt, Hmt Qj(ﬂmt)

= Hon (j+1)t — 2lm jt + o (j—1)¢-
Accordingly, for 1 < j < [2], we find that

(3.43)

Hm (m—2j41)t = Hm (m—24)t _ Om (m—2j+1)t — Pm (m—2j)t

(3.44) = Omjt,
Hm, (m—j+1)t — Hm (m—j)t bm (m—j+1)t — Pm (m—j)t !

and for [2] +1 < j <m that

<345) Ko (25—m)t — Bm (2j—m—1)t _ ¢m (2j—m) d)m (2j—m—1)t ¢m]t

Hom (m—j+1)t — Bm (m—j)t Om (m—j+1)t — Om (m—j)t
Moreover we have

G-
Mm t H (Mmt — H(i-1) k;) = Mmjt — Bm (j—1)t = ¢mgt - ¢m (J—1)t»

(3.46) h=t
Hmt H :U’mt ij d)m (j+1)t 2¢mjt+¢m (-1t
so that
(347) 9r(md Z ,U'mt (¢mjt - ¢m (jfl)t) )
t=1
(348) gr(m,j) = Z (Hmt) ((z)m (G+1)t Qd)mjt + ¢m (G-1) )
t=1

Definition 3.10 (Convergent vector sequences in Q™). We define the con-

(m)

vergent vector sequences W,

= (¢m17¢m27---7¢mm))

, and their limit points ®™) by

and
Pp(m) — (ﬁr(m’ml) £m7m72r+1) _ 7§m,1)
=\ G e
—gmrm g
B e VAP (TR Y >’

where from the definition of J%«(m’j ), we can replace ﬁr(m by J%(m’j ) in
(m)

the above expression for ¥,/ without affecting the ratios.



On Higher-Dimensional Fibonacci Numbers 27

Theorem 3.11 (Limit theorem). We have

(349) lim lIl(m) — (P’m(m—l)*“m(m—Q) Hm (m—2r4+1) —Hm (m—2r)

r—00 r Hmm—Hm (m—1) L (m—r+1) " Hm (m—r) T

—(pm 1=Hmo) o 7(“’" (2r—m) " Hm (QT—m—l))
Hm (fm/2]+1) ~Hm [m/2] ’ ’ Hm (m—r41) —Hm (m—r)

*(/—Lm m—Hm (’m—l))> — (Ib(’rn)7

gee ey

Hm1—Hmo0
so that
(m,m—1) (m,m)
lim $2—LLIZ+1 X ... X x2+Lx+1
r—oco yr(m:m) (g;gmyl)
(/V(m,mfl) JV(m,m)
500 J%« m,m t/%‘ m,

=2 4P e,

where we note that as (ftmj—timk) = (Gmi—2—(dmr—2)) = (dmj— dmk),
we can replace fimi by dmi in the above expression for \Ilq(nm).

Corollary 3.12 (Convergence corollary). For 1 < j < m, let op; =
fim1/Hmj, S0 that om1 = 1, omo = (dm1 + 1)7L, and for j > 2, 0 <
lom | < 1. Let agm’]) = Gmjt — Om (j—1)t, SO that a,gm’]) is the coefficient of

Wy in the closed form expression for %}(m’j) given in (3.38) and (3.47).
Now define

4m (\¢mj = Om (-1l + | Pmr — ¢m(k—1)!)
[Pk — Pm (k-1 2

~ 2(Pmj = O =))llPmk = Pm 1)
[Pk — B (k—1) |2

Bji =

)

and let v, be the least positive integer satisfying
o [Pk — Pm (b—1)
2 (4m — | bmr — ¢>m(k—1)|)

‘ 1
¢m1 +2
Then for r > ri we have

r aq

’ < 2Bji|omal",

T

y(m,k) o agm,k)

so that ﬁ}(m’j)/ﬁr(m’k), approximates agm’j)/agmk), with remainder term
bounded above by 2Bjy, |omo|". Furthermore, let r' be the mazimum of all
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the 1., B’ be the mazimum of all the B}y, and for e > 0, let r* be the least
positive integer with r* > v’ satisfying

2B'\/m|oma|” < e

Then ]\I',(ﬂm) — ®M)| < € for r > r*, and (by the standard definition in
Section 1) the vector sequence \Il,(«m) is a sequence of vector convergents to
the limit point ®(™)

When j = m—2u+1 with k = m—u+1 = j+u, as described in (3.44), or

similarly as in (3.45), then |a§m’j)/a§m’k)| = |pmul, and the above simplifies
to
Am (|¢mul +1)
B’k‘ = -2 Qbmu )
T | bmk = G (1) ol

so that for r > ry we have

Lgigmaj) B agm’j) < 8m (|pmul +1) — 2/bmul ‘1 '
g}(m,k) agm,k) - ‘(z)mk — Om (k—l)‘ Pm1 +2

Corollary 3.13 (Continued fraction corollary). For each sequence of con-
vergents to the limit point agm’j)/agm’k) generated by t%(m’j)/t%ﬂ(m’k), there
will exist a corresponding sequence of simple continued fractions, which will
converge to the simple continued fraction expansion of the limit point itself.

Proof of Lemma 3.9. From (3.23) and (3.24), we can write

pone Py ) = s (U (05 (55757) ) + Uion (cos (577%1)))

and using the identity ji,,; = —4sin? ( mt ), yields

2m—+1
Hmt Pj (,um t)
. 2w (j+1)t . 27t
— dsin? (ot Sl ( 2m+1 ) S (2m+1
= —4asi 2m+1 . ot + . 2t
S11 S11
(2m+1) (2m+1)

_ —2sin (ﬁ) (sin (2me(j+1)) n sin( omt ))

Tt 2m—+1 2m—+1
COS | am+1
1 . .
ot mt(254+3)\ mt(25—1)
(2m+1 )) (COS ( 2m+1 oS\ 2my1 ) )

350) = (cos (577)) " (T (eos () = Tt (cos (25))

Il
/N
(@]

]
w0
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by the definition of T),(z). Applying the relation T, i(z) = 22T, (x) —
T,—1(x) from (1.6) and cancelling, we obtain

(3.51) Thjy3 (cos (2m+1)) —To51 (cos <2£il)>
o5 (e (oo 5r)) — o o (52))-

and substituting into (3.50) then gives

)= oo ) s (o)
= Hm (1)t ~ Hmjt = Pm (j+1)t ~ Pmijts

which is (3.43).
For (3.44), we write

¢mrt(¢m (m—r+1)t d)m(m T)t)
=T, (¢mt/2) ( m— T+1(¢mt/2) m—r(¢mt/2)) >

and using the identity
2T (2)Tn () = Tingn () + T|m,n‘(x)

from (1.6), after cancellation then gives us

2 (Tm72r+1 (¢mt/2) - m 2r (¢mt/2) + Terl (¢mt/2) - (¢mt/2))

- (bm m 27°+1 ¢m m 2r t + ¢m m+1 ¢mmt
- ¢m (m—2r+1)¢ ¢m (m—2r)t>

as required. Similarly we deduce (3.45). O

Proof of Theorem 3.11. From (3.38), we have

m J

m
FII) =5 () Py () = 3 ()" T (e — 115%)
=1 t=1 k=1

and we consider

<g.T(m,m—Qlc—l—l) J%(m,m—2k+1) B Zgl (,Uzmt)l_r Pm—Qk: (/Lmt)

gimm=kt) g mm =2kt S ()T P (fme)

by (3.43).

In the numerator sum above, for large positive values of r, the (f4,1
factor will dominate as the ., + are ordered in terms of increasing absolute
value. Hence, as r — oo the above expression will converge to the ratio of

)l—r
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the coefficients of (fm1)' ™" in the numerator and denominator. Therefore
we can write

<gf(m,mf2k:+1) t/V(m,m72k+1)
lim (’") — lim (T)

r—00 yr(m,mfqul) C/%’(m,mkarl)

— lim ((Nm 1)11__T P o (Nm 1)>
rree (Nm 1) " P (,Um 1)
(#m1) P2k (Bm1)
(1tm1) Pk (ftm1)
o Om (m—2k+1) — Om (m—2k
B Om (m—k+1) — bm (m—k)
by (3.43) and (3.44), and hence the result. The polynomial identity in the
limit then follows immediately .

Regarding Corollary 3.12, let A9 = ﬁﬁm’j)ufnl, so that by (3.47)

%(m,j) — a(lm’j) + agm’j)azﬂ +...+ ag,T’j)UT

mm?

) = (z)mka

and
g£m7]) agmvj)

%gm,k) - agm,k)

(m9) (m.5)

a

)

jﬁ(m,k) - agm,k)

(A — alm ) ™ () gl o

P (@ 1 (0~ oY)

Now for 1 < j < m, we have >}, ]a,(fm’j)| <4m — \agm’j)], and

’%(muj) — agm’j)‘ < (|a§m’j)| +... |a$gl’j) ) lomal,
so that
%(m,j) Cbgm’j)
‘%""”“) P

™ 1o+ ol ) + 0™ o™+ i )|y
™1 (0™ = (8™ o

Hence for r > 7 with ri as defined, the results follow.

Regarding the vector distance |\Il£m) — ®™)|, by the definition of B’
and 1’ it follows that for any specific values for j and k with r > 7/, the
remainder term will be < B'|o,,2|""!. Taking the square root of m times
the square of this bound to obtain the Euclidean distance, we see that the
remainder term is now < B'\/m|o,2|""t. As |om2| < 1, we can always find
such an 7* > 7/ satisfying the inequality, as required.
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To see Corollary 3.13, for an irrational number «, the simple contin-
ued fraction algorithm begins with the largest integer not exceeding o and
then proceeds to generate what can be thought of as one infinite branch of
number plus fraction. For the (m + 1) term recurrence relation that gen-

erates the sequence of numerators and denominators in %, (m.) 2 (m.k) , at
each step the continued fraction branch will have number plus m — 1 frac—
tions, so at each step the number of branches will increase by a factor of
m — 1. For m > 3, it is expected that in general the resulting sequence of
rational numbers will converge at a slower rate than that for the simple
continued fraction expansion of agm’j ) / agm’k), as guaranteed by Dirichlet’s
theorem (1.14). However, the resulting sequence can itself always be trans-
lated into a sequence of simple continued fraction expansions, and by the

theory, this must converge to the unique simple continued fraction expan-

)

sion of the limit point a ™) /ay (m.k , as required. O

Definition 3.14 (Unlaced Fibonacci sequences). For 1 < j < m, denote by

*ﬁ}(m’] ), the rth term in the jth unlaced Fibonacci sequence of dimension
m, defined in terms of the interlaced Fibonacci sequences of dimension m
such that

m+1

* g(md)  _ g(myr)
mq+2r—1 — gmq—i—j’ l<r< |:2:| ’

and

(m.j) _ g(mm+l-r) m
*qu-‘rzr_qu-i-j 5 1§7‘§|:2:|

It follows that the unlaced sequences of Fibonacci numbers correspond to
the ordered union of the ordered sets, given by

{* F(m.j) }OO

T r=1

o0

_ U {9&7§m,1) y(m,mfl) yT(Lm,Q) to}\(m,m72)

bl n 9 b n g
q=0

n=qm-+j

7 g;(lm,[m/Q}Jrl)} )

Here the ordering mimics that displayed in the construction of the conver-

(m)

terms *Ji{n( ) , to be the non-reduced numerators of the terms

gent vectors terms W, where as before, we define the unlaced numerator

* o“(mJ)

Lemma 3.15. For 1 < a,b < m, a # b, and with the above construction,
the ratios of the terms of the jth unlaced Fibonacci sequences of dimension

m, given by
(e.]

*g(%rj) JV(?}#J)
e (T Yy ma) (0

mit+b ) =0 mt—+b t=0
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are a rational sequence of convergents to some real limit points, including
those of the form 2(:05( 2km )

2m—+1

Proof. The proof follows immediately from the construction of the unlaced
Fibonacci sequences of dimension m from the interlaced sequences of di-
mension m. O

Example 3.16 (Three-dimensional interlacing and unlaced case). By con-
struction, the interlacing Fibonacci sequences of dimension 3 are given by

(3.52)
3,1 3,1 3,1 -1
P Ty T | _ () 3 50 2 -2 3
F37T T T = _§(%) _g(g) _g(z) =14 -3 2],
79 gpo oo |\ LG Ad A 3 21

and thereafter for j € {1,2,3} by

T = 2789 — ) - %%3’”,
so that
3,1 3,1 3,1 3,1 3,1 3,1
Ty T T\ [Ty Zy F0 (=210
%(f?é) gz@%) JOZT(?%) - %(5%) JOZT(?%) %373> i 8 é '
<g.’r-l:?) ﬂr-{—b <g.’r-‘,Jl ﬂr—l—b <g.'r—i:l ﬂ,r ’ T

By (3.32), the generating functions for the sequences 5}(1), ffr@) and 3%7(3)
are given by

7(2? + 4z + 3)

FZG.1) .
" 23+ Tx?2 + 140+ 7
1723 222%  292° 26925
=3 — 224227 — 77‘% + 733 — 97:8 + 649933 -y
[ R R R ¢
372 49z*  65z° 6042
=23z + 422 — f+ :— 7:”+ 49x —_—
F63) ’
r o3 4 T4 4+ 7
2023 39x%  522° 48446
I e M N s

7 7 7 49

and by (3.33) i%a(g’l) and i%a(g’Q) can be expressed in terms of c%ggg,) as
FPD =370 1 4FgPY 1 7Y 7O =270 4+ FBY.
For with j € {1,2,3}, the first few terms of the three unlaced sequences

3, . . .
*9}( ’] ), and their corresponding non-reduced numerator integer sequences
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*</Vr(3’j) are given below.

[ m Jix]1[2]8]4][5[6] 7 [8]9 |

* o (3,1) —17 [ =29 [ =37 269 484 604
7S I I TN R Bl B I I PR I
*ﬂ}(?)’g) 2 el Bl 729 752 765 :14?4 ;4594 1325
A8 2304 = =1 e | de | 4o
= B 1] 2 | —17]—20|-37] 269 | 484 | 604
B2 o | _o| —2|—3] 22 | 39 | 49 | —357 | —643 | —802
4B 3 | 2| 3| 4| —-20|-52|-65| 474 | 854 | 1065
Hence, from the definition of *.%, r(m’j ), and by Theorem 3, we have
* g7 (3,1) * 7 (3,2) * g (3,3) 2t
lm%—lim%—h %—ZCOS—:L%GQS...
r—00 *953 r—00 *J?) r—00 *‘/3 7
lim i — lim —3=2 — lim Firs — —9cos & = 0.44504 . ..
r—00 x g7 a (3, 1) T—00 % g7, a7 (3,2) r—00 ,/(3 3) 7

3r 3r

* g (3,1) * 7(3,2) « g7 (3,3)

Z. *F Z. 6
lim 3r—1 _ lim 3r—1 _ lim dr—l _ —2005.—7r =1.80194. ..
r—00 % g7 (3, 1) r—00 *9(3 2) T x g7 (3, 3) 7

3r— 3r—

which is similar to the ratios of consecutive Lucas numbers or Fibonacci

numbers converging to —2 cos 45 , or their reciprocals to 2008 . We note

that due to these sequence structures, the rational sequences can be re-

(3.9)

placed with the non-reduced numerator integer sequences *.4;
affecting the ratios.

, without

Example 3.17 (Cyclotomic approximation when m = 5). In consideration
of the Euclidean distance regarding the 20th convergent when m = 5, we
have

) — @

D FED BV g o
(72(3 5) 753 a5 3“2(3’3) ’ yég,z) ) 72(3 D) (¢5 1,952, P53, P54, ¢55)

__ | ( 42951850444254470 35685687021511133 _  4434370056070408
T |\ 25528481467235249 7 42951850444254470°  15579436796165461°

_46738310388496383 _ 25528481467235249
35685687021511133°  13303110168211224 />

—(2008 (%—”) 2 cos (‘ﬂr) 2005(?7{) 2 cos (?’{) 2 cos (110—1”))’

< 10713,
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In terms of polynomials, this yields the remainder term

52(5,4) 9(5 ,2) (5 1)
(xQ— ;275)3:—1—1 x? — 7‘(54)334—1 x? —|— (55)$—|-1
<20 20 20

Za0 Z5” 10, .9, .8
z? + (52)33+1 2% + (51)ZL‘—|—1 —(:l? +z°4+x —I—...—I—a?—l—l)

~107 0% + 2t + 2% 4+ 28%) — 1078 (@ + 23 4+ 2° + 27 + 20).

Definition 3.18 (Fleck’s and Weisman’s congruences). Let p be a prime
and a be an integer. In 1913, A. Fleck discovered that

(3.53) Z )(—1)’“ (Z) =0 (mod p[lf\’f_llJ> 7

k=a (mod p

for all positive integers N > 0. In 1977 C. S. Weisman [24] extended Fleck’s
congruence to obtain

N _na—1
(3.54) ) (Z:d )(—1)’C ( k) =0(mod p¥), w= {%J,
=a (mod p«

where o > 1, and N > p®~! are positive integers, and ¢ denotes the Euler
totient function. When v = 1 it can be seen that (3.54) reduces to (3.53).
We define the Fleck numbers, F(N,a (mod n)), such that

(3.55) §(N.a (modm) = Y (4)’6("}5).
)

k=a (mod n

These sums have many well known properties [18], [19] such as

N N
(3.56) n(N,a (mod n)) = Z<1>’“<k> Yo=Y -,
,Y'nzl n =1

k=0
from which we can deduce the recurrence relation
(3.57) F(N +1,a(mod n)) =F(NV,a(mod n)) — F(N, (a — 1) (mod n)).
By modularity we also have (N, a (mod n)) = F(N, (a +n) (mod n)).

In the following theorem we give new expressions for the renumbered
Fleck numbers in terms of our polynomial functions.

Theorem 3.19. Let r be a non-negative integer and m be a positive integer,
so that n = 2m + 1, is odd. Then the numbers in the sequences ﬂf’f’]) and

%ET] ) are given by the alternating binomial sums

g(mvj) —n i (_1)r+j+a 2r+1
(3.58) - r+j+an

a=—00

=nJ(2r+1, (r+j) (mod n)),
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g(mﬂ) =n i (_1)r+j+1+a 2r + 2
(3.59) - Pt r+j+1+an

=ng(2r+2, (r+j+1) (mod n)),

and so when n is a prime power, they satisfy an analogue of Weisman’s
Congruence [24].
The renumbered Fleck numbers can be written as

()™ Pi1 (pmt)

NE

(3.60) ng(2r+1, (r+j) (mod n)) =
1

(k)" T Vit (me) = (ttm¢) (¢mjt—¢m(j—1)t)-
=1

~+~
I

m

t=1
Similar expressions exist for the sequence terms %ﬁ’;” ), corresponding to
the renumbered Fleck numbers §(2r +2, (r+j+1) (mod n)), formed from

the even numbered rows of Pascal’s triangle.

Proof of Theorem 3.19. These relations are obtained by Lemma 4.2 of [11]
and the closed form expressions (3.47), and (3.48). O

Example 3.20. When j =m =5, s0n =11, and r = 8, we have

0\575)_ e _ 8+5+a 17 . © . a 17
FET=11 3 (D) <8+5+11a>_11 2 (1) <2+11a

a=—00 a=—00

5

(15)” Py (pse) =Y (us51)® (d550 — b5 40)
t=1

= 113(17, 2 (mod 11)) = —112.204.

Mm

H.
[y

Remark 3.21 (to Theorem 3.19). Using the recurrence @, (z) and its
inverse recurrence, we can construct a similar family of sequences, which
at negative indices correspond to (2m) times the Fleck numbers obtained
using the even modulus (2m).

There are many geometric interpretations of the Fibonacci numbers and
the Golden Ratio, including the triangles inscribed in a circle represen-
tation, given by J. Rigby in [15]. In the following theorem we establish
(m.j)

geometric relations for our rational interlacing Fibonacci sequences %,

(and g (m-i )), with the ratios of diagonal lengths between the vertices of the
regular n-gon inscribed in the unit circle.

Theorem 3.22. Let n a positive odd integer, with n = 2m + 1, and
Un0s - - - Up (n—1) the n vertices of the regular n-gon Hy, inscribed in the unit
circle. Let dy, i be the signed distance from vertex vy, to vertex v, p, so that
dn1 = 2sin (7/n) is the side length of Hy, dy ) = 2sin ((7k)/n) is the signed
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length of the kth diagonal of H,, and dy,, = 0. Then working (mod n) the
second subscript of dy 1, we have

m 9sin (=Dt
(301) FM9) = (-1 1Y P Y o (Geif)
= t=1 (2sin <2£il))

and

gr(m,j) _ g‘r(m,jJrl) _gr( J) — r IZ 2J+1d2r Cll n (2j—1)t

(3.62)

2wt
2 cos (2m+1)

(2 sin (27;:3_1 ) ) o

Hence for r a negative integer, these sums over the signed diagonal lengths
correspond to integers which are the renumbered Fleck numbers multiplied
by n.

Proof of Theorem 3.22. Combining the definitions of the diagonal distances
and ratios with the closed form trigonometric expressions for %}(m’j ), given
in Corollary 3.7, we obtain (3.61).

Applying the trigonometric identity

(z+y) . (x—y)

sinx — siny = 2cos > sin

to FIHD gz e find that (dy 241y — dn (2j- 1))/ dnt = $mjt, and
hence (3.62) for all r € Z. O

Remark 3.23 (to Theorem 3.22). Defining the diagonal to side length
ratio r,, such that r,x = d,x/dn1, we note that the sums over ratios
of signed diagonal lengths, corresponding to ratios in the unit n-gon, are
closely allied to Steinbach’s unsigned diagonal and ratio product formulae
(see [17] and [10]) given by

-1 -1
dnkdnel = |dn1l Y ldn e—i240)ls  1rnkrnel = D 10 —er2jin) |y
=0 =0

where we take (k — ¢+ 2j + 1) (mod n).

In the following theorem we examine the non-reduced numerator integer

(m.j)

interlacing Fibonacci sequences of dimension m, .4; , in more detail.

Theorem 3.24 (Integer sequence theorem). Let pi,po,...p: be all the
distinct prime factors of n = 2m + 1, so that for each p; we can write
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pi =2q; + 1. Then for 1 < j <m, andr > 0, we have

ymsd) — (ﬁ pllJ) Fimi) e 7.
=1

For e%n(m’j) with r < 0, and n having at least two distinct prime factors, let

M(m,j) _ J‘T(m’j), and when n = p® is a prime power, let
) ) ) 1— a—1
N (md) = (pﬂ) Fmd), Y= —a— r;_ af)l .
pT =D
Then with n = p{*...p{*, we have for r = 0,—1,—2,-3,..., that the se-

(mvj) (87

, are the renumbered Fleck numbers, and when n = p
(m.j)

quence terms Ny

is a prime power, the sequence terms Ny are the (renumbered) Fleck

quotients discussed in [19].

Corollary 3.25. When n = p, a prime number, and for all r € Z, we have

{p T;Llquﬂ(m’j)}+oo = {:/V(m’j)}+oo ,  So that pL%J ﬁﬁmd) c7.

T
r=—00 r=—00

Proof of Theorem 3.24. The case n = p, a prime number, was proven in [11,
Lemma 7.5]. An expansion of this argument then leads to the deduction
that for n = p{'p5?...p*, and r at positive integer values, the power of p;
in the denominator of the sequence terms never exceeds |(r—1)/q;|. Hence
we can treat each prime number individually, replacing the denominator m
in the exponent of pl"=1/™) with ¢; for each prime factor p;. It follows that
multiplying together the product of the prime numbers to their individual
exponents yields an integer sequence.

By Theorem 3.19, we know that the sequence terms ffr(m’] ) are the
renumbered Fleck numbers, and so are already integer values and satisfy
an analogue of Weisman’s congruence. The property relating to Fleck quo-
tients when n = (2m + 1) = p, a prime number, then follows from the

exponent so that
B [—27’—2} B {—27’—2] B [—r—l]
1_ p—1 | 2m B m |’

l—Qr —1—p>!
as required. O

poz _ poc—l

oa=

Example 3.26. We give the table for the integer interlacing Fibonacci

sequence m(m’J), when m = 3, and r € [—6,6].

j/r] =6 5] -4 |-3| -2|-1]0[1][2[3] 4 |5] 6
1 |-35| 66 |[—18| 5 |—=10| 3 |—-1|3|—-2(2|—-17|22| —29
2 26 | 47| 12 |=3| 5 |—=1] 0 [2|—-3|4|-37|49|—65
3 |13} 22| 5|1 | -1]0|0|1|-2{3|-29|39|-52
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Remark 3.27 (to Theorem 3.24). When n = 2m + 1 has repeated prime
factors, it appears to be the case that particular sequences out of the m
sequences have further divisibility properties. One area for future investi-
gation would be to derive a concise formula that describes these patterns.

Lemma 3.28 (Sum of diagonal products lemma). Let H, be the regular
odd-sided unit n-gon H,, as defined in Theorem 5, so thatn =2m+1 > 0,
H,, has signed diagonal distances given by d, = 2sin ((nk)/n). Then we

have
id A _Jo if u#wv
= n(25—1)u n(2]—1)v_ om + 1 ZfU:U

Proof. This result is an exercise in trigonometric identities, whereby it is
established that the sum can be written as a difference of sine ratios such
that

. 2mm(u—v) . 2mm (u+v)
ru(2i—1) o o (m(2i—-1)) _ o ( T+2m ) sin ( 1+2m )
22s1n<2 1>2sm<2 1): — ,
* m sin (Lu*v)) sin (W(u+v))
1+2m 1+2m

thus eliminating the j variable. Using sin (7 — ) = — sin z, we see that the
two terms cancel out if v # v, and when v = v, we deduce the result via
the identity S°&_osin?(kz) = 1/4(1 4+ 2N — csc zsin [z(1 + 2N)]). O

Theorem 3.29. Let n = 2m + 1 be a positive integer. Then the sequence
terms ﬂr(m’]) and %n(md), obey the relations

/2r —72( 7”)
#it= & () 5 )

so that for all r € Z we have

m m m 2
-1

z; () 2 = - > (Z Pmt)” <¢mjt — &m (j—1)t)> )

t—

j=1 \t=1
and
Z(,u'm ) 2r4+2
t=1
2
9 (M
— ’]’L(Z _7“+1> + — Z <Z ,Umt (d)m(j-‘rl 2¢m]t+¢m (-1) )) .
t=1 t=1

m,j m,j
Hence each numerator of the sequence terms 5}( ) and %«( ) can be
written as an integer linear combination of sums of square integers.
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Corollary 3.30. Let n = 2m + 1 be a positive integer. Then we have the
Fleck number relations

m

§r+1, (2r+1) (mod n)) = — > (§(2r + 1, (r+j) (mod n)))*,
j=1
2F(4r+3, (2r+2) (mod n)) = F(4r+4, (2r+2) (mod n))

= (F(2r+2, (r+1) (mod n))) +22 F2r+2, (r+j+1)(mod n)))>.

The corresponding combinatorial identities (not given in [7]) are

[e'e) 2
4 1 2 1
S (1)L z( 3 rﬂ%gim)) ,

a=—00 =1 \a=—o00
> 4 3 = 4r+4
2 3 (1) = Y (1)
a=—00 a=—00
[e'e) 2
—( > <—1>r+1+a<ri::zn) +zz( 3 rﬂﬂﬂggﬁian)) .
a=—00 a=—00

Explicit calculations suggest that the above combinatorial identities are
true for any positive integer n.

Proof. Writing the first display of the Theorem in terms of the signed di-
agonals of the unit n-gon H,, and rearranging, gives us

i ' (dpu) (dn(Qj—l)u)2

u=1j=1
-2 1 —2r+1
+22 Z dna) " (dno) T Zd 2j-1)u dn (2j-1)0-
u=1v=u+1 j=1

m

By Lemma 3.28, for u # v the inner sum is zero, and by (3.47) the result
follows. The second display can be obtained similarly.

To see that each sequence term numerator can be written as an integer
linear combination of sums of square integers, by the preceding results we
can write each term JQ(:L D as a sum of m squares, and each term 3'72(:1’?
as a sum of 2m + 1 squares. By (3.33) and (3.34), each of the sequence

terms Jr( ) and %, (m.7) , can be written as an integer linear combination

of the ,/,n(m 1), and hence the result. O

Example 3.31 (Sum of squares representation). In consideration of the

non-reduced numerator JV1E)6’3), of the sequence term 91(6573), by (3.33) can
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write

— M) = 20226191 = 54,0 — 5O — OV
= 5 x 7480420 — 5 x 1713705 + 392616
=5 x (1505% 4 14212 + 12452 + 1010 + 7022 + 365%)
— 5 x (7022 4 6452 4 543% + 4112 + (2 x 3652) + 260% + 842)
+ 3447 + 3277 + 283% 4 234% 4 1597 + 852,

so that after simplification, this method enables (/1/186,3) to be written as an

integer linear combination of 16 square integers.

4. Properties of the Polynomial Generating Functions
Theorem 4.1. With Py(z) = 1, Pi(z) = 1+ /3, Q1(z) = 1+ x/2 and

Q2(x) = 22/4 + 2 + 1/2, the polynomials Pp,(x) and Q,(x) respectively
satisfy the three-term recurrences

(4.1) Prs1(z) = (2 + 2)Po(z) — P (2),
(4.2) Qm+1(7) = (2 +2)Qm(x) — Qm-1(z),

the ordinary differential equations

(4.3) (4 +2)P)(z) + 2(z + 3) P (z) — m(m + 1) P, (z) = 0,
(4.4) 2(4+2)Q () + (2 + 2)Q), (x) +m*Qu(x) = 0,

and for integers k, £, the explicit orthogonality condition

0 ZE1/2 )
(4.5) /_ P B) s e = 2mides, Lk 20,
0 Qu(z)Qx(x)

4. —_—
(4.6) —4 w1/2(4 + 2)1/2

dr = —2mider, Kk #0,

where dgy, is the Kronecker symbol.
Let

0 s—3/4
(4.7) Mg(s)z/ Pr(@)e 4 R > —1/4,

—4 (44 x)3/4

0 T 335_5/4
(4.8) M9(s) = /_4 %dx
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Then up to normalisation, these Mellin transforms have the form

r(s+1)

(4.9) MP(s) = (—1)5+5/4454_m_11“(1/4)pm($)F(_i_erl),
ST 79—
s 1
(4.10) M3 (s) = (—1)”3/443_1”5/4)%(5)M’

Corollary 4.2. Closed form expressions for Py (x —2) and Qm(z —2) are
given by

o vx+2 m
(4.11) Ppn(z—2)=2 1<<1— $_2> (z- Va2 -1)

+
7N
—

+

8
+
[\
N————
—
8
+
ﬁ
\
Nl
N————

and
@12 Que=2 =2 (s VEE) + (r )",

where for r < [m/2] we also have

(4.13) Pp(z) = Z(—l)r (r) (x+2)" I Py j(z),
j=0 J

and

(4.14) Qm(w) = Xr:(—l)r <r> (2 +2)"7 Qmr—j(2).
j=0 J

We have the orthogonal polynomial relations

0
(4.15) / 224 + 2) V2 Py(z) (any polynomial of degree < k)dx =0,
—4

and
0
(4.16) /4 V24 4 2)7V2Qu () (any polynomial of degree < k)dz = 0.

The polynomial factors of ME (s) and M%(s) satisfy the functional equa-
tions

(4'17) pn(s) = :I:pn(l - 8)7 Qn(s) = :l:Qn(l - S)
1/2.

and have zeros only on the critical line R(s)
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Proof of Theorem 4.1. The three term recurrences for P, (z) and @Q,(x)
in (4.1) and (4.2) follow from the Legendre function expression for P, (x)
given in (3.22), and using [1, p. 99, 247 or 295] with a = f = —1/2 the

Jacobi polynomial pled (x) relation
Q) = WP,;—UZ—W) (1 + ;) .
We sketch the details for @,,(x). The polynomial Pé_l/Q’_lm(z) obeys the
recurrence relation
(n+ n(2n— P27 (z)
=n(2n—1)(2n + 1)zP V27D () — (n - 1/2)%(2n + )PV (2),
and using the change of variable z = 1 + x/2 and [1, (2.5.14)], applied to

the polynomials @y, (x), we obtain (4.2).
Considering now the ordinary differential equation satisfied by P¥(z),
d?u du

9,
dz2 Zdz+

2
viv+1)— K ]u:(),

1_2

and an elementary application of the chain rule, we find
z(4+z2)P!(z) +2(x + 3)P. () — m(m + 1) Pp(x) = 0,

and hence (4.3).
By using an integrating factor #3/2(4 + z)1/2, the differential equation
for P, (z) may be written as

2324+ 2) 2P (2) + 2(z + 3)2" /(4 + 2) V2P (z)
—m(m+1)z?(4 4 2) 72 P, (x) = 0.

We then obtain

d

@t )P E (@)] = m(m o+ D24+ @) P (a).
Writing this equation for Py (z), multiplying the P,,(x) equation by P (z),
and the Py(x) equation by P,,(x) and subtracting there follows

P(e) S 0924+ 0) P (@)] — Poa(a) = (624 4 2) /2 ()
= [mlm +1) — k(k + Dla"/2(4 + 2) V2] Py (2) Pu(a)
Thus
244 2) 2Py () P (a) — Po() P2}
= [m(m +1) — k(k + 1)]z2(4 + )"V Pp(z) P ().
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By integrating between x = —4 and 0, we obtain the stated result (4.5).
The orthogonality of the sequence {Pp,(z)}m>0 allows the development
of integral transforms with zeros only along vertical lines in the complex
plane and hence (4.7) and (4.9).
For (4.4) we use the hyperbolic trigonometric function analogue for
Chebyshev polynomials to obtain

Qm(x) = 2cosh <2msimh_1 <\/25>> =2-9F; <—m, m; %; —Z) )

The differential equation for the Gauss hypergeometric function

d?y dy
oF1(a,b;c;2) = 2(1 — )d—+[c—(a+b+1) ]g—aby:(),
becomes for Q,,(z)
d? 2 d 2
v, ey wt

de? " z(d42)dx | z(4+x)
and the result follows.
In consequence, the family {Q,(x)}m>1 is orthogonal, and with the in-
tegrating factor \/z+/4 + x, the differential equation may be written as

d dy m?
S (Vavirady =,
do (ﬁ +xda:) Jivita®

The integrating factor is obtained as the exponential of

/Mdgg — e+ ).

z(4+ ) 2
We then obtain the orthogonality relation (4.6) [the steps being omitted]
Qm(2)Qx(2)

24 1 )12 98T 2wk, R FO.

Accordingly, we have a (generalised) Mellin transform

Q 5= 5/4
/ (4 + (4t ax)d 4,
of the form (4.10), so that

M2(s) = (=1)* /1470 (5/4)q (S)M
m " T (s4+m)
In the Corollary, (4.11) and (4.12) are obtained by solving the recurrences
n (4.1) and (4.2), whereas (4.13) and (4.14) arise from iteratively applying
the recurrences.
The last part of the Corollary follows from properties of orthogonal poly-
nomials.
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The proof that the polynomial factors of ME (s) and M%(s) satisfy the
functional equations p,(s) = £p,(1 — s), and ¢, (s) = £g,(1 — s), and have
zeros only on the critical line £(s) = 1/2, follows that given in [3]. O

Theorem 4.3. The polynomials Py, (x) obey the Christoffel-Darboux for-
mula

)

= _ Par1(@)Pa(y) — Pay1(y) Pu(z)
4183 Pa)Pale) = —
the confluent form of which (i.e., for y — x) is

(4.19) > Pi(z) = Py (2)Pu(@) = Para(z) Py (2).
k=0

They also satisfy the relation
dPpy(z) 1
dr  z(4+2)

and have the raising and lowering operators

(4.20) {=2m = 1)Pp_1(z) + [m(x 4+ 2) — 1] Pp(x)},

d
(4.21) Rm:m(x—l—4)@+m(:x+2)+:n+3,

(4.22) Ly, =—z(x+ 4)di +m(x+2) -1,
x

such that Ry, Py () = (2m+3)Ppt1(x), and Ly, Py (x) = (2m—1)Py—1(z).
The ordinary differential equation for Py (x) can then be written in terms
of these operators.

The polynomials Q. (x) obey the quadratic identity

(4.23) Qn () = Qo) + 2,

have the generating function

(4.24) i “{j?m Qum(z)r™ =R (1 —r+ R)'?(1 +r+ R)"/?,

m=0
where R = (1 — 2r — zr + r2)Y2, and satisfy the differential relation

m sin[m cos ™ T

Proof of Theorem 4.3. The polynomials P, (x) have the hypergeometric
form

3
Pr(z) = oF (m,m + 1 5 Z)

(2m + 1) sinh™* <\§?>] .

2
= -—————sinh

(2m+1)yx
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Hence their ODE may also be found from that of the oF; function.
If we normalize such that Py(z) — Py(x)/v/2mi, so that

o /2
L RO g =1

we obtain the Christoffel-Darboux formula of (4.18)

- _ Po1 (@) Pa(y) — Pasa(y) Pu()
mXZ:OPm(y)Pm(x) = r—y ’

then follows.
When the relation

dpy,'? 1 -
- (m B 2) P2 (2) — mzPp 2(2)
is transformed to the polynomials P,,(z), the result is

dPp(z) 1

L~ rdg o COm e Dl +m(e+2) =1 Pa(@)},

45

which is (4.20). The raising and lowering operators of (4.21) and (4.22) can

then be deduced.

From the application of linear and quadratic transformation of the 9Fq

function we have the following.
z\™ 1 1 =z
=214+~ Fil-m,=—m;—; ——
@ () ( +4> 2 1( 9 m’z’x+4>
(4+x)™ T \2" T\ 2"
1—/— 1
Coo2m [( \/4—1—3:) +(+V4+x) 1
1 T
=21 F
T A
1/2 1 1 1 =z
( > 2 1(2+m72 72a 4>
x
(%))

= 2cosh (2m sinh~!
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1
Qm(x) =2(—1)"2F, <—m, ms 5 1+ :L'/4> ,
we determine that Q,(z) = (—1)"Qm(—4 — x). Furthermore,

2y/7(2m—1)! z\™ 1 . .
@n(@) = I m1/2) <1+4> 2F1<_m’2 —m;l-2m

R () o m ).

With (a), the Pochhammer symbol, we note the limit for j > 0
(a+b); 1

all>n—lb (2a + Qb)] 2’
otherwise this ratio is 1 for j = 0. We then obtain a reduction of Clausen’s
identity for the square of a special oF; function, Q2 (z) = Qopm(z) + 2
which is (4.23).

To see (4.24) we identify Q,, () in terms of Jacobi polynomials pied) (x).
We use [1, p. 99, 247 or 295] with o = f = —1/2 and obtain

T 2(m!) (—1/2,—1/2) z
Qule) = 7 B (1+3).

which is the Gegenbauer polynomial case of C’;]\;)O.
A generating function for Jacobi polynomials is [1, p. 298]

=Y Pz =22 RN 1 —r + R)T*(1+ 7+ R)

where R = (1—2zr+r2)1/2. Correspondingly we find the generating function
> 1/2

D

m=0

()r™ =R'1—r+RY*(1+r+ R)'/?,

as required, where now R = (1 — 2r — ar + r2)1/2.
By [1, p. 297]

iP(*l/Z*l/?) ? p(1/2,1/2) 1y ['(n + 1/2)sin(ncos™! x)

P (@) = R ) = = P
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We then obtain

d _ 2msin[mcos™ (1 + z/2)]
dz Qm(r) = —z(4+x) ’

which is (4.25).
We note that in terms of Jacobi polynomials P, (z) can be written as

m)! T
_ (1/2,-1/2) hd
Pn(@) = Gy e (1+3)- -

Remark 4.4 (to Theorem 4.3 - Generalised raising operator and Rodrigues’
formula). It is possible to obtain a generalised Rodrigues’ formula for the
polynomials P,,(z), as we now present. Following the procedure of [2] we
put R, = f1 %92 + h, where h is an arbitrary function and f; and go are
functions to be determined. We find

_ h(z) (m+3/2)/2 (m+1/2)/2
gg(x)—exp[ /x(az+4) dm}x (x +4) ,

and

2 = z(z +4) ~ ex h(z) 2| gmmi2t/a g, —m/2+3/4
o) =g e | [ gy e e g

By way of the iteration

1 1 111
P, - - - .. “RypRim_1- - RiRoPy(x),
H@) = G emt) 531 1 ko Py ()

for h = 0 we obtain a generalised Rodrigues’ formula

1

—m/2+3/4 —m/2+5/4
@m + 3" (z+4)

Pm—i—l(x) =

d [ 35 372 d )ml 3/4 1/4
X (x (x +4) e x4+ )7,

where 2n+ ) = (2n+1)(2n—1)---3- 1.
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Theorem 4.5. Let Cy(z) be the minimal polynomial of 2cos (%), and

©,(z) the minimal polynomial of 2 cos (2”) over Q. Then with the con-
vention that p denotes an odd prime number, we have

Pu(z-2) [=1 if 2m +1 = p,
(4.26) Oomi1(r) {E Zlx]  otherwise.
B —1 if m =2,
(4.27) W =q{=z if m=p,
am € Z[z]  otherwise.
(4.28) —QQm_H(—:U—Q):( D™Py,(— x)_ =1 if 2m+1 = p,
’ 2Chmio(T) Cam2(x) € Zlz]  otherwise.
Qm(=2—2)  (=1)"Qu(-2?) _[=1 if m=2",
(4.29) Cim(z) Clam/(x) {E Zlx]  otherwise.
(4.30) (=D)"Pp(—2—-2)  Vpx) =1 if 2m+ 1 =p,
' Com+1(x) -~ Coms1(x) | €Z[z]  otherwise.

Corollary 4.6. Let p,(x) be the minimal polynomial of 2COS< ) -2,
() be the minimal polynomial of 2 cos (£) —2, and ¢n(x) be the minimal
polynomial of — 2cos( ) 2 over Q. Then

(4 31)
H pa(T), Qm(r)= H T2a(z), Pm(z) = H pa()
d|2m+1 dlm d|2m+1
d>3 m/d is odd d>3
and
(4.32) Qn(x) = Py ()P, () = H pa(T)pa(z)
d|2$13+1

when m = 2my is even. If m = 2my +1 = 2"(m, + 1) — 1 is odd, with
my = 2my41 even, so that for 1 < j <r —1, mj = 2m;1 + 1, we have

mi+1 mg+1 my_1 + 1

4.33 = =.,.,..,. = — = 2

(4.33) ma+1 mg+1 my + 1 ’

then

(4.34) Qm(z) = Qu, (z H Qm;+1(2) = Prny iy (%) Prny s ( H Qm,+1(x

Proof of Theorem 4.5. We recall that the minimal polynomlal of an alge-
braic number 3, is defined to be the monic polynomial of minimal degree,
with rational coefficients, which has § as one of its roots. Such polynomials
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often exhibit structural properties, such as ®,(x), the minimal polynomial
of a primitive nth root of unity, e(k/n), with (k,n) = 1, which satisfies

(4.35) o =1 =[] ®al).
dln

It was shown in [20] that when n is a prime number p, then the minimal
polynomial ©,,(z) of 2cos (27/n) is given by ©,(x) = f,(x), with

(5] [242]
_ - _ n—k n—2k L Nk n—Fk\ okt
fn(x)—kg( 1)( f )x k;( 1) (k_1>w AR

and that ©,(z) divides f,(x) for all n € N. By algebraic manipulation we
have P, (x — 2) = fp(z), and hence (4.26). In fact, for p a prime number,
we can write ©,(2r) = 2°71)/2W,(z), whereW¥, (z) denotes the minimal
polynomial of the algebraic number 5(n) = cos (27/n).

It was shown by Watkins and Zeitlin [23] that analogous formulae
to (4.35) for ¥, (x) are given by

(4.36) Toi1(x) = Ty () = 2" [[ a(z), n=2n1+1 is odd,
dln

(4.37) Toy41(x) = Tpy—1(x) = 2™ H Uy(xz), n=2np is even,
din

from which we can establish the explicit formula

[n/2]

U, (z) = H (3: — cos (%)) ,

k=1
(n,k)=1

so that deg ¥, (x) = 1 if n = 1,2 and ¢(n)/2 if n > 3. From this one
deduces that Cy(x), the minimal polynomial of 2 cos7/n, is given by

) = 20, (g) cn(x>_2¢<2n>/2\p2n(§), n>2.

It follows that deg Cy,(z) = 1 if n = 1 and ¢(2n)/2 if n > 2, the zeros of
Cp(x),n > 2, are 2cos(nk/n), with k = 1,...,n — 1 and (k,2n) = 1. Hence
each of the expressions in (4.27), (4.28), (4.29) and (4.30) are in Z[x] and
equal to 1 for the prime conditions stated. In fact, for n an odd integer, we
have ©,(—z) = (—1)?C"/2C,(z).

When n is a power of 2 we use the identity 22" Wom () = 2 Tym-2(z),
and the result follows.
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For completeness we state the case that n is an odd prime power p*,
with p = 2¢ + 1, for which we have

" D2y, —Z(ZTm1 >+1

The Corollary can be deduced either from the relations (4.26), (4.27),
(4.28), (4.29) and (4.30), with z—2 replaced by z, in conjunction with (3.18),
(3.19) and (3.20), or directly from the properties of Fibonacci and Lucas
polynomials. In particular, for p a prime number, the pth Fibonacci and
Lucas polynomials are irreducible and so their roots are respectively 21
times the real and imaginary parts of the pth cyclotomic polynomial, ex-
cept for the root 0 in the Lucas polynomial case (see for example Koshy |9,
p. 462]). O

Example 4.7 (Polynomial factorisation and special values). Taking m =
223 =2°(6 + 1) — 1, we have

2 224+k:> .
Qa3(z) = T
223(7) kz:% <2k +1
= P3(2)P3(2)Q7(2)Q14(x)Q2s8(2) Q56 (x) Qr12().

Without proof, some special values of the polynomials P,,(z) and Q,(z)
are

Qm(_4) = 2(_1)m’ Pm(_4) = (_1)m’ Qm(o) =2, Pm(o) =2m+1,
Qm(l) = £2m(1)a Pm(l) = £2m+17 Qm(l) = f2m+2(1)a Pm(l) = f2m+1-

5. On Minor Recurrence Relations

The matrices My(m,r) and M.(m,r), defined after the proof to Theo-

rem 3.2, respectively generate our sequences ﬁr(m’j ) and %n(m’j ), for 1 <
j < m, via the recurrence matrix R,,. In consequence, the ¢ x ¢ minors of
these matrices sequence form a set of sequences in their own right, which
also obey (different) recurrence relations, for 2 < ¢ < m — 1. The 2 x 2
minors then correspond to the difference between consecutive convergents

f:nl’] (m k) — g%gm’j ) / ﬁr(m’k), after multiplying through by the product
of the two sequence terms which form the denominators of the convergents.

We now briefly outline the general theories underpinning these i x ¢
minor recurrence sequence properties. For 1 < j < m, let the m sequences
{yjk}72, be defined by an m x m initial value matrix, and an m-th order
rational linear recurrence matrix K, of the form (3.28) with ag = 1,
described in the proof of Lemma 3.5. Then y; obeys the recurrence relation

Yjk = — (alyj (k—1) T 2Yj (k—2) + -+ amy; (k—m)) )



On Higher-Dimensional Fibonacci Numbers 51

where
m .
Ky (z) = Z App—j2?
j=0

is the characteristic polynomial of K,,.

In this general setting we also assume that the system of polynomials
K, (x) are orthogonal, and so satisfy a three-term recurrence, whose mea-
sure is supported on some interval [a,b] € R. This ensures that the roots
Am1s- -y Amm, Of the polynomial equations K,,(z) = 0, are distinct, real
algebraic numbers lying in the interval [a, b] and that these roots interlace.
Hence for m > n, there is a root of K,,(x) = 0 between any two roots of
Ky(z)=0.

We note that the condition ag = 1 produces a system of normalised roots,
so that A1 X ... X Ay = 1. We also note that the minimal polynomials
for each of the algebraic numbers A, ; divides the characteristic polynomial
Kp(2). '

As stated in the proof of Lemma 3.5, the sequences ng,,]) = (1, A,
)\gnj, ...), with 7 = 1,2,...,m form a basis for the solution space for all
possible sequences satisfying this recurrence relation, and so for any possible
starting values.

Let {y15}520: {2k 020, - - -5 LWik 72 be i sequences generated by an ini-
tial value matrix and the linear recurrence, so that in matrix form we can
write

Y10 Y11 Y12 Y13
v y2.0 y2.1 y2.2 y2.3
Yio Yi1 Yi2 Yi3
and consider the sequence formed by successive ¢ x ¢ determinants

Yie Yie+1 Yie+2 oo Yre4i-1
Y20 Y2e+1 Y2042 -0 Y204i-1

Dy=|"" ) . . YT 1=0,1,2,3,...
Yie Yie+t1 Yier2 -+ Yilti-1

The space of all such sequences D(Y) = (Dy, D1, D2, .. .) is spanned by the
D’s that you get by choosing an array Y of the form

1 7 ’yg vg
I v v ~

Y = . . .2 .2 )
1oy 2 9

where the ~, are ¢ distinct values chosen from the m distinct, real eigen-
values A, ;, of the recurrence matrix. Here the order of the rows of Y is
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irrelevant as we are simply looking at how to choose an ¢ element subset
of an m element set. It follows that there are (T) ways to choose such a
Y, and from determinant theory the resulting D(Y") is itself a geometric
progression of the form (C,CA,CAZ2,...), where A = y172...7;. Hence,
generically, the space of all such “¢ X ¢ minor sequences” must be the solu-
tion space of a linear constant coefficient recurrence of order at most (’;”)
We have just proved the following lemma.

Lemma 5.1. For i > 1, the sequence formed by successive i X i determi-
nants Dy, as defined above, obeys a linear constant coefficient recurrence
of order at most (T) If the eigenvalues of the minor recurrence matriz all
have absolute value less than 1, then the sequence of i X i determinants Dy
will converge to some number «.

Example 5.2 (or minor recurrence relation coefficients). We illustrate this
lemma with the ¢ minor recurrences corresponding to the denominator gen-
erating function Ps(z).

(=5.-7,-4,-1,-4)
(7’_19 292 233 1223 356 63 72 41, 1 )

» 110 11 121 ° 121°121° 1331’ 1331’ 14641
4 72 63 356 1223 233 292 19 7 1
» 110 110 1210 13310 13310 14641° 14641° 161051’ 1771561

4 7 5 1

(1> TI10 12107 1331 14641)
_1
1
7 (5,3)

Here the recurrence coefficients for the sequences .%#, "/, are given in the
topmost entry, and those for the 2 x 2 minors the second from top entry,
so that they satisfy a recurrence relation with recurrence polynomial

202 . 233 , 1223 . 356 ,
ne Tt Tt T e®
63 5 T2 , 4 1

Tt et Tttt =0

20 — 729 41928 —

Explicit calculations lead us to the following conjecture.

Conjecture 5.3. The sequences of m —1 xm —1 minors constructed from

our sequence terms ﬂ,gmd), have the recurrence polynomials of degree m

given by
Z<(_1> ) 1 2m — k ek
P 2m +1 2m + 1 — 2k k ’
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so that when m is odd the recurrence polynomial can be factorised as

m 2 — 2cos (ﬁ:fl)
I \e-—=3 =0

k=1

A final remark is that the (%)) + 1 term recurrence relation that our se-
quences of 2x2 minors obey can be used iteratively to obtain the coefficients
Cjk(r), such that

‘/K‘S:Tj) B c/%«(md) _ 1 gfr(j:blﬂ) g\r(m,j) . M
e/ﬂg:?’k) m(m,k) yrgm7k)9r(;nfk) gr(jrnl,k) ﬁ}gm’k) = (fT(m’k))z’

which is of a similar form to that of Dirichlet’s Theorem for standard con-
tinued fraction convergents.

Appendix

m | j/r|1 2 3 4 5 6 7 8 9

1 1 1| -1 1 -1 1 -1 1 -1 1

2 1 21 —1 3 —2 7 ) 18 —13 47
2 1] —1 4 -3 11 —8 29 —21 76

3 1 3| —2 2 —17 22 —29 269 —357 474
2 21 =3 4 —37 49 —65 604 —802 1065
3 1] -2 3 —29 39 —52 484 —643 854

4 1 4 | —10 | 46 | —271 | 1702 | —10855 | 69499 —445420 | 2855494
2 3| —18 | 108 | —675 | 4293 | —27459 | 175932 | —1127763 | 7230222
3 2| —17 | 116 | —755 | 4859 | —31184 | 199988 | —1282310 | 8221661
4 1| —-10| 73 | —487 | 3160 | —20332 | 130492 | —836893 | 5366170

5 1 5|1 =5 11 —32 99 —3415 10744 —33830 106545
2 4| —-10 | 28 —85 265 —9156 28817 —90746 285805
3 3| —-11| 35 | —110 | 346 | —11982 | 37734 —118845 374319
4 2| =9 31 | —100 | 317 | —11002 | 34669 —109210 343988
5 1 -5 18 —59 188 —6535 20602 —64906 204447

TABLE 5.1. m-dimensional integer interlacing Fibonacci se-
quences 4™ for m = 1,2,3,4,5, with 1 < j < m, and
1<r<o.
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(1]
2]
(3]

(4]

(5]
[6]
[7]
(8]
(9]

(10]

M. W. CoFfrEY, J. L. HINDMARSH, M. C. LETTINGTON, J. D. PRYCE
m || j/r -8 -7 —6 -5 -4 -3| -2|-1|0 |1
1 1 —1 1 -1 1 -1 1 -1 1 —1]1
2 1 —34 47 —13 18 -5 7 -2 3 | —-1]2
2 21 —29 8 —11 3 —4 1 -1] 0 |1
3 1 —493 131 —35 66 —18 5 —-10| 3 |—-1/3
2 383 —100 26 —47 12 -3 5 —-1] 0 |2
3 —204 52 —13 22 -5 1 -1 0 0 |1
4 1 —8103 | 2145 | =572 | 462 | —-126 | 35 | =30 | 9 | -3 |4
2 6477 | —1668 | 429 | —330 | 84 -21| 15 | -3| 0 |3
3 || —4080 | 996 —238 | 165 —36 7 -3 0 0 |2
4 1836 —420 91 —54 9 -1 0 0 0|1
5 1 —2210 | 585 —156 | 42 —126 | 35 | —-10| 3 | —-1]|5
2 1768 —455 117 -30 84 —21 5 -1 0 4
3 || —1125 273 —65 15 —36 7 -1 0 0|3
4 561 —124 26 -5 9 -1 0 0 0|2
5 —204 40 -7 1 -1 0 0 0 0|1

TABLE 5.2. negative index m-dimensional integer inter-
lacing Fibonacci sequences .#.™7 corresponding to the
renumbered Fleck number quotients obtained from the se-
quence terms .Z™7 = nF(—2r + 1, (—r + j) (mod n)). Values
for m =1,2,3,4,5, with 1 <j <m, and -8 <r < 1, are given.
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