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The Wonder Physical 

It is the light that unveils the soul 

Dispelling darkness of the unknown 

Elevating worlds of the quantum 

That whirl in magic and momentum 

~ ♂ ~ 

  

 

 

 





 

SUMMARY 

 

The topic of this doctoral thesis is the magnetic resonance spectroscopy (MRS) of 

the neurotransmitter γ-aminobutyric acid (GABA). Its scope encompasses areas of 

MRS of GABA that currently require material methodological improvement and 

further empirical investigation. Thus, the work presented herein has two overarching 

objectives. Firstly, to develop MRS of GABA by addressing outstanding 

methodological limitations of the technique, namely (i) contamination of the GABA 

signal by signals from macromolecules and (ii) issues regarding the absolute 

quantification of MRS-measured GABA concentration. Secondly, this thesis 

describes an investigation of the role of GABA in the haemodynamic response as 

measured with functional magnetic resonance imaging. This multimodal study both 

brings together the methodological developments described earlier in the thesis into 

practical implementation and attempts to address certain unresolved issues with 

respect to associating GABA concentration with the haemodynamic response. 

In Chapter 1, the basic physical principles and methodology of MRS are detailed. In 

Chapter 2, the neurobiology of GABA and the detection of the GABA signal by 

MRS are discussed. A new method for absolutely quantifying GABA in volumes 

composed of heterogeneous brain tissue compartments is introduced and validated 

in Chapter 3. This is followed by an investigation of how much error is introduced 

into the absolution quantification of GABA from tissue segmentation procedures in 

Chapter 4. In Chapter 5, the repeatability of MRS of GABA with and without 

contamination from macromolecules is assessed. Chapter 6 describes the 

multimodal study of the role of GABA in the saturation of the haemodynamic 

response through so-called haemodynamic contrast tuning with the use of a graded 

visual contrast stimulus. Numerical simulations of the editing efficiency of and the 

impact of frequency drift on MRS of GABA with and without macromolecule signal 

suppression are then presented in Chapter 7. Finally, in Chapter 8, this thesis 

concludes with a general discussion of the empirical findings of the research 

described in the earlier chapters and a commentary on the current and future 

advances of MRS of GABA in addition to what inferences can be appropriately 

made when using measures of GABA concentration. 
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Preface 

 

Magnetic resonance imaging (MRI) as it is known today has come a long way since 

its beginnings in the 1970s. It may go without saying that its application in both 

medicine and neuroscience has truly revolutionised both fields. This doctoral thesis 

focuses on one particular modality of magnetic resonance, that of 1H magnetic 

resonance spectroscopy (MRS). Although historically older than MRI, MRS has not 

attained the same level of popularity as MRI. Consequently, there is at present a 

pressing need for methodological development and optimisation of this imaging 

technique. 

Ever since its advent MRS has provided invaluable insight into the molecular 

workings of living systems. As a technique that is based on the physical principles 

of nuclear magnetic resonance, MRS detects the signals that arise from specific 

molecules when they are placed in a strong magnetic field and perturbed by 

radiofrequencies. Since the electromagnetic radiation of radiofrequencies does not 

harm living tissue, MRS has found a strong footing in basic and clinical 

neuroimaging. To this day it continues to be unmatched in its ability to noninvasively 

probe the signatures of chemicals in the living human brain. 

More recently, MRS has been increasingly employed as a tool to measure 

the biochemical concentration of the major inhibitory neurotransmitter γ-

aminobutyric acid (GABA). GABA is one of the most important neurochemicals, 

playing an integral part in a multitude of functions in the brain. In the last few years 

it has become apparent that MRS is the neuroimaging modality of choice for in vivo 

investigations of GABA and its role in behaviour, cognition, neurophysiology, 

neuropsychiatric disorder and neurological pathology, so much so that its 

methodological improvement and optimal application have become strongly active 

areas of research. 

The work presented in this doctoral thesis consists of several theoretical 

investigations, experimental studies and simulations aimed at advancing the 

methodology of the MRS of GABA. In particular, attempts were made to address 

outstanding methodological issues concerning the absolute quantification of GABA 

concentration as well as the significant problem of contamination by 

macromolecules in the GABA signal. On the whole, much of the work in this thesis 
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was geared towards dealing with this latter problem. The methodological 

developments were then incorporated into a multimodal imaging study that 

investigated how GABA is associated with neurovascular signals measured by 

functional magnetic resonance imaging (fMRI). 



 

1. 1H Magnetic Resonance Spectroscopy: 

Principles and Methods* 

 

1.1 Summary 

In this introductory chapter, an overview of 1H MRS is presented. First, the basic 

physical principles of this imaging technique are described, starting with the 

phenomenon of nuclear magnetic resonance (NMR) and moving towards principles 

relevant to MRS. From here the chapter continues onto the techniques, acquisition 

sequences and protocols by which the MRS signal is optimally detected. The 

standard data processing steps that are taken to unambiguously resolve NMR 

resonances of interest are then discussed. This chapter concludes with a discussion 

of the theoretical principles and general methodologies of signal quantification. 

  

                                                           
* The content in this chapter is based on various printed and electronic sources, including de Graaf 
(2007), de Graaf and Rothman (2001) and many other scientific articles. 
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1.2 Basic Principles 

1.2.1 Nuclear Magnetic Resonance 

Since its discovery by Isidor Isaac Rabi (1937), the phenomenon of NMR has forever 

changed the state of imaging science. Subsequent pioneering work by scientists such 

as Edward Mills Purcell (1946), Felix Bloch (1946), Paul Lauterbur (1973) and Peter 

Mansfield (1973) vastly extended the application of NMR in both physics and 

medicine. Indeed, the application of NMR, and later of magnetic resonance imaging 

(MRI), in the basic and clinical sciences has provided incomparable insight into the 

natural world. This has made NMR one of the most important discoveries and MRI 

one of the most important inventions in modern science. At its basic core, NMR can 

be summarised as the scientific study of the magnetic and energetic properties of 

atomic nuclei (de Graaf, 2007). The frequencies that are studied lie within the 

radiofrequency (RF) range of 10–800 MHz. Since the energy changes that occur 

when nuclei are perturbed by magnetic fields do not involve ionising radiation, NMR 

has been extremely useful for medicine, in particular diagnostic medicine. In the 

same fashion, its use in the neurosciences has propelled human understanding of the 

brain considerably, including how it is structured, how it functions and how it is 

disrupted by pathologies and disorders. This chapter first begins by laying out the 

basic physical principles of NMR, after which certain principles of NMR highly 

relevant to MRS are considered.  

1.2.1.1 Larmor precession 

In classical physics, atomic nuclei can be described as having an angular momentum 

L, which is dependent on their mass and velocity of rotation about a fixed point in 

space. Rotating nuclei are also associated with a given electrical charge that gives 

rise to a current loop, and consequently a magnetic field. The magnetic field can be 

quantified by measuring the magnetic dipole moment μ, which has magnitude and 

direction. The angular momentum and magnetic moment of a given nucleus are 

intrinsically related, summarised as 

 𝜇𝜇 = 𝛾𝛾𝛾𝛾 [1.1] 

where γ is the gyromagnetic ratio: the relation between an object’s magnetic moment 

and its angular momentum. When placed in an external magnetic field B0, the 

magnetic moment will alter its orientation according to the differential equation 



1 H  M R S :  P R I N C I P L E S  A N D  M E T H O D S | 3  

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛾𝛾𝜇𝜇 × 𝐵𝐵0 [1.2] 

As the magnetic moment is constant, Eq. [1.2] shows that μ rotates about B0 over 

time t. This can also be described as follows: 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜇𝜇 × 𝜔𝜔0 [1.3] 

This is known as the Larmor precession of nuclei (named after the physicist and 

mathematician Joseph Larmor). Combining Eqs. [1.2] and [1.3] gives the well-

known Larmor equation: 

 𝜔𝜔0 = 𝛾𝛾𝐵𝐵0 [1.4] 

where ω0 is the angular precessional frequency, or more commonly, the Larmor 

frequency of an atomic nucleus (in rad s–1), which is proportional to B0, the strength 

of the external magnetic field (in T). The gyromagnetic ratio γ is expressed in rad T–

1 s–1. For 1H protons, γ is 26.752 × 107 rad T–1 s–1. However, it is conventional to 

express the Larmor frequency in MHz T–1. Eq. [1.4] can then be rewritten giving 

 𝑓𝑓0 =
𝛾𝛾2𝜋𝜋𝐵𝐵0 [1.5] 

The gyromagnetic ratio of 1H protons by this convention equals 42.57 MHz T–1. 

Larmor precession is the fundamental physical basis of NMR. 

1.2.1.2 Quantum mechanical description 

The classical description of the precession of atomic nuclei as mathematically 

represented in Eq. [1.4] is useful for understanding the relation between angular 

momentum, magnetic moment and the Larmor frequency. However, to fully 

understand the origin of the NMR signal with respect to spectroscopy it is necessary 

to provide a quantum mechanical description of NMR. 

Through quantization of the elementary particles involved in spin precession 

(i.e., 1H protons), it is shown that, firstly, the amplitude of angular momentum L is 

limited to discrete values according to 

 𝛾𝛾 = � ℎ2𝜋𝜋��𝐼𝐼(𝐼𝐼 + 1) [1.6] 

where h is Planck’s constant and I is the spin quantum number, which can only be 

integral or half-integral. Hydrogen nuclei have a spin quantum number of 1/2. 

Secondly, the direction of the angular momentum is characterised by the magnetic 

quantum number m, which is also limited to discrete values. This is given by 

 𝛾𝛾 = � ℎ2𝜋𝜋�𝑚𝑚 [1.7] 
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where m can have 2I + 1 values, such that 

 𝑚𝑚 = 𝐼𝐼, 𝐼𝐼 − 1, 𝐼𝐼 − 2, . . ., −𝐼𝐼 [1.8] 

As in classical physics, in quantum mechanics the angular momentum is directly 

proportional to the magnetic moment, as defined by the gyromagnetic ratio. For a 

given discrete orientation (e.g., along the longitudinal axis z), the quantized 

magnetic moment is given by 

 𝜇𝜇𝑧𝑧 = 𝛾𝛾 � ℎ2𝜋𝜋�𝑚𝑚 [1.9] 

When elementary particles are placed in an external magnetic field, they 

acquire magnetic energy E. In the context of the quantum mechanical description of 

NMR, the associated energy of atomic nuclei is given by 

 𝐸𝐸 = −𝜇𝜇𝑧𝑧𝐵𝐵0 = −𝛾𝛾 � ℎ2𝜋𝜋�𝑚𝑚𝐵𝐵0 [1.10] 

As described previously, the number of values ascribed to an elementary particle’s 

magnetic quantum number is 2I + 1. This means 1H nuclei only have two energy 

levels, equal to –1/2 and +1/2. The difference between energy levels can then be 

formulated as follows: 

 Δ𝐸𝐸 = 𝛾𝛾 � ℎ2𝜋𝜋�𝐵𝐵0 [1.11] 

Nuclear transitions between energy levels are caused by the absorption or emission 

of radiation with energy ΔE. Thus, this gives the fundamental quantum mechanical 

basis for NMR spectroscopy, expressed as 

 Δ𝐸𝐸 = ℎ𝑓𝑓0 [1.12] 

Eq. [1.12] is known as Bohr’s frequency condition and states that the frequency of 

emitted radiation f0 is equal to the difference in energy levels divided by h. Finally, 

it can be seen that by combining Eqs. [1.11] and [1.12] the Larmor equation is once 

again derived: 

 𝑓𝑓0 =
𝛾𝛾2𝜋𝜋𝐵𝐵0 [1.13] 

The quantum mechanical description of NMR is the only way to fully understand 

the origin and physical manifestation of NMR spectroscopy, and describes the basis 

of certain spectral characteristics described later in this chapter. 
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1.2.1.3 Macroscopic magnetisation and B1 excitation 

The Larmor precession of 1H protons is classically illustrated with a schematic of 

the so-called non-rotating laboratory frame of reference (Figure 1.1a). This 

succinctly describes spin precession for a single magnetic moment. However, in 

actuality the NMR signal arises from the sum of all detected magnetic moments. The 

difference in energy levels for atomic nuclei as described in Eq. [1.12] means that 

the spins will have different spin states. The two spin states for 1H nuclei (m = +1/2 

and m = –1/2) lead to magnetic moments being either parallel or antiparallel with 

B0. These are respectively called the α and β spin states. The quantized magnetic 

moments parallel or antiparallel with B0 are represented in Figure 1.1b, using the 

rotating frequency frame of reference. Moreover, the small difference in energy 

levels of the atomic nuclei leads to a slightly larger population of spins in the lower 

energy (parallel) α state than in the higher energy (antiparallel) β state. 

The net magnetic moment, or the macroscopic magnetisation M, will be 

equal to the sum of all individual magnetic moments μz in the macroscopic sample. 

At thermal equilibrium there is no phase coherence of spins (in the xy plane) leading 

to a net macroscopic magnetisation M along the longitudinal direction of the rotating 

frame. Phase (ϕ) refers to the orientation of spins (in rad) in the xy plane of the frame, 

while coherence refers to a uniform orientation that is parallel to a given vector in 

this plane. The population difference in α and β spins means that the net component 

of M will be parallel with B0 along the +z axis (denoted Mz). There is therefore no 

Figure 1.1  a: Larmor precession of the magnetic moment μ of an atomic nucleus in an 
external magnetic field B0 in the non-rotating laboratory frame of reference. The amplitude 
(μz) and orientation of rotation (θ) are quantized. b: Rotating frequency frame of reference 
displaying the quantized magnetic moments of 1/2-spin hydrogen nuclei precessing parallel 
(α) or antiparallel (β) to B0. Reproduced from de Graaf (2007). 
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net magnetisation along the transverse plane. The magnitude of the longitudinal 

magnetisation at thermal equilibrium (M0) is given by 

  𝑀𝑀0 = ∑ 𝜇𝜇𝑖𝑖𝑛𝑛𝑖𝑖=1 = 𝑛𝑛𝛼𝛼𝜇𝜇𝑧𝑧 + 𝑛𝑛𝛽𝛽𝜇𝜇𝑧𝑧 = 𝛾𝛾 � ℎ4𝜋𝜋� (𝑛𝑛𝛼𝛼 − 𝑛𝑛𝛽𝛽) [1.14] 

where nα is the number of spins parallel to B0 and nβ is the number of spins 

antiparallel to B0. 

In order to detect the NMR signal, the magnetisation must be transferred to 

the transverse plane. This is achieved by applying RF energy at the resonant 

frequency of nuclear spins. This is termed B1. In NMR, the applied B1 energy is 

generated by an oscillating RF pulse defined as B1maxcos(ωt), where B1max is the 

amplitude of the pulse, ω is the resonant frequency (from the Larmor equation) and 

t is the length of time the pulse is turned on. When the RF pulse is applied the nuclear 

spins will precess about both the static B0 field and the irradiating B1 field. When the 

frequency of the B1 pulse is equal to Larmor frequency ω0 and the pulse is applied 

along –x for a sufficient length of time, the spins will attain phase coherence (i.e., 

the spins will be non-randomly distributed in the rotating frame) and the net 

magnetisation is rotated onto the transverse plane along the vector +y (Figure 1.2). 

The net magnetisation component is now denoted My. This excitation of M0 will 

generate an electromotive force that is detected by RF receiver coils placed parallel 

Figure 1.2  Transverse excitation of nuclear spins in the rotating frequency frame of 
reference. a: At thermal equilibrium the spins are randomly distributed about the z axis. On 
the macroscopic scale this leads to a net magnetisation along +z. That is, the longitudinal 
magnetisation component Mz is equal to the magnetisation at thermal equilibrium (M0). b: 
When a second magnetic field (B1) is applied in form of an RF pulse along –x, the spins 
begin to orient towards +y. The transverse magnetisation component My then begins to 
increase in amplitude as Mz proportionally decreases. c: If the B1 field is appropriately 
calibrated and applied for long enough the nuclear spins will achieve complete coherence 
along +y. This achieves complete transverse magnetisation on the macroscopic scale 
where My is maximal and Mz is nulled. Reproduced from de Graaf (2007). 
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to the transverse plane in the MRI scanner. This is then processed by the MR 

hardware into an interpretable signal (see Sections 1.3 and 1.4). 

1.2.1.4 Longitudinal and transverse relaxation 

Excitation of the magnetisation of nuclear spins by an applied B1 field is not a static 

process; once the B1 field is no longer applied (i.e., the RF pulse is switched off), the 

spins will over time return to the net macroscopic magnetisation vector M0. This 

phenomenon has two characteristics with respect to M: a return of the net 

magnetisation to the longitudinal axis +z and the dephasing of spin coherences in 

the xy plane. These are respectively denoted longitudinal relaxation and transverse 

relaxation. 

As explained previously, to detect the NMR signal nuclear spins must be 

rotated onto the transverse plane. In a simple pulse-acquire experiment the B1 

magnetic field is applied in the form of a 90° excitation pulse—that is, the B1 field 

is calibrated such that the spins are rotated perpendicularly to B0. Once the pulse is 

switched off the longitudinal magnetisation component Mz begins to return to M0 

(Figure 1.3). This occurs because the energy from the excited spins is lost to the 

surrounding environment, the so-called “lattice”, eventually returning the 

magnetisation to thermal equilibrium. Thus, longitudinal relaxation is also called 

spin–lattice relaxation. The rate of this recovery is defined as 

 𝑀𝑀𝑧𝑧(𝑡𝑡) = 𝑀𝑀0�1 − 𝑒𝑒−𝑑𝑑/𝑇𝑇1� [1.15] 

where T1 is a constant denoting the longitudinal relaxation time of the nuclear spins, 

or in other words, the length of time it takes for the transversely magnetised spins to 

return to thermal equilibrium. When considering a pulse-acquire experiment that is 

Figure 1.3  Longitudinal (or spin–lattice) relaxation of macroscopic magnetisation. Following 
excitation by the B1 field the longitudinal magnetisation returns to thermal equilibrium in an 
exponential manner. 
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repeated (as shown in Figure 1.4), enough time must be given before the next 

acquisition to prevent saturation of the longitudinal magnetisation. Here, TR is the 

time to the repetition of the excitation pulse. For a 90° excitation RF pulse, TR is 

optimal when TR > 5T1. Should it be desired that the TR be shortened, the flip angle 

of the excitation pulse must also be reduced to obtain sufficient signal per unit of 

time. The optimal flip angle is equal to 

 𝛼𝛼𝑜𝑜𝑜𝑜𝑑𝑑 = cos−1�𝑒𝑒−𝑇𝑇𝑇𝑇/𝑇𝑇1� [1.16] 

where αopt is the optimal flip angle (called the Ernst angle) required to obtain 

maximum signal per unit of time in the acquisition. Using Eq. [1.16] one can show 

that a 90° excitation pulse is the optimum flip angle for transverse magnetisation 

when the TR is five times the T1 time constant. 

After ideal transverse magnetisation is achieved by B1 excitation, the phase 

of spins that were previously coherent begin to decohere. Simply put, the net phase 

of spins in the transverse plane begins to become random until the transverse 

magnetisation has completely dissipated. This arises from the fact that the spins 

exchange energy with each other through a process of entropy as dictated by the 

laws of thermodynamics. Transverse relaxation is therefore also called spin–spin 

relaxation. The rate of decay can be calculated as 

 𝑀𝑀𝑥𝑥𝑥𝑥(𝑡𝑡) = 𝑀𝑀𝑥𝑥𝑥𝑥(0)𝑒𝑒−𝑑𝑑/𝑇𝑇2 [1.17] 

where T2 is a constant denoting the transverse relaxation time of the nuclear spins, 

or in other words, the length of time it takes for coherent spins to fully decohere. It 

Figure 1.4  Illustration of T1 relaxation following transverse excitation by a 90° B1 pulse in a 
repeated pulse-acquire acquisition. After complete transverse magnetisation Mz is reduced 
to zero, which then exponentially recovers over time TR at rate equal to 1/T1, where T1 is 
the relaxation time constant. When TR > 5T1, the signal per unit of time is optimal and 
saturation of the longitudinal magnetisation is avoided. 



1 H  M R S :  P R I N C I P L E S  A N D  M E T H O D S | 9  

is possible to measure T2 by modifying the pulse-acquire sequence. After the initial 

90° excitation pulse the spins begin to lose coherence. In the rotating frame this is 

visualised as the magnetic moments of all spins randomly deviating away from +y 

(if the B1 field was set perpendicularly along –x). Using a vector diagram to illustrate 

this effect shows that some spins will precess slightly faster than the Larmor 

frequency, while others will precess slightly slower (Figure 1.5). These differences 

in precessional frequency will lead to the spins having vectors with different phases. 

By applying a second RF pulse that rotates the spins through a 180° inversion (a 

“180° pulse”) after a delay equal to TE/2, the phase of the spins is changed, such 

that ϕ → ϕ + π. After a second period equal to TE/2 the spins will now refocus. This 

leads to what is termed a spin echo than is detected by RF receiver coils. The interval 

between the onset of excitation and the top of the spin echo is called the echo time 

(TE). Performing multiple experiments at various echo times shows that the 

transverse magnetisation Mxy decays exponentially according to Eq. [1.17] (Figure 

1.6). 

Transverse relaxation originates from two sources of dephasing: the intrinsic 

T2 relaxation of spins and the additional dephasing caused by spatial 

inhomogeneities in the B0 magnetic field. For the latter, differences in B0 throughout 

a sample will lead to spins precessing at different frequencies (as dictated by the 

Larmor equation), leading to the spins having different phases. This difference in 

phase contributes to the decay in transverse magnetisation. Thus, the observed rate 

of transverse relaxation is equal to 

Figure 1.5  Vector diagram of the evolution of phase coherences in the spin echo 
experiment. a: The spins are completely in-phase and aligned along the +y vector following 
excitation by a 90° excitation pulse along –x. b: The spins will begin to lose their phase 
coherence during the first time delay of the echo time (TE) as a result of intrinsic T2 
relaxation and B0 inhomogeneity that causes shifts in the nominal Larmor frequency of the 
spins. c: A second 180° pulse is applied at time TE/2, which inverts the spins along the y 
axis such that their phase is reset. d: After a second delay TE/2 the spins regain phase 
coherence at the top of the spin echo at time TE. Note that the signal will have decayed 
because of T2 relaxation. 
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1𝑇𝑇2∗ =

1𝑇𝑇2 +
1𝑇𝑇2′ [1.18] 

where T2
* is the observed relaxation time, T2 is the intrinsic relaxation time and T2ʹ 

is the relaxation time of nuclear spins ascribed to B0 inhomogeneity. Whereas T2 is 

a random process arising from the laws of thermodynamics, T2ʹ is dependent on the 

external magnetic field such that 1/T2ʹ = γΔB0(r), where ΔB0(r) is the difference 

between the nominal magnetic field of the sample (Bnom) and the magnetic field at 

position r, B0(r). The dephasing caused by B0 inhomogeneities leads to a more rapid 

decay in transverse magnetisation because spins begin to precess at slightly different 

frequencies, meaning that the T2
* relaxation time will be shorter than T2. As will be 

discussed in Section 1.3, T2* relaxation has an important effect on the NMR signal 

when it is digitally processed. 

The physical mechanisms behind relaxation are numerous and complex. 

Those relevant to NMR spectroscopy include molecular motion, scalar coupling, 

dipolar coupling, chemical shift anisotropy, spin rotation interactions and 

quadrupole interactions. Common to all is the generation of fluctuations in the 

magnetic field. The intricacies of these processes are beyond the scope of this thesis, 

and although most will not be discussed here, the principles of scalar coupling and 

chemical shift will be explored in the next section as they are fundamental to NMR 

spectroscopy. Finally, it should be mentioned that when NMR data is acquired in 

vivo, the biological environment from where the signal originates has a substantial 

effect on relaxation.  

Figure 1.6  Exponential decay of transverse magnetisation (Mxy) as a function of echo time 
(TE). In this example the T2 relaxation time is 100 ms. 
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Molecules visible to NMR spectroscopy will have a range of T1 and T2 

relaxation times. It is, therefore, a matter of importance that these times are known 

before conducting an MRS study, or at the very least that their differences and how 

they will be affected by the NMR acquisition is adequately taken into account. This 

allows for the optimal choice in parameters for a given acquisition method. 

Additionally, understanding T1 and T2 relaxation effects is especially crucial in 

signal quantification when measurements are to be treated in absolute terms. This 

will be revisited in Section 1.5 and Chapter 3. 

1.2.2 Magnetic Resonance Spectroscopy 

1.2.2.1 Chemical shift 

The Larmor equation describes the precessional frequency of a 1H proton, which for 

water nuclei would resolve as a single spectral peak if represented as function of 

frequency and magnitude. However, molecules will differ in their observed 

magnetic B0 field as their nuclei are shielded by a surrounding covalent electron 

structure. These electrons produce their own magnetic moment μe, which is in 

opposition to the B0 field and reduces the magnetic field experienced at the nucleus. 

Thus, the precessional frequency of the protons within the molecular structure of 

individual metabolites will differ depending on the degree of electron shielding. As 

such, the Larmor equation is then modified to give 

 𝑓𝑓0 =
𝛾𝛾2𝜋𝜋𝐵𝐵0(1− 𝜎𝜎) [1.19] 

where σ is a shielding constant that is dependent on the chemical environment 

encompassing the atomic nuclei. This is known as chemical shift, which was first 

discovered independently by Proctor and Yu (1950) and Dickinson (1950), and is 

the key property of NMR that distinguishes MRS from MRI. Each molecule will 

have a different degree of electron shielding, leading to a different shielding constant 

and thus a different chemical shift. 

Eq. [1.19] shows that the chemical shift of metabolites will be dependent on 

the external magnetic field. This is undesirable when one wishes to compare data 

across MRI scanners of differing field strengths. Additionally, there is no substance 

in nature with a chemical shift equal to 0. To overcome this issue, the chemical shift 

scale is standardised using a reference according to Eq. [1.20]: 

 𝛿𝛿 =
𝑓𝑓𝑠𝑠−𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 × 106 [1.20] 
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where δ is the chemical shift, fs is the frequency of the sample substance and fref is 

the frequency of the reference substance. In NMR spectroscopy, fref is typically 

based on tetramethylsilane (TMS), which is assigned an arbitrary chemical shift of 

0. Chemical shift is a dimensionless quantity and is represented in parts per million 

(ppm). This scale is known as the ppm scale. 

1.2.2.2 J-coupling 

An interesting characteristic of NMR resonances is the phenomenon of single peaks 

splitting into multiple peaks. This occurs because nuclei with magnetic moments can 

interact with each other either directly through space (dipolar coupling) or through 

electrons in the chemical bonds that bind molecules (scalar coupling, also called J-

coupling). The effect of dipolar coupling can be overlooked because in a liquid 

dipolar interactions will average out to zero, leaving no net effect on the nuclear 

energy levels. This is not the case with scalar coupling, where the interactions of 

electrons through chemical bounds leads to a nonzero interaction between magnetic 

moments and, therefore, observed splitting of peaks. 

J-coupling can potentially lead to quite complex interactions between nuclei 

and, as with the physical principles of NMR spectroscopy, can only be truly 

understood through quantum mechanics. To begin simply, an uncoupled single-spin 

system A has two energy levels (α and β) that are separated according to Bohr’s 

frequency condition ΔEαβ = hfA. Since there is only one possible energy level 

transition, the nucleus will have a single resonance at frequency fA (Figure 1.7a). In 

the case of two coupled nuclei A and X of a two-spin system, each of the single 

resonances at frequencies fA and fX—which would resolve as single peaks if they 

were not coupled—will split into two equal but smaller peaks, referred to as a 

doublet (Figure 1.7b). Here, the α and β spins of nucleus A will interact with the α 

and β spins of nucleus X by virtue of the electrons in the chemical bond (i.e., by 

scalar coupling). The Pauli exclusion principle dictates that the chemically bonded 

electrons of the two molecules must be antiparallel to each other. For uncoupled 

nuclei the nuclear and electronic spins would normally be antiparallel, meaning that 

in scalar coupling, because of the Pauli exclusion principle, some of the nuclear spins 

will become parallel to each other. This leads to some of the spins having two 
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energetically less favourable states: αα and ββ. The other nuclear spins are able to 

maintain the energetically more favourable antiparallel states αβ and βα. Thus, four 

energy level transitions are now possible: ΔE12, ΔE34, ΔE13 and ΔE24. More 

importantly, these discrete transitions mean that each of the single resonance peaks 

separate into two proportionally smaller peaks, forming a doublet as previously 

stated. The peaks of the two nuclei have a frequency equal to fA ± JAX/2 and fX ± 

JAX/2, where JAX is the difference in frequency between the split peaks known as the 

J-coupling constant. An illustration of the quantum mechanical principles of scalar 

coupling based on energy levels is given in Figure 1.7b. 

Unlike chemical shift, the J-coupling constant is independent of the external 

magnetic field and so is expressed in units of Hz. Values range from 1–15 Hz for 

1H–1H bonds and 100–200 Hz for 1H–13C bonds. Both of these features of spin 

systems have fundamental roles in determining how NMR resonances are resolved 

in frequency-domain spectra. In order to fully understand the spectral patterns of all 

types of spin systems a numerical analysis using the principles of quantum 

mechanics is required; this is beyond the scope of this thesis, however. 

Figure 1.7  Energy level diagrams and corresponding NMR resonances for (a) an uncoupled 
spin system A and (b) a coupled two-spin system AX. Since only one energy level transition 
is possible for the uncoupled spin system, there is correspondingly only a single resonance 
line with frequency fA in the frequency-domain spectrum based on Bohr’s frequency 
condition ΔEαβ = hfA. For a scalar-coupled AX spin system four energy levels are apparent 
due to the mixture of the α and β spins of the A and X resonances in virtue of their chemical 
bonding. Thus, there are four possible energy level transitions. This leads to characteristic 
peak-splitting of the A and X resonances at frequencies fA and fX, respectively. Four spectral 
peaks now appear, with each of the two pairs of split peaks separated by the J-coupling 
constant JAX. See text for details. 
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Another fundamental characteristic of J-coupling is the effect that arises 

from chemically equivalent and magnetically equivalent nuclear spins. Chemical 

equivalence refers to resonances with the same chemical shift coupled to a separate 

resonance of a different chemical shift with a different J-coupling constant. 

Magnetic equivalence refers to resonances with the same chemical shift coupled to 

a separate resonance of a different chemical shift with an identical J-coupling 

constant. Thus, magnetically equivalent nuclei are also chemically equivalent. 

Certain rules apply to the spins of such nuclei. Firstly, isolated magnetically 

equivalent nuclei such as the methyl compound (CH3) do not exhibit any splitting of 

peaks. Secondly, when there are magnetically equivalent scalar-coupled spins within 

a molecule, the phenomenon of successive peak splitting is observed. A typical 

example is that of lactic acid, which is an AX3 molecule composed of two coupled 

nonequivalent spins (A and X) and three magnetically equivalent spins (X3). (In 

NMR spectroscopy, the purpose of assigning letters as identifiers of nuclear spins in 

covalently bonded molecules is to symbolically represent their chemical shift; the 

alphabetical order denotes the difference in frequency for each resonance. Thus, an 

AX spin system contains nuclei with frequencies that are comparatively further apart 

than those of an AB spin system.) If the spins A and X3 of lactic acid were not 

coupled they would resolve as single peaks (including the X3 spins as they are 

magnetically equivalent). The presence of coupling, however, means that the A spins 

interact with the X3 spins leading, successively, from a doublet to a triplet and 

eventually to a quartet (Figure 1.8). The magnetically equivalent X3 spins will 

interact with the A spins and split into a doublet only. For both resonances the 

frequency difference between each of the split peaks is equal to the coupling constant 

JAX. A third rule is that the spectral pattern (i.e., the total number of peaks and the 

amplitude ratio) of a resonance containing magnetically equivalent spins whose 

peaks successively split can be predicted by AXn, where n is the number of 

magnetically equivalent nuclei in X. For instance, for lactic acid, which has an AX3 

spin system, the A spins will resolve as a quartet with amplitude ratio 1:3:3:1. This 

is because the peaks successively split according to binomial theorem. 
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The physical phenomenon of successive splitting of spectral peaks applies to 

the coupled GABA spin system, which will be discussed in detail in Chapter 2. 

Moreover, J-coupling is the most important phenomenon of NMR that is exploited 

in the MRS to unambiguously detect the GABA signal, which will be demonstrated 

later in this chapter and directly or indirectly referred to throughout this thesis. 

1.2.2.3 J-evolution 

When scalar-coupled spin systems are perturbed by RF pulses such as those in the 

spin echo experiment, the spins will be rotated as described in Section 1.2.1.3. They 

will then evolve following the principles of relaxation. However, because of J-

coupling the dephasing of spin coherences will be more complicated than that of an 

uncoupled nucleus (the example used in Section 1.2.1.4 was based on such a 

nucleus). By investigating the AX3 spin system of lactic acid, it can be seen that 

excitation by a 90°–x pulse rotates the X3 spins such that at t = 0 (or when TE = 0) 

the magnetisation is aligned with the +y direction (Figure 1.9a). The spins then begin 

to lose phase coherence as a result of transverse relaxation. In the case of scalar-

Figure 1.8  Successive splitting of the spectral peaks of the coupled AX3 spin system of 
lactic acid. The A spins successively split from a singlet to a quartet as they are coupled to 
three X nuclei. The X spins resolve as a doublet because the three nuclei in X are 
magnetically equivalent, which do not display peak-splitting behaviour. The number of peaks 
and their amplitude ratio can be predicted as splitting occurs according to binomial theorem. 
The A quartet has an amplitude ratio of 1:3:3:1. The relative integrals of each peak can also 
be derived from the number of protons that give rise to the signal: one and three. 
Reproduced from de Graaf (2007). 
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coupled spins the changes in phase will be influenced not only by B0 

inhomogeneities but also by chemical shift and J-coupling. Since the X3 spins 

resolve as a doublet according to the principals of J-coupling, each of the resonances 

will have a different Larmor frequency according to fX ± J/2. The spins will therefore 

precess at different frequencies, leading to a difference in phase shifts at the end of 

the first delay in the spin echo experiment. As explained in the previous section, this 

arises from energy level transitions (Figure 1.7b): whereas the X3 spins resonating 

at a lower frequency (fX – J/2) are coupled to the A spins in the lower-energy α spin 

state, the X3 resonating at the higher frequency (fX + J/2) are coupled to the A spins 

in the higher-energy β spin state. Using vector diagrams this can be visualised as 

two rotating vectors XA=α and XA=β in antiphase to each other (Figure 1.9a). By 

applying a broadband 180°y pulse (i.e., affecting both spin species) at TE/2, two 

effects occur. Firstly, the phase of the spins is inverted, such ϕ = π(fX ± J/2)TE → ϕ 

= –π(fX ± J/2)TE, as expected. Secondly, the non-selectivity of the refocusing pulse 

means that it excites all frequencies in the sample, causing the coupled A spins to 

simultaneously be inverted. The lower-frequency X spins that were coupled with the 

Figure 1.9  a: J-evolution of the X spins of the AX3 spin system of lactic acid during the spin 
echo experiment. Following transverse magnetisation, the coherences begin to dephase as 
a result of transverse relaxation. Two phase coherences rotate at different frequencies 
because of the frequency offsets of spins caused by J-coupling. After time delay TE = 1/4J 
the broadband 180° pulse inverts the A spins, leading to a simultaneous rotation of the X 
spins and a resetting of their phase. Therefore, the coherences are not refocused. At times 
TE = 1/2J and TE = 1/J the phase coherences are anti-phase and in-phase, respectively. b: 
The corresponding NMR resonances display predictable phase changes at each time delay 
in the spin echo experiment as shown. At TE = 1/2J a 90° phase correction leads to the 
peaks being anti-phase. 
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Aα spins at the lower-energy level are now attached to the Aβ spins at the higher-

energy level and begin to resonate at the higher frequency, and vice versa. Thus, the 

phase rotation is reversed. At the top of the spin echo after the second delay TE/2 

the spins are not refocused and have acquired a net phase shift of 2ϕ. The dual effect 

of the refocusing pulse on phase coherence in scalar-coupled spins systems is of 

great relevance to the detection of the NMR resonances of molecules such as GABA. 

In Section 1.3.2.3 it will be shown how J-evolution and the spin echo experiment 

can be advantageously exploited to unambiguously discriminate between uncoupled 

and coupled resonances. 

The lineshape of the spectral peaks of scalar-coupled spin systems when 

detected in the spin echo experiment is dependent on the echo time, and how these 

peaks evolve throughout the experiment will depend on the phases of the spin 

coherences and on how the spin system is coupled. For this reason, the phenomenon 

just described is termed J-evolution. Furthermore, the spectral pattern of the split 

peaks of scalar-coupled resonances can be straightforwardly predicted based on the 

J-coupling constant. This is possible as the spins will rotate at their nominal Larmor 

frequency, which for scalar coupled resonances will depend on their coupling 

constant. For instance, a resonance with J = 10 Hz that resolves as a doublet will 

have both its peaks completely positively in-phase at TE = 0 s, TE = 0.2 s, TE = 0.4 

s, etc., completely negatively in-phase at TE = 0.1 s, TE = 0.3 s, TE = 0.5 s, etc. and 

anti-phase (when 90° out of phase with the RF receiver) at TE = 0.05 s, TE = 0.15 

s, TE = 0.25 s, etc. This generalises to the following rules of thumb for AX spin 

systems: when TE is a multiple of 1/2J the peaks will be in-phase or anti-phase; 

when TE is a multiple of 1/J the peaks will be in-phase (either positively or 

negatively). At all other echo times the peaks will display a mixture of phases. 

Examples of these rules and their corresponding phase shifts in vector diagrams are 

displayed in Figure 1.9b. Changes in lineshape become increasingly more complex 

with increasing numbers of coupled nuclei such that numerical simulations based on 

quantum mechanics must be used in order to fully evaluate the spectral pattern.  

1.3 Data Acquisition 

From an MR hardware perspective, the acquisition of MRS data is relatively 

straightforward. Any MR scanner can in principle detect the 1H NMR spectral signal 
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since all that is required is a superconducting magnet, a gradient coil system, an RF 

transmitter/receiver system and a computer to control the hardware and store the 

data. 

1.3.1 Free Induction Decay and Fourier Transform NMR 

Following excitation by a 90° RF pulse, the magnetisation components Mx and My 

of a given 1H proton will decay over time according to the T2
* time constant. This 

decay of the NMR signal is called the free induction decay (FID). The FID is 

mathematically represented as exponentially decaying time-domain functions 

according to: 

 𝑀𝑀𝑥𝑥(𝑡𝑡) = 𝑀𝑀0 cos[(𝜔𝜔0 − 𝜔𝜔)𝑡𝑡 + 𝜙𝜙] 𝑒𝑒−𝑑𝑑/𝑇𝑇2∗   [1.21] 

 𝑀𝑀𝑥𝑥(𝑡𝑡) = 𝑀𝑀0 sin[(𝜔𝜔0 − 𝜔𝜔)𝑡𝑡 + 𝜙𝜙] 𝑒𝑒−𝑑𝑑/𝑇𝑇2∗   [1.22] 

where the rotational frequency (or frequency offset) of the FID is represented by ω0 

– ω, that is, the difference between the Larmor frequency and the frequency of the 

sample compound (sometimes denoted as Ω or Δω); and ϕ (in rad) is the phase at 

the beginning of the decay (when t = 0). It is useful to combine Mx(t) and My(t) into 

a complex damped exponential signal, given by 

 𝑆𝑆(𝑡𝑡) = 𝑆𝑆0 exp{𝑖𝑖[(𝜔𝜔0 − 𝜔𝜔)𝑡𝑡 + 𝜙𝜙] − 𝑡𝑡/𝑇𝑇2∗}  [1.23] 

where S0 is the signal amplitude at t = 0. S(t) contains both real and imaginary 

components that correspond to the Mx(t) and My(t) transverse magnetisation decays. 

Two- and three-dimensional representations of the FID are shown in Figure 1.10. 

The time-domain signal is not very human-interpretable, however. 

Interpretation is more straightforward in the frequency domain. Thus, the time-

Figure 1.10  a: Three-dimensional view of the complex damped exponential signal of the 
free induction decay (FID). The magnetisation components Mx and My are orthogonal to 
each other and decay according to the T2* time constant. Reproduced from de Graaf (2007). 
b: A two-dimensional view of the real (Mx,t) and imaginary (My,t) components of the FID. 

 

 

This image is copyrighted. It 

can be found at its original 

source. 
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domain signal can be converted into the frequency domain by a Fourier transform 

(FT) according to 

 𝐹𝐹(𝑓𝑓) = ∫ 𝑆𝑆(𝑡𝑡) exp(−𝑖𝑖2𝜋𝜋𝑓𝑓𝑡𝑡)𝑑𝑑𝑡𝑡+∞−∞   [1.24] 

The FT produces real and imaginary frequency-domain signals, which again 

correspond to the Mx and My magnetisation components of the FID, respectively. 

These are represented as 

 𝑅𝑅(𝑓𝑓) = 𝐴𝐴(𝑓𝑓) cos𝜙𝜙 − 𝐷𝐷(𝑓𝑓) sin𝜙𝜙  [1.25] 

 𝐼𝐼(𝑓𝑓) = 𝐴𝐴(𝑓𝑓) sin𝜙𝜙 + 𝐷𝐷(𝑓𝑓) cos𝜙𝜙  [1.26] 

where 

 𝐴𝐴(𝑓𝑓) =
𝑆𝑆0𝑇𝑇2∗1+(𝑓𝑓0−𝑓𝑓)2𝑇𝑇2∗2 [1.27] 

 𝐷𝐷(𝑓𝑓) =
𝑆𝑆0(𝑓𝑓0−𝑓𝑓)𝑇𝑇2∗21+(𝑓𝑓0−𝑓𝑓)2𝑇𝑇2∗2  [1.28] 

A(f) and D(f) refer to the absorption and dispersion mode spectral lineshapes of the 

frequency-domain NMR signal (Figure 1.11). The absorption lineshape has a full 

width at half maximum (FWHM) equal to 1/(πT2
*). In a spectrum acquired in vivo, 

spectral peak separation and metabolite quantification is reliant on the linewidth of 

the Lorentzian absorption peak, which itself is dependent on both the intrinsic T2 of 

a given metabolite and the magnetic field homogeneity. As a rule, a metabolite with 

a relatively short T2 will have a relatively broad spectral linewidth whereas a 

metabolite with a relatively long T2 will have a relatively narrow spectral linewidth. 

In terms of the FID, the rate of decay is directly related T2
* as described in Eq. [1.23]. 

Figure 1.11  Fourier transformation of the time-domain FID results in two Lorentzian peaks 
in the frequency domain. The real (Mx,t) component has an absorption lineshape while the 
imaginary (My,t) component has a dispersion lineshape. 
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1.3.2 Techniques and Pulse Sequences 

As discussed in the previous sections, the NMR signal can be detected by RF 

receiver coils in the MRI scanner when transverse magnetisation is achieved by B1 

excitation. Both the pulse-acquire and spin echo pulse sequences are able to achieve 

this. However, it is invariably desired that spatial specificity is obtained should 

meaningful experiments be conducted either in vitro or in vivo. Moreover, localising 

the detection of the NMR signal to a prescribed volume of interest (VOI) has several 

benefits on spectral data. Firstly, contamination from extracranial lipids can be 

greatly reduced when the detected signal is restricted to a volume of the brain that 

excludes tissue that may contain lipids such as fats (e.g., in the scalp). Lipid 

contamination is particularly problematic for MRS as it will lead to substantial 

distortion in the spectrum baseline. Secondly, suppression of the water resonance 

(which would dominate the spectrum if not removed) is considerably more effective 

when a prescribed VOI is used. Thirdly, achieving B0 homogeneity is easier when 

only a smaller area of the magnetic field is adjusted. 

Localised NMR spectroscopy is by and large the most dominant method 

used. Localisation is made possible by the combined use of magnetic field gradients 

that modulate the B0 field and slice-selective RF pulses that selectivity excite the 

necessary frequencies to obtain the desired VOI. Magnetic field gradients make it 

possible to achieve 2D or 3D single volume localisation or, if phase encoding is 

incorporated, multivolume localisation. The exact manner in which localisation is 

achieved is dependent on the pulse sequence of the MRS acquisition. Since localised 

MRS was first introduced a number of sequences have been developed, each with 

their own approach to localisation. These are now discussed with respect to single 

volume localisation. It will then be briefly described how these pulse sequences can 

be modified to achieve multivolume localisation. 

1.3.2.1 Single voxel spectroscopy 

Single voxel spectroscopy (SVS) is a technique whereby a single, spatially 

prescribed cuboid VOI is defined. The spatial position in the x, y and z directions in 

the MRI scanner are determined by magnetic field gradients that linearly modulate 

the B0 field. The frequencies within the spatially defined magnetic field are then 
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selectively excited by frequency-selective RF pulses to produce a spatial slice. When 

both are used in unison, a so-called 3D voxel can be localised (Figure 1.12). Two of 

the most popular SVS pulse sequences that take advantage of 2D and 3D localisation 

are point resolved spectroscopy (PRESS) and stimulated echo acquisition mode 

spectroscopy (STEAM). Both are similar in the fact that they both are variants of the 

spin echo sequence described in Section 1.2.1.4. 

Point resolved spectroscopy (PRESS) 

PRESS (Bottomley, 1987) is what is called a double spin echo sequence made up of 

a 90° slice-selective excitation pulse and two 180° slice-selective refocusing pulses 

(Figure 1.13a). A spin echo is produced following the first 180° refocusing pulse at 

time 2t1 that is then refocused by the second refocusing pulse. A second spin echo is 

formed, the top of which occurs at time 2t2. Data is acquired from this second spin 

echo. The excitation and refocusing pulses are applied at the same time as magnetic 

field gradients Gx, Gy, Gz, respectively, leading to 3D localisation. Only frequencies 

originating from the intersection of all three planes are detected after time 2t1 + 2t2 

(which equals the TE of the PRESS sequence). 

Stimulated echo acquisition mode (STEAM) 

STEAM (Frahm et al., 1987) is a multi-spin echo sequence that employs, in addition 

to magnetic field gradients, three 90° slice-selective excitation pulses, which will 

generate, three FIDs, four spin echoes and one stimulated echo (Figure 1.13b). The 

Figure 1.12  Localisation in single voxel spectroscopy is achieved by exciting the 
magnetisation of spins in three orthogonal planes. This is possible by simultaneously 
applying slice-selective excitation RF pulses and magnetic field gradients in each plane. 
Unwanted coherences that originate from outside the volume of interest (black cube) can 
be dephased by using crusher gradients in the localising pulse sequence. Reproduced from 
Jung (1996). 
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first two 90° pulses are separated by a delay TE/2 and produce at spin echo at time 

TE. The third excitation pulse is applied after the second pulse after a second delay 

called the mixing time (TM). The second spin echo is formed at time 2TM followed 

shortly thereafter by the stimulated echo. The two remaining spin echoes form at 

times TE/2 + 2TM and TE + 2TM, respectively. 

Several other SVS pulse sequences have been developed since PRESS and 

STEAM were first introduced, including localisation by adiabatic selective 

refocusing (LASER) (Garwood and DelaBarre, 2001) and spin echo, full intensity 

acquired localised spectroscopy (SPECIAL) (Mlynárik et al., 2006). These have 

their own advantages over PRESS and STEAM but they will not be discussed here. 

1.3.2.2 Chemical shift imaging 

Much like conventional techniques in fMRI, MRS is also able to acquire data over 

multiple voxels. Chemical shift imaging (CSI), or MRS imaging (MRSI), is a multi-

voxel technique whereby the spatial distribution of the spectral signal of metabolites 

can be distinguished. This is achieved by incorporating phase-encoding gradients 

into a standard localised MRS sequence. 

1.3.2.3 Spectral editing 

As it was demonstrated earlier, J-coupling has a distinctive effect on scalar-coupled 

spin systems in the spin echo experiment. If the pulse sequence is modified to 

include frequency-selective pulses it is possible to selectively perturb the 

Figure 1.13  Pulse sequence diagrams for (a) point resolved spectroscopy (PRESS) and 
(b) stimulated echo acquisition mode spectroscopy (STEAM). Time delays and nominal flip 
angles for each of the excitation and refocusing sinc pulses are indicated. Magnetic field 
gradients for spatial localisation are displayed as ramped rectangles. Echo time (TE) crusher 
gradients are highlighted in light grey and the mixing time (TM) crusher gradient in STEAM 
is highlighted in dark grey. In the STEAM sequence refocusing field gradients (indicated by 
the dotted boxes) can be placed to either side of the TM delay. Reproduced from de Graaf 
(2007). 
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magnetisation of specific coupled spins, in virtue of the principles of J-coupling. 

This technique is termed spectral editing, which is defined as any NMR technique 

that exploits the scalar couplings of a spin system in order to distinguish it from all 

other uncoupled resonances. By exploiting the couplings of spin systems it possible 

to unambiguously detect resonances that are normally overlapped by more intense 

peaks. There are two main forms of spectral editing: J-difference editing and 

multiple quantum coherence editing. Since the former constitutes the principle MRS 

technique used in this thesis, the latter will not be discussed. 

J-difference editing 

The J-difference editing experiment is a spin echo sequence that includes two 180° 

frequency-selective refocusing pulses placed symmetrical about the 180° slice-

selective pulse (positioned in time at TE/2) (Figure 1.14a). These frequency-

selective pulses are termed editing pulses as they will selectively invert scalar-

coupled spins based on their chemical shift while leaving all other uncoupled spins 

unaffected. As the name suggests, J-difference editing involves the subtraction of 

two scans: in the first the editing pulses are applied on resonance (the “ON” scan), 

Figure 1.14  a: In the J-difference editing experiment, two 180° frequency-selective 
refocusing (editing) pulses are added to the standard spin echo sequence. The editing 
pulses selectively excite the A spins in the ON scan, whereas they are not applied or are 
applied far off resonance in the OFF scan. Reproduced from de Graaf (2007). b: Vector 
diagrams illustrate the behaviour of spin coherences in the ON scan. When the 180° pulse 
is applied after a time delay TE/4, the A spins are selectively inverted, which causes the X 
spins to reverse in rotation. However, their phases are not reset as would occur in a typical 
spin echo experiment. Thus, after a second time delay TE/4 the coherences are refocused 
along +y, eventually becoming in-phase at time TE/2. 
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while in the second the editing pulses are either not applied or are applied far off 

resonance (the “OFF” scan). In the OFF scan the coherences of the scalar-coupled 

spins evolve as they would in a typical spin echo experiment, with the broadband 

slice-selective 180° pulse simultaneously resetting their phase and changing their 

rotation (as described in Section 1.2.2.3 and Figure 1.9). When the editing pulses are 

applied in the ON scan the behaviour of the coherences is different. Using AX3 spin 

system of lactic acid once more, if the selective 180° pulses are set to selectively 

excite the A spins, the effect will be that the A spins will be inverted. This will cause 

the X spins to reverse in their rotation. That is, and as stated before, the slower 

rotating X spins linked to the Aα spins are now linked to the Aβ spins and begin to 

resonate at a higher frequency, and thus rotate faster. Therefore, the nonselective 

180° pulse will end up refocusing the phase evolution leading to the X spins being 

completely in-phase after delays that are multiples of TE/2. This is more easily 

Figure 1.15  J-difference editing of a generic AX two-spin system. a: A simulated spectrum 
showing how the A and X resonances of interest (grey lines) are overlapped by more intense 
signals originating from lipids and water. b: In the OFF scan, the X spin evolves as normal 
becoming inverted at TE = 1/J since the frequency-selective 180° editing pulses do not affect 
the A spin. Spin A is not shown as it has been removed during water suppression. c: When 
the editing pulses are applied in the ON scan, the X spin is selectively refocused, becoming 
in-phase with all other uncoupled resonances at TE = 1/J. d: Subtraction of the ON and OFF 
scans will remove the uncoupled resonances while unambiguously resolving the edited X 
spin. e: Adding the two scans will give the uncoupled resonances only. Adapted from de 
Graaf (2007). 
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understood using vector diagrams (Figure 1.14b). Using two symmetrically placed 

180° editing pulses in the pulse sequence ensures that the phase coherences are fully 

refocused. When the difference between the ON and OFF scans is taken, only the 

coupled spins that were affected by the editing pulses remain. A graphical 

illustration of a spectrally edited generic AX two-spin system is provided in Figure 

1.15 to more concretely demonstrate the elegance of J-difference editing and how it 

can unambiguously detect resonances that are typically overlapped by other 

resonances. 

Note that J-difference editing can be applied to any scalar-coupled spin 

system; for the remainder of this thesis, however, this technique is treated strictly in 

relation to editing of the GABA spin system (hereafter denoted GABA-editing or 

GABA-MRS). The J-difference editing experiment as it applies specifically to the 

detection of the GABA signal will be discussed in detail in Chapter 2. Finally, it 

should be pointed out that there are other MRS techniques that can also 

unambiguously resolve the GABA resonances (e.g., multiple quantum coherence 

editing and 2D spectroscopy), but these are beyond the scope of this thesis. 

1.3.3 B0 Field Homogeneity 

The practical applications of MRS in modern brain imaging tend to dominated by 

investigations of local areas of interest in the brain. As such, SVS is arguably the 

most popular implementation of MRS in neuroscience. The acquisition of data from 

a single VOI, and therefore metabolite concentration quantification (see Section 

1.5), relies quite heavily on a homogenous magnetic field. This becomes even more 

critical, and challenging, in vivo given the marked non-uniformity of brain 

structures. The homogeneity of the magnetic field of an object, be it a phantom or a 

brain, depends on the object’s magnetic susceptibility χ, which denotes the degree 

of magnetisation an object will experience in the presence of an applied magnetic 

field. Ferromagnetic materials have a χ >> 1 and MR-compatible materials have a χ 

<< 1. The macroscopic magnetisation of a given object or sample can then be 

approximated as 

 𝑀𝑀 ≈ 𝜒𝜒𝑑𝑑0𝐵𝐵0 [1.29] 

where μ0 is the magnetic permeability in a vacuum. Recalling the Larmor equation, 

Eq. [1.29] demonstrates that interactions between magnetic susceptibility and B0 will 

shift the Larmor frequency of nuclear spins. 
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The impact of differences in the magnetic susceptibility of brain tissue 

compartments on the NMR signal can now be illustrated. It is useful to consider the 

brain as a composition of n small volumes, each with a constant but differential 

homogeneous B0 field. Given that the head contains air- and liquid-filled cavities 

and sinuses, which will adversely affect magnetisation, the total NMR signal from 

the summed n volumes will arise from a heterogeneous mixture of magnetic fields, 

each with different frequencies. This is given by 

 𝑆𝑆(𝑡𝑡) = 𝑆𝑆0 exp(𝑖𝑖𝑓𝑓0𝑡𝑡 − 𝑡𝑡/𝑇𝑇2)∑ exp(𝑖𝑖Δ𝑓𝑓𝑛𝑛𝑡𝑡)𝑁𝑁𝑛𝑛=1   [1.30] 

where N equals the total number of volumes and Δfn is the frequency difference 

between the Larmor frequency f0 and frequency f in volume n. In a homogeneous 

B0 field Δfn = 0, which will lead to each n volume having an identical Lorentzian 

absorption peak. In other words, the FWHM of the frequency-domain signal will 

equal 1/(πT2
*). If each n volume has a different frequency, due to the differences in 

magnetic susceptibility of the tissue compartment in question, the Lorentzian peaks 

will not add coherently, leading to broadening of the summed signal and a reduction 

in spectral resolution and signal sensitivity. Figure 1.16 illustrates the effect of B0 

inhomogeneity using simulated spectral data. 

1.3.4 Chemical Shift Displacement 

Localised spectroscopy is reliant on spatial slice selection using magnetic field 

gradients and RF pulses. As discussed in Section 1.3.2.1, a volume of tissue from 

which the NMR signal is detected can be localised by exciting orthogonal slices 

using frequency-selective RF pulses. Since the slice selection is not only spatially 

Figure 1.16  Simulated 1H MRS data displaying the glycine (Gly) and GABA resonances. 
When the B0 field is homogeneous, the peaks display excellent spectral resolution and a 
high signal-to-noise ratio (SNR). In the presence of B0 inhomogeneity, spectral resolution is 
lost and SNR is decreased. Increased line-broadening is also seen. 
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dependent but frequency-dependent as well, the frequencies that are excited will be 

influenced by their chemical shift. Consequently, a frequency-dependent spatial 

displacement in detected metabolite signals will occur. This is known as chemical 

shift displacement (CSD). The CSD of a given metabolite based on a given gradient 

strength can be calculated as 

 Δ𝑥𝑥 =
Δ𝜔𝜔𝛾𝛾𝐺𝐺𝑥𝑥  [1.31] 

where Δx is the CSD in the x direction, Δω is the difference in frequency between 

two compounds (e.g., between water and lipids) and Gx is the strength of the 

magnetic field gradient. This spatial–frequency displacement phenomenon requires 

attention by spectroscopists as the majority of given metabolite signals may not 

necessarily originate in the volume of tissue prescribed at acquisition. CSD is 

potentially problematic for volumes prescribed close to the scalp, skull and air 

cavities. One can reduce CSD by altering the direction or sequence order of the 

gradients, increasing the gradient strength, increasing the bandwidth of the 

frequency-selective RF pulses or changing the frequency of the RF pulses such that 

Δω is decreased (e.g., offsetting the transmitter frequency to match the 2.0 ppm N-

acetylaspartate resonance instead of water). 

1.3.5 Water Suppression 

The NMR signal of water (δ = 4.7 ppm) is of an order of magnitude 10,000 times 

greater than the majority of metabolites in the human brain. Consequently, the water 

peak greatly dominants the 1H NMR spectrum, obscuring the peaks of metabolites 

of all other brain metabolites. Suppression of the water signal then becomes a 

requisite for unambiguous detection of metabolite peaks. A multitude of water 

suppression techniques are available and they can be classed into four categories: 

frequency-selective excitation methods, relaxation-based methods, spin echo-based 

methods and subtraction methods. For the purpose of this thesis, only an example of 

a technique that combines the principles behind frequency-selective and relaxation-

based water suppression will be discussed. 

Suppression by variable pulse power and optimised relaxation delays 

(VAPOR) (Tkáč et al., 1999) can achieve efficient suppression of the water signal 

while minimising unwanted suppression of resonances near the water peak. VAPOR 

makes use of seven frequency-selective asymmetric RF pulses that selectively excite 

the water resonance, each of which are followed by a crusher gradient to dephase all 
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coherences in the transverse plane. The delay between each pulse is optimally varied 

such that recovery of the water signal by T1 relaxation is eventually nullified by the 

seventh pulse. A primary advantage of VAPOR is its ability to optimally suppress 

the longitudinal magnetisation of water in spite of the recovery experienced through 

T1 relaxation. Secondly, by varying the B1 power of the frequency-selective pulses 

by a factor of 1.78 a wide range of nominal flip angles can be accommodated that 

can still achieve excellent water suppression. Thus, VAPOR is relatively insensitive 

to T1 and B1 variations. It is a trivial task to incorporate VAPOR into other localised 

MRS sequences such as PRESS and STEAM. 

1.3.6 Outer Volume Suppression 

Contamination of spectral data by outer volume lipids occurs as a result of CSD. 

Significant contamination will lead to large distortions in the spectral baseline in 

addition to obscuring the resonances of other molecules. While crusher gradients 

applied during water suppression and localisation work to dephase outer volume 

resonances, imperfect slice profiles will allow some degree of lipid signal to bleed 

into the VOI. Therefore, it is necessary to incorporate a technique to eliminate the 

signals arising from these resonances.  

The methodology of outer volume suppression (OVS) is very similar to water 

suppression. Slices (or slabs) are spatially localised along the edges of the VOI and 

magnetised by slice-selective excitation using magnetic field gradients. A crusher 

gradient is applied subsequent to slice selection to dephase excited coherences. As 

with water suppression, repetitions of OVS modules will lead to improved 

suppression. When applied in an optimal fashion all signals arising from outside the 

VOI (e.g., from muscle, lipids, the eyes and the scalp) can be prevented from 

contaminating the localised MRS signal. 

While OVS will reduce lipid contamination, in vivo spectra will still contain 

a prominent macromolecular contribution arising from large molecules naturally 

occurring in living tissue. As stated in the Preface, addressing the significant issues 

posed by macromolecules to GABA-edited MRS constitutes a key aim of the 

research presented in this thesis. Macromolecular contamination and techniques to 

deal with this are addressed in Chapters 2 and 5. 
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1.4 Data Processing 

Acquisition of the raw MRS data requires a certain degree of signal processing in 

order for it to be interpretable, useful and applicable to specific research questions. 

The FT of the time-domain signal into the frequency domain allows certain 

mathematical manipulations to be performed on the FID to improve both spectral 

resolution and signal sensitivity. Spectral resolution (also termed spectral 

dispersion) describes the degree of separation of spectral peaks while sensitivity 

equates to the signal-to-noise ratio (SNR) of the signal. Both properties are crucial 

for unambiguous and accurate detection of metabolite resonances and for 

quantification of concentration levels. The next few sections describe standard data 

processing steps that are typically applied to raw MRS data prior to quantification. 

1.4.1 Apodization 

Unprocessed FIDs contain a significant degree of high-frequency noise. This will 

have a detrimental effect on detecting spectral peaks throughout the frequency-

domain spectrum. To improve spectral resolution and sensitivity of the signal, the 

FID can be filtered prior to FT. This processing step is known as apodization or time-

domain filtering. Since the FID is a time-domain signal, certain mathematical 

manipulations in the form of time-varying weighting functions can be used to 

enhance the data. 

An example of a simple weighting function applies an exponential weighting 

to the FID. This monoexponential decaying function improves the SNR of the 

frequency-domain signal by attenuating the amplitude of the noisy data points 

towards the end of the acquisition. This function is expressed as 

 𝑊𝑊(𝑡𝑡) = 𝑒𝑒−𝑑𝑑/𝑇𝑇𝑊𝑊   [1.32] 

where TW is a rate constant that determines the rate of decay of the function. An 

example of exponential filtering applied to an unprocessed FID is shown in Figure 

1.17. Although exponential weighting will enhance signal sensitivity by filtering the 

high-frequency noise, it will also increase the linewidths of the spectral peaks and 

decrease their amplitudes. This occurs because the exponential filter increases the 

decay of the FID, which will broaden the linewidths of spectral peaks in the 

frequency-domain data after FT. In other words, the observed T2
* of the NMR 
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resonances is reduced as a consequence of the exponential weighting. For this 

reason, the optimum amount of filtering when using exponential weighting is a 

matched filter, where the rate constant in Eq. [1.32] is equal to the original decay 

rate of the unprocessed FID (i.e., TW = T2
*). This achieves an optimum SNR without 

excessive line-broadening. 

An alternative weighting function uses a Lorentz-Gaussian function. This is 

given by 

 𝑊𝑊(𝑡𝑡) = 𝑒𝑒+𝑑𝑑/𝑇𝑇𝐿𝐿  𝑒𝑒−𝑑𝑑2/𝑇𝑇𝐺𝐺2   [1.33] 

where exp(+t/TL) is the Lorentzian component of the function, which is multiplied 

by exp(–t2/TG
2) to give the function a Gaussian shape. The Gaussian component 

works to cancel out the comparatively longer tails of the Lorentzian component, 

thereby narrowing the base of the function but maintaining its linewidth. In this way, 

and by careful choice of the TL and TG weighting factors, both spectral resolution 

and sensitivity can be improved simultaneously. An example of Lorentz-Gaussian 

filtering is given in Figure 1.17. 

In the end, the choice of an appropriate weighting function to filter, and the 

amount of weighting applied, is dependent on the quality of the raw data. In cases 

Figure 1.17  a: A simulated unprocessed FID (left panel) and the corresponding frequency-
domain spectrum (right panel) showing Gly and GABA resonances. b: Application of a 
match-weighted exponential filter function to the FID increases signal sensitivity (by filtering 
out high-frequency noise towards the end of the acquisition) but at the expense of line-
broadening and decreased spectral resolution, as shown in the frequency spectrum. c: If 
appropriate weighting parameters are selected, a Lorentz-Gaussian filter function can 
increase signal sensitivity while maintaining spectral resolution. 
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where data with a high SNR are acquired, simple exponential filtering with a 

matched filter can be applied, whereas in other cases where maintaining reasonably 

fine spectral resolution is paramount will dictate that a more sophisticated weighting 

function be used. There are a number of possible weighting functions available to 

spectroscopists beyond the functions described above but in most instances 

exponential filtering is the default apodization method. 

1.4.2 Zero Filling 

Zero filling involves appending zeros to the end of the FID. This processing step is 

applied in the analysis pipeline of MRS data as it can greatly improve spectral 

resolution. Figure 1.18 shows how an acquisition with relatively poor spectral 

resolution can be zero-filled sufficiently in order to better define a given spectral 

peak. The unprocessed data, which was sampled at 2000 Hz, has a relatively coarse 

spectral resolution (Δf  = 6.67 Hz) due to the number of data points acquired (N = 

300). Since the intermediate frequencies of the peak are stored in the time-domain 

data (because they fall within the frequency bandwidth) but are not displayed in the 

frequency-domain spectrum after FT because of the discrete nature of the 

transformation, appending zeros to the FID allows more points to be transformed 

into the frequency domain and therefore improved spectral resolution. Zero filling 

has diminishing returns, however. Only the frequencies stored in the FID can be 

Figure 1.18  Zero filling of data with a relatively coarse spectral resolution (Δf  = 6.67 Hz) 
can dramatically improve spectral resolution with even a low zero-filling factor. No 
observable benefit comes after four times zero filling. 
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displayed; it cannot show data that was not acquired at the outset. This is illustrated 

in Figure 1.18 by the manifold increases in zero filling on the original data. 

The primary advantage of zero filling is that it does not increase data size as 

it does not add more information—it is simply a mathematical transformation of the 

discrete digital data—but can enhance spectral resolution several fold. 

1.4.3 Residual Water Filtering 

Even with the application of water suppression techniques during acquisition, the 

4.7 ppm water peak may likely still leave some degree of residual signal in the 

frequency spectrum. This may occur due to inefficient water suppression (e.g., non-

ideal flip angles), poor B0 field homogeneity or frequency drift. Removing the 

residual water peak is an important step in processing raw MRS data for two reasons: 

(i) if the residual water signal is large enough it may introduce a distortion in the 

baseline, causing artefactual line-broadening, phase shifts or changes in lineshapes 

of metabolite peaks; (ii) spectral fitting procedures are constrained by the 

assumption that peaks have an approximately linear baseline, which will lead to poor 

fitting if a residual water signal distorts the baseline. The most popular method for 

removing residual water is by Hankel Lanczos singular value decomposition 

(HLSVD). This algorithm estimates the full parameters of the time-domain model 

used to fit an exponential damped sinusoidal function to acquired FIDs (Cabanes et 

al., 2001). The frequencies of the time-domain signal that correspond to the 

frequencies within and about the water frequency range are then selected and 

subsequently removed from the original FID. This so-called “black box” method 

requires no user input, allowing for automated water removal when incorporated into 

software packages for the processing and quantification of MRS spectra. 

1.4.4 Phase and Frequency Correction 

The FID and absorption and dispersion mode spectra of the NMR signal shown in 

Figure 1.10 and Figure 1.11 represent a signal with zero phase. However, the phase 

of the signal at t = 0 will not remain constant throughout a given experiment. 

Magnetic field gradients and head motion will both contribute to errors in the phase 

of nuclear spins. When ϕ ≠ 0, the Lorentzian peak appears as a mixture of the 

absorption and dispersion mode components (Figure 1.19a). Over a series of 

excitations in an MRS experiment, each FID will have a certain degree of phase 
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shift. Since these FIDs are usually averaged, phase errors in the signal will lead to a 

loss in SNR. This can be rectified by “phasing” the absorption and dispersion mode 

components of each individual FID according to 

 𝐴𝐴(𝑓𝑓) = 𝑅𝑅(𝑓𝑓) cos𝜙𝜙𝑐𝑐 + 𝐼𝐼(𝑓𝑓) sin𝜙𝜙𝑐𝑐   [1.34] 

 𝐷𝐷(𝑓𝑓) = 𝐼𝐼(𝑓𝑓) cos𝜙𝜙𝑐𝑐 − 𝑅𝑅(𝑓𝑓) sin𝜙𝜙𝑐𝑐   [1.35] 

By simply adjusting ϕc, the Lorentzian absorption and dispersion peaks can be 

shifted into the correct phase (Figure 1.19b). Eqs. [1.34] and [1.35] will phase the 

entire spectrum (i.e., at all frequencies), which is called zero-order phasing. 

Phase shifts will also occur on a frequency-dependent basis. This occurs 

because of off-resonance effects of RF pulses or when the RF field strength is not 

strong enough to optimally excite all the relevant frequencies. Since the shift in 

phase is most extreme at the opposite ends of the frequency spectrum, such that the 

phase is ϕ – ϕε at one end of the spectrum and ϕ + ϕε at the other end, the error is 

linearly dependent. To correct for these phase shifts, frequency-dependent, first-

order phasing can be applied. The phase correction parameter ϕc then becomes 

 𝜙𝜙𝑐𝑐 = 𝜙𝜙0 + (𝑓𝑓0 − 𝑓𝑓)𝜙𝜙1  [1.36] 

where ϕ0 is the constant, zero-order phase correction and ϕ1 is the linear, first-order 

phase correction. 

During an MRS acquisition, the transmitter frequency is centred on a 

particular frequency; usually this is the water resonance. All frequency offsets of RF 

pulses can then be considered relative to the centre frequency f0. Instabilities in the 

B0 magnetic field will cause shifts in f0, however. Over time these instabilities will 

Figure 1.19  a: Phase shifts will cause observable distortions in NMR spectra. In this 
example, the peak is 45° out of phase. b: A corresponding phase correction restores the 
peak to its ideal in-phase Lorentzian lineshape. 
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lead to approximately linear drift in the centre frequency. This typically arises from 

heating of gradient coils that will alter the magnetisation of passive shim coil 

elements. Increases in thermal energy lead to decreases in the strength of B0, causing 

f0 to drift negatively. Participant motion can also contribute to changes to the external 

magnetic field. Given that frequency offsets of RF pulses are fixed, frequency drift 

will adversely affect MRS data, leading to signal reduction, artefactual line-

broadening and decreased spectral resolution. Drift is particularly problematic for 

spectral editing as the efficiency of this technique relies quite heavily on the 

frequency selectivity of narrowband pulses. 

A number of frequency correction methods using different approaches have 

been published in the literature. Note that because of the inextricable relationship 

between frequency and phase errors, these methods simultaneously correct for 

frequency and phase. Some use the residual water peak as a reference resonance to 

estimate the correct frequency and phase (Helms and Piringer, 2001; Star-Lack et 

al., 2000), while others use a water-based navigator scan interleaved in the MRS 

acquisition (Thiel et al., 2002). It is also possible to use a predefined resonance that 

Figure 1.20  Demonstration of phase and frequency correction by spectral registration using 
simulated spectral data. a: Individual spectra from 128 FIDs prior to correction display 
frequency and phase shifts (left panel). Simulated normally distributed random phase shift 
(zero mean, 2 deg random error) and linear frequency drift (5 Hz total drift, 0.2 Hz random 
error) were applied to the data. Following spectral registration, the individual spectra are 
aligned and phased based on the frequency and phase of the first FID (right panel). b: 
Averaging the 128 uncorrected acquisitions leads to loss in SNR and line-broadening. After 
correction the average spectrum has a much improved SNR and excellent spectral 
resolution. 
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is usually well-defined in in vivo data (e.g., creatine) as a reference (Evans et al., 

2013; Waddell et al., 2007). A recent approach has proposed using a spectral 

registration method similar to motion correction in fMRI (Near et al., 2015). An 

example of spectral registration using simulated MRS data is given in Figure 1.20. 

1.5 Quantification 

A standard 1H MRS spectrum acquired in the human brain using straightforward 

localisation sequences at short TE contains a significant amount of biochemical 

information. Once the raw data has been appropriately and sufficiently processed 

and has passed quality control metrics (up until this point in the experiment pipeline), 

it can then be used for the quantification of the concentration of the molecules that 

were successfully detected by the acquisition. Historically, quantification involved 

manually estimating the area underneath spectral peaks. Modern computing has 

significantly simplified and optimised this process, however. In this section the 

theoretical principles of spectral quantification will be laid out. Firstly, however, the 

molecules detectable by 1H MRS in the brain will be briefly discussed. 

1.5.1 Brain Metabolites 

One of the chief advantages and unique aspects of MRS in comparison to other 

neuroimaging modalities is its ability to detect, noninvasively, the chemical 

signatures of a number of molecules in the living brain. These molecules have a 

plethora of functions in mammalian physiology but it is standard to refer to all 

resonances detectable by MRS as metabolites (even though not all are involved in 

metabolism in the strictest sense). Approximately 18+ metabolites can be detected 

in the in vivo rodent brain using short-echo 1H MRS at ultra high-field. An example 

of the resonances of these metabolites acquired in vivo in the rat brain at 14.1 T and 

their role in brain function is shown in Figure 1.21. Assuming good B0 homogeneity 

and the employment of optimised acquisition protocols, a similar number of 

metabolites can be detected in the living human brain with short-echo methods. A 

list of human brain metabolites detectable by 1H MRS and their typical in vivo 

concentration levels are provided in Table 1.1. Although a large number of 

molecules make up the typical in vivo neurochemical profile, with each providing 

an insight into animal physiology or biochemistry, the sensitivity of 1H MRS is 

limited to the detection of metabolites with intrinsic concentrations greater than 0.5–
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1 mM. In addition, certain molecules are invisible to MRS due to their spins being 

rotationally immobile, which causes their transverse relaxation times to be very 

short. Thus, molecules such as serotonin, dopamine, DNA and molecules bound to 

macromolecular structures cannot be detected by 1H MRS. 

Figure 1.21  In vivo 1H MRS spectrum acquired at 14.1 T in the rat hippocampus. 
Individual brain metabolites are numbered and their role in brain physiology is indicated. 
Reproduced from Duarte et al. (2012). 

 

 

 

 

 

This image is copyrighted. It can be found at its original source. 
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1.5.2 Basic Principles of Quantification 

The magnitude of the NMR signal is determined by the macroscopic magnetisation 

at thermal equilibrium M0. Since macroscopic magnetisation is proportional to the 

number of spins in the sample as defined by Eq. [1.14], and the number of spins 

corresponds to the number of detected molecules, M0 is therefore directly 

proportional to the concentration of the species in question. For this reason NMR 

spectroscopy can in principle be called a quantitative imaging method. Taken 

Table 1.1  Prototypical neurochemical profile of human brain metabolites with 
corresponding in vivo concentrations (mM). Adapted from Duarte et al. (2012). 

Alanine (Ala) 0.3 

Ascorbate (Asc) 1.4 

Aspartate (Asp) 2.1–3.1 

Phosphorylcholine (PCho) – 

Glycerophosphorylcholine (GPC) – 

PCho + GPCa 0.9–1.1 

Creatine (Cr) 3.2–5.8 

Phosphocreatine (PCr) 2.2–4.5 

γ-Aminobutyric acid (GABA) 1.3–2.5 

Glutamine (Gln)  1.6–2.2 

Glutamate (Glu) 8.9–12.8 

Glutathione (GSH) 1.1–1.4 

Glycine (Gly) 1.2 

Glucose (Glc) 1.4–2.2 

myo-Inositol (mI) 4.9–5.7 

scyllo-Inositol (sI) 0.3–0.4 

Lactate (Lac) 0.5–0.7 

N-Acetylaspartate (NAA) 11.0–13.5 

N-Acetylaspartylglutamate (NAAG) 1.0–1.1 

Phosphorylethanolamine (PE) 1.6–2.8 

Taurine (Tau) 1.3–3.3 

a The choline-containing compounds PCho and GPC are typically grouped together into a single 
concentration measurement. 
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together it can be said that in theory the signal for a metabolite M (SM) is proportional 

to the number of nuclear spins such that 

 𝑆𝑆𝑀𝑀 = 𝑘𝑘𝑛𝑛𝑀𝑀 [1.37] 

where SM is the signal originating from the metabolite in question, k is a global 

constant of proportionality that reflects several complex factors that modulate SM, 

such as RF coil loading and receive gain, and nM is the number of spins belonging 

to the metabolite (or the number of moles of the molecule). From this the molar 

concentration of the metabolite (CM) is given by 

 𝐶𝐶𝑀𝑀 =
𝑛𝑛𝑀𝑀𝑉𝑉  [1.38] 

where V is the volume of the tissue being sampled (i.e., the size of the VOI). When 

expressing concentration in terms of signal units Eq. [1.38] becomes 

 𝐶𝐶𝑀𝑀 =
𝑆𝑆𝑀𝑀𝑘𝑘𝑉𝑉 [1.39] 

These seemingly straightforward equations are in actuality a grand simplification of 

the actual relationship between the NMR signal and the biochemical concentration 

of a given metabolite. This is because the signal that is detected by the MRI scanner 

is only an indirect measure. The detected NMR signal is not a direct measurement 

of M0 but is rather a measurement of transverse magnetisation in the form of an 

induced current (electromotive force) detected by the RF receiver coils. Various 

signal amplification steps (e.g., receiver amplifier gains) performed by the RF 

receiver hardware mean that a number of factors alter the metabolite signal SM before 

it can be used offline for data processing and spectral quantification. Thus, the 

detected signal of a metabolite cannot be directly used to quantify the molar 

concentration as suggested by Eq. [1.39]. As will be discussed in the next section, 

the signal must first be calibrated in one manner or another to be able to derive a 

meaningful biochemical measurement. 

1.5.2.1 Signal calibration 

When metabolite concentrations are described in biochemical units such as mmol L–

1, mM (which refer to molarity) or μmol g–1 (which refers to molality), the quantified 

concentration is taken to be absolute. In truth, concentrations quantified in this 

manner are not absolute in the true sense of the term. This is because certain factors 

that modulate the NMR signal are either very challenging to measure (e.g., the 

physical and electrical characteristics of the RF coils) or virtually impossible to 
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directly measure in vivo (e.g., the amount of RF energy that is able to enter the VOI 

located in the brain or the proportion of nuclear spins that are invisible to detection). 

Hence, to be truly defined in absolute terms, SM would be properly expressed as 

 𝑆𝑆𝑀𝑀 = 𝑘𝑘𝐺𝐺(𝑝𝑝, 𝑠𝑠,𝜓𝜓)𝑘𝑘𝑇𝑇(𝑝𝑝, 𝑠𝑠,𝜓𝜓, 𝑟𝑟, 𝑓𝑓𝑀𝑀)𝑘𝑘𝑆𝑆(𝑝𝑝, 𝑠𝑠, 𝑟𝑟)𝑅𝑅𝑀𝑀�𝑇𝑇1,𝑀𝑀,𝑇𝑇2,𝑀𝑀,𝜓𝜓�𝑁𝑁𝐴𝐴𝑉𝑉𝑉𝑉𝐶𝐶𝑀𝑀 [1.40] 

This complex equation expands the global proportionality constant k into more 

meaningful factors (Alger, 2010). The term kG refers to the arbitrary receive gain that 

the MRI scanner applies to the RF signal for the purposes of converting the analogue 

signal into a digital format. Receive gains will be dependent on the participant (p), 

the scanner system (s) and the pulse sequence (ψ). kT is a factor relating to how 

efficiently the transmitter coil and pulse sequence are at exciting the spins of 

metabolite M. This will of course be determined by the features of the pulse sequence 

ψ, including characteristics of the RF pulses (waveform, B1 amplitude, phase, etc.), 

localisation strategy, OVS and water suppression. In addition, since the metabolite 

will have a particular frequency (fM) that the transmitter frequency must excite, kT is 

also dependent on influences from frequency offsets caused by spatial variations in 

B0 homogeneity (r). All these influences will also vary from participant to participant 

and from scanner to scanner. kS represents the sensitivity of the scanner RF coils to 

detect the NMR signal in the brain. The origin of the signal, the location of the RF 

coils in relation to this and the build details of the coil system all have an influence 

on this. An additional factor that will modulate SM is the longitudinal and transverse 

relaxation of the metabolite (RM). Signal attenuation by relaxation effects remains 

one of the most active areas of research in absolute spectral quantification. The 

difficulties arise from the fact that T1 and T2 relaxation values should ideally be 

measured on a per-subject basis using the pulse sequence employed to collect the 

data of interest. Accounting for relaxation is important in absolute quantification 

given that individual metabolites will differ in their T1 and T2 time constants. 

Moreover, the pulse sequence used will complicate things due to modulation in 

transverse magnetisation by the RF pulses and by the effects of J-evolution (in the 

case of scalar-coupled metabolites). Finally, the number of FID averages acquired 

(NAV) is an important consideration in signal quantification as it directly affects the 

SNR of the signal. Increasing the number of averages will reduce the noise in the 

signal, which would otherwise hamper the robustness of spectral quantification. 
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Obtaining values for every variable just described is, of course, 

unreasonable, particularly in a clinical setting. Clearly, then, the aim of 

quantification is far more complex in practice than in principle. Nevertheless, the 

determination of some of the factors in Eq. [1.40] can be avoided by the use of a 

concentration reference. Such a reference refers to a species of known concentration 

that is detected either external or internal to the VOI. Internal and external 

concentration referencing is now described. 

1.5.2.2 Internal concentration reference 

Internal concentration referencing refers to the use of an endogenous concentration 

reference such as tissue water, N-acetylaspartate (NAA) or creatine (Cr). Since the 

reference signal is acquired in the exact same way as the metabolites of interest, the 

signal attenuation factors kG, kT and kS are exactly the same. Therefore, many of the 

factors described in the previous section will cancel out upon division of the two 

signals. Eq. [1.40] then becomes 

 
𝑆𝑆𝑀𝑀𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 =

𝑇𝑇𝑀𝑀�𝑇𝑇1,𝑀𝑀,𝑇𝑇2,𝑀𝑀,𝜓𝜓�𝑁𝑁𝐴𝐴𝐴𝐴,𝑀𝑀𝐶𝐶𝑀𝑀𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟�𝑇𝑇1,𝑟𝑟𝑟𝑟𝑟𝑟,𝑇𝑇2,𝑟𝑟𝑟𝑟𝑟𝑟,𝜓𝜓�𝑁𝑁𝐴𝐴𝐴𝐴,𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 [1.41] 

where Sref, Rref, NAV,ref and Cref are the signal, relaxation attenuation factor, number 

of signal averages and concentration of the reference, respectively. When the 

concentration of the reference is known or assumed, Eq. [1.41] can be rearranged to 

give the concentration of the metabolite: 

 𝐶𝐶𝑀𝑀 =
𝑆𝑆𝑀𝑀𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟�𝑇𝑇1,𝑟𝑟𝑟𝑟𝑟𝑟,𝑇𝑇2,𝑟𝑟𝑟𝑟𝑟𝑟,𝜓𝜓�𝑁𝑁𝐴𝐴𝐴𝐴,𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑀𝑀�𝑇𝑇1,𝑀𝑀,𝑇𝑇2,𝑀𝑀,𝜓𝜓�𝑁𝑁𝐴𝐴𝐴𝐴,𝑀𝑀 𝐶𝐶𝑟𝑟𝑒𝑒𝑓𝑓 [1.42] 

When using an internal reference such as NAA or Cr, CM can be expressed in 

absolute terms if the concentration of NAA or Cr is assumed from literature values. 

This approach can be simplified even more by expressing the measurement in 

relative terms instead of absolute terms. That is, by simply measuring the signal area 

(or integral) of, for example, choline (Cho) and dividing it by the signal area of NAA 

(i.e., Cho/NAA), the (nominal) concentration of Cho then becomes relative to the 

(nominal) concentration of NAA. Relative quantification has the advantage of being 

the most straightforward of quantification approaches, dispelling the need to make 

complicated corrections. Note, however, that strictly speaking separate corrections 

for relaxation for the metabolite and the reference must still be made given that 

relaxation times will differ between the two. For scalar-coupled resonances that 

experience J-evolution this becomes even more crucial. Nonetheless, there are also 
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some disadvantages. While in theory NAA and Cr are stable in their intrinsic 

concentration, this may not necessarily be true in disease states. Additionally, a 

change in a relative concentration could mean that the metabolite concentration has 

altered, the reference concentration has altered or both have altered. Alternatively, 

the relaxation of either may have changed. An inappropriate conclusion could 

therefore lead to incorrect theoretical interpretations of research results or, more 

seriously, incorrect clinical diagnosis. Moreover, relative quantification may be less 

reliable than absolute quantification (Schirmer and Auer, 2000). 

Unlike referencing using endogenous metabolites, internal tissue water can 

be used for more robust absolute quantification. The water resonance can be easily 

detected by removing the water suppression modules that precede the localisation 

pulse sequence. The intrinsic water concentration is then assumed to be ~55,000 

mM, replacing Cref in Eq. [1.42]. The advantages of using water for absolute 

quantification include its very high SNR (only a few unsuppressed water scans need 

to be acquired), the ease with which water T1 and T2 relaxation times can be 

determined and its well-characterised intrinsic content in cerebral tissue 

(Christiansen et al., 1997; Ernst et al., 1993; Kreis et al., 1993). However, caution 

must be taken when using internal tissue water in disease states as pathology may 

have a dramatic effect on either the intrinsic tissue water content and/or relaxation 

times. Another issue is that of partial volume effects. This refers to the fact that a 

spectroscopic VOI is not composed of homogenous tissue compartments. 

Longitudinal and transverse relaxations times and MR visibility of tissue water differ 

markedly between grey and white matter (de Graaf et al., 2006; Ernst et al., 1993; 

Stanisz et al., 2005; Wansapura et al., 1999). Thus, the water resonance detected in 

a VOI composed of certain fractions of grey and white matter will have observed T1 

and T2 relaxation times and visible water content weighted by the composition of the 

VOI’s tissue content. The effect of partial voluming on the absolute quantification 

of GABA is dealt with more extensively in Chapters 3 and 4. Despite the 

methodological considerations that need to be taken into account, calibrating the 

spectral signal using an internal tissue water reference remains one of the most 

popular quantification approaches in 1H MRS. 



4 2 | 1 H  M A G N E T I C  R E S O N A N C E  S P E C T R O S C O P Y  O F  G A B A  

1.5.2.3 External concentration reference 

There are in general two approaches to calibrating the NMR signal using an external 

concentration reference. The first is where a phantom or vial with a solution of 

known concentration is placed within scanner bore with the participant near or 

within the RF receiver coil during data acquisition. Since the RF coils are loaded in 

the same manner for both the metabolite and reference scans, many of the factors 

due to the physical and electrical characteristics of the coils are assumed to be equal 

for both signals. The second approach is called the phantom replacement method. 

Like the aforementioned approach, here a phantom with known concentration is 

used as a reference. The key difference is that the reference signal is detected before 

or after the participant’s scan using a spherical phantom with a volume equal in size 

and position to the VOI. 

In the end, the choice of which quantification method or which endogenous 

reference to use lies on several factors, including the necessity for unambiguous 

differentiation between two concentrations (such as between healthy and disease 

states or between two groups), available time and expertise (absolute quantification 

requires more time spent on acquiring a well-defined reference signal and a 

sufficient degree of knowledge regarding appropriate methodology and potential 

pitfalls) and the kinds of data that can be reliably used. In certain instances simple 

relative quantification is perfectly valid and sufficient, whereas in others the validity 

of the experiment or clinical diagnosis is critically reliant on obtaining 

measurements in absolute biochemical units. The approach chosen in this thesis was 

that of absolute quantification using an internal tissue water reference as this allows 

1H MRS to be considered a truly distinctive quantitative imaging modality. 

1.5.3 Prior Knowledge 

The previous sections illustrate the non-trivial nature of signal quantification in 

MRS. Fortunately, the core methodology of quantification can be aided by the fact 

that many of the physical and biochemical properties of NMR resonances and 

metabolites are known or can be predicted prior to data acquisition. For instance, 

quantum mechanics imposes well-understood rules regarding J-coupling constants, 

peak splitting and the number of peaks per resonance. Moreover, properties such as 

transverse relaxation rates will be virtually identical for each resonance 

corresponding to the nuclear spins in a given molecule and can be measured as part 
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of the data acquisition process or assumed from literature values. Such prior 

knowledge can for example be used to detect metabolites of lower concentration that 

are usually overlapped by the more intense signals of metabolites of higher 

concentration (such as by distinguishing the known chemical shift of each). Prior 

knowledge is used to create basis sets of every metabolite that is theoretically 

detectable by conventional MRS. Basis sets that include more available information 

regarding the physical and biochemical characteristics of a given dataset invariably 

improve signal quantification (Hofmann et al., 2002; Mierisová et al., 1998; Ratiney 

et al., 2005; Slotboom et al., 1998; Vanhamme et al., 1997). It is important, however, 

to avoid biasing the mathematical procedure that is used to fit model functions to 

data. Therefore, hard or soft constraints on prior knowledge are usually placed on 

the model parameters to minimise bias. The use of prior knowledge has become a 

norm in spectral quantification partly thanks to the implementation of product 

operator formalism—a quantum mechanical method of numerical simulation that 

very accurately characterises nuclear spin systems (see Chapter 7 and Appendix 

B)—in many of the common analysis software tools. Programmes that can simulate 

NMR spectra include GAMMA (Smith et al., 1994), QUEST (Ratiney et al., 2005) 

and FID-A (Simpson et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 4 | 1 H  M A G N E T I C  R E S O N A N C E  S P E C T R O S C O P Y  O F  G A B A  

 



 

2. γ-Aminobutyric Acid: From Neurobiology 

to Applications in 1H MRS 

 

2.1 Summary 

In this chapter, overviews of the neurobiology and biosynthesis of GABA are given. 

It will be shown how GABA has various roles beyond those concerned with synaptic 

neurotransmission. GABAergic inhibition, the most important function of GABA, 

is discussed at length. Following these overviews, the MRS of GABA is discussed, 

with the focus set on the detection of the GABA NMR signal by J-difference editing. 

The major issue of signal contamination by macromolecules is laid out. Finally, a 

concise review of the applications of 1H MRS of GABA in basic and clinical 

neuroimaging is presented. This review will attempt to demonstrate how GABA has 

been identified as a correlate in a wide variety of behavioural, cognitive, 

neurophysiological, neuropsychiatric and neurological domains. 
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2.2 Neurobiology and Neurophysiology 

γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the 

mammalian brain that was first discovered by Eugene Roberts and Sam Frankel 

(1950). Although chemically it is an amino acid, it is neither considered an α-amino 

acid nor is it involved in the formation of proteins. Along with the excitatory 

neurotransmitter L-glutamic acid (or glutamate, Glu), GABA’s traditional function 

is in maintaining the excitation–inhibition balance of neuronal synaptic transmission 

(McCormick, 1989). This is a simplification, however. In actuality GABA’s major 

functions can be separated into functions involved with neurotransmission (tonic and 

phasic GABAergic inhibition, hyperpolarisation) and functions involved with 

metabolism (GABA to Glu/glutamine cycling, neuronal energy consumption). The 

latter will be discussed first, followed by an overview of the former. 

2.2.1 GABA: Neurotransmitter, Metabolite and More 

Beginning in the presynaptic GABAergic neuron (Figure 2.1), GABA is first 

synthesised through decarboxylation of Glu by the enzyme glutamate decarboxylase 

(GAD), which exists in two isoforms: GAD65 and GAD67. GAD65 is predominantly 

found in axon terminals while GAD67 is more widely distributed in the neuronal 

environment (Esclapez et al., 1994; Kaufman et al., 1991). It has been shown that 

both isoforms are generated by two distinct genes (Erlander et al., 1991). GABA is 

then transported in vesicles by vesicular GABA transporter (VGAT) (Jin et al., 2003; 

McIntire et al., 1997) and released into the synapse via exocytosis. Once in the 

synaptic cleft GABA either binds to GABA receptors in the postsynaptic neuron or 

is reuptaken by high-affinity sodium- and chloride-dependent protein GABA 

transporters (GAT) back into the presynaptic neuron or into neighbouring astrocytes. 

Four homologous types of GAT are known to exist, namely GAT-1, GAT-2, GAT-

3 and BGT-1 (Borden, 1996; Guastella et al., 1990). A lot of interest has been placed 

on GAT as their function is not simply to just clear GABA from the synaptic cleft 

but to also maintain the dynamic equilibrium of neuronal excitability, thus making 

their function important to tonic inhibition (which is further discussed in the next 

section) (Bernstein and Quick, 1999; Richerson and Wu, 2003). This is achieved by 

the ability of GAT to spontaneously reverse its reuptake of GABA from the 

extracellular environment (Wu et al., 2003; Y. Wu et al., 2007). Moreover, 
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exogenous increases in GABA uptake by facilitation of GAT activity by GABA 

analogues has been shown to lead to a higher degree of anticonvulsant activity 

(Bolvig et al., 1999). 

When reuptaken into astrocytes, GABA is not directly available for synaptic 

neurotransmission but instead undergoes further catabolism, whereby it enters the 

so-called GABA shunt (Balázs et al., 1970). Here in the astrocytic mitochondria the 

enzyme GABA transaminase (GABA-T) converts GABA into succinic 

semialdehyde (SSA) while stoichiometrically converting α-ketoglutarate to Glu 

(Martin and Rimvall, 1993). GABA-T activity is aided by the cofactor pyridoxal 

phosphate, which is also involved in the enzymatic mechanisms of GAD in 

presynaptic neurons (Tillakaratne et al., 1995). SSA is then further oxidised by the 

enzyme succinic semialdehyde dehydrogenase to become succinic acid. From here 

succinic acid enters the tricarboxylic acid cycle. This particular step is significant 

because it shows that GABA biosynthesis is directly involved in the energy 

Figure 2.1  Biosynthesis of GABA in the presynaptic GABAergic neuron and a neighbouring 
astrocyte (glial cell). See text for details. GAD = glutamate decarboxylase. VGAT = vesicular 
GABA transporter. GAT = GABA transporter. GABA-T = GABA transaminase. TCA = 
tricarboxylic acid cycle. PAG = phosphate-activated glutaminase. GABA(A)R = GABAA 
receptor. GABA(B)R = GABAB receptor. Reproduced from Rae (2014). 

 

 

 

 

 

 

 

This image is copyrighted. It can be found at its original source. 
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metabolism of neurons. Although a full discussion of this is beyond the scope of this 

thesis, it will be noted that 13C MRS has provided in vivo evidence that GABAergic 

neurons account for ~18% of total neuronal oxidative metabolism (Hyder et al., 

2006; Patel et al., 2005). Since GABA cannot be synthesised in the astrocytes due 

to a lack of GAD, Glu is catabolised into glutamine (Gln) by another enzyme, 

glutamine synthetase, which is found only in astrocytes (Martinez-Hernandez et al., 

1977; Norenberg and Martinez-Hernandez, 1979). Gln is subsequently exported into 

the extracellular environment and uptaken by the presynaptic GABAergic neuron. 

Here it is converted back into Glu by phosphate-activated glutaminase (Curthoys 

and Watford, 1995), thereby completing the metabolic cycle. The preceding 

summary of GABA biosynthesis succinctly demonstrates that GABA is not just a 

classical neurotransmitter but also acts as a metabolite in a strict biological sense (as 

opposed to in the nonspecific spectroscopic sense), having a role in both 

GABA/Glu/Gln cycling and brain energy metabolism. 

It is believed that only a fraction of total GABA in neurons is available for 

synaptic activity (Rae, 2014). The transient of concentration change of synaptic 

GABA is incredibly brief, estimated to be on the order of < 500 μs (Farrant and 

Nusser, 2005; Mozrzymas, 2004; Mozrzymas et al., 2003). The rest of GABA is 

dedicated to metabolism and is likely found in large concentration in metabolic pools 

within the neuronal and astrocytic cytoplasm (Dericioglu et al., 2008; Hanstock et 

al., 2002; Rae et al., 2009). Moreover, the two isoforms of GAD appear to have 

distinct roles in GABA synthesis. Synaptically localised GAD65 is theorised to 

preferentially synthesise vesicular GABA (Asada et al., 1996; H. Wu et al., 2007), 

while the more widespread GAD67 isoform is possibly more directly involved with 

non-vesicular GABA synthesis and release (Asada et al., 1997; Mason et al., 2001; 

Soghomonian and Martin, 1998). Approximately half of total GABA concentration 

is hypothesised to be produced by GAD67 activity (Patel et al., 2006), with GAD65 

displaying a much quicker turnover (Battaglioli et al., 2003). Thus, 

pharmacologically challenging GAD activity represents an interesting avenue to 

pursue with in vivo 1H MRS in humans in order to better understand the biochemical 

origin of the GABA NMR signal. Indeed, one recent study has shown that inhibition 

of GAD activity by 3-mercaptopropionate resulted in decreased GABA 

concentration as measured by 9.4 T 1H MRS in rat brain (Waschkies et al., 2014). 
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Further examples of the integration of neuropharmacology and MRS of GABA are 

given in Section 2.4.4. 

At the heart of neurotransmission and GABAergic synaptic activity are the 

major GABA receptors GABAA and GABAB. GABAA is an ionotropic receptor that 

acts upon GABA binding through a ligand-gated chloride ion channel. GABAA 

receptors have at least five known subunits—α, β, γ, δ and ε (Olsen, 2002)—and 

have binding sites for benzodiazepines, barbiturates and picrotoxin (Olsen, 1982). It 

has also been noted that a proportion of GABAA receptors are found 

extrasynaptically (Belelli et al., 2009). Furthermore, synaptically localised GABAA 

receptors are believed to mediate phasic inhibition, while extrasynaptic GABAA 

receptors give rise to persistent tonic inhibition (Mody, 2001). GABAB receptors are 

distinct from their GABAA counterparts in that they are metabotropic in nature, 

meaning that they are coupled to G-protein receptors. Activation of GABAB 

receptors leads to the release of Gβγ subunits that inhibit calcium ion channels and 

activate potassium ion channels (Gähwiler and Brown, 1985; Mintz and Bean, 

1993). Similar to the subunits of GABAA receptors, GABAB receptors are known to 

exist as two heteromeric subtypes: GABAB1 and GABAB2 (Kaupmann et al., 1998). 

There is also evidence to suggest that they play a role in modulating the calcium ion 

signals of the Glu receptor N-methyl-D-aspartate (NMDA) (Chalifoux and Carter, 

2011). Importantly, this demonstrates that GABA has an additional role as a 

neuromodulator. 

2.2.2 GABAergic Inhibition 

As already stated, GABA’s chief role is that of an inhibitory neurotransmitter that 

regulates the excitation–inhibition balance. The exact mechanisms of GABAergic 

inhibition are significantly complex. Indeed, even defining GABAergic inhibition 

proves to be problematic. As Bernard et al. (2000) rightly highlight, GABAergic 

inhibition is a term difficult to define for three reasons. First, GABA activity does 

not only reduce the firing of an inhibited neuron; there is also strong evidence that 

GABA can have an excitatory role (Gulledge and Stuart, 2003; Marty and Llano, 

2005; Stein and Nicoll, 2003). Second, the degree of GABA activity (as measured 

by the hyperpolarisation of the postsynaptic neuron) is dependent on a multitude of 

variables, primarily as a result of the different subunits and properties of the 

aforementioned GABA receptors and the manner in which they release GABA. 
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Third, there are many different classes of GABAergic interneurons that are 

characterised by distinct neuroanatomical pathways and electrophysiological  

patterns (for reviews see Gupta et al., 2000; Markram et al., 2004). In addition to 

these points, GABAergic inhibition is further complicated by the apparent functional 

divergence of interneurons into feedforward and feedback microcircuits that are 

distinct in the net effect they have on postsynaptic activity (Tepper et al., 2008, 

2004). 

That said, however, GABAergic inhibition can still be classed into two 

complementary types: phasic and tonic (for a review see Farrant and Nusser, 2005). 

Generally speaking, phasic inhibition refers to GABAergic activity that is initiated 

by synaptic transmission that comes about by the propagation of electrochemical 

action potentials from presynaptic terminals. This leads to the vesicular transport of 

GABA by VGAT and eventual exocytosis into the synaptic cleft. Near synchronous 

binding with ionotropic GABAA receptors on the postsynaptic dendrite results in the 

influx of chloride ions, (usually) causing hyperpolarisation in the postsynaptic 

neuron. This hyperpolarisation is characterised by inhibitory postsynaptic currents 

that last for 10–100 ms (Edwards et al., 1990; Mody et al., 1994). These currents are 

followed by the classical inhibitory postsynaptic potential. Arguably, this type of 

inhibition is the inhibition one thinks of when talking about GABAergic control of 

neuronal responses. However, it is now known that GABAergic activity also results 

from neurotransmission outside of the synapse. It is believed that GABA release and 

uptake that occurs extrasynaptically via high-affinity ionotropic GABAA and 

metabotropic GABAB receptors is responsible for so-called tonic inhibition 

(Brickley et al., 1996; Mann et al., 2009; Semyanov, 2002; Wall and Usowicz, 

1997). This form of inhibition is characterised by a slower but continuous current 

(Semyanov et al., 2004). Through “spillover” effects during multivesicular release, 

a degree of GABA will remain in the extracellular space (Rossi and Hamann, 1998; 

Telgkamp et al., 2004). This ambient GABA, found in nano- to micromolar 

concentrations (Lerma et al., 1986), is thought to contribute to persistent activation 

of extrasynaptic GABAergic receptors. 

What are the functional properties of phasic and tonic inhibition? Aside from 

preventing pathological over-excitation, there is considerable evidence that phasic 

GABAergic inhibition is the mechanistic source of synchronous neuronal 

oscillations, predominately in the gamma frequency band (30–90 Hz) (Bartos et al., 
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2007; Buzsáki and Wang, 2012). GABAergic interneurons work to synchronise the 

firing rates of large populations of interconnected neurons through active 

hyperpolarisation of action potentials and refined modulation of the corresponding 

spatiotemporal properties of excitatory and inhibitory neurons (Cobb et al., 1995; 

Jonas et al., 2004; Somogyi and Klausberger, 2005). While a full discussion of 

gamma oscillatory activity and its relation to GABA is beyond the scope of this 

thesis, it will be noted that the prevailing theory behind the purpose of these 

oscillations is in the critical step of the encoding of information (Mann and Paulsen, 

2007; Singer, 1996). This would mean that GABA plays a far more important role 

than simply in preventing over-excitation. The functional importance of tonic 

inhibition is distinct from phasic inhibition. Firstly, it appears that decreasing the 

tonic conductance, or the “holding current”, of a given GABAergic neuron by 

pharmacological perturbation reduces the current necessary to achieve a certain 

firing rate, thereby increasing the neuron’s overall excitability (Brickley et al., 1996; 

Chadderton et al., 2004; Hamann et al., 2002). This can be described as a leftward 

shift in the input–output function of the relationship between current input and firing 

rate frequency. Secondly, it has been shown that tonic inhibition depends on the 

level of excitatory input, which leads to a multiplicative modulation in the input–

output function (Chance et al., 2002; Mitchell and Silver, 2003). Thus, the function 

of tonic inhibition appears to be in gain control of global neuronal excitability 

(Semyanov et al., 2004). Given these mechanisms, tonic inhibition has also been 

shown to directly impact on the robustness of synchronous oscillations (Mann and 

Mody, 2010; Vida et al., 2006). The presence of such a relationship suggests that 

phasic and tonic inhibition act interdependently. Perhaps this is unsurprising given 

the close biosynthetic relationship between the synaptic and metabolic GABA pools 

described in the previous section. 

The effect of GABAergic inhibition, and GABAergic activity in general, on 

global neuronal responses is important to consider as they are tightly intertwined 

with brain energy consumption (Buzsáki et al., 2007), making them key components 

in the origin of a host of neuroimaging signals, including the blood oxygenation 

level-dependent (BOLD) signal and cerebral blood flow (CBF) (Lauritzen et al., 

2012). As stated earlier, GABA metabolic turnover is known to contribute to 

approximately 20% of total neuronal oxidative metabolism (Hyder et al., 2006; Patel 
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et al., 2005). There is also strong evidence that GABAergic interneurons release 

vasoactive substances that directly modulate the vasodilation and vasoconstriction 

of microvessels (Cauli and Hamel, 2010; Lecrux and Hamel, 2011), further 

demonstrating that GABA is integral to neurovascular coupling. Since the 

commonly detected BOLD signal is understood to arise from a complex dependency 

on CBF, glucose consumption and oxidative phosphorylation (Buxton et al., 2004; 

Raichle and Mintun, 2006), the fact that GABA appears to contribute to several of 

these underlying components of the neurovascular response makes properly 

understanding its function quite important to neuroimaging in general. However, the 

contribution of inhibitory activity to neurovascular signals remains an area of 

controversy as at least one prominent report showed that GABA does not appear to 

have a direct impact on the metabolic components of these signals (Chatton et al., 

2003). Nonetheless, when taken as a whole there is sufficient evidence that naturally 

leads to the argument that (noninvasive) imaging of GABAergic activity (alongside 

Figure 2.2  The neurophysiological origin of the BOLD signal. The model shows that the 
BOLD signal comes about from contributions from both excitatory and inhibitory neuronal 
activity. These respectively lead to neuronal energy metabolism in the form of glycolysis, 
the glycogen shunt and oxidative phosphorylation. CBF is assumed to arise independently 
of glucose and oxygen consumption. Adapted from Sotero and Trujillo-Barreto (2007). 
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glutamatergic activity) constitutes a more mechanistically appropriate target for 

understating brain function. Indeed, it has become clear that the mechanistic 

pathways that lead to the formation of the BOLD signal should include both 

excitatory and inhibitory contributions alongside those from glucose and oxygen 

consumption (Figure 2.2). Although 1H MRS does not (yet) come with the same 

technical ease with which to capture the functional changes that occur in the brain 

in comparison to modern fMRI, there is sufficient rationale for further developing 

and exploiting the unique capabilities of MRS given that it is able to directly detect 

the molecular constituents of neuronal activity and energy metabolism. 

2.3 Magnetic Resonance Spectroscopy of GABA 

2.3.1 The GABA Spin System 

The GABA molecule (NH2–4CH2–3CH2–2CH2–1COOH) is traditionally described as 

having a weakly coupled A2M2X2 spin system with three pairs of magnetically 

equivalent nuclei. A2 denotes the 3.01 ppm GABA-H4 methylene (CH2) resonance, 

M2 denotes the 1.89 ppm GABA-H3 CH2 resonance and X2 denotes the 2.28 ppm 

GABA-H2 CH2 resonance (Figure 2.3). The subscripts refer to the two 1H nuclei 

that are attributed to each resonance. The carbonyl (COOH) and amide (NH2) 

compounds are not MR-visible. The H4 and H3 and the H3 and H2 resonances are 

coupled, respectively. Thus, the rules of J-coupling dictate that the GABA-H4 and -

H2 resonances each split into triplets since both are coupled to the GABA-H3 

resonance. Theoretically, the GABA-H3 should split into a “quartet of doublets” 

because of its coupling to the four 1H nuclei in GABA-H4 and -H2. However, the J-

coupling constants of the latter two are magnetically equivalent (i.e., JAM = JMX). 

Therefore, the quartet of doublets collapses into a quintet lineshape. This description 

is a simplification, however, as will now be explained. 

The scalar coupling of the GABA CH2 groups gives rise to complex multiplet 

patterns. The simulated spectrum of the GABA spin system in Figure 2.3 shows that 

the GABA-H4 resonance at 3.0 ppm resolves as a triplet, as previously described. 

Strictly speaking, this is not true: this resonance is more properly two “doublet of 

doublets” rather than a triplet. This is because the two coupled vicinal† pairs of the 

                                                           
† In chemistry, vicinal is a term that refers to nuclei that are coupled by virtue of their bond with two 
atoms that are adjacent to each other (three total chemical bonds). 



54 | 1 H  M A G N E T I C  R E S O N A N C E  S P E C T R O S C O P Y  O F  G A B A  
 

1H nuclei in GABA-H4 and GABA-H3 are magnetically nonequivalent; that is, JAM 

≠ JAMʹ (see Near et al., 2012). The prime in JAMʹ refers to the second 1H nucleus in 

M2. Therefore, GABA is more accurately described as having an AAʹMMʹXXʹ spin 

system, where each pair of letters denotes chemically (but not magnetically) 

equivalent nuclei (Kreis and Bolliger, 2012). By this notation the corresponding J-

coupling constants should then include values for both the vicinal and geminal‡ 

chemical bonds within the molecular structure. A complete table of the chemical 

shifts and J-coupling constants of the GABA CH2 resonances is provided in Table 

2.1. In terms of the successive splitting of the GABA-H4 peak, because of the 

magnetic nonequivalence of its coupled nuclei, the resonance is in fact a 

superposition of two doublet of doublets. This distinction is important because 

assuming accurate J-coupling constants as part of the prior knowledge used in signal 

quantification may significantly improve the model fit (Near et al., 2012). For the 

sake of the simplicity, however, the GABA-H4 peak will be referred to as a triplet 

for the remainder of this thesis. 

The lineshape of the GABA-H4 multiplet is made even more complex in the 

J-difference editing experiment as a result of the transition width, refocusing 

bandwidth and flip angle of the slice-selective refocusing pulses (Near et al., 2013b). 

                                                           
‡ Geminal nuclei are coupled by one atom (two total chemical bonds). 

Figure 2.3  The weakly coupled A2M2X2 NMR spin system of GABA. GABA’s molecular 
structure is shown above the spectrum. The colours indicate the CH2 group that gives rise 
to its corresponding resonance in the spectrum. 
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Moreover, it can be seen from Figure 2.3 that the GABA multiplets are asymmetric, 

with their outer peaks having different amplitudes. This demonstrates that strong 

coupling effects are present when the GABA spin system is detected at 3 T. These 

complexities in lineshape indicate that the GABA multiplets can only be adequately 

described by numerical simulations that take into account the quantum states of the 

GABA proton spins as well as the physical parameters of the RF pulse sequence. 

These simulations are based on a time-dependent density matrix that describes the 

physical state of proton spins in relation to chemical shift, scalar coupling and the 

interaction with external magnetic RF fields according to product operators 

(Sørensen et al., 1984). (See Appendix B for an overview of product operator 

formalism.) Through density matrix formalism, appropriate prior knowledge of J-

coupling and predefined parameters of a given pulse sequence, the GABA spin 

system can be very accurately simulated (de Graaf and Rothman, 2001; Kaiser et al., 

2008; Near et al., 2013b; Snyder et al., 2009). An implementation of density matrix 

formalism used in the FID-A toolbox was used to simulate the spectrum in Figure 

2.3. 

2.3.2 Detection of the GABA Signal 

Detecting GABA with conventional NMR spectroscopy is challenging at field 

strengths below 7 T. In addition to being found in relatively low concentrations in 

the brain (~1–2 mM), the GABA resonances are overlapped by peaks of higher 

intensities, in particular the 3.0 ppm Cr resonance that has a chemical shift similar 

to the GABA-H4 resonance. Nevertheless, as a weakly coupled spin system GABA 

Table 2.1  Chemical shifts and coupling constants of the GABA spin system. From Near 
et al. (2013). 

 
Chemical 

shift (in ppm) 

Scalar couplings (in Hz) to: 

Spin H2ʹ H3 H3ʹ H4 H4ʹ 

H2 2.2840 –15.938 7.678 6.980   

H2ʹ 2.2840  6.980 7.678   

H3 1.8880   –15.000 8.510 6.503 

H3ʹ 1.8880    6.503 8.510 

H4 3.0130     –14.062 

H4ʹ 3.0130      
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can be detected in vivo through localised J-difference spectral editing. This was 

seminally demonstrated by Rothman et al. (1993). In the basic GABA-editing 

experiment two scans are performed. In the ON scan, spectrally selective editing 

pulses are applied to the 1.9 ppm GABA-H3 resonance. This has the effect of 

refocusing all the spins that are coupled to this resonance, in particular the 3.0 ppm 

GABA-H4 resonance as noted in the previous section. Any uncoupled resonances 

are unaffected and evolve as normal. In the OFF scan, the editing pulses are placed 

in such a fashion that they act as symmetric counterparts to the ON editing pulses, 

whereby the ON and OFF pulses are symmetrical about the water resonance at 4.7 

ppm. In other words, the OFF editing pulses are placed far off resonance at 7.5 ppm. 

This symmetrical placement ensures that any magnetisation transfer effects that may 

occur on the water peak are nullified (see de Graaf et al., 1999; Leibfritz and Dreher, 

2001). The GABA-H3 resonance and any spins coupled to it evolve as normal in 

this scan. The GABA-H4 peak at 3.0 ppm is then unambiguously resolved in the 

spectrum obtained from the difference between the ON and OFF scans, the so-called 

DIFF spectrum. Any peaks unaffected by the J-refocusing of the editing pulses, such 

as the high-intensity 3.0 ppm Cr resonance that overlaps the GABA-H4 peak, will 

be removed. Since the GABA-H4 and -H3 CH2 resonances constitute a coupled 

A2M2 spin system, the principles of J-coupling and J-evolution dictate that the centre 

peak of the GABA-H4 triplet will not experience any phase modulation in the spin 

echo experiment. Instead, partial editing can be achieved when the TE of the GABA-

editing experiment is set to 1/2J. This means that during the OFF scan the GABA-

H4 triplet will display a “W” lineshape, with the two outer peaks being antiphase 

with the centre peak. The difference between the two scans will lead to a pseudo-

doublet. In in vivo experiments, this pseudo-doublet will most often appear as a 

single-lobe Gaussian peak as a result of B0 inhomogeneity and line-broadening. A 

visualisation of the GABA-editing procedure is given in Figure 2.4. 

The foregoing approach is most popularly implemented in localised SVS 

using a combination of PRESS and Mescher-Garwood (MEGA) frequency-selective 

refocusing, which can simultaneously suppress water and edit the GABA spin 

system by using double-banded Gaussian 180° frequency-selective refocusing 

pulses that selectively excite the 4.7 ppm water and 1.9 ppm GABA-H4 resonances 

(Mescher et al., 1998, 1996). A schematic of the MEGA-PRESS sequence is given 

in Figure 2.5. Although MEGA provides excellent water suppression, being 
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relatively insensitive to B1 inhomogeneities, MEGA-PRESS can also be successfully 

employed with the VAPOR sequence. Thanks to the efficiency of spectral editing 

by the MEGA method and the comparatively high SNR of PRESS, it has been 

relatively straightforward to detect GABA in vivo. This is in large part due to the 

more-or-less simple technical implementation of MEGA-PRESS and increasing 

standardisation of relevant methodology (for a review see Mullins et al., 2014). 

Although conceptually simple, GABA-MRS methodology comes with a 

number of special challenges and considerations, on top of those that apply to MRS 

in general. Perhaps most important to the success of the experiment is the efficiency 

of the spectral editing procedure. Broadly speaking, editing efficiency refers to how 

much signal is resolved following spectral editing. For instance, the efficiency of 

Figure 2.4  J-difference editing of GABA. a: In the ON scan, editing pulses are applied at 
1.9 ppm to refocus the coupled GABA-H3 and -H4 resonances. All other resonances evolve 
as normal. In the OFF scan, the editing pulses are applied far off resonance, leading the 
coupled GABA resonances to evolve as normal. Subtracting the two scans removes all 
unwanted resonances and leaves the GABA-H4 peak at 3.0 ppm unambiguously resolved. 
Co-edited Glu + Gln (Glx), NAA and an MM resonance will also remain in the difference 
(DIFF) spectrum. b: Visualisation of the effect of GABA-editing on the 3.0 ppm GABA 
resonance lineshape in the ON, OFF and DIFF spectra. The Cr signal is not affected by the 
editing pulses and so is removed during subtraction. Reproduced from Mullins et al. (2014). 
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GABA-editing using the J-difference approach is theoretically 50% because only 

half of the total GABA signal in the NMR spectrum is present in the difference 

spectrum. This is result of the subtraction of the ON and OFF scans, where in the 

former the GABA-H4 peak is completely refocused, displaying an in-phase triplet, 

while in the latter the peak resolves as a W-like triplet with the outer peaks being 

anti-phase with the centre peak (Figure 2.4). The centre peak is removed during 

subtraction, meaning the pseudo-doublet in the DIFF spectrum constitutes only 50% 

of the total available signal (de Graaf and Rothman, 2001). Note that the 0.5 editing 

efficiency factor of GABA-edited MRS is only a theoretical approximation. Precise 

determination of the editing efficiency of a given sequence can only be determined 

through phantom experiments or with numerical simulations (Near et al., 2013b; 

Oeltzschner and Bhattacharyya, 2015). In Chapter 7, numerical simulations are used 

to determine the editing efficiency of GABA-MRS following specific modifications 

and modulations of the J-difference editing experiment. 

2.3.2.1 Macromolecule contamination 

In another sense, editing efficiency also refers to the specificity of the selective 

refocusing of coupled spins. A major limitation with GABA-editing is that a 

macromolecular (MM) resonance at 1.7 ppm (M4) coupled to another MM 

Figure 2.5  Pulse sequence diagram for MEGA-PRESS. Two Gaussian frequency-selective 
180° refocusing pulses are placed about the second PRESS 180° slice-selective refocusing 
pulse. These editing pulses selectively excite the GABA spins at 1.9 ppm, which are coupled 
to the GABA spins at 3.0 ppm. Magnetic field gradients for localisation are shown in white. 
Crusher gradient waveforms are in black. The G1, G2 and G3 gradient waveforms are used 
for MEGA-editing in this particular implementation. Reproduced from Mescher et al. (1998). 

 

 

 

 

This image is copyrighted. It can be found at its original source. 



γ - A M I N O B U T Y R I C  A C I D :  N E U R O B I O L O G Y  A N D  

A P P L I C A T I O N S | 59 
 

resonance also at 3.0 ppm (M7) is partially excited by the ON editing pulses that 

selectively excite the GABA-H3 spins at 1.9 ppm, leading to co-editing of the 3.0 

ppm MM resonance. This is directly a result of the frequency bandwidth of the 

Gaussian editing pulses (Figure 2.6). To illustrate, at 3 T the frequency distance 

between the GABA-H3 and M4 resonances is ~22 Hz. Typically, Gaussian MEGA-

editing pulses are 16–20 ms long (given the limited available time in the MEGA-

PRESS sequence); assuming a time-bandwidth product (R) of 1.53, the 

corresponding frequency bandwidth is 76–95 Hz. This demonstrates that the ON 

editing pulses that excite the GABA-H3 spins when on-resonance will additionally 

excite the M4 spins to some extent. Thus, the GABA-H4 peak at 3.0 ppm in the 

difference spectrum contains a degree of MM contamination from the partially 

refocused M7 peak, which may account for up to 60% of the total GABA signal 

Figure 2.6  a: In vitro spectrum of the GABA spin system. b: In vivo spectrum of the 
macromolecular (MM) baseline with each of the nine MM resonances indicated. This was 
acquired using an inversion recovery method to null metabolite resonances. c: In vivo 1H 
NMR spectrum acquired at 9.4 T. The inversion frequency profile for a Gaussian frequency-
selective editing pulse (grey) placed at 1.9 ppm shows that partial co-editing of the M4 
resonance at 1.7 ppm will lead to contamination of the GABA signal at 3.0 ppm by signal 
from the coupled M7 resonance also at 3.0 ppm. Reproduced from de Graaf (2007). 
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(Aufhaus et al., 2013; Kegeles et al., 2007; Rothman et al., 1993). This significant 

problem of MM contamination remains one of the biggest flaws of GABA-MRS 

given that the quantified “GABA” concentration is not solely GABA but includes a 

large fraction of MM§, constituting a major confound in any study seeking to 

correlate GABA concentration with another measure or to observe differences in 

GABA levels between groups. This thesis seeks to address this perennial issue by 

the development of methodology to remove MM contamination in the GABA-edited 

signal, as now discussed. 

One method that can be implemented to account for this contamination 

involves measurement of the MM baseline by nulling metabolites of interest through 

an inversion recovery technique (Behar et al., 1994; Hofmann et al., 2001; McLean 

et al., 2004). The method behind metabolite-nulling is based on the T1 relaxation 

differences between MM and metabolites. Since MM have substantially shorter T1 

times in comparison to metabolites (de Graaf et al., 2006), an inversion pulse can be 

applied prior to excitation by conventional localised spectroscopy that will invert the 

longitudinal magnetisation of all excited spins. The transverse relaxation is then 

detected after a delay (the inversion time, TI). The MM spins return to M0 more 

quickly such that the signals from metabolites are nulled when their longitudinal 

magnetisation is zero. By performing several inversion recovery experiments where 

the TI is sufficiently varied, the optimal TI can be determined and used for 

measuring the MM baseline devoid of any metabolite resonances. In GABA-editing, 

this baseline can then be subtracted from a conventional difference-edited spectrum 

to remove residual MM (Terpstra et al., 2002). The disadvantages of this technique, 

however, include assumptions of T1 relaxation times of metabolites and MM (unless 

determined by direct measurement) and increased total acquisition time (both non-

nulled and MM-only spectra need to be acquired, effectively doubling scanning 

time). In addition, subtraction of the MM baseline from the non-nulled spectrum will 

add noise to the MM-subtracted spectrum. 

Alternatively, the issue with MM can be mitigated by using a symmetric 

editing-based suppression method (Henry et al., 2001). By simply placing OFF 

                                                           
§ The GABA spectral peak also contains a fraction of signal arising from homocarnosine, a dipeptide 
of GABA and histidine that contains a GABA moiety. Thus, any concentration of GABA is strictly 
speaking an amalgam of GABA, homocarnosine and MM, unless steps are taken to separate the NMR 
signals from each. 
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editing pulses at 1.5 ppm instead of at 7.5 ppm, and keeping ON pulses at 1.9 ppm, 

the MM signal at 1.7 ppm is equally excited in both scans and thus the coupled MM 

resonance at 3.0 ppm is removed from the difference spectrum. Since hypotheses 

relating the measured GABA concentration to behaviour or pathology relate 

specifically to the GABA molecule, rather than to loosely defined 

“macromolecules”, a more specific measure of GABA is required for proper 

interpretation. The elegant symmetric suppression method has not been widely 

adopted as it requires editing pulses to be sufficiently selective so that the pulses 

placed at 1.5 ppm do not undesirably excite the GABA resonance at 1.9 ppm. This 

partial excitation of the GABA resonance in OFF sub-spectra would lead to a 

reduction in GABA signal in the difference spectrum. However, by increasing TE 

from the widely used 68 ms to 80 ms, more time is available in the acquisition 

sequence and the duration of editing pulses can be increased to 20 ms (Edden et al., 

2012b). On some platforms it is possible to employ longer editing pulses whilst 

maintaining a TE of 68 ms (Aufhaus et al., 2013). This alteration provides better 

frequency selectivity of editing pulses, preventing unwanted suppression of the 

resolved GABA signal, while still correcting for MM. Symmetric MM suppression 

comes with its own set of challenges, however. In particular, the issue of the 

selectivity of the editing pulses arguably presents an even bigger concern than for 

standard editing given the proximity of the ON and OFF pulses to the M4 resonance 

at 1.7 ppm. This will be compounded by frequency drift in the B0 field. As noted 

earlier, this falls under the domain of editing efficiency. Frequency selectivity of the 

editing pulses and the problems that frequency drift cause with regard to the editing 

efficiency of symmetric suppression will be touched upon in Chapter 5 and 

investigated in detail in Chapter 7.  

2.4 Applications and Correlates: A Concise Review 

It has been suggested that because of its fundamental role in the excitatory–

inhibitory balance of neurotransmission, and because it is either present in or 

somehow indirectly associated with almost all neurons in the brain, GABA can be 

said to be involved in nearly every function of the central nervous system (Olsen, 

2002). Perhaps, then, it should not be surprising that in recent years 1H MRS of 

GABA has brought a unique perspective to understanding the relationships between 
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brain function, behaviour, cognition and pathology. Thus, the focus of the following 

concise review will be on how MRS has contributed evidence to the specific 

hypotheses that state that GABAergic function underlies or is at least partly involved 

with particular aspects of psychiatric dysfunction, neuropathology, cognition, 

behaviour and haemodynamics in humans. Pharmacological interventions in MRS 

studies will also be discussed to highlight the role that GABAergic drugs have in 

elucidating the biochemical origins of the GABA NMR signal. 

2.4.1 Clinical Applications 

2.4.1.1 Anxiety disorders 

There has been a theoretical drive towards a GABAergic hypothesis of anxiety 

disorders. Specifically, amounting evidence suggests that anxiety disorders are 

characterised by abnormalities surrounding benzodiazepine binding sites located on 

the GABAA receptor (Chang et al., 2003; Nutt and Malizia, 2001). Although there 

is more evidence of such abnormalities from other molecular imaging modalities, 

1H MRS has also contributed empirical evidence. Goddard et al. (2001) were the 

first to show that in unmedicated patients with panic disorder occipital GABA 

concentration was reduced. The group followed this up with a later study where they 

showed that patients had a blunted response to acute administration of the 

benzodiazepine clonazepam (Goddard et al., 2004). Healthy controls, on the other 

hand, showed a reduction in GABA levels. MRS-measured GABA deficits in panic 

disorder are also apparent in the anterior cingulate cortex (ACC) and the basal 

ganglia (Ham et al., 2007) but not the prefrontal cortex (Hasler et al., 2009). These 

results are somewhat contradicted by the findings by Long et al. (2013) who also 

found reductions in GABA in the ACC but not in the occipital lobe. 

Currently, only one publication has reported an investigation of GABA 

levels in social anxiety disorder. Using CSI, Pollack et al. (2008) found that GABA 

was reduced in the thalamus of patients compared to controls, and that this difference 

was reduced following eight weeks of pharmacotherapy. More recently, groups have 

begun to inspect GABA abnormalities in obsessive compulsive disorder (OCD). A 

GABA-editing study from Simpson et al. (2012) reported that GABA was 

significantly reduced in the medial prefrontal cortex of patients with OCD but that 

this deficit did not extend to the dorsolateral prefrontal cortex (DLPFC). Moreover, 

it appears that infusion of the Glu NMDA receptor antagonist ketamine increases 
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GABA concentration in OCD patients over time (Rodriguez et al., 2015). Finally, in 

vivo GABA also appears to be abnormal in posttraumatic stress disorder based on 

several very recent MRS studies (Meyerhoff et al., 2014; Michels et al., 2014; 

Pennington et al., 2014; Rosso et al., 2014). 

2.4.1.2 Developmental disorders 

GABAergic dysfunction is thought to be a possible explanation for the social, 

cognitive and sensory deficits seen in autism spectrum disorder (ASD). This forms 

part of the excitation/inhibition balance theory of ASD (Pizzarelli and Cherubini, 

2011; Rubenstein and Merzenich, 2003), whereby either over-excitation or under-

inhibition leads to a hyperexcitable, poorly synchronised neural system. Although 

only a few studies have investigated in vivo GABA abnormalities with GABA-

MRS, the consistent finding is of reduced GABA concentration in autistic 

individuals (Gaetz et al., 2014; Harada et al., 2011b; Kubas et al., 2012; Rojas et al., 

2014). Moreover, a recent high-impact publication has demonstrated that GABA but 

not Glu is associated with perceptual dysfunction in ASD (Robertson et al., 2016). 

In a similar vein, GABA-MRS has been able to detect GABAergic deficits 

in Tourette syndrome. Tinaz et al. (2014) found that GABA levels in the 

sensorimotor (SM) cortex of adults with Tourette syndrome were related to motor-

related synchronous oscillatory activity in the same region, while Draper et al. 

(2014) reported that excitability of the supplementary motor area correlated with 

GABA concentration. Finally, there is also evidence that GABA is tied to 

vibrotactile sensory deficits in individuals with this syndrome (Puts et al. 2015). It 

was also demonstrated in this study that motor tic severity was strongly associated 

with SM GABA levels. GABA-MRS has also been employed in other 

neurodevelopmental disorders such as attention deficit/hyperactivity disorder 

(Edden et al., 2012a; Ende et al., 2016), complex motor stereotypy (Harris et al., 

2015d) and Down’s syndrome (Śmigielska-Kuzia et al., 2010). 

2.4.1.3 Epilepsy 

Of all neurological disorders epilepsy is perhaps the most tightly linked to the GABA 

system (Bradford, 1995), which arguably is not surprising given the anticonvulsant 

effects of many GABAergic drugs. Soon after the seminal publication by Rothman 

et al. (1993) demonstrating the use of localised J-difference–editing for in vivo 
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detection of GABA, several studies soon followed where GABA abnormalities in 

epilepsy were investigated using MRS. This has typically been in conjunction with 

modulation of GABA levels by pharmacological interventions using antiepileptics. 

The Rothman et al. study showed that administration of the antiepileptic vigabatrin 

increased GABA levels in epileptic patients, thereby demonstrating the effect of 

such drugs on endogenous GABA. This finding was replicated by Verhoeff et al. 

(1999) using the same drug and by Doelken et al. (2010) using levetiracetam. There 

is indication that the level of GABA is associated with both recency and frequency 

of seizures, and that epileptic patients with better seizure control have more GABA 

(Petroff et al., 1996c). This, however, does not appear to be the case with juvenile 

myoclonic epilepsy (Petroff et al., 2001a). For idiopathic generalised epilepsy, 

although no difference in endogenous GABA is apparent in the frontal lobe when 

using conventional MRS (Simister et al., 2003a), GABA-editing recently has 

revealed that are significant differences in frontal GABA (Chowdhury et al., 2015). 

Additionally, GABA is increased in the occipital lobe in this type of epilepsy 

(Simister et al., 2003b). Abnormal levels are also found in patients with 

malformations of cortical development that cause epilepsy (Simister et al., 2007) but 

not in those with temporal lobe epilepsy (Simister et al., 2009). Finally, the degree 

of responsivity to antiepileptic mediation has been demonstrated to depend on 

baseline GABA concentration before treatment (Mueller et al., 2008).   

2.4.1.4 Mood disorders 

Similar to anxiety, GABAergic mechanisms have been proposed to partly underlie 

the pathogenesis of mood disorders such as major depressive disorder (MDD) and 

bipolar disorder. This is supported by the antidepressant effects of anxiolytic 

GABAergic drugs, highlighting that the GABA system is involved in both anxiety 

and depression (Kalueff and Nutt, 2007). A 1H MRS study by Sanacora et al. (1999) 

provided the first evidence of a reduction in endogenous GABA concentration in 

patients with MDD. This finding was replicated in a later study by the authors using 

a larger sample (Sanacora et al., 2004) and independently by separate groups 

(Bhagwagar et al., 2008, 2007; Hasler et al., 2007). Furthermore, treatment-resistant 

MDD has also been shown to exhibit more prominent reductions in GABA (Price et 

al., 2009). Interestingly, both pharmacotherapy using antidepressants (Bhagwagar et 

al., 2004; Sanacora et al., 2002) and electroconvulsive therapy (Sanacora et al., 
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2003) lead to increases in GABA in depressed patients but cognitive behavioural 

therapy does not (Abdallah et al., 2014; Sanacora et al., 2006). The former finding 

is also apparent when the hypnotic zolpidem is given to patients who are currently 

on antidepressants (Licata et al., 2014). It has also been shown that individuals with 

remitted depression have normal GABA levels (Hasler et al., 2005), further 

supporting that GABA is associated with the pathogenesis of depression. Going 

further, Gabbay et al. (2012) reported that scores of anhedonia in adolescents with 

MDD negatively correlated with ACC GABA concentration. Nevertheless, not all 

studies have been able to find differences in GABA between depressed patients and 

healthy controls (Godlewska et al., 2015; Shaw et al., 2013). 

GABAergic deficits in bipolar disorder have also been investigated with 1H 

MRS, but to a lesser extent. Unfortunately, findings remain ambiguous. For instance, 

whereas Wang et al. (2006) and Brady et al. (2013) found that bipolar patients had 

significantly higher GABA concentration in the occipital lobe, ACC and parieto-

occipital cortex compared to controls, Bhagwagar et al. (2007) found the opposite to 

be the case in their study. To complicate things further, some reports have shown no 

differences in GABA levels (Godlewska et al., 2014; Kaufman et al., 2009; Soeiro-

de-Souza et al., 2015). It is possible, however, that the medication patient volunteers 

were on at the time of scanning could have affected these results. 

2.4.1.5 Neurodegeneration 

There is strong evidence that disruption of GABAergic inhibition in the basal 

ganglia is a principal component of the neuropathology of Parkinson’s disease 

(Calabresi et al., 2014). Thus, GABA has the potential to be a useful and much-

needed noninvasive molecular biomarker for this disease. However, at present only 

two human 1H MRS studies have attempted to probe GABA abnormalities in 

subcortical brain regions. Öz et al. (2006) reported a proof of concept study that 

showed increased GABA in the substantia nigra of Parkinson’s patients compared 

to healthy controls, but there was no statistical difference. On the other hand, a later 

7 T study conducted by Emir et al. (2012) provided evidence of significantly greater 

pontine and putaminal GABA concentration in patients compared to controls. It is 

likely that the increasing use of ultra-high field MRS and continued methodological 

improvements of acquisition techniques will allow for further investigations of 

GABA in Parkinson’s disease in subcortical brain areas. 
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MRS has also been used to detect GABA abnormalities in other 

neurodegenerative diseases such as Alzheimer’s disease/mild cognitive impairment 

(Bai et al., 2015; Mandal, 2007; Riese et al., 2015), amyotrophic lateral sclerosis  

(Foerster et al., 2014) and multiple sclerosis (Bhattacharyya et al., 2013; Cawley et 

al., 2015). 

2.4.1.6 Schizophrenia and psychosis 

In the last 15 years the dopamine hypothesis has become less held as the sole 

neurobiological explanation for the cause of schizophrenia. In its place the 

Glu/GABA hypothesis has gained traction (Benes and Berretta, 2001; Carlsson et 

al., 2001; Lewis et al., 2005, 1999). Specifically in relation to GABA, the hypothesis 

points toward a key dysfunction in GABAergic interneurons and GABA 

neurotransmission. Evidence suggests that deficits in the GABA system lead to 

abnormal cognitive function. From this has come the belief that disruptions to 

synchronised neuronal oscillations, to which GABAergic inhibition is critical 

(Bartos et al., 2007; Brunel and Wang, 2003; Traub et al., 2003), leads to the 

cognitive symptoms seen in schizophrenia (Gonzalez-Burgos and Lewis, 2008). In 

vivo assessments of GABA concentration using 1H MRS aim to elucidate the 

purported pathogenetic role of GABA in schizophrenia (for a review see Wijtenburg 

et al., 2015). Goto et al. (2009) were amongst the first to use J-difference–edited 

MRS to examine GABA deficits in schizophrenia. They found that GABA was 

significantly lower in individuals with early-stage schizophrenia compared to 

controls but only in the basal ganglia. A second study by this group showed that 

GABA levels did not alter after six months of antipsychotic treatment (Goto et al., 

2010a). In one high-impact report, it was shown that not only was occipital GABA 

decreased in schizophrenics, but GABA also correlated with a perceptual measure 

of visual stimulus orientation-specific surround suppression (Yoon et al., 2010). This 

particular result supports the hypothesis that there may be a dysfunction in 

GABAergic inhibition in schizophrenia, which has been backed up by two later 

studies investigating the relationship between neuronal oscillations and GABA 

concentration in schizophrenics (Chen et al., 2014; Rowland et al., 2013a). It has 

furthermore been shown recently that individuals at ultra-high risk for psychosis 

display lower levels of GABA in the medial prefrontal cortex and dorsal caudate 

compared to healthy controls (de la Fuente-Sandoval et al., 2015). Reductions have 
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also been found in the visual cortex (Kelemen et al., 2013) and medial prefrontal 

cortex (Marsman et al., 2014). 

However, findings have not consistently shown this pattern of reduced 

GABA concentration. Some studies have observed increased GABA levels, for 

instance (Öngür et al., 2010), while other groups have failed to find any differences 

(Marenco et al., 2016; Stan et al., 2015; Tayoshi et al., 2010). This could be 

explained by medication effects as Kegeles et al. (2012) showed that increased 

prefrontal GABA was observed in unmedicated patients versus controls but not in 

medicated ones. However, this was true only in the medial prefrontal cortex and was 

not seen in the DLPFC. Recently, Rowland et al. (2016) reported that medial 

prefrontal GABA was significantly lower in older patients with schizophrenia 

compared to controls, but this was not the case in younger patients. This suggests 

that GABA levels are much more reduced when individuals have had schizophrenia 

for an extended period of time, replicating an earlier finding published by the same 

authors (Rowland et al., 2013b). Interestingly, the authors used symmetric MM 

suppression in their GABA-editing acquisition, possibly hinting towards better 

discrimination of GABA deficits when the MM contaminant is removed from the 

GABA signal. 

2.4.1.7 Other disorders 

Examples of 1H MRS being used to quantify GABA levels in other disorders can be 

found with regard to fibromyalgia (Foerster et al., 2012), migraine (Aguila et al., 

2015; Bigal et al., 2008), insomnia (Morgan et al., 2012; Winkelman et al., 2008), 

neurofibromatosis type 1 (Ribeiro et al., 2015; Violante et al., 2013), hearing 

disorders (Gao et al., 2015; Sedley et al., 2015) and premenstrual dysphoric disorder 

(Epperson et al., 2002; Liu et al., 2015). 

2.4.2 Correlates with Cognition and Behaviour 

Viewing GABA as a correlate for cognition and behaviour forms part of the much 

greater objective of linking overt human nature with the infinitely complex 

molecular mechanisms that take place in the cerebral cortex. More specifically, 

GABA can theoretically serve as a neurochemical substrate for a host of cognitive 

processes and behaviours. Such being the case, the MRS of GABA has increasingly 

been employed to test the relationship between GABA concentration and cognitive 
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and behavioural measures. Kim et al. (2009) were among the first to document 

interindividual differences in harm avoidance temperament that were dependent on 

ACC GABA concentration. Following suit, several recent studies have demonstrated 

that GABA is a potential neurochemical predictor of executive function (de la Vega 

et al., 2014; Fujihara et al., 2015; Haag et al., 2015; Jocham et al., 2012; Kühn et al., 

2015), emotional empathy (Wang et al., 2014), cognitive failures (Sandberg et al., 

2014) and interoceptive awareness (Wiebking et al., 2014). Another domain of 

interest has been that of impulsivity. Boy et al. (2011) reported that DLPFC GABA 

in men was inversely associated with trait measures of urgency. Importantly, this 

finding was replicated in an independent cohort of males. A similar study examined 

impulsivity in adolescents and reported decreased GABA levels in adolescents 

compared to emerging adults, with GABA also being associated with impulsivity 

measures (Silveri et al., 2013). Furthermore, Goto et al. (2010b) were able to show 

that frontal GABA levels were related to questionnaire measures of extroversion. As 

discussed earlier, GABA appears to be an important component in anxiogenesis. 

Consequently, in a unique randomised controlled study it was shown that sessions 

of yoga asana not only led to reductions in trait anxiety, but also to increases in 

thalamic GABA concentration (Streeter et al., 2010). GABA also correlated with 

mood and anxiety scores. Further supporting a role for GABA in anxiety, Hasler et 

al. (2010) were able to demonstrate GABA-related changes during a threat-of-shock 

task. 

A paramount feature of GABAergic inhibition is the manner in which it fine-

tunes synaptic responses during processing of sensory stimuli (Isaacson and 

Scanziani, 2011). Consequently, a fair number of studies have explored whether 

GABA concentration can serve as a neurochemical predictor of sensory processing. 

Early on, Floyer-Lea et al. (2006) demonstrated that GABA-MRS could be used to 

track functional decreases during a motor learning task. This has since been followed 

by several studies showing associations between GABA and motor or oculomotor 

control (Boy et al., 2010; Kim et al., 2014; Long et al., 2014; Quetscher et al., 2014; 

Sampaio-Baptista et al., 2015; Stagg et al., 2011a; Sumner et al., 2010). 

Furthermore, a number of studies have shown that there are individual differences 

when to comes the level of GABA concentration and the ability to discriminate 

between two stimuli. In a landmark study, Edden et al. (2009) found that occipital 

GABA levels correlated with discrimination thresholds for obliquely oriented 
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stimuli, with participants with higher levels having lower thresholds. The 

incorporation of 1H MRS of GABA in psychophysical experiments to study the 

molecular underpinnings of perception is an emerging field that has so far produced 

several high-impact findings (e.g., Heba et al., 2016; Puts et al., 2015, 2011; 

Rowland et al., 2013; Terhune et al., 2014; van Loon et al., 2013; Yoon et al., 2010). 

2.4.3 Haemodynamics 

One of the most relevant areas of GABA-MRS research to functional neuroimaging 

in general is the investigation of the role that GABA levels play in haemodynamics 

and neurovascular coupling. In Section 2.2.2, an overview of the contribution of 

GABAergic inhibition to the neurovascular response was given. The earliest known 

1H MRS study that examined the relationship between GABA concentration and the 

BOLD signal was that of Chen et al. (2005). The authors used the GABA-T 

inhibitors vigabatrin and gabaculine to increase endogenous levels of GABA and 

subsequently observed a concomitant, linear decrease in BOLD signal amplitude. 

This landmark study laid the foundations for many subsequent investigations of the 

GABA–BOLD relationship. Most studies have used simple tasks to elicit a task-

related change in the BOLD signal, which have for the most part supported the 

observation of an inverse relationship between GABA concentration and signal 

change (Bednařík et al., 2015; Donahue et al., 2010; Muthukumaraswamy et al., 

2012, 2009; Northoff et al., 2007; Stagg et al., 2011a). Separate studies have shown 

that resting CBF also appears to correlate with endogenous GABA levels (Donahue 

et al., 2014, 2010). However, the relationship between MRS-measured GABA and 

haemodynamics is perhaps the most contentious of areas in applied GABA-MRS 

research. For example, Harris et al. (2015a) failed to find a significant association 

between GABA levels and the BOLD signal in several different brain regions. In 

other cases the relationship is not inverse as most studies have shown. These 

controversies contribute to the rationale of the experiment described in Chapter 6 

and so will be described in detail there. 

2.4.4 Pharmacology 

Another highly active area of research in 1H MRS has been that of studying the 

effects of GABAergic and non-GABAergic drugs on endogenous GABA 

concentration in healthy and clinical populations. Using GABAergic drugs to 
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challenge the GABA system is advantageous as their actions are typically focal, 

perturbing metabolism or synaptic transmission in a very particular manner. 

Moreover, the complexity of the GABA system means there are many different sites 

to target, including GABAA and GABAB receptors, GABA-T, GAT and GAD 

(Froestl, 2011; Sivilotti and Nistri, 1991; Sytinsky et al., 1978). As with noninvasive 

neurostimulation modalities (e.g., see Stagg, 2014), performing pharmacological 

studies with 1H MRS has the potential to better define the biochemical origin of the 

NMR signal of GABA. 

The vast majority of GABAergic drugs currently available were designed or 

are exploited for their anticonvulsant effect in the treatment of epilepsy. For 

example, gabapentin, levetiracetam, pregabalin, tiagabine, topiramate and vigabatrin 

are all antiepileptics. Of course, this should not be surprising given the very direct 

role GABAergic inhibition plays in the generation of epileptiform neuronal activity. 

As mentioned in Section 2.4.1.3, the advent of GABA-edited MRS swiftly led to 

several investigations into epilepsy, particularly with regards to the effect of 

GABAergic anticonvulsants on endogenous GABA levels. The highly selective 

GABA-T inhibitor vigabatrin was first shown by Rothman et al. (1993) to increase 

GABA concentration in the occipital lobe in healthy and epileptic volunteers. This 

has since been followed by many reports describing similar and consistent results 

(Hanstock et al., 2002; Mueller et al., 2008; Petroff et al., 1999, 1998, 1996a, 1996d; 

Verhoeff et al., 1999; Waschkies et al., 2014; Weber et al., 1999). The sheer number 

of publications reporting an increase in MRS-measured GABA following vigabatrin 

administration is strong evidence that the GABA NMR signal is more than likely 

linked to the metabolic GABA pool. Nonetheless, there has also been success in 

observing GABA level increases with the GABAA receptor agonist topiramate 

(Kuzniecky et al., 2002, 1998; Petroff et al., 2001b). 

A number of studies have examined the effects of tiagabine, which 

selectively inhibits GABA reuptake by blocking GAT-1, on total GABA 

concentration. Although Myers et al. (2014) recently failed to observe any 

differences in occipital and limbic GABA concentration following dosage of 

tiagabine, Waschkies et al. (2014) were able to observe a significant increase in rat 

striatal GABA at 9.4 T with a dosage of 20 mg/kg. Tiagabine’s effects may be more 

related to perturbation of GABA metabolic flux (Patel et al., 2015) or facilitation of 

synaptic binding (Stokes et al., 2014) rather than affecting total concentration levels. 
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Gabapentin, an antiepileptic that is commonly used to treat neuropathic pain, is 

believed to bind to voltage-dependent calcium ion channels. Like tiagabine, 

gabapentin elevates endogenous GABA in epilepsy patients (Petroff et al., 2000, 

1996b) and healthy individuals (Kuzniecky et al., 2002), and raises cellular GABA 

in human neocortical slice preparations (Errante et al., 2002). Moreover, a more 

recent 7 T study reported that the percentage of GABA increase following 

gabapentin administration was inversely correlated with participants’ baseline 

GABA levels (Cai et al., 2012). Preuss et al. (2013), however, showed that a low 

dosage did not lead to significant changes in GABA. 

As alluded to earlier, the selective serotonin reuptake inhibitors citalopram 

and fluoxetine have been shown to increase GABA levels in patients with depression 

(Bhagwagar et al., 2004; Sanacora et al., 2002). More recently, ketamine has been 

gaining substantial interest given its theorised anti-depressant effects. A handful of 

1H MRS studies have attempted to investigate concentration changes in GABA 

follow ketamine infusion but with mixed results (Milak et al., 2015; Perrine et al., 

2014; Rodriguez et al., 2015; Stone et al., 2012; Valentine et al., 2011). Although 

the incredibly popular benzodiazepines are known to bind to the interface between 

the α and γ subunits of the GABAA receptor, only a few 1H MRS studies have 

investigated the effect of these drugs in human. Goddard et al. (2004) found that 

occipital GABA levels decreased after clonazepam administration in healthy 

volunteers but there was no change in patients with panic disorder. Although not a 

benzodiazepine, the hypnotic zolpidem binds at benzodiazepine binding sites on 

GABAA receptors. Results are equivocal regarding the effects of zolpidem as it has 

been shown to either decrease (Licata et al., 2009) or increase (Licata et al., 2014) 

endogenous GABA.  

Whether MRS is appropriate for studying the pharmacological effects on the 

GABA system, or indeed whether it is even capable of doing so, remains an ongoing 

issue. The equivocality of the findings from some of the previously mentioned 

studies continues to fuel questions as to whether the (non-)specificity of MRS-

detected GABA concentration can discriminate acute changes in GABAergic 

function or whether it simply can only be used for measurements of bulk GABA 

content in a given VOI (Stagg et al., 2011b). 
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3. Absolute Quantification of GABA in 

Spectroscopic Volumes Composed of 

Heterogeneous Tissue Compartments 

 

3.1 Abstract 

Quantification of GABA using localised MRS suffers from partial volume effects 

related to differences in the ratio of intrinsic GABA concentration in GM and WM 

(rM). Thus, individual differences in the GM tissue fraction could drive apparent 

GABA concentration differences. Here, a quantification method to correct for these 

effects is formulated and validated. Absolute quantification using internal tissue 

water as a concentration reference while correcting for voxel CSF content has 

previously been described. GM tissue fraction effects can be normalised by 

incorporating into this established method a multiplicative correction factor based 

on measured or literature values of rM relative to the proportion of GM and WM 

within tissue-segmented volumes. Simulations were performed to test the sensitivity 

of this correction using different assumptions of rM. The tissue correction method 

was then validated by applying it to an independent dataset of in vivo GABA 

measurements using an empirically measured value of rM. It is shown that incorrect 

assumptions of rM can lead to overcorrection and inflation of quantified GABA in 

volumes composed predominantly of WM. For the independent dataset, GABA 

concentration was linearly related to GM volume when only the water reference was 

corrected for partial volume effects. Correcting for partial volume effects ascribed 

to rM successfully removed this dependency. With appropriate assumptions of the 

intrinsic ratio of GABA in GM and WM, GABA measurements can be corrected for 

partial volume effects, potentially reducing between-subject variance. 
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3.2 Introduction 

An outstanding problem in the absolute quantification of GABA concentration is the 

issue of partial volume effects, which arise from signal detection in heterogeneous 

spectroscopic voxels composed of GM, WM and CSF. Partial volume effects will 

lead to differences in apparent GABA concentration (across regions either within or 

between participants) that are dependent on differences in tissue content and not 

necessarily on differences in intrinsic concentrations of GABA. This also has 

implications for the SNR of detected spectral peaks, where variations in tissue 

content will lead to differences in signal intensity. 

Early post-mortem studies have indicated that GABA content is 

heterogeneous across the mammalian cerebrum. Fahn and Côté (1968) reported 

large variability in concentration in rhesus monkeys, with highest GABA levels 

found in subcortical regions (e.g., basal ganglia) and lowest in pure WM (centrum 

semiovale). Petroff et al. (1988) measured GABA concentrations in biopsied rabbit 

brains, revealing two times greater levels in GM compared to WM. Comparatively 

higher GABA in GM has also been seen in the monkey brain (Sytinsky and Thinh, 

1964). The use of 1H MRS has also revealed regional differences of in vivo GABA 

across the brain in rats (Hong et al., 2011) and humans (Dou et al., 2013; Durst et 

al., 2015; Harada et al., 2011a; Veen and Shen, 2013; Waddell et al., 2011). 

A number of studies have reported a positive linear dependence of MRS-

measured GABA measurements on GM volume, where the amount of GABA in 

pure GM and WM can be estimated by linear regression given sufficient variability 

in tissue content (Hetherington et al., 1996). GABA detection using CSI has been 

particularly useful in charactering this relationship given the large range in fractional 

GM volume sampled across the acquisition slab. CSI studies have shown two- to 

eight-fold increases in GABA in GM compared to WM (Choi et al., 2006; Jensen et 

al., 2005; Zhu et al., 2011). SVS experiments have also shown a similar finding 

within more regionally specific volumes (Bhattacharyya et al., 2011; Choi et al., 

2007; Ganji et al., 2014; Geramita et al., 2011). 

This GM dependency has implications for studies including systematic 

differences in fractional GM volume either between experimental groups or across 

individual participants. For instance, in an extreme case one set of GABA values has 

been acquired from predominantly WM volumes (such as where significant atrophy 
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has occurred) and is compared to another dataset from a control cohort. A difference 

will likely be apparent but this may not be due to intrinsic differences in GABA 

concentration but rather to differences in tissue content between the two cohorts. 

Confounds will also occur where GABA is correlated with a behavioural measure 

(e.g., impulsivity) or a functional imaging signal (e.g., the BOLD response) when 

these other variables also show a dependency on GM volume. Positive relationships 

between GABA, GM and a variable of interest will lead to overestimation of the 

correlation between GABA and the variable of interest. In contrast, a negative 

relationship between GM and a variable of interest will lead to underestimation of 

the positive correlation between GABA and this variable. Accounting for 

heterogeneous tissue content is, therefore, an important step for accurate 

quantification of in vivo GABA concentration. 

 A hindrance to the implementation of such an approach is the assumed value 

of the ratio of concentration of GABA in pure GM to the concentration of GABA in 

pure WM, rM. Harris et al. (2015c) have recently detailed a comprehensive method 

that corrects for intrinsic GABA signal differences due to partial volume effects. 

Crucially, their method relies on assuming the ratio of GABA in pure GM and WM 

(i.e., rM). The effect of various ratios on simulated data was investigated, where an 

rM value of 2 was shown to be the most appropriate. This value was then used to 

correct in vivo data for differences in voxel volume fractions across participants, 

where it did not lead to increased variance in corrected GABA concentration values 

between-subjects. 

Here, a correction method mathematically similar to Harris et al. (2015c) is 

presented. However, a slightly different approach is taken in that the intrinsic ratio 

of region-specific GABA in pure GM and WM is empirically estimated in a large 

reference dataset. Additionally, the aim is to show how various assumptions of rM 

taken from previous studies influence the correction. Thus, this study’s objectives 

were threefold: Firstly, to estimate rM in the occipital lobe (OCC) of a large reference 

cohort. Secondly, to simulate the effect of altering the assumed value of rM (based 

on literature values) when correcting GABA concentration in heterogeneous 

volumes. Thirdly, to validate this tissue correction method by applying it to OCC 

GABA measurements quantified in an independent dataset. 
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3.3 Theory 

As was introduced in Section 1.5.2, the NMR signal of a metabolite is proportional 

to its concentration scaled by constants related to the scanner system and the 

chemical sample: 

 𝑆𝑆𝑀𝑀 = 𝑘𝑘𝑅𝑅𝑀𝑀𝐶𝐶𝑀𝑀 [3.1] 

where SM is the observed signal, k is a complex global proportionality constant 

containing numerous system scaling factors (e.g., receive gain, coil loading, pulse 

sequence design, TR, TE, etc.) and CM is the metabolite concentration (equal to the 

number of moles of the molecule that is visible). The signal attenuation factor RM 

accounts for the longitudinal and transverse relaxation of the metabolite: 

 𝑅𝑅𝑀𝑀 = exp �− 𝑇𝑇𝑇𝑇𝑇𝑇2,𝑀𝑀� �1− exp �− 𝑇𝑇𝑇𝑇𝑇𝑇1,𝑀𝑀�� [3.2] 

where TE and TR are the echo and repetition times of the acquisition and T1,M and 

T2,M are the T1 and T2 of the metabolite. It is assumed that the relaxation times of 

metabolites do not differ substantially across GM and WM (Choi et al., 2006; 

Ethofer et al., 2003; Mlynárik et al., 2001; Träber et al., 2004). 

For a given localised spectroscopic voxel, the metabolite concentration will 

be equal to a weighted sum of the intrinsic concentration of the metabolite in each 

MR-visible tissue compartment in the brain (Hetherington et al., 1996; Wang and 

Li, 1998). This can be formulated as follows: 

 𝐶𝐶𝑀𝑀 = 𝛼𝛼𝑥𝑥 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾 [3.3] 

where α, β and γ are the volume fractions of GM, WM and CSF within the voxel and 

x, y and z represent the basis concentrations of the metabolite in pure GM, WM and 

CSF. It is important to note that Eq. [3.3] assumes that the basis metabolite 

concentration for each compartment does not change throughout the cerebrum. 

The GM, WM and CSF volumes in the voxel can be estimated by tissue 

segmentation algorithms available in widely used MRI analysis packages (e.g., FSL, 

SPM or FreeSurfer), such that the terms α, β and γ equate to the fractional voxel 

volumes for each tissue compartment: α = fGM, β = fWM, γ = fCSF. The basis 

concentrations can now represented as: x = MGM, y = MWM, z = MCSF. Rewriting Eq. 

[3.1] gives 

 𝑆𝑆𝑀𝑀 = 𝑘𝑘𝑅𝑅𝑀𝑀(𝑓𝑓𝐺𝐺𝑀𝑀𝑀𝑀𝐺𝐺𝑀𝑀 + 𝑓𝑓𝑊𝑊𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀 + 𝑓𝑓 𝐶𝐶𝑆𝑆𝐶𝐶𝑀𝑀𝐶𝐶𝑆𝑆𝐶𝐶) [3.4] 



Q U A N T I F I C A T I O N  I N  H E T E R O G E N E O U S  V O L U M E S | 77 
 

The intrinsic concentration of most metabolites in CSF is considered to be 

negligible (Glaeser and Hare, 1975; Petroff et al., 2006); therefore, the CSF terms 

can be removed from the equation. This then requires that the GM and WM voxel 

volume terms be normalised by the amount of tissue in the voxel. Eq. [3.4] then 

becomes 

 𝑆𝑆𝑀𝑀 = 𝑘𝑘𝑅𝑅𝑀𝑀 �𝑓𝑓𝐺𝐺𝑀𝑀𝑀𝑀𝐺𝐺𝑀𝑀1−𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 (1− 𝑓𝑓𝐶𝐶𝑆𝑆𝐶𝐶) +
𝑓𝑓𝑊𝑊𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀1−𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 (1− 𝑓𝑓𝐶𝐶𝑆𝑆𝐶𝐶)� [3.5] 

fGM and fWM are normalised by the degree of tissue in the voxel by 

 𝑡𝑡𝐺𝐺𝑀𝑀 =
𝑓𝑓𝐺𝐺𝑀𝑀1−𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 [3.6] 

 𝑡𝑡𝑊𝑊𝑀𝑀 =
𝑓𝑓𝑊𝑊𝑀𝑀1−𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 [3.7] 

where tGM and tWM are the fractional GM and WM volumes per unit tissue volume. 

This obtains 

 𝑆𝑆𝑀𝑀 = 𝑘𝑘𝑅𝑅𝑀𝑀[𝑡𝑡𝐺𝐺𝑀𝑀𝑀𝑀𝐺𝐺𝑀𝑀(1− 𝑓𝑓𝐶𝐶𝑆𝑆𝐶𝐶) + 𝑡𝑡𝑊𝑊𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀(1− 𝑓𝑓𝐶𝐶𝑆𝑆𝐶𝐶)] [3.8] 

 𝑆𝑆𝑀𝑀 = 𝑘𝑘𝑅𝑅𝑀𝑀(𝑡𝑡𝐺𝐺𝑀𝑀𝑀𝑀𝐺𝐺𝑀𝑀 + 𝑡𝑡𝑊𝑊𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀)(1− 𝑓𝑓𝐶𝐶𝑆𝑆𝐶𝐶) [3.9] 

Since the tissue volumes are based in terms of GM and WM, the basis concentrations 

of the metabolite can be interpreted as a ratio of MGM to MWM, as so: 

 𝑟𝑟𝑀𝑀 =
𝑀𝑀𝐺𝐺𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀 [3.10] 

Eq. [3.9] can be rewritten, giving 

 𝑆𝑆𝑀𝑀 = 𝑘𝑘𝑅𝑅𝑀𝑀(𝑡𝑡𝐺𝐺𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀 + 𝑡𝑡𝑊𝑊𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀)(1− 𝑓𝑓𝐶𝐶𝑆𝑆𝐶𝐶) [3.11] 

The basis concentrations are now relative to the concentration of the metabolite in 

pure WM. Consequently, when rM = 1, MGM = MWM. 

It is common practice when quantifying metabolite concentrations to 

standardise to an internal reference, the signal of which will also be dependent on 

the tissue composition of the voxel. In such a case, Eq. [3.11] can be written as 

 
𝑆𝑆𝑀𝑀𝑆𝑆𝑁𝑁 =

𝑇𝑇𝑀𝑀(𝑑𝑑𝐺𝐺𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀+𝑑𝑑𝑊𝑊𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀)𝑇𝑇𝑁𝑁(𝑑𝑑𝐺𝐺𝑀𝑀𝑟𝑟𝑁𝑁𝑁𝑁𝑊𝑊𝑀𝑀+𝑑𝑑𝑊𝑊𝑀𝑀𝑁𝑁𝑊𝑊𝑀𝑀)
× (1− 𝑓𝑓𝐶𝐶𝑆𝑆𝐶𝐶) [3.12] 

where k is cancelled out and the N terms are treated in the same manner as the M 

terms. 

While the choice of a reference is important for a multitude of reasons, such 

as for being certain any possible effect of a metabolite of interest is due to the 

metabolite itself and not the reference, correcting for heterogeneous tissue content 

adds another layer of complexity. From Eq. [3.12] it can be seen that assuming 

inappropriate basis concentrations for either the metabolite of interest or the 
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reference will adversely affect the quantified metabolite concentration. It is useful 

to frame this potential problem by considering the normalisation factor needed to 

correct for partial volume effects. This is a multiplicative tissue correction factor 

derived from Eq. [3.11] and is formulated as follows: 

 𝑇𝑇𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟 = (𝑡𝑡𝐺𝐺𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀 + 𝑡𝑡𝑊𝑊𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀)−1 [3.13] 

It is important to note that the purpose of this normalisation is to scale measured 

concentrations to the concentration that would have been measured if the volume in 

which the signal was acquired were 50% GM and 50% WM. Therefore, the basis 

concentrations MGM and MWM must each be divided by the mean of MGM and MWM. 

In this way, Tcorr will equal 1 (i.e., no correction) if tGM = 0.5. Figure 3.1 displays 

Tcorr as a function of tGM based on a range of assumptions of rM. It can be clearly 

seen that incorrectly assuming a large rM value will lead to inflation of 

concentrations measured in voxels composed predominately of WM. Thus, 

inappropriate assumptions of the ratio of the intrinsic metabolite concentration in 

pure GM and WM could significantly bias measurements when there is large 

variability in fractional voxel volumes across participants or groups. 

For relative quantification (referencing to another metabolite), the basis 

concentration values for the reference are typically assumed from previous studies 

in the literature. However, when absolute concentration values are desired, a 

common method is to use tissue water as an internal concentration reference. The 

Figure 3.1  The modelled multiplicative tissue correction factor (Tcorr) for assumed rM values 
ranging from 1 to 10 as a function of fractional GM volume per unit tissue volume (tGM). 
Assumption of a large rM necessitates a greater correction for volumes composed 
predominately of WM, leading to inflation of concentration measurements. The model 
assumes that there is no metabolite in CSF, that fCSF = 0 and that there are no relaxation 
differences for the metabolite between GM and WM. 
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use of tissue water as a standard reference has been described extensively (Barker et 

al., 1993; Christiansen et al., 1993; Ernst et al., 1993; Gussew et al., 2012; Knight-

Scott et al., 2003; Kreis et al., 1993). The major advantages of quantitative water 

referencing over relative metabolite referencing include the ability to compare data 

across sites, high SNR of the water peak and relative ease of acquisition (Alger, 

2010). The observed water signal is not homogenous throughout brain tissue, 

however; tissue-dependent water relaxation and visibility differences have to be 

taken into account. Gasparovic et al. (2006) have described a metabolite 

quantification method that accounts for the differential density and relaxation times 

of water in volumes comprised of heterogeneous tissue compartments, formulated 

as follows: 

 𝐶𝐶𝑀𝑀 =  
𝑆𝑆𝑀𝑀�𝑓𝑓𝐺𝐺𝑀𝑀𝜌𝜌𝐻𝐻2𝑂𝑂,𝐺𝐺𝑀𝑀𝑇𝑇𝐻𝐻2𝑂𝑂,𝐺𝐺𝑀𝑀+𝑓𝑓𝑊𝑊𝑀𝑀𝜌𝜌𝐻𝐻2𝑂𝑂,𝑊𝑊𝑀𝑀𝑇𝑇𝐻𝐻2𝑂𝑂,𝑊𝑊𝑀𝑀+𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝜌𝜌𝐻𝐻2𝑂𝑂,𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝐻𝐻2𝑂𝑂,𝐶𝐶𝐶𝐶𝐶𝐶�𝑆𝑆𝐻𝐻2𝑂𝑂𝑇𝑇𝑀𝑀(1−𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶)

×
#𝐻𝐻𝐻𝐻2𝑂𝑂

#𝐻𝐻𝑀𝑀  

× 𝐶𝐶𝐻𝐻2𝑂𝑂 [3.14] 

where SH2O is the observed water signal, ρH2O,y is the relative density of MR-visible 

water in compartment y, #HH2O and #HM are the number of protons that give rise to 

the water and metabolite peaks and CH2O is the molar concentration of water (55,000 

mM). The differential longitudinal and transverse relaxation times of water in each 

tissue compartment are corrected for by the attenuation factor RH2O,y (see Eq. [3.2]). 

In similar fashion, the metabolite of interest could be referenced to internal tissue 

water according to Eq. [3.12], where the signal ratio is 

 
𝑆𝑆𝑀𝑀𝑆𝑆𝐻𝐻2𝑂𝑂 =

𝑇𝑇𝑀𝑀(𝑑𝑑𝐺𝐺𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀+𝑑𝑑𝑊𝑊𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀)(1−𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶)𝑇𝑇𝐻𝐻2𝑂𝑂(𝑓𝑓𝐺𝐺𝑀𝑀𝐻𝐻2𝑂𝑂𝐺𝐺𝑀𝑀+𝑓𝑓𝑊𝑊𝑀𝑀𝐻𝐻2𝑂𝑂𝑊𝑊𝑀𝑀+𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻2𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶)
 [3.15] 

Finally, the equation can be now rearranged to determine the absolute 

concentration of the metabolite while additionally accounting for tissue-dependent 

signal weightings of the metabolite and the water reference: 

 𝐶𝐶𝑀𝑀 =
𝑆𝑆𝑀𝑀�𝑓𝑓𝐺𝐺𝑀𝑀𝜌𝜌𝐻𝐻2𝑂𝑂,𝐺𝐺𝑀𝑀𝑇𝑇𝐻𝐻2𝑂𝑂,𝐺𝐺𝑀𝑀+𝑓𝑓𝑊𝑊𝑀𝑀𝜌𝜌𝐻𝐻2𝑂𝑂,𝑊𝑊𝑀𝑀𝑇𝑇𝐻𝐻2𝑂𝑂,𝑊𝑊𝑀𝑀+𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝜌𝜌𝐻𝐻2𝑂𝑂,𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝐻𝐻2𝑂𝑂,𝐶𝐶𝐶𝐶𝐶𝐶�𝑆𝑆𝐻𝐻2𝑂𝑂𝑇𝑇𝑀𝑀(𝑑𝑑𝐺𝐺𝑀𝑀𝑟𝑟𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀+𝑑𝑑𝑊𝑊𝑀𝑀𝑀𝑀𝑊𝑊𝑀𝑀)(1−𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶)

×
#𝐻𝐻𝐻𝐻2𝑂𝑂

#𝐻𝐻𝑀𝑀  

× 𝐶𝐶𝐻𝐻2𝑂𝑂 [3.16] 

Eq. [3.16] quantifies the absolute concentration of the metabolite of interest 

corrected for relative water and metabolite signal weightings due to signal relaxation 

and partial volume effects dependent upon given proportions of GM, WM and CSF 

in a localised spectroscopic volume, which is represented in institutional units (i.u.). 
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3.4 Methods 

3.4.1 Estimation of GABA in GM and WM 

Basis concentrations of GM and WM GABA in the OCC were estimated in a 

reference cohort of 95 participants (62 females; 23.98 ± 4.48 years), the “100 Brains” 

cohort. This dataset was collected and analysed prior to and separately from the 

present investigation. Briefly, GABA'+MM was detected in the medial OCC using 

MEGA-PRESS at 3 T (TE/TR = 68/1800 ms, voxel size = 30 × 30 × 30 mm3, 332 

averages). Tissue water was used as an internal concentration reference, which was 

corrected for relative signal contributions from GM, WM and CSF according to Eq. 

[3.14]. The GABA'+MM measurements were normalised by the amount of CSF in 

the voxel. Tissue volume fractions were calculated from within the voxel, which was 

co-registered with a high-resolution 1-mm isotropic T1-weighted 3D fast spoiled 

gradient echo (FSPGR) structural image (TE/TI/TR = 3.0/450/7.9 ms). A linear 

regression analysis was then employed to test the relationship between tGM and 

GABA'+MM concentration (Hetherington et al., 1996). The uncertainty of the 

gradient of the regression model was estimated by calculating a 95% confidence 

interval (CI) for the slope parameter. 

3.4.2 Sensitivity Analysis 

To evaluate the sensitivity of applying Eq. [3.13] to GABA measurements, the 

impact of various assumptions of rM on simulated data was assessed. A scatterplot 

of 10,000 randomly generated, normally distributed data points was created where 

each point was a coordinate of a tGM by GABA'+MM linear function. The mean and 

standard deviation (SD) of each variable and the slope of the best-fit line were based 

on the 100 Brains cohort. The simulated GABA'+MM measurements were then 

corrected for partial volume effects based on values of rM estimated from basis 

concentrations reported in the literature (Table 3.1). The selection of prior 

assumptions was restricted to in vivo spectroscopic studies to avoid differences 

between MRS-measured GABA concentration and “gold standard” quantification 

through histological or ex vivo methods. 
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3.4.3 Empirical Validation 

3.4.3.1 In vivo GABA detection 

Endogenous GABA concentration was quantified in an independent cohort of 32 

volunteers (17 females; 26.9 ± 3.9 years). Participants consented to taking part in 

scanning, which was approved by the local institutional ethics committee. 

A 30 × 30 × 30 mm3 voxel was positioned medially in the OCC with the 

ventral face of the voxel aligned with the cerebellar tentorium (Figure 3.2). GABA 

concentration was measured with two 15-min MEGA-PRESS acquisitions. A 

standard acquisition (TE = 68 ms) was used where two editing pulses (16-ms 

duration) were placed at either 1.9 ppm (ON) or 7.5 ppm  (OFF), which leads to an 

MM-contaminated GABA signal (GABA'+MM). A second acquisition (TE = 80 ms) 

using the symmetric suppression method (Henry et al., 2001) was also employed. 

Here, the editing pulses (20-ms duration) were placed symmetrically about the 1.7 

ppm MM resonance (ON = 1.9 ppm, OFF = 1.5 ppm). The MM resonance is in this 

way excited equally in both ON and OFF scans, and the coupled 3.0 ppm MM 

resonance, which is present to the same extent in both ON and OFF scans, is absent 

Figure 3.2  High-resolution T1-weighted structural image for one participant with co-
registered MRS voxel mask displayed in yellow (a). Corresponding probabilistic partial 
volume voxel maps following FAST segmentation are shown for GM (b), WM (c) and CSF 
(d). 
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from the difference spectrum (GABA'). Other scan parameters for both acquisitions 

were as follows: TR = 1800 ms, 512 averages, 4096 data points, 5 kHz spectral 

width. Eight water-unsuppressed scans were acquired in each acquisition to act as 

an internal concentration reference. 

A high-resolution T1-weighted 3D FSPGR structural image (TE/TI/TR = 

3.0/450/7.9 ms, flip angle = 20°, voxel resolution = 1 mm3, FOV = 256 × 256 × 168 

mm3, matrix size = 256 × 256) was acquired for voxel co-registration and tissue 

segmentation. 

3.4.3.2 Voxel co-registration and segmentation 

MRS voxels were co-registered with the FSPGR image using in-house software 

created in MATLAB (release R2012b; Natwick, NA), producing a binary voxel 

mask in individual structural space. Structural images were segmented into 

probabilistic partial volume maps corresponding to GM, WM and CSF using the 

automated segmentation tool FAST (Zhang et al., 2001) following removal of non-

brain tissue using BET (Smith, 2002). Each partial volume map was then multiplied 

by the binary voxel mask to give probabilistic partial volume voxel maps (Figure 

3.2). The volume of each tissue compartment was calculated by multiplying the 

volume (in voxels) of the partial volume map by the mean partial volume estimate. 

fGM, fWM and fCSF were then calculated by dividing the voxel volume of each tissue 

compartment by the sum of the voxel volumes. tGM was calculated by dividing fGM 

by the sum of fGM and fWM. 

3.4.3.3 Absolute quantification 

Spectra were processed and GABA was quantified in Gannet (Edden et al., 2014). 

Three-hertz exponential line broadening was applied to time-domain data prior to 

Fourier transformation. Frequency-domain data were then automatically corrected 

for frequency and phase using spectral registration (Near et al., 2015). Using a 

nonlinear least-squares fitting procedure, the GABA integral was calculated by 

fitting a Gaussian function to the GABA peak in the difference spectrum. The water 

integral was calculated by fitting a Lorentzian-Gaussian function to the water peak 

in the unsuppressed water spectrum. GABA concentrations were then standardised 

to internal tissue water in three separate ways: (i) by only applying a global absolute 

concentration scaling factor to the GABA to water integral ratio (i.e., #HH2O / 
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#HGABA × CH2O), (ii) by correcting the water signal for relative signal contributions 

from GM, WM and CSF (Eq. [3.14]) or (iii) by correcting the water signal and 

normalising the GABA signal to the relative metabolite signal contributions from 

GM and WM (Eq. [3.16]). For absolute GABA concentrations quantified using 

GABA-editing it is necessary to correct for the estimated degree of MM 

contamination and editing efficiency (MM / κ). MM is the estimated amount of 

GABA in the MM-contaminated GABA signal (0.45) and κ is the editing efficiency 

of GABA-editing (0.5). The relative water proton densities in CSF, GM and WM 

were set to 1.00, 0.78 and 0.65 (Ernst et al., 1993). The T1 and T2 of water in GM 

were set to 1.33 s and 0.11 s, the T1 and T2 of water in WM were set to 0.83 s and 

0.08 s (Wansapura et al., 1999) and the T1 and T2 of water in CSF were set to 3.82 s 

(Lu et al., 2005) and 0.50 s (Piechnik et al., 2009). The T1 and T2 of GABA were set 

to 0.80 s and 0.088 s (Harris et al., 2015c). Two protons give rise to the water and 

the 3.0 ppm GABA peaks. MWM and rM were estimated from the 100 Brains dataset. 

Given the uncertainty in the regression slope as determined by the 95% CI, the 

optimal rM value was selected from 100 values calculated by linearly interpolating 

between the upper and lower bounds of the CI for MGM (at tGM = 1); MWM (i.e., the 

intercept) was kept fixed (at tGM = 0) (see Table 3.1). The optimal rM was that which 

produced the smallest possible coefficient of determination (R2) when GABA 

concentration was regressed against tGM. 

3.5 Results 

The mean (± SD) [GABA'+MM] and tGM in the 100 Brains cohort was 1.71 ± 0.25 

i.u. and 0.47 ± 0.07, respectively. The two variables were positively related (R2 = 

0.118, p < 0.001) (Figure 3.3). The slope parameter equalled 1.16, and the 95% CI 

of this was [0.51, 1.81]. Extrapolating from the regression, MGM and MWM were 

estimated to be 2.32 i.u. and 1.16 i.u, respectively (rM = 2.00). 

The outcome of the simulated sensitivity analysis is displayed in Figure 3.4. 

As expected, the assumption of rM taken from the 100 Brains cohort resulted in the 

largest reduction in the variance shared by tGM and [GABA'+MM] (R2 < 0.001). This 

was followed by the assumptions taken from studies that estimated a ratio of 

approximately 1.5–3:1 (R2 ≤ 0.02). The assumptions of rM above 6 introduced more 

shared variance into the regression model (R2 > 0.16). This led to overcorrection, 
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demonstrated by the inflation of GABA measurements in predominantly WM 

voxels. Correcting for tissue volume using appropriate assumptions of rM also 

reduced the amount of variance within the GABA dataset (σ2) compared to the 

original uncorrected dataset. Overcorrection resulted in increased variance within 

the GABA dataset. 

Thirty-one pairs of good quality spectra were acquired in the validation 

experiment. One participant’s data were excluded because of a large linewidth as a 

result of poor B0 shimming. Mean (± SD) [GABA'+MM] was 2.22 ± 0.14 i.u. and 

mean (± SD) [GABA'] was 1.06 ± 0.16 i.u (global scaling only). Tissue segmentation 

showed an average tGM of 0.41 ± 0.06 across voxels. Regression models of the 

dependence of [GABA] on tGM for MM-contaminated and MM-suppressed 

measures are displayed in Figure 3.5. Correcting the water signal alone revealed a 

dependence of [GABA'+MM] on tGM (R2 = 0.12). This dependence was weaker for 

GABA' (R2 = 0.04). [GABA'+MM] in pure GM was estimated to be 1.89 i.u. and 

1.29 i.u. in pure WM. For [GABA'], this was 0.97 i.u. (GM) and 0.58 i.u. (WM). 

Figure 3.3  Linear dependence of [GABA'+MM] on tGM in the 100 Brains cohort (n = 95). 
The solid black line is the line of best fit for the regression model. The dashed red lines 
represent the 95% CI for the upper and lower bound of the slope parameter. 
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Performing a combined water and GABA tissue correction led to a 

substantial reduction in R2 in the regression model for both GABA'+MM and GABA' 

compared to only correcting the water signal. The optimal rM taken from the range 

of interpolated ratios was 1.45 for GABA'+MM and 1.57 for GABA'. Additionally, 

using this correction method did not introduce more variance into the GABA 

datasets in comparison to the water-only correction. F-tests for equality of variances 

showed that the variances of the two tissue-corrected datasets were not significantly 

different from each other for either GABA'+MM (F(30, 30) = 1.05, p = 0.90) or 

GABA' (F(30, 30) = 0.97, p = 0.93). 

Figure 3.4  Simulated sensitivity analysis of normalising the linear dependence of 
[GABA'+MM] on tGM (blue scatterplot) assuming various assumptions of rM based on 
literature values (red scatterplots). The coefficient of determination of each regression 
model (R2) and the variance within each simulated GABA dataset (σ2) are displayed. 
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3.6 Discussion 

The simulations on the sensitivity of correcting for heterogeneous tissue content 

demonstrate that significant care needs to be taken when assuming the ratio between 

the basis metabolite concentration in pure GM and WM. An inappropriately large 

ratio will lead to overcorrection and introduction of a negative correlation with GM 

tissue fraction. This would be particularly detrimental with concentrations quantified 

from data acquired in predominately WM volumes as these values will be greatly 

inflated. When an appropriate assumption of the basis concentration ratio rM is used, 

however, correction for partial volume effects can substantially reduce the variance 

shared between quantified GABA and fractional GM volume and potentially can 

decrease the between-subject variance within the GABA dataset itself. 

These findings largely mirror the results from Harris et al. (2015c). The 

intrinsic ratio of GABA in GM and WM in the OCC was found to be approximately 

2 in the reference dataset, which is equal to the ratio they recommend for partial 

Figure 3.5  Scatterplots of tGM versus [GABA] acquired in vivo with standard GABA-editing 
(top row) and symmetric MM suppression (bottom row). The leftmost column displays the 
relationship between tGM and GABA without any correction for partial volume effects. The 
middle column displays the same relationship following correction of the water signal only. 
The rightmost column shows the relationship when both water and GABA are tissue-
corrected. R2 = coefficient of determination; p = p-value; σ2 = variance within GABA 
datasets. 
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volume correction (the ratio term used here is the inverse of what they call α in Eq. 

(2)). In addition, by having access to a large cohort, not only was it possible to 

estimate rM in a region specific to an independent cohort using the same acquisition 

technique but the degree of uncertainty of the gradient of the regression model of 

GABA against GM tissue volume could also be gauged. These methodological 

differences from Harris et al.’s investigation corroborate their approach, further 

supporting the assumption of the intrinsic ratio of GM and WM GABA as a method 

to account for partial volume effects. 

A linear dependence of GABA concentration on fractional GM was observed 

in both the reference dataset and the independent validation dataset. This 

relationship was only apparent after correcting the internal tissue water reference for 

differential water density and relaxation time based on tissue content in the voxel. 

By assuming the basis concentrations of GABA in GM and WM, this dependence 

was successfully attenuated by the normalisation procedure. A valid concern is that 

normalising GABA measurements in this way may potentially be counterproductive 

and could increase error, especially if incorrect basis concentrations are assumed. 

However, tests for equality of variances demonstrated that this additional correction 

did not add significantly more variance to the GABA datasets. Therefore, it is 

demonstrated that normalising GABA concentration for heterogeneous tissue 

content is a straightforward and viable step in quantification methodology in MRS. 

To account for the possibility that group or individual differences are 

attributed to differences in GM volume, it is sometimes usual to treat tGM as a 

covariate of no interest (e.g., by analysis of covariance). Intuitively, this appears to 

be a sensible approach, given that the aim of an experiment is to demonstrate that 

the variance of a dependent variable (e.g., differences in GABA concentration) is 

mostly explained by the independent variable (e.g., younger vs. older participants) 

alone, independent of the variance explained by a covariate, such as tGM. However, 

it is a common misconception to attempt to control for a covariate when the covariate 

(in this case, tGM) is related to both the dependent and independent variables. 

Covarying out a covariate that correlates with both of these variables will not just 

remove some of the unexplained variance, it will also remove variance that would 

have been attributable to the predicted effect (Miller and Chapman, 2001). This 

makes interpreting the outcome of the analysis problematic and reduces the ability 

to observe true effects that may otherwise have been evident prior to partialling out 
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the variance attributed to the covariate. The alternative method of normalising 

GABA concentration for partial volume effects presented here obviates this issue as 

any variance of a covariate shared with GABA concentration and another variable 

is removed from the GABA measurements only. Notably, this approach can be 

implemented regardless of whether GM volume is associated with GABA and 

another variable of interest or with GABA alone. 

Whether or not GABA measurements should be corrected for heterogeneous 

tissue content should be considered. It is clear from the simulated data that when 

there is large variability in GM volume across the dataset, the variance shared 

between tGM and GABA concentration is predicted to be relatively large (~10%). In 

the context of the relevant literature, this dependency could potentially contribute a 

significant amount to the effect sizes of relationships between MRS-measured 

GABA and other variables of interest. Therefore, as an initial step in analysis it is 

recommended that researchers investigate whether or not GM volume correlates 

with both quantified GABA measurements and any variables of interest in a given 

study. 

The estimations of the basis concentrations of GABA in pure GM and WM 

from previous MRS studies reveal a considerable range in ratios (~1.5–8:1). This 

discrepancy is problematic as it adds uncertainty to the appropriate assumption of 

rM. It is unclear why such a range of estimations exists, but one possible explanation 

is that this is down to the variety of spectroscopy techniques that have been 

employed. The majority have employed SVS, where the acquisition approach has 

included double quantum filtering (Choi et al., 2007), ultra-high field unedited 

spectroscopy (Ganji et al., 2014)  and J-difference editing (Bhattacharyya et al., 

2011; Evans et al., 2011; Geramita et al., 2011). Approaches in CSI experiments 

have also varied from employing multiple quantum filtering (Choi et al., 2006) to 

2D J-resolved (Jensen et al., 2005) or J-difference edited imaging (Zhu et al., 2011). 

All of these methods have their own advantages and disadvantages with regard to 

resolving the GABA signal (Puts and Edden, 2012), which may play a factor in the 

inconsistent estimations of MGM and MWM. There is also the problem of different 

tissue segmentation algorithms and how much they contribute to quantification 

error. There is already some indication that some of the major toolboxes result in 

more error than others (Gasparovic et al., 2006; Klauschen et al., 2009). This 

particular issue is explored in the next chapter. The choice of reference in previous 
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studies will also be an important factor in explaining the variance of these estimates. 

Tissue water and Cr are the most commonly used internal references and both 

require assumptions about their respective intrinsic concentration in the sample prior 

to conversion to absolute concentration values, adding uncertainty to estimates of 

intrinsic concentrations. Another plausible explanation is that the sample size in 

most of these previous investigations has been relatively small (typically three to 10 

participants). Even for CSI, where the number of voxels allows for a better 

estimation of intrinsic concentration across tissue type, a small sample size limits 

the generalisability of estimated intrinsic concentrations. Finally, MM 

contamination in MEGA-edited spectroscopy will add some variance to the 

relationship between GABA measurements and GM volume. At least one CSI study 

has reported a relationship between GM and the MM baseline (McLean and Barker, 

2006). Given these discrepancies, it is recommended that research groups use 

reported values of MGM and MWM from previous studies that implemented a similar 

acquisition technique, sequence parameters, concentration reference and/or region 

of interest. Ideally, a reference dataset acquired from a sufficiently large sample at 

the local research site should be used, but this may not be practical in some settings. 

Aside from inconsistency in rM for GABA in the literature, a major limitation 

with the approach described here is the assumption that this ratio is constant 

throughout the cerebrum. Given the variation in GABA levels in different cortical 

and subcortical regions (Dou et al., 2013; Durst et al., 2015; Fahn and Côté, 1968), 

it is plausible that there are regional differences in the basis concentrations of GABA 

in pure GM and WM. Additionally, the correction also assumes that rM is the same 

for all participants, which is unlikely to be the case. To overcome these limitations, 

rM would need to be estimated within the region of interest on a per-participant basis, 

such as by using CSI. Methodological limitations and time constraints make this 

impractical, however, particularly in a clinical setting. Alternatively, and as 

previously stated, a sufficiently large, independent reference dataset that matches the 

technique and region of interest would circumvent these issues to a certain extent. 

Although accounting for the basis concentration of GABA in GM and WM 

will normalise tissue-dependent signal heterogeneity across participants within a 

given study, other factors influencing absolute quantification will affect 

measurements both within and across datasets. For instance, spatial effects of the 

MEGA-PRESS experiment will lead to signal loss in particular compartments of 
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localised volumes (Edden and Barker, 2007; Kaiser et al., 2008), which can only be 

assessed through simulated or in vitro experiments. Related to this, the resolved 

difference-edited 3.0 ppm GABA multiplet profile will vary depending on the 

transition width, refocusing bandwidths and flip angles of the slice-selective 

refocusing pulses (Near et al., 2013b). These will differ across acquisition protocol, 

platform and research site, leading to subtle differences in absolute measures. 

Finally, it is assumed that the relaxation times of the metabolite of interest are equal 

or at least similar between GM and WM. Although the T1 and T2 of GABA have 

been determined in vivo, relaxation differences across tissue type have yet to be 

characterised and must be taken into account in quantification steps. This applies 

equally to other metabolites and especially to tissue water (Gasparovic et al., 2009; 

Gussew et al., 2012; Lecocq et al., 2015; Yamamoto et al., 2015). These issues 

highlight some of the difficulties of absolute quantification in MRS, and in particular 

the quantification of GABA. 

3.7 Conclusions 

A method to correct GABA concentration measurements for partial volume effects 

in single spectroscopic volumes has been presented. This approach is a simple 

extension of an established method that quantifies metabolite concentration using 

tissue water as an internal reference while correcting for differential water signal 

contributions across tissue type. Although care must be taken when assuming the 

basis concentration of GABA in pure GM and WM, appropriate assumptions will 

remove the tissue dependence and potentially reduce variance within the dataset of 

GABA measurements. 
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4. Contribution of Error from Tissue 

Segmentation to the Absolute 

Quantification of GABA Concentration 

 

4.1 Abstract 

In the previous chapter, a comprehensive tissue correction method was introduced. 

An important source of error was not evaluated, however: the error due to tissue 

segmentation procedures. The degree of partial voluming in an MRS voxel is 

determined through tissue segmentation algorithms such as FSL’s FAST, SPM and 

FreeSurfer. Here, the contribution of error from tissue segmentation to the correction 

of partial volume effects in MRS voxels is investigated. One hundred FSPGR images 

from ten participants (ten FSPGRs per participant) were used in the error analysis. 

All structural images were registered to standard MNI space and segmented into 

CSF, GM and WM using FAST. A sample MRS voxel mask was also registered to 

standard space and segmented into the aforementioned tissue compartments. CSF, 

GM and WM volume fractions were quantified for each tissue compartment in each 

voxel for each participant. These volume fractions were then used to calculate tissue 

correction factors for a theoretical concentration of GABA. Both the volume 

fractions and the tissue-corrected GABA values were assessed for inter- and 

intrasubject variation. Based on the small variation of the tissue-corrected GABA 

values, it is concluded that tissue segmentation contributes a small degree of error to 

the absolute quantification of GABA in MRS. 

  



94 | 1 H  M A G N E T I C  R E S O N A N C E  S P E C T R O S C O P Y  O F  G A B A  
 

4.2 Introduction 

As discussed extensively in Chapter 3, there is ample evidence that GABA 

concentration is linearly related to the GM tissue fraction in a given localised 

volume. The robustness of any method to normalise or correct for this dependency 

will of course depend in large part on how well the volume of the principal tissue 

compartments in the brain (i.e., GM, WM and CSF) are estimated. It is not clear, 

however, how much error from tissue segmentation procedures is introduced into 

the correction for partial volume effects. In this chapter, the contribution of error 

from tissue segmentation to the absolute quantification of GABA is investigated. 

Firstly, the combined effect of scaling the water signal for different proportions of 

tissue content and accounting for the degree of CSF in a given VOI is modelled. 

Secondly, the error on absolute quantification of GABA concentration due to the use 

of the FAST segmentation algorithm using default parameters is estimated. This is 

based on the registration of a sample MRS voxel individually onto a large selection 

of T1-weighted structural images that were tissue-segmented in a standard manner. 

These segmented images were then used to calculate theoretical measurements of 

GABA concentration for each brain in the sample. Measures of repeatability and 

reliability were calculated to statistically estimate the error. 

4.3 Theory and Methods 

4.3.1 Tissue Water Correction in Absolute Quantification 

As introduced in Chapter 3, the concentration of a given metabolite quantified in a 

localised spectroscopic volume can be expressed in absolute terms by referencing 

the observed metabolite signal to an internal standard. Tissue water can be used as 

such a standard to convert arbitrary GABA concentration values into molar units 

(Eq. [3.14]). This equation can be rewritten as 

 𝐶𝐶𝐺𝐺 =
𝑆𝑆𝐺𝐺#𝐻𝐻𝐻𝐻2𝑂𝑂𝐶𝐶𝐻𝐻2𝑂𝑂𝑀𝑀𝑀𝑀𝑆𝑆𝐻𝐻2𝑂𝑂#𝐻𝐻𝐺𝐺𝜅𝜅  [4.1] 

where CG is the measured concentration of GABA, SG and SH2O are the measured 

NMR signals of the GABA and water resonances, #HH2O and #HG are the number of 

protons that give rise to the water and GABA peaks (2), CH2O is the molar 

concentration of water (55,000 mM), MM is a correction factor for the estimated 

degree of co-edited MM in the GABA signal (0.45) and κ is the efficiency of the 
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editing sequence (0.5). Eq. [4.1] represents the signal ratio of GABA and water 

scaled by a global absolute concentration scaling factor (as used in Chapter 3). The 

observed signals are assumed to have been detected in the absence of relaxation 

effects (i.e., TE = 0 and TR = ∞). 

This formula does not take into account partial volume effects on the water 

signal or of the amount of CSF volume in the voxel (which is assumed to contain 

negligible GABA). As detailed in the previous chapter, the tissue-dependent signal 

weighting of water content can be accounted for using the following formula: 

 𝑊𝑊𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟 = 𝑓𝑓𝐺𝐺𝑀𝑀𝜌𝜌𝐻𝐻2𝑂𝑂,𝐺𝐺𝑀𝑀 + 𝑓𝑓𝑊𝑊𝑀𝑀𝜌𝜌𝐻𝐻2𝑂𝑂,𝑊𝑊𝑀𝑀 + 𝑓𝑓𝐶𝐶𝑆𝑆𝐶𝐶𝜌𝜌𝐻𝐻2𝑂𝑂,𝐶𝐶𝑆𝑆𝐶𝐶 [4.2] 

and CSF volume in the voxel can be corrected by 

 𝐶𝐶𝑆𝑆𝐹𝐹𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟 = (1− 𝑓𝑓𝐶𝐶𝑆𝑆𝐶𝐶)−1 [4.3] 

Combining Eqs. [4.2] and [4.3] with Eq. [4.1] gives the molar concentration of 

GABA weighted by tissue-dependent water content and differential CSF volume in 

the voxel: 

 𝐶𝐶𝐺𝐺,𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟 = 𝐶𝐶𝐺𝐺𝑊𝑊𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝐶𝐶𝑆𝑆𝐹𝐹𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟 [4.4] 

For the sake of simplicity, the intrinsic concentration of GABA in GM and WM was 

assumed to be equal. If assuming CG is equal to 1 i.u., then the effect of Wcorr and 

CSFcorr on CG can be modelled by assuming a full range of fGM and fWM values, with 

fCSF ranging from 0 to 0.30. It can be seen from the change in the colour gradient of 

the contour plot in Figure 4.1 that the tissue correction is more sensitive to 

differences in the amount of CSF in the voxel than to differences in the amount of 

tissue content (GM/WM). 

Figure 4.1  The modelled effect of Wcorr and CSFcorr on the absolute quantification of GABA 
(CG) assuming a theoretical concentration of 1 i.u. The fraction of CSF (fCSF) and GM (fGM) 
range from 0 to 0.3 and 0 to 1, respectively. The colour bar indicates the value of CG,corr. 
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4.3.2 Estimation of Error 

A schematic of the study protocol is shown in Figure 4.2. A sample of 10 participants 

that had previously been scanned at the Cardiff University Brain Research Imaging 

Centre (CUBRIC) were selected from a repository of T1-weighted FSPGR structural 

images. These participants had the largest number of stored structural images in the 

repository. For each individual participant, a random subsample of 10 of their 

structural images was selected for analysis. Non-brain tissue was removed from each 

image using BET and the brain-only image was linearly registered to MNI space 

using a T1-weighted 1-mm isotropic standard brain as a reference (Mazziotta et al., 

2001). Registration was performed in FLIRT (Jenkinson and Smith, 2001; Jenkinson 

et al., 2002) using an affine transformation model with 12 degrees of freedom (rigid 

body + scaling + skewing). Each MNI-registered brain image was then segmented 

into probabilistic GM, WM and CSF partial volume maps using FAST. A randomly 

chosen binary MRS voxel mask localised in the OCC was selected to serve as a 

representative VOI; this was co-registered with the MNI brain. This MNI-registered 

sample voxel mask was then multiplied by the GM, WM and CSF partial volume 

maps for each participant giving probabilistic partial volume voxel maps for each 

tissue compartment. Fractional voxel volumes (fGM, fWM, fCSF) were calculated as in 

Section 3.4.3.2. Default parameters were used in BET, FLIRT and FAST. 

The voxel volume fractions were used to calculate theoretical tissue-

corrected GABA concentrations according to Eq. [4.4]. CG was set to 1 i.u. for all 

participants. In this way, the contribution of error from tissue segmentation to the 

absolute quantification of GABA was specifically assessed. 

Coefficients of variation (CV) were calculated to represent the error within 

participants (within-subject coefficient of variation, CVws) and the error across 

participants (between-subject coefficient of variation, CVbs) for the estimated voxel 

volume fractions and theoretical tissue-corrected GABA values. 

If σij is the standard deviation of participant i’s voxel volume fractions for 

tissue compartment j, and μij is the mean of their respective volume fractions, then 

the CV is given by 

 𝐶𝐶𝑉𝑉𝑖𝑖𝑖𝑖 = 100
𝜎𝜎𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 [4.5] 

and the CVws for tissue compartment j is defined as 
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Figure 4.2  Analysis pipeline for the estimation of error from tissue segmentation. 
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 𝐶𝐶𝑉𝑉𝑤𝑤𝑤𝑤,𝑖𝑖 =
∑𝐶𝐶𝑉𝑉𝑖𝑖𝑖𝑖𝑛𝑛  [4.6] 

Similarly, if μj is the mean of all volume fractions for compartment j then the CVbs 

is 

 𝐶𝐶𝑉𝑉𝑏𝑏𝑤𝑤,𝑖𝑖 = 100�∑�𝑑𝑑𝑖𝑖𝑖𝑖−𝑑𝑑𝑖𝑖�2𝑛𝑛−1 𝜇𝜇𝑖𝑖−1 [4.7] 

Intraclass correlation coefficients (ICCs) were calculated in SPSS (version 20.0; 

IBM, Armonk, NY) using a two-way random effects model with measures of 

consistency. Whereas the CV characterises measurement variability in one 

dimension (either within or between participants) and is useful for comparing the 

variability of measurements with different means, the ICC represents a ratio between 

between-subject variance and total variance and is a more informative statistic of the 

test–retest reliability of a measurement. 

4.4 Results and Discussion 

Mean (± SD) voxel volume fractions and CVs for each participant are listed in Table 

4.1. The corresponding overall average volume fractions for each tissue 

compartment and respective CVws, CVbs and ICCs are shown in Table 4.2. As can 

be seen, CSF content in the voxel had the greatest amount of variability both within 

and between participants (CVws = 39.4%; CVbs = 63.8%). This is despite a very high 

ICC (0.97). 

Each participant’s theoretical tissue-corrected [GABA] in each tissue-

segmented MRS voxel is given in Table A.1. The average concentration value was 

0.71 ± 0.01 i.u. The degree of variability in these values, and therefore the error 

attributed to tissue segmentation, was minimal (CVws = 0.96%; CVbs = 1.31%). The 

ICC was also very high (0.96). It can be concluded then that tissue segmentation and 

tissue correction only contributes a small degree of error to absolute quantification. 

To illustrate the distribution of CG,corr with respect to the tissue composition 

of the sample MRS voxel, for each participant fractional GM volume was plotted 

against the respective fractional CSF volume (Figure 4.3). The scatterplot 

demonstrates that the variability of the GABA values, and therefore the variability 

of the tissue correction factors, is greater across fCSF than fGM. This can be further 

illustrated by calculating the percentage difference between CG,corr corresponding to  
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the voxels composed of the maximum and minimum fraction of GM and the 

maximum and minimum fraction of CSF across all voxels (triangles in Figure 4.3). 

This difference was 5.2% for the former and 9.5% for the latter. Furthermore, 

performing linear regressions of CG,corr versus fGM and fCSF reveals that the 

concentration value increases more per unit of fCSF than per unit of fGM as evidenced 

by the slopes of the two regression models (Figure 4.4). These findings signify that 

the tissue correction procedure is more sensitive to fCSF than fGM, which supports the 

model represented in Figure 4.1. 

 The CV for the estimation of CSF volume is likely to have been driven in 

large part by error due to the linear registration procedure. Given that the fraction of 

CSF in the voxel is substantially smaller compared to the fraction of GM and WM, 

even small deviations in the location of co-registered CSF voxels from the gold 

Table 4.2  Mean (± SD) fractional voxel volume of GM, WM and CSF across all 
participants and corresponding within- and between-subject coefficients of variation. 

 Mean ± SD CVws (%) CVbs (%) ICC 

fGM 0.35 ± 0.03 6.9 8.0 0.94 

fWM 0.64 ± 0.03 4.2 4.8 0.94 

fCSF 0.01 ± 0.006 39.4 63.8 0.97 

Table 4.1  Mean (± SD) fractional voxel volume of GM, WM and CSF for each participants 
and corresponding coefficients of variation. 

 fGM fWM fCSF 

 M ± SD CV (%) M ± SD CV (%) M ± SD CV (%) 

S01 0.38 ± 0.03 7.2 0.59 ± 0.03 5.9 0.028 ± 0.007 26.0 

S02 0.39 ± 0.03 6.9 0.61 ± 0.03 5.0 0.008 ± 0.004 49.2 

S03 0.37 ± 0.02 4.6 0.62 ± 0.02 3.1 0.008 ± 0.003 36.0 

S04 0.34 ± 0.01 3.8 0.65 ± 0.01 2.3 0.009 ± 0.002 19.0 

S05 0.35 ± 0.02 5.1 0.65 ± 0.02 3.2 0.008 ± 0.003 41.0 

S06 0.33 ± 0.03 10.2 0.66 ± 0.04 5.6 0.006 ± 0.003 59.1 

S07 0.30 ± 0.04 14.4 0.69 ± 0.05 7.2 0.008 ± 0.005 72.6 

S08 0.31 ± 0.02 6.2 0.68 ± 0.02 3.1 0.007 ± 0.002 27.6 

S09 0.32 ± 0.02 7.1 0.66 ± 0.03 4.1 0.011 ± 0.005 42.6 

S10 0.35 ± 0.01 3.4 0.64 ± 0.01 2.1 0.009 ± 0.002 21.1 
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standard base reference voxels will lead to a significant change in the CV. This 

sensitivity is further compounded by the fact that the CV will be large when the 

values of the mean and standard deviation are small. For instance, the average fCSF 

was 0.01 with a standard deviation of 0.006. The small quantity of these values leads 

to a large CV. To increase the accuracy of the CV for a measurement with small 

means and standard deviations requires increased precision of the measurement. 

A potential source of error in absolute quantification that has not been 

addressed here is the error attributed to assumption of the transverse and longitudinal 

relaxations times of water in GM, WM and CSF. In their seminal paper on using 

internal tissue water as a concentration reference, Gasparovic et al. (2006) showed 

Figure 4.3  Scatterplot of fractional GM volume versus fractional CSF volume for each 
participant’s tissue-segmented sample MRS voxel. The colour of each data point indicates 
the corresponding CG,corr value. Triangles indicate data points where the fractions of GM and 
CSF are maximal and minimal across all participants’ sample MRS voxels. 

Figure 4.4  Linear regression models showing the dependence of CG,corr on either fGM or 
fCSF. The steeper slope of the second model demonstrates that the correction factor is more 
sensitive to variability in fCSF than variability in fGM. 
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that the greatest degree of variability is due to the assumption of water T2 relaxation 

times in GM and WM. Moreover, it appears that this error can be significantly 

reduced by performing acquisitions at the shortest TE possible. In addition, Harris 

et al. (2015c) examined the effect of assuming different literature values for 

relaxation corrections when quantifying GABA concentration. They showed that 

there were significant differences in concentration estimates when using different 

values, suggesting that comparison of GABA measurements between different 

studies using different assumptions should be performed with caution. It would be 

interesting to see a more thorough investigation of the impact of assuming relaxation 

parameters in partial volume correction for the absolute quantification of GABA, 

where the tissue-dependent weighting of the water and GABA signals are both 

considered. 

Only FAST was used in this study to examine the contribution of error form 

tissue segmentation to absolute quantification. It would be worthwhile to compare 

against the robustness of other segmentation packages, namely, SPM and 

FreeSurfer. A few studies have examined and compared the performance of each of 

these popular algorithms. Clark et al. (2006) conducted a comprehensive 

investigation of how many sources of variability impact on structural image 

segmentation. The choice of acquisition, noise reduction algorithm and brain-

extraction algorithm all had a differential impact on segmenting structural images 

into GM, WM and CSF. The choice of tissue segmentation algorithm, however, had 

the greatest impact. They also note that the problem of partial voluming can be 

ameliorated by using a priori probability tissue maps, which can benefit 

segmentation of deep brain structures. It is also worth noting that aside from 

variation between segmentation algorithms there will be also be variation within and 

between scanner platforms with regards to volumetric quantification (Huppertz et 

al., 2010). The overriding message is that the choice of algorithm depends on which 

factors in segmentation are most important to the user, as each method has its own 

distinct advantages and disadvantages (Eggert et al., 2012; Klauschen et al., 2009; 

Tsang et al., 2008). Taking into account these factors would of course be beneficial 

for absolute quantification in MRS, particularly when using tissue water as an 

internal concentration reference. Nevertheless, the findings of the present study 
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suggest the contribution of error from tissue segmentation need not be overly 

concerning. 

4.5 Conclusions 

To conclude, tissue segmentation using the FAST segmentation algorithm appears 

to only contribute a minimal amount of error to theoretical quantification of GABA 

concentration. In particular, despite the fact that there was a large amount of inter- 

and intrasubject variability in the quantification of CSF content in the MRS volumes, 

the water tissue correction procedure to absolutely quantify GABA concentration 

did not appear to be adversely affected. 



 

5. Comparison of the Repeatability of 

GABA-Edited MRS with and without MM 

Suppression** 

 

5.1 Abstract 

In this chapter the repeatability of GABA-edited MRS with and without MM 

suppression is compared. GABA' (non-MM contaminated) and GABA'+MM (MM-

contaminated) concentration was measured in the OCC and anterior cingulate (AC) 

using symmetric and standard editing (n = 15). Each method was performed twice 

in each region. Within-subject coefficients of variation for each technique were 4.0% 

(GABA'+MM) and 8.6% (GABA') in the OCC and 14.8% (GABA'+MM) and 

12.6% (GABA') in the AC. Intraclass correlation coefficients were better for the 

suppression method than standard editing in both the OCC (0.72 vs 0.67) and AC 

(0.41 vs 0.16). These findings were replicated in the OCC of a second cohort (n = 

15). Symmetric suppression is shown to be comparable in repeatability to standard 

GABA-editing. Measuring a purer quantification of GABA becomes increasingly 

important as more research is conducted on links between GABA concentration, 

pathology and healthy behaviour. 

  

                                                           
** The content of this chapter is based on a published peer-reviewed article (Mikkelsen et al., 2016). 
A copy of this article is provided in Appendix B. 
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5.2 Introduction 

Several studies have already reported on the reproducibility of edited spectroscopy 

used to quantify GABA concentration in the human brain (Bogner et al., 2010; 

Geramita et al., 2011; O’Gorman et al., 2011). To date, however, no such research 

has been conducted on symmetric editing. Therefore, the principal aim of this study 

was to determine, at 3 T, whether the repeatability of the more specific measure of 

GABA obtained using the symmetric MM suppression technique is comparable to 

that of the standard GABA-edited MRS technique, which includes a significant MM 

contribution to the derived GABA concentration. 

5.3 Methods 

All single-voxel 1H MRS experiments were conducted using a 3 T GE Signa HDx 

scanner (GE Healthcare, Waukesha, WI) with an eight-channel receive-only head 

coil and a body coil for transmit. 

5.3.1 Phantom Experiments 

Two phantom experiments were performed in a 20-mM GABA phantom to select 

the symmetric suppression acquisition to be used in the study. The phantoms were 

scanned at room temperature and the effect of temperature on chemical shift was 

accounted for by adjusting the placement of editing pulses accordingly. 

5.3.1.1 Effect of partial excitation 

The proximity of the OFF editing pulse to the GABA resonance in the MM-

suppressed acquisition will lead to partial excitation of the GABA resonance and 

signal loss. The impact of this on the GABA signal was measured using two variants 

of the editing acquisition: (i) a “standard” GABA acquisition with TE = 68 ms 

allowing an editing pulse duration of 16 ms and (ii) an acquisition similar to Edden 

et al. (2012b) with TE = 80 ms to allow longer 20-ms editing pulses. Other scan 

parameters were as follows: 20 × 20 × 20 mm3 voxel, repetition time (TR) = 1800 

ms, 128 averages, 4096 data points, 5 kHz spectral width. One editing pulse position 

was varied from 1.26 ppm to 2.54 ppm in increments of 0.04 ppm over a series of 

acquisitions, while the other was fixed at 7.5 ppm. The degree of GABA co-editing 
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(and hence signal loss) in the OFF sub-spectra is reflected in the GABA integral 

when ON editing pulses are placed at 1.5 ppm. 

5.3.1.2 Effect of increasing TE 

To investigate the impact of an increase in TE on the GABA signal, TE was 

modulated from 60 to 80 ms in 4-ms steps in order to estimate the overall signal loss 

between the two methods (other scan parameters were as above). ON and OFF 

editing pulses (16 ms) were placed at 1.9 ppm and 7.5 ppm, respectively. 

5.3.2 In Vivo Experiments 

5.3.2.1 Experiment 1 

Fifteen healthy participants (mean age = 26.1 ± 5.1 years; eight females) were 

recruited for two one-hour scan sessions. Participants consented to take part in this 

research, which was approved by the local institutional ethics committee. 

In the first scan session, a 30 × 30 × 30 mm3 voxel was prescribed to the 

medial OCC (Figure 5.1a). The ventral face of the voxel was aligned with the 

cerebellar tentorium and the volume positioned as posteriorly as possible without 

including the sagittal sinus. Participants then underwent a second scan, on a separate 

day, where a 20 × 30 × 40 mm3 voxel was positioned medially in the AC (Figure 

Figure 5.1  Representative placement of MRS voxels in the occipital lobe (a) and anterior 
cingulate (b) in one participant. 
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5.1b). The ventral face of this voxel was aligned parallel to the anterior-dorsal edge 

of the trunk of the corpus callosum. 

For each voxel, two MEGA-PRESS acquisition methods (outlined below) 

were used to detect GABA. Two scans were performed using each method giving a 

total of four measurements per session. Scans were interleaved and the order 

counterbalanced across participants. Participants were not repositioned during the 

repeated acquisitions in each session. GABA measures including an MM component 

are denoted GABA'+MM; GABA concentrations acquired using the symmetric 

suppression method are denoted GABA' (to distinguish it from the molecule 

GABA). 

Non-suppressed acquisition (GABA'+MM) 

Here, two Gaussian editing pulses (16-ms duration) were placed in an interleaved 

fashion at either 1.9 ppm (ON) or 7.5 ppm (OFF), resulting in a “standard” 

measurement of GABA plus co-edited MM. Echo time was set to 68 ms. 

Symmetric MM suppression (GABA') 

In the second acquisition, the OFF editing pulses were placed at 1.5 ppm with the 

ON pulses kept at 1.9 ppm, thereby suppressing the MM resonance. To ensure 

editing selectivity, the duration of the editing pulses was increased to 20 ms, with 

TE increased to 80 ms. 

The following parameters were the same for both acquisition methods: TR = 

1800 ms, 332 averages, 4096 data points, 5 kHz spectral width, 10-min acquisition 

time. Eight additional water-unsuppressed scans were acquired as an internal 

concentration reference. 

5.3.2.2 Experiment 2 

Repeatability of the two techniques was also assessed in a second cohort of 15 

healthy participants (mean age = 27.5 ± 4.1 years; seven females). The scan protocol 

and acquisition parameters were identical to those in Experiment 1 except spectra 

were acquired in an OCC voxel only. Additionally, the number of averages used in 

each acquisition technique was increased to 512 (acquisition time = 15 min) to 

improve the SNR of GABA'+MM and GABA' measures. 
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5.3.3 MRS Analysis 

MRS spectra from the phantom and in vivo experiments were processed in Gannet 

(Edden et al., 2014), following an analysis pipeline similar to Evans et al. (2013). 

Line broadening (0.5 Hz for phantom spectra, 3 Hz for in vivo spectra) was applied 

to raw time-domain data prior to Fourier transformation. Frequency-domain data 

were then automatically corrected for frequency and phase. Using a nonlinear least 

squares fit, GABA concentration was quantified from the integral of the difference 

spectrum with a Gaussian function placed over a range 2.79 ppm to 3.55 ppm. Tissue 

water was used as an internal concentration reference. The ratio of GABA to water 

(in i.u.) was multiplied by a scaling factor to account for the T1 and T2 of water and 

GABA, for MR-visible water concentration and for editing efficiency. 

Concentration values were not corrected for partial volume effects for either the 

water or GABA signals. Thus, the quantification procedure used here can be 

considered a global absolute concentration scaling approach as described by Eq. 

[4.1] but without incorporating tissue-dependent signal weightings. Gannet also 

produces estimates of fit error for both the GABA and water peak model fits 

calculated as the standard deviation of the fit residuals normalised to peak height. 

Overall fit error is then defined as the square root of the sum of the squared GABA 

and water peak fit errors (εfit). 

5.3.4 Statistical Analysis 

To quantify the repeatability of the two techniques, coefficients of variation were 

calculated to represent the measurement error (CVws) and the population variability 

(CVbs). These were calculated as in Section 4.3.2. To estimate the error on CVws, a 

95% CI was calculated from a bootstrap of the set of CVij values, sampling with 

replacement 100,000 times. 

Default Bayes factors (B10) were calculated according to the method 

described by Dienes (2011) in order to assess whether the difference in CVws values 

between each acquisition technique in each voxel is better explained by the null 

hypothesis (a difference of 0%) or by the alternative hypothesis (a plausible 

difference in population means). The plausibility of the alternative hypothesis was 

predicted based on previous studies investigating the reproducibility of GABA-

edited spectroscopy at 3 T using either occipital (a difference of 9%) or frontal (a 

difference of 7%) voxels. The plausibility of the predicted population differences 
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was assumed to follow a normal distribution. A B10 greater than 3 indicates 

substantial evidence for the alternative hypothesis and a B10 less than 1/3 indicates 

substantial evidence for the null hypothesis. If B10 is between 1/3 and 3 then the 

evidence is insensitive and no judgement can be passed. 

A one-way analysis of variance (ANOVA) was used to calculate the 

proportional contribution of measurement and population variance to the total 

variance in the dataset. In addition, as a test of reliability of the two techniques, ICCs 

were calculated as in Section 4.3.2. 

5.4 Results 

5.4.1 Phantom Experiments 

The GABA signal loss for a symmetric editing scheme (reflected in the signal 

intensity when editing pulses were placed at 1.5 ppm) was 44% for the TE = 68 ms, 

16-ms editing pulse acquisition, but only 20% for the TE = 80 ms, 20-ms editing 

pulse acquisition. This corresponded to a reduction in the editing pulse bandwidth 

Figure 5.2  Individual difference spectra acquired in vivo in all participants from Experiment 
1 using standard GABA-editing (GABA'+MM) and symmetric MM suppression (GABA') in 
the occipital lobe (OCC; n = 15) and anterior cingulate (AC; n = 13). Repeated 
measurements for each technique are overlain. It can be clearly seen that the amplitude of 
the 3.0 ppm GABA peak is attenuated in GABA' spectra compared to the same peak in the 
spectra acquired using standard editing. The composite glutamate + glutamine (Glx) peaks 
are also shown. 
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from 82 Hz to 57 Hz. Increasing TE from 68 to 80 ms resulted in a small increase in 

the GABA integral (approximately 3%), without correcting for T2 relaxation effects. 

These results indicate that, overall, the signal loss due to the increase in TE is small 

in comparison to the signal improvement by improving the frequency selectivity of 

the editing pulses. 

5.4.2 In Vivo Experiments 

5.4.2.1 Experiment 1 

A total of 120 spectra were analysed for Experiment 1. Following visual inspection, 

two AC spectra (from two different participants) were rejected because of excessive 

head movement in one and excessive fit error in the other; therefore, only 13 

participants’ data were included in the AC dataset. As shown in Figure 5.2, there 

was a clear difference between the GABA'+MM and GABA' peak amplitudes. Mean 

concentrations (± SD) averaged across scans and participants were as follows: 

[GABA'+MM]: 1.13 ± 0.07 i.u. (OCC), 0.99 ± 0.15 i.u. (AC); [GABA']: 0.54 ± 0.08 

i.u. (OCC), 0.43 ± 0.06 i.u. (AC). The fraction of the total signal retained following 

MM suppression ([GABA'] / [GABA'+MM]) was 0.48 in the OCC voxel and 0.43 

in the AC voxel, in good agreement with previous findings (Aufhaus et al., 2013; 

Kegeles et al., 2007). Mean εfit (± SEM) for OCC measures were 4.0 ± 0.1% 

(GABA'+MM) and 5.2 ± 0.3% (GABA'), and 7.7 ± 0.4% (GABA'+MM) and 10.4 ± 

0.6% (GABA') for AC measures. Although these were shown to be significantly 

different for each region (t(14) = –3.74, p = 0.002 and t(12) = –4.11, p = 0.001, 

respectively), these percentages fall in line with previously reported estimates 

(Evans et al., 2013). The average linewidth (± SD) was 8.2 ± 1.4 Hz for the OCC 

voxel and 7.1 ± 0.5 Hz for the AC voxel. 

The repeatability and reliability results (CV, components of variance and 

ICCs) are reported in Table 5.1. Paired t-tests showed that CVws values were not 

significantly different for OCC (t(14) = –1.92, p = 0.08) or for AC (t(12) = 0.58, p 

= 0.57) acquisitions. However, the Bayesian analysis revealed that for both voxels 

the data were insensitive (OCC: B10 = 1.64; AC: B10 = 0.62), meaning there was not 

enough evidence in Experiment 1 to decide whether the within-participant 

repeatability of symmetric suppression and standard editing is or is not comparable. 

Taking voxel and acquisition technique as separate factors, a two-way repeated 

measures ANOVA demonstrated that there was no significant interaction in CVws 
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between voxel and acquisition technique (F(1, 12) = 3.10, p = 0.10) and no main 

effect of acquisition technique (F(1, 12) = 0.33, p = 0.58). However, there was a 

main effect of voxel (F(1, 12) = 9.93, p = 0.008), with the AC voxel showing 

significantly higher CVws. CVbs was larger in the suppressed OCC data (15.0%) than 

in the contaminated data (6.1%) but similar in the AC (13.6% vs 14.7%, 

respectively). 

The component of the variance associated with differences between 

participants (σ2
p) and the component of the variance that is attributed to 

measurement error (σ2
e) are expressed as percentages of the total variance across the 

whole dataset. For the symmetric suppression method, σ2
p was greater compared to 

standard editing in both the OCC (53% vs 38%) and AC (27% vs 13%). It also 

produced comparatively higher ICCs: 0.72 vs 0.67 (OCC); 0.41 vs 0.16 (AC). 

5.4.2.2 Experiment 2 

No datasets were rejected as a result of visual inspection of data acquired in 

Experiment 2, resulting in 60 good quality OCC spectra. Mean concentrations (± 

SD) were as follows: [GABA'+MM]: 1.15 ± 0.07 i.u.; [GABA']: 0.56 ± 0.08 i.u. The 

Table 5.1  Measures of repeatability and reliability for the standard GABA-edited 
(GABA'+MM) and MM-suppressed (GABA') acquisition techniques from in vivo 
Experiment 1. 

 OCC (n = 15) AC (n = 13) 

 GABA'+MM GABA' GABA'+MM GABA' 

Mean εfit 

(± SEM) 

4.0 ± 0.1% 5.2 ± 0.3% 7.7 ± 0.4% 10.4 ± 0.6% 

CVws
a  4.0% 8.6% 14.8% 12.6% 

95% CIb 2.4–5.8% 5.3–13.9% 9.6–21.5% 8.9–16.4% 

CVbs 6.1% 15.0% 14.7% 13.6% 

σ2
p 38% 53% 13% 27% 

σ2
e 62% 47% 87% 73% 

ICC 0.67 0.72 0.16 0.41 

εfit, fit error; CVws, within-subject coefficient of variation; CI, confidence interval; CVbs, between-
subject coefficient of variation; σ2

p, between-participant component of variance; σ2
e, measurement 

error component of variance; ICC, intraclass correlation coefficient. 
a CVws values were not significantly different between the two acquisition methods for OCC or 
AC spectra (p = 0.08, p = 0.57, respectively). 
b 95% CI from the bootstrapping results sampling from the CVp dataset. 
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GABA' to GABA'+MM signal fraction was 0.49. Mean εfit (± SEM) was 3.2 ± 0.1% 

(GABA'+MM) and 4.2 ± 0.2% (GABA') (t(14) = –3.92, p = 0.002). The average 

linewidth (± SD) was 8.6 ± 1.2 Hz. 

Compared to Experiment 1, there was an overall improvement in both 

repeatability and reliability for each acquisition technique in the second cohort, 

particularly for symmetric suppression (Table 5.2). This is likely a consequence of 

a reduction in measurement noise following increased acquisition time. As the CVws 

data were shown to be non-normal following a Shapiro–Wilk test (W = 0.79, p = 

0.006), a Wilcoxon signed-rank test was performed. Again, the CVws were not 

significantly different from each other (z = –0.40, p = 0.69). Moreover, in this 

experiment B10 = 0.21, indicating that there was substantial evidence in support of 

the null hypothesis (a difference of 0%). 

Of interesting note is that the MM-suppressed concentrations still revealed 

increased inter-individual variability compared to contaminated concentrations, 

reflected in the CVbs (14.6% vs 5.8%), σ2
p (86% vs 64%) and ICC (0.90 vs 0.78). 

5.4.2.3 Pooled data 

Finally, the OCC data from Experiments 1 and 2 were pooled together and 

examined. The ICC for standard editing was 0.72 and the ICC for symmetric 

suppression was 0.81. Figure 5.3 shows the association between GABA'+MM and 

Table 5.2  Measures of repeatability and reliability for the standard GABA-edited 
(GABA'+MM) and MM-suppressed (GABA') acquisition techniques from in vivo 
Experiment 2. 

 OCC (n = 15) 

 GABA'+MM GABA' 

Mean εfit (± SEM) 3.2 ± 0.1% 4.2 ± 0.2% 

CVws
a  3.5% 4.6% 

95% CI 2.5–4.6% 2.8–7.9% 

CVbs 5.8% 14.6% 

σ2
p 64% 86% 

σ2
e 36% 14% 

ICC 0.78 0.90 

a CVws values were not significantly different between the two acquisition methods (p = 0.69). 
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GABA' concentration for participants from both cohorts. There was a weak but non-

significant correlation between the two measures (r = 0.28, p = 0.14, CI = [–0.17, 

0.63]). Whilst it is surprising that the two measurements were not more strongly 

related, the expected correlation will have an upper bound based on both the intrinsic 

correlation and the reliabilities of the two techniques. This can be calculated with 

the following formula: Observed r(variable A, variable B) = True r(variable A, variable B) ×√(ReliabilityA × ReliabilityB) (Vul et al., 2009). Assuming an intrinsic correlation 

of 0.7, and using the ICCs for the two techniques based on the pooled data, the 

expected correlation between the two measurements would be no higher 0.53. 

Further to this, a range of possible intrinsic correlations (i.e., a 95% CI) was 

estimated by firstly taking the ICCs and observed correlation coefficient and 

bootstrapping with replacement each 10,000 times and then randomly sub-sampling 

from the distribution of bootstrapped values and running the above formula again 

10,000 times. The CI of True r was shown to be –0.18, 0.90. 

5.5 Discussion 

The main focus of this research was to compare the repeatability of symmetric MM 

suppression and standard GABA-editing. CVws was used as an index of 

measurement repeatability and it was found that there was no significant difference 

Figure 5.3  Scatterplot of OCC GABA concentration for participants pooled from 
Experiments 1 and 2 (n = 30) acquired with standard editing (OCC GABA'+MM) and 
symmetric suppression (OCC GABA'). Each point represents the average of the two repeat 
measurements. Crosshairs indicate the mean scan–rescan difference between the two 
repeat measurements for each technique. For GABA'+MM this was 0.06 ± 0.05 i.u.; for 
GABA' this was 0.05 ± 0.05 i.u. CI: 95% confidence interval of the correlation coefficient 
calculated by bootstrapping with replacement 10,000 times. 
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in CVws resulting from the symmetric suppression technique and the non-

suppression technique, in either the occipital lobe or anterior cingulate. To further 

determine whether there was indeed evidence for the hypothesis that the two 

techniques are comparable in repeatability, Bayes factors were calculated on CVws 

values. Whereas the in vivo data in the first cohort was not sensitive enough to make 

a decision, the second cohort did provide enough evidence in favour of this 

hypothesis. Therefore, this suggests that symmetric suppression is comparable in 

repeatability to standard GABA-edited MRS. 

Although there was no significant difference between CVws for the two 

techniques in the occipital lobe data, mean CVws in Experiment 1 increased from 

4.0% to 8.6% and from 3.5% to 4.6% in Experiment 2 when using symmetric 

suppression. This is consistent with the overall reduction in the GABA' integral 

when using symmetric suppression due to the exclusion of MM. However, there 

appears to be an increase in the population variance (reflected in higher CVbs and 

higher σ2
p), which accounts for the improvement in the ICCs. The increased 

population variance was also found in the occipital data of the second cohort. Given 

that CVws and mean εfit both decreased relative to the first cohort, it is unlikely that 

this increased sensitivity was due to noise in the acquisition. This also suggests that 

the symmetric suppression technique may benefit from longer acquisition time than 

may be typically used in standard GABA-edited experiments. 

Only a few studies have reported ICC values for GABA measurements. 

Muthukumaraswamy et al. (2012) reported an ICC of 0.87 for occipital spectra, 

whilst Geramita et al. (2011) and Harada et al. (2011) reported ICCs of 

approximately 0.70 for anterior cingulate measures. The use of ICCs is useful to an 

extent but does present difficulties for interpretation. Greater between-participant 

variance will increase ICC scores if other variance components remain stable 

(Gasparovic et al., 2011). As such, the poorer ICC values for spectra acquired in the 

AC reported here are likely the result of inherently noisier data. This is supported by 

the fact that the mean εfit was higher in AC spectra for both acquisition methods and 

that the AC CVbs percentages were comparable to the CVbs for the MM suppression 

technique in the occipital session, despite the latter producing a much higher ICC. 

CVws percentages for acquisitions in the OCC are similar to or better than 

those in other studies (Bogner et al., 2010; Evans et al., 2010, 2013). Repeatability 

results for AC spectra, however, are higher than what has been previously reported 
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for frontal brain regions (Geramita et al., 2011; Harada et al., 2011a; O’Gorman et 

al., 2011), but do agree with Evans et al. (2013). The higher CVws corresponds to the 

difficulties in acquiring spectra in frontal regions. Although different protocols and 

analysis methods make comparisons across research groups challenging, on the basis 

of the findings here, MM suppression by symmetric editing is comparable in 

repeatability to standard GABA-editing methods. 

In vivo quantification of GABA without MM contamination produced results 

consistent with previous empirical evidence (Aufhaus et al., 2013; Kegeles et al., 

2007; Rothman et al., 1993). Suppression of the 1.7 ppm MM resonance reduced the 

3.0 ppm GABA peak by approximately 50% in relation to the peak resolved using 

the standard editing technique. A comparatively lower mean concentration in the AC 

is consistent with other studies showing differences in GABA levels in anterior and 

posterior cortical regions (Fahn and Côté, 1968; Veen and Shen, 2013); but as the 

voxels were not segmented to control for GM, WM and CSF composition, this 

cannot be confirmed. 

The phantom experiments that were conducted yielded similar findings to 

Edden et al. (2012b). The authors observed a negligible decrease in modelled signal 

(~1%, with T2-weighting) when modulating TE from 68 to 80 ms in vitro, while an 

increase of approximately 3% was seen here. Extrapolating from Edden et al.’s 

estimated signal loss in vivo (~7%), the present data suggests a signal loss of 4% 

would be expected in vivo. However, it appears that the frequency selectivity of 

editing pulses has a much larger effect. By increasing editing pulse duration from 16 

to 20 ms, the editing pulse bandwidth was decreased, leading to improved efficiency 

of the GABA-editing experiment. Although both TE and editing pulse duration were 

manipulated in this experiment, the effect of TE is shown to be minimal and does 

not significantly contribute to the signal change. 

As the focus on the relationships between endogenous GABA and cognitive–

behavioural responses continues to grow, it is important to reiterate that the GABA 

concentration quantified with standard GABA-edited MRS contains an MM 

contribution. Whilst it is argued that MM are not likely to have any functional 

importance to such responses (Puts et al., 2011), the degree to which the MM 

contribution to the 3.0 ppm GABA signal differs within particular regions and across 

individuals is not fully known. This would be a significant issue only if the inter-

individual variability of this contribution was large enough to drive correlations, 
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however, and it is still unclear whether this is the case. Nonetheless, quantification 

of GABA concentration in the AC in one symmetric suppression study showed that 

suppressing MM resulted in higher between-participant variability (~15%) 

compared to not suppressing MM (~10%) (Aufhaus et al., 2013). While a similar 

degree of inter-individual variability was seen in both the MM-suppressed and MM-

contaminated AC concentrations from the current study, the findings from this 

previous study are reflected in the OCC data. However, any conclusions drawn about 

this variability are only speculative because of the difference in MM T2 relaxation 

effects between the suppression and standard editing techniques caused by the 

increased TE used in the former method. That voxels were not segmented into 

different tissue components also prevents further conclusions on this. It should be 

additionally noted that the age range of participants in Aufhaus et al.’s study was 

larger compared to the current study, which may have contributed to the larger 

variability in the suppressed measurements. 

When OCC GABA' and GABA'+MM concentrations were compared, only 

a weak association between the two was apparent. This finding was unexpected as 

the measurements would be thought to show a certain degree of correlation. Given 

the good reliability of both standard editing and symmetric suppression as 

demonstrated here, there are two possible explanations. Either one measurement is 

more sensitive to systematic effects (e.g., the effect of frequency drift on editing 

efficiency), or the inter-individual variability in the MM contribution to the GABA 

peak is large enough to affect the correlation. At this stage, this is only speculation 

and limited to the OCC data, necessitating further investigation. 

A limitation of this study is that concentration measures were not corrected 

for tissue composition in each voxel. Whilst the scan-to-scan repeatability would not 

be affected by variation in tissue composition since participants were not 

repositioned during each scan session, it is still possible that between-participant 

variability could be influenced by tissue differences. GABA concentration has 

previously been reported to be higher in grey matter compared to white matter (Choi 

et al., 2007; I.-Y. Choi et al., 2006), which would affect the SNR of the GABA 

resonance and thus the reliability of the acquisition across participants. 

Ultimately, what is desired is to be able to optimally detect pure GABA in 

vivo. Future spectroscopic studies, particularly those involving correlational 

designs, would benefit from employing symmetric editing to suppress MM. To 
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illustrate, whereas Gao et al. (2013) recently reported an age-related decline in 

GABA'+MM concentration in a large healthy cohort, Aufhaus et al. (2013) showed 

that when MM is suppressed using symmetric editing the relationship between age 

and GABA concentration no longer holds. Suppression would also prove beneficial 

in clinical populations as differences in the MM baseline have been shown in at least 

neurological pathologies such as multiple sclerosis, stroke and tumours (Graham et 

al., 2001; Howe et al., 2003; Mader et al., 2001). What differences may occur in 

neuropsychiatric disorders, to which disruptions in GABAergic mechanisms have 

been tied, remains unknown. A further issue is the effect of motion-induced 

frequency drift, which may be especially problematic in patient populations. 

Negative drift, for example, will lead to more MM contamination in the GABA 

signal in standard editing (Harris et al., 2014), potentially impacting on the 

reproducibility of the technique. This is of particular concern in symmetric editing 

given the closer proximity of the OFF editing pulses to the MM resonance. All in 

all, these points highlight the need to account for the 1.7 ppm MM resonance in 

edited spectroscopy. 

5.6 Conclusions 

To conclude, symmetric editing-based MM suppression is shown to have 

comparable repeatability to that of standard GABA-editing. By slightly modifying 

the MEGA-PRESS sequence, this technique successfully attenuates a major 

limitation of GABA-edited MRS. A growing interest in measuring GABA 

concentration in vivo in both healthy and clinical populations is apparent. The need 

for both accurate and reliable quantification is therefore essential when attempting 

to draw conclusions between GABA measures, pathology and healthy behaviour. 

Here, it is shown that symmetric suppression produced higher ICCs in two regions 

and in two separate cohorts, suggesting that it is perhaps more sensitive to inter-

individual differences in MRS-measured GABA.



 

6. Endogenous GABA Concentration and 

Individual Differences in Haemodynamic 

Contrast Tuning 

 

6.1 Abstract 

The inhibitory neurotransmitter γ-aminobutyric acid (GABA) has an integral role in 

neurovascular coupling. A relationship between simple task-induced haemodynamic 

responses and endogenous GABA concentration has previously been reported. This 

chapter describes a multimodal investigation of whether GABA levels are also 

associated with interindividual variability in response sensitivity as assessed with a 

graded visual contrast stimulus. Annular gratings displayed at five contrast levels 

were presented to 32 healthy volunteers. During stimulation, BOLD and CBF 

responses were measured simultaneously in the visual cortex. GABA-MRS was used 

to non-invasively quantify GABA concentration in the OCC. Both GABA'+MM and 

GABA' concentrations were measured. A power law contrast response function was 

used to model individual contrast tuning curves and the rate of response saturation 

was parameterised for each individual. Bayesian regression analysis showed that 

there was weak evidence supporting a model that did not include either GABA'+MM 

or GABA' as predictors of haemodynamic response saturation. However, 

exploratory analyses demonstrated that GABA'+MM was negatively associated with 

the rate of CBF saturation and displayed a similar but weaker effect with BOLD, 

such that participants with higher GABA'+MM levels showed a faster rate of 

response saturation to contrast. GABA' was not associated with rate of saturation. 

This study produced preliminary evidence that endogenous GABA'+MM 

concentration is associated with individual differences in haemodynamic contrast 

tuning and it is proposed that GABA may be a mediator of the dynamic range of 

CBF and the BOLD signal.  
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6.2 Introduction 

The BOLD signal arises from a complex interplay between CBF, cerebral blood 

volume, neuronal firing and metabolic consumption of oxygen and glucose, 

collectively known as neurovascular coupling (Logothetis and Wandell, 2004; 

Logothetis, 2008; Viswanathan and Freeman, 2007). As described in Chapter 2, 

GABA has an integral role in the excitation–inhibition balance and consequently 

also on haemodynamic responses, such that it acts both indirectly as a mediator of 

synaptic transmission and directly as a vasomodulator (Cauli and Hamel, 2010; 

Lauritzen et al., 2012). 

A number of studies have investigated the relationship between GABA, 

BOLD and CBF. (Chen et al., 2005) showed that by increasing GABA levels through 

pharmacological manipulation in rats, a corresponding decrease in the BOLD signal 

following somatosensory stimulation was observed. In human studies, an inverse 

association between endogenous GABA and measures of haemodynamics has been 

reported with respect to BOLD (Donahue et al., 2010; Muthukumaraswamy et al., 

2012, 2009; Northoff et al., 2007; Stagg et al., 2011a; Stan et al., 2014; Violante et 

al., 2013), baseline CBF (Donahue et al., 2014; Krause et al., 2014) and task-related 

changes in CBF (Michels et al., 2012). 

However, three issues remain unresolved in the literature. Firstly, some 

human studies have reported a positive association between GABA levels and 

haemodynamic measures, in contradiction to the negative relationship previously 

reported. For instance, (Wiebking et al., 2014) reported a positive correlation 

between GABA levels and BOLD in the insula while, in two other studies, baseline 

CBF correlated positively with GABA concentration (Donahue et al., 2010; Michels 

et al., 2012). In another recent case, the authors failed to replicate any association 

between GABA and BOLD in several cortical regions using a variety of tasks (Harris 

et al., 2015a). Muthukumaraswamy et al. (2012) also did not find an association 

between baseline CBF and GABA. 

Secondly, the human studies mentioned above have only used standard 

GABA-MRS to non-invasively measure GABA concentration in localised regions 

of the cortex. The MM contamination that occurs using this technique confounds 

previously described associations between GABA and BOLD/CBF and has yet to 

be satisfactorily addressed. Removing this MM contamination from GABA 
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measurements would be an important step in providing a more accurate indication 

of the relationship between GABA and haemodynamic measures in humans. 

Thirdly, past research examining task-induced haemodynamic responses has 

focused on characterising peak activation elicited by maximum-contrast stimuli 

(Harris et al., 2015a; Muthukumaraswamy et al., 2012, 2009; Violante et al., 2013). 

It is not yet known whether endogenous GABA plays a similar role in BOLD and 

CBF responses at lower grades of stimulation, and whether there are individual 

differences with respect to this. Indeed, it has recently been shown that the degree 

of coupling between CBF and the cerebral metabolic rate of oxygen varies with the 

strength of a stimulus (Liang et al., 2013). Keeping the role of GABAergic inhibition 

in neurovascular coupling in mind, differences in GABA concentration may predict 

the variation in interindividual sensitivity to a stimulus, in addition to being 

associated with individual variability of responses following maximal stimulation. 

Given that neurons are known to selectively fire in response to specific 

properties of a stimulus, response sensitivity can be assessed by manipulating the 

strength of a stimulus over several grades. This tuning of neuronal responses can be 

represented as a transfer function from input to output. For instance, tuning using 

different grades of contrast results in characteristic neuronal responses in the visual 

cortex (Albrecht and Hamilton, 1982; Ohzawa et al., 1985). With respect to 

haemodynamics, a graded change in contrast has been shown to lead to a monotonic 

change in the BOLD signal (Boynton et al., 1996; Logothetis et al., 2001; Tootell et 

al., 1995), with a similar effect seen with CBF (Chiarelli et al., 2007; Hoge et al., 

1999a, 1999b). Increases in stimulus contrast also result in a concomitant increase 

in the power of local field potentials and magnetoencephalographic activity in the 

high-frequency gamma band (Hall et al., 2005; Henrie and Shapley, 2005). The 

manifestation of these synchronous gamma oscillations has been demonstrated to 

arise from GABAergic inhibition (Bartos et al., 2007; Buzsáki and Wang, 2012). 

Measuring haemodynamic responses as visual contrast is modulated would therefore 

allow for the assessment of response sensitivity across individuals. 

Using a graded visual contrast paradigm, BOLD and CBF responses were 

simultaneously measured in the visual cortex. GABA concentration in the occipital 

lobe was measured with GABA-edited MRS with and without symmetric MM 

suppression. It was hypothesised that GABA concentration would predict 

parameters characterising the properties of contrast tuning for BOLD and CBF 
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responses. It was also hypothesised that MM-suppressed GABA concentration 

would be a stronger predictor of these tuning properties than the MM-contaminated 

measure. 

6.3 Methods 

6.3.1 Participants 

Thirty-two healthy volunteers (17 females; mean age ± SD = 26.1 ± 3.2 years) who 

were not on any psychiatric medication and who had not been diagnosed with a 

psychiatric or neurological disorder were recruited. Participants were asked to 

refrain from ingesting any alcohol 12 hours before the scan session. As a handful of 

studies have reported a differential effect of menstrual cycle on endogenous GABA 

concentration (Epperson et al., 2005; Harada et al., 2011a; Silveri et al., 2013), 

female participants were scanned in their luteal phase (cycle days ~15–28). None 

reported being a smoker. All participants gave consent before taking part in the 

study, which was approved by the local institutional ethics committee. 

6.3.2 Visual Paradigm 

A 20-min graded contrast visual stimulation paradigm was employed to examine 

contrast tuning of haemodynamic responses. Black and white gamma-corrected, 

square-wave, 1.2 cycles per degree (cpd) annular gratings (26° × 20°) reversing at 6 

Hz were presented on a mean luminance background. Gratings were displayed at 

five Michelson contrast levels: 0%, 12.5%, 25%, 50% and 100%. A black fixation 

cross was presented within a small unfilled patch (1.7° × 1.7°) in the centre of the 

screen. Participants were instructed to fixate on this cross and press a button box 

with their right index finger whenever they saw the cross turn red; the cross changed 

colour for 1 s every 10–20 s throughout the entire paradigm. Visual presentation 

followed a block design: Gratings at each of the five contrast levels were shown once 

for 30 s, with 0% contrast (baseline) always presented first. This activation period 

(baseline + grating presentation; 150-s duration) was conducted six times (15 min 

total). The gratings were presented pseudorandomly to avoid order and adaptation 

effects. Additionally, a baseline block of 150 s was placed at the beginning and at 

the end of the paradigm to improve baseline haemodynamic measures. Stimuli were 

created in MATLAB using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) 
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and presented via a Canon Xeed SX60 LCD projector (1024 × 768 display 

resolution, 60 Hz refresh rate). 

6.3.3 Imaging Protocol 

Imaging was conducted on a 3 T GE scanner with an eight-channel receive-only 

head coil and a body coil for transmit. Physiological monitoring was conducted 

during imaging acquisition where heart rate was recorded using a finger pulse 

oximeter, end-tidal CO2 and O2 traces were recorded via a nasal cannula and 

respiration was recorded via respiratory bellows. 

6.3.3.1 MRI 

BOLD and CBF data were simultaneously acquired using a PICORE pulsed arterial 

spin labelling sequence with a QUIPSS II cut-off of the label (Wong et al., 1998) 

with a dual gradient-echo and spiral k-space acquisition (TE1/TE2 = 2.9/30 ms, 

TI1/TI2 = 700/1500 ms, TR = 2500 ms, 480 volumes, label thickness = 200 mm, 1-

cm gap between label and imaging plane). Perfusion- and BOLD-weighted time 

series were obtained using the first and second echo, respectively. Twelve slices 

(voxel resolution = 3.5 × 3.5 × 5 mm3, 1-mm interslice gap, FOV = 22.4 cm, matrix 

size = 64 × 64) were prescribed axially such that the most inferior slice reached the 

most inferior edge of the occipital lobe. A separate calibration scan consisted of a 

single-shot M0 acquisition (TR = 4000 ms, 30 slices) with the same parameters as 

the functional acquisition to measure the equilibrium brain tissue magnetisation for 

the purposes of quantifying CBF (Perthen et al., 2008). A T1-weighted 3D FSPGR 

structural image (TE/TI/TR = 3.0/450/7.9 ms, flip angle = 20°, voxel resolution = 1 

mm3, FOV = 256 × 256 × 168 mm3, matrix size = 256 × 256) was also acquired for 

image registration and tissue segmentation. 

6.3.3.2 MRS 

GABA-edited MRS with and without symmetric MM suppression was used to 

measure endogenous GABA concentration. Two 15-min acquisitions (512 averages) 

were employed using the same protocol as described in Experiment 2 in Chapter 5. 

The VOI was placed in the OCC as shown in Figure 6.1. The order of the MRS 

acquisitions was counterbalanced across participants. For two participants, MM-

suppressed GABA-MRS scans were not able to be performed. Therefore, for any 

statistical comparisons between the two measures in the main analysis the MM-
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contaminated measurements that were acquired for these particular participants were 

excluded. 

6.3.4 MR Analysis 

6.3.4.1 MRI 

Preprocessing and statistical analysis of functional imaging data were performed in 

AFNI (Cox, 1996). Registration and tissue segmentation were performed in FSL 

(Jenkinson et al., 2012). 

To attain T1 equilibrium, the first four volumes of the acquisition were 

discarded. The raw data acquired from the first and second echo were first corrected 

for physiological noise. Cardiac, end-tidal CO2 and O2 partial pressure (Murphy et 

al., 2011), respiration volume per time (Birn et al., 2008) and RETROICOR (Glover 

et al., 2000) regressors were modelled from the physiological data and then used to 

remove variance attributed to physiological noise from each raw time series using a 

linear regression method in MATLAB (Murphy et al., 2013). 

Each physiologically corrected time series was motion-corrected based on 

the transformation matrix of the second-echo BOLD-weighted time series. 

Interpolated surround subtraction of the first-echo tag and control image time series 

was performed to yield a perfusion-weighted time series. Interpolated surround 

averaging of the second-echo tag and control images was performed to yield a 

Figure 6.1  a: Representative placement of the MRS voxel in the occipital lobe. b:  Sample 
difference spectra from one participant acquired using standard GABA-editing (green 
spectrum) and symmetric MM suppression (blue spectrum). The 3.0 ppm GABA peak is 
attenuated in the MM-suppressed spectrum. Composite glutamate + glutamine (Glx) peaks 
are also shown. 
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BOLD-weighted time series (Liu and Wong, 2005). CBF images were calculated 

using the M0 of blood, estimated from the cerebrospinal fluid signal of the M0 image 

and the general kinetic model (Buxton et al., 1998). 

Both the BOLD and CBF time series were analysed using a general linear 

model (GLM) in which stimulus regressors for each contrast level were convolved 

with a haemodynamic response function. Other regressors included motion 

parameters taken from the motion correction procedure and polynomial regressors 

to account for drift in the signal. In this experiment, baseline signal was taken to be 

the baseline regression coefficient, the constant term in the GLM. Each time series 

was converted into percent signal change by taking each stimulus-related regression 

coefficient per contrast level and dividing by the baseline coefficient. No other form 

of spatial or temporal filtering beyond surround subtraction/averaging was applied 

to the data. 

An occipital lobe mask was selected from the MNI atlas, transformed into 

individual structural space and then transformed again into individual functional 

space for each time series through linear registration. The CBF occipital mask was 

multiplied by a grey matter mask based on each participant’s tissue-segmented 

structural image. Separate BOLD and CBF activation regions of interest (ROI) were 

chosen based on voxels that were significantly activated to 100% contrast versus 

baseline (BOLD: t-score > 4.0, CBF: t-score > 1.6; alpha level = 0.05, corrected for 

simultaneous comparisons). Finally, a single BOLD+CBF ROI was calculated by 

taking the intersection of these two activation ROI. Mean BOLD and CBF percent 

signal change at each contrast level was then determined within the BOLD+CBF 

ROI. One participant was removed from the dataset as their BOLD and CBF 

activation ROI did not intersect. 

6.3.4.2 MRS 

Raw spectra were processed in Gannet following the same pipeline as used in 

Chapter 5. Fit errors (εfit) for the nonlinear least-squares model fits of the 3.0 ppm 

GABA peak were also calculated. GABA'+MM and GABA' concentration were 

quantified according to Eq. [3.16]. Using the tissue-segmented structural image, the 
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GABA integral was adjusted to account for the amount of CSF in the co-registered 

MRS voxel, with the water integral adjusted to account for tissue-dependent water 

visibility. In addition, the dependence of GABA concentration on GM was corrected 

using the method described in Chapter 3. The value of rM was chosen based on the 

approach described in Section 3.4.3.3. In short, the 100 Brains cohort was used to 

choose the optimal rM value by assessing 100 possible values linearly interpolated 

between the upper and lower bounds of the CI for the estimated rM in that dataset 

(see Table 3.1). The optimal rM was that which produced the smallest possible R2 

when GABA concentration was regressed against tGM. For the GABA'+MM dataset 

this was 1.53 and for the GABA' dataset this was 1.44. 

6.3.5 Contrast Response Function 

To characterise contrast tuning properties of the haemodynamic responses to graded 

contrast, a power law contrast response function (Legge, 1981) was used: 

 𝑅𝑅(𝑐𝑐) = 𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥𝑐𝑐𝛾𝛾 [6.1] 

where Rmax is the modelled response at 100% contrast, c is contrast and γ is an 

exponent corresponding to the rate of saturation of the response. The rate of response 

change with contrast is slower when γ approaches 1 (i.e., linear, no saturation), 

signifying slower saturation; and faster when γ approaches 0, signifying faster 

saturation with increasing contrast. Predicted power law contrast response functions 

with assumed γ values are displayed in Figure 6.2. Contrast level (normalised to 

Figure 6.2  Modelled power law contrast response functions with various assumptions of γ 
(rate of saturation of the response). A smaller γ value corresponds to faster saturation of the 
response to contrast, R(c), whereas a larger value corresponds to slower saturation. Rmax 
(modelled response at 100% contrast) is fixed at 1. 
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100%) and percent signal change at each contrast level were converted into log10 

units. Eq. [6.1] was then fit to participants’ BOLD and CBF tuning data in MATLAB 

with a least-squares fitting algorithm. 

6.3.6 Statistical Analysis 

For the primary analysis default Bayes factors (B10) for linear regression were 

calculated. As noted in Chapter 5, the Bayes factor is the ratio of the strength of 

evidence for one model (e.g., an alternative hypothesis) versus the strength of 

evidence for another model (e.g., a null hypothesis). Bayes factors were calculated 

according to the method described by Rouder and Morey (2012) using the freely 

available BayesFactor package (version 0.9.11-1). The prior probability was based 

on a Cauchy distribution of a continuous mixture of normals with scale factor (s) set 

to √2/4 (Liang et al., 2008; Rouder and Morey, 2012). 

The BOLD signal arises following a complex cascade involving CBF and 

excitatory and inhibitory activity (Lauritzen et al., 2012; Sotero and Trujillo-Barreto, 

2007). Therefore, regression models were examined to determine whether there was 

evidence to support that BOLD response saturation (γBOLD) was better predicted by 

different combinations of relevant covariates: CBF response saturation (γCBF), 

GABA'+MM and GABA'. Given the tight coupling between BOLD and CBF, the 

model that included γCBF was specifically compared against those that included γCBF 

and different combinations of the two GABA measures.  

As an exploratory analysis, the individual correlations between contrast 

tuning parameters and GABA' and GABA'+MM in addition to the correlations 

between the GABA measures and BOLD/CBF responses at each contrast level are 

also reported. Due to the number of simultaneous comparisons made in the analysis, 

random permutation tests were performed on each correlational test within each 

family of comparisons. This nonparametric test controls for the familywise error rate 

while adaptively adjusting for the number of simultaneous comparisons that may or 

may not be dependent (Groppe et al., 2011). Thus, this method is similar to a 

Bonferroni correction in that it strongly controls for the probability of false 

discoveries within a family of comparisons but is more powerful as it accounts for 

the degree of correlation between tests. Based on the number of participants in this 

study, it would not have been feasible to compute all possible permutations (number 

of possible permutations = 31!); therefore, a random sample of 100,000 permutations 
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was generated per test. Both the uncorrected and corrected p-values (denoted p and 

pʹ, respectively) are reported when simultaneous comparisons were made. The 

robustness of correlation coefficients was assessed by calculating 95% CIs using a 

bootstrapping with replacement method. Iterations were performed 10,000 times. 

Bayes factors were also calculated for the individual correlational analyses 

comparing the relationship between BOLD and CBF response saturation and the two 

GABA measures. 

6.4 Results 

Mean BOLD and CBF percent signal change at each contrast level, including values 

normalised to response to 100% contrast, are given in Table 6.1. As expected, BOLD 

responses increased monotonically with contrast, with CBF showing the same trend. 

Paired t-tests showed that, for both BOLD and CBF, responses to contrast were 

significantly different from each other (p < 0.001). 

Table 6.2 shows the mean concentration of GABA'+MM and GABA'. Also 

shown is the between-subject coefficient of variation (CVbs). Mean GABA' 

concentration was approximately 50% that of mean GABA'+MM concentration. 

Table 6.1  Mean (± SD) BOLD and CBF responses to graded visual contrast (n = 31). 
Responses are represented as percent signal change from baseline (second and third 
columns) and as response normalised to percent change at 100% contrast (fourth and 
fifth columns). 

Contrast ΔBOLD (%) ΔCBF (%) Norm. ΔBOLD Norm. ΔCBF 

12.5% 0.96 ± 0.27 16.37 ± 5.29 0.41 ± 0.10 0.46 ± 0.16 

25% 1.13  ± 0.29 19.01 ± 5.49 0.49  ± 0.11 0.53  ± 0.15 

50% 1.54 ± 0.35 23.68 ± 5.02 0.66 ± 0.10 0.66 ± 0.13 

100% 2.33 ± 0.41 36.27 ± 4.01 1.00 1.00 

Table 6.2  Mean (± SD) GABA concentration measured using standard GABA-editing (n 
= 31) and symmetric MM suppression (n = 29). The signal ratio represents the fraction of 
the signal retained following MM suppression (i.e., [GABA'] / [GABA'+MM]). 

 GABA'+MM GABA' 

Concentration (i.u.) 1.56 ± 0.12 0.74 ± 0.15 

CVbs 7.80% 20.55% 

Mean εfit (± SEM) 3.23 ± 0.09% 4.56 ± 0.20% 

Signal ratio (± SD) 0.48 ± 0.09 
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Two example spectra acquired using each acquisition are displayed in Figure 6.1b. 

The MM-suppressed values displayed about 2.5 times larger CVbs (~21%) than the 

contaminated concentrations (~8%). While mean εfit for the two acquisitions was 

significantly different (p < 0.001), they were qualitatively low (< 5%). These results 

are similar to those reported in Chapter 5. The correlation coefficient between 

GABA'+MM and GABA' concentration was r = 0.43 (p = 0.02). 

The results from the contrast response function fitting procedure were 

examined next. Mean (± SD) γ and Rmax parameters for BOLD were 0.44 ± 0.16 and 

2.20 ± 0.42, respectively. For CBF, these were 0.43 ± 0.35 and 33.65 ± 4.70, 

respectively (Table A.2). The mean γ for the BOLD data is similar to a previous 

contrast tuning fMRI study (Olman et al., 2004). The mean γBOLD and mean γCBF 

were not significantly different from each other (p = 0.72). 

Bayes factors for the compared linear regression models are displayed in 

Table 6.3. There was substantial evidence supporting the model including only γCBF 

versus the models including γCBF, [GABA'+MM] and [GABA'] (B01 = 6.30). There 

was weak evidence supporting the model including only γCBF versus the models 

including γCBF and [GABA'+MM] (B01 = 3.00) or γCBF and [GABA'] (B01 = 2.53). 

The robustness of these Bayes factors was assessed by varying the scale factor of 

the Cauchy prior (Figure A.1). Additionally, the model including γCBF and 

[GABA'+MM] was compared against the model including γCBF and [GABA'] to 

determine which GABA measure better predicted γBOLD when γCBF was included as 

an additional covariate. There was weak evidence supporting the latter relative to 

the former model (B01 = 1.19). 

Table 6.3  Default Bayes factors for the linear regression model comparison. BOLD 
response saturation (γBOLD) is the dependent variable and CBF response saturation (γCBF), 
[GABA'+MM] and [GABA'] are treated as predictors. 

  Model R2 Bm1
a B1m

b 

Μ1 γCBF 0.32 1 1 

Μ2 γCBF, GABA'+MM, GABA' 0.33 0.16 6.30 

Μ3 γCBF, GABA'+MM 0.32 0.33 3.00 

Μ4 γCBF, GABA' 0.33 0.40 2.53 
a Bayes factor of the comparison between each model and model M1. 
b Bayes factor of the comparison between model M1 and each model. 
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For the exploratory analysis, the association between contrast tuning 

parameters and endogenous GABA concentration was investigated. The γ parameter 

was negatively associated with [GABA'+MM] for CBF (r = –0.40, p = 0.03, pʹ = 

0.10, CI: [–0.72, –0.09], B10 = 2.48), such that participants with higher GABA levels 

had faster CBF response saturation to contrast. However, the significance of this 

relationship did not survive correction for simultaneous comparisons. For BOLD, 

this relationship was also negative but weaker and non-significant (r = –0.19, p = 

0.30, pʹ = 0.73, CI: [–0.50, 0.14], B01 = 1.91). GABA' measures did not correlate 

with the γ parameter for either BOLD (r = –0.07, p = 0.71, pʹ = 0.99, B01 = 2.72) or 

CBF (r = –0.31, p = 0.10, pʹ = 0.30, B10 = 1.02). 

Neither [GABA'+MM] or [GABA'] were significantly related to Rmax, the 

modelled haemodynamic response at 100% contrast, for BOLD (r = 0.15, p = 0.42; 

r = 0.36, p = 0.05, respectively) or CBF (r = –0.26, p = 0.17; r = –0.12, p = 0.55, 

respectively). 

The inverse relationship between GABA'+MM levels and CBF response 

saturation suggest there may be a modulatory GABAergic effect on haemodynamic 

contrast tuning. To illustrate this, the derived γ parameters were plotted against 

individual Rmax parameters for each participant and then individually stratified by 

their quantified GABA'+MM or GABA' concentration. As can be seen in Figure 6.3, 

Figure 6.3  Scatterplots of individual participants’ response saturation parameter (γ) as a 
function of their modelled maximum response to contrast (Rmax) for BOLD (a, c) and CBF 
(b, d). The colour bars indicate the amount of quantified GABA'+MM (top row) and GABA' 
concentration (bottom row), which is reflected by the colour of each individual point in the 
plots. The dashed lines show the median for each function parameter. 
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there is an observable bimodal distribution of response saturation parameters with 

respect to participants with high and low GABA'+MM levels for CBF. That is to 

say, GABA'+MM appears to mediate the degree of saturation of CBF at the least. 

This was not the case for BOLD or for GABA' for either haemodynamic response. 

The relationships between GABA concentration and percent signal change 

at each contrast of the visual stimulus were also investigated. [GABA'+MM] was 

found to be negatively associated with CBF responses to 50% (r = –0.41, p = 0.03, 

Figure 6.4  Scatterplots of BOLD and CBF percent signal change at each contrast level as 
a function of GABA concentration. a–h: [GABA'+MM] versus BOLD (first row) and CBF 
(second row) responses. i–p: [GABA'] versus BOLD (third row) and CBF (fourth row) 
responses. Red circles indicate outliers. 

Figure 6.5  Average BOLD and CBF percent signal change at each of the four contrasts 
normalised to responses to 100% contrast. BOLD displayed smaller response ratios at low 
contrast (12.5% and 25%) compared to CBF, indicated by the plotted points falling below 
the line of equality. Error bars are standard error of the mean. The solid line is the line of 
equality. 
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CI: [–0.62, –0.13]) and 100% contrast (r = –0.47, p = 0.01, CI: [–0.63, –0.18]). 

[GABA'] was positively associated with BOLD responses to 25% contrast (r = 0.41, 

p = 0.03, CI: [0.09, 0.61]). Given the large number of simultaneous comparisons, 

these correlations would not be expected to survive correction. Although some of 

the correlations uncharacteristically trended towards a positive relationship, none of 

these were significant (Figure 6.4). As previous studies have investigated the 

relationship between endogenous GABA levels and BOLD evoked by maximum-

contrast visual stimuli (Harris et al., 2015a; Muthukumaraswamy et al., 2012, 2009; 

Violante et al., 2013), Bayes factors were calculated for the associations between 

BOLD responses at 100% contrast and both GABA measures. In both cases there 

was insufficient evidence to make a judgement: ΔBOLD100 vs. [GABA'+MM]: B01 

= 1.87; ΔBOLD100 vs. [GABA']: B10 = 1.60. 

The simultaneous measurement of BOLD and CBF offers the opportunity to 

examine possible individual differences in the coupling between the two measures. 

Therefore, a second exploratory analysis of BOLD and CBF contrast tuning was 

carried out. Firstly, BOLD and CBF percent signal change were compared by 

normalising participants’ responses to their response to 100% contrast. Figure 6.5 

displays the response ratios for CBF against those for BOLD. The normalised 

percent signal change at 12.5% and 25% contrast was lower for BOLD than for CBF 

Figure 6.6  The rate of response saturation (γ) correlated between CBF and BOLD. A strong 
positive relationship was observed. The solid black line represents the best-fit line and the 
solid blue line represents the line of equality. That the majority of points are above the line 
of equality signifies that CBF generally showed faster saturation than BOLD. Both the 
uncorrected and corrected p-value is shown. The inset shows the scatterplot for modelled 
CBF and BOLD responses at 100% contrast (Rmax). These were also correlated (r = 0.38, p 
= 0.04, pʹ = 0.09). Red circles indicate outliers. 
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but tended towards equality at 50%. Moreover, when the contrast tuning parameters 

were compared between fMRI signals, a strong positive correlation was revealed 

between γBOLD and γCBF (r = 0.66, p < 0.001, pʹ < 0.001, CI: [0.36, 0.83]). Rmax,BOLD 

and Rmax,CBF were also correlated (r = 0.38, p = 0.04, pʹ = 0.09, CI: [0.05, 0.62]) 

(Figure 6.6). For rate of response saturation, CBF displayed faster saturation than 

BOLD. This complements the finding showing that CBF response ratios were larger 

than BOLD response ratios at low contrast. 

6.5 Discussion 

Evidence has shown that GABA plays an important role in neurovascular coupling, 

with some in vivo investigations reporting an inverse relationship between GABA 

and BOLD- and perfusion-weighted fMRI measures (Donahue et al., 2014, 2010; 

Muthukumaraswamy et al., 2012, 2009; Northoff et al., 2007). However, there are 

discrepancies with respect to the direction of the relationship (Donahue et al., 2010; 

Wiebking et al., 2014), with some studies failing to reproduce an association (Harris 

et al., 2015a; Muthukumaraswamy et al., 2012). Here, GABA’s potential role in 

contrast tuning properties of haemodynamic measures was examined. The primary 

finding, using Bayesian regression analysis, indicates that the most appropriate 

model to describe the behaviour of BOLD response saturation in the data was one 

that included CBF response saturation (as expected), but not GABA. 

Nonetheless, exploratory analyses suggest that GABA'+MM concentration 

and the rate of CBF response saturation to graded contrast were associated, where 

increased endogenous GABA'+MM levels corresponded to faster saturation. 

Permutation tests showed that these correlations were not significant when 

accounting for simultaneous comparisons, however. Therefore, the results can only 

be taken to be preliminary evidence of a possible modulatory role of GABA'+MM 

concentration on haemodynamic response sensitivity to a visual stimulus.  

It is also shown that GABA'+MM was negatively associated with CBF 

responses at higher contrast levels, but these would not be expected to survive 

correction for simultaneous comparisons given the large number of tests. Finally, to 

add to the understanding of how MRS-derived GABA concentration relates to fMRI 

measures, a symmetric MM suppression technique was employed in addition to 

standard MM-contaminated GABA-edited MRS. Contrary to the stated hypothesis, 
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GABA' was not a stronger predictor of haemodynamic response saturation or percent 

signal change to contrast compared to GABA'+MM. 

Recent research by Katzner et al. (2011) has shown that pharmacological 

intervention of GABAA receptors of V1 neurons in cats modulates the response gain 

(an upward shift of the tuning curve) following stimulation by a contrast-graded 

visual stimulus. This effect on contrast gain control has been replicated in mice 

(Atallah et al., 2012), with a related effect having been observed with respect to 

adaptation to auditory stimuli in rats (Duque et al., 2014; Pérez-González et al., 

2012). These studies demonstrate direct GABAergic control on response sensitivity 

to visual contrast. However, extrapolating the role of GABAergic inhibition from 

single-cell spiking activity to corresponding features of perfusion and the BOLD 

signal is very difficult given the highly complex network between activity at the 

vascular level and activity at the neuronal level (Singh, 2012). Moreover, the GABA 

concentration discussed in the present study is arguably a measure of total MR-

visible GABA (intra- and extracellular), as opposed to exclusively synaptic GABA. 

Nonetheless, the link between endogenous GABA levels and haemodynamic 

contrast tuning provides a pathway to fill the gap between neurochemistry and 

imaging of neurovascular mechanisms. 

GABA concentration was not related to BOLD or CBF responses to most 

contrasts. When a relationship was apparent, it was negative but only for CBF 

responses at higher contrast levels. This differs from the majority of studies that have 

found an inverse association between endogenous GABA concentration and BOLD 

responses (Donahue et al., 2010; Muthukumaraswamy et al., 2012, 2009; Northoff 

et al., 2007), but is consistent with a recent study that found no relationship between 

GABA and BOLD responses to a variety of stimuli (Harris et al., 2015a). 

Additionally, Bayes factors indicated there was insufficient evidence to favour an 

association between GABA and BOLD response at 100% contrast. It is possible that 

GABA’s relationship with haemodynamics is more complex than a simple inverse 

relationship with peak signal change to a stimulus that maximally activates an area 

of the cortex. The fact that GABA'+MM measures did not correlate with BOLD 

responses at any contrast, but there was an association with CBF responses at high 

contrast, may suggest that GABAergic modulation of haemodynamics is different 

for stimuli applied at maximum strength compared to weaker stimuli. This 

proposition may not be true when endogenous GABA is related to steady-state 
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haemodynamic activity, such as resting-state BOLD and basal perfusion, where 

negative relationships have also been seen (Donahue et al., 2014; Kapogiannis et al., 

2013); or when an activity-inducing task cannot intuitively be graded, such as with 

emotional stimuli (Northoff et al., 2007). It is also possible that the mechanisms 

behind GABA’s relationship to the haemodynamic response is intrinsically different 

for BOLD and CBF. The complexity of the origin of the BOLD signal, and CBF’s 

role in generating it, would make this likely. 

Alternatively, GABA’s role in observed BOLD and CBF responses may be 

more inherently related to their dynamic range. Albrecht and Hamilton (1982) 

seminally measured dynamic range in neurons in the striate cortex of the cat and 

monkey by measuring the contrast required for a neuron to produce 50% of its 

maximum firing rate (i.e., semi-saturation). Striate neurons displayed a large 

variation in dynamic range, and on average semi-saturation was reached at around 

20% contrast. This finding has also been reported in fMRI studies, where semi-

saturation occurs at around 10–20% contrast (Boynton et al., 1996; Gardner et al., 

2005; Tootell et al., 1995). In this study, a power law function was used to 

characterise contrast tuning. A logical consequence of this model is a tight coupling 

between responses at low contrast and the saturation rate parameter (see Figure 6.2). 

Since some BOLD and CBF responses at low contrast trended towards a relationship 

with GABA'+MM concentration, and GABA'+MM concentration was inversely 

associated with CBF saturation rate, it is posited that endogenous GABA could be a 

marker of the dynamic range of haemodynamic responses. From this it can be argued 

that an association between GABA and task-related BOLD/CBF responses may not 

be necessarily evident if a stimulus is presented at maximal input and responses have 

reached their saturation point, or if the dynamic range of haemodynamic responses 

is not sufficiently wide. 

One of the predictions was that GABA concentration derived from MM-

suppressed GABA-editing would result in a stronger association with BOLD and 

CBF compared to the MM-contaminated measurements. Since the main advantage 

of symmetric suppression is that the 3.0 ppm MM peak that overlaps the 3.0 ppm 

GABA peak is removed, it provides a more specific measure of GABA. Indeed, the 

signal ratio of GABA' to GABA'+MM was approximately 0.50, which falls in line 

with empirical evidence (Aufhaus et al., 2013; Harris et al., 2015b; Rothman et al., 

1993) and the study in Chapter 5. However, GABA' was not shown to be a stronger 
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predictor of BOLD and CBF response sensitivity. Moreover, there was only weak 

evidence in favour of the MM-suppressed GABA measure when compared to the 

MM-contaminated measure in the prediction of haemodynamic response saturation. 

This finding is difficult to explain as it is not clear how MM could contribute to 

perfusion and the BOLD signal. This would necessitate a more thorough 

investigation of the contaminating MM component. One explanation is that because 

the GABA' peak is effectively half of the GABA'+MM peak, the SNR will be lower, 

which would mean detecting any true relationships would require more statistical 

power in the experiment. Indeed, the εfit between the two acquisitions was 

significantly different. Nonetheless, it was still qualitatively low (< 5%) in both 

cases. Given the novelty of using MM suppression in GABA-MRS research, and 

that very few studies have empirically compared the differences between symmetric 

suppression and standard editing, further work investigating the differences between 

the two acquisition techniques is required. 

CBF displayed greater normalised responses to 12.5% and 25% contrast than 

BOLD. This mirrors a study by Liang et al. (2013) who used an experimental design 

similar to the one used here. They observed that BOLD had a greater dynamic range 

than CBF, reflected in the ratio between percent signal change at highest and lowest 

contrasts being greater for BOLD (~4.3) than CBF (~2.4). Indeed, in the data from 

the present study the dynamic range of BOLD was ~2.4, whereas for CBF it was 

~2.2. Adding to that finding, participants’ CBF responses demonstrated a faster 

degree of saturation than their corresponding BOLD responses. Taken together, 

these results contradict the commonly reported finding that CBF tends to increase 

linearly at higher grades of a stimulus whereas BOLD in turn tends to saturate 

(Chiarelli et al., 2007; Hoge et al., 1999b; Rees et al., 1997). 

A limitation of this study is that the properties of the annular gratings differed 

somewhat from previous fMRI experiments using graded visual stimuli. For 

example, whereas BOLD and CBF responses appear to peak when stimuli are 

presented with a temporal frequency of 8 Hz (Kwong et al., 1992; Lin et al., 2008; 

Zhu et al., 1998), a temporal frequency of 6 Hz was used here. Although BOLD 

amplitudes evoked at 6 and 8 Hz may not be substantially different 

(Muthukumaraswamy and Singh, 2008), the choice of a specific temporal frequency 

may limit the extent to which the findings can be generalised. Additionally, studies 

have typically used high spatial frequencies (3+ cpd), whereas a comparatively 
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lower frequency (1.2 cpd) was used in this study. Nonetheless, previous studies 

suggest that primary visual cortex BOLD responses remain relatively stable as 

spatial frequency is modulated (Muthukumaraswamy and Singh, 2009; Singh et al., 

2000; Swettenham et al., 2013). A second limitation is the intrinsically low SNR of 

the arterial spin labelling signal. This will contribute to poorer fitting of the tuning 

curves for the CBF data and thus poorer parameterisation of CBF response 

saturation. 

Several avenues of future research are possible following the preliminary 

findings reported here. Firstly, given that the Bayes factors for the regression model 

comparison constituted weak, and therefore inconclusive, evidence against 

including GABA'+MM or GABA' in the model, a replication of this study is 

necessary with either a larger sample size or reduced comparisons. Secondly, the 

failure to find a relationship between GABA concentration measured using the 

symmetric suppression technique and contrast-tuning properties needs to be 

addressed, particularly as MM-contaminated GABA measures did show such a 

relationship. MM-suppressed GABA measures may show stronger differential 

effects following neurostimulation or pharmacological intervention compared to 

contaminated GABA measures, for instance. Thirdly, the use of calibrated fMRI 

techniques to non-invasively measure the cerebral metabolic rate of oxygen (Bulte 

et al., 2012; Davis et al., 1998; Wise et al., 2013) and 13C MRS to measure the 

cerebral metabolic rate of glucose (Hyder and Rothman, 2012; Patel et al., 2005) 

offer the possibility of better characterising the relationship between GABAergic 

inhibition, its role in response sensitivity and the underlying mechanisms of BOLD- 

and perfusion-weighted responses. 

6.6 Conclusions 

To conclude, BOLD and CBF were simultaneously measured as a contrast-graded 

visual stimulus was presented to participants. Additionally, endogenous GABA 

concentration was measured in the OCC using GABA-edited MRS with and without 

MM contamination. Using a Bayesian analysis, weak evidence was found against 

hypotheses that included GABA'+MM or GABA' in the prediction of response 

saturation. However, this did not pass the threshold to support a hypothesis that did 

not include GABA'+MM or GABA' in the model. Although the results of this study 
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are inconclusive, the possibility that the saturation of the BOLD or CBF signal may 

confound findings relating haemodynamic measures to GABA cannot be rejected. 



 

7. Numerical Simulations of GABA-Editing 

Efficiency and the Impact of Frequency 

Drift†† 

 

7.1 Abstract 

In this chapter, the editing efficiency of and impact of frequency drift on J-

difference–edited MRS of GABA with and without symmetric MM suppression is 

investigated. GABA and MM multiplet patterns were simulated using density matrix 

formalism. Editing efficiency profiles were characterised with two editing pulses 

with different frequency bandwidths (95 and 76 Hz) and each at two echo times (68 

and 80 ms). In a separate simulation, positive and negative linear frequency drift was 

induced in several experiments and the relative contribution of GABA and MM to 

the GABA+MM signal was compared. Both standard and symmetric editing 

schemes were simulated. Compared to standard editing, the lineshape of the 3.0 ppm 

GABA-H4 difference multiplet was markedly different when symmetric 

suppression was employed. The editing profile for the narrower bandwidth editing 

pulse produced a more frequency-selective efficiency profile and a negative 

difference integral at 1.5 ppm. Frequency drift had a greater impact on changes in 

the GABA signal in symmetric suppression. It is concluded that the proximity of the 

ON and OFF editing pulses in symmetric editing substantially affects the difference 

multiplet when drift is introduced into the experiment. Therefore, it is crucial to 

determine the editing efficiency of a given symmetric suppression experiment and 

to monitor shifts in centre frequency. 

  

                                                           
†† The author is indebted to Dr. Jamie Near (McGill University) for providing the MATLAB software 
(FID-A, Simpson et al., 2015) used to perform the numerical simulations in this chapter as well as 
for providing advice and support with the modifications to the software’s code. 
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7.2 Introduction 

As discussed earlier in this thesis, spectral editing of GABA involves the subtraction 

of two scans each acquired at TE = 1/2J, one where the 3.0 ppm GABA-H4 

resonance is refocused using 180° Gaussian frequency-selective refocusing pulses 

(ON scan) and one where the spin system is allowed to evolve freely (OFF scan). 

Shifts in centre frequency, and therefore in the frequency of the editing pulses, will 

have a detrimental effect on the resulting DIFF spectrum. For instance, when the 

frequency of each subspectrum of a MEGA-PRESS experiment is misaligned, 

residual Cr and Cho peaks that overlap with GABA will cause subtraction artefacts 

that distort the GABA DIFF peak (Evans et al., 2013), leading to signal loss and 

increased linewidth. Additionally, frequency drift will reduce the efficiency of 

spectral editing as the editing pulses move off resonance (Harris et al., 2014). The 

former effect can be typically rectified by correcting the centre frequency of each 

acquisition retrospectively (Evans et al., 2013; Near et al., 2015; Waddell et al., 

2007). However, frequency drift affects the apparent position of the frequency 

selective RF pulse in the sequence, thus can only be prospectively corrected by real-

time motion correction and frequency updating (Henry et al., 1999; Lange et al., 

2011; Thiel et al., 2002; Zaitsev et al., 2010). 

Harris et al. (2014) have recently reported the simulated and experimental 

impact of frequency drift on standard GABA-editing, where ON editing pulses are 

placed at 1.9 ppm and the OFF editing pulses are placed off resonance at 7.5 ppm. 

To replicate the protocol of a typical imaging study, BOLD–fMRI was conducted 

prior to three consecutive MEGA-PRESS acquisitions. The centre frequency drifted 

by an average of –7 Hz during the MRS scans. This negative drift persisted up to 30 

min after the fMRI scan. Although retrospective frequency correction led to an 

increased SNR and, consequently, greater quantified GABA concentration, total 

frequency drift was shown to impact on the degree of MM contamination in the 

resolved GABA signal. 

Drift will be even more problematic in the symmetric editing scheme used to 

remove the MM contaminant given the close proximity of the OFF editing pulses to 

both the GABA-H3 resonance at 1.9 ppm and the M4 resonance at 1.7 ppm (Figure 

7.1a). The editing efficiency of the GABA-H3 resonance in the OFF scan will 
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depend on the frequency selectivity of the editing pulse (Edden et al., 2012b; Harris 

et al., 2015b; Mikkelsen et al., 2016) and the degree of MM contamination will 

depend on the amount of frequency drift in the experiment (Harris et al., 2014). 

Editing efficiency in the symmetric editing scheme, how it is affected by drift 

and how it compares to a standard editing scheme have yet to be described in detail. 

In this chapter, both the editing efficiency of the symmetric editing scheme and the 

impact of frequency drift on the resolved GABA signal in GABA-edited 

experiments were investigated by numerical simulation. This was compared against 

simulated experiments where a standard editing scheme was employed. 

Figure 7.1  a: Representations of the GABA and MM spin systems superimposed by 
inversion frequency profiles for representative Gaussian editing pulses offset according to 
the symmetric MM suppression editing scheme: ON = 1.9 ppm, OFF = 1.5 ppm. When on 
resonance, the editing pulses will lead to equal excitation of the MM resonance at 1.7 ppm 
(M4). The M4 resonance and the scalar-coupled M7 resonance at 3.0 ppm are then 
removed in the DIFF spectrum. Frequency drift moves the editing pulses off resonance, 
causing inefficient suppression of the M4 resonance and residual contamination of the 3.0 
ppm GABA-H4 signal by the M7 resonance. b: Radiofrequency waveforms for two Gaussian 
editing pulses with 1% truncation. A longer pulse duration (T = 20 ms) results in a narrower 
frequency bandwidth (Δfedit = 76 Hz) and better frequency selectivity, whereas a shorter 
pulse duration (T = 16 ms) results in less frequency selectivity (Δfedit = 95 Hz). c: Inversion 
frequency profiles for the Gaussian editing pulses shown in b. 
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7.3 Methods 

7.3.1 Simulations 

Density matrix formalism was used to simulate the evolution of the GABA spin 

system at a B0 field strength of 3 T. Chemical shifts and coupling constants of the 

GABA spin system were taken from Near et al. (2013b) and are given in Table 2.1. 

MEGA-PRESS sequence parameters included ideal, instantaneous 90° excitation 

and 180° slice-selective refocusing pulses. Shaped editing pulses were simulated as 

Gaussian refocusing pulses with ideal 180° flip angles. To avoid transverse 

magnetisation artefacts, an eight-step phase cycle was employed with the following 

phase angles applied to the first and second editing pulses, respectively: [0°, 90°], 

[0°, 90°, 180°, 270°]. FIDs with 4096 data points were generated, apodized using an 

exponential filter corresponding to a linewidth of 2 Hz, zero-filled eight times and 

finally Fourier transformed into the frequency domain (spectral width = 5 kHz).  

Two sets of simulated experiments were performed using the open-source 

MATLAB-based FID-A software toolkit (Simpson et al., 2015) to assess (i) the 

change in editing efficiency when editing pulse frequency bandwidth is modulated 

and (ii) the impact of frequency offsets as induced by drift in the B0 field in standard 

and symmetric editing. In the first set of simulations, the change in the GABA and 

MM integrals was examined by offsetting the ON editing pulse from 0 to –160 Hz 

(1.89 to ~0.64 ppm) in steps of 1.25 Hz (~0.01 ppm) in order to characterize editing 

efficiency profiles. The OFF editing pulse was fixed at 7.41 ppm. For MM, the spin 

system was assumed to be a A2M2X2 system with the same coupling constants and 

chemical shifts as GABA but with the M spins shifted to 1.72 ppm to match the M4 

resonance of the MM baseline (Behar et al., 1994). The impact of frequency drift 

was simulated in the second set of simulations, whereby eleven difference-edited 

experiments were performed, each with 64 pairs of ON–OFF acquisitions. ON and 

OFF editing pulses were placed according to either a standard editing scheme 

(ON/OFF = 1.89/7.41 ppm) or a symmetric MM suppression scheme (ON/OFF = 

1.89/1.55 ppm; i.e., symmetrical about the M4 resonance at 1.72 ppm). Various 

amounts of total frequency drift were induced in each experiment: 20, 16, 12, 8, 4, 

0, –4, –8, –12, –16 or –20 Hz. Editing pulse frequency was offset according to linear 

interpolation for each pair of intermediate ON/OFF scans in each experiment. 
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All simulations were performed either with editing pulse duration (T) = 16 

ms and TE = 68 ms or with T = 20 ms and TE = 80 ms in order to appraise the effect 

of increased frequency selectivity of editing pulses. This also allows a fair 

comparison with the in vivo experiments presented earlier in this thesis. The editing 

pulse had a Gaussian RF waveform with 1% truncation and a frequency bandwidth 

(Δfedit) at FWHM of 95 Hz for T = 16 ms and 76 Hz for T = 20 ms (Figure 7.1). The 

time-bandwidth product (R) for this pulse was 1.53. Pulse timings (τn) of the MEGA-

PRESS sequence (i.e., excitation – τ1 – refocus – τ2 – edit – τ3 – refocus – τ4 – edit 

– τ5 – acquire) were 7, 13, 21, 13 and 14 ms for TE = 68 ms and 7, 16, 24, 16 and 17 

ms for TE = 80 ms, respectively. 

7.3.2 Phantom Experiments 

Two phantom experiments were conducted on a 3 T GE scanner to determine the 

GABA DIFF multiplet lineshape in standard and symmetric GABA-edited 

spectroscopy. GABA was detected in a 20-mM phantom using two MEGA-PRESS 

acquisitions. In the first, a standard placement for the editing pulses was used: 

ON/OFF = 1.9/7.5 ppm. In the second, a symmetric editing scheme was employed: 

ON/OFF = 1.9/1.5 ppm. Other scan parameters were as follows: TE/TR = 80/1800 

ms, voxel size = 20 × 20 × 20 mm3, T = 20 ms, 128 averages, 4096 data points, 5 

kHz spectral width. The phantom was scanned at room temperature and the 

frequencies of the editing pulses were offset to account for temperature effects on 

chemical shift. 

7.4 Results 

7.4.1 Effect on Spectral Lineshape 

GABA ON, OFF and DIFF multiplets for simulated standard and symmetric editing 

experiments are displayed in Figure 7.2a. These were simulated using the 76-Hz 

editing pulse. The lineshapes of all three spectra were experimentally replicated in 
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vitro. The apparent center peak in the DIFF multiplet in the standard editing 

experimental data is a result of deviations in the flip angle of the slice-selective 

refocusing pulses from the ideal 180°. In the symmetric editing acquisition, both the 

simulated and experimental DIFF multiplets display a prominent center peak and 

outer peaks with reduced intensities. This is explained by partial refocusing of the 

GABA-H4 resonance in the OFF scan, a result of the bandwidth of the editing pulses 

Figure 7.2  a: Simulated and experimental GABA-H4 ON, OFF and DIFF multiplets resolved 
by standard editing and symmetric MM suppression. The GABA resonance is partially 
refocused in the OFF scan in the symmetric editing scheme, leading to a prominent center 
peak and reduced intensities of the outer peaks in the DIFF multiplet. b: ON, OFF and DIFF 
multiplets from simulated symmetric editing experiments illustrating the effect of editing 
pulse frequency bandwidth on the GABA-H4 spectral lineshape (arranged in descending 
order according to increasing frequency selectivity). 
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being insufficiently frequency-selective. This effect was confirmed by modulating 

editing pulse duration in the simulated symmetric editing experiment (Figure 7.2b). 

Increasing pulse duration, and thus narrowing the bandwidth, leads to improved 

frequency selectivity and less refocusing of the GABA-H4 resonance in the OFF 

scan.  

7.4.2 Editing Efficiency 

The normalised GABA and MM integrals from the editing efficiency simulations 

are plotted as a function of ON editing pulse offset in Figure 7.3a. As expected, the 

broader bandwidth, 95-Hz editing pulse leads to a broader response in the integral 

as the ON pulse is shifted off resonance, whereas the narrower bandwidth, 76-Hz 

editing pulse leads to a narrower response and thus improved frequency selectivity. 

Figure 7.3  a: Editing efficiency profiles based on modulating the frequency bandwidth of 
the Gaussian editing pulse. The GABA (blue) and MM (red) integrals are normalised to 
maximal signal intensity and plotted as a function of ON editing pulse frequency offset. The 
editing efficiency profiles for the broader bandwidth, 95-Hz and narrower bandwidth, 76-Hz 
editing pulses are illustrated as solid and dashed lines, respectively. The grey line indicates 
the frequency offset of an OFF editing pulse in the symmetric editing scheme. b: Simulated 
GABA-H4 ON, OFF and DIFF multiplets at specified frequency offsets resolved by the 95- 
and 76-Hz editing pulses. 
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The MM integrals behave in a similar fashion except with maximal signal attained 

at 1.72 ppm. For symmetric editing, it is crucial that the partial excitation of the 

GABA-H3 resonance at 1.89 ppm by the OFF pulse placed at 1.55 ppm is 

minimized. The efficiency profiles show that an OFF editing pulse with a broader 

bandwidth will lead to a larger degree of partial refocusing of the 3.01 ppm peak 

when the frequency is offset by approximately –40 Hz (i.e., at 1.55 ppm), causing a 

loss in the signal in the DIFF multiplet. Interestingly, when using a 76-Hz pulse, the 

integral becomes negative between –40 Hz and –90 Hz offset. This is explained by 

the lineshape of the DIFF multiplet at these offsets (Figure 7.3b). The centre peak is 

inverted while the outer peaks are in phase but with an intensity comparatively lower 

than the absolute intensity of the anti-phase centre peak. The calculated integral for 

this lineshape is therefore below 0. The ON multiplets at –20, –40 and –60 Hz offset 

resolved using the 95- and 76-Hz editing pulses mirror the lineshapes displayed in 

the OFF multiplets in Figure 7.2b. 

A numerical estimate of editing efficiency can be derived by calculating the 

amount of GABA-H4 signal recovered in the DIFF spectrum as a fraction of the 

amount of total available signal in the experiment (estimated from the refocused 

GABA-H4 resonance in the ON scan). Editing efficiency estimates for the standard 

and symmetric editing techniques using the two editing pulses are given in Table 

7.1. The editing efficiency for standard editing was ~0.50, as expected. The slightly 

lower ratio for the TE = 80 ms experiment is a result of J-evolution of the GABA 

spins. Conversely, there is a greater difference in ratios for symmetric suppression. 

The acquisition using the narrower bandwidth editing pulse was about 1.6 times 

more efficient than the acquisition with the broader bandwidth pulse when a 

symmetric editing scheme was used. This is due to differences in the degree of 

refocusing of the GABA-H4 resonance by the OFF editing pulse in either 

Table 7.1  Editing efficiency for standard editing and symmetric MM suppression 

Technique TE, Δfedit Editing efficiency 

Standard editing 
68 ms, 95 Hz 0.51 

80 ms, 76 Hz 0.47 

Symmeteric suppression 
68 ms, 95 Hz 0.26 

80 ms, 76 Hz 0.42 
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experiment, which will lead to differences in the integral of the GABA DIFF 

multiplet. 

7.4.3 Impact of Frequency Drift 

The ON, OFF and DIFF multiplets for GABA and MM from the frequency drift 

simulations are shown in Figure 7.4 and Figure 7.5, respectively. The integrals of 

the GABA DIFF multiplet for each simulated experiment normalised to the integral 

at 0 Hz drift are plotted in Figure 7.6. Two characteristics can be discerned from this 

set of simulations. First, signal intensity is more sensitive to frequency drift when 

the frequency selectivity of the editing pulse is increased. This is demonstrated by 

the greater change in lineshape and amplitude the GABA and MM multiplets 

experience with frequency offset when the editing pulse is more frequency selective. 

Additionally, the rate of change of the integral as a result of drift is greater when 

Δfedit = 76 Hz (Figure 7.6). For instance, for –12 Hz drift the GABA signal loss with 

Figure 7.4  ON, OFF and DIFF multiplets for the GABA-H4 resonance resolved by standard 
or symmetric editing with various amounts of total linear frequency drift (20 to –20 Hz) 
induced in the simulated MEGA-PRESS experiment. The frequency bandwidth of the editing 
pulses (Δfedit) was either 95 or 76 Hz as shown. Number of ON–OFF pairs of acquisitions in 
each experiment = 64. 
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standard editing is 2% for the 95-Hz pulse but is nearly 2.5-times greater for the 76-

Hz pulse (4.8% reduction). 

Second, the impact of frequency drift is more pronounced in the symmetric 

editing scheme than in the standard editing scheme. Similar to the more frequency-

selective editing pulse, modulation of the GABA integral is greater with drift (Figure 

7.6). Counterintuitively, for Δfedit = 95 Hz the GABA integral for symmetric editing 

increases when the editing pulse frequency is offset negatively, where the signal gain 

is 25% at –20 Hz. . When examining the ON and OFF GABA multiplets in Figure 

7.4 for these particular simulations, it can be seen that at 0 Hz drift the OFF pulse 

partially refocuses the 3.0 ppm resonance. As the OFF pulse is offset negatively, the 

3.0 ppm resonance is less refocused. Thus, when the two scans are subtracted there 

is greater signal in the DIFF scan at –20 Hz than at 0 Hz. 

Figure 7.7 displays the simulated GABA+MM integral as a function of drift. 

The integral was calculated from the respective GABA+MM DIFF multiplets that 

were resolved by adding together each GABA and MM FID for each corresponding 

Figure 7.5  ON, OFF and DIFF multiplets for the M7 macromolecule resonance resolved by 
standard or symmetric editing with various amounts of total linear frequency drift induced in 
the simulated MEGA-PRESS experiment. The MM spin system was assumed to mimic the 
GABA spin system but with the scalar-coupled M4 resonance set to 1.72 ppm in lieu of the 
GABA-H3 resonance at 1.89 ppm. 
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drift-induced experiment. In addition, the relative contribution from GABA and MM 

to the total signal is shown, which for standard editing is typically assumed to be 

50:50 in an ideal experiment. Consequently, the integrals were scaled such that at 0 

Hz drift the GABA+MM integral equalled 1 and the GABA and MM integrals each 

equalled 0.5. For symmetric editing, the MM contribution will be nulled at 0 Hz 

drift, meaning that the GABA+MM integral will be equal to the GABA integral (i.e., 

0.5). Thus, at 0 Hz drift the relative contribution of GABA to GABA+MM is 0.5 in 

the standard editing simulations and 1 in the symmetric editing simulations. As can 

been seen, this relative contribution changes with frequency drift. Compared to the 

95-Hz editing pulse, the relative contribution changes more significantly with the 

76-Hz pulse in standard editing. Moreover, negative drift (i.e., frequency shifts 

toward the MM peak at 1.72 ppm) will lead to greater MM contamination. The 

contribution of the MM signal is more complex when employing symmetric editing. 

Although with negative frequency offsets the GABA signal still accounts for the 

Figure 7.6  The integral of the GABA-H4 DIFF multiplet as a function of total frequency drift 
in the MEGA-PRESS experiment normalised to the integral at 0 Hz drift. The impact of drift 
for the standard editing and symmetric suppression schemes using broader, 95-Hz (black) 
and narrower, 76-Hz (grey) editing pulses is illustrated. 
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majority of the GABA+MM signal, when there is positive drift the MM integral 

becomes negative and leads to a loss in overall GABA+MM signal. The ratio of 

GABA to GABA+MM then becomes greater than 1, essentially equating to the 

factor needed to adjust the GABA+MM integral to a value that corresponds to a 

“pure” GABA signal if there were no MM contamination. It is also apparent that a 

greater change in relative contributions occurs with the more frequency-selective 

76-Hz editing pulse. 

7.5 Discussion 

Numerical simulation of the GABA spin system using density matrix formalism has 

a multitude of applications. Here, this formalism was used to accurately describe and 

compare the quantum state of the GABA-H4 resonance resolved through standard 

Figure 7.7  Relative contributions of GABA (blue) and MM (red) to the GABA+MM (black) 
integral in standard (a, b) and symmetric (c, d) editing as a function of total frequency drift. 
The effect of the 95- and 76-Hz editing pulses for each editing scheme is illustrated. The 
contributing fraction of GABA to the GABA+MM integral is indicated by the signal ratios 
placed at the top of each set of bars. At 0 Hz drift, GABA is assumed to account for 50% of 
the GABA+MM integral in standard editing and 100% in symmetric editing. Note that when 
the MM integral falls below 0 in symmetric editing as a result of positive frequency offsets of 
the editing pulse there is a loss in GABA+MM signal (c, d). The signal ratio then becomes 
greater than 1 and effectively indicates the units of signal needed to correct the GABA+MM 
integral for signal loss caused by MM contamination. 
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editing and symmetric MM suppression in GABA-edited experiments. From several 

simulations it was revealed that the GABA DIFF multiplet has a distinctive 

lineshape in symmetric suppression in comparison to standard editing. Moreover, by 

including shaped editing pulses with different frequency bandwidths in the 

numerical simulations it is demonstrated that the efficiency of spectral editing is not 

only dependent on the bandwidth of editing pulses, but when employing more 

frequency-selective pulses there is an uncharacteristic inversion of the editing profile 

between 1.6 and 1.2 ppm. This effect is a direct result of the lineshape of the partially 

refocused ON GABA multiplet that leads to minimal intensity of the outer GABA 

peaks in the GABA DIFF multiplet when the ON and OFF scans are subtracted. It 

has been demonstrated that when frequency drift is introduced into the MEGA-

PRESS experiment, the symmetric suppression scheme is more sensitive than 

standard editing to editing pulse frequency offset, with increased frequency 

selectivity of editing pulses augmenting this sensitivity. Finally, drift modulates the 

relative contribution of GABA to the GABA+MM signal differently in symmetric 

suppression where positive frequency offsets lead to a negative MM DIFF multiplet 

consequently causing a substantial loss in overall GABA+MM signal. 

Although it has been previously noted that, even in the absence of drift, the 

proximity of the 1.5 ppm OFF editing pulse in symmetric editing poses a significant 

issue when centre frequency shifts (Harris et al., 2015b, 2014; Henry et al., 2001; 

Terpstra et al., 2002), its exact effect on the GABA multiplet has not been described 

previously. It is shown that the GABA multiplet in the OFF scan has an important 

effect on the resulting DIFF integral such that the outer peaks of the DIFF multiplet 

have a lower amplitude compared to the centre peak. This arises from partial 

refocusing of the 3.0 ppm GABA-H4 spins as the 1.9 ppm GABA-H3 spins 

experience a low flip angle from the OFF editing pulse placed at 1.5 ppm, a 

consequence of insufficient frequency selectivity of the editing pulse. When the ON 

and OFF scans are subtracted the outer peaks are not completely in-phase/anti-phase 

as would be the case in standard editing. This then leads to a decrease in their 

intensity in the DIFF spectrum. A description of this effect is accurately derived 

through numerical simulation using product operator formalism. 

The results of the numerical simulations have important implications for the 

quantification of GABA concentration. As the relative contributions of GABA and 

MM to the GABA+MM signal will vary with shifts in centre frequency, this will 
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add random variance to GABA data and will reduce the ability to observe true effects 

for a given experiment. This issue can be attenuated using techniques that 

prospectively correct for frequency drift at acquisition (Henry et al., 1999; Lange et 

al., 2011; Thiel et al., 2002; Zaitsev et al., 2010). In addition, a post-hoc correction 

for relative MM contamination could be calculated using the results from numerical 

simulations as demonstrated in this chapter. This would be a more accurate, 

experiment-dependent correction than the assumed 0.5 factor that is typically 

applied to standard GABA-edited concentrations (Harris et al., 2014; Mullins et al., 

2014). To perform this correction properly GABA would need to be quantified from 

each difference subspectrum in a scan in order to correct for MM contamination that 

results from frequency offsets occurring at every other TR. The low SNR of each 

individual difference subspectrum would pose an obstacle to such a procedure, 

however. In terms of absolute quantification, it is also necessary to account for the 

efficiency of the editing technique itself (Edden et al., 2014; Mullins et al., 2014). 

The expected efficiency of standard editing (0.5) was confirmed in the numerical 

simulations. For symmetric MM suppression, the frequency selectivity of editing 

pulses has a substantial impact on the fraction of signal recovered in the difference 

scan. Decreasing the bandwidth of these pulses by ~20 Hz led to 1.6 times greater 

editing efficiency. Calculating the theoretical efficiency of symmetric editing prior 

to experimental studies is a recommended step in the absolute quantification 

procedure. 

The distinct effects of editing pulse bandwidth and the placement of the OFF 

editing pulse in the symmetric editing scheme can be accurately described with 

density matrix formalism. Simulations of other important aspects of the J-difference 

editing experiment have previously been performed. For example, it is known that 

the parameters of slice-selective refocusing pulses used for volume localisation have 

an impact on the spatial profile of the GABA-H4 resonance (Edden and Barker, 

2007; Kaiser et al., 2008; Near et al., 2013b). Additionally, pulse timings, 

particularly of the first spin echo (TE1) and the editing pulses, must be considered 

carefully to maximise the GABA signal intensity for a given PRESS acquisition 

(Gambarota et al., 2005; Napolitano et al., 2013). Numerical simulations also 

constitute an important step in the optimisation of both standard and novel MRS 

acquisition techniques that use either an unedited (Napolitano et al., 2013; Near et 

al., 2013a) or edited (Andreychenko et al., 2012; Near et al., 2011; Snyder et al., 
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2009) approach. Thus, it would be possible to perform highly detailed and complex 

numerical simulations of J-difference editing of GABA that incorporate all 

parameters of the acquisition sequence in order to optimise in vivo experiments at 

different research sites and on different scanner platforms. 

This study has some limitations, however. Firstly, the MM spin system was 

assumed to mimic the GABA A2M2X2 spin system, where the chemical shift of the 

M spin was offset to 1.7 ppm. This assumption was necessary given the paucity of 

knowledge surrounding both the exact molecules that contribute to the 

contaminating MM signal and their respective spin–spin coupling properties. The 

current understanding of these molecules with respect to 1H MRS is based on the 

seminal papers by Behar and Ogino (1993) and Behar et al. (1994) who reported that 

the 3.0 ppm M7 resonance in the MM baseline that is coupled to the 1.7 ppm M4 

resonance is attributed to the amino acid lysine, which resolves as a triplet and has 

a coupling constant similar to GABA (~7.6 Hz). Although lysine has been used as a 

representative model for the MM contaminant (Henry et al., 2001), the M7 

resonance is also attributed to other amino acids such as arginine and leucine (Behar 

and Ogino, 1993). Additionally, the long T2 and estimated concentration of the MM 

contaminant signifies that the signal originates in part from other mobile, possibly 

lysine-containing, amino acids and not solely from a bound MM pool (Choi et al., 

2007). Secondly, when the relative contributions of GABA and MM to the 

GABA+MM integral were examined it was assumed that at 0 Hz drift the ratio was 

50:50. However, empirically this ratio will be dependent on the intrinsic 

concentration of the contaminating MM, individual and regional differences, 

efficiency of the editing acquisition (itself dependent on sequence and pulse 

parameters), MR visibility and the J-evolution of the molecules in question. The 

multitude of uncertain variables pertinent to the MM spin system(s) makes it 

substantially difficult to provide an accurate numerical description of the effect of 

MM contamination on the J-edited GABA signal. As such, additional investigations 

of the MM resonances that contaminate the GABA signal in conventional spectral 

editing are necessary in order to extrapolate their effects in symmetric MM 

suppression. 
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7.6 Conclusions 

Numerical simulations of standard and symmetric suppression J-difference editing 

demonstrate that the latter technique has a distinct effect on the GABA-H4 resonance 

compared to the former. The added complication of a contaminating MM resonance 

makes considering the efficiency of the symmetric suppression approach all the 

more important. The power of density matrix formalism is evident in the findings 

reported here, and it is only through simulations of the GABA spin system in the 

MEGA-PRESS experiment that a full description of standard and symmetric editing 

is possible. It can be concluded, then, that symmetric MM suppression is a technique 

that elegantly overcomes a significant disadvantage of standard GABA-MRS but 

that its implementation requires careful consideration of both acquisition 

parameters—particularly the frequency bandwidth of editing pulses—and offsets in 

centre frequency induced by heating of gradient coils or head motion. 



 

8. General Discussion 

 

8.1 Summary of Findings 

The principal objective of carrying out the scientific research presented in this 

doctoral thesis was to further develop the modern methodology of 1H MRS of 

GABA, specifically that of J-difference GABA-editing. The findings of the work 

can be summarised into three general themes. 

Firstly, that of the optimisation of absolute quantification. In Chapter 3, the 

unresolved issue of partial volume effects was addressed by the proposal of a new 

quantification procedure using internal tissue water as a concentration reference. The 

new method is a simple modification of the method first presented by Ernst et al. 

(1993) and refined by Gasparovic et al. (2006). It was shown that normalisation of 

MRS-derived GABA concentration based on the assumption of the ratio of the 

intrinsic concentration of GABA in GM and WM successfully removed the GM 

dependency from concentration measurements. Further understanding of the role of 

tissue segmentation on quantification error was presented in Chapter 4. Although 

error from tissue segmentation has been a concern, the findings showed that the 

contributed error is not substantial. 

The second theme was that of the practical and applied implementation of 

symmetric MM suppression. The symmetric suppression approach to deal with MM 

contamination in GABA-MRS has not been widely adopted by the MRS community. 

It was shown, however, that the technique is reproducible when compared to 

standard GABA-editing, and that removing the MM contaminant may provide 

greater interindividual discrimination of GABA levels. This method was then 

applied in a multimodal study as presented in Chapter 6. This experiment sought to 

address outstanding uncertainties regarding the association between MRS-measured 

GABA and haemodynamic responses. Unfortunately, ambiguous results were found 

regarding the relationship between GABA and the rate of BOLD and CBF response 

saturation. In addition, MM-suppressed GABA concentration did not provide a 

better, or a less ambiguous, picture of this association. 
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The third and final theme was the critical importance of the editing efficiency 

of GABA-editing, particularly when the symmetric editing approach is employed. 

The numerical simulations described in Chapter 7 elegantly and accurately 

demonstrate the effect of the frequency-selectivity of editing pulses and of frequency 

offsets induced by B0 frequency drift in a given acquisition. Even though the concern 

regarding efficient editing has always been intuitively understood with respect to 

symmetric MM suppression, the numerical approach to investigating this known 

issue has not been conducted as rigorously as this before. 

Taken as a whole, the empirical work of this thesis can be summarised into 

the following concluding statements: It is clear that there remain specific 

methodological limitations with the 1H MRS of GABA with respect to accurate and 

reliable signal detection and quantification. The suppression of MM contamination 

by symmetric editing is a technique that holds great promise as a method to 

overcome a significant problem in GABA-MRS research, with the content of this 

thesis pushing its practical methodology forward. Nonetheless, this work also 

confirms that further implementation of symmetric MM suppression in applied 

studies is required in order to unequivocally demonstrate its true worth. 

8.2 
1H MRS of GABA: The Current and Future State of the Art 

It should be clear from the topics discussed in Chapter 2 that in vivo measurement 

of GABA is currently an area of intense interest in modern neuroimaging. With this 

has come a steady stream of methodological development of 1H MRS with the 

specific remit of optimally detecting and quantifying GABA. Furthermore, there 

have been some key milestones that nicely demonstrate just how much the field has 

pushed itself forward. For example, the development of Gannet (Edden et al., 2014) 

for easy and simple processing and quantification of GABA-edited data has opened 

up MRS to the wider imaging community, particularly to groups who may not have 

access to the technical expertise that would otherwise be necessary to implement 

GABA-MRS robustly. In addition, a recent consensus paper by Mullins et al. (2014) 

aimed to bring together various lab groups conducting GABA-MRS research in 

order to establish rules of best practice for GABA-edited spectroscopy. One of the 

important issues alluded to in the article is that of data acquisition on different 
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scanner platforms, highlighting that at present there is a drive towards more accurate 

and more reliable absolute quantification methods in the community. 

Of course, it may be argued that the real scientific merit of a neuroimaging 

modality is not so much its methodological robustness but rather how its application 

can advance the wider field of neuroscience in a tangible manner. Again, the concise 

literature review presented in Chapter 2 aimed to illustrate that GABA-MRS has 

indeed brought a great deal of insight into GABA’s role in brain function that would 

not be possible using conventional noninvasive imaging.  

What of the future state of the art for the 1H MRS of GABA? Some 

prominent methodological issues (aside from those discussed in this thesis) still need 

to be satisfactorily addressed. The detrimental effects that head motion and B0 field 

drift have on MRS data greatly hamper empirical investigations, particularly in 

clinical or child populations where unfamiliarity or discomfort with the MRI setting 

will likely lead to an increased degree of such effects. An avenue for future 

optimisation, therefore, is the development of real-time motion correction and 

frequency updating. Although there are early examples of methods to achieve these 

(e.g., Henry et al., 1999; Thiel et al., 2002), more recent and advanced approaches 

show that their implementation is viable in GABA-MRS (Saleh et al., 2016). 

Prospective motion correction and frequency updating have not become mainstream, 

however. The benefits these methods could have for the field can be reasoned to be 

quite large. 

Another possibility for advancing MRS of GABA is the use of truly 

functional approaches. A few studies have demonstrated that functional MRS 

(fMRS) is a viable technique that can aid in better understanding how stimuli 

modulate the biochemical concentration of specific metabolites. For instance, 

Apšvalka et al. (2015) were the first to have used an event-related design to 

investigate the neurometabolic effects of stimulus repetition suppression. Cleve et 

al. (2015) examined the dynamic changes of Glx and GABA in the presence of 

painful stimuli, while Bednařík et al. (2015) exploited the increased SNR of 7 T 

MRS to examine neurochemical responses to a simple visual stimulus with a large 

degree of success. If the basic methodology is improved and the practical challenges 

are addressed, fMRS possibly has the potential to provide just as much insight as 

pharmacological and neurostimulation interventions. One could even go so far as to 

say that fMRS would be more advantageous than these other approaches since its 
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temporal resolution would be much finer (seconds as opposed to minutes or hours) 

and its practical implementation far less complex. It is quite likely that in the next 

few years more groups will begin to use truly functional approaches in MRS studies. 

Although nowhere near as common as 3 T, 7 T NMR holds significant 

promise for MRS given its greater SNR and, more importantly, greater spectral 

dispersion. The last few years have seen a surge of published methodological and 

applied studies of 7 T MRS to detect GABA, some with intriguing findings. Emir et 

al. (2012), for example, are only the second group to have attempted to detect in vivo 

GABA in Parkinson’s disease patients in the basal ganglia, aided by the advantages 

of ultra-high field NMR. Marsman et al. (2014) in a study investigating 

neurochemical abnormalities in schizophrenia found that GABA in the medial 

prefrontal cortex was reduced compared to controls. This is noteworthy not only 

because it fits the GABAergic hypothesis of schizophrenia but because similar 

studies (at lower fields) have produced equivocal results. In another high-profile 

publication, Dou et al. (2013) were able to show regional variation in GABA 

concentration across the cingulate cortex, which closely matched GABAB receptor-

architecture reported in an earlier post-mortem study (Palomero-Gallagher et al., 

2009). Moreover, the application of symmetric editing at 7 T would greatly benefit 

from the increased frequency distance between the GABA and MM resonances, with 

initial investigations of its viability already having been demonstrated 

(Andreychenko et al., 2012; Terpstra et al., 2002; Wijtenburg et al., 2013). The 

continued installation of new 7 T scanners across the globe will mean that access to 

ultra-high field MRS will of course also increase, allowing researchers to tackle 

more difficult, more specific and more impactful research questions. 

8.3 GABA Concentration as a Correlate: How Much Can Really 

Be Inferred? 

It was noted in Chapter 2 that GABA concentration has been shown to correlate with 

a host of different cognitive, behavioural, physiological and pathological measures. 

Providing evidence that GABA concentration can be confidently treated as a 

neurochemical predictor of these measures is quite important for neuroimaging and 

neuroscience as a whole. The issue, however, comes about when these associations 

are either not able to be replicated or are not as straightforward as a simple linear 
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relationship with a given direction. The multimodal study described in Chapter 6 is 

a perfect example of this problem. Its overarching aim was to provide an explanation 

for the equivocal findings surrounding the association between GABA 

concentration, the BOLD signal and CBF. Unfortunately, the results were 

themselves unclear. This is in spite of the fact that there is strong empirical evidence 

and theoretical understanding that GABAergic inhibition is a key component in 

neurovascular coupling (Lauritzen et al., 2012). Therefore, the prime criticism of 

multimodal MRS studies is that the GABA NMR signal is not a specific measure of 

GABAergic inhibition. Functions of the GABA system at the subnetwork neuronal 

level do not equate to GABA concentration on the macroscale (Singh, 2012). Going 

further, the utter complexity of the GABA system as described in Chapter 2 means 

that there are a variety of biological and chemical mechanisms in play, some of 

which may be independent of each other, that are captured by the NMR signal (and 

indeed some which are not). This is crucial to acknowledge as more often than not 

what researchers actually want to be measuring is GABA function as opposed to 

GABA content. The way GABA is detected—the averaging of several hundred FIDs 

acquired over a period of minutes—makes it quite difficult to make firm inferences 

about how an individual’s GABA system is functioning with respect to, say, the 

amplitude of their BOLD signal. Therefore, any inferences made between observed 

correlations between GABA concentration and cognitive, behavioural, 

physiological and pathological measures should always be accompanied with the 

caveat that the GABA signal and GABA concentration represent measurements that 

are mechanistically distinct from GABAergic inhibition. 

A second criticism of correlational studies in the field of MRS of GABA is 

that of small sample sizes. Although there are some notable exceptions (e.g., Gao et 

al., 2013; Rowland et al., 2016), for the most part studies do not tend to use more 

than 20 participants. While of course this criticism can be subjected to many areas 

of neuroimaging, it is a particular concern for MRS of GABA because of the 

aforementioned non-specificity of the GABA signal. Even discounting the 

contribution of measurement variance from the technical and physical attributes of 

MRS, the biochemical origin of the GABA signal will almost certainly add in a 

substantial proportion of variance to individual measures of GABA concentration. 

What can be done to make the interpretations of associations between GABA 

and other variables more robust and theoretically plausible? This issue forms the 
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rationale for conducting GABA-MRS experiments alongside pharmacological and 

neurostimulation interventions whereby the GABA system can be perturbed with 

varying degrees of specificity. Alternatively, and as proposed in the previous 

section, functional approaches may bring a new level of interpretability to findings. 

For instance, the study conducted in Chapter 6 could be redesigned such that the 

contrast tuning paradigm would be applied as part of an fMRS acquisition. The rate 

of change in the GABA signal could then be correlated with the rate of 

haemodynamic response saturation. This experiment would likely only be viable at 

ultra-high field, however. Finally, it is worth noting that the necessity of large VOI 

in MRS could very well mean that the GABA of true interest is “hidden” by the 

GABA detected over a fairly diffuse portion of cortical tissue. This particular 

problem has always been known to spectroscopists and is unfortunately a 

compromise between VOI size and scan time, meaning it would be difficult to 

overcome it. Nevertheless, it is an issue that needs to be addressed. The obvious 

solution is to use higher field strengths to detect the GABA signal from smaller 

volumes. Future advancements may well come about within the next decade that 

could provide alternatives to the current poor spatial resolution of MRS. Reflection 

on these proposed solutions will lead one to a common conclusion: that of innovation 

in the methodological approaches in MRS and not in drastic changes regarding the 

use of an alternative, more specific, modality to assess in vivo GABA (such as 

positron emission tomography), nor indeed even in simply increasing sample sizes 

(and thereby increasing research costs). It is unquestionable that MRS is a technique 

currently without equal that exploits truly remarkable principles of quantum 

mechanics. It is therefore left to those who espouse its merits to push the envelope 

with respect to its implementation.  

8.4 Closing Remarks 

Did the research presented in this doctoral thesis achieve the aims that were set out 

in the Preface? In a sense, yes. The methodological refinements that have been 

developed have been shown to have a beneficial impact on the optimal acquisition 

and analysis of GABA-MRS data. Nonetheless, it is clear that some of the equivocal 

results in a few of the previous chapters demonstrate that there is still much work to 

be done if GABA-MRS is to flourish as a neuroimaging modality. Although this 
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doctoral research equates to a piecemeal scientific enterprise to achieve this grander 

goal, its defining distinction lies in its targeted approach at tackling some of the 

biggest problems that plague state-of-the-art 1H MRS of GABA. Foundations for 

future advancements have been laid and many new questions have arisen. The 

decision of where to progress to from here depends simply on which advances and 

questions are most interesting and relevant to engage with—and there are quite a 

few to choose from. All in all, however, the objective will remain the same: to utilise 

1H MRS in a rigorous, sound and optimal manner to further elucidate how and why 

GABA is so highly important to the workings of the human brain. 
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Appendix A: Supplementary Material 

 

Table A.1  Individual theoretical tissue-corrected [GABA] (CG,corr) for each participant with 
corresponding means (± SD) and coefficients of variation. 

 G_1 G_2 G_3 G_4 G_5 

S01 0.74 0.73 0.74 0.73 0.70 

S02 0.70 0.70 0.70 0.70 0.70 

S03 0.70 0.69 0.71 0.71 0.71 

S04 0.71 0.70 0.70 0.70 0.70 

S05 0.70 0.70 0.70 0.70 0.70 

S06 0.69 0.69 0.70 0.70 0.70 

S07 0.69 0.69 0.71 0.69 0.68 

S08 0.70 0.69 0.70 0.70 0.70 

S09 0.70 0.70 0.70 0.69 0.70 

S10 0.70 0.70 0.70 0.70 0.70 

 

G_6 G_7 G_8 G_9 G_10 Mean SD CV 

0.72 0.72 0.73 0.75 0.74 0.73 0.011 1.57% 

0.70 0.72 0.71 0.72 0.72 0.71 0.007 1.05% 

0.71 0.71 0.71 0.71 0.71 0.71 0.005 0.74% 

0.71 0.71 0.70 0.70 0.70 0.70 0.004 0.51% 

0.71 0.70 0.70 0.71 0.71 0.70 0.006 0.79% 

0.70 0.70 0.70 0.70 0.72 0.70 0.008 1.09% 

0.70 0.69 0.71 0.70 0.71 0.70 0.012 1.65% 

0.70 0.69 0.70 0.70 0.70 0.70 0.004 0.62% 

0.71 0.72 0.70 0.70 0.71 0.70 0.008 1.11% 

0.70 0.71 0.71 0.71 0.71 0.70 0.003 0.46% 
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Table A.2  Tuning parameters from the power law contrast response function fit to BOLD 
and CBF response data for each participant. Rate of response saturation is represented 
by γ and the modelled response at 100% contrast is represented by Rmax. 

 BOLD CBF 

Participant γ Rmax γ Rmax 

S01 0.26 1.68 0.19 31.29 

S02 0.67 3.05 0.55 38.41 

S04 0.45 2.40 0.52 41.34 

S05 0.43 1.84 0.31 32.11 

S06 0.48 1.91 0.50 37.01 

S07 0.52 2.65 0.44 37.34 

S08 0.40 2.29 0.45 36.15 

S09 0.46 1.96 0.55 37.24 

S10 0.38 2.31 0.36 35.95 

S11 0.31 2.50 0.22 32.33 

S12 0.47 2.57 0.15 20.94 

S13 0.61 2.04 0.39 36.45 

S14 0.49 2.38 0.24 30.87 

S15 0.60 2.75 0.62 33.84 

S16 0.46 2.41 0.44 31.94 

S17 0.44 3.08 0.47 35.62 

S18 0.35 2.62 0.34 30.10 

S19 0.22 2.27 0.09 30.63 

S20 0.25 2.47 0.25 37.78 

S21 0.42 2.12 0.55 44.96 

S22 0.40 1.89 0.72 27.19 

S23 0.46 2.18 0.40 34.90 

S24 0.48 1.56 0.32 26.29 

S25a 1.11 2.35 2.13 32.96 

S26 0.38 2.29 0.34 32.15 

S27 0.29 1.95 0.22 39.54 

S28 0.37 1.61 0.34 31.03 

S29 0.54 2.20 0.37 34.87 

S30 0.37 1.35 0.22 29.47 
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S31 0.40 1.65 0.35 30.75 

S32 0.31 1.90 0.28 31.82 

Mean ± SD 0.44 ± 0.16 2.20 ± 0.42 0.43 ± 0.35 33.65 ± 4.70 

a This participant’s γ values were treated as outliers and excluded from the main analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1  Robustness plots displaying calculated Bayes factors (B10) for each 
regression model compared against model M1 as function of scale factor (s) for the 
distribution of the Cauchy prior. (Refer to Table 6.3 for model details). The default scale 
factor used in the analysis was set to √2/4 (i.e., ~0.35). Axes are scaled logarithmically. 
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Appendix B: Product Operator Formalism‡‡ 

 

The application of product operator formalism in MRS comes out of the need to 

adequately describe the physical states of spin systems of J-coupled metabolites in 

an NMR experiment. Traditionally, the classical vector model is sufficient to 

describe systems of simple nuclear spins that do not experience scalar coupling. The 

basic principle of the classical model is centred on Bloch equations that describe the 

magnetisation of a vector moving in three dimensions. However, complex spin 

systems (such as the A2M2X2 spin system of GABA) require complete understanding 

of the quantum mechanical state of scalar-coupled nuclear spins. This can be 

achieved by product operator formalism. The advantage of this formalism over the 

classical vector model is that chemical shifts, spin–spin couplings and the interaction 

with magnetic RF pulses can be incorporated into a numerical simulation and 

accurately described. A disadvantage, however, is that its focus is solely on the 

quantum states of spins and does not deal with observable magnetisation, thus 

providing no insight into the physical characteristics of an NMR experiment. 

Additionally, these numerical simulations can quickly become very complicated 

when describing a complex spin system (such as a strongly coupled spin system) in 

an experiment with a sophisticated acquisition sequence. As suggested by the name, 

the mathematical basis of product operator formalism is the linear combination of 

orthogonal matrices (or product operators). Each orthogonal matrix represents a 

component of magnetisation. A brief overview of product operators and how they 

describe the evolution of scalar-coupled spin systems is now presented. 

A two-spin 1/2 system IS can be represented by a 4 × 4 density matrix 

calculated from a basis set of operators. This particular matrix is reconstructed from 

16 Cartesian product operators, each corresponding to a separate quantum state. 

These are as follows: 

Iz, Sz Polarisation of spins I and S (longitudinal 

magnetisation) 

                                                           
‡‡ The content of this appendix is largely based on de Graaf and Rothman (2001) and Sørensen et al. 
(1984). 
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Ix, Iy, Sx, Sy In-phase x and y coherence of spins I and S 

(transverse magnetisation) 

2IxSz, 2IySz Anti-phase x and y coherence of spin I with respect to 

spin S 

2IxSx, 2IxSy, 2IySx, 2IySy Two-spin coherence of spins I and S 

2IzSz Longitudinal two-spin order of spins I and S 

The basis set also includes the unity operator 1. 

Product operator formalism can be used to describe the J-evolution of 

coupled systems. For instance, an IS spin system is characterised by two forms of 

coherence: in-phase and anti-phase coherence. For the in-phase coherences (Ix) the 

resonances of a doublet are in the same phase (e.g., along the x axis), while for the 

anti-phase coherences (2IySz) the same resonances are along opposite axes and 90° 

out of phase with the in-phase coherences. Using the product operators listed above, 

the evolution of the in-phase Ix coherences can be numerically represented as 

 𝐼𝐼𝑥𝑥 → [𝐼𝐼𝑥𝑥 cos(𝜋𝜋𝜋𝜋𝜋𝜋) + 2𝐼𝐼𝑥𝑥𝑆𝑆𝑧𝑧 sin(𝜋𝜋𝜋𝜋𝜋𝜋)]𝑒𝑒−𝜏𝜏/𝑇𝑇2 [B.1] 

where J is the scalar coupling constant JIS, τ is the echo time of the NMR experiment 

and T2 is the transverse relaxation time of the nuclear spins. Similarly, the anti-phase 

coherences 2IySz are described by 

 2𝐼𝐼𝑥𝑥𝑆𝑆𝑧𝑧 → [2𝐼𝐼𝑥𝑥𝑆𝑆𝑧𝑧 cos(𝜋𝜋𝜋𝜋𝜋𝜋) + 𝐼𝐼𝑥𝑥 sin(𝜋𝜋𝜋𝜋𝜋𝜋)]𝑒𝑒−𝜏𝜏/𝑇𝑇2 [B.2] 

For the purpose of visualisation, both coherences can be plotted as a function of 

signal across time (Figure B.1a). 

The above equations can be taken further to simulate more complex spin 

systems. For an IS2 or I2S2 spin system (e.g., the GABA H4–H3 system), the 

evolution of the Ix coherences is described by 

 𝐼𝐼𝑥𝑥 → �𝐼𝐼𝑥𝑥 cos(𝜋𝜋𝜋𝜋𝜋𝜋)2 + 2𝐼𝐼𝑥𝑥(𝑆𝑆1𝑧𝑧 + 𝑆𝑆2𝑧𝑧) sin(𝜋𝜋𝜋𝜋𝜋𝜋) cos(𝜋𝜋𝜋𝜋𝜋𝜋) − 4𝐼𝐼𝑥𝑥𝑆𝑆1𝑧𝑧𝑆𝑆2𝑧𝑧 sin(𝜋𝜋𝜋𝜋𝜋𝜋)2� 
 × 𝑒𝑒−𝜏𝜏/𝑇𝑇2 [B.3] 

the evolution of the 2Iy(S1z + S2z) coherences by 

 2𝐼𝐼𝑥𝑥(𝑆𝑆1𝑧𝑧 + 𝑆𝑆2𝑧𝑧) 

 → [2𝐼𝐼𝑥𝑥(𝑆𝑆1𝑧𝑧 + 𝑆𝑆2𝑧𝑧) cos(𝜋𝜋𝜋𝜋𝜋𝜋)2 + 𝐼𝐼𝑥𝑥 sin(𝜋𝜋𝜋𝜋𝜋𝜋) cos(𝜋𝜋𝜋𝜋𝜋𝜋) 

 −4𝐼𝐼𝑥𝑥𝑆𝑆1𝑧𝑧𝑆𝑆2𝑧𝑧 sin(𝜋𝜋𝜋𝜋𝜋𝜋)2]𝑒𝑒−𝜏𝜏/𝑇𝑇2 [B.4] 

and the evolution of the 4IxS1zS2z coherences by 
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4𝐼𝐼𝑥𝑥𝑆𝑆1𝑧𝑧𝑆𝑆2𝑧𝑧 → [4𝐼𝐼𝑥𝑥𝑆𝑆1𝑧𝑧𝑆𝑆2𝑧𝑧 cos(𝜋𝜋𝜋𝜋𝜋𝜋)2 + 2𝐼𝐼𝑥𝑥(𝑆𝑆1𝑧𝑧 + 𝑆𝑆2𝑧𝑧) sin(𝜋𝜋𝜋𝜋𝜋𝜋) cos(𝜋𝜋𝜋𝜋𝜋𝜋) 

 +𝐼𝐼𝑥𝑥 sin(𝜋𝜋𝜋𝜋𝜋𝜋)2]𝑒𝑒−𝜏𝜏/𝑇𝑇2 [B.5] 

The graphical representation of these evolutions is given in Figure B.1b. 

Given these equations, product operator formalism can be employed to 

adequately describe a J-difference–edited experiment. Spectral editing is defined as 

any NMR technique that exploits the spin–spin couplings of a spin system in order 

to distinguish it from all other uncoupled resonances. In a straightforward J-editing 

spin echo experiment, two 180° frequency-selective editing pulses are placed 

symmetrical about a 180° broadband slice-selective pulse (positioned in time at 

TE/2). The editing pulses selectively invert the S spins such that the rotation of the 

I spins are reversed in the spin echo (ON scan). The result is that the I-spin 

Figure B.1  a: Graphical representation of the scalar evolution of an IS spin system in a 
theoretical spin echo NMR experiment. The in-phase coherence Ix (blue) and anti-phase 
coherence 2IySz (green) display a complex evolution as a result of J-coupling. b: The 
evolution of coherences for an IS2 spin system showing the in-phase coherence Ix (blue) 
and the anti-phase coherences 2Iy(S1z + S2z) (green) and 4IxS1zS2z (red). c: The evolution 
of the Iy coherence of an IS spin system in a spectral editing experiment. The selective 
inversion of S spins (ON, blue) leads to in-phase refocusing of the I spin and thus a 
monoexponential evolution. In the experiment where the editing pulses do not invert the 
S spin, the Iy coherence evolves as normal (OFF, green). For all experiments, the 
assumed J-coupling constant was 7.3 Hz and the assumed T2 relaxation time was 300 
ms. 
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coherences are completely in phase after delays that are multiples of TE/2. In a 

second acquisition the refocusing pulses do not invert the S spins and thus the I spins 

evolve as normal (OFF scan). As before, the evolution of the coherences in these 

two experiments can represented in a simple manner by product operators for the 

ON scan by 

 𝐼𝐼𝑥𝑥 → 𝐼𝐼𝑥𝑥𝑒𝑒−𝜏𝜏/𝑇𝑇2 [B.6] 

and for the OFF scan by 

 𝐼𝐼𝑥𝑥 → 𝐼𝐼𝑥𝑥 cos(𝜋𝜋𝜋𝜋𝜋𝜋) 𝑒𝑒−𝜏𝜏/𝑇𝑇2 [B.7] 

These transformations can then be graphically illustrated as time-by-signal functions 

(Figure B.1c). Subtraction of the two scans will lead to removal of all uncoupled 

resonances, allowing for optimal detection of resonances that overlap with other, 

larger signals. 

It should now be apparent that product operator formalism is a powerful and 

flexible mathematical tool that can be utilised to numerically simulate the J-

difference–edited experiment of GABA when combined with prior knowledge of J-

coupling constants and chemical shifts, and inclusion of appropriate acquisition 

sequence parameters. (Although not discussed here, product operators can also 

accurately describe transformations induced by chemical shifts and external RF 

fields since these properties of NMR modulate the quantum states of nuclear spins.) 
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