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Summary

Genetic programming is an Evolutionary Computing technique, inspired by biological evolu-

tion, capable of discovering complex non-linear patterns in large datasets. Despite the potential

advantages of genetic programming over standard statistical methods, its applications to sur-

vival analysis are at best rare, primarily because of the difficulty in handling censored data.

The aim of this work was to develop a genetic programming approach for survival analysis

and demonstrate its utility for the automatic development of clinical prediction models using

cardiovascular disease as a case study.

We developed a tree-based untyped steady-state genetic programming approach for censored

longitudinal data, comparing its performance to the de facto statistical method —Cox regres-

sion—in the development of clinical prediction models of future cardiovascular events in pa-

tients with symptomatic and asymptomatic cardiovascular disease, using large observational

datasets.

Results showed that Cox regression and the developed genetic programming approach pro-

duced similar results when evaluated in common validation datasets. Despite generally com-

parable performance, albeit in slight favour of the Cox model, the predictors selected for rep-

resenting their relationships with the outcome were quite different and, on average, the models

developed using genetic programming used considerably fewer predictors. The genetic pro-

gramming models were more complex and thus more difficult to validate by domain experts,

however these models were developed in an automated fashion, using fewer input variables,

without the need for domain specific knowledge and expertise required to appropriately per-

form survival analysis.



x Summary

This work has demonstrated the strong potential of genetic programming as a methodology for

automated development of clinical prediction models for diagnostic and prognostic research,

where the primary goal is accurate prediction. In aetiological research, where the primary goal

is to examine the relative strength of association between risk factors and the outcome, then

Cox regression and its variants remain as the de facto approach.
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Abstract

Background & Aims Genetic programming is an Evolutionary Computing technique, inspired

by biological evolution, capable of discovering complex non-linear patterns in large datasets.

Genetic programming is a general methodology, the specific implementation of which requires

development of several different specific elements such as problem representation, fitness, se-

lection and genetic variation. Despite the potential advantages of genetic programming over

standard statistical methods, its applications to survival analysis are at best rare, primarily be-

cause of the difficulty in handling censored data. The aim of this work was to develop a genetic

programming approach for survival analysis and demonstrate its utility for the automatic de-

velopment of clinical prediction models using cardiovascular disease as a case study.

Methods We developed a tree-based untyped steady-state genetic programming approach for

censored longitudinal data, comparing its performance to the de facto statistical method—Cox

regression—in the development of clinical prediction models for the prediction of future cardi-

ovascular events in patients with symptomatic and asymptomatic cardiovascular disease, using

large observational datasets. We also used genetic programming to examine the prognostic sig-

nificance of different risk factors together with their non-linear combinations for the prognosis

of health outcomes in cardiovascular disease.

Results These experiments showed that Cox regression and the developed steady-state genetic

programming approach produced similar results when evaluated in common validation data-

sets. Despite slight relative differences, both approaches demonstrated an acceptable level of

discriminative and calibration at a range of times points. Whilst the application of genetic pro-

gramming did not provide more accurate representations of factors that predict the risk of both

symptomatic and asymptomatic cardiovascular disease when compared with existing meth-
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ods, genetic programming did offer comparable performance. Despite generally comparable

performance, albeit in slight favour of the Cox model, the predictors selected for representing

their relationships with the outcome were quite different and, on average, the models developed

using genetic programming used considerably fewer predictors. The results of the genetic pro-

gramming confirm the prognostic significance of a small number of the most highly associated

predictors in the Cox modelling; age, previous atherosclerosis, and albumin for secondary pre-

vention; age, recorded diagnosis of ’other’ cardiovascular disease, and ethnicity for primary

prevention in patients with type 2 diabetes. When considered as a whole, genetic programming

did not produce better performing clinical prediction models, rather it utilised fewer predictors,

most of which were the predictors that Cox regression estimated be most strongly associated

with the outcome, whilst achieving comparable performance. This suggests that genetic pro-

gramming may better represent the potentially non-linear relationship of (a smaller subset of)

the strongest predictors.

Conclusions To our knowledge, this work is the first study to develop a genetic programming

approach for censored longitudinal data and assess its value for clinical prediction in compar-

ison with the well-known and widely applied Cox regression technique. Using empirical data

this work has demonstrated that clinical prediction models developed by steady-state genetic

programming have predictive ability comparable to those developed using Cox regression. The

genetic programming models were more complex and thus more difficult to validate by domain

experts, however these models were developed in an automated fashion, using fewer input vari-

ables, without the need for domain specific knowledge and expertise required to appropriately

perform survival analysis. This work has demonstrated the strong potential of genetic program-

ming as a methodology for automated development of clinical prediction models for diagnostic

and prognostic purposes in the presence of censored data. This work compared untuned ge-

netic programming models that were developed in an automated fashion with highly tuned Cox

regression models that was developed in a very involved manner that required a certain amount

of clinical and statistical expertise. Whilst the highly tuned Cox regression models performed

slightly better in validation data, the performance of the automatically generated genetic pro-

gramming models were generally comparable. The comparable performance demonstrates the

utility of genetic programming for clinical prediction modelling and prognostic research, where

the primary goal is accurate prediction. In aetiological research, where the primary goal is to
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examine the relative strength of association between risk factors and the outcome, then Cox

regression and its variants remain as the de facto approach.
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support of my PhD research, for her patience, guidance, and encouragement. Her advice on my

research as well as my career have been greatly appreciated. Besides my supervisor, I would

like to thank the rest of my thesis committee: Prof. Craig Currie, Prof. Glyn Elwyn, and Prof.

Alun Preece, for their insightful comments and encouragement, but also for posing the difficult

questions that have ultimately broadened and improved my research. I would especially like

to thank Prof. Craig Currie and his team for the opportunity to join them, for making me feel

so welcome, and for sharing with me some of their considerable knowledge and experience.

Without their precious support it would not be possible to conduct this research. I would like to

thank Dr. Chris Poole, not only for his original ideas and enthusiasm, but for his much valued

mentorship. I would also like to thank Prof. Joshua Knowles and Dr. Jianhua Shao for serving

as my review panel and for letting defence of my research be an enjoyable moment. This dis-

sertation would not have been possible without funding from the Cardiff School of Computer

Science & Informatics and the Medical Research Council.

A special thank you to my family. Words cannot express how grateful I am to my parents, my

partner Marie, and my two wonderful children, Teilo and Ellie for all the sacrifices that they

have made on my behalf and for a constant source of motivation.



xvi Acknowledgements



xvii

Contents

Summary ix

Abstract xi

Acknowledgements xv

Contents xvii

List of Publications xxv

List of Figures xxvii

List of Tables xxxi

List of Algorithms xxxv

List of Acronyms xxxvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goals of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4



xviii LIST OF ALGORITHMS

1.4 Overview of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Overview of Related Publications . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Backgound 9

2.1 Clinical Predciton Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Cardiovacluar Disease & Diabetes . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Cardiovascular Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 National Health Systems: UK perspective . . . . . . . . . . . . . . . . . . . . 12

2.5 Study Design & Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Electronic Patient Records . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 The Clinical Practice Research Datalink . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Clinical Practice Research Datalink Governance . . . . . . . . . . . . 19

2.6.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.3 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Clinical Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.1 Read Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.2 International Classification of Diseases . . . . . . . . . . . . . . . . . 24

2.8 Linear Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8.1 Model Uncertainty & Sample Size . . . . . . . . . . . . . . . . . . . . 28

2.8.2 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Non-linear Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9.1 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . . . . 42



LIST OF ALGORITHMS xix

2.9.2 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.10 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.11 Summary Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Related Work 53

3.1 Cardiovascular Risk Scores for the General Population . . . . . . . . . . . . . 53

3.2 Cardiovascular Risk Scores for Type 2 Diabetes . . . . . . . . . . . . . . . . . 54

3.3 Genetic Programming in Bioinformatics . . . . . . . . . . . . . . . . . . . . . 57

3.4 Genetic Programming in Prognostic Reseach . . . . . . . . . . . . . . . . . . 57

3.5 Genetic Programming for Survival Analysis . . . . . . . . . . . . . . . . . . . 58

3.6 Summary Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Genetic Programming 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Search Spaces & Fitness in Genetic Programming . . . . . . . . . . . . . . . . 65

4.2.1 Search Spaces in Genetic Programming . . . . . . . . . . . . . . . . . 65

4.2.2 Genetic Programming Ftiness Functions . . . . . . . . . . . . . . . . . 69

4.2.3 Devloping Ftiness Functions for Survival Analysis . . . . . . . . . . . 74

4.3 Genetic Programming Search Operators . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Initialisation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Mutation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Recombination Operators . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.4 Selection Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Search Stratergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



xx LIST OF ALGORITHMS

4.4.1 Steady-State Single-Objective Genetic Programming . . . . . . . . . . 94

4.4.2 Generational Single-Objective Genetic Programming . . . . . . . . . . 98

4.4.3 Generational Multi-Objective Genetic Programming . . . . . . . . . . 100

4.4.4 Termination and Solution Designation . . . . . . . . . . . . . . . . . . 104

4.5 Genetic Programming Parameters . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.1 Population Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.2 Maximum Number of Generation . . . . . . . . . . . . . . . . . . . . 106

4.5.3 Primitive Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.4 Genetic Variarion Rates . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.5 Selection Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.6 Maximum Solution Size . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Bloat: Survival of the Fattest . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7.1 Implemeting Genetic Programming . . . . . . . . . . . . . . . . . . . 111

4.7.2 The R Programming Language . . . . . . . . . . . . . . . . . . . . . . 112

4.7.3 RGP: Implementing Genetic Programming in R . . . . . . . . . . . . . 113

4.8 Summary Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Experiment 1: External validation of the UKPDS risk engine in incident type 2

diabetes 117

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Research Design and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Selection of type 2 diabetes patients . . . . . . . . . . . . . . . . . . . 120

5.2.2 Outcome measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



LIST OF ALGORITHMS xxi

5.2.3 Input variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.1 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.2 Discrimination and calibration . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4.1 Strengths and limitations of the study . . . . . . . . . . . . . . . . . . 135

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Experiment 2: A case study in symptomatic cardiovascular disease in the general

population using the SMART cohort 139

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Patients and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.1 Descriptives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.2 Model Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.3 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Experiment 3: A case study in asymptomatic cardiovascular disease in type 2 dia-

betes using CPRD 169

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2 Patients and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



xxii LIST OF ALGORITHMS

7.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3.1 Descriptives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3.2 Model Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.3.3 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8 Discussion & Conclusions 197

8.1 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.3 Critical Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.4 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

A ISAC Protocol: UKPDS-RE Validation 217

B Run statistics: SMART experiments 233

C Final Models: SMART experiments 235

D Predictor Effects: SMART experiments 261

E Results: SMART experiments (secondary analysis) 263

F ISAC Protocol: CPRD Experiments 267

G Run statistics: CPRD experiments 299



LIST OF ALGORITHMS xxiii

H Final Models: CPRD experiments 301

I Predictor Effects: CPRD experiments 327

J Results: CPRD experiments (secondary analysis) 329

Bibliography 333



xxiv LIST OF ALGORITHMS



xxv

List of Publications

The work introduced in this thesis is based on the following publications.

• Bannister CA, Poole CD, Jenkins-Jones S, Morgan CLl, Elwyn G, Spasić I, Currie CJ.
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Chapter 1

Introduction

Prognosis is central to medicine. All diagnostic and therapeutic actions aim to improve pro-

gnosis [286]. Physicians and health policy makers need to make predictions on the prognosis of

a disease in their decision making. Clinical prediction models provide inputs for this decision

making by providing estimates of individual probabilities or risks and benefits [182]. Clinical

prediction models combine a variety of characteristics to predict some diagnostic or prognostic

outcome [286]. Current methods for clinical prediction use traditional statistical techniques,

often using relatively small samples. Generally statistical approaches have inherent restrictions

on the complexity of patterns they can learn and the volume of data they can handle whilst

remaining effective.

Generally, survival analysis is a collection of statistical procedures for the analysis of data in

which the outcome of interest (the survival outcome) is the time to event, which is typically

referred to as survival time [162]. More specifically, survival analysis involves the estimation

of the distribution of the time it takes for an event to happen to a patient based on some set of

features, which are also known as explanatory variables, predictors or covariates. The event

may for example be death, disease incidence, or recurrence. A key characteristic of survival

data is that the follow-up of patients is typically incomplete [286]. For example, some pa-

tients may have been followed for 5 days, some for 15 days, etc, and we may be interested in

predicting 30-day survival. Such incomplete data, is what we call censored data. In essence,

censoring occurs when we have some information about an individual survival times, but we do

not know the survival time exactly in all subjects. Survival is an important long-term outcome

in prognostic research, including medical research areas such as cardiology and oncology.
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1.1 Motivation

Traditionally the Kaplan-Meier (KM) method, a non-parametric approach, has been used for

exploratory analysis of survival data. Using the KM method survival curves can be generated

for various subgroups (e.g. females versus males) to investigate the effect of explanatory vari-

ables on survival. However, the KM approach is limited as it is unable to consider the effect of

multiple explanatory variables simultaneously. To overcome this limitation, several regression

modelling approaches have been proposed to enable prediction of time to event in the presence

of censored data [287]. Most of these models have come from the long-established statistical

literature such as parametric survival models, including the Weibull, lognormal and Gompertz

models and the semi-parametric Proportional Hazards model proposed by Cox [48]. Hereafter,

these will be jointly referred to as linear statistical methods or models. In medical and epidemi-

ological studies the Cox Proportional Hazards model (or Cox regression) is the most often used

model for survival outcomes.

Alternate methods for survival analysis may be based on machine learning, e.g. Atrifical Neural

Network (ANN). These will be referred to as non-linear statistical methods or models. There

have been several studies that have compared such novel non-linear statistical methods with

their classic linear counterparts for survival outcomes [148, 138, 229, 248]. However the results

are mixed as to whether these non-linear methods offer improved performance. For example

Schwarzer et al. [269] reviewed a substantial number of studies which have used ANNs in

the diagnostic and prognostic classification in cancer, concluding that there is no evidence so

far that application of ANNs represents real progress in the field of diagnosis and prognosis

in oncology. Sargent [269] has also reviewed a number of these comparison studies showing

that the majority have claimed equal performance but could not rule out the possibility of

bias. GP, however, is a relatively new non-linear method that may improve the selection and

transformation of predictors, and it may lead to models with good predictive accuracy in new

patients [22, 89, 136, 238, 297].

GP is an Evolutionary Computation (EC) technique inspired by population genetics, and evol-

ution at the population level, as well as the Mendelian understanding of the structure and mech-

anisms [29, 195, 278]. GP automatically solves complex problems without requiring the user
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to know or specify the form or structure of the solution in advance [239]. This makes GP

well suited to symbolic regression, where in addition to searching for the solution to the com-

plex associations between predictors and outcome, GP also searches for the optimal model

structure. This in turn makes GP well suited to prediction, primarily an estimation problem,

where the mutual correlations between predictors and the outcome are to be estimated. GP has

been shown to work well for recognition of structures in large data sets and has the intrinsic

advantage of automatically selecting a subset of inputs or features during the evolutionary pro-

cess [212, 306].

Because GP has no fixed model structure it can represent complex non-linear associations that

could not be achieved using linear regression techniques, and theoretically achieve higher pre-

dictive accuracy. However, the flexibility of regression models can be greatly enhanced through

the use of factional polynomial, restricted cubic splines and interaction terms, potentially in-

creasing its predictive accuracy [22, 111, 112, 164]. Although it has be emphasised that this

is not normally done, as it complicates interpretation and the correct use of the appropriate

regression methods is quite difficult, as they require extensive statistical knowledge [271].

Despite its potential, critics state that GP is more prone to over-fitting compared to conventional

development methods [136]. An often cited argument against the use of of machine learning

techniques in clinical research, is that modelled relationship between predictors and outcome

can be highly complex and thus difficult to validate by domain experts, sometimes referred to

’black-box’ techniques. However, unlike many machine learning approaches, genetic program-

ming produces an explicit human-understandable model and is not a ’black box’ method. GP

has been used in medical research for classification and, to a lesser extend, prediction. However

its value for prediction on censored data, for survival analysis, has not yet been documented.

1.2 Goals of this Work

The main hypothesis of this research is that the application of GP can provide more accurate

representation of factors that predict the risk of Cardiovascular Disease (CVD) when compared

with existing methods. That is, the development and validation of a GP approach for survival



4 1.3 Contributions of this Work

analysis would offer improved performance when compared to the de facto statistical methods

for clinical prediction modelling in censored longitudinal data.

There are three main goals of this work. Firstly, to motivate the need for improved clinical risk

prediction methods and models by validating the performance the de facto statistical methods

in a contemporary real-world clinical setting. Secondly, to demonstrate the utility of GP for

the automatic development of clinical prediction models using CVD as case studies. Thirdly,

to apply GP to examine the prognostic significance of different risk factors together with their

non-linear combinations in order to provide more accurate prognosis of health outcomes in

CVD.

1.3 Contributions of this Work

This thesis makes six main contributions:

1. The de facto cardiovascular risk prediction models for T2DM may be unsuitable Us-

ing data from Clinical Practice Research Datalink (CPRD) this work has preformed the

largest, independent, external validation of the de facto cardiovascular risk model for

people with Type II Diabetes Mellitus (T2DM), the UKPDS Risk Engine (UKPDS-RE),

in a diverse and contemporary setting. This work showed poor performance, suggesting

that the UKPDS-RE is not suitable for predicting cardiovascular risk in UK subjects with

T2DM. Considering the widespread application of these prediction models, this work

suggests a need for revised risk equations in T2DM.

2. Developement of a GP approach for survial analysis of censored data GP is a general

methodology, the specific implementation of which requires development of several dif-

ferent specific elements such as problem representation, fitness, selection and genetic

variation. This work has developed a tree-based untyped Steady-state Single-Objective

Genetic Programming (SSOGP) approach for the automated development of clinical pre-

diction models in the presence of censored longitudinal data. Specific GP elements were

developed and implemented, such as fitness functions and search heuristics, to handle

the problem-specific complexities of censored data and facilitate survival analysis.
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3. Generational GP approaches are too computionally expesive for large observational co-

horts This work attempted to implement and evaluate the utility of two broad classes of

GP, steady-state GP common in modern GP systems and the more traditional genera-

tional GP approach. Despite considerable effort, when the developed generational ap-

proaches were applied to the large observational datasets of censored longitudinal data

identified for this work, they failed as a result of requiring more memory that was avail-

able in the computing resources allocated for this work. This serves to demonstrate the

utility of the relatively computationally efficient steady-state GP approach for analysing

large observational cohorts of patients.

4. GP has utility for the automatic development of clinical prediction models in censored

data Using data from the Second Manifestations of ARTerial disease (SMART) study

and from CPRD we have demonstrated that symbolic regression models generated by

the developed SSOGP approach had predictive ability comparable to that of the de facto

statistical method—Cox regression—for the prediction of future cardiovascular events

in patients with symptomatic and asymptomatic CVD. These experiments compared un-

tuned SSOGP symbolic regression models that were developed in an automated fashion

using only basic parameters settings recommended from the GP literature, with highly

tuned Cox regression models that were developed in a very involved manner that re-

quired a certain amount of clinical and statistical expertise. Whilst the highly tuned Cox

regression models performed slightly better in their validation datasets, the performance

of the automatically generated symbolic regression models were generally comparable,

and on average consisting of considerably fewer predictors. Using symptomatic and

asymptomatic CVD as case studies—for secondary and primary prevention clinical set-

tings, respectively—these findings demonstrate the utility of GP as a methodology for

automated development of clinical prediction models for diagnostic and prognostic pur-

poses in the presence of censored longitudinal data.

5. Confirmation of the prognostic significance of certain risk factors in symtomatic CVD

This work has applied GP to examine the prognostic significance of different risk factors

together with their non-linear combinations in predicting cardiovascular outcomes in

patients with symptomatic and asymptomatic CVD. Whilst the application of GP did
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not provide more accurate representations of factors that predict the risk of both symp-

tomatic and asymptomatic CVD when compared with existing methods, GP did offer

comparable performance. Despite generally comparable performance, albeit in slight

favour of the Cox model, the predictors selected for representing their relationships with

the outcome were quite different and, on average, the models developed using GP used

considerably fewer predictors. The results of the GP confirm the prognostic signific-

ance of a small number of the most highly associated predictors in the Cox modelling;

age, previous atherosclerosis, and albumin for secondary prevention; age, recorded dia-

gnosis of ’other’ CVD, and ethnicity for primary prevention in patients with T2DM.

When considered as a whole, GP did not produce a better performing clinical predic-

tion model, rather it utilised fewer predictors, most of which were the predictors that the

Cox regression estimated be most strongly associated with the outcome, whilst achiev-

ing comparable performance. This suggests that GP may better represent the potentially

non-linear relationship of (a smaller subset of) the strongest predictors.

6. In practice GP is robust By implementing SSOGP without model tuning, using only

basic parameters values recommended from general GP literature, observing that it has

performance comparable to the de facto statistical method, we have confirmed the ob-

servations of other authors, that in practice GP is robust and likely to work well over a

wide range of parameter values.

1.4 Overview of this Thesis

The remainder of this work is structured as follows. Chapter 2 describes the wider context

clinical prediction modelling and the UK health system, defining the challenges of predicting

risk in the presence of censored data, and provides motivation for the application of GP for

cardiovascular risk prediction. Chapter 3 surveys and critically assesses the existing research

related to this work. Chapter 4 gives an overview of the essential common themes in the diverse

field of GP and discusses the specific methodological elements that form the developed SSOGP

approach for censored longitudinal data, which are implemented and assessed in the subsequent

experiment chapters. Chapter 5 describes a set of experiments that independently and externally
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validated the performance of the de facto cardiovascular risk prediction model for patients with

T2DM, the UKPDS-RE, using data from CPRD. Chapter 6 describes a set of experiments that

demonstrate the utility of the developed SSOGP approach for the automatic development of

clinical prediction models for risk prediction of future cardiovascular events in patients with

symptomatic CVD using censored survival data from the SMART study. Chapter 7 describes

a set of experiments with a very similar experimental set-up those in the previous chapter, that

demonstrate the utility of the developed SSOGP approach for the automatic development of

clinical prediction models for risk prediction of future cardiovascular events, but uses a much

larger observational cohort of patients from CPRD in a primary prevention clinical setting,

where patients have asymptomatic CVD. Finally in chapter 8, the contributions of this work

are revisited, results are discussed, limitations critically assessed, and opportunities for further

research identified.

1.5 Overview of Related Publications

Here we give an overview of the way in which parts of this thesis have been published.

Chapter 5: External validation of the UKPDS risk engine in incident type 2 diabetes: a

need for new type 2 diabetes-specific risk equations

The content of this chapter is based on research published as an original research article in the

Diabetes Care journal [15] and also published in the proceedings of the 73rd Scientific Sessions

of the American Diabetes Association (ADA 2013) [16].

Chapter 6: Automatic development of clinical prediction models with genetic program-

ming: a case study in the SMART cohort

A large portion of this chapter is published in the proceedings of the 19th Annual International

Meeting of the International Society for Pharmacoeconomics and Outcomes Research (ISPOR

2014) [14] and at the time of writing are under review as an original research article in the

Journal of Biomedical Informatics.
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Chapter 2

Backgound

We first focus our attention on the wider context clinical prediction modelling and the UK

health system, defining the challenges of predicting risk in the presence of censored data, and

providing motivation for the application of GP for cardiovascular risk prediction.

First we introduce clinical prediction modelling, the prediction cardiovascular risk in patients

with diabetes, and the national health system in the UK. Before introducing the data source

selected for the experiments and its associated clinical coding, we give and overview of study

design and potential sources of data. We then provide an overview of classic statistical ap-

proaches to clinical prediction modelling in the presence of censored data. Before introducing

GP, we give an overview of machine learning in the context of EC. Finally we outline the of

motivation of this thesis.

2.1 Clinical Predciton Modelling

Prognosis is central to medicine. All diagnostic and therapeutic actions aim to improve pro-

gnosis [286]. Physicians and health policy makers need to make predictions on the prognosis

of a disease (of the likelihood of an underlying disease) in their decision making. Traditionally,

predictions were more implicit and medicine more subjective. However we are now in an era

of ’evidence-based medicine’ which is defined as "the conscientious, explicit and judicious use

of current best evidence in making decisions about the care of individual patients" [232, 261].

Evidence based medicine applies scientific method to clinical practice [102]. Another more

recent development is the tendency towards ’shared decision-making’ where physicians and
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patients both actively participate in deciding on choices for diagnostic tests and therapeutic

interventions [47, 286].

Clinical prediction models may provide the evidence-based input for shared decision making,

by providing estimates of individual probabilities or risks and benefits [182]. Clinical predic-

tion models have many names including clinical prediction rules, prognostic models, predictive

risk models, risk scores, risk equations or nanograms [262]. Clinical prediction models com-

bine a number of characteristics (e.g. features related to the patient, the disease, or treatment)

to predict some diagnostic or prognostic outcome [286]. With increasing availability of elec-

tronic patient records the interest in prognostic research will further increase because electronic

records facilitate the application of predictions rules in clinical practice [22].

The aims of clinical prediction modelling fall into two broad categories, obtaining accurate

predictions and obtaining insights into disease mechanisms and pathophysiological processes.

From a modelling perspective this is either accurately predicting the probability or risk of the

outcome or understanding and quantifying the effect of of the risk factors (features) on the

outcome. In this thesis we concern ourselves with the former, obtaining accurate clinical pre-

dictions.

2.2 Cardiovacluar Disease & Diabetes

CVD is a group of disorders of the heart and blood vessels and include coronary heart dis-

ease, cerebrovascular disease, peripheral arterial disease, rheumatic heart disease, congenital

heart disease, deep vein thrombosis, pulmonary embolism, hypertension and heart failure. The

most important behavioural risk factors of heart disease and stroke are unhealthy diet, physical

inactivity, tobacco use and harmful use of alcohol [311]. CVD is the leading cause of death

globally: [311]. An estimated 17.3 million people died from CVD in 2008, representing 30% of

all global deaths. Of these deaths, an estimated 7.3 million were due to coronary heart disease

and 6.2 million were due to cerebrovascular disease. By 2030, almost 23.6 million people will

die from CVD, mainly from heart disease and cerebrovascular disease. These are projected to

remain the single leading causes of death [311].
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Diabetes is on the rise, in the UK and around the world [142, 214, 13, 31, 38, 263, 313].

Forecasting models have shown that the prevalence of diabetes is steadily increasing, and that

diabetes is not a localised chronic condition [159, 312, 199, 26, 228]. Major contributors

to this increase in prevalence are obesity and an ageing population, both of which increase

risk of T2DM. T2DM is a condition that affects 8% of the US population [33] and 4% of

the UK population [70]. Good glucose control is important to reduce the risk of developing

microvascular complications. This is initially achieved through diet and exercise, but glucose-

lowering medication is required in most patients with progressing diabetes.

Asymptomatic patients that are suspected to be at high risk need to be identified by General

Practitioners so they can offer advice about lifestyle changes and initiate preventative treat-

ment. To facilitate this, General Practitioners need tools that can accurately and reliably predict

cardiovascular risk in their patients.

2.3 Cardiovascular Risk

In public health, prediction models may help target preventative interventions to subjects with

relatively high risk of having or developing a disease [286]. Numerous models have been de-

veloped to predict the future occurrence of disease in asymptomatic subjects in the general

population and in specific sub-populations. Arguably, the domain that has seen the most re-

search into the application of prediction models for primary and secondary prevention is CVD.

National policies for the management of both CVD and T2DM advocate the calculation of

CVD risk in order to identify high-risk patients for targeted interventions [264, 295, 245, 66,

216]. Several multivariable risk prediction models (or risk scores) have been developed for

the general, non-diabetic population that also account for diabetes (see chapter 3), but only

a few are specific to T2DM [303]. A minority of of these risk scores have been validated

and tested for their predictive accuracy, with only a few showing a discriminative value of

≥0.80 [303]. The impact of applying these risk scores in clinical practice is almost completely

unknown, but their use is recommended in various national guidelines. Not only are these risks

scores advocated for communicating cardiovascular risk to diabetic patients, they are relied

upon for public health decisions. Evidence that these equations are inadequate could bring into
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question the evidence base underpinning many clinical decisions and public policies about the

management of T2DM.

2.4 National Health Systems: UK perspective

Founded in 1948 the National Health Service (NHS) is the shared name for three of the four

publicly funded healthcare systems in the United Kingdom. The individual systems are NHS

(England), HSENI (Health and Social Care in Northern Ireland), NHS Scotland and NHS

Wales. They provide a comprehensive range of health services, the vast majority of which

are free at the point of use to residents of the United Kingdom. Throughout this document the

’NHS’ or the ’National Health Service’ shall refer to the health systems of England, Scotland

and Wales, ’NHS (England)’ shall refer to the health system in England only. The NHS is the

world’s largest publicly funded health service, employing over 1.7 million staff [219], with a

2011/2012 budget of £106 billion [67].

Appointed by the Prime Minister, the Secretary of State for Health is responsible for the

Department for Health (DoH), which in turn is responsible for the NHS. Strategic Health

Authorities (SHA) enact DoH policy at a regional level, enabling directives and implementing

fiscal policy. SHAs are also responsible for strategic supervision of the NHS trusts such as hos-

pitals, ambulance services, care trusts, mental health services and primary care trusts. Primary

Care Trusts (PCT) provide and/or commission NHS services and form the local management

of the NHS, each with their own budgets and priorities. PCTs are responsible for ≈80% of the

NHS budget funding General Practitioners and prescriptions [108]. However from April 2013,

SHAs and PCTs will be abolished, being, replaced by the NHS Commissioning Board and a

countrywide network of Clinical Commissioning Groups.

Primary care, in contrast to secondary care, refers to local ’frontline’ services acting as a first

point of contact (figure 2.1). A range of independent contractors including General Practi-

tioners, walk-in centres, dentists, pharmacists and optometrists deliver the NHS’ primary care.

Secondary care refers to acute healthcare, emergencies and elective care, which are usually

provided in NHS hospitals.
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Figure 2.1: Figure illustrating primary and secondary care in the NHS. (http:

//www.yas.nhs.uk/AboutUs/YAS_in_the_NHS.html).

General Practitioners are the primary point of contact for patients and are considered as the

’Gatekeepers’ to the NHS. With the exception of a few minority groups such as prisoners

and the armed forces, each resident is allowed to register with a General Practice in the UK.

Homeless people are 40% more likely not to be registered with General Practitioners when

compared with the general population [52]. Patients may also be registered with both private

and NHS General Practices. NHS General Practices provide a range of primary care services

that include treatment of chronic and acute illness, prescribing of medication, referral to spe-

cialist/secondary care, preventative care such as screenings and immunisations, and health edu-

cation such as smoking cessation, lifestyle advice and contraception.

General Practices keep lifetime medical records that include information such as patient demo-

graphics, ’signs, symptoms and diagnoses’, primary care prescriptions (drugs and devices),

immunisations, test results, referrals to specialist / secondary care, feedback from other care

settings and lifestyle information (Body Mass Index (BMI), smoking, alcohol, exercise etc.).

These General Practice records are primarily for General Practice use rather than for research.

The quality, in terms of accuracy, completeness and detail, of these records varies between

http://www.yas.nhs.uk/AboutUs/YAS_in_the_NHS.html
http://www.yas.nhs.uk/AboutUs/YAS_in_the_NHS.html
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practitioners, between practices and over time. General Practitioners are self-employed with

contractual arrangements with the NHS and performance related pay. Introduced in 2004 the

Quality and Outcomes Framework (QOF) is a payment management and payment system,

which rewards practices for implementing good practice [116]. QOF forms part of the gen-

eral medical services contract, which is voluntary but almost every General Practice takes part.

QOF involves multiple best practice criteria, the level of adherence to which translates into

level of payment to practices. Since the introduction of the QOF in 2004 data quality in Gen-

eral Practice medical records has improved.

2.5 Study Design & Data Sources

Prognostic studies are inherently longitudinal in nature. They are usually carried out in groups

or cohorts of patients, who are followed over time allowing for an event of interest (outcome) to

occur. The cohort is defined by certain criteria, know as selection criteria, such as the presence

of one or more particular characteristics, e.g. having a certain disease, living in a certain geo-

graphic location, or being a certain age. There are several types of cohort studies can be used

for prognostic modelling, including but not limited to retrospective cohort studies, prospective

cohort studies, registry data, and nested case-control studies.

2.5.1 Study Design

In a prospective study, we design the study in advance to achieve some objective, and collect

the data over time according to the study design or protocol. Once complete the data can then

be used for analysis. The investigator is said to age with the study population (hence the term

"prospective study" [305]). Using this design, we can better check specific selection criteria

and use clear and consistent definitions of predictors and outcome, and recored them at pre-

defined time points. Randomised, placebo-controlled clinical trials are a prominent example of

prospective design, considered the ’gold standard’ for assessing the safety and effectiveness of

therapy [292]. They are designed to answer very specific questions about a particular treatment

strategy, disease mechanism and patho-physiological process. In term of data quality, where
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feasible, retrospective cohort studies are therefore generally preferable to retrospective studies.

Prospective cohort studies are sometimes solely set-up for prediction modelling, but a more

common design is that prediction research is done in data from Randomised Clinical Trials

(RCT), or from prospective before-after trials [286]. The strengths are in the well-defined

selection of patients, the prospective recording of predictors, usually with quality check, and

the prospective assessment of outcome. However there are a few key limitations that may

preclude its use for prognostic research.

A key limitation of prospective studies such as RCTs, may be in the selection of patients. Trials

by their very nature select a very specific group of individuals, typically without comorbidity

and/or polypharmacy. Typically stringent selection criteria are used, which may introduce bias,

limiting the generalisability of any models developed on such data. Multi-centre trials help

increase generalisability of findings, but are still contained to same limitation in the study

design. Another challenge is feasibility, the high costs associated with trials often lead to

trials that have relatively short duration and relatively small sample size. Insufficient study

duration can be a problem in some prognostic studies, for example if we are looking to predict

the 10-year risk CVD then data from a prospective that lasted 3 years would be of limited

value. Sample size is key problem for prognostic research and has been discussed previously

(section 2.8.1), Finally, there may also be ethical limitations on prospective designs, such a

comparison group that didn’t receive any treatment for a severe disease. It would unethical

to intentionally deny patients vital treatment, however this may have been observed in patient

records which could be achieved through a retrospective cohort study design.

The most common type of prognostic studies are of the retrospective cohort design, where pa-

tients are identified from patient records within a certain date ranges. These patients are then

followed over time for the outcome, but the investigator looks back in time (hence the term

"retrospective study" [305]). Strengths of a retrospective design include its simplicity, feasibil-

ity and relative cost effectiveness. These strengths are realised by the ease with which existing

patient records can be searched. The low cost allows for relatively long time horizons and large

sample sizes, which can be important for prognostic research, which are often prohibitively ex-

pensive in other study designs. The fact that the data is routinely collected is another strength,

as this ’real-world’ data does not suffer from the same bias that can exist in studies that are
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prospective in nature. This is because the selection criteria in typically not as stringent and the

data is observations from routine practice, generally leading to representative sample and thus

a model and findings with higher generalisability to the target population.

Limitations include correct identification of patients, reliable recording of predictors and out-

comes, and to a lesser extent, sample size. Challenges arise in the correct identification of

patients, which has to be done in retrospect. If certain selection criteria are poorly defined,

ill conceived or insufficient, or some of the information is missing or incorrectly recorded,

this may lead to selection bias. Also the recording of predictors has to have been reliable for

use in prediction modelling. Similarly, the outcome has to reliable. This may be relatively

straightforward for an outcome such as all-cause mortality in cohort that typically would die

in hospital, which may be reasonably well recorded in hospital patient records. However, if

we are interested in death attributed to certain disease or cause, especially if often occurs out-

side of hospital, then the outcomes may need to be verified using additional information from

other sources such the national statistics bureaus like the Office for National Statistics in the

UK. Finally, sample size may be limited in single-centre studies, however this is not usually

a problem in collaborative multi-centre studies. Retrospective cohort studies are often con-

sidered inferior to randomised trials, as, in some cases, they have been shown to overestimate

treatment effects [292]. Conversely however, when RCT data has been used for prognostics

modelling, they often have poor performance in groups of patients that differ from the very

specific group used in the trial. Despite this, retrospective cohort studies, if well designed and

conducted appropriately, can be a valuable and effective approach to determining associations

between specific exposures and outcomes, and are the method of choice when it is not possible

to conduct randomised trials [292]

2.5.2 Electronic Patient Records

The strengths of the retrospective design are further enhanced by the increasing availability

of Electronic Patient Records (EPR) in primary and secondary care. The electronic recording

clinical patient data has come a long way since its inception during the 1980s. In the UK

alone, there are three predominant systems used both for research and for clinical records: the

CPRD [39], The Health Improvement Network (THIN) [294] and QResearch [246, 274].
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Since the 1990s the use of EPRs in the UK has increased, primarily as a result of UK govern-

ment initiatives including the provision of financial incentives for general practice to develop

electronic clinical registers (i.e. QOF) and through the proposed implementation of a single

NHS computer system for EPRs (National Programme for Information Technology, NPfIT).

The UK has a strong reputation of producing quality EPR-based research through publication

of numerous studies, both in the validity and quality of the databases themselves, and in pro-

gnostic and epidemiological research performed using retrospective cohorts developed from

their data [274]. These studies have confirmed the high quality of the data recording in these

primary care databases [157, 289, 296]. Whilst clinical coding practice remains an area from

improvement [100], this has been mitigated to some extend by the linkage with registry, sec-

ondary care and laboratory data [157, 288, 104].

There are several advantages of basing research on a national system of networked data. Firstly,

the use of medical data collected across the UK provides a broadly representative sample. This

is realised by the broad geographical spread individual practice databases across the UK allow-

ing for a broad generalisation of the UK population. Secondly, many patients have complete

data available form 1980, providing an excellent source of longitudinal data for prognostic

research, in some cases providing heath information over the patents lifetime. Finally, the

size (number of patients) of the databases not only enables more complicated question to be

answered with fewer assumptions, but also enables the research into rarer diseases with low in-

cidence rates, that couldn’t be feasibly studied any other way. The CPRD observational dataset

alone consists of longitudinal, anonymous records from 681 primary care practices and over

15 million patients throughout the UK (based on the March 2014 release) [39], with a similar

number of practices (754) and patients (>13m) in QResearch’s EMIS database [246].

Due its merits of feasibility, large sample size and high generalisability, a retrospective obser-

vational cohort design is the preferred study design for experiments conducted for this thesis.

The data source proposed for development of such a cohort is routinely collected data from

UK general practice patient records, linked with other data sources such as secondary care

data and Office of National Statisitcs (ONS) data. This will be achieved using the CPRD

(www.cprd.com). This decision to used CPRD as apposed the other primary care databases is

that Cardiff School of Medicine already has licensed access to CPRD and significant experience
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of using CPRD for high quality research.

2.6 The Clinical Practice Research Datalink

The CPRD (formerly the General Practice Research Database, GPRD) is a computerised data-

base of anonymised longitudinal medical records collated from UK General Practitioners work-

ing in primary care [39]. General Practices using Vision Patient Administration Systems [133]

can contribute data to the CPRD. Practices are paid for contributing to the scheme based on

number of patients and quality of data provided. CPRD is considered by many as the GOLD

standard [39], containing 15.8 million patient records collected continuously since 1987. At

the time of writing, information on approximately 4.8 million active (alive) patients in the UK,

equivalent to about 7% of the UK population, are collected from 681 general practices nation-

wide as detailed in figure 2.2 below.

Figure 2.2: Heat map depicting smoothed estimates of population density (left)

and CPRD coverage (right) in the UK.
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CPRD also has an increasing number of links to secondary care such as Hospital Episode

Statistics (HES), registries and death data. Information collected by CPRD along with some

examples are detailed in Table 2.1 below. The UK Medicines and Healthcare products Regulat-

ory Agency (MHRA) run the CPRD on a non-profit making basis. The MHRA is an Executive

Agency of the DoH. It fulfils a critical public health role in the UK by ensuring that all medic-

ations and medical products meet appropriate standards of safety, quality and efficacy.

Table 2.1: Types of information held in CPRD

Information Examples

Demographics Smoking and drinking status, exercise, etc.
Age, gender, height, weight

Medical symptoms/diagnosis and comments Historical diagnosis
Historical diagnosis
Hospital referrals

All recorded prescriptions (drugs and devices) Strength
Dosage

Referrals Hospitals or specialists

Registration details Dates
Status e.g. transferred out

Status e.g. transferred out Immunisations
Test results
Consultations
Repeat prescription schedules

2.6.1 Clinical Practice Research Datalink Governance

Established in 2006 by the Secretary of State, the Independent Scientific Advisory Committee

(ISAC) is an independent non-statutory advisory body nominated to review the scientific merit

of proposals for research using data from CPRD and safeguard patient confidentiality. ISAC

approval is required for all studies using CPRD data, where destined for publication or for

communication with a third party. ISAC approval is also required for any study that intends to
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use data from a CPRD data linkage scheme.

2.6.2 Data Model

CPRD data is made available through online tools and static databases version created each

month. The CPRD data model illustrated in figure 2.3 consists of the following data tables:

Patient demographics including age, sex

Practice region and collection information

Consultations duration and linkage

Therapy prescribing from general practice

Immunisations vaccination details

Staff General Practitioner, nurse, locum

Clinical medical history and diagnosis

Additional Clinical Details additional information from structured data areas

Referral information about secondary care

Tests structured numerical and qualitative lab results

The Patient table contains basic patient demographics and registration details for the patients.

The Practice table contains details of each practice, including region and collection informa-

tion. The Staff table contains practice staff details, with one record per member of staff. The

Consultation table contains information relating to the type of consultation as entered by the

General Practitioner from a pre-determined list. Consultations can be linked to the events that

occur as part of the consultation via the consultation identifier (consid). The Clinical table

contains medical history events. This file contains all the medical history data entered on the

General Practitioner system, including symptoms, signs and diagnoses. This can be used to

identify any clinical diagnoses, and deaths. Patients may have more than one row of data.
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Figure 2.3: Figure depicting the CPRD data model

The data is coded using Read codes (section 2.7.1), which allow linkage of codes to the med-

ical terms provided. The Additional Clinical Details table contains information entered in the

structured data areas in the General Practitioner’s software. Patients may have more than one

row of data. Data in this file is linked to events in the clinical file through the additional details

identifier (adid). The Referral table contains referral details recorded on the General Practice

system. These files contain information involving patient referrals to external care centres (nor-

mally to secondary care locations such as hospitals for inpatient or outpatient care), and include

speciality and referral type. The Immunisation table contains details of immunisation records

on the General Practitioner system. The Test table contains records of test data on the General

Practitioner system. The data is coded using a Read code, chosen by the General Practitioner,

which will generally identify the type of test used. The test name is identified via the Entity

Type, a numerical code, which is determined by the test result item chosen by the General Prac-

titioner at source. There are three types of test records, involving 4, 7 or 8 data fields (data1

- data8). The data must be managed according to which sort of test record it is. Data can de-

note either qualitative text based results (for example ’Normal’ or ’Abnormal’) or quantitative

results involving a numeric value. The Therapy table contains details of all prescriptions on

the General Practitioner system. This file contains data relating to all prescriptions (for drugs

and appliances) issued by the General Practitioner. Patients may have more than one row of

data. Drug products and appliances are recorded by the General Practitioner using the Multilex

product code system (section 2.7.2).
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Full descriptions of fields in each table are provided in the Appendix [TBC]. All files can be

linked using the encrypted patient identifier (patid). The last three digits of the patient identifier

(patid), and staff identifier (staffid) denote the identifier of the practice (pracid) that the patient,

or staff belongs to. The mapping column references information relating to the use of data in

the field. It specifies lookup references, linkages to other tables, and information on decoding

numerical values. A mapping of ’None’ indicates the existence of raw data in the field. 1.

2.6.3 Data Quality

In large observational databases such as CPRD data quality varies between Practices and over

time. CPRD uses data quality markers to ensure internal consistency of patient data, complete

longitudinal records and complete, continuous, plausible practice level data. There are two

principle data quality markers used in CPRD, a patient ’acceptability’ flag and practice UTS

(’up-to-standard’) date. The patient ’accept’ flag indicates whether the patient record is of an

acceptable quality and integrity. Practice UTS dates refer to the date at which the practice is

of research quality. CPRD data quality is driven by incentivisation, Medico-legal factors and

feedback reports.

2.7 Clinical Coding

A clinical coding system is a coded thesaurus of clinical terms designed to enable users to make

effective use of clinical computer systems. Accurate and consistent coding of clinical data onto

the practice computer clinical system is a vital step in the move towards the Patient Electronic

Health Record and consistent analysis [224]. Several clinical classification systems are relevant

to this research project are described here.

2.7.1 Read Codes

The NHS mandates the use of the Read Clinical Classification Version 3 [221], more commonly

known as Read Codes, in general practice. Read codes are a coded thesaurus of clinical terms
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designed to enable General Practitioners, Practice Nurses and administration staff to make

effective use of clinical computer systems. Read medical codes have been used in the VISION

Patient Administration System since 1995 as a required field for a clinical entry into a patient

record. The Read codes have a hierarchical structure made up of 5 levels of detail in the 5-

character version (5 byte) of the codes and 4 levels in the earlier 4-character version (4 byte).

The characters used are numbers 0 to 9, upper case letters A to Z and lower case letters a to z.

The codes are case sensitive.

Table 2.2: Hierarchical structure of read code for Acute anteroapical infarction

Read Code Term

G.... Circulatory system diseases

G3... Ischaemic heart disease

G30.. Acute Myocardial Infarction (MI)

G301. Other specified anterior MI

G3010 Acute anteroapical infarction

Table 2.3: Hierarchical structure of read code for Allotransplantation of heart

and lung.

Read Code Term

7.... Operations, procedures, sites

79... Heart operations

790.. Heart wall, septum and chamber operations

7900. Transplantation of heart and lung

79000 Allotransplantation of heart and lung

Tables 2.2 and 2.3 give examples of the read code hierarchy. The top level of the hierarchy is

known as the chapter (chapters ’G’ and ’7’ in examples above). Chapters starting with letters

A-Z indicating referring to diagnosis codes and chapters starting with numbers 0 to 9 indicating

process of care codes, in Table 2.2 ’Diagnosis’ and in Table 2.3 ’Operations’. Each successive

level of the hierarchy provides more detail to a concept.
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2.7.2 International Classification of Diseases

The International Classification of Diseases (ICD) is a health care classification system that

provides codes to classify diseases and a wide variety of signs, symptoms, abnormal findings,

complaints, social circumstances, and external causes of injury or disease [319]. Under this

system, every health condition can be assigned to a unique category and given a code, up to six

characters long. Such categories can include a set of similar diseases. The ICD is published

by the United Nations-sponsored World Health Organisation (WHO) and revised periodically

and is currently in its tenth revision ICD-10 which was implemented in 1992. The basic ICD

is a single coded list of three-character categories, each of which can be further divided into up

to 10 four-character subcategories. In place of the purely numeric coding system of previous

revisions, the Tenth Revision uses an alphanumeric code with a letter in the first position and a

number in the second, third and fourth positions. The fourth character follows a decimal point.

Possible code numbers therefore range from A00.0 to Z99.9. Table 2.4 below describes the

structure of ICD-10 code I21.0 for Acute transmural MI of anterior wall.

Table 2.4: Hierarchical structure of ICD-10 code for Acute transmural MI of

anterior wall.
ICD-10 Code Term

I.... Chapter IX: Diseases of the circulatory system

I2... Ischaemic heart diseases (I20-I25)

I21.. Acute MI (I21.0-I21.9)

I21.0 Acute transmural MI of anterior wall

The classification is divided into 21 chapters (see table 2.5 below). The first character of the

ICD code is a letter and each letter is associated with a particular chapter. Each chapter con-

tains sufficient three-character categories to cover its content; not all available codes are used,

allowing space for future revision and expansion. The chapters are described in table 2.5 below.

The desk reference for prescribing by General Practitioners in the UK is the British National

Formulary (BNF) [28] provides information on the selection, prescribing, dispensing and ad-

ministration of medicines. The BNF is arranged into chapters and sections, with some phar-
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maceutical products being a member of more than one BNF chapter. General Practitioners

contributing to CPRD code their selection, prescribing, dispensing and administration of phar-

maceutical products using the Multilex drug knowledge base. Multilex is a proprietary drug ter-

minology used by CPRD that holds clinical and commercial information on more than 75,000

pharmaceutical products and packs [82]. Products within Multilex include all branded pre-

scription medicines, generic medicinal products, Pharmacy and General Sales List medicines,

appliances included in the Drug Tariff, supplementary and specialist dietary foods, diagnostic

and monitoring agents, homeopathic remedies and other NHS products available on prescrip-

tion. UK practices and therefore CPRD use the Read Clinical Classification system, but often

CPRD alone does not hold all the information required for research. In these cases we need to

augment the data in CPRD with data from other sources, such as those provided by the linkage

schemes (discussed later). Many of the additional datasets provided by linkage schemes use

different coding systems, namely the ICD. The Read codes are cross-referenced to ICD-10, but

not ICD-9. However there are challenges as the cross referencing is far from perfect, as in some

cases there is not a one-to-one mapping between conventions. This is further complicated by

the fact that some of data is coded using ICD-9, which does not always have a direct mapping

to ICD-10 or Read. In these cases the expertise of clinicians is still required. Steps are being

made to address this as the NHS National Programme for IT is using the SMOMED Clin-

ical Terms system as the standard terminology in the NHS Care Records Service. SNOMED

Clinical Terms (SNOMED CT) claims to be the most comprehensive, multilingual clinical

healthcare terminology in the world and incorporates all Read (Version 3) terminology via 1:1

mapping [135].

The CPRD holds a wealth of information about primary care but often primary care research

requires information that is not typically captured by general practice. In such cases CPRD data

may need to be augmented with data from other sources. The MHRA aims to optimise CPRD

research outputs by maximally linking person level data from different healthcare domains.

Linkages that are available include:

• HES

• Hospital prescribing
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• Cancer registries

• Myocardial Ischemia National Audit Project (MINAP)

• Office of National Statistics Mortality (death certificates)

• National Bone and Joint Registry (NJR)

• Socio Economic Status (Patient Level)

Data linkage is implemented on a practices level, with practices having the options whether or

not to consent to the CPRD linkage scheme. CPRD has limited linked data available via its

linkage scheme; linkage is only available to English practices consenting to participate in the

scheme, representing 357 (71%) of the 500 English practices in CPRD and 4% of the 8324

practices in England [222]. The CPRD organisation is the custodian of the linked data and in

most cases holds the full datasets. Figure 2.4 below illustrates a typical CPRD data linkage

process. Data provided by these linkage schemes is not part of the base CPRD dataset and

needs to be requested on study-by-study basis through the ISAC by submission and approval

of an ISAC protocol. Granted ISAC protocols relating to the experiments in chapters 5 and 6

of this thesis are detailed in Appendices A and F, respectively.

As indicated above there are several data linkage schemes, those schemes that are directly

relevant to this research, ONS Mortality, HES and Socio-Economic Status (SES) have been

discussed in more detail below.

In the UK death registration is carried out by Local Registration Services in partnership with

the General Register Office. All deaths must be reported to the Register General and sudden

deaths require coroner involvement. The cause of death is recorded on Part I and Part II of the

death certificate. Part I consist for three levels; 1(a)- Disease or condition directly leading to

death; 1(b)- Other disease or condition, if any, leading to 1(a); 1(c)- Other disease or condition,

if any, leading to 1(b). Part II details other significant conditions contributing to the death but

not relating to the disease or death causing it. Cause of death is coded using the ICD coding

system. ICD-9 has been used in the UK since 1979, with ICD-10 introduced in Scotland in

2000 and rest of the UK in 2001. Official death dates are available for 99.9% of English popu-

lation and cause of death is only available since Jan 2001. ONS mortality data is not part of the
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Figure 2.4: Figure depicting a typical CPRD data linkage process

base CPRD dataset, limited to English practices participating in the linkage scheme and needs

to be requested on study-by-study basis through the ISAC. HES are a record-level database

of hospital admissions and outpatient attendances for all NHS trusts in England [223]. HES

holds admission data from 1989 and outpatient data from 2003. The HES dataset consists of

patient, admission, discharge, clinical, speciality, critical care and maternity information. Clin-

ical information is recoded for each episode, with diagnoses coded in ICD-10 and operative

procedures coded using Office of Population Censuses and Surveys, Classification of Surgical

Operations and Procedure (OPCS) Version 4 [220]. HES data is not part of the base CPRD

dataset, limited to English practices participating in the linkage scheme and needs to be reques-

ted on study-by-study basis through the ISAC. CPRD has derived practice-based SES using

the Index of Multiple Deprivation linked to the practice postcode for all four countries of the

UK. SES is also available at ONS small area level (100 houses) using patient postcode. Two

SES scores are available from CPRD; Townsend score and the Index of Multiple Deprivation.

SES data is not part of the base CPRD dataset, limited to English practices participating in the

linkage scheme and needs to be requested on study-by-study basis through the ISAC.
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2.8 Linear Statistical Methods

Prediction is primarily an estimation problem [286]. For example, what is the risk of dying

over tens years? But prediction is also about testing hypotheses. For examples, how does the

management of blood sugars effect risk of death on patients with diabetes? Or more generally,

what are the important predictors or risk factors associated with a particular disease. Statistical

models may serve to address both estimation and hypothesis testing. In the medical literature

much emphasis has traditionally been given to the identification of predictors.

Statistical models summarise patterns of the data available for analysis. In doing so, it is in-

evitable that assumption need to be made. Testing of underlying assumptions is especially im-

portant if specific claims are made on the effect of a predictor. Statistical models for prediction

can be discerned into three main classes: regression, classification and description. Hereafter,

these will be jointly referred to as linear statistical methods or models. Regression models

are the most widely used statistical models in the medical domain [286]. Statistical modelling

to make predictions encounters various challenges, including dealing model uncertainty and

limited sample size.

2.8.1 Model Uncertainty & Sample Size

Model uncertainly arises from the fact that we usually do not fully pre-specify a model before

we fit it to a dataset [36, 73]. Often, an iterative process is followed with model checking and

model modification. On the other hand, standard statistical methods assume that a model was

pre-specified. In that case, parameter estimates such as regression coefficients, their corres-

ponding confidence intervals, and p-values are largely unbiased [286]. Whenever some part

of the data is used to inform the structure of the model in some way there is potential for bias

to occur, and for underestimation of the uncertainty of the conclusions drawn from the model.

Fortunately, model uncertainty has been actively researched and as a result some statical tool

are available to help study model uncertainty. Statistical resampling methods, namely boot-

strapping help with uncertainty during the development and validation of statistical models.

Sample size is another key challenge in statistical modelling. A sufficient sample size is import-



2.8 Linear Statistical Methods 29

ant to assures any scientific question with empirical data. We have to realise that the effective

sample size may often be much smaller than indicated by the total number of subjects in a

study [112]. For example, if we have relatively large number of patients but are interested in

a relativity rare event with low incidence rate, then it is this small number events that is the

effective sample size. Large sample size facilitates many aspects of prediction research. For

multivariate prognostic modelling, a large sample size allows for selection of predictors with

simple automatic procedures such as stepwise feature selection methods (although the value of

such methods is topic of much debate) and reliable testing of model assumptions. Conversely,

with a small sample size we have to be prepared to make stronger modelling assumptions.

When the sample size is very small we can only ask relatively simple questions, while more

complex questions can be addressed with larger sample sizes [286]. Therefore the ambitions

of the research questions may need to be tempered with the effective sample size of the data

available.

2.8.2 Survival Analysis

Suppose that we wanted to study the occurrence of a particular event (or events) in a cohort of

patients. If the time until the event is not of interest, but rather just whether the event occurred or

not, then response could be represented as a simple binary outcome and modelled using logistic

regression. For example, in analysing post- surgery morality, it may not be important whether

patients die 30 days after or two years after the procedure, just that that they perish. However,

typically with long-term and chronic conditions in domains such as cardiology oncology and

endocrinology, the time until event is important. For example, in a study of CVD in patients

with diabetes, whether a patient experienced a cardiovascular event 6 months, or 6 years after

diagnosis ofT2DM is very different. An analysis that simply counted the number of events

would be discarding valuable information and sacrificing statistical power [112].

Generally, survival analysis is collection of statistical procedures for the analysis of data in

which the outcome of interest is time until event, which is often called failure time, survival

time, or event time. More generally, this type of outcome or response is referred to as a survival

outcome, which different to and not to be confused with a survival endpoint. The latter is a

general term used in indicate that the endpoint or event of interest is death, but not necessarily
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that it is time until death that is of interest. Whereas, a survival outcome, survival analysis or

use of a survival model implies that the outcome of interest is time to event only - the event

itself may or may not be survival in the wider sense (i.e death). For example, one may use

a binary survival endpoint (dead/alive) and logistic regression to model post-surgery survival.

Conversely, one may use a survival analysis to model time to non-fatal MI, which would be

using a survival model and thus employing a survival outcome, but in fact have nothing to

do with survival (mortality) in the more general sense. Examples of survival outcomes of

interest include time until cardiovascular death, time until death or MI, or time until incidence

or recurrence of hypertension. More specifically, survival analysis involves the estimation of

the distribution of the time it takes for an event to happen to a patient based some set of features,

which are also known as explanatory variables, predictors, risk factors, features, or covariates.

Censoring

A key characteristic of survival data is that the follow-up of patients is typically incomplete [286].

Survival analysis must address a key analytical problem called censoring. For example some

patients may have been followed 5 days, some for 15 days, etc., and were are interested in

predicting 30-day survival. Patients with such incomplete data are said to be censored, often

referred to as censored observations or censored data. In essence, censoring occurs when we

have some information about an individuals survival time, but we don’t know the survival time

exactly in all subjects.

Using a simple example of censoring from Kleinbaum & Klein [162], consider leukaemia

patients followed until they go out of remission, shown in figure 2.5 as X. If for a given patient,

the study ends while the patient is still in remission (i.e. doesn’t get the event), then the patient’s

survival time is considered censored. We know that for this person, the survival time is at least

as long as the period that the person has been followed, but if the person goes out of remission

(i.e experiences the event) after the study ends, we do not know the complete survival time.

According to Kleinbaum & Klein, 2005 [162], there are generally three reasons why censoring

occurs:

1. a person does no experience the event before the study ends;
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Figure 2.5: Example of censoring in leukemia patients followed until they go out

of remission (source: Kleinbaum & Klein, 2005 [162]).

2. a person is lost to follow-up during the study period;

3. a person withdraws from the study because of death (if death is not the event of in-

terest) or some other reason (i.e. adverse drug reaction or other competing risk)

These situation are graphically illustrated in figure 2.6. The graph describes the experience of

several persons followed over time. An X denotes a person who got the event.

Figure 2.6: Example of different censoring in several leukemia patients followed

over time (source: Kleinbaum & Klein, 2005 [162]).
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Notation, Survial, and Hazard Functions

The two most popular quantitative terms considered in any survival analysis are the survivor (or

survival) function, denoted S(t), and the hazard function, denoted λ(t). The survival function

in the probability that an individual remains event-free longer than some specified time t. The

hazard function λ(t) gives the instantaneous potential per unit time for the event to occur, given

that the individual has remain event-free up to time t [162]. The hazard function is sometimes

referred to as a conditional failure rate and in contrast to the survival function, which focuses

on not experiencing the event, the hazard focuses on the event occurring. It is important to

note that, although it may be helpful to think of the hazard as an instantaneous probability, it is

not a probability as it can take on values greater than one [6]. Thus in some sense the hazard

function can be considered as giving the opposite side of the information given by the survival

function [162]. The distribution of time to a specific event dependent on a set a features or

predictor variables X = {x1, x2, . . . , xk}, can be represented by five closely related functions

given below:

f(t|X) density function (pdf)

F (t|X) cumulative distribution function (cdf)

S(t|X) survival function

λ(t|X) hazard function

Λ(t|X) cumulative hazard function

As with other regression models, X can represent a mixture of binary, categorical, continuous,

spline-expanded, and even ordinal predictors. These interrelated functions can expressed in

Equations 2.1 - 2.5 [112, 162, 45, 6], where T denotes the response variable (usually time to

event), t represents a specified time point, and X refers to a vector of features or explanatory
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variables:

f(t,X) =
∂F (t,X)

∂t
= −∂S(t,X)

∂t
= lim

∆→0

Prob{t ≤ T < t+ ∆, X}
∆

=

λ(t,X)exp

(
−
∫ t

0
λ(u) du

)
= λ(t,X)S(t,X)

(2.1)

F (t,X) = Prob{T < t,X} =

∫ t

0
f(u) du = 1− S(t,X) (2.2)

S(t,X) = Prob{T > t,X} =

∫ ∞
t

f(u) du = exp

(
−
∫ t

0
λ(u) du

)
=

1− F (t,X) = exp[−Λ(t,X)]

(2.3)

λ(t,X) = − ∂logS(t,X)

∂t
=
f(t,X)

S(t,X)
=

lim
∆→0

Prob{t ≤ T < t+ ∆|T > t,X}
∆

(2.4)

Λ(t,X) =

∫ t

0
h(u) du = −logS(t,X) (2.5)

Of the functions considered thus far, the survival function is the most intuitive as it describes

the survival experience in the cohort. Whilst being the less intuitive, the hazard function in

important for several reasons. Firstly, the hazard function is a measure of instantaneous po-

tential, whereas the survival function is a cumulative measure over time. Secondly, it can be

useful when fitting a model to data, specifying the specific model form for parametric model-

ling. Thirdly, it is the vehicle by which the mathematical modelling is performed, that is, most

survival models are expressed in terms of hazard. Whichever quantity is most appealing, the

key point is that by specifying and one of the probability density function, survival function, or

hazard function allows the other two function to be ascertained by using the formula 2.1-6.

Maximum Likelihood Estimation

Whereas unknown parameters in linear regression are estimated using least squares estima-

tion, in logistic regression and survival analysis they are estimated using Maximum Likelihood

Estimation (MLE).

Maximum Likelihood estimates of model parameters are derived by maximising the a likeli-

hood function. The likelihood function is a mathematical expression that describes the joint
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probability of obtaining the data actually observed on the subjects in the study as a function of

the unknown parameters [162].

The natural logarithm of the likelihood, the Log Likelihood (LL), is normally used for conveni-

ence in numerical estimation. The LL is calculated as the sum over all subjects of the distance

between the natural log of the predicted probability p for the binary outcome to the actual

observed outcome y:

LL =
∑

y × log(p) + (1− y)× log(1− p) (2.6)

where y refers to the binary outcome and p to the predicted probability for each subject [286].

A perfectly fitting model would have an LL of zero.

Kaplan-Meier Estimator

As the true form of the survival distribution is seldom known, it is useful to estimate the dis-

tribution without making any assumptions [112]. When censoring is present, S(t) can be es-

timated using the Kaplan-Meier [147] product-limit estimator, a nonparametric method for

survival data, based on conditional probabilities. The KM methods deals with censored data,

and provides attractive graphs on the relationship between predictor values and the outcome

over time [286]. Also, differences between survival curves can be tested statistical significance

using the log-rank test.

The product-limit estimator is a nonparametric maximum likelihood estimator [112]. The for-

mula for the KM product-limit estimator of S(t) is as follows. Let k denote the number of

failures in the sample and let t1, t2, . . . , tk denote unique event times (ordered for ease of cal-

culation). Let di denote the number of failures at ti and ni be the number of subjects at risk at

time ti; that is, ni = number of failure/censoring times > ti. The estimator is then

SKM (t) =
∏
i:ti<t

(1− di/ni) (2.7)

The KM method is often used in prognostic modelling, either to perform univariate analysis

by generating survival curves for various subgroups (e.g. females versus males) to investigate

the effect of predictors on outcome, or to calculate the estimated proportions of subjects that
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remain event-free at a certain time points. However, the KM approach is limited as it cannot

handle continuous predictors, not can it consider the effect of multiple explanatory variables

simultaneously. Because of censoring, logistic regression (a binary variable) is inappropriate.

One could attempt to apply linear regression on event time, but again censoring usually makes

such an analysis meaningless [286]. To overcome this limitation, several regression model-

ling approaches, that allow for multiple predictors, have been proposed to enable prediction

of time to event in the presence of censored data [287]. Most of these models have come

from the long-established statistical literature such as parametric survival models, including

the Weibull, lognormal and Gompertz models and the semi-parametric Proportional Hazards

model proposed by Cox [48].

Parametric Survial Models

The nonparametric KM estimator of S(t) is a very good descriptive statistic for displaying

survival data. However, for the purposes of prognostic modelling, we need to make more

assumptions to allow the data to be modelled in more detail. In this section we discuss a class

of survival models, called parametric models, in which the distributions of the outcome (i.e.

time until event) is specified in term of unknown parameters [162].

Examples of parametric models commonly used in biomedical research include linear regres-

sion, logistic regression, and Poisson regression. With these models, the outcome (i.e. time

until event) is assumed to follow some known distribution, such as the normal, binomial, or

Poisson distribution. What is typically meant is that the outcome is assumed to follow some

family of distributions with unknown distributional parameters that need to estimated. For

example, if we assume an outcome follows a normal distribution, then we know the distribu-

tional family but not the specific or exact distribution. To achieve that we need to estimate

the distributional parameters, typically a shape and scale parameters, which in the case of the

normal distribution would be mean (µ) and variance (σ). For parametric regression models,

the unknown distributional parameters are often estimated from the data, and sometimes the

appropriateness of the choice of distributions family (i.e. the fit to the data) is evaluated using

the data.
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A parametric survival model is a model in which the outcome (i.e. time until event) is assumed

to follow some known distribution. Parametric survival modelling requires choosing one or

more distributions. Common distributions include the Weibull, Exponential (a special case of

Weibull), log-normal, log-logistic, Gompertz, and generalised gamma distributions. Due to

their specific properties, some distributions can accommodate only one type survival regres-

sion formulation (such as the Proportional Hazards (PH) or Accelerated Failure Time (AFT)

specification, discussed in the next sections), whereas other distributions may accommodate

multiple formulations. Machine Learning (ML) is used to estimate the unknown parameters of

S(t) (see section 2.8.2).

Providing the parametric form is correctly specified, there are several advantages in specifying

a functional form for S(t) and estimating any unknown parameters in this function (i.e. para-

metric survival modelling) . Firstly, concise and parsimonious equation and smooth estimates

of S(t), Λ(t), and λ(t), which can be especially useful in prediction modelling. Secondly,

unlike non- and semi-parametric models, fully parametric models enable robust estimation of

expected event times, typically by extrapolation. Due to their nonparametric nature, predic-

tions made by the KM estimator and Cox regression (discussed in section 2.8.2) towards the

end of follow-up are quite unstable, whereas with parametric models they are more robust, as

survival is completely specified by a smooth function over the entire time horizon. In fact,

from a technical view point these approached are only valid for time points in the data where

an event occurred. Thirdly, due to the fully specified functional form, selected quantiles of the

survival distribution can be easily computed. Finally, assuming the parametric form is correctly

specified, more precise estimation of S(t), when compared with nonparametric estimates such

as SKM (t).

Parametric Proportional Hazards Models

The most widely used survival regression specification assumes that the effects of the covari-

ates exp(βX) are multiplicative (i.e. proportional) with respect to hazard λ(t), know as the

proportional hazards assumption (PHA):

λ(t,X) = λ(t)exp(βX) (2.8)
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This regression formulation is called the proportional hazards (PH) model. Analogous to the

PH (parametric and semi-parametric) model for a binary outcome in uncensored data, where

we know whether or not the patient experienced the event in the time horizon of interest, is the

logistic model. Multivariable logistic regression model is is the most widely used statistical

technique nowadays for binary medical outcomes [107, 286, 307]. The PH model is the natural

extension of the logistic model to the survival setting [286]. Indeed, the the PH model is equi-

valent to conditional logistic regression, with conditioning at times where events occur [184].

In the logistic model, we use an intercept in the regression effect, while in the PH model uses

what is referred to as the baseline hazard function, underlying hazard function, average risk

profile, or hazard function for a standatd object.

The λ(t) part of λ(t,X) is the baseline hazard function, which is a subject (i.e patient) with

βX = 0. Any parametric hazard function can be used for λ(t), and as we will see in the next

section, λ(t) can be left completely unspecified without sacrificing the ability to estimate β, by

the use of the semi-parametric Cox Proportional Hazards model (section 2.8.2) [48]. As with

other regression models, the vector of predictor variables X = {x1, x2, . . . , xk} can represent

a mixture of binary, categorical, continuous, spline-expanded, and even ordinal predictors. The

effects of the covariates, the regression effect βX = β0 + β1X1 + β2X2 + . . . + βkXk is

modelled in much the same way as other settings. Depending on whether the distribution of

the underlying hazard function λ(t) has a constant scale parameter, βX may or may not have

an intercept β0. In multiple linear regression, the regression effect βX can be thought of as an

increment in the value of the expected response Y . In binary logistic regression, βX specifies

the log odds that Y = 1, or exp(βX) multiplies the odds that Y = 1. Depending on whether

the baseline hazard function λ(t) has a constant scale parameter, βXmay or may not include

an intercept βo.

The PH model can also be rewritten in terms of the cumulative hazard and survival functions:

Λ(t,X) = Λ(t)exp(βX) (2.9)

S(t,X) = exp[−Λ(t)exp(βX)] = exp[−Λ(t)]exp(βX) (2.10)

Λ(t) is an "underlying" cumulative hazard function. S(t,X), the probability of remaining
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event-free up to time t, given the values of predictors X , can also be written as

S(t,X) = S(t)exp(βX) (2.11)

The regression effect βX is usually centred at the mean values of the predictors and the term

exp(βk) is called a relative hazard function or a hazard ratio, which is the ratio of hazard of

predictor k compared with the baseline hazard (i.e. average risk profile). The hazard ratio is

similar to the odds ratio in logistic regression and arguably the most well known (and often

misunderstood) term in survival analysis, in many cases is the function of primary interest as it

describes the (relative) effects of the predictors.

Note that the regression effect relates the log hazard or log cumulative hazard. In the general

regression notation, the PH model can be linearised with respect to βX , allowing distributional

and regression parts to isolated and checked, using the following identities.

log[λ(t,X)] = log[λ(t)] + exp(βX)

log[λ(t)] + β0 + β1X1 + β2X2 + . . .+ βkXk

(2.12)

log[Λ(t,X)] = log[Λ(t,X)] = log[Λ(t)] + exp(βX)

log[Λ(t)] + β0 + β1X1 + β2X2 + . . .+ βkXk

(2.13)

Accelerated Failure Time Models

Besides the PH survival regression formulation, where effect of predictors is multiplicative with

respect to hazard, other regression formulations can be specified. The AFT model is commonly

used; it assumes that the effect of covariates are multiplicative (i.e. proportional) with respect

to event time or additive with log event time, known as the AFT assumption. The effect of the

predictor is alter the rate at which the subjects proceed along the time axis (i.e. to accelerate or

shorten the time to event [143]). The model is

S(t,X) = ψ

(
log(t)− βX

σ

)
(2.14)

where ψ is any standardised survival distribution function. The parameter σ is called the scale

parameter. The model could also be stated as ψ ∼ [log(T ) − βX]/σ. The Weibull and
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exponential are the only two distributional families that can accommodate both AFT and PH

assumptions.

The interpretation of parameters in different in AFT models from that of PH models. The AFT

assumption is applicable for the comparison of times until event. Whereas, the PH assumption

is applicable for the comparison of hazard. Many parametric survival models are AFT models,

rather than PH model.

Using an example from Kleinbaum & Klein [162], the AFT assumption can be illustrated by

considering the comparison of survival functions among smokers S1(t) and non-smokers S2(t).

The AFT assumption can be expressed as S2(t) = S1(γt) for t ≥ 0, where γ is a constant

called the acceleration factor comparing smokers and non-smokers. In a regression framework

the acceleration factor γ could be reparameterised as exp(β) where β is a parameter to be

estimated from the data. With this parameterisation, the AFT assumption can be expressed as

S2(t) = S1[exp(β)t] or equivalently S2[exp(−β)t] = S1(t) for t ≥ 0.

The AFT assumption can also be expressed in terms of random variables for survival time

rather than the survival function. If T2 is a random variable (from some known distribution)

representing the event time for non-smokers and T1 is a random variable representing event

time for smoker, then the AFT assumption can be expressed T1 = γT2. The logλ and logΛ

transformations of the PH model has the following equivalent for AFT models.

ψ−1[S(t,X)] =
log(t)− βX

σ
(2.15)

letting ε denote a random variable from the distribution ψ, the model is also

log(T ) = βX + σε (2.16)

So the property of the response T of interest for regression modelling is log(T ). A one-unit

change in Xj is then most simply understood as a βj change in log event time. The one-unit

change in Xj increases the event time by a factor of exp(βj) [112].

The acceleration factor is a key term of interest obtained from AFT models. It enables the

evaluation of the effect of predictors on time until event, just as the hazard ratio allows the

evaluation of the effect of predictors on hazards . In AFT models the acceleration factor de-

scribes the "stretching out" or contraction of survival functions when comparing one group to
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another [162]. Hence the idea accelerating (or decelerating) toward the event of interest. More

specifically, the acceleration factor is a ratio of survival times corresponding to any fixed value

of S(t) [162].

The idea is graphically illustrated by examining for Group 1 (G1) and Group 2 (G2) show in

figure 2.7. For any fixed value of S(t), the distance of the horizontal line from the S(t) axis to

the survival curve for G = 2 is double the distance to the survival curve for G = 1. Notice that

the median survival time (as well as 25th and 75th percentiles) is double for G = 2. For AFT

models, the ratio of survival times is assumed constant for all fixed values of S(t) [162].

Figure 2.7: Graphical illustration of the AFT assumption and the acceleration

factor γ in the comparison of the survival curves amoung two groups (source:

Kleinbaum & Klein, 2005 [162]).

The Cox Proportional Hazards Model

In medical and epidemiological studies the Cox Proportional Hazards model [48] (or Cox re-

gression) is the most is the most often used model for survival outcomes [112, 286]. Just as in

the fully parametric form of the PH model, the Cox model is analogous to the logistic model

for binary uncensored data, for a survival outcome. Indeed, the Cox model is equivalent to con-

ditional logistic regression, with conditioning at times where events occur [184]. Again, just

as is the case of the logistic model, different variants (some simpler and some more extensive)

exist, which can be seen as special cases or extensions of the Cox model.
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The Cox regression model is often stated in terms of the hazard function cite [307, 286]:

λ(t,X) = λ(t)exp(βX) (2.17)

Note that the Cox model is an example of a PH model where we do not include an intercept

parameter in the regression effect βX = β1x1 + β2x2 + . . .+ βkxkdfd.

It as a semi-parametric method; it makes a parametric assumption concerning the effect of the

predictors in the hazard function (i.e proportionality of effect during follow up), but baseline

hazard function λ(t) is non-parametric meaning that it makes no assumption regarding the

nature of the baseline hazard function itself. The Cox PH model assumes that predictors act

multiplicatively on the hazard function but does not assume that the hazard function is of a

particular form, such as exponential or Weibull. This is an advantage of the model, as in

many situations either the form of the true hazard function is unknown or it is complex. This

is particularly advantageous when the primary the interest of the study is the effect of the

predictors, rather than the shape of λ(t) (which is often the case), as the Cox PH models allows

the analyst to essentially ignore λ(t). Another advantage is that the Cox PH model is less

effected by outliers when compared with parametric methods, due way it used rank ordering of

failure and censoring times.

For estimating and testing regression coefficients, the Cox model is as efficient as paramet-

ric models even when all the assumptions of the parametric model are satisfied [74]. When a

parametric model’s assumptions are not true (i.e. when a Weibull model is used and the distri-

bution of event time does not in fact follow a Weibull distribution and thus the choice of model

is incorrect), the Cox analysis os more efficient that the parametric analysis. For prognostic

modelling we need to predict the risk of the event over time, for example by using the cumu-

lative hazard or survival function. In exactly the same way as in with the general PH model

formulation, the Cox PH can be rewritten in terms of the survival functions:

S(t,X) = S(t)exp(βX) (2.18)

However, in the Cox the non-parametric baseline survival hazard S(t) has not been specified,

it is usually estimated from data using the mean values of the predictors. The baseline survival

is estimated from the non-parametric baseline hazard function as

S(t) = exp[−Λ(t)] (2.19)
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where Λ(t) is the cumulative hazard at time t. The baseline survival in the training data de-

termine the precise time points where we can make prediction for, which is not very natural for

application of the model in new subjects.

Whilst Cox regression and the KM estimator are more flexible than parametric regression mod-

els in their dealing with the baseline hazard function, extrapolation is not readily possible with

Cox or KM analysis because of their non-parametric nature. Predictions at the end of follow-

up are quite unstable with Cox or KM analysis, and are more robust with parametric survival

analysis. For estimation of the effect of predictors, the Cox model is often more suitable than

an exponential or Weibull model. However, log-logistic models have been useful in situations

where predictors worked especially during an early, acute phase of the hazard, which would

show as non-proportional hazards in a Cox model [112]. Note finally that some of the more

flexible methods for binary data have also been extended to survival models, but are not com-

monly used yet (e.g. neural networks) [115, 286].

2.9 Non-linear Statistical Methods

2.9.1 Evolutionary Computation

Other methods for survival analysis are based on Artificial Intelligence (AI) and machine learn-

ing. Hereafter, these will be jointly referred to as non-linear statistical methods or models.

Conventional linear and non-linear regression techniques seek estimate (i.e. optimise) the para-

meters to some pre-specified model structure. In contrast, if a search process works simultan-

eously on both the model structure and model parameters, the technique is called symbolic

regression [167]. Symbolic regression avoids imposing a priori assumptions, and instead in-

fers the model from the data. To obtain the best quality approximation in symbolic regression

we do not specify the size or structural complexity of the model in advance, and no particular

model is provided as a starting point to the algorithm. Instead, initial solutions are formed by

randomly combining mathematical building blocks such as mathematical operators. By not

requiring a specific model to be specified, symbolic regression isn’t affected by human bias,

or unknown gaps in domain knowledge. It attempts to uncover the intrinsic relationships of
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the dataset, by letting the patterns in the data itself reveal the appropriate models, rather than

imposing a model structure that is deemed mathematically tractable from a human perspective.

This approach has, of course, the disadvantages of having a much larger problem space. This

space, referred to as the search space, comprises of all possible solutions to the problem at

hand. In fact, not only is the search space for symbolic regression infinite, but also there are

an infinite number of models that could perfectly fit a finite data set (providing its complexity

isn’t artificially limited in some way). Clearly the search space is clearly too vast for a blind

random search. Therefore some intelligent adaptive way to search the space is required.

In computer science, EC is a subfield of AI and machine learning that borrows liberally from

population biology, genetics and evolution. Algorithms chosen from this collection are known

as Evolutionary Algorithms (EA), which are search techniques based on computer implement-

ations of mechanisms inspired by biological evolution such as reproduction, mutation, recom-

bination, and natural selection. The process of evolution by means of natural selection (descent

with modification) was proposed by Charles Darwin in "On the Origin of Species: By Means

of Natural Selection or the Preservation of Favoured Races in the Struggle for Life" [57] in

1859, to account for the variety of life and its suitability (adaptive fit) for its environment [29].

These evolutionary mechanisms describe how evolution actually takes place through modific-

ation and propagation of genetic material. Evolutionary algorithms are adaptive computational

systems that utilise simplified versions of the processes and mechanisms of evolution, to search

for (approximate) solutions to problems.

An EA is referred to as an Adaptive Strategy and a Global Optimisation technique, because it

can effectively explore very large search spaces without being trapped in local optima. This

makes EA well suited to symbolic regression, where the search space is vast. Also, because

evolutionary algorithms require diversity in order to effectively explore the search space, the

end result is likely to be a selection of high-quality solution, both in model structure and the

corresponding set of parameters.

Most EA s may be divided into generational algorithms, which update the entire sample once

per iteration, and steady-state algorithms, which update the sample a few candidate solutions

at a time [195]. For many specific EA s, there are both generational and steady-state versions

of the algorithm. Based on Luke 20013 [195], we present a basic generational form of an
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evolutionary algorithm in algorithm 2.1. The basic generational EA first generates an initial

starting set of solutions to the problem, know as an initial population, and then iterates through

three procedures. Firstly, each of these solutions, known as individuals, are evaluated to assign

a numerical measure of fitness, which is some measure of quality of the individual solutions

ability to address the problem. Secondly, this fitness information is used to determine how to

breed a new population of children form the current population who act as parents. Thirdly,

the parent and children populations are joined somehow to form the next-generation population,

and the cycles continues. These steps are repeated until a pre-specified stop criterion is satisfied,

usually when a maximum number of generations is reached or when the best individual reached

some defined level of quality (fitness).

Algorithm 2.1 An Abstract Generational Evolutionary Algorithm. [195]
1: P ← Build initial population

2: Best← � . � means "nobody yet"

3: repeat

4: AssessFitness(P )

5: for each individual Pi ∈ P do

6: if Best = � or Fitness(Pi) > Fitness(Best) then

7: Best← Pi

8: end if

9: end for

10: P ← join(P , Breed(P ))

11: until Best is the ideal solution or we have run out of time

12: return Best

2.9.2 Genetic Programming

In its simplest form, representation is the data structure used to define the the solution, i.e. the

individual. However, we can also think of representation as the approach we take constructing,

modifying, and presenting the individual for fitness assessment. In EC there is no single rep-

resentation of an individual. The representation is usually based on the type of problem we are
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tying to address or personal preferences of the investigator. Chronologically we can distinguish

the following main subclasses of EC as:

• Evolutionary Programming (EP) , was developed by Lawrence Fogel [87, 88] in the

early 1960s. EP was originally based on graph representations (specifically finite-state

automata). This family of algorithms are inspired by macro-level or the species-level

process of evolution (phenotype, hereditary, variation) and is not concerned with the

genetic mechanisms of evolution (genome, chromosomes, genes, alleles) [29].

• Evolutionary Strategies (ES) , introduced by Ingo Rechenberg and Hans-Paul Schwe-

fel [249, 250, 163] in the mid 1960s, uses real-valued vectors, typically of fixed length,

mainly for parameter optimisation. It is an almost identical approach to that of Fogel’s

EP which is also inspired by the same species-level process of evolution [29].

• Genetic Algorithms (GA) , invented by John Holland [128] in the 1970s, typically uses

fixed-length bit-strings to encode solutions. The GA is inspired by population genetics

(including heredity and gene frequencies), and evolution at the population level, as well

as the Mendelian understanding of the structure (such as chromosomes, genes, alleles)

and mechanisms (such as recombination and mutation) [29].

A fourth class of evolutionary algorithm was first proposed by Nichael Cramer in 1985 [50].

However, it is John Koza who is credited with the development and popularisation of the field

of GP with though his considerable work and his 1992 monograph on GP [167], the seminal

reference for the field. In his book Koza performs a number of GP experiments, evolving

computer programs to solve a range of problems, including symbolic regression.

The most common form of GP, tree-based GP , uses trees as its representation. Consider the

tree in figure 2.8, containing the mathematical expression max(x + x, x + 3y). This is the

parse tree of a simple program which performs this mathematical operation. There are several

advantages to using parse trees to represent the solution, including, preventing syntax errors,

which could lead to invalid individuals, and the hierarchy in a parse tree resolves any issues

regarding function precedence. Tree-based GP features heavily in n Koza’s seminal work in

the field. However, in addition to trees, there are other important representations that include

graph and linear representations [239, 17].
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Figure 2.8: A symbolic regression parse tree representing max(x + x, x + 3y)

(source: Poli et al., 2008 [239]).

As with GAs, the GP algorithm is inspired by population genetics, and evolution at the pop-

ulation level, as well as the Mendelian understanding of the structure and mechanisms [29].

Genetic algorithms and GP are very similar EA s, their main difference is in their encoding

of the solution, with the former is used in parameter optimisation, while the latter evolves the

structure of the approximation model.

In GP we evolve populations of computer programs or solutions. That is generation by gener-

ation, GP stochastically transforms populations of programs into new, hopefully better, popu-

lations of programs (figure 2.9). GP automatically solves problems without requiring the user

to know or specify the form or structure of the solution in advance [239]. This makes GP well

suited to symbolic regression, where in addition searching for the solution to the complex as-

sociations between predictors and outcome, GP also searches for the optimal model structure.

Which in turn makes GP well suited to prediction, primarily an estimation problem, where

the mutual correlations between predictors and the outcome are to be estimated. GP has been

shown to work well for recognition of structures in large datasets and has the intrinsic advantage

of automatically select a subset of inputs or features during the evolutionary process [212].

Because GP has no fixed model structure it can represent complex non-linear associations that

could not be achieved using linear regression techniques, and theoretically achieve higher pre-

dictive accuracy. However the flexibility of regression models can be greatly enhanced through

the use of factional polynomial, restricted cubic splines and interaction terms, potentially in-

creasing its predictive accuracy [22, 111, 112, 164]. However, it has be emphasised that this is

not normally done as it complicate interpretation and the correct use of the appropriate regres-
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Figure 2.9: Generational GP flowchart (based on Koza [167]). M is the popula-

tion size and Gen is the generation counter. The termination criterion can be the

completion of a fixed number of generations or the discovery of a good-enough

individual (source: Sipper., 2011 [278]).

sion methods is quite difficult, as they require extensive statistical knowledge [271]. Another

characteristic of GP that is advantageous for symbolic regression is the automated selection of

inputs. Not all input (i.e. predictor) variables have a significant effect in the outcome. Typ-

ically in clinical prediction modelling and survival analysis, we start out with a large set for

candidate predictors and only a small subset if these are used in the final (i.e best) model. The

task of identifying this subset is called feature selection, something that GP does inherently and

robustly as part of the evolutionary process. The main drawback of GP for symbolic regression

is its high computational cost, due to the potentially infinite search space. This can be atten-

uated to some degree by limiting the mathematical building blocks provided to the algorithm,

based on existing knowledge of the problem domain and the system that produced the data.

On the other hand, the recent availability of fast multi-core systems has enabled the practical

application of GP in many real-world application areas.

The focus of this thesis is on regression models, which are the most widely used in the med-
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ical domain, for the prediction cardiovascular risk in patients with T2DM. We only consider

situations where there are a limited number of variables, say less than 25. This is in contrast to

other research areas such as genomics (genetic effects), proteomics (protein effects), and meta-

bolomics (metabolite effects). In these areas there often large number of candidate predictors

(features), often >10,000. The application of GP to these types of biomedical problems is an

active research area and experienced a degree of success (see chapter 3). Obtaining predictions

form a model has to be separated from obtaining insights in the disease mechanisms and patho-

physiological processes. Such insights are related to the estimated effects of predictors in a

model. Often predictions models serve the latter purpose too, but the primary aim considered

in this thesis is outcome prediction. However we endeavour to present and interpret and re-

lationships discovered by the final GP system, effectively generating hypotheses on disease

mechanisms and patho-physiological processes.

Our main focus is on the evolution of symbolic expressions (the clinical prediction models)

and we will use a classical GP approach using trees to represent the models or solutions. A

tree-based representation is adopted because it offers many benefits when implementing the

GP algorithm in computer code. In many programming languages, particularly interpreted

functional ones, expressions are internally represented as trees, meaning expression can be

directly evaluated by the interpreter. This potentially enables the whole spectrum of functions

available within a language to be used as inputs of building blocks to the GP system.

2.10 Motivation

The current body of research and a lack of consensus on which risk score is most appropriate

for UK general practice suggests the need for cardiovascular risk models that are closely cal-

ibrated to the contemporary UK T2DM population. Such models would enable physicians and

health policy makers to not only understand the risk of a certain outcome but also understand

the changes in risk resulting from changes in treatment. We investigate the utility of tree-based

GP for survival analysis, more specifically for the prediction of cardiovascular risk in UK pa-

tients with T2DM. To some, GP may not seem to be the best suited or obvious choice for

clinical prediction modelling. Traditional statistic methods are well researched, widely taught,
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widely available, relatively straightforward, and relatively fast to execute. However in addition

to being widely used, they are widely abused, and the correct application of these traditional

statistical models can often require significant statistical knowledge and expertise, as well spe-

cific knowledge of the application domain.

The main advantage of GP is that it performs a global search for a model, contrary to the

local search of most traditional machine learning algorithms [76, 90] and statistical meth-

ods. This gives the potential to discover potentially complex non-linear patterns that could

not be discovered by traditional techniques. Whilst GP is computationally expensive, the

recent availability of fast multi-core systems had attenuated this some degree. Another ad-

vantage of GP is the fact that clinical prediction models can automatically generated without

the, sometimes signifiant, statistical and clinical expertise required in traditional modelling

approaches. Whilst GP is more complicated to validate by clinicians when compared to tra-

ditional statistical approaches, it is not a black-box method and can be validated, unlike some

traditional machine learning algorithms. There have been several studies that have compared

other novel machine learning algorithms with their classic statistical counterparts for survival

outcomes [148, 138, 229, 248, 269, 265], however the results are mixed as to whether these ma-

chine learning methods offer improved performance. GP has been used in medical research for

classification and, to a lesser extent, prediction. However its value for prediction on censored

data, for survival analysis, is not yet been documented.

2.11 Summary Conclusions

We introduced clinical prediction modelling and its role and importance in predicting the risk

of CVD in UK patients with T2DM. As discussed in section 2.4 the structure of the UK NHS

means that UK General Practices are the ’gatekeepers’ to the NHS, and as such primary care

data, especially that which is linked with other sources of data, provides a rich resource for

prognostic research. In section 2.5, we gave an overview of the aspects of design of prognostic

studies, comparing and contrasting trials and observational studies. We outlined that trials by

their very nature select a very specific group of individuals, typically without comorbidity or

polypharmacy. The outcome of interest in this research project is CVD, which typically affects
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older people who in turn typically have comorbidites and polypharmacy. We then argued that

prediction of cardiovascular risk in patients with T2DM would be most appropriately evaluated

using an observational cohort study. In sections 2.5.2 we detail how the strengths of retro-

spective study designs are further enhanced by the increasing availability of electronic patient

records in primary and secondary care. In section 2.6 we described the CPRD and justified its

selection as the suitable dataset for the experiments in this study, and in section 2.7 discussed

the clinical coding conventions that we will to work with in the refining observational cohorts

from CPRD.

In section 2.8, we discussed how time until event is an important outcome in long-term chronic

conditions such as CVD and diabetes. This is because simply defining the outcome as whether

or not the event happened, typically modelled using logistic regression, would be discarding

valuable information and sacrificing statistical power. We also discussed a key characteristic

of time until event data, censoring, and what specific challenges this presents when modelling

such data. We then gave an overview of current linear statistical methods for addressing the

challenges of censored data, a collection of methods referred to survival analysis. Cox Regres-

sion appears to provides the default framework for prediction of long-term chronic outcomes

in the presence of censoring. Kaplan-Meier analysis provides a non-parametric method, but

requires categorisation of all predictors. Parametric survival models are more complicated but

are parsimonious and robust, and are are particularly useful for prediction at the end of, or even

beyond the observed follow-up.

In section 2.9.1 we introduce AI and machine learning for survival analysis and give an over-

view of symbolic regression and the field EC, discussing its strengths and weaknesses. We

discuss how symbolic regression has the potential to discover complex non-linear relationships

between outcome and predictors, that could not be represented using classic linear statistical

approaches.

In section 2.9.2 we introduce GP, a particular algorithm within the collection of techniques

know as EC. In GP we evolve populations of models. That is generation by generation, GP

stochastically transforms populations of models into new, hopefully better, populations of mod-

els We discuss how GP is a relatively recent technique that shows potential, which may improve

the selection and transformation of predictors, and may lead to models with good predictive ac-
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curacy in new patients. We discuss the relative strengths and weaknesses of GP. GP is well

suited to symbolic regression, however its almost infinite search space make this a computa-

tionally extensive approach. However, this has been attenuated by the recent availability of fast

multi-core systems.

Finally in section 2.10, we provided motivation for the thesis. The current body of research

suggests the need for cardiovascular risk models that are closely calibrated to the contemporary

UK T2DM population. GP is a recent approach that has shown potential when used in medical

research for classification and, to a lesser extent, prediction. However its value for prediction

on censored data, for survival analysis, is not yet been documented.

In the next chapter, we will focus on survey and critical assessment of existing research in

relation to this thesis.
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Table 2.5: Chapter structure of the ICD-10 classification system

Chapter Blocks Title

I A00–B99 Certain infectious and parasitic diseases

II C00–D48 Neoplasms

III D50 –D89 Diseases of the blood and blood-forming organs and certain

disorders involving the immune mechanism

IV E00–E90 Endocrine, nutritional and metabolic diseases

V F00–F99 Mental and behavioural disorders

VI G00–G99 Diseases of the nervous system

VII H00–H59 Diseases of the eye and adnexa

VIII H60–H95 Diseases of the ear and mastoid process

IX I00–I99 Diseases of the circulatory system

X J00–J99 Diseases of the respiratory system

XI K00–K93 Diseases of the digestive system

XII L00–L99 Diseases of the skin and subcutaneous tissue

XIII M00–M99 Diseases of the musculoskeletal system and connective tis-

sue

XIV N00–N99 Diseases of the genitourinary system

XV O00–O99 Pregnancy, childbirth and the puerperium

XVI P00–P96 Certain conditions originating in the perinatal period

XVII Q00–Q99 Congenital malformations, deformations and chromosomal

abnormalities

XVIII R00–R99 Symptoms, signs and abnormal clinical and laboratory find-

ings, not elsewhere classified

XIX S00–T98 Injury, poisoning and certain other consequences of external

causes

XX V01–Y98 External causes of morbidity and mortality

XXI Z00–Z99 Factors influencing health status and contact with health ser-

vices

XXII U00–U99 Codes for special purposes
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Chapter 3

Related Work

Next we focus on survey and critical assessment of existing research in relation to this thesis.

First we review and assess the performance of the numerous existing cardiovascular risk scores

for the general population and for patients with T2DM . Before reviewing previous work on

GP in the biomedical and health domain, we review the wider field of machine learning for the

survival analysis. Finally we assess previous work specifically on GP for prognostic research.

3.1 Cardiovascular Risk Scores for the General Popu-

lation

In public health, prediction models may help target preventative interventions to subjects with

relatively high risk of having or developing a disease. Various model have been developed

to predict the future occurrence of disease in asymptomatic subjects in the population. Well

known examples are the Framingham risk functions for cardiovascular disease [314]. The

Framingham risk functions underpin several current policies for preventative interventions. For

example, lipid-lowering therapies are only considered for those with relatively high risk of

cardiovascular disease.

Since the Framingham risk scores were first published in 1976 [144] several other cohort

studies have developed their own risk equations including PROCAM [11], SCORE [46] and

QRISK [124]. These cohort studies differ significantly in terms of study population character-

istics, risk predictors, and outcome [189].
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A systematic review [189] identified 21 risk scores from 18 papers. Five were from Framing-

ham [3, 8, 144, 314], three from the Munster group (PROCAM) [11, 12] and ARIC (Athero-

sclerosis Risk in Communities) [34, 200], two each from QRISK [124, 125, 123] and Reyn-

olds [253, 254], and one each from the Scottish Heart Health Extended Cohort [318], Strong

Heart Study [185], USA-PRC (People’s Republic of China Collaborative Study of Cardiovas-

cular Epidemiology) [320] and NHEFS (National Health and Nutrition Examination Survey

NHANES I Epidemiological Follow-up Study) [93]. Some risk scores used multiple cohorts:

SCORE [46] was derived from a pool of 12 European cohorts, and Progetto CUORE [233]

from a pool of Italian cohorts. Twelve are from North America, eight are European, and one

from China.

The use of routinely collected data from general practice patient records has been proposed

for this research project and the access to CPRD (www.cprd.com) has been agreed for this

purpose. The merit and appropriateness of using this type of routinely collected primary care

data for the development of predictive models for cardiovascular disease has been validated by

the work of Hippisley-Cox et al. [124, 125, 121, 120, 122] in developing QRISK and QRISK2.

QRISK and then later the improved QRISK2 are cardiovascular risk prediction models (or

risk calculators) for the general population. This approach has been further endorsed by the

recommendation from National Institute of Clinical Excellence (NICE) that QRISK2, due its

improved predictive power and better calibration with UK population, be used for predicting

cardiovascular risk in UK general practice [217].

3.2 Cardiovascular Risk Scores for Type 2 Diabetes

People with T2DM have a two-fold increase in the risk of CVD [293, 317]. National policies

for the management of both CVD and T2DM advocate the calculation of CVD risk in order

to identify high-risk patients for targeted interventions [264, 295, 245, 66, 216]. Several mul-

tivariable risk-prediction models have been developed for the general, non-diabetic population

that also account for diabetes, but only a few are specific to T2DM [303]. A systematic review

by Van Dieren et al. [303] identified twelve studies where CVD risk scores were developed

specifically for people with T2DM, and thirty-three were were developed for the general popu-
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lation with diabetes as a risk factor in the model. The majority of these models were developed

from a predominantly white population, and twelve were developed in Asian populations (In-

dia, China, Japan) [303] . Study sample sizes ranged between 698 and 1.5 million subjects.

Of the diabetes-specific models only two have been developed in patients with newly dia-

gnosed T2DM , and they both use data from the United Kingdom Prospective Diabetes Study

(UKPDS) [298]. These two models—one for Coronary Heart Disease (CHD) and the other for

stroke—combine to form the UKPDS-RE [165, 284]. The other study populations composed

of subjects with varying durations of diabetes. The majority of these models predicted 5-year

risk and used and average of eight predictors. The most commonly used predictors were age,

gender, duration of diabetes, HbA1c, and smoking status.

Discriminative ability or discrimination is the ability of a risk score to differentiate between

patients who did and did not experience an event during the study period. This measure can

be quantified by calculating the area under receiver operating characteristic curve (AUC) [107]

(equivalent to the c statistic for a binary outcome), in which a value of 0.5 represents ran-

dom chance, while 1 represents perfect discrimination. Nine of the twelve studies reported

the discrimination of their risk scores, with AUC values ranging from 0.68 to 0.85 [303]. In

terms of AUC, values of 0.7 up to 0.8 indicate acceptable model discrimination [55, 131]. Cal-

ibration refers here to how closely the predicted x-year cardiovascular risk agreed with the

observed x-year cardiovascular risk. Eight of these studies reported measures of calibration

using Hosmer-Lemeshow goodness-of-fit statistic [131], p-values for which were all >0.05, in-

dicating no significant lack of calibration [303]. Only half of these model internally validated

their performance using resampling (e.g. split-sample, cross-validation, bootstrapping) tech-

niques to correct for the overoptimism inherent when evaluating performance of models on the

data in which they were developed.

The majority of models developed for the general population with diabetes as a risk factor

predicted 10-year risk and used an average of eight predictors. The most commonly used pre-

dictors were age, gender, Systolic Blood Pressure (SBP), smoking status, lipid measurements

and diabetes.

Twenty of the 33 studies reported discrimination, with AUC values ranging from 0.65 to

0.86 [303]. Twelve of these studies reported measures of calibration, all with Hosmer-Lemeshow
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p-values > 0.05 [303]. Twelve of the models were internally validated using some form of res-

ampling technique.

According to Van Dieren et al. [303], Thirty studies externally validated 14 different pre-

diction models in patients with T2DM . Nine studies validated two versions of the UK-

PDS risk engine [165, 284], 10 studies validated three versions of the Framingham Prediction

model [3, 314, 9, 8] and nine other prediction models were externally validated only once.

The UKPDS-RE CHD equations [284] have been externally validated in 10 separate stud-

ies [103, 139, 283, 322, 155, 237, 58, 304, 280, 302] which observed moderate discrimination

and poor calibration, overestimating risk. The UKPDS-RE stroke equations [165] were valid-

ated in two separate studies [155, 58] with contrasting results, one reporting moderate discrim-

ination and the other reporting good discrimination and good calibration. The largest of these

studies from the UK used only a small sample (n=798) and from a single locality [283]. The

largest international study had a larger but still relatively small sample size (n=7 502), using

data collated from 20 countries [155]. The versions of the Framingham model by D’Agostino

et al. [3] and by Anderson et al. [9, 8] were externally validated in a cohort with diabetes three

times and the version by Wilson et al. [314] four times. Discriminative ability was moderate,

with poor calibration. Of the risk scores that were only validated once, the Fremantle [58] score

preformed the best with good calibration and discrimination.

Less than a third of the CVD risk scores identified in systematic review by Chamnan et al. [35]

and Van Dieren et al. [303] were externally validated, with varying results. Both the diabetes-

specific and general population risk scores reported good discriminative ability in the data in

which they were developed (apparent and internal validation). However, their discriminative

ability in new, previously unseen cohorts of patients (external validation) varied widely. The

discrimination in models for the general population were generally moderate and the calibration

mostly poor. As suggested by both Chamnan et al. [35] and Van Dieren et al. [303], this could

be explained by differences in the incidence of CVD between patient with and without T2DM

or by the fact that risk models developed in the general population do account for diabetes-

specific risk factors. They argue that this could be overcome by using only diabetes-specific risk

models for patients with diabetes. However, when the diabetes-specific risk models have been

externally validated in new patients, the calibration was also poor with moderate to good calib-
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ration. The more contemporary models such as the DCS [78], Fremmatle [58] and DARTS [72],

appeared to have the best external validity, however these models were only validated once and

therefore more external validation studies are required on different cohorts.

3.3 Genetic Programming in Bioinformatics

GP has long been applied to medicine, biology and bioinformatics. Early work by Hand-

ley [106] and Koza & Andre [169] used GP to make predictions about the behaviour and prop-

erties of biological systems, principally proteins.

Since then GP is has been widely used in biomedical data mining. Often the information

that is of particular medical interest takes the form of very wide datasets, that is datasets with

a relatively large number of columns, inputs or dependent variables [183]. Examples include

chemical analysis using analytical techniques such as Fourier Transform Infrared Spectroscopy

(FTIR), Gas Chromatography-Mass Spectrometry (GCMS), etc [114, 227, 140, 202, 290];

many more from Kell et al. (see below), Single Nuclear Polymorphisms (SNP)s where a typ-

ical data set may contain as many as 300,000 SNPs for 500–1,000 patients [19, 251, 272] and

Affymetrix GeneChip microarray data [62, 80, 117, 126, 130, 174, 187, 190, 323].

Kell and his colleagues in Aberystwyth, and later Manchester, have had great success in apply-

ing GP widely in bioinformatics [5, 59, 79, 98, 97, 94, 94, 141, 153, 152, 154, 151, 273, 301,

316]. Another very active group is that of Moore and his colleagues in Vanderbilt , and later

Dartmouth, [211, 213, 256, 257].

3.4 Genetic Programming in Prognostic Reseach

Albeit to a lesser extent than the biomedical domain, GP has been applied to specifically to

medical diagnosis and prognosis [22, 192, 25, 193, 156]. However with the notable exceptions

of Biesheuvel et al. [22], GP has been applied to data from clinical tests where there are a large

number of readings but few samples, similar to biomedical data mentioned previously. This is

contrary to the dataset proposed for this research project, which will come from general practice
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records, where there are a relatively large number of samples and relatively fewer readings.

This is also preferable in prognostic modelling, as a larger number of samples will increase the

quality of the model, as too do fewer readings or inputs. A systematic literature search over

PubMed, the largest database of biomedical publications, did not identify any applications of

GP for medical diagnosis/prognosis using routinely collected primary or secondary care data,

for which the data would consist of numerous samples in contrast to other types of biomedical

data.

Biesheuvel et al. [22] compare GP and multivariate logistic regression in the development of

a diagnostic prediction model using empirical data from a prospective diagnostic study among

398 patients in secondary care upon diagnosis of Pulmonary Embolism (PE) . Results report

that the AUC of the GP model was significantly larger (0.73; 95%CI: 0.64–0.82) than that of

the logistic regression model (0.68; 0.59–0.77), with comparable calibration or model-fit. The

significantly larger AUC value suggests that GP may be better at discriminating those who

experience the event of interest (for example, PE) versus those who do not. However where

AUC values have been reported in the literature reviewed, most tend to be around 0.6–0.7.

However it is important to stress that improved discrimination of GP in diagnosis of PE reported

by Biesheuvel et al. [22] is only a specific case. The ’no free lunch’ theorem suggests that no

single method will outperform all others on all cases [315]. Therefore it is important to further

evaluate the performance of GP for medical diagnosis and prognosis.

3.5 Genetic Programming for Survival Analysis

The literature reviewed reports an enormous number of applications where GP has been suc-

cessfully used [239]. The literature suggests that the specific GP task required by the project is

that of symbolic regression [17, 167, 239]. Symbolic regression attempts to find a function that

fits the given data points without making any assumptions about the structure of that function.

Since GP makes no such assumption, it is well suited to this sort of discovery task [239]. Sym-

bolic regression was one of the earliest applications of GP [167], and continues to be widely

studied [30, 101, 149, 186].
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Symbolic regression and GP appears to be well suited to classification and regression, and as

discussed in the previous section, it has been successfully applied in clinical prediction model-

ling as an alternative for logistic regression where the data is uncensored [22, 136]. However,

there is a surprising paucity in the literature regarding the application of GP to survival analysis

and censored longitudinal data. There are lots of applications of GP for failure-time, reliabil-

ity analysis, time-series, and other temporal applications in domains such as engineering and

software development [327, 328, 188]. Surprisingly, there were no examples in the reviewed

GP literature that involved the handling of censored longitudinal data, the experimental settings

were such that every entity failed at least once and thus there was no censoring.

Expanding from the GP literature to the broader domain of AI and ML, there have been several

studies, ANNs in particular, that have compared such novel non-linear statistical methods with

their classic linear counterparts for survival outcomes [148, 138, 229, 248], however the results

are mixed as to whether these non-linear methods offer improved performance. For example

Schwarzer et al. [269] reviewed a substantial number of studies which have used ANNs in the

diagnostic and prognostic classification in cancer, concluding that there is no evidence so far

that application of ANNs represents real progress in the field of diagnosis and prognosis in

oncology. Sargent [265] has also reviewed a number of these comparison studies showing that

the majority have claimed equal performance but could not rule out the possibility of bias. GP ,

however, is a relatively recent technique that shows potential, which may improve the selection

and transformation of predictors, and may lead to models with good predictive accuracy in new

patients [22, 89, 136, 238, 297].

3.6 Summary Conclusions

In section 3.1 we introduce and review the large number of cardiovascular risk scores both

for the general population that account for diabetes and for populations with T2DM . These

models and they vary significantly in quality, development and validation methodologies, and

in study population characteristics, risk predictors, and outcome. The degree to which these

models have been assessed for generalisability in new cohorts also varies. The more contem-

porary models seemed to have the best external validity, however it is these models that have
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only been validated once. Therefore more external validation studies are required to assess the

performance of these models in different cohorts of subjects with T2DM . The moderate per-

formance of most prediction model suggests that it is difficult to predict CVD in patients with

T2DM [303].

In section 2.9 we introduce existing AI and machine learning techniques for survival analysis,

which to date have been predominately ANN. We discuss how previous studies comparing the

performance of these non-linear techniques to classic linear statistical approaches, have pro-

duced mixed results and that it remains unclear whether they offer any improved performance.

We also discuss how GP is relatively recent approach with a lot of potential and that has been

successfully applied for the purposes of symbolic regression in what is a well researched area.

In section 3.3 we discuss howGP has been applied with some success to the biomedical & health

domain, often through the use of symbolic regression. However, the bulk of this research has

been in biological domains such as modelling genomic data where there a disproportionally

large number of columns which benefit significantly from the feature selection inherent in the

evolutionary search process. To a lesser extent, GP has been successfully applied for prognostic

research. However, with a small number of notable exceptions ,this has utilised biological data

for prognosis rather than routinely collected longitudinal patient data.

In section 3.4 we discuss the results of out review of the research into the application of GP

for prognostic research. The review did not reveal any research into using GP with routinely

collected longitudinal health care data, which in contrast to biomedical data would have a

relatively large number of rows and fewer columns. There was a single example by Biesheuvel

et al. [22] where longitudinal patient data was used of prognosis, however it was using a small

prospective cohort specifically designed for prognostic research rather than routinely collected

data. The ’no free lunch’ theorem [315] suggests that it is important to further evaluate the

performance of GP for medical diagnosis and prognosis.

From the literature there appears to be only single example where GP has been used for pro-

gnosis in longitudinal patient-level data, however this example applied GP analogous to binary

logistic regression where the outcome is binary. As discussed in section 2.8.2 this would dis-

card valuable information and sacrifice statistical power.
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There appears to have been a number of studies that have used machine learning, predomin-

antly ANNs, for prognostic research where the outcome was time until event (i.e. a survival

analysis). Whilst some of the techniques have been evolutionary in nature, GP was not con-

sidered. Despite the success GP in other areas of the biomedical and health domain, the utility

of GP for clinical prediction modelling in the presence of censored data remain unknown.

In the next chapter we give an overview of the essential common themes in the diverse field

of GP. We introduce a GP framework which later chapters will build upon, offering high-level

overviews of the different elements, whilst also formally defining the specific methodological

elements that will be implemented to form the developed GP approach for survival analysis.
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Chapter 4

Genetic Programming

This chapter is give an overview of the essential common themes in the diverse field of GP. We

introduce a GP framework which later chapters will build upon, offering high-level overviews

of the different elements, whilst also formally defining the specific methodological elements

that will be implemented to form the developed GP approach for survival analysis. After giving

a high-level overview of a basic GP run, we introduce the concepts of solution representation

and search spaces in GP, as well as approaches to define valid regions in these search spaces.

Following on from this, we introduce ideas behind fitness and its role in guiding the GP search,

before defining fitness functions used in this work. Then we introduce the role of GP search

operators and define them. On that basis, we discuss different search strategies and define

the search heuristics that will be used to implement them. Next we discuss the parameters

that control the GP run and offer some guidance on suitable values for these. After which

we discuss uncontrolled intron growth and the phenomenon that is bloat. Finally we discuss

the considerations to be taken into account when implementing GP and define the specific

implementation of GP used in this work, discussing the rationale behind certain choices.

4.1 Introduction

In GP we evolve a population of computer programs. That is, generation by generation, GP

stochastically transforms populations of programs into new, hopefully better, programs (fig-

ure 4.1) [239]. For the context of this thesis a computer program is a symbolic regression

equation, which a mathematical formula representing a clinical prediction model. Just like

biological evolution, GP is a random (or stochastic) process and can never guarantee results.
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However it is this randomness that enables GP to overcome the some of the pitfalls, i.e. local

optima, that limit deterministic methods.

Figure 4.1: The basic control flow for GP, where survival of the fittest is used to

find solutions (source: Poli at al., 2008 [239]).

Taken from Poli at al., 2008 [239], the basic step in a GP system are shown in Algorithm 4.1.

GP finds out how well a model performs by applying it, and then comparing its behaviour to

some ideal (line 3). For the purposes of this thesis we are interested in in how well a model

predicts the risk of some clinical event . This comparison is quantified to give a numeric value

called fitness. Those models that do well are chosen to breed (line 4) and produce new models

for the next generation (line 5). Genetic variation operations are used to create (i.e. evolve)

new programs from existing ones.

Algorithm 4.1 Genetic Programming
1: Randomly create an initial population of models from the available primitives

(more on this in Section 4.2.1).

2: repeat

3: Execute each model and ascertain its fitness (Section 4.2.2).

4: Select one or two model(s) from the population with a probability based on

fitness to participate in genetic operations (Section 4.3.4).

5: Create new individual model(s) by applying genetic operations with specified

probabilities (Sections 4.3.2 - 4.3.3).

6: until an acceptable solution is found or some other stopping condition is met (e.g.,

a maximum number of generations is reached).

7: return the best-so-far individual .
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4.2 Search Spaces & Fitness in Genetic Programming

This section provides an introduction to genotypic representations of individual solutions that,

that along with GP search operators, define of the search spaces that GP will explore. We also

introduce measures of quality, or fitness, of solutions in the search space. We discuss fitness in

the context of survival analysis before formally defining the fitness measures that will be used

in this work.

4.2.1 Search Spaces in Genetic Programming

In its simplest form, representation is the data structure used to define the the solution, i.e. an

individual. However, we can also think of representation as the approach we take constructing,

modifying, and presenting the individual for fitness assessment. Since early experiments into

the automatic generation of executable structures [85] a variety of different representations have

been explored including binary string machine code [91], finite state automata [86], generative

grammatical encodings [309, 230, 65] and the dominant tree-based form [166]. Numerous al-

ternative representations have also been proposed, including graph [291], strongly-typed [210],

linear [27], linear-tree [145], and linear- graph [146].

Unsurprisingly given our knowledge of the No Free Lunch theorem [315], with so many differ-

ent representation schemes the GP literature suggests that identifying appropriate representa-

tion schemes for certain type of problems remains an open issue, and as such is an active area of

GP research [231]. There have been novel approaches proposed to address this issue, exploring

the idea that GP can potentially evolve aspects of its own representation, such as Langdon’s

research on evolving data structures [180], Spector’s investigations on autocontructive evolu-

tion [281], which co-evolve the search operators in addition to the individuals [231]. Another

more recent approach is that of GP Hyperheuristics that look to explore search the space of

all alternative algorithms and representations. In their review of open issues in GP O’Neil et

al. [231] comment that Hyperheuristics are demonstrating early potential to outperform classic

GP, and in an exciting twist, theoretical analysis suggests that a Free Lunch may be possible

through their adoption [240, 241]. Whilst there is a diverse landscape of different representa-

tion schemes, the tree-based representation scheme popularised by Koza (1992) [167] remains
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the dominant form and is the focus of this work.

Consider the tree in figure 2.8, containing the symbolic expression max(x+ x, x+ 3y). This

is the parse tree of a simple program which performs this mathematical operation, consisting

of nodes that are elements of a terminal set and a functional set described in table 4.1. The

leaves of the tree are input (predictor) variables or constants forming the terminal set, while the

internal nodes are arithmetic operators that form the functional set. Together the terminal and

functional sets form the primitive set of the GP system.

Figure 4.2: GP syntax tree representing max(x + x, x + 3y) (source: Poli at al.,

2008 [239]).

The functional set can be further subdivided into binary nodes, that take two inputs to produce

an output, and unary nodes that take a single output. The primitive set represents the building

blocks (or genetic material) that will represent the potential solutions to the problem, the indi-

viduals. Over successive generations the search operators (discussed in section 4.3) and fitness

function will be applied to these building blocks to evolve populations of individuals towards a

suitable, hopefully optimal, solution.

By defining the set of primitives, i.e., the functions, input variables, constants, along with the set

of search operators (discussed in section 4.3), we define the search space that GP will explore.

This consists of all possible solutions that can be constructed by the set of search operators in

combining the primitives.
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Table 4.1: Example of primitives in GP terminal and functional sets.

Set Type Kind of Primitive Example(s)

Function Set Arithmetic +, ∗, /

Function Set Mathematical sin, cos, exp

Function Set Boolean AND ,OR,NOT

Function Set Conditional IF − THEN − ELSE

Function Set Looping FOR,REPEAT

Terminal Set Variables x, y

Terminal Set Constants 3, 0.45

Terminal Set 0-arity functions rand , go − left

Constraing Genetic Programming Search Spaces

In order to work correctly functional primitives in GP require an important property called

closure [167]. Closure is required because subtree crossover (described in section 4.3.3 can

mix and join nodes arbitrarily. Koza [167] describes closure as being satisfied when each

function is able to accept the output of any other function or terminal as in an input and remain

syntactically correct. In traditional GAs, closure is not required as the chromosome is not

treated as an executable programme [178].

Closure is the mechanism by which valid GP search spaces are defined. In GP there are two

main approaches to ensure closure and define valid regions in the search space, often referred

to as constraint handling in the EA literature. The first approach is to exclude invalid regions of

the search space. Typically this achieved by constraining the GP system structurally or though

some type system. Examples that fit into this category include simple structural enforcement,

strongly-typed GP, and grammar-based constraints. This class of approaches result in sharp

boundaries or margins in the valid regions of the search space.

The second and most common approach is to suppress invalid regions though fitness penalty

functions, that is invalid individuals are given a significantly reduced fitness value. This kind

of approaches leads to valid regions with softer margins. However, due to some the chal-
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lenges associated with penalty functions [252], different approaches to automatically define

good penalty factors and the development of alternative methods to handle constraints is an

active area of research in GP [40, 41, 42, 49, 207, 279, 171, 252]. Several variations of pen-

alty functions have been proposed in the EA literature including static, dynamic, annealing,

adaptive, co-evolutionary, and death penalties [40, 207]. Alternative methods that have been

proposed include repair functions that attempt to ’repair’ infeasible solutions making them feas-

ible, functions that separate objectives and constraints in MO optimisation settings, and hybrid

approaches that combine other techniques such as Lagrangian multipliers or fuzzy logic.

Both these high-level approaches have their relative strengths and weaknesses, and there are

some important considerations. Excluding invalid regions leads to a smaller search space. It

does necessarily apply that a smaller search spaces mean more tractable problems as sometimes

important intermediate solutions are excluded that assist the search in finding (near-) optimal

solutions. However, if there is domain knowledge that strongly suggests a particular syntactic

constraint on the solution, ignoring it will make is much harder to find a suitable solution.

All the experiments in this thesis utilise untyped GP and closure is partially satisfied by con-

sidering inputs coded as numeric variables. In our GP system implementation, invalid regions

include invalid mathematical operations (e.g. dividing by 0) and solutions that do not repres-

ent time (e.g. do not include the time indicator variable, j in some fashion). Where genetic

operations result in invalid solutions, then fitness penalised by setting the fitness value to∞ (it

the context of a minimisation problem). This approach, often referred to as the death penalty,

effectively rejects individuals and is arguably the easiest way to constrain the search space and

is computationally very cheap. Because invalid solutions have their fitness set to an extreme

value, their fitness does not need to be calculated and no further calculations are required to

quantify the degree invalidity or infeasibility the solutions. A key drawback of this is approach

is that does not exploit any information from the infeasible solutions that may be generated by

GP to inform the search.

There have been a number of publications in the active research area of constraint handling

that suggest that the death penalty in not a good approach. For example, Coit & Smith [43]

compared the death penalty against an adaptive penalty for a problem with a highly-constrained

search space and found that the adaptive penalty approach was superior. Michalewicz [208,
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209, 206] has shown that death penalty is inferior to penalties that are defined in terms of

distance from the feasible region.

However, as small comparative study by Coello Coello [40] suggests that even the use of the

death penalty may be sufficient in some applications, if nothing is known about the problem.

However, its important to note that the same authors report that most comparative studies on

constraint handling techniques in the literature are inconclusive and cite the the "No Free-Lunch

Theorem" of Wolpert & Macready [315], suggesting that its expected that the best constraint

handling techniques for a certain type of problem will tend to exploit specific domain know-

ledge.

Despite the limitations of the death penalty, the justification for its use as the constraint handling

approach for this work was its computationally efficiency and ease of implementation combined

with the fact that little is known about the application of GP to survival analysis. As discussed

in later chapters, the computational expense of applying the developed GP approach to large

clinical datasets was a recurrent challenge, and as pointed out by researches in the field, in some

applications, the problem of finding a feasible solution might be itself NP-hard problem [279].

4.2.2 Genetic Programming Ftiness Functions

Fitness is some numeric measure of quality of each solution within the search space. The fitness

function is the interface between the solution space, and the selection operator, that guides the

GP search to regions or elements of the search space that consist of high quality solutions

that solve (or approximately solve) the problem at hand. In GP, high quality solutions are 1)

accurate, 2) parsimonious, 3) interpretable and 4) generalisable.

Accuracy

In GP, solution accuracy is highly problem dependant. For example a measure of accuracy for

a classification problem would be very different from a metric that would quantify accuracy

in a regression problem. In symbolic regression, the focus of this thesis, accuracy is typically

measured by well-known error measures, which are the differences between observed ŷ and
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expected values y. In GP, commonly used error measures include mean-absolute error (MAE,

Equation 4.1), sum-square error (SSE, Equation 4.2), mean-square error (MSE, Equation 4.3),

root-mean-square error (RMSE, Equation 4.4), and scaled-mean-square error measure (SMSE,

Equation 4.5), where scaling constants a and b are calculated via a least-squares fit. However,

a limitation of these measures is that they cannot be used to compare models across different

datasets because they are dependent on scale. Although slightly more computationally expens-

ive to calculate, R2, the proportion of variance explained by a model, is scale-free. However,

this is constrained by the assumption of linearity in the model, which would be violated if the

data significantly non-linear.

mae(ŷ, y) =
1

n

n∑
i=1

|ŷi − yi| (4.1)

sse(ŷ, y) =

n∑
i=1

(ŷi − yi)2 (4.2)

mse(ŷ, y) =
1

n

n∑
i=1

(ŷi − yi)2 (4.3)

rmse(ŷ, y) =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (4.4)

smse(ŷ, y) =
1

n

n∑
i=1

(ŷi − (a+ byi))
2 (4.5)

Parsimony

However, solution parsimony is largely problem independent. This can be measured in a num-

ber of ways for abstract genotypes. Typically parsimony measure appropriate to tree-based

GP include tree size and tree depth. Tree size is merely the number of nodes in a (sub) tree.

Tree depth is the minimal number of nodes that must be traversed to get from the root node

of the tree to the selected node. Whilst being intuitive measure complexity, these and many

other metric suffer from their coarse granularity. That is, significantly different trees may end

up with same complexity value using these metrics. To address this issue, Keijzer & Foster

(2007) [150] introduced a measure of tree visitation length, vl, defined in equation 4.6, where

c(t) denotes the number of children of the root of tree t and ti denotes the ith subtree of t [150].
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vl(t) := s(t) +

c(t)∑
i=1

vl(ti) (4.6)

For trees t of fixed size s(t), vl(t) will give smaller values for balanced trees, and larger val-

ues to unbalanced trees. It can be used to steer the GP search towards smaller well balanced

solutions [83].

Interpretability

Solution interpretability is difficult to define explicitly and its utility is highly dependent on the

application domain. For example, with solutions to sales and marketing problems, the applic-

ation domain rarely cares how the solutions works, just that it works to increase profitability.

In our case, the medical domain, interpretability is vital because it enables clinical validation.

A clinical prediction models that is an excellent predictor of some important clinical outcome

(like cardiovascular disease), is highly unlikely to be adopted or given any credibility if domain

experts cannot understand how and why its such a good predictor. Whilst we cannot mathem-

atically quantify it, solution interpretability is certainly correlated with solution parsimony.

Generalisabilty

The generalisabilty of a solution relates to its performance in a dataset other than one in which

it was trained. The phenomenon of overfitting occurs when models learn not only the true pat-

tern in the data, that may generalise to other data with similar characteristics, but also learn

the pattern of the noise which is specific only to the training data. There are many approaches

to evaluating including split sample approaches and resampling approaches, such as bootstrap-

ping and cross-validation. Typically, more parsimonious solutions offer greater generalisability,

although this isn’t always the case.

Multi-objectve Fitness

In some cases it may advantageous to combine two or more different concepts that are on

competition with each other into the fitness function. For example we could combine terms
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solution complexity, and accuracy. Such a fitness function is referred to as a multi-objective

fitness function.

State of the art GP systems are typically Multi-Objective Genetic Programming (MOGP) sys-

tems. In MOGP we optimise with respect to multiple competing fitness measures, f1, f2, ..., fn,

simultaneously. The complexity of solutions is one of the most important things to control dur-

ing a GP. In some cases a significant increase in the complexity of individuals is observed,

without a significant increaser in the fitness of the solutions. This leads to a phenomenon re-

ferred to as bloat (discussed in section 4.6), which can be disastrous for the GP run. Therefore

MOGP provides an important mechanism for controlling complexity, whist simultaneously op-

timising other objectives such as the fitness of solutions

Many different approaches have been proposed to achieve multi-objective optimisation in GP.

The most simple approach is to combine these fitness vectors in a single aggregate scalar

fitness function, such as a weighted sum. This method has been used frequently in GP to

control bloat. By combining program fitness and solution size to form a parsimonious fitness

function one can evolve solutions that satisfy both objectives [167, 326, 325, 324]. There are

many other examples in the literature of linear and semi-linear aggregations of fitness with

other objective vectors [181, 18, 168]. However, these different fitness vectors are typically

on different scales and thus estimating appropriate weights can be non-trivial. Furthermore,

Pareto-optimal (discussed in subsection 4.3.4) solutions may be become unreachable. Typically

in modern MOGP systems the objectives are kept separate, with fitness defined as a vector of

real numbers. These fitness vectors then utilised by multi-objective selection operators, that

operate on the notion of Pareto dominance, which is described in subsection 4.3.4.

Fitness in the Context of Survival Analysis

However, none of the well studied fitness (error) measures discussed thus far are suitable fitness

measures for symbolic regression in the presence of censored survival data. This because unlike

simple linear regression, where these error measures would be appropriate, there is no single

continuous outcome y, with which to compare its distance from a models estimate ŷ. Rather,

in survival problems we have a two-part outcome, with a continuous time until event value and
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a dichotomous event indicator value.

As discussed in section 3.5, there is a surprising paucity in the literature regarding the ap-

plication of GP of survival analysis and censored longitudinal data. Expanding from the

GP literature to the broader domain of AI and ML, there have been some studies, ANNs in

particular, that have evaluated the performance of non-linear methods for survival outcomes

[148, 138, 229, 248, 255, 23, 158, 329, 172, 271]. These applications often utilise either Mar-

tingale residuals [255, 158, 329] or MLE [271] in some manner to develop goodness-of-fit (i.e

fitness) measures in the presence of censored survival data.

The Martingale residual may be thought of as the difference between the observed and expected

number of events for the ith individual. In the context of survival analysis, specifically where

an individual can experience an event only once or not at all, Martingale residuals assess the

relative magnitude of individuals time-to-event in comparison to what it predicted by a fitted

model [277]. Martingale residuals have a mean of 0 across subjects and range between−∞ and

1. Positive residuals indicate that the event occurred and that it occurred earlier that predicted

- that the model "overpredicts". Negative residuals indicate that either the event did not occur

(i.e. event time was censored); or the event occurred later than predicted - that the model

"underpredicts". Equation 4.7 defines Martingale residuals for the i-th individual as:

M̂i = δi − Λ̂(ti) (4.7)

where δi is the number of events for the i-th subject between time 0 and ti, and Λ̂(ti) is the

expected numbers based on the fitted model.

However there are potential issues or limitations associated with Martingale residuals. As a

consequence of their definition (equation 4.7) Martingale residuals have a maximum of 1, are

skewed towards negative numbers, and individuals that experience the event have, on average,

larger martingale residuals than those with censored event times, which makes it difficult to use

Martingale residuals to identify poorly predicted cases [277].
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4.2.3 Devloping Ftiness Functions for Survival Analysis

Rather than a Martingale-based approach, this section proposes a MLE-based fitness func-

tion—that utilises LL as a goodness-of-fit measure—for survival analysis in censored longitud-

inal data [271]. Where LL (discussed in section 2.8.2) is used to calculate the distance between

the natural log of the predicted probability p for the event to the actual observed outcome y.

In subsection 2.8.2 we introduced survival analysis, and the fundamental quantities used to

assess the risk of event occurrence, and probability of being event-free, at a given time point as

the hazard and survival functions, respectively.

In order to develop a MLE-based GP fitness function for survival data we take advantage of

the fact that the hazard function corresponds to a conditional probability in the discrete time

domain. Below, Equation 4.8 defines the discrete-time hazard function, denoted by h(tij),

which is the conditional probability the individual i will experience the event in time period j,

given that they did not experience it in any earlier time period and the their particular values of

the set of covariates, X , in that time period [277].

ĥ(tij , X) = P [Ti = j|Ti ≥ j,X] (4.8)

This is in contrast to hazard in the continuous-time domain, which represents a rate, and as such

can take values greater than one. The corresponding discrete-time survial function, denoted

Ŝ(tij , X), is defined below in equation 4.9.

Ŝ(tij , X) =

j∏
k=1

ĥ(tik, X) (4.9)

It follows that the original survival analysis problem can be cast into a classification problem

that requires the estimation of a conditional probability. However, to address the problem of

censoring the data needs to pre-processed into the counting process format, where there are

multiple rows per subject, one for each observed discrete-time interval. An example of survival

data in this format is given in table 4.2, where X is the set of P covariates, and x1 represents

a time-independent variable (e.g. gender), and xP a time-varying covariate (e.g. cholesterol).

Note this advantageous feature of the counting time format, that it can inherently represent a

combination of time-varying and static covariates.
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Table 4.2: Example of survival data in the counting process format

PATID (i) Time (j) Event x1 ... xP

01 1 0 1 ... 0

01 2 0 1 ... 1

02 1 0 0 ... 1

02 2 0 0 ... 0

02 3 1 0 ... 1

Now that we have the data in this format we can reformulate h(tij) as the conditional prob-

ability h(tij) = P (EV ENT |X ′), where X ′ is a vector, consisting of the original vector of

covariates (or features), X , plus an additional time period indicator, j.

Now we can estimate P (EV ENT |X ′) using the likelihood and prior ratios with a logistic link

function. Below, equations 4.10 to 4.10 shows the derivation of the logistic link function.

h(tij) =
1

1 + e−ε
(4.10)

In the case where ε is a linear combination of covariates X ′ (including time indicator j), this

represents a logistic regression model, which can be optimised using standard statistical tech-

niques such as Newton-Raphson method. Below, Equation 4.11 defines εlp a linear predictor

for discrete time survival analysis.

εlp = {[α1D1ij + α2D2ij + ...+ αJDJij ] + [β1X1ij + β2X2ij + ...+ βPXPij ]} (4.11)

In this definition Dij is a ’dummy’ time indicator (described in table 4.3), a dichotomy whose

value indexes the time period j in the ith individual, P is the number of predictors (or covari-

ates) and J is the number of observed time periods.

However, if we adopt a more complicated relationship for ε using a symbolic expression, we

can model a non-linear relationship between hazard and covariates. It can be optimised by GP

search operators, using the following likelihood function. Below, Equation 4.12 defines the
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Table 4.3: Example of ’dummy’ time indicators

PERIOD D1 D2 ... DJ−1 DJ

1 1 0 0 0 0

2 0 1 0 0 0

... 0 0 ... 0 0

J − 1 0 0 0 1 0

J 0 0 0 0 1

Likelihood function for the discrete-time hazards model Likelihood.

Likelihood =

n∏
i=1

Ji∏
j=1

h(tij)
EVENT ij (1− h(tij))

(1−EVENT ij) (4.12)

Here EVENT ij is a dichotomy representing the event indicator of the ith individual at the jth

time interval. We define n is the number of subjects in training data and Ji as the number

observed time periods (or terms) the ith individual contributes to the likelihood function.

To make optimisation through the GP search operators more computationally tractable, we take

the logarithm of the likelihood to form a fitness function for survival analysis in censored data

of the counting process format. Below, Equation 4.13 defines the fitness function ffsurv.

ff surv = −
n∑
i=1

Ji∑
j=1

EVENT ij log h(tij) + (1− EVENT ij) log(1− h(tij)) (4.13)

The fitness function expresses the joint probability of obtaining the data actually observed on

the subjects in the study as a function of the unknown population parameters.

There are similarities between this and the Martingale-based approaches in the sense that they

both attempt to quantify some distance (or error) between predicted likelihood of events and

observed event outcomes, inherently accounting for censoring. These two approaches differ

in that Martingale approaches use event times and rates (e.g. the cumulative hazard function)

whereas the MLE approach uses conditional probabilities in the discrete time domain.
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This does give the Martingale approach the advantage of not requiring the data to be processed

into discrete time segments, as is required for the MLE approach. However, the Maximum

Likelihood-based method does not appear to suffer from the same biases as the Martingale-

based approaches. This, and the fact that most logistic regression techniques use MLE to

estimate the unknown parameters, were reasons that a MLE-based method was developed for

this work in favour of a Martingale-based one.

4.3 Genetic Programming Search Operators

In GP the evolutionary process is implemented through the application of search operators,

i.e., operators for population initialisation, selection, and variation. These operators define

how the GP system will navigate through the set of possible genotypic solutions. GP departs

significantly from other evolutionary algorithms in the way it implements variation operators,

and the actual implementation of initialisation and variation operators is often specific to the

GP representation scheme being used [239].

This work focuses on the well-known traditional approach to GP popularised by Koza (1998) [167],

which use binary parses trees to represent individual solutions. In subsections 4.3.1-4.3.4 we

introduce initialisation, mutation, recombination, and selection operators, appropriate for tree

representations, that will be employed in our subsequent experiments. We also briefly review

some of the other tree-based search operators, but a full review would be outside the scope of

this work. For a detail review see excellent introductory texts from Poli et al., (2008) [239] and

Banzhaf et al., (1998) [17].

4.3.1 Initialisation Operators

The first step in performing GP is the initialisation of a starting population. This involves

the application of intialisation operators to create a variety of trees for subsequent evolution.

Initialisation may also be used by certain variation operators and search heuristics to generate

new subtrees, as a means of injecting some new genetic material into the population during the

GP run which helps to preserve Population diversity.
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Population diversity is valuable in property in GP. The trees developed can vary in term of

their size, depth, width, and the number of leaf (i.e. terminal) nodes. Whilst the shape of the

initial trees can be lost in a few generations, the diversity of the of the initial population is an

important factor that can effect the quality of the solutions that the GP system can develop. The

initial population provides (the majority of) the building blocks or genetic material that will

be evolved (section 4.3) to (hopefully) find a high quality solution to the problem. Thus if the

diversity of trees in the initial population is low or biased (i.e. they are very similar) then the GP

system has less to work with, conversely if the initial population is diverse the the GP system

and more to work with. Whilst the application of genetic variation operators, either thought

mutation or adding newly initialised individuals, can introduce new, previously unseen genetic

material (discussed in section 4.3), these are typically applied at a low rate and therefore the

(genetic) diversity of the initial population is important.

Random Initialisation

Like most evolutionary algorithms, in GP an initial starting population is typically generated

randomly. The elements of the primitive set (section 4.2.1), the GP building blocks, are com-

bined randomly to produce a initial population of trees.

There are many different approaches to randomly generating this initial population of trees.

In the full method (so named because it generates full trees, i.e. all leaves are at the same

depth) nodes are taken at random from the function set until the maximum tree depth is reached

(beyond that depth, only terminals can be chosen) [239]. Although the full methods generates

trees that are all of the same depth, this doesn’t necessarily mean that all the tress are of the

same size (i.e. the total number of nodes) or shape. This is only the case when the function

set contains only functions with the same arity. The arity of a function is the number of the

arguments accepted by a function. However, even when the function set consists of mixed-

arity functions, the sizes and shapes of the trees generated by the full method tend to be rather

limited [239].

In contrast, the grow method produces irregular trees because the nodes are selected from the

whole primitive (i.e. functions and terminals) set at random throughout the entire tree [17].
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Once a branch has selected a terminal, that branch is ended, even if the maximum tree depth is

reached. If the tree depth is reached by a given branch then a terminal node is selected. A key

limitation of the full and grow initialisation operators is that neither provide a diverse range of

sizes and shapes, and can lead to a uniform set of structures in the initial population because

the routine is the same for all individuals [17].

To prevent this Koza [167] proposed a combination of these two methods, called the ramped

half-and-half method, intended to enhance the population diversity from the outset. Half the

initial population is constructed using full and half is constructed using grow. This is done

using a range of depth limits (hence the term "ramped") to help ensure that we generate trees

having a variety [239]. The ramped half-and-half method most commonly used initialisation

operator in tree-based GP.

Below, Equation 4.14 defines the random initialisation operator, init. Here, P ∈ [0, 1] denotes

the set of probabilities, i.e., real numbers in the interval between 0 and 1. The set of functions

with arity equal to or greater than one is denoted by F>0 [83].

init(n, ps, pv) = I(0, n, ps, pv)

I(i, n, ps, pv) =



f(I(i+ 1, n, ps, pv), . . . , I(i+ 1, n, ps, pv)︸ ︷︷ ︸
arity(f)

) if ru(0, 1) < ps and i < n.

rdu(V ) if ru(0, 1) < pv.

rdu(F0) otherwise.

f = rdu(F>0) (4.14)

Random initialisation creates trees of maximum depth n. A subtree is created with probability

ps at each recursive step. If no subtree is created, an input variable is created with probability

pv, else a constant is created. The full initialisation strategy can be realised by setting ps := 1

and pv := |V |/(|V |+|F0|), the ratio between the number of input variables and the number

of terminals, where only full trees of depth n are created. By setting pv as in the full strategy

and ps := |F>0|/|V |+|F |, the ratio of the number of functions of arity equal to or greater than

one and the number of all functions and input variables, the grow initialisation strategy can be

realised.
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Other Initialisation Operators

Whilst Koza’s ramped half-and-half method is the most common, there are several other ways

of constructing a population (pseudo) random individuals. As stated by Poli et al. (2008) [239],

the shape of the initial trees can be lost within the first few generations and a good initial

population can be crucial to the success of a GP run. The search space often consists of an

infinite number of possible solutions and thus it is impossible to search them all in a uniform

fashion. Therefore any approach to construct an initial population of solutions will be subject

to bias [239].

For example, the ramped half-and-half method tends to produce bushy trees which may on

average be better for some types of problems (such as parity problems), but may not be the best

approach for other types of problems. This is demonstrated by the fact that the ramped half-

and-half method is poor at finding solutions to the Sante Fe ant trail-following problem [176].

Another potential issue is that trees produced by the ramped half-and-half method may just be

too small for some problems. Chellapilla (1997) [37] claims good results are achieved when

the size of the initial trees was more tightly controlled.

Other methods have been proposed that sample trees uniformly based on Alonso’s bijective

algorithm [7, 132, 24, 173]. These more "uniform" initialisations on average tend to produce

more asymmetric trees, in contrast the symmetric trees that are generally constructed by the

ramped half-and-half method. Therefore, uniform sampling and other initialisation methods

may serve as important alternative for certain problems.

Of course, the initial population need not be generated in a random fashion. If something is

known about likely properties of the desired solution, whether produced from a previous GP run

or perhaps constructed by the user, symbolic expressions having these properties can be used

to seed the initial population [4, 129, 175, 179, 308]. However there are some considerations

when seeding an initial population. Just as the shape of the initial trees can be lost within the

first few generation, so can a few high-fitness solutions dominate the population in the first

few generations, leading to rapid loss in genetic diversity. Poli et al. (2008) [239] suggest that

diversity preserving techniques, such as MOGP [234, 270], demes [180], fitness sharing [96]

and the use of multiple seed trees, might be good cures for the problems associated with the
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use of a single seed.

4.3.2 Mutation Operators

Mutation only operates on one individual. Mutation operators were applied in early work in

the evolution of programs [21, 51]. However, Koza, who is credited for popularising the field,

did not use mutation in his seminal work in field [167]. This work has had a wide influence

and mutation is often omitted. However, more recent comparisons of crossover and mutation

suggest that including mutation can be advantageous [239]. Chellapilla (1997) [37] found

that a combination of six mutation operators performed better than previously published GP

work on four simple problems. Harries and Smith (1997) [113] also found that mutation-based

hill climbers outperformed crossover-based GP systems on similar problems. In modern GP

applications mutation is used widely. Whilst its true that you don’t need to use mutation in

GP, there doesn’t appear to be any consensus in field on its relative merits. It has also been

suggested that, when the problem is complex, the relative merits of variation operators are not

only dependent on the problems but also on the actual implementation of the GP system [197].

Subtree Mutation

Below, Equation 4.15 defines the subtree mutation operator, muts. In this definition v ∈ V

denotes an input variable [83].

muts(f(t1, . . . , tn), n, p, pi, ps, pv) =



init(n, ps, pv) if ru(0, 1) < p and ru(0, 1) < pi.

init(0, ps, pv) if ru(0, 1) < p and ru(0, 1) ≥ pi.

f(muts(t1, n, p, pi, ps, pv),

. . . ,muts(tn, n, p, pi, ps, pv)) otherwise.

muts(v, n, p, pi, ps, pv) =


init(n, ps, pv) if ru(0, 1) < p and ru(0, 1) < pi.

init(0, ps, pv) if ru(0, 1) < p and ru(0, 1) ≥ pi.

v otherwise.

(4.15)
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Subtree mutation is the most commonly used mutation operator is tree-based GP,

where a mutation point is randomly selected and the subtree below this point is de-

leted and replaced with a randomly generated subtree or terminal node. The altered

individual is then placed back into the population. The maximum size and shape of

the newly generated subtree can be controlled by the parameters n, ps, and pv, with

the same semantics as equations 4.14. The strength of the mutation operator is con-

trolled by, p, the probability of replacing a subtree of a node with a randomly generated

subtree at each recursion of the tree. The parameter pi is the probability that a newly

generated subtree will be a terminal, controlling the tendency of the operator to grow

or shrink trees. Subtree mutation is described graphically in figure 4.3. The new ran-

domly generated subtrees are typically produced according to the same initialisation

scheme, with the same limitations (e.g. in terms of depth and/or size) as the initial

population.

Figure 4.3: Example of subtree mutation (source: Poli at al., 2008 [239])

Point Mutation

Below, Equation 4.16 defines the point mutation operator mutp. In this definition

v ∈ V denotes an input variable [83].
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mutp(f(t1, . . . , tn), p) =

f
′(mutp(t1, p), . . . ,mutp(tn, p)) if ru(0, 1) < p.

f(mutp(t1, p), . . . ,mutp(tn, p)) otherwise.

mutp(v, p) =

rdu(V ) if ru(0, 1) < p.

v otherwise.

f ′ = rdu(Farity(f)) (4.16)

Point mutation analogous to mutation in GA, where bits are flipped. In GP a node in a

tree is selected at random and replaced with randomly selected node of the same arity

and type. This way functions are replaced buy function and variables by variables. The

probability to replace the current node when recursively traversing the tree, denoted p,

controls the strength of the operator. It important to note that point mutation preserves

the shape of the tree.

Constants at Random Mutation

Below, Equation 4.17 defines the constantat at random mutation operator, mutc. In

this definition v ∈ V denotes an input variable. This operator assumes the presence of

numeric constants R ⊆ F0 denotes an input variable [83].

mut c(f(t1, . . . , tn), p, µ, σ) =


f + rn(µ, σ) if ru(0, 1) < p and f ∈ R.

f(mut c(t1, p, µ, σ),

. . . ,mut c(tn, p, µ, σ)) otherwise.

mut c(v, p, µ, σ) = v (4.17)

Here, f ∈ R denotes a real-valued function of arity, i.e., a constant. The constant at

random mutation operator mutates constants by adding random noise drawn from a

Gaussian distribution with mean µ and standard deviation σ. As before, the strength of

the operator is controlled by, p, the probability of mutating a constant at each recursion.

Each change to a constant is considered a separate mutation.
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Other Mutation Operators

In contrast to GA where mutations is simply flipping a bit in a bit string, in GP there are

many different types of mutation operators that can be applied to trees. Often multiple

types of mutation are beneficially used simultaneously [170, 10]. Table 4.4 gives a

brief overview of what types of mutation operators have been used with trees.

Table 4.4: Mutation operators applied in tree-based GP

Operator Name Description of effect

Subtree Subtree exchanged with random subtree [167, 160]

Size-fair subtree Subtree exchanged with random subtree that is, on average,

the same size [160]

Point Single node exchanged with random node of the same

class [203]

Hoist New individual is generated from subtree [161]

Shrink Subtree exchanged with a random terminal [10]

Expansion Terminal exchanged with a random subtree

Permutation Arguments (subtrees) of a node are randomly per-

muted [167, 201]

Constants at random Add noise to constant, according to a Gaussian distribu-

tion [268]

4.3.3 Recombination Operators

GP recombination operators or crossover operators take genetic material form two

selected ’parent’ trees and swaps part of one parent with another, combing them to

form one or two new ’offspring’ trees. In GP the most common form of crossover

is tree-based crossover, often referred to as subtree crossover. Subtree crossover is
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described graphically in figure 4.4. The parents are shown on the left and the offspring

on the right. More specifically:

• Using some selection scheme (described in section 4.3.4, choose two solutions

from the current population to act as parents

• Randomly select a node in each parent to act a crossover point.

• Delete all branches (i.e. the subtree) below the crossover point in each parent

(shaded areas in figure 4.4).

• Recombine (i.e. crossover) the remaining partial trees at their respective cros-

sover points to form a new tree to act as an offspring .

Note, that it is possible to define a version of subtree crossover that can produce two

offspring, but this is not commonly used [239].

Figure 4.4: Example of subtree crossover. Note that the trees on the left are ac-

tually copies of the parents. So, their genetic material can freely be used without

altering the original individuals (source: Poli at al., 2008 [239]).
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Subtree Crossover

Below, Equation 4.18 defines the subtree crossover recombination operator, recs. [83].

recs(t, u) = (tJi 7→ u[j]K, uJj 7→ t[i]K)

i = rdu({0, |t|}) (4.18)

j = rdu({0, |t|})

In this definition, t[i] denotes the ith subtree of tree t, where t[0] = t. The notation

tJi 7→ uK denotes the tree t whose ith subtree has been replaced by tree u. The number

of subtrees of a tree is written as |t|. The subtree crossover operator randomly selects

a crossover point in each parent expression and swaps the corresponding subtrees, re-

turning two offspring trees.

Other Recombination Operators

In this definition of subtree crossover the selection of subtrees, through the selection of

a crossover point, is selected with uniform probability. Uniformly selected crossover

points can lead to the crossover of limited genetic information (i.e. small subtrees) . To

address this the selection of subtrees can be biased so that subtrees containing terminal

are selected with a lower probability than other subtrees. Koza (1992) [167] proposed

a widely used approach of choosing functions 90% and terminals 10% of the time to

counter this problem.

During biological sexual reproduction, the genetic material from the parents appears

in approximately the same place in the child. This is quite different from traditional

tree-based GP crossover, which can move a subtree into a totally different position in

the tree structure. One-point and context preserving are examples of homologous cros-

sover operators, they preserve the position of the genetic material through the use of a

common crossover point in the parent trees. There are many other types of homolog-

ous crossover operators that have also been proposed for tree-based GP [44, 173, 191,
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198, 321]. The prominent crossover operators that are applicable to trees are detailed

in table 4.5.

Table 4.5: Crossover operators applied in tree-based GP

Operator Name Description of effect

Subtree Exchange subtrees between individuals [167]

One-point Exchange subtrees if coordinates match and subtrees have

same shape [177, 242, 244]

Uniform Exchange nodes randomly between individuals, with uni-

form probability [243]

Context preserving Exchange subtrees if coordinates match [69]

Size-fair Exchange subtrees between individuals that are, on average,

the same size [173]

4.3.4 Selection Operators

As mentioned previously, in GP, the the evolutionary process is a search that is facil-

itated through search operators. As part of this search GP uses selection operators to

choose m individuals, from a pool of n individuals, that will be subject to genetic vari-

ation (parent selection), or for transfer into the next generation (survival selection). As

with most EAs, GP employs fitness-based selection, where individuals are selected as

parents or survivors, either deterministically or probabilistically, based on fitness. That

is better solutions are more likely to be selected as parents or survivors, than inferior

solutions. The selection of individuals as parents or survivors is a trade-off between

exploitation of high-quality individuals, and exploration of the search space thought

through the selection of average-quality solutions (which may act as intermediate solu-

tions in the search path later lead to individuals of even higher quality).

As well being either deterministic or probabilistic, search operators can be single-
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objective or multi-objective. Furthermore, search operators can be classified along a

spectrum between non-elitist and elitist, dependent on how they value exploration over

exploitation. There are numerous selection mechanisms, which have been described

many times in the EA literature. A full review of all these approaches is outside the

scope of this thesis, Goldberg (1989) and Luke (2013) [96, 195] provide discussion on

various selection mechanisms.

Single-Objective Selection

The most commonly employed single-objective selection operator in GP is tournament

selection [239]. Figure 4.3 in section 4.4.1 gives a pseudocode implementation of the

tournament selection operator used in this work. In tournament selection a number of

individuals are selected at random from the current population to compete in the tour-

nament. From the pool of competitors, the individual with the best fitness in selected as

the winner of the tournament, and selected for genetic variation. If the genetic operator

to be applied is crossover, two tournaments are used, one for each parent.

A key property of any selection mechanism selection pressure. A system with strong

selection pressure very highly favours fitter individuals, whilst a system with low se-

lection pressure isn’t so discriminating [239]. Tournament selection automatically res-

cales fitness, keeping the selection pressure constant. This is because tournament only

looks at the relative fitness, though ranking the competitors based on fitness, rather

than how much fitter they are. In this way, an exceptionally fit individual cannot im-

mediately swamp the future generation with its children, which would have disastrous

consequences on the GP run due to a drastic reduction in the diversity of genetic ma-

terial available to future generations. Conversely, tournament selection amplifies small

differences in fitness, to prefer better solutions even if they are only marginally better

than the other individuals in the tournament. In tournament selection, the tournament

size parameter allow researchers to adjust the selection pressure, as such control the

degree of elitism.
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A disadvantage of tournament selection is the noise that is introduced thought the ran-

dom selection of individuals for participation in the tournament. This mean that indi-

viduals with average fitness can have some chance of being selected and their offspring

featuring in future generations. Despite this drawback, since tournament selection is

easy to implement, offers some control of elitism, and offers automatic fitness rescal-

ing, it is commonly used in GP.

Multi-Objective Selection

As discussed in subsection 4.2.2 the fitness function acts as an interface between the

solution space and the selection operator, guiding GP though the search space towards

high-quality solutions. In section 4.2.2 we also discussed that it is often highly desir-

able to employ a multi-facetted definition solution quality. Thus a fitness values can

be a vector of different quality elements such as accuracy, parsimony, interpretability,

and generalisability. Single-objective selection operators can only be used with fitness

vectors when an aggregate scalar fitness value (such as a weighted sum) is used. How-

ever, as previously discussed identifying suitable weightings is non-trivial and often

precludes this approach.

A alternate approach that is gaining popularity is to adopt a multi-objective selection

operator than can handle multiple separate quality criteria directly. The most com-

mon forms of multi-objective selection are lexicographic selection and Pareto selec-

tion. Lexicographic selection uses a lexicographical ranking of fitness vectors. Using

the example where accuracy and parsimony are the objectives; lexicographic selection

ranks subjects based on fitness, and where there are individuals that are tied having

the same fitness value, the individual with the lower complexity is assigned the higher

ranking [195].

Pareto selection operators are based on the notion Pareto dominance. Given a set

objectives and two candidate solutions, A and B. A is said to Pareto dominate B if A is

at least as good as B in all objectives, and superior to B in at least one objective. You
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could say that, A is at least as good everywhere and better in something. In Figure 4.5,

an example taken from Poli et al. (2008) [239], individual A dominates (is better than)

individual B along the y axis, but B dominates A along the x axis. Thus there is no

simple ordering between then. This illustrates the notion of a partial order, where there

is no longer a strict linear ordering of solutions. The individual marked ’2’, however

dominates B on both axes and would thus be considered strictly better than B.

Figure 4.5: Two-dimensional example of Pareto optimality and the Pareto front,

where the goal is to maximise along both the x and y axes. Solutions A and B do

not dominate each other. However, solution B is dominated by solution 2. (source:

Poli at al., 2008 [239]).

When A and B are identical in all objectives, or like in our example, if B is better in

some things but A is better in other things, the solutions are said to benon-dominated.

In this case the goal of the search operator is find the Pareto font, this is, the set of all

non-dominated solutions in the search space.

In such a scenario there is said to be no Pareto-optimal set of solutions, but the selection

operator needs to select some set of solutions. To address this we quantify how close

solutions are to the Pareto front. One popular method is Non-Dominated Sorting (NDS)

by Srinivas and Deb (1994) [282], which based on the notion of Pareto front rank. Luke

(2013) [195] offer a nice introduction, describing NDS as "like peeling an onion".

Fitness vectors in Pareto front get a rank of one. They are then removed, the front
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recalculated, and the fitness vectors in this second Pareto font get a rank of two, and so

on. NDS continues to iterate until every fitness vector has a Pareto rank.

Pareto selection operators selects fitness vectors from consecutive Pareto fronts until

the specified number of m fitness vectors are selected. In some cases there may be

more fitness vectors in a given Pareto front than are required. In this case the selection

operator needs to adopt some strategy for choosing a subset of fitness vectors in a

particular Pareto front. The most common strategies are based on crowing distance and

hyper volume contribution, implemented by the NSGA-II [64] and SMS-EMOA [20]

algorithms, respectively.

Pareto-based selection methods have a number of advantages. The main advantage

(and the motivation behind their initial application in GP) is the control of bloat, where

practitioners can manages the trade-offs between solution quality and solution com-

plexity. Of course, dependent of specific problem, the simultaneous optimisation of

other objectives can be advantageous for a GP run. Another advantage is that by

basing selection criteria on multiple objects we can help ensure genetic diversity in

the GP run. MOGP is increasing popular with many state of the art GP using Pareto

selection. All of the experiments in this thesis use multi-objective selection based the

Pareto dominance.

Lexicographic ordering and Pareto dominance are not the only ways to deal with mul-

tiple objectives without combining them into a single scalar fitness function. Alternate

approaches have been proposed that include weaker forms of Pareto dominance and

new methods based on priorities [267] and those which combine Pareto dominance

and lexicographic ordering [196].

Population Diversity Preservation

Although much of the application multi-objective optimisation to GP has been in the

area of bloat control, discussed in section 4.2.2, preserving diversity in the popula-
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tion is another important consideration. As discussed in section 4.3.1, a rapid loss in

genetic diversity can have disastrous consequences for a GP run. Without some mech-

anism to preserve diversity in a population (i.e. promote exploration), searches can

easily converge to solutions that are too small to solve a problem. One such approach

is use a multi-objective search with some measure of diversity as an objective, typ-

ically whilst simultaneously controlling for bloat (parsimony), and optimising fitness

(accuracy) [258]. A particularly successful multi-objective approach by Schmidt and

Lipson (2010) [266], the age-layering technique, uses the notion of the age (how long

the genotype has been in the population) to ensure diversity. Using a multi-objective

search operator, a dynamic variant of the age-layering technique is realised by adding

solution age as an objective to be optimised. Many other approaches to diversity pre-

servation have been proposed by the EA community including demes, random restarts,

crowding, and fitness sharing.

4.4 Search Stratergy

Now that we have introduced the individual components such as primitives, initial-

isation, variation, fitness, and selection, we put them together using an overarching

GP search strategy, or in machine learning terminology, a GP search heuristic. In GP

search heuristics can be classified into two broad groups, generational and steady-state.

With generational search heuristics, the entire populations is updated once per itera-

tion. Whereas with steady-state heuristics, there are no generations per se and only a

few individuals are updated per iteration.

Typically GP is implemented using a steady-state search with tournament selection.

Modern GP systems typically use a multi-objective evolutionary algorithms (MOEA)

as their search heuristic. The majority of today’s best performing GP systems use

steady-state algorithms with Pareto tournament selection. This popularity, whether for

simple teaching examples or complex real-world systems, is that they are relatively
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simple to implement and allow straight-forward parallelisation. Despite this, simple

steady-state EAs with single-objective tournament selection are widespread [239].

This section describes the set of GP search strategies, group by steady-state and gen-

eration, that have been selected for this study. Search heuristics were selected from

those available from the RGP package [84, 83] within the R statistical programming

language [247], discussed in section 4.7. We implement the popular steady-state heur-

istic with single-objective tournament selection, SSOGP, that is implemented in many

existing GP systems. To explore the utility of a generational approached have chosen

to implement Generational Single-Objective Genetic Programming (GSOGP), and to

explore the utility of multi-objective GP we have implemented Generational Multi-

Objective Genetic Programming (GMOGP). Unfortunately there wasn’t a multi-objective

version of the steady-state search heuristic available in the RGP package at the time of

writing. An overview of the important features and attributes of the search strategies

selected for this work is given in Table 4.6.

Table 4.6: Overview of the important features and attributes of the GP search

heuristics described in this work..
SSOGP GSOGP GMOGP

Optimisation Criteria Fitness Fitness Fitness, Com-

plexity, Age

Selection Framework Steady-state Generational (µ+

λ)

Generational (µ+

λ)

Parent Selection Uniform random Uniform random

or rank-based

Uniform random

or NDS

Variation rec → mut rec → mut rec → mut

Survivor Selection Rank-based Rank-based NDS

Diversity Preservation - - Age-Fitness

Pareto Optimisa-

tion (AFPO)
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4.4.1 Steady-State Single-Objective Genetic Programming

In steady-state GP there are no fixed generational intervals. Instead the population is

updated in a piecemeal fashion rather than all at one time, with a continuous flow of

individuals meeting, mating and producing offspring. The idea is to iteratively breed

a small number of offspring, access their fitness, and, if the they have superior fit-

ness, these offspring replace existing individuals in the same population. The method

is simple to implement and has some efficiency benefits together with benefits from

parallelisation.

"The approach is called steady-state because the genetic operators are applied asyn-

chronously and there is no centralised mechanism for explicit generations. Neverthe-

less it is customary in presenting results with steady-state GP to talk about generations.

In fact steady-state generations are intervals during training which can be said to cor-

respond to generations in a generational GP algorithm. These intervals are often when

fitness is evaluated for the same number of individuals as the population size" [17]

This heuristic has been implemented as a minimal example of the most common and

easy to implement GP search strategy. It is intended to act as baseline for comparison

with more complex single- and multi-objective generational approaches in the devel-

opment of clinical prediction model for censored data.

Algorithm Structure

Here we describe simple single objective steady-state GP as it is implemented in RGP,

which is loosely based on Koza’s original work on GP [167]. In the first step we initial-

ise population pop(0) with µ random individuals, before entering the main evolutionary

loop. Next we randomly choose a variation operator, according to parameter prec . Note

that the choice between recombination and mutation in mutually exclusive, that either

variation operator is applied, but not both. If the variation operator is recombination,

two parents are selected via two independent tournaments, each of size stournament, as
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detailed in the next subsection. If the variation operator is mutation, then one parent

is selected via a single tournament. Next, a single child is created by applying the

variation operator to the parent(s). Then, an individual from the population is selected

for replacement by the new offspring, via a single (negative) tournament, again, of size

stournament . Finally, the newly created child is inserted into the population in place

of the selected individual. This evolutionary process is repeated until the termination

criteria is fulfilled. Pseudocode for this simple steady-state search heuristic is given in

Algorithm 4.2.

Algorithm 4.2 Pseudocode implementation of the SSOGP search heuristic. [83]
1: pop← createIndividuals (number = µ)

2: while termination criterion not met do

3: if randomUniformNumber() ≤ prec then . uniform random numbers [0, 1]

4: mother← tournament(pop, stournament )

5: father← tournament(pop, stournament )

6: child← rec (mother, father)

7: else

8: parent← tournament(pop, stournament )

9: child← mut (parent)

10: end if

11: replaced← negativeTournament(pop, stournament )

12: pop[replaced]← child

13: end while

14: return pop
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Selection Stratergy

Tournament selection is implemented in RGP as follows. First an individual is ran-

domly selected, with a uniform probability and without replacement, from the popu-

lation. This starting individual is designated as the bestIndividual and its fitness the

best fitness. Then iterate the following steps until the number of individual selected

equals stournament . We randomly select another individual from the population, in the

same manner as before, to act as a competitor. If the competitor has a better fitness

than the best individual, then it becomes the bestIndividual and its fitness becomes the

bestFitness, else nothing. We then iterate through the for loop until we have evaluated

stournament individual. Finally, when the loop is finished, we return the bestIndividual.

Negative tournament selection is very much the same process, only that we return in-

dividual with the worst fitness (rather than the best). Note that this is very simple

implementation of single-objective tournament selection, in practice there are much

more complicated variants and extensions. Pseudocode for this tournament and negat-

ive tournament selection is given in Algorithm 4.3.

Diversity Preservation

In the simple single-objective steady-state search heuristic implemented in RGP there

isn’t any mechanism to preserve genetic diversity in the population. However, it could

be extended with minimal effort using external measures such as random restarts, fit-

ness, sharing and crowding. Such extensions have not been implemented in this work

for the sake of simplicity.

Parameters

Table 4.7 details the most important parameters appropriate to the RGP implementation

of SSOGP. Selection of suitable stating parameter was discussed in section 4.5, but the
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Algorithm 4.3 Pseudocode implementation of tourament selection [83]
1: function TOURNAMENT(pop, stournament )

2: bestIndividual← sampleWithoutReplacement(pop, number = 1)

3: bestFitness←∞

4: for i in 1 : stournament do

5: competitor← sampleWithoutReplacement(pop, number = 1)

6: if fit(competitor) < bestFitness then

7: bestFitness← fit(competitor)

8: bestIndividual← competitor

9: end if

10: end for

11: return bestIndividual

12: end function

13: function NEGATIVETOURNAMENT(pop, stournament )

14: worstIndividual← sampleWithoutReplacement(pop, number = 1)

15: worstFitness←∞

16: for i in 1 : stournament do

17: competitor← sampleWithoutReplacement(pop, number = 1)

18: if fit(competitor) > worstFitness then

19: worstFitness← fit(competitor)

20: worstIndividual← competitor

21: end if

22: end for

23: return worstIndividual

24: end function
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important thing to note is the relatively large population size, compared with generation

GP search heuristics.

Table 4.7: Parameters of the SSOGP search heuristic.
Variable (Symbol) Domain Default

Population Size mu (µ) N 300

Tournament Size tournamentSize (stournament ) N 2

Recombination Probability recombinationProbabilty (prec) [0, 1] 0.9

4.4.2 Generational Single-Objective Genetic Programming

GSOGP is a single-objective generational GP search heuristic based the very simple

(µ+λ) ES algorithm, as described by Like (2013) [195]. In this strategy, µ parents are

allowed to breed λ offspring. Then parent and offspring are pooled together, resulting

in a pool of µ + λ parents, from which the best µ are selected for the next generation.

In state of the art GP systems single-objective search heuristics have been superseded

by multi-objective searches, however this search strategy was included mainly as a

baseline for comparison and explore the idea that survival analysis could be solved

using a more simple single-objective approach.

Algorithm Structure

The classic single-objective generational (µ+ λ) evolutionary strategy is implemented

in RGP as follows. First, we initialise population pop(0) with µ random individuals,

before entering the main evolutionary loop. Next, with random uniform probability and

without replacement, we randomly choose 2×λ individuals to act as parents. Then we

take the first λ parents to act as mothers, and the second λ parents as fathers. Next we

create λ offspring by applying the recombination operator to mothers and fathers. Then

we apply mutation operator to the offspring. Next we insert the newly created offspring
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into the population to give us a pool of µ + λ individuals to select from. Finally we

use rank-based selection to select the best µ individuals form the selection pool, to

act as the next generation. This evolutionary process is repeated until the termination

criteria is fulfilled. Pseudocode for this simple generational search heuristic is given

in Algorithm 4.4. Note that for efficiency reasons RGP would also store the fitness of

each individual as it is calculated to avoid recalculating in subsequent iterations.

Algorithm 4.4 Pseudo-code implementation of the GSOGP search heuristic. [83]
1: pop← createIndividuals (number = µ)

2: while termination criterion not met do

3: parents← sampleWithoutReplacement(pop , number = 2× λ)

4: mothers← parents [1 : λ]

5: fathers← parents [ (λ+ 1) : 2× λ]

6: children← mutpop (recpop(mothers , fathers))

7: selectionPool← parents ∪ children

8: survivors← selGSOGP (selectionPool , number = µ)

9: pop← survivors

10: end while

11: return pop

Selection Stratergy

In RGP the selection operator selGSOGP implements the rank-based selection scheme.

Individuals are ranked according to their fitness, and the n highest ranked (best) indi-

viduals are selected. This is very simple version of this selection scheme. There are

extensions where individuals are assigned a selection probability as a function of their

rank in the population. There are a number of such functions proposed, with the linear



100 4.4 Search Stratergy

and exponential being the most common. For the sake of simplicity these extensions

to the rank-based selection scheme were not implemented in this study.

Diversity Preservation

As with previous single-objective search strategy, there is no mechanism to preserve

genetic diversity implemented in RGP for this search heuristic.

Parameters

Table 4.8 details the most important parameters appropriate to the RGP implementation

of GSOGP. Note that λ should be a multiple of µ and follow the constraint λ ≤ (µ
2
).

Table 4.8: Parameters of the GSOGP search heuristic.
Variable (Symbol) Domain Default

Population Size mu (µ) N 100

Children per Generation mu (λ) N 50

4.4.3 Generational Multi-Objective Genetic Programming

GMOGP is a generational multi-objective GP search heuristic, based on a classical

generational (µ + λ) strategy discussed previously. This approach combines the ideas

of multi-objective GP, to control bloat (solution complexity) whilst optimising solu-

tions fitness. A third objective is also added, age, that assists in preserving genetic di-

versity. This heuristic has been implemented to explore the idea that a multi-objective

generational approach can offer improvements over the less complex single-objective

approaches in the development of clinical prediction model for censored data.
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Algorithm Structure

The classic multi-objective generational (µ + λ) evolutionary strategy is implemented

in RGP as follows. First, we apply the initialisation operator to initialise population

pop(0) with µ random individuals, before entering the main evolutionary loop. Next,

according to the parent selection probability Ppsel, 2× λ parents are selected either by

Pareto selection, or by uniform random sampling without replacement. Then we take

the first λ parents to act as mothers, and the second λ parents as fathers. Next we create

λ offspring by applying the recombination operator to mothers and fathers. Then we

apply mutation operator to the offspring. Next we create ν new individuals using the

initialisation operator. Then we insert the newly created offspring and newly created

individuals into the population to give us a pool of µ + λ + ν individuals to select

from. Finally we use the Pareto selection operator to select the best µ individuals form

the selection pool, to act as the next generation. This evolutionary process is repeated

until the termination criteria is fulfilled. Pseudocode for this simple generational search

heuristic is given in Algorithm 4.5

Selection Stratergy

In RGP the selection operator selGMOGP is a Pareto search operator based on NDS with

three objectives; fitness, solution complexity, and age (discussed in next paragraph).

Crowding distance in the event that there are ties during the NDS. This selection

strategy is a kin to the selection strategy of the well-established NSGA-II Evolutionary

Multi-Objective Algorithms (EMOA), discussed in section 4.3.4.

Diversity Preservation

GMOGP implements elements of Schmidt & Lipson (2010) Age-Fitness Pareto Op-

timisation (AFPO) algorithm for preserving genetic diversity and avoiding premature

convergence [266]. In each generation, ν newly initialised individuals are inserted into



102 4.4 Search Stratergy

Algorithm 4.5 Pseudo-code implementation of the GMOGP search heuristic. [83]
1: pop← createIndividuals (number = µ)

2: while termination criterion not met do

3: if randomUniformNumber() ≤ ppsel then

4: parents← selGMOGP ( pop , number = 2× λ)

5: else

6: parents← sampleWithoutReplacement ( pop , number = 2× λ)

7: end if

8: mothers← parents [1 : λ]

9: fathers← parents [ (λ+ 1) : 2× λ]

10: children← mutpop (recpop (mothers , fathers ) )

11: newIndividuals← create Individuals ( number = ν )

12: selectionPool← parents ∪ children ∪ newIndividuals

13: survivors← selGMOGP ( selectionPool , number = µ)

14: pop← survivors

15: end while

16: return pop

the population to maintain genetic diversity. These new randomly generated individu-

als will on average be of low fitness and therefore quickly dominated by older, fitter

individuals before having a chance evolve through a series of variation steps. This

problem is mitigated by the introduction of genetic age , G, as defined as follows [83]:

age(gnew) = 0,

age[mut(g)] = age(g) + 1,

age[rec(gA, gB)] = max [age(gA), age(gB)],

(4.19)
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where gnew is a new genotype just inserted into the selection pool, and g, gA, and

gB are individuals already existing in a population. New individuals are assigned an

age of 0, whilst every mutation operation increments an individuals age by one, and

for every recombination operation an individuals age is taken as the largest of its two

parent. Solution age is implemented as an objective to minimised, along with solution

complexity and fitness

This enables dynamic age-layering of the population, where younger individuals are

given a chance to evolve independently of other older, likely fitter and less complex,

individuals until they are of the same genetic age (i.e. have undergone a similar amount

of variation). It is the hope that his approach will preserve genetic diversity during the

GP run, and thus promote exploration of the search, with the ultimate aim of discover-

ing new local optima or even the global optimum.

Parameters

Table 4.9 details the important parameters appropriate to the RGP implementation of

GMOGP. Setting the boolean search heuristic parameters Complexity Control and Age

Layering to false will disable the bloat control and diversity preservation objectives,

respectively. As in the GSOGP search heuristic and for the same reason, these para-

meters are subject to the following constraint of λ ≤
[
µ
2

]
.

Table 4.9: Parameters of the GMOGP search heuristic.
Variable (Symbol) Domain Default

Population Size mu (µ) N 100

Children per Generation lambda (λ) N 50

New Individuals per Generation nu (ν) N0 50

Age Layering ageLayering B true

Parent Selection Probability parentSelectionP (ppsel ) [0, 1] 1
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4.4.4 Termination and Solution Designation

A GP run finishes when a specified termination criterion is satisfied. The termination

criterion may be a maximum number of generations, maximum run-time, or may be

some problem specific success predicate, such as a target fitness. When the run is

finished some method of designating the result of the run is applied. Typically, the

best-so-far individual is identified and designated as the result of the run, although

additional individuals and data may be returned as necessary or appropriate to the

problem. The RGP package supports the implementation of time, iterations and fitness

based termination criterion.

4.5 Genetic Programming Parameters

GP parameters refer to parameters that control the GP run, sometimes referred to as

tuning parameters, which are typically defined as a preparatory step. There can be a

large number of different parameters than can be used to control a GP run dependant

on the complexity of the GP system. There are no hard and fast rules about the optimal

control parameters that should be used, as these depend too much on the details of the

application. A challenge with GP is that, despite having being around for some time,

it is a relatively young field and the effects of using various combinations of parameter

values is not yet well understood for many applications domains [17]. In their practical

advise on GP, Banzhaf et al. (1998) [17] and Poli et al. (2008) [239] both report that

in practice GP is robust and likely to work well over a wide range of parameter values

and, as a consequence, you do not necessarily need to spend a long time tuning GP for

it work adequately [239, 17].

An important, arguably the most important, control parameter in GP is population size.

Other control parameters include genetic variation rates, the maximum solution size,

maximum number of generations, and other details of the run. In this section we will

discuss these typical control parameters, what is know about their effects , and some
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rules of thumb on their use from the literature. However, much of what is known about

GP parameters is anecdotal and based on experience of researchers in the field [17].

4.5.1 Population Size

Population size, denoted as µ, is important for a number of reasons. Larger populations

take more time and consume more computational resources when evolving a genera-

tion. Also, larger populations typically have greater genetic diversity, which increase

the search space that can be explored, which in turn may reduce the number of evalu-

ations required for finding a solution. Poli, et al. (2008) [239] suggest that, as a rule

one prefers to have the largest population size that your system can handle gracefully;

normally, the population size should be at least 500, and people often use much larger

populations.

Banzhaf, et al. (1998) [17] report that positive results have been achieved with popula-

tion sizes ranging from µ = 10 to µ = 1, 000, 000 individuals, and that in between 10

and 100, 000 individuals they observed a near-linear improvement in performance of

the GP system. The authors also state that µ = 1, 000 is usually an acceptable starting

point for smaller problems and that the population size should grow as the problem

grows more difficult. The authors offer a rule of thumb for dealing with more com-

plex problems, that if sufficiently difficult, then the population size should start at and

µ = 10, 000 individuals and be increased if the other parameters exert heavy selection

pressure.

Population size should also be governed by the number of available training cases, with

a large number of training cases requiring an increase in µ. Banzhaf, et al. (1998) [17]

recommend using 1, 000 ≤ µ ≤ 10, 000 individuals for between 10 and 200 fitness

cases, and µ > 10, 000 for more than 200 training cases. Koza reports his experience

with population size, using 50 ≤ µ ≤ 10, 000 in his book [167], but reports µ = 500

individuals as his most common setting.
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4.5.2 Maximum Number of Generation

Some authors suggest limiting the number of generations to 50, arguing that nothing

much happens after the fiftieth generation and if a solution hasn’t been found by then,

its unlikely to found in a reasonable amount of time [239]. However other authors

such as Banzhaf et al.(1998) [17] report that they have observed interesting evolution

as late as generation 1000, even interesting development occurring as late a generation

10,000.

4.5.3 Primitive Set

Banzhaf et al. [17] offer some rules of thumb for the selection function and terminal

sets that they claim have served them well:

• Make the terminal and function sets as small as possible. Larger sets usually

mean longer search time

• Its not important to have (all) custom functions in the function set: the system

often evolves its own approximations.

• It is very important, however, that the function set contains functions capable of

permitting non-linear behaviour, such as if-then functions, boolean operators on

numbers, and sigmoid squashing functions

• The function set should be adapted to the problem in the following way: prob-

lems that are expected to be solved by smooth curves should use function sets

that can generate smooth curves, and problems that are expected to be solved by

other types of functions should have at least one representative of these functions

in the function set.
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4.5.4 Genetic Variarion Rates

The correct balance of crossover and mutations rates is a topic that is wide open in

GP, and as such is typically problem specific. Much if the literature suggests that as

a starting point, probabilities for applying genetic operations should be very high for

crossover (Pc = 0.9) and very small for mutation (Pm = 0.1), with the mutations rate

Pm increased if the results are unsatisfactory. However Poli et al. [239] , and Banzhaf

et al. [17] suggest that a different balance (Pc = 0.5, Pm = 0.5) may lead to better

results for harder problems.

4.5.5 Selection Pressure

Selection pressure is another parameter to consider. In tournament selection, the tour-

nament size allow researchers to adjust the selection pressure. A small tournament

size causes a low selection pressure and a large tournament size causes high selection

pressure. Banzhaf et al. [17] report that they have had very good experiences with low

selection pressure, with tournaments of 4 individuals regularly performing well.

4.5.6 Maximum Solution Size

Poli et al. [239] propose that as a rule of thumb, one should try to estimate the size

of the minimum possible solution (using the terminals and functions given to GP) and

add some percentage (e.g., 50-200%) as a safety margin. Whereas Banzhaf et al. [17]

propose that the maximum depth of the trees or the program size should be set such that

the programs can contain about ten times the number of nodes as the expected solution

size. To allows for error in predicting the solution and for intron growth (discussed in

sections 4.6).

Typically the initial solution size should be very small compared with the maximum

solution size. This enables good solutions to be built up piece by piece using blocks
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of in inheritance. However, if this approach is not successful for complex problems,

larger initial solutions can be used to add some complexity at the beginning of the GP

run to help avoid local optima. A commonly use approach to create a random initial

population using the ramped half-and-half approach (discussed in sections 4.3.1), with

a depth range of 2 − 6. These maximum permitted size of initial solutions will be

dependent upon the number of the functions, the number of terminals and the arities

of the functions. However, evolution will quickly move the population away from its

initial distribution [239].

4.6 Bloat: Survival of the Fattest

Most representation schemes in GP, including tree-based GP, allow for variable length

solutions. One interesting problem with evolving variable length solutions is the in-

crease of the size of individuals (or solutions) over time. Early on researchers noticed

that very often the average size (number of nodes) of the solutions in a population, after

a certain number of generations in which it was largely static, at some point would start

growing at a rapid pace. Typically the increase in program size was not accompanied

by any corresponding increase in fitness [275, 239]

This phenomenon, is commonly referred to as bloat. Bloated trees contain a lot of sub-

trees that don’t do anything at all, analogous to superfluous steps in an equation that can

be simplified. These subtrees were dubbed introns, like their DNA counterparts [194].

Bloat should not be confused with growth. There are times, such as at the beginning of

the run where the starting population typically consists of relatively small individuals,

where we would expect to see progressive increase in solution size. The distinction

between growth and bloat is that for growth we would expect significant increase in

size to be associated with a significant increase in fitness. We should therefore define

bloat as solution growth wihtout (significant) return in terms of fitness.

Bloat is not only surprising, but a real problem for GP. Bloated individuals take longer
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to evaluate and use, consume more memory, can be hard to interpret, may exhibit poor

generalisation, and are typically far from optimal. Over the years, many theories have

been proposed to explain various aspects of bloat, and while great strides have been

made, we still lack a single, universally-accepted unifying theory to explain the broad

range of empirical observations [239].

Lacking a firm understanding of bloat, GP practitioners have still be faced with the

reality of counteracting bloat in their GP runs. As a result a number of ad-hoc, yet

effective, approaches have been devised to control bloat. Bloat control has become

a very active research area, with several different theories on why bloat occurs and

proposed methods for controlling bloat [275, 175, 179, 204, 259, 260]. A review of all

these approaches is outside the scope of this thesis. However, we briefly discuss some

of the most important.

• Size and Depth Limits

• Anti-bloat Genetic Operators

• Anti-Bloat Selection

The earliest and simplest way to constrain the size of individuals is by placing hard

bounds on the maximum allowable size or depth of individuals generated by genetic

initialisation and variation operators. This can work in several different ways. Many

implementations of this kind of approach generate an offspring and check its size or

depth, if its within the pre-specified limits then the offspring enters into the next popu-

lation, else one of the parents is enters. This type of approach does indeed ensure that

solutions grow too large, but has some significant disadvantages. That is, the popula-

tion is often made up if individuals that almost violate the bounds, which is typically

not desired. This problem can be addressed by, rather than return a parent, either

classing that evolutionary step as a failure and repeat it, or by returning the oversize

offspring but settings fitness to 0. t also well known that depth limits leads to trees

that tend to be bushy that are near the depth limit, whereas size limits tend to produce
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stringy trees that are close to the size limit. If limits are used they need to be defined in

such a way that they do the job of controlling bloat, but at the same time don’t constrain

the search space so such that suitable quality solutions cannot be found. In section 4.5

we discuss some of the guidance from GP authors on the practical specification of these

parameter values.

Bloat can also be controlled by using genetic operators that, directly or indirectly, have

an effect on bloat. More recent operators (discussed in sections 4.3.3 and 4.3.2) in-

clude size fair crossover and size fair mutation, which work by constraining choices

made during the genetic operation to actively prevent growth. Older methods include

mutation operators such as hoist mutation and shrink mutaion, which help control the

average tree size in the population whilst ensuring that new genetic material is intro-

duced.

More recently the trend has been towards penalising large individuals by somehow

modulating their selection probability based on their size. This is called the parsimony

pressure method, which is perhaps the simplest and most frequently used method to

control bloat in GP. It works but subtracting a values that based on size from the

fitness values of a given individual. Bigger solutions have more subtracted, and thus

lowered fitness, which in turn lead to a lower chance of being selected as parents for

the next generation. The value to subtract, the penalty, is a function of fitness, size, and

a constant known as the parsimony coefficent. Some authors have demonstrated some

benefits of modifying the value of the parsimony coefficient during the GP run, but

most implementation keep this value constant. Recent methods also include the use of

multi-objective optimisation to control bloat, which typically involves some modified

selection mechanism based on the Pareto criterion.

Several variations and extensions of Pareto selection that help control bloat have been

proposed in the GP literature. For example, niching via fitness sharing has been pro-

posed to better cover the Pareto front through the inclusion of preference information

to focus the selection procedure towards specific regions of the Pareto front [96, 119].
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Different applications and variants of Pareto tournament selection [119, 225, 77] as

well as the use of other multi-objective optimisation techniques [1, 60, 61] have been

developed that control for bloat and/or solutions complexity. Controlling bloat while

at the same time maximising fitness turns the evolution of programs into either a

multi-objective optimisation problem or, at least, into a constrained optimisation prob-

lem [239].

4.7 Implementation

In this section we discuss some of the important consideration when implementing a

GP system. We also give an overview of different options including existing GP im-

plementations, as well as options for implementing a GP system from scratch. Finally

we introduce the specific GP implementation used for this work and offer justification

for implementation choices made.

4.7.1 Implemeting Genetic Programming

When implementing GP there are two main approaches; using existing GP implement-

ations, or implementing a GP system from scratch. There advantages and disadvant-

ages to both options. Implementing from scratch is an excellent way to ensure that

you know exactly how the algorithms are implemented and are (typically) easier to

customise. However, the downside is the programming expertise required and the need

to thoroughly test the system’s behaviour. Using an existing implementation is faster

and good implementations are often robust, throughly tested, efficient, and well doc-

umented. However, heavy customisation can be complicated, with lengthly trial and

error, requiring the user to delve into the source code. Also, must but not all existing

GP implementation are publicly available, some are commercial and as such come at

price. According to Poli et al. (2008), good publicly available GP implementations
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include: Lil-GP, ECJ, Open Beagle and GPC++. The most prominent commercial

implementation remains Discipulus.

As discussed in chapters 2 and 3, the utility of GP for clinical prediction modelling in

the presence of censored data remain unknown. This indicated that significant custom-

isation of the GP implementation was required. For this reason we decided against us-

ing an existing implementation of GP, instead opting to build the system from scratch.

This was motivated not only by the requirement of heavy customisation by the desire

to have full control of the mechanisms involved in the developed GP system.

How GP trees are implemented will obviously depend a great deal on the programming

languages and libraries used. Whilst the earliest GP system were implemented in Lisp,

people have since coded GP is a huge range of different languages, including C/C++,

Java, JavaScript, Perl, Prolog, Mathematica, Pop-11, MATLAB, Fortran, Occam and

Haskell [239]. Languages that provide dynamic lists as fundamental data types and

appropriate libraries will of course make it easier to implement expression tress and

the necessary GP operations.

4.7.2 The R Programming Language

R is a free cross-platform software environment for statistical computing and graphics.

It is a GNU project which is similar to the S language and environment which was

developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John

Chambers and colleagues [247]. R provides a wide variety of statistical and graphical

techniques, and is highly extensible. R can be easily extended via libraries, referred to

as packages, with more than 5,800 additional packages and 120,000 functions (as of

June 2014) available at the Comprehensive R Archive Network (CRAN).

R expressions are internally represented as trees. This makes using R expressions

to represent trees a logical choice. R supports the direct manipulation of expression

trees through the same syntax for manipulating nested lists, making implementation of
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GP operators in R simple, succinct, and easy for proficient R users to understand. R

supports computing on the language, which greatly simplifies symbolic computation

inherent in most GP operations.

As previously discussed, a drawback of building a GP system from scratch is the re-

quirement of proficiency in a suitable programming language. R is no exception with a

relatively steep learning curve. A key disadvantage of R is its performance for compu-

tationally expensive tasks, of which GP is an example. This arises from two aspects of

R, memory and processing. R requires all objects to loaded into memory (RAM),which

can be prohibitive on standard-performance computers and large datasets. R is an in-

terpreted language, which provides great flexibility for exploratory data analysis and

statistical analysis. However, as an interpreted language R does not offer high per-

formance for computationally expensive tasks, natively working in serial using only a

single processing unit. To address this a number of R packages have been developed to

address these weakness, such as methods that efficiently manage memory and support

parallel computation.

R is freely available and thought its open-source development model, R has an extens-

ive collection packages. As one might expect from a statistical programming language,

R has excellent core capabilities for data processing, analysis, statistics, and visualisa-

tion. But, though its extensive collection of packages, also provides advanced special-

ist capabilities for experimental design, machine learning, optimisation, EC, parallel

computing, and many others.

4.7.3 RGP: Implementing Genetic Programming in R

Whilst a number of different R packages are typically used in even simple project, there

were two packages that offered a significant amount of the functionality required to

implement the GP system for this study. These R packages were the publicly available

RGP and EMOA packages.
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The RGP package by Flash et al (2014) [84, 83] provides implementations of the ini-

tialisation, recombination and mutation operators described in sections 4.3.1, 4.3.2, and

4.3.3, respectively. RGP provides implementation of the single- and multi-objective

selection operators described in section 4.3.4. With the multi-objective optimisation

being realised through the emoa package, which provides functionality such as NDS,

Crowding Distance (CD), etc [205]. In addition to search operators, RGP also imple-

ments the single- and multi-objective search heuristics described in sections 4.4.1 to

4.4.3. The are also optimised variants of these operators written in C available. See the

CRAN package documentation on CRAN for more details [84].

For all experiments in this work it was decided to implement a GP system from scratch

using the R statistical programming language and associated packages relevant to GP,

namely RGP and EMOA. The ease of extensibility and customisation were a driving

factor in this choice, as a significant amount of development was required to imple-

ment GP for survival analysis. The RGP and EMOA, packages provide a substantial

amount of functionality required to implement our GP system using R. However, in

implementing a GP system for survival analysis there was significant amount of R

development required, mainly with respect to the implementation a suitable fitness

function for censored data and modification of search operators and heuristics to work

with data in the counting process format required by this problem domain, as discussed

in section 4.2.2. Another driving factor in using R to implement our GP system was

the rich functionality and flexibility that R provides in the ancillary aspects of the GP

system, such experimental design, data processing, and the analysis and visualisation

of GP results.

4.8 Summary Conclusions

In the first section (4.1) of this chapter we introduced GP, presenting it as an abstract

EA for stochastically exploring a vast multidimensional search space.
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In section 4.2 we introduced the building blocks of GP , the primitives, and saw how

they are combined to produce genotypic representations of individual solutions, that

along with GP search operators, define of the search spaces that GP will explore. We

also introduced measures of quality, or fitness, of solutions in the search space. We

discussed that measures of quality can be multi-facetted, leading to multi-objective fit-

ness. We discussed some of the issues that are presented by censored data and survival

analysis, before we defined the fitness measures that will be implemented in this study.

Then in section 4.3 we discussed how the evolutionary process is implemented in GP

through the application of search operators, illustrating how these operators define how

the GP system will navigate through the set of possible genotypic solutions. We intro-

duced and formally defined initialisation, mutation, recombination, and selection op-

erators, appropriate for tree representations, that will be employed in our subsequent

experiments.

In section 4.4 we introduced the set of GP search strategies, grouped by steady-state

and generation, that had been selected for this study. We formally defined these search

heuristics, including single and multi-objective versions, where appropriate. We also

discussed genetic diversity and how its preservation during the GP run is important to

its success. We also introduced approaches to control solution complexity and preserve

genetic diversity using multi-objective search strategies.

In section 4.5 we look at some of the basic parameters that control a GP run; we sum-

marise the literature to try to understand the effects of these parameters, attempting to

offer some ’rules of thumb’ on selecting reasonable stating values for these parameters.

In section 4.6 we talk about the phenomenon of intron growth and bloat, how this

causes problems in GP, and relate this back to section 4.4 by discussing how certain

implementations of genetic operators can counteract this issue.

Finally, in section 4.7 we discussed some of the important consideration when imple-

menting a GP system, giving an overview of different implementation options. Then
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we defined the specific GP implementation used for this work and justified the imple-

mentation choices made.

In the next chapter, using an observational cohort of patients extracted from CPRD, we

will independently and externally validate the performance of the de facto cardiovas-

cular risk prediction model for patients with T2DM.



117

Chapter 5

Experiment 1: External validation of

the UKPDS risk engine in incident

type 2 diabetes

Next we perform our first set of experiments that aims to address one of the main goals

of this work - to motivate the need for improved clinical risk prediction methods. This

is achieved by independently and externally validating the performance of the de facto

cardiovascular risk prediction model for patients with T2DM using a contemporary

observational cohort of patients extracted developed from CPRD.

Objective To evaluate the performance of the UKPDS-RE for predicting the 10-year

risk of cardiovascular disease endpoints in an independent cohort of UK patients newly

diagnosed with type 2 diabetes.

Research Design and Methods This was a retrospective cohort study using routine

healthcare data collected between April 1998 and October 2011 from around 350 UK

primary-care practices contributing to the CPRD. Participants comprised 79,966 pa-

tients aged between 35 and 85 years (388 269 person years) with 4,984 cardiovascular

events. Four outcomes were evaluated: first diagnosis of CHD, stroke, fatal CHD, and

fatal stroke.

Results Accounting for censoring , the observed versus predicted ten-year event rates

were as follows: CHD 6.1% vs 16.5%, fatal CHD 1.9% vs 10.1%, stroke 7.0% vs

10.1%, and fatal stroke 1.7% vs 1.6%, respectively. The UKPDS-RE showed moder-
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ate discrimination for all four outcomes, with the concordance-index values ranging

from 0.65 to 0.78.

Conclusions The UKPDS stroke equations showed calibration ranging from poor to

moderate; however, the CHD equations showed poor calibration and considerably

overestimated CHD risk. There is a need for revised risk equations in type 2 diabetes.

5.1 Introduction

National policies for the management of both CVD and type 2 diabetes advocate the

calculation of CVD risk in order to identify high-risk patients for targeted interven-

tions [264, 295, 245, 66, 216]. Several multivariable risk-prediction models (or risk

scores) have been developed for the general, non-diabetic population that also account

for diabetes, but only a few are specific to type 2 diabetes [303]. Only two of these

have been developed in patients with newly diagnosed type 2 diabetes, and they both

use data from the UKPDS [298]. These two models—one for CHD and the other for

stroke—combine to form the UKPDS-RE [165, 284].

International and national clinical guidelines recommended using the UKPDS-RE for

predicting cardiovascular risk [216, 134, 32, 218]. Not only is the UKPDS-RE ad-

vocated for communicating cardiovascular risk to diabetic patients [295], it has been

relied upon for public health decisions [310, 71, 95, 2]. Evidence that these equa-

tions are inadequate could bring into question the evidence-base underpinning many

clinical decisions and public policies about the management of type 2 diabetes. Two

systematic reviews of external validations of type 2 diabetes cardiovascular risk pre-

diction models [303, 35] reported poor calibration of the UKPDS-RE CHD equations

in 10 separate studies [103, 139, 283, 322, 155, 237, 58, 304, 280, 302] and differing

findings for the stroke equations in two separate studies [155, 58]. The largest of these

studies from the UK used only a small sample (n=798) and from a single locality [283].

The largest international study had a larger but still relatively small sample size (n=7
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502), using data collated from 20 countries [155].

The purpose of this study was to carry out an external evaluation of the performance

of the UKDPS-RE on a large, relatively contemporary dataset of UK-resident patients

newly diagnosed with type 2 diabetes.

5.2 Research Design and Methods

This study was carried out using data from CPRD and linked data from the Office for

National Statistics and Hospital Episode Statistics. Ethical approval for the study was

granted by the CPRD Independent Scientific Advisory Committee on 6th September

2012, protocol number 12_084R (Appendix A).

The CPRD observational data set consists of longitudinal, anonymous records from

nearly 700 primary-care practices and more than 11 million patients throughout the

UK (based on the January 2012 release) [39]. The computerised data, recorded in

the course of routine healthcare by general practitioners and associated staff, included

demographic and lifestyle information, medical history, clinical investigations, drug

prescriptions, and hospital referrals. Diagnoses in CPRD are recorded using the Read

code classification and have been validated in a number of studies, showing a high

positive predictive value [118].

Additionally, 357 of the English practices contributing to the data set, representing

about 45% of CPRD patients, participate in a linkage scheme by which registered pa-

tients are anonymously linked, through a trusted third party, to other, independent data

sets [92]. These include hospital-admission data, collated nationally for England as the

Hospital Episode Statistics (HES) [68], and mortality data, collated by the Office for

National Statistics (ONS) [226]. HES provides details of all National Health Service

(NHS) inpatient admissions in England since 1997, including primary and contribut-

ory causes coded using the ICD-10 classification. ONS provides details of all deaths

in England with immediate and antecedent causes coded using the ICD-9 and ICD-10
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classifications. The CPRD dataset and its associated linked datasets are described in

more detail in section 2.6.

For this study, a single cohort of patients with incident type 2 diabetes, registered with

practices between 1998 and 2011, was identified from the CPRD data set as described

below. In order to improve ascertainment of cardiovascular events, only patients whose

records linked to the HES and ONS mortality datasets were included, with the former

providing details of diagnoses and procedures related to inpatient episodes, and the

latter providing both the date and cause(s) of death. The HES data also provided the

ethnicity information required for the study. Patients aged between 35 and 84 years at

diagnosis were included in the study. As the original UKPDS-RE was based on a cohort

aged <65 years, a sensitivity analysis was performed. Patients were excluded if they

had on-going or recent CVD (as defined by the UKPDS study criteria), implausible

or improbable dates, or missing or indeterminate sex or smoking status. Patients that

were HES eligible but had no records in the linked HES data were excluded (n=1727).

Patients whose ethnicity was not recorded (n=29,199) were presumed Caucasian and

combined with the Caucasian group.

5.2.1 Selection of type 2 diabetes patients

Patients were considered for selection if they had a clinical (Read or ICD-10) code

indicative of diabetes mellitus in their CPRD or linked HES records. As not all clinical

codes for diabetes distinguish between type 1 diabetes and type 2 diabetes, and some

patient histories may erroneously have contained both type 1 and type 2 diabetes codes,

these patients were categorized as having type 2 diabetes if they met one or more of

the following criteria:

• Clinical codes exclusively indicative of type 2 diabetes

• At least one clinical code indicative of type 2 diabetes (regardless of others in-

dicative of type 1 or non-specific diabetes) and at least one prescription for an
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oral hypoglycaemic agent (OHA)

• Prescription of two or more classes of OHA

• Diagnoses of both type 1 and type 2 diabetes and an age of diagnosis older than

35 years.

Any patient with evidence of diabetes secondary to other causes was excluded. The

date of diabetes incidence was defined as the date of either first diagnosis or first pre-

scription of a diabetes medication, whichever was earlier. A ’wash-in’ period of 365

days was applied to exclude non-incident type 2 diabetes cases.

5.2.2 Outcome measures

The primary outcomes comprised the four cardiovascular events evaluated by the UKPDS-RE:

CHD, fatal CHD, stroke, and fatal stroke. To aid comparison, the definition of the out-

comes in the CPRD cohort was the same as the definitions from the UKPDS [298,

165, 284]. CHD was defined as the occurrence of fatal or non-fatal myocardial infarc-

tion (MI) or sudden death [298]. In patients with multiple CHD events, only the first

event was considered. No distinction was made between ischaemic and haemorrhagic

strokes. In patients with multiple strokes, only the first stroke was considered. Deaths

from causes other than the defined outcomes of interest were treated as censored. Oc-

currence of clinical events of interest in CPRD were observed from GP-recorded dia-

gnoses, diagnoses recorded during a hospital admission, or cause of death.

5.2.3 Input variables

Values for the input variables required for the UKPDS-RE were taken from CPRD

observations around the time of diabetes incidence. Table 5.1 shows the baseline char-

acteristics at the time of incident diabetes. Baseline smoking status was the value re-
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corded closest to diabetes incidence, preferring values recorded prior to diabetes incid-

ence; for systolic blood pressure, glycated haemoglobin A1c (HbA1c), total cholesterol,

and high density lipoprotein (HDL) cholesterol, the baseline value was the average of

biochemical readings recorded in the first two years. The numbers of readings used in

deriving these two-year averages were also recorded for use as input parameters (re-

gression dilution) in the UKPDS-RE [284]. Atrial fibrillation was deemed present at

baseline if a prior diagnosis or record of a CHADS2 test existed (CHADS2: congestive

heart failure, Hypertension, Age ≥ 5 years, Diabetes mellitus, prior Stroke or transient

ischemic attack).
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Table 5.1: Characteristics of patients in the CPRD cohort and UKPDS study. Values are at baseline and are numbers (per-

centages) unless otherwise stated.

Females Males

Characteristic CPRD UKPDS CPRD UKPDS

n 36,746 1,879 43,220 2,643

Age (years), mean (SD) 62.6 (12.3) 52.7 (8.7) 60.3 (11.6) 51.5 (8.8)

Ethnicity (%)

Caucasian/Not recorded 35,452 (96.5) 1,603 (85.0) 42,009 (97.2) 2,151 (81.0)

Afro-Caribbean 404 (1.1) 153 (8.1) 350 (0.8) 201 (7.6)

Asian-Indian 890 (2.4) 141 (7.4) 861 (2.0) 2,91 (11.0)

Smoking status (%)

Non-smoker 19,684 (54) — 16,207 (37) —

Former smoker 10,715 (29) — 18,173 (42) —

Current smoker 6,347 (17) 474 (25) 8,840 (20) 898 (34)

Systolic blood pressure (mmHg), mean (SD)* 139 (14) 139 (21) 139 (13) 133 (18)

HbA1c (%), mean (SD)* 7.0 (1.2) 6.9 (1.5) 7.1 (1.2) 6.6 (1.4)

Total cholesterol (mmol/l), mean (SD)* 5.0 (0.9) 5.7 (1.1) 4.7 (0.9) 5.2 (1.0)

HDL cholesterol (mmol/l), mean (SD)* 1.37 (0.32) 1.18 (0.27) 1.17 (0.27) 1.06 (0.23)

Total/HDL cholesterol ratio, mean (SD)* 3.85 (1.03) — 4.16 (1.11) —

* Mean of values in the first two years from baseline (HbA1c, systolic blood pressure, and cholesterol)
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Multiple imputation was used to replace missing values for systolic blood pressure,

HbA1c, total cholesterol, HDL cholesterol, and the number of biochemical readings

used in their two-year averages. Multiple imputation is a technique that offers substan-

tial improvements over value replacement approaches based on complete cases or cases

matched for age and sex [137]. It involves creating multiple copies of the data and im-

puting the missing values with plausible values randomly selected from their predicted

distribution. Here, we used the Multivariate Imputation by Chained Equations (MICE)

library in the R [247] statistical programming language to generate five imputed data-

sets. Rubin’s rules were then used to combine the results from analyses on each of

the imputed values, producing estimates and confidence intervals that incorporate the

uncertainty of imputed values.

5.2.4 Statistical analysis

For each of the four outcomes, the 10-year estimated risk was calculated for every

patient in the CPRD cohort using the UKPDS-RE [165, 284]. Observed 10-year risks

were generated using the Kaplan-Meier method, by decile of predicted risk and by

five-year age group. The predictive performance of the UKPDS-RE on the cohort was

assessed by examining measures of calibration and discrimination.

Calibration refers here to how closely the predicted 10-year cardiovascular risk agreed

with the observed 10-year cardiovascular risk. This was assessed for each decile of

predicted risk—ensuring 10 equally sized groups—and each five-year age group, by

calculating the ratio of predicted to observed cardiovascular risk separately for males

and for females. Plotting observed proportions versus predicted probabilities, where a

45◦ line denoted perfect discrimination, enabled the calibration of the risk-score pre-

dictions to be visually assessed.

Discrimination is the ability of the risk score to differentiate between patients who did

and did not experience an event during the study period. This measure was quantified
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by calculating a concordance index (C-index), in which a value of 0.5 represents ran-

dom chance, while 1 represents perfect discrimination. All statistical analyses were

carried out in R (v2.15.2) [247].

5.3 Results

We identified 79,966 eligible cases, who contributed 383,025, 388,269, 381,833, and

388,004 person years of observed follow-up for CHD, fatal CHD, stroke, and fatal

stroke, respectively. The incidence rates for cardiovascular events in the CPRD co-

hort were 59.2 (95% CI 56.8–61.6), 16.8 (15.5–18.1), 71.2 (68.5–73.2), and 15.2

(14.0–16.5) per 1000 person years for CHD, fatal CHD, stroke, and fatal stroke, re-

spectively. The median durations of follow-up were 4.2 years (inter-quartile range

[IQR] 2.0–7.2), 4.3 (2.1–7.3), 4.2 (2.0–7.2), and 4.3 (2.1–7.3), respectively. The pro-

portions of cases followed for 10 years or more were 8.5%, 8.8%, 8.4%, and 8.8%,

respectively. Table 5.1 details the characteristics of these patients at or in the first two

years from diabetes diagnosis (baseline). People recruited to the UKPDS were a very

unusual group of people with type 2 diabetes, and this is reflected in the baseline char-

acteristics. For instance, the mean age at baseline for females in the UKPDS was 53

years versus 63 years in general clinical practice (table 5.1).

5.3.1 Missing data

Complete data on age, ethnicity, smoking status, atrial fibrillation status, systolic blood

pressure (SBP), HbA1c, total cholesterol, and HDL cholesterol were available for 70%

of females (n=43 741) and 74% of males (n=54 710). Most patients (n=120 572;

88.3%) had missing data on no more than two risk factors (table 5.2). For specific

covariates, the proportion of missing data was as follows: HDL cholesterol (26.2%

in females, 23.6% in males), SBP (4.1% in females, 3.7% in males), HbA1c (8.1%
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in females, 12.0% in males), and total cholesterol (9.5% in females, 12.3% in males)

(table 5.3).

Table 5.2: Risk factors used in UKPDS Risk Engine models

Risk Factor CHD Stroke

Sex X X

Age (at diagnosis, in years) X X

Ethnicity X

Smoking status (at diagnosis) X X

Atrial fibrillation X

Systolic blood pressure (mmHg) X X

HbA1c (%) X

Total: HDL cholesterol ratio X X

Duration diabetes (days) X X

Table 5.3: Completeness of data

No. of risk factors not recorded No. (%) of females No. (%) of males

(per patient) (n=36 746) 9n= 43 220)

0 (complete data) 43,741 (70) 54,710 (74)

2 10,337 (17) 11,784 (16)

3 2,326 (4) 2,410 (3)

4 723 (1) 644 (1)

5 3,670 (6) 2,970 (4)

6 37 (0) 35 (0)

7 1,648 (3) 1,598 (2)
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5.3.2 Discrimination and calibration

A visual illustration of the agreement between mean observed risk and the mean pre-

dicted risk, grouped by decile of predicted risk for each of the four UKPDS-RE out-

comes is shown in Figure 5.1. Presenting these data in an alternative way, figure 5.2

shows the agreement between the observed risk and the predicted risk by five-year

age and sex-specific groups for each of the outcomes. Both the CHD models were

clearly miscalibrated—notably for males (overestimating event rates by 174% and

466%, compared with 160% and 398% in females, for CHD and fatal CHD, respect-

ively) and most notably for fatal CHD (overestimating event rates by 440%). There was

a clear and consistent over-prediction of risk across all deciles of predicted risk, and

across all age and sex-specific groups. The disagreement between observed proportions

and predicted risks increased in subsequent deciles of risk and in the older age groups

(figures 5.1 and 5.2). The stroke model overestimated event rates by 29% and 58% in

females and males, respectively, and the fatal-stroke model underestimated event rates

by 20% in males and overestimated these rates by 11% in females. The stroke models

showed modest agreement between observed and predicted risk grouped by decile of

risk, with the exception of the final, 10th decile for the stroke model in both males

and females (figures 5.1 and 5.2). Both the stroke and the fatal-stroke models showed

modest agreement across all age groups, with some divergence towards the latter age

ranges (70–85 years), most noticeably for males in the stroke model. The fatal-stroke

model slightly under-predicted risk for the later age groups, whereas the stroke model

tended to over-predict risk for these latter age groups.

Table 5.4 summaries the performance of the four UKPDS-RE models in predicting

the 10-year risk in type 2 diabetes patients who were initially free of CVD. The

UKPDS-RE overestimated the risk of CHD, fatal CHD, and stroke by 169%, 440%,

and 44%, respectively, and underestimated the risk of fatal stroke by 5%. According

to the C-index all models were found to have acceptable model discrimination, with

the exception of the CHD model in males (C-index=0.65), which was found to have
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Figure 5.1: Observed versus predicted 10-year risk by sex and outcome

modest discrimination. The C-index values for females and males, respectively, were

as follows: for the CHD model, 0.71 and 0.65; for the fatal-CHD models, 0.78 and

0.74; for the stroke models, 0.73 and 0.71; and for the fatal-stroke models, 0.77 and

0.78. All the models showed better discrimination in females, with the exception of

fatal stroke, and better discrimination (and variability in estimates) in fatal outcomes

in both females and males. Of all the models evaluated, fatal stroke demonstrated the

best prognostic separation, with discrimination results ranging from acceptable to good

(0.77 and 0.78 in females and males, respectively), whereas CHD exhibited the worst

prognostic separation, most noticeably in males, with discrimination results ranging

from modest to acceptable (0.71 and 0.65).
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Figure 5.2: Observed and predicted 10-year risks by age group, sex, and outcome

(solid lines represent observed proportions and dashed predicted risk).
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Table 5.4: Summary of UKPDS-RE performance in predicting 10-year cardiovascular risk
CHD Fatal CHD Stroke Fatal Stroke

Females Males Females Males Females Males Females Males

n 36,746 43,220 36,746 43,220 36,746 43,220 36,746 43,220

Event rates (%)

Observed 6.14 1.88 7.00 1.69

(95% CI) 5.82–6.45 1.70–2.06 6.67–7.33 1.52–1.86

4.59 7.44 1.54 2.16 7.28 6.77 1.92 1.50

(4.18–5.01) (6.97–7.90) (1.29–1.79) (1.91–2.42) (6.77–7.79) (6.34–7.20) (1.65–2.19) (1.28–1.72)

Predicted 16.51 10.14 10.10 1.60

(95% CI) (16.43–16.59) (10.07–10.20) (10.00–10.20) (1.58–1.62)

11.94 20.39 7.66 12.24 9.38 10.71 1.53 1.67

(11.86–12.02) (20.31–20.48) (7.60–7.73) (12.18–12.30) (9.28–9.47) (10.61–10.81) (1.51–1.54) (1.65–1.68)

Discrimination (%)

C-index 0.71 0.65 0.78 0.74 0.73 0.71 0.77 0.78

(95% CI) (0.69–0.73) (0.63–0.66) (0.75–0.81) (0.72–0.77) (0.72–0.75) (0.70–0.72) (0.74–0.80) (0.76–0.81)
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5.4 Discussion

This validation study showed that the risk equations that constituted the UKPDS-RE

were poorly calibrated and significantly overestimated CHD risk. The stroke equations

showed calibration ranging from poor to moderate. All the UKPDS-RE equations

showed moderate discrimination, with slightly better discrimination for fatal events.

This finding was concordant with several other much smaller, external validation stud-

ies (<8,000 subjects) that also showed poor calibration and overestimation of CHD

risk by the UKPDS-RE [103, 139, 283, 322, 155, 237, 58, 304, 280, 302]. To date,

this is the largest study, with around 80,000 patients, and the most comprehensive ex-

ternal validation of cardiovascular-risk prediction in a diverse and more contemporary

population with type 2 diabetes.

The relatively poor performance of the UKPDS-RE may be explained, at least in part,

by the differences in the baseline profiles of the UKPDS and CPRD populations. These

plausibly include: the epidemiological setting, changes in life expectancy, changes in

smoking habits, the presence or absence of co-morbidities, temporal changes in dia-

betes management, and changes in the general quality of care. Other plausible explan-

ations include the possible harm of overly aggressive treatment with sulfonylureas and

insulin in the early stages of the disease [54].

The CPRD cohort used in this study was drawn from the UK general-practice, and

identified 79,966 patients aged 35–85 years newly diagnosed with type 2 diabetes and

registered between 1998 and 2011. The data used to derive the UKPDS-RE risk equa-

tions originated from a randomised trial of 5102 UK patients aged 25–65 years newly

diagnosed with type 2 diabetes and recruited between 1977 and 1991 (followed up until

1997) [298]. The CPRD cohort comprised patients aged 35–85 for two reasons: pa-

tients aged under 35 were excluded to reduce misclassification of type 1 diabetes, and

patients aged 66–85 were included to reflect the fact that NICE guidelines recommend

using the UKPDS-RE for all ages [295]. Of the 79,966 patients in the CPRD cohort,

31,179 (39%) were outside the 25–65 age range, and a sensitivity analysis suggested
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that the inclusion of older subjects aged 65–85 did not significantly affect calibration

or discrimination.

A number of the UKPDS trial’s exclusion criteria—namely, macrovascular complic-

ations, ketonuria, nephropathy, severe retinopathy, malignant hypertension, uncorrec-

ted endocrinopathy, and severe concurrent illness—were not applied to the CPRD co-

hort because their presence would not preclude the use of the UKPDS-RE in clinical

practice [298]. It is important to note that, by the nature of trial selection criteria,

UKPDS recruits were more likely to be of lower risk, suggesting that the UKPDS-RE

would be expected to underestimate risk when applied to the CPRD cohort. Over-

all, the UKPDS-RE overestimated cardiovascular risk in the CPRD cohort, suggesting

that—in spite of the additional exclusion criteria—the UKPDS patients were at higher

risk.

A potential difference in the rigour of ascertainment of primary outcomes between

UKPDS and CPRD warrants consideration. In this study, we deliberately limited se-

lection to those designated by CPRD as being of research quality, with data linked to

HES and ONS mortality data during their entire follow-up period. These criteria com-

bine to make case ascertainment among the highest of any observational data sources.

Even prior to the introduction of HES-linked data in CPRD, the predictive value of GP-

recorded diagnoses of acute MI in the General Practice Research Database (forerunner

to CPRD) exceeded 90% [105].

The secular differences between the UKPDS sample and the current CPRD cohort may

have played an important role. The advent of routine diabetes screening in primary

care in the UK has almost certainly led to earlier diagnosis of type 2 diabetes than was

available at the time of UKPDS recruitment. This is supported by an absolute 2% fall

in average incident HbA1c among UK patients with newly diagnosed type 2 diabetes

between 1991 and 2012 [127], although the mean HbA1c at specific regimen initiation

did not change at all [53]. As such, patients in the UKPDS cohort are likely to have

had more advanced diabetes at the point of diagnosis, with correspondingly greater



5.4 Discussion 133

vascular morbidity.

Over the same period, the diagnosis of MI has evolved from one based solely on clinical

symptoms to one that may involve increasingly sophisticated serological and imaging

components, such that the severity of MI on admission may plausibly have been re-

duced. Post-MI care has also improved over the period, and consequently death rates

subsequent to MI have fallen. This may partially explain why the UKPDS-RE overes-

timated fatal CHD, but it does not account for the same discrepancy in non-fatal CHD,

which by this rationale could be regarded as conservative.

Another explanation for the disagreement in the observed and predicted risk estimates

may be the progressive increase in the use of effective medication for hypertension and

dyslipidaemia over the past 20 to 30 years. Of the CPRD patients at baseline (i.e. type 2

diabetes incidence), 22.4% were taking lipid-lowering medication, 49.2% were taking

antihypertensive treatment, and 13.7% were taking some form of antiplatelet therapy

at baseline. By contrast, the UKPDS was conducted at a time when the number of

patients taking such medications was much lower. For example, of the UKPDS patients

at baseline, 0.3% used lipid-lowering therapy, 12% used antihypertensive therapy, and

1.6% used more than one aspirin daily. Furthermore, during the period of follow up,

less than 2% of UKPDS patients took lipid-lowering therapy at any stage compared

with 75.3% of the CPRD cohort [299].

Other changes are also apparent. Only 19% of the CPRD patients were current smokers

at baseline, compared with 30% in the UKPDS. The high relative-risk reduction in

CHD afforded by statin therapy (subsequent to UKPDS) could have had the effect of

reducing the amount of risk that was then potentially modifiable by other interventions

such as new glucose-lowering therapies. The benefits of statin therapy are believed to

extend beyond their effect on lipid profiles. This is plausible, given that UKPDS-RE

considerably overestimated the risk of CHD but not that for stroke. On the other hand,

the specific risk markers targeted by these drugs, such as cholesterol, blood pressure,

and glucose control are still accounted for within the UKPDS-RE, so the magnitude if
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the discrepancy remains difficult to explain. The principal difference between the CHD

and stroke models is the presence of HbA1c as an input parameter in the former. The

poor calibration of CHD in this study brings into question the role of glucose control

in predicting macrovascular complications. In sensitivity analysis—where decile of

observed HbA1c was used as the subgroup criterion—there was no gradient in observed

risk of CHD, contrary to widespread expectation (figure 5.3). If corroborated, this

would have a significant impact on current clinical management guidelines for type 2

diabetes. Our findings might also suggest that, in contemporary practice, the ’benefit’

of glucose control (i.e., reduction in CHD risk) is being overstated and consequently is

having an undue influence on the diagnosis and treatment of type 2 diabetes.

Figure 5.3: Observed and predicted 10-year risks by HbA1c, sex, and outcome

(solid lines represent observed proportions and dashed predicted risk).
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The overestimation of cardiovascular risk by the UKDPS-RE may also lead to unne-

cessary targeting of patients for preventative strategies. Accurate estimation of abso-

lute risk is important not only for communicating information on prognosis to patients

and practitioners but also for estimating the potential risk-benefit balance, and cost

effectiveness of therapy. For example, NICE guidelines for the management of type

2 diabetes recommend using the UKPDS-RE and a specified risk threshold to identify

patients not considered to be at high cardiovascular risk for lipid-lowering therapy with

statins. Due to the considerable overestimation of cardiovascular risk observed in this

study, use of the UKPDS-RE in clinical practice may lead potentially to harmful over-

treatment of patients with type 2 diabetes.

5.4.1 Strengths and limitations of the study

A major strength of this study was the size and representativeness of the cohort. Its

limitations are the high levels of missing data for HbA1c, total cholesterol, and HDL

cholesterol. Omitting cases with missing data and performing a complete-case analysis

would have potentially introduced bias into the study. However, the issue of missing

data has been addressed by using established methods of multiple imputation. We

assumed that people with missing ethnicity data were white. This may have biased the

findings to some small degree, but it is unlikely to have impacted substantially on our

findings.

Measurement error in identifying the CVD outcomes will have been present in the

analysis, but this study has endeavoured to apply the UKPDS study’s definitions of

the cardiovascular outcomes as far as possible in selecting appropriate medical codes

[298]. Moreover, we have supplemented the clinical information recorded in the CPRD

with linked but independent secondary-care data from HES, which included details

of primary and additional diagnoses for inpatient episodes, and with cause-specific

mortality data extracted from death certificates from the ONS. It is therefore unlikely

that measurement error is a large source of bias.
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Restricting cohort membership to patients from the subset of English practices particip-

ating in the linkage scheme between CPRD and HES/ONS should not have introduced

significant bias: patient characteristics have been found to be similar between linked

and non-linked practices [118]. In order to provide data on ethnicity only those HES

eligible patients with a hospital contact were included in our cohort. This excluded

only 2% of patients but these patients were presumably healthier than the overall co-

hort.

Here we have attempted to validate the UKPDS-RE as a prognostic tool in a cohort of

newly diagnosed subjects. We did not evaluate its performance with respect to CVD

risk among patients with established type 2 diabetes. As the CHD and stroke models

each include duration of diabetes as an input parameter, exploration of the utility of

UKPDS-RE among prevalent cases of type 2 diabetes is an important future objective.

5.5 Conclusions

The four UKPDS risk equations constituting the UKPDS-RE showed a reasonable abil-

ity to identify high-risk patients (discrimination) but were generally poor at quantifying

the absolute risk (calibration). The UKPDS-RE CHD risk equations consistently over-

estimated absolute risk, whereas the UKPDS-RE stroke equations performed relatively

well. However, when considered as a whole, the UKPDS-RE was unsuitable for pre-

dicting CVD risk in UK subjects with newly diagnosed type 2 diabetes. Our findings

suggest that the use of UKPDS-RE in clinical practice will lead to over-estimation of

CVD risk in patients with newly diagnosed T2DM. This in turn is likely to lead to

selection of preventative treatments, for which, for some patients, the balance of risks

may outweigh the benefits. Considering the widespread application of these prediction

models in clinical practice, drug reimbursement, and public health decision-making,

we suggest that there is a need for revised risk equations in type 2 diabetes. Using the

clinical setting of CVD in patients with T2DM to motivate, these findings add support
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to the hypothesis that there is a need for improved clinical risk prediction methods.

In the next chapter, we will perform our second set of experiments to demonstrate the

utility of genetic programming for the automatic development of clinical prediction

models for risk prediction of future cardiovascular events in patients with symptomatic

cardiovascular disease using data from the Second Manifestations of ARTerial disease

study.
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Chapter 6

Experiment 2: A case study in

symptomatic cardiovascular disease in

the general population using the

SMART cohort

Next we perform our second set of experiments to test the main hypothesis—that ap-

plication of GP can provide more accurate representation of factors that predict the

risk of CVD when compared with existing methods—by assessing the utility of the

developed GP approach for the automatic development of clinical prediction models

for risk prediction of future cardiovascular events in patients with symptomatic cardi-

ovascular disease using data from the SMART study.

GP is a general methodology, the specific implementation of which requires develop-

ment of several different specific elements such as problem representation, fitness, se-

lection and genetic variation. Here we implement the specific GP elements developed

in chapter 4 to form a GP approach for clinical prediction modelling in the presence

of censored survival data, and assess its performance and examine the prognostic sig-

nificance of different risk factors when compared with the de facto statical method in

empirical data from the clinical setting of secondary prevention.

Background & Aims Genetic programming is an Evolutionary Computing methodo-
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logy, inspired by biological evolution, capable of discovering complex non-linear pat-

terns in large data sets. Despite the potential advantages of genetic programming over

standard statistical methods, its applications to survival analysis are at best rare, primar-

ily because of the difficulty in handling censored data. The aim of this study was to

demonstrate the utility of genetic programming for the automatic development of clin-

ical prediction models using asymptomatic cardiovascular disease as a case study.

Study Design and Setting We compared genetic programming against the commonly

used Cox regression technique in terms of development and performance of a cardi-

ovascular risk score using data from the SMART study, a prospective cohort study

designed to identify predictors of future cardiovascular events in patients with symp-

tomatic cardiovascular disease. The event predicted was a composite cardiovascular

event, comprising of cardiovascular death, non-fatal stroke, and myocardial infarction.

The predictive ability of both models was assessed in terms of discrimination and cal-

ibration.

Results A total of 3,873 patients were enrolled in the study 1996-2006, aged 19-82

years with a total of 460 cardiovascular events. The study cohort was split 70:30 into

derivation and validation sets, used for model fitting and assessment of performance of

both the genetic programming and Cox regression models. The discrimination of both

models was comparable, albeit in favour in genetic programming; at time points t=1,

3, and 5 years the C-index was 0.65, 0.76, 0.74, and 0.66, 0.70, 0.70, for the genetic

programming and Cox regression models, respectively. At the same time points, the

calibration of both models was also comparable, but with the Cox modelling better

calibrated to the validation data.

Conclusions Using empirical data, we demonstrated that a prediction model developed

automatically by genetic programming has predictive ability comparable to that of

manually ’tuned’ Cox regression. The genetic programming model was more com-

plex but was developed in a fully automated fashion, used fewer predictors as inputs,

and did not require the expertise needed for survival analysis. Genetic programming
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demonstrated potential as a methodology for the automated development of clinical

prediction models for diagnostic and prognostic purposes.

6.1 Introduction

The objective of this study was to develop a tree-based untyped genetic programming

approach for censored longitudinal data, comparing it to multi-variable Cox regression

in the development of a clinical prediction model for the occurrence of vascular events

in patients with symptomatic cardiovascular disease, using data from a prospective co-

hort study. Four models were developed, three using symbolic regression (GMOGP,

GSOGP and, SSOGP) and another using multi-variable Cox regression, and their per-

formance was evaluated in terms of discrimination and calibration in a validation data

set.

As discussed in chapter 4, there are a great number of different operators and parameter

settings, independent of a particular GP search strategy, that can be used in modern GP

systems. The purpose of the experiments in this chapter are to demonstrate the utility of

GP for clinical prediction modelling in the presence of censored survival data. As such,

we have endeavoured to use ’out of the box’, untuned GP, adopting commonly used

operators and parameter settings recommended by the literature for the data and type

of problem at hand. In this way aim to demonstrate its practical utility by comparing

untuned GP, that does not require significant specialist expertise, with highly tuned Cox

regression, which does require significant statistical expertise to be applied correctly.

Whilst there have been successful applications of genetic programming to regression

and classification problems, we believe that this is the first study to have used genetic

programming for survival analysis. This serves to demonstrate the utility of genetic

programming for the automated development of clinical prediction models.
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6.2 Patients and Methods

This study was carried out using data from the SMART study. Details of the ongo-

ing prospective cohort study at the University Medical Centre Utrecht, the Nether-

lands, designed to identify predictors of future cardiovascular events in patients with

symptomatic cardiovascular disease have been described previously [276]. Briefly,

we consider 3,873 patients who were enrolled in the study between September 1996

and March 2006. Patients were enrolled when presenting at hospital, with follow-up

starting from study inclusion. Patients had a clinical manifestation of atherosclero-

sis, defined as transient ischaemic attack, ischaemic stroke, peripheral atrial disease,

Abdominal Aortic Aneurysm (AAA), or coronary heart disease. After informed con-

sent, patients underwent a standardised vascular screening, including a health ques-

tionnaire for clinical information, laboratory assessment, and anthropometric meas-

urements at enrolment. During follow-up patients were biannually asked to fill in a

questionnaire on hospitalisations and outpatient clinic visits. When a possible event

was reported by a participant, correspondence and relevant data were collected (dis-

charge letters, laboratory radiology results). Based on all obtained information, every

event was audited by three physicians from different departments.

The primary outcome was any cardiovascular event, comprising of cardiovascular death,

non-fatal stroke and non-fatal myocardial infarction (table 6.1). Combing predictor

events is a common approach in cardiovascular research to increase statistical power [286].

A cardiovascular event occurred in 460 patients during follow-up.

For our study we a priori selected 25 candidate predictors based on previous pro-

gnostic studies (Framingham, SCORE). These 25 candidate predictors included risk

factors traditionally associated with future events (hyperhomocysteinemia, Intima Me-

dia Thickness (IMT) and creatinin level), demographics (age and sex) and risk factors

for vascular events in the general population (smoking, alcohol use, BMI, diastolic and

systolic blood pressure, lipids and diabetes). Indicators to the location of symptomatic

vascular disease (cerebral, coronary, peripheral atrial disease or AAA) and markers of
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Table 6.1: Definitions of fatal and non-fatal vascular events in the SMART study

Event Definition

Ischaemic stroke Definite: Relevant clinical features that have caused an in-

crease in impairment of at least one grade on the modified

Rankin scale, accompanied by a fresh ischaemic infarction

on a repeat brain-scan
Probable: Clinical features that have caused an increased

impairment of at least one grade on the modified Rankin

scale; without a fresh ischaemic infarction on a repeat brain-

scan

Myocardial infarction Fatal or non-fatal myocardial infarction: at least two of the

following criteria:
1. chest pain for at least 20 min, not disappearing after ad-

ministration of nitrates
2. ST-elevation > 1 mm in two following leads or a left

bundle branch block on the ECG
3. CK elevation of at least two times the value of CK and a

MB-fraction > 5% of the total CK

Vascular death Sudden death: Unexpected cardiac death occurring within 1

h after onset of symptoms, or within 24 h given convincing

circumstantial evidence
Death from ischaemic stroke
Death from intracerebral haemorrhage (haemorrhage on

CT-scan)
Death from congestive heart failure
Death from myocardial infarction
Death from rupture of AAA
Vascular death from other cause, such as sepsis following

stent placement
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the extent of atherosclerosis (homocysteine, glutamine, creatinin, albumin, IMT and

presence of carotid artery stenosis, table 6.5) were also considered as it is conceivable

that they are relevant to predict future events in patients with symptomatic vascular dis-

ease. We note that the primary focus of these models is achieving accurate predictions

rather than insight into the predictor effects.

6.2.1 Methods

The data set was split, randomly, into two parts: a derivation set of approximately

66.67% (2582 patients) and a validation set of approximately 33.33% (1291 patients).

The derivation set was used for model development (both by Cox regression and by

genetic programming) and the validation set to access the performance of the two mod-

els. The aim for both models was to predict the absolute risk of occurrence of vascular

events (stroke, myocardial infarction or cardiovascular death). Given the available

follow-up, 1-, 3-, and 5-year risks could be assessed. With respect to sample size in the

derivation set, the balance of 313 events and 25 predictors is reasonable, (table 6.5). At

least 10-20 events per candidate predictor have been proposed in previous guidelines

for the sensible development of predictions models [112, 236, 285, 286].

Multiple imputation is a technique that offers substantial improvements over value re-

placement approaches based on complete cases or cases matched for age and sex [137].

It involves creating multiple copies of the data and imputing plausible values randomly

selected from their predicted distribution. Here, we used multiple imputation to re-

place missing values for smoking status, packyears, alcohol, BMI, diabetes, SBP,

Dyastolic Blood Pressure (DBP), Total Cholesterol (TC), High-density Lipoprotein

Cholesterol (HDL), Low-density Lipoprotein Cholesterol (LDL), triglycerides, homo-

cysteine, glutamine, creatinine, albumin, IMT and carotid artery stenosis (table 6.5),

generating five imputed data sets. The first set of imputations were used for further

analysis (’single imputation’). Although multiple imputation is preferable from a the-

oretical view point, single imputation was considered more practical and sufficient to
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obtain reasonable predictions [286]. Final models were also constructed with multiply

imputed data sets to check for any relevant differences in point estimates, and widening

of confidence intervals.

Cox Regression

The SMART data set, like many others in cardiology and oncology, is an example of

censored data, often referred to as a survival outcome. In medical and epidemiological

studies the Cox Proportional Hazards model (or Cox regression) is the most often used

model for survival outcomes [48]. Analogous to this model for a binary outcome in

uncensored data, where we know whether or not the patient experienced the event in

the time horizon of interest, is the logistic model. Multi-variable logistic regression

model is is the most widely used statistical technique nowadays for binary medical

outcomes [107, 286, 307]. The Cox PH model is the natural extension of the logistic

model to the survival setting [286].

In the derivation set, we fitted a Cox regression model using a similar modelling

strategy that described by Steyerberg [286] in the development of a clinical predic-

tion model on the SMART study data set. Briefly, the we first fitted a full main effects

model. Biologically implausible values were set to missing (prior to imputation) and

extreme values truncated at the 1st and 99th centile. To enhance the flexibility of the

Cox regression and enable fairer comparison with the (unrestricted) genetic program-

ming, we considered continuous predictors (e.g. age, creatinine, blood pressure) for

transformation. Several transformations were considered in adding polynomials, frac-

tional polynomial terms, transformations (e.g. log, square root, exponential), restricted

cubic splines (with varying number of knots) and linear coding (i.e categorisation).

To further enhance a fair comparison with genetic programming, we considered inter-

action effects between predictors. Key limitations of the Cox PH model include the

assumption of proportional hazards - that hazard functions in the different strata are

proportional over time, assumptions of linearity and additivity which are implicit in re-
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gression’s linear combinations, and the fact that the baseline hazard is never specified

(although this last one may be advantage in some cases). All model assumptions relev-

ant to the Cox proportion hazards model were tested. A reduced model was obtained

by applying a backwards selection procedure, with Akaike information criterion (AIC)

as the stopping criterion.

Internal validation of the model was performed using a bootstrapping re-sampling pro-

cedure [22, 75, 111]. Random samples were drawn (with replacement) from the de-

rivation set with 200 replications, and the backwards selection of predictors for the

reduced model repeated each time. Bootstrapping yielded an estimate of optimism of

the reduced models as expressed by the concordance (C) statistic, which for a bin-

ary outcome is identical to the area under the receiver operating characteristic (ROC)

curve. A shrinkage factor was derived from the bootstrap estimates to re-calibrate the

model to adjust for optimism. The re-calibrated model was applied to the validation set

to estimate its discrimination and calibration in an independent sample. All analyses

were carried out in R (v3.0.1) [247].

Symbolic Regression

For the experiments in this chapter we implemented three untyped tree-based GP mod-

els using steady-state single-objective (SSOGP), generational singe-objective (GSOGP)

and, generational multi-objective (GMOGP) search strategies, discussed in sections 4.4.1 -

4.4.3, to fit symbolic regression models to the data to estimate discrete hazard, thus

predicting the risk for cardiovascular events. Here the outcome is discrete hazard rate

which is the conditional probability that an individual will experience the event during

time interval [t-∆/2, t+∆/2), given they are event-free at the beginning of the interval,

as opposed to continuous hazard rate in the Cox regression. We have modelled survival

in discrete time, as opposed to continuous time, to take advantage of the discrete-time

survival fitness function (Equation 4.13) detailed in section 4.2.3, which enables GP

to be applied to censored survival data. An advantage of this model is that it’s not
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constrained by the assumption of proportional hazards and is better suited to any non-

linear interactions between explanatory variables. However, the data need to prepos-

sessed into the ’counting process format’, which results in multiple observations per

subject, representing the discrete time segments for which they were observed.

Symbolic regression was performed using the RGP package in the R statistical pro-

gramming language, with the SSOGP, GSOGP and, GMOGP search heuristics using

the parameter settings detailed in tables 6.2 - 6.4. The choice of these starting paramet-

ers was driven by the size of the training data available, the perceived relative complex-

ity of the problem and, the recommendation and guidelines from authors in the field of

GP which are discussed in section 4.5. Wherever possible we have opted for the most

common or default operators and parameter settings, opting not to tune the parameters.

The default RGP function set (+,−,÷,×, sin, cos, tan,√, exp, log) was used to en-

able the representation of potential non-linear relationships present in the training data.

Koza’s [167] ramped half-and-half random initialisation method, the most commonly

used initialisation operator in tree-based GP, was used with a maximum tree depth of

63. The GP approach utilised is untyped with the search space constrained by the use

of fitness penalties. Specifically, the ’death penalty’ is used where invalid solutions,

such invalid mathematical operations (e.g. dividing by 0), have their fitness value set

to ∞ giving them the lowest possible fitness (section 4.2.1). As discussed in sec-

tion 4.5, some authors propose that as a rule of thumb to specifying the maximum tree

depth, one should try to estimate the size of the expected solution size and add some

percentage as a safety margin. For this experiments we calculated, when transform-

ing categorical predictors into ’dummy’ variables (i.e. n-1 dummies per categorical

predictors, where n is the number of levels), that the expected solution depth would

be 21 based on the expected solution being modelled as a regression model with 19

predictors. Based on this we estimated a maxdepthsize = 21 × 3% = 63. In most

real-world GP applications only a fixed compute time budget is available. Therefore,

the expiration of a fixed time compute budget was chosen as the termination criterion.
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The compute time budget for these experiments was set to 12 hours wall-time and

these experiments were run on a single thread on an Intel Westmere 2.8GHz CPU with

48 GB of memory. Because larger population sizes tend to increase genetic diversity,

because this problem is a relatively difficult one and, the data has a relatively large

number of training cases, we wanted to use the largest population size that the GP sys-

tem could handle gracefully. Based on observations from practitioners (see section 4.5)

in the filed we opted for an initial population size of µ = 1, 000. The most commonly

used mutation and recombination operators in tree-based GP, Subtree Mutation (Equa-

tion 4.15) and Subtree Crossover (Equation 4.18), were selected for this experiment

with the default RGP parameter settings. Because this is relatively hard problem we

have opted genetic variation rates of 0.5 and 0.5 for crossover (Prec) and mutation

(1 − Prec), respectively. For the SSOGP search heuristic implemented in these exper-

iments we have opted for a low selection pressure (tournamentsize = 4) because, as

discussed in section 4.5, authors have have very good experiences with low selection

pressure, with tournaments of 4 individuals regularly performing well.

Table 6.2: Parameters of the SSOGP search heuristic.
Variable (Symbol) Domain Setting

Population Size mu (µ) N 1,000

Tournament Size tournamentSize (stournament ) N 4

Recombination Probability recombinationProbabilty (prec) [0, 1] 0.5

Table 6.3: Parameters of the GSOGP search heuristic.
Variable (Symbol) Domain Setting

Population Size mu (µ) N 1,000

Children per Generation mu (λ) N 500

We did not perform internal validation in the genetic programming approach using a

bootstrap as we did with the Cox regression, because it would not have been possible

to convert it into a shrinkage factor in the same way as we would for a Cox regression.
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Table 6.4: Parameters of the GMOGP search heuristic.
Variable (Symbol) Domain Setting

Population Size mu (µ) N 1,000

Children per Generation lambda (λ) N 500

New Individuals per Generation nu (ν) N0 500

Age Layering ageLayering B true

Parent Selection Probability parentSelectionP (ppsel ) [0, 1] 1

The genetic programming system is a stochastic process, with each run potentially

yielding models with differing complex structures (i.e. symbolic regression). As a

result regression coefficients do not exist in genetic programming models in the same

way that they do in regression models. Instead the training data was split 2/3:1/3 into

training and holdout sets, using a stratified random split to ensure proportionate number

of events. The first 2/3, the training set, was used for training to induce a population

of prediction models. The remaining 1/3, the holdout set, was used at the end of

the genetic programming run to calculate the fitness of the population of models and

thus determine the fittest or ’best of run’ model to be returned as the output of the

genetic programming system. In this way the final genetic programming model was

selected based on its fit to unseen data using a sample other than which it was trained

or developed.

To understand variable selection in the genetic programming and enable comparison

with bootstrapped backwards selection of the Cox model, the genetic programming

system was executed 25 times to produce 25 ’suggested’ models. For each iteration

the training data was randomly (stratified) split 2:1. The final genetic programming

model was applied to the validation data set to assess its performance, in terms of

discrimination and calibration in an independent sample. All analyses were carried out

in R version 3.1.2 [247].
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Comparison of both methods

The four clinical prediction models, one obtained from Cox progression and three from

symbolic regression (SSOGP, GSOGP and, GMOGP), were evaluated in terms of over-

all survival curves, discrimination and calibration in the validation data set. The models

were used to predict the discrete hazards h(t) at t = 1, 3, and 5 years. Model were first

evaluated visually by comparing the survival probabilities S(t) predicted by the models

with estimates obtained using the KM method. The agreement between these curves

and the KM estimates were assessed visually.

Discrimination is the ability of the risk score to differentiate between patients who did

and did not experience an event during the study period. This measure was quantified

by calculating a concordance statistic (C-statistic), proposed by Harrell et al. [109,

110, 111, 300] which is a rank-based measure for censored survival data. The C-

statistic is equivalent of the AUC measure [107] for survival data, in which a value of

0.5 represents random chance and 1 represents perfect discrimination. The C-Statistic

was evaluated considering truncation of the survival/censoring times at t=1, 3, and 5

years.

Calibration refers here to how closely the predicted x-year cardiovascular risk agreed

with the observed x-year cardiovascular risk. Model calibration was assessed using cal-

ibration plots and the generalisation of the Hosmer-Lemeshow test statistic for survival

data [56]. This was assessed by grouping subjects into g equally sized groups, with the

same cardinality, based on quantiles of predicted S(t), where t is a fixed time point,

and calculating the ratio of predicted to observed cardiovascular risk. For each of the g

groups, plotting observed proportions (KM) versus predicted probabilities (model) en-

abled the calibration of the model predictions to be visually assessed. The closer the g

points are to the 45 degree line connecting (0,0) to (1,1), the better is the calibration. To

obtain the χ2 statistic, the model predicted number of events was calculated, for each

group, as the product of the group size by the average predicted incidence 1 − S(t).

The results were then compared to the observed number of events in the corresponding
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groups calculated as the product of the group size by the KM estimate of 1−S(t). This

leads to a statistic which, under the null hypothesis of numerical agreement between

predicted and observed number of deaths, has a χ2 distribution. Calibration was eval-

uated by grouping subjects according to the predicted S(t) at t = 1, 3, and 5 years. All

analyses were carried out in R version 3.1.2.

6.3 Results

6.3.1 Descriptives

There were no major differences in the baseline characteristics of the patients between

the derivation and validation sets (table 6.5). Data were available on 9,636 and 4,895

person-years collected during a median follow-up of 3.3 (range, 0-9 years) and 3.3

years (0-9 years) for the derivation and validation sets, respectively. In the derivation

set a total of 313 events occurred, corresponding to 1-, 3-, and 5-year cumulative incid-

ences of 4.1%, 8.9% and 15.0% respectively. In the validation set a total of 147 events

occurred, corresponding to 1-, 3-, and 5-year cumulative incidences of 3.8%, 8.1% and

12.0% respectively.

6.3.2 Model Derivation

Prior to modelling extreme values in IMT, BMI, lipids (cholesterol, HDL, LDL, trigly-

cerides), homocysteine and creatinine were truncated at the 1st and 99th centile. In-

dicators to the location of symptomatic vascular disease (cerebral, coronary, peripheral

atrial disease or AAA) were optimally combined into a single variable (or sumscore),

with each condition contributing one point except AAA that contributed 2 points. Us-

ing univariate cox models there was no significant difference between the sumscore

(χ2 119; 1 d.f.) and using the separate terms (χ2 123; 4 d.f.) however there was a

saving of 3 degrees of freedom from the sumscore.
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Table 6.5: Baseline characteristics of patients in the SMART cohort, by derivation

and validation sets (n=3,873).

N Test set Training set Test Statistic

N = 1291 N = 2582

Cardiovascular event 3873 11% ( 147) 12% ( 313) χ2
1 = 0.45, P = 0.511

Gender : Female 3873 25% ( 320) 25% ( 656) χ2
1 = 0.18, P = 0.681

Age years 3873 52 60 68 52 60 68 F1,3871 = 0.03, P = 0.862

Smoking : Never 3873 18% ( 235) 18% ( 458) χ2
3 = 5.6, P = 0.131

Former 69% ( 885) 71% (1826)

Current 12% ( 158) 11% ( 286)

NA 1% ( 13) 0% ( 12)

Packyears years 3852 5.2 18.2 33.8 6.1 19.5 34.5 F1,3850 = 0.79, P = 0.382

Alcohol : Never 3873 20% ( 255) 19% ( 496) χ2
3 = 1.1, P = 0.771

Former 11% ( 141) 10% ( 267)

Current 69% ( 885) 70% (1804)

NA 1% ( 10) 1% ( 15)

Body mass index Kg/m2 3870 24 26 29 24 26 29 F1,3868 = 3, P = 0.0842

Diabetes : 0 3873 76% ( 983) 78% (2004) χ2
2 = 1.1, P = 0.591

1 23% ( 294) 21% ( 552)

NA 1% ( 14) 1% ( 26)

Systolic blood pressure, automatic mm Hg 2650 127 140 155 127 139 153 F1,2648 = 1.4, P = 0.232

Diastolic blood pressure, automatic mm Hg 2652 73 79 86 73 79 86 F1,2650 = 0.01, P = 0.92

Systolic blood pressure, by hand mm Hg 2375 128 140 158 125 139 155 F1,2373 = 3.8, P = 0.0522

Diastolic blood pressure, by hand mm Hg 2374 75 82 90 74 82 90 F1,2372 = 0.2, P = 0.652

Total cholesterol mmol/L 3855 4.4 5.2 5.9 4.3 5.1 5.9 F1,3853 = 2.6, P = 0.112

High-density lipoprotein cholesterol mmol/L 3843 0.95 1.15 1.40 0.97 1.18 1.43 F1,3841 = 3.8, P = 0.052

Low-density lipoprotein cholesterol mmol/L 3657 2.5 3.1 3.8 2.4 3.0 3.8 F1,3655 = 3.2, P = 0.0732

Triglycerides mmol/L 3845 1.1 1.6 2.3 1.1 1.5 2.2 F1,3843 = 4.1, P = 0.0422

Cerebral 3873 30% ( 387) 29% ( 760) χ2
1 = 0.12, P = 0.731

Coronary 3873 56% ( 724) 56% (1436) χ2
1 = 0.08, P = 0.781

Peripheral 3873 24% ( 308) 24% ( 632) χ2
1 = 0.18, P = 0.671

Adominal aortic aneurysm 3873 10% ( 134) 11% ( 282) χ2
1 = 0.26, P = 0.611

Homocysteine (µ)mol/L 3410 10 13 16 10 13 16 F1,3408 = 2.5, P = 0.112

Glutamine (µ)mol/L 3854 5.3 5.8 6.5 5.3 5.7 6.5 F1,3852 = 0.94, P = 0.332

Creatinin mL/min 3856 78 89 102 78 89 101 F1,3854 = 0.62, P = 0.432

Albumin : No 3873 75% ( 969) 75% (1928) χ2
3 = 1.1, P = 0.781

Micro 17% ( 221) 17% ( 434)

Macro 3% ( 33) 3% ( 81)

NA 5% ( 68) 5% ( 139)

Intima media thickness mm 3775 0.75 0.88 1.05 0.75 0.88 1.07 F1,3773 = 0.24, P = 0.632

Presence of carotid artery stenosis : 0 3873 79% (1020) 79% (2038) χ2
2 = 0.91, P = 0.631

1 18% ( 236) 19% ( 486)

NA 3% ( 35) 2% ( 58)

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables. N is the number of non–

missing values. Numbers after percents are frequencies. NA represent missing values. Tests used:1Pearson test; 2Wilcoxon

test
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The full Cox regression model consisted of 14 predictors, several of which had lim-

ited contributions. Predictors that had a relatively large effect were age, location of

symptomatic vascular disease (sum score), albumin, and the marker of renal damage,

creatinine. The coding of predictors that gave the best representation for age and cre-

atinine were (AGE − 50)2 and log(CREAT), respectively. We also tested interactions

between predictors but the resultant interactions were not considered relevant enough

to include any interaction terms in the final model. The proportionality of hazards was

tested using an overall test which was not significant. We judged our sample size to

large enough to allow for some model reduction (313 events and a full model with 17

degrees of freedom), facilitating easier practical application and clinical interpretation.

We applied a backwards step-wise selection procedure, using AIC as the stopping rule,

to achieve a reduced Cox model. The reduced step-wise selected model was found to

be optimal with 9 predictors (table 6.6). Predictors with relatively weaker effects (al-

cohol, diabetes, gender, smoking status, and stenosis) were excluded from the reduced

model.

Bootstrapping of the reduced model yielded an estimate of required shrinkage for the

coefficients in the step-wise selected model of 0.91, suggesting that each coefficient

should be reduced by 9% to obtain a re-calibrated model that corrects for optimism.

This shrinkage factor was applied to the reduced backwards step-wise model and con-

sidered the calibrated ’final’ Cox regression model (table 6.7). All analyses were re-

peated with the multiply imputed data sets, with largely similar results.

Based on the parameter settings detailed in section 6.2.1, the generational approaches

failed to complete within the allocated 12 hour fixed time budget because they ex-

ceeded the maximum memory allocation (42Gb). This is likely to be due to the in-

creased computational expense of the generational approach to GP, when compared

to the computationally cheaper steady-state approach. The experiments were repeated

with a range of different parameter settings that effect the memory requirements, such

as population size and max depth of solutions, but unfortunately these all exceeded the
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Table 6.6: Cox regression coefficients in the full model, and stepwise selected

model (using AIC).

Predictor Full Stepwise

Age AGE 0.0011 0.0011

Albumin ALBUMIN=Macro 0.5289 0.5371

ALBUMIN=Micro 0.5227 0.5184

Alcohol ALCOHOL=Current 0.0234

ALCOHOL=Former −0.1854

Body mass index BMI −0.0383 −0.0359

Creatinin CREAT 0.5992 0.5282

Diabetes DIABETES 0.0783

High-density lipoprotein cholesterol HDL −0.4619 −0.4096

Previous atherosclerosis (sum score) HISTCAR2 0.2980 0.2895

Homocysteine HOMOC 0.0169 0.0182

Intima media thickness IMT 0.5145 0.5879

Gender SEX=Female 0.1754

Smoking SMOKING=Current 0.0798

SMOKING=Former 0.0427

Presence of carotid artery stenosis STENOSIS 0.1815

Systolic, by hand SYSTH 0.0037 0.0041

available memory and failed. From here on we will discuss only the results from the

SSOGP symbolic regression models.

Figure 6.1 describes the run statistics for the 25 GP SSOGP runs performed on the

different stratified re-samples of the derivation data set. The figure depicts the evol-

ution of the different GP run’s best fitness (bestFit) and complexity, quantified using
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Table 6.7: Association of each predictor with cardiovascular events in the calib-

rated final Cox model.

Low High ∆ Effect S.E. Lower 0.95 Upper 0.95

AGE 52.00 68.0 16.00 0.32 0.08 0.16 0.48

Hazard Ratio 52.00 68.0 16.00 1.38 1.18 1.61

BMI 24.03 28.7 4.69 -0.15 0.08 -0.31 0.00

Hazard Ratio 24.03 28.7 4.69 0.86 0.73 1.00

SYSTH 127.00 156.0 29.00 0.11 0.07 -0.04 0.25

Hazard Ratio 127.00 156.0 29.00 1.11 0.96 1.29

HDL 0.96 1.4 0.47 -0.18 0.09 -0.34 -0.01

Hazard Ratio 0.96 1.4 0.47 0.84 0.71 0.99

HISTCAR2 1.00 5.0 4.00 1.05 0.27 0.52 1.59

Hazard Ratio 1.00 5.0 4.00 2.87 1.67 4.91

HOMOC 10.50 15.9 5.40 0.09 0.05 -0.02 0.19

Hazard Ratio 10.50 15.9 5.40 1.09 0.98 1.21

CREAT 78.00 101.0 23.00 0.12 0.05 0.04 0.21

Hazard Ratio 78.00 101.0 23.00 1.13 1.04 1.24

IMT 0.75 1.1 0.32 0.17 0.07 0.04 0.30

Hazard Ratio 0.75 1.1 0.32 1.19 1.04 1.35

ALBUMIN — Micro:No 1.00 2.0 0.47 0.14 0.21 0.74

Hazard Ratio 1.00 2.0 1.60 1.23 2.09

ALBUMIN — Macro:No 1.00 3.0 0.49 0.24 0.02 0.96

Hazard Ratio 1.00 3.0 1.63 1.02 2.61

mean visitation length (meanVisLen), over time. Time is represented as iterative or

evolutionary steps (stepNo), where an evolutionary step is each time that tournament

selection is performed and new individuals are generated and considered for inclusion

in the population. The ’final’ symbolic regression model is the individual the best (i.e.

lowest) fitness at the end of all 25 GP runs. We can see that there is significant vari-
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ation in the best fitness and complexity of the individuals developed by the different GP

runs. However, in general the improvement in best fitness appears to level out towards

the over time in all runs, suggesting that the selected fixed time compute budget of 12

hours wall time is acceptable. A range of different run statistics for all 25 SSOGP runs

are detailed in Appendix B.

The final model produced by genetic programming model included 6 predictors: age

(AGEn), sum score of previous atherosclerosis (HISTCAR2n), gender (SEXfemale.n),

IMT (IMTn), homocysteine (HOMOCn), and albumin (ALBUMINNo.n), in addition

to the discrete time indicator (tj), which is present in all the genetic programming

models to represent the jth time interval. The final prediction model generated by ge-

netic programming is presented in figure 6.2, which is a binary parse tree representing

Equation 6.1.

λ̂(tj, X) =Prob(T = tj|T ≥ tj, X) =
1

1 + e−Xβ̂
, where

Xβ̂ =(tj − (0.441 + tj)) ∗ exp(sin(sin(ALBUMINNo.n)))∗

exp((HOMOCn + AGEn)/tan(1.889)) ∗ cos((tan(SEXfemale.n)

+ (HOMOCn + AGEn))/exp(cos((tan(tan(exp(HISTCAR2n)))

+ sin(IMTn) + sin(IMTn))/tan(1.886)))) ∗ 2.487− exp(cos(

HISTCAR2n/tan(tan(−1.813))/tan(tan(tan(0.739)))))

(6.1)

The other 24 prediction model generated by genetic programming are presented in

Appendix C.

The genetic programming approach was applied 25 times, each time trained and tested

on a different stratified re-sample of the derivation data set. This leads to a pool 25

different ’best of run’ models, each of which may have selected different subset of pre-

dictors as inputs and as such may have differing levels of performance. In this pool of
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Figure 6.1: Selected runs statisitcs for the 25 SSOGP runs in the SMART experi-

ments.

genetic programming models, the mean number of predictors used was 6 (IQR: 5—8).

The backwards step-wise selection procedure used in the Cox modelling was also re-
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Figure 6.2: The final model developed by genetic programming, presented as a

binary tree.

peated 25 times, using bootstrap re-sampling to better understand the frequencies at

which different subsets of predictors were selected. In the pool of 25 backwards se-

lected Cox models the mean number of predictors used was 9 (IQR: 8—10). There

was a reasonable association between the estimated effect of a predictor according in

the reduced backwards step-wise model and the frequency of the selection when the

step-wise selection was repeated in the bootstrap procedure (table 6.8).

Generally the features selected by repeating the GP were far more variable than the
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Table 6.8: Number (proportion) of times predictors were selected duting the 25

repititions of Cox regression backwards step-wise selection procedure and genetic

programming.

Predictor Cox Regression Genetic Programming

Age AGE 25 (1.00) 19 (0.76)

Gender SEX 11 (0.44) 5 (0.20)

Smoking SMOKING 5 (0.20) 10 (0.40)

Alcohol ALCOHOL 3 (0.12) 11 (0.44)

Body mass index BMI 19 (0.76) 4 (0.16)

Systolic, by hand SYSTH 14 (0.56) 6 (0.24)

High-density lipoprotein cholesterol HDL 18 (0.72) 8 (0.32)

Diabetes DIABETES 10 (0.40) 1 (0.04)

Previous atherosclerosis (sum score) HISTCAR2 25 (1.00) 20 (0.80)

Homocysteine HOMOC 19 (0.76) 13 (0.52)

Creatinine CREAT 22 (0.88) 7 (0.28)

Albumin ALBUMIN 22 (0.88) 23 (0.92)

Presence of carotid artery stenosis STENOSIS 10 (0.40) 10 (0.40)

Intima media thickness IMT 23 (0.92) 12 (0.48)

features selected by the Cox regression stepwise selection procedure (table 6.8). This

is to be be expected as GP is a stochastic system, where as the stepwise procedure is

deterministic, only giving variable results because we are repeating the procedure on

different bootstrap resamples of the derivation data set.

Despite this, the predictors that were estimated to have the largest effect in the final

stepwise selected Cox model which were also selected with the high frequency in boot-

strapped stepwise selection—age, previous atherosclerosis, and homocysteine—were

selected (relatively) frequently when GP was repeated. Interestingly, stepwise selection

also often selected BMI, HDL, creatinine, albumin and, IMT as predictors, however,
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these featured in a relatively low proportion of the GP models. However, albumin and

IMT did feature in the best performing ’final’ GP model. Conversely, the ’final’ GP

model featured gender as a predictor, a predictor that was estimated to have small effect

and was selected in low proportion of Cox models by the stepwise selection procedure.

6.3.3 Model Validation

Using the validation data set, the average performance of the 25 ’best of run’ predic-

tion models automatically generated by GP was compared with the calibrated final Cox

model. Graphical comparisons of the S(t) values produced by each model with those

obtained by the KM method in the validation set are shown in figure 6.3. As can be

seen from this figure, both the Cox and GP models produced similar values that had

good agreement with the KM estimates in the earlier years. However, this agreement

deteriorated in the latter years, where the KM estimates have high variability, as indic-

ates by the large error bars. This high variation my be explained by the fact that with a

median follow-up time of 3.3 years, there are far fewer events and number of subjects

in the latter time periods. Whilst agreement deteriorated in the latter time-points, both

models had generally acceptable overall agreement.

The discriminative performance in the validation set, according to the C-statistic, of

the models at different time points is shown in table 6.9 and figure 6.4. From the

C-statistic estimates we can see that a satisfactory performance of >0.6 was reached

in both models, at all time points. There was generally comparable discriminative

performance of both models, at all time points, albeit in favour of the Cox model. Both

models demonstrated better performance at time t = 3 years, which may be explained

by the 3.3 median follow up time in the validation set.

The calibration plots evaluated by grouping subjects according to quantiles of predicted

risk (1 − S(t)) at t = 1, 3, and 5 years are shown in figure 6.5. The corresponding

χ2 statistics and p-values are shown in table 6.10. From the graphical inspection of
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Figure 6.3: Average survival curves for the Cox regression and genetic program-

ming models. The error bars represent ±2 standard errors of the KM estimates.

Table 6.9: C-statistic estimates by model at t=1, 3, and 5 years

Time (years) Cox PH Regression Genetic Programming

1 0.66 0.59

3 0.70 0.69

5 0.70 0.64

the calibration plots we can see that there was no tendency to systematically over- or

under-predict at any of the time points in either the Cox or GP models. The genetic

programming model was less calibrated than the Cox model, confirmed by the higher

χ2 values in table 6.10 at times t = 3 and t = 5, whereas it was better calibrated at time

t = 1. Calibration in both models was worst at time t = 5, and best in the Cox and GP
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Figure 6.4: C-statistic estimates by model for t=1, 3 and 5 years

Table 6.10: χ2 statistic for the comparison between observed versus expected (ac-

cording to the model) number of events in groups of patients defined according to

the predicted 1− S(t) at t=1, 3, and 5 years.

Time (years) Cox Regression Genetic Programming

t χ2 p-value χ2 p-value

1 7.93 0.541 5.18 0.818

3 4.89 0.844 9.99 0.352

5 10.32 0.325 16.17 0.063

models at times t = 3 and t = 1, respectively. However the Homser-Lemeshow test

statistic, detailed in table 6.10, suggested that there was only a statistically significant

lack of calibration in the GP model at time point t = 5.
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Figure 6.5: Calibration plots for the Cox regression and genetic programming

models, at t=1, 3, and 5 years..

6.4 Discussion

This study showed that Cox regression and GP produced similar results when evaluated

in a common validation data set. After re-calibration the discriminative ability of the

GP model in the validation set was slightly larger than that of the Cox model at two

time points, compared with the Cox model model, which was marginally better at

only one time point. Despite slight relative differences, both models demonstrated an

acceptable level of discriminative ability (C-index >0.6) at all times points. The GP

model had relatively poorer calibration when compared with the Cox model. The Cox

model demonstrated no statistically significant lack of calibration at any time point,

however the GP did demonstrate a statistically significant lack of calibration at the

latter time point only.



164 6.4 Discussion

Despite generally comparable performance, albeit in favour of the Cox model, the

predictors selected for representing their relationship with the outcome were quite dif-

ferent. The final reduced Cox model used 9 predictors, in contrast to 6 predictors used

in the GP. The GP model used significantly fewer predictors, further confirmed by

repeating the the GP and the stepwise selection procedure used in the Cox modelling,

resulting in mean numbers of predictors of 6 (IQR: 5—8) and 9 (IQR: 8—10), respect-

ively.

Predictors that were estimated to have larger contributions to the final Cox model and

that frequently selected during stepwise selection—age, previous atherosclerosis, and

homocysteine—were selected in the final GP model, with age and previous atheroscler-

osis selected at (relatively) high frequency when the GP was repeated. However, others

predictors that had large to moderate contributions to the final Cox model—BMI, creat-

inine, and HDL—did not features in the final GP model and were selected infrequently

when GP was repeated. Interestingly, gender did not have much of contribution to the

final cox model yet it was selected relatively infrequently by GP and featured in the

final GP model. There were other predictors —albumin and IMT —where the pic-

ture was less clear, and whilst they had large to moderate contributions to the final

Cox model and featured in the final GP model, they were selected at low frequencies

when GP was repeated. Whilst these results confirm the prognostic significance of a

small number of the most highly associated predictors in the Cox modelling, symbolic

regression model did not estimate such a large number predictors to be strongly asso-

ciated with the outcome, associated strongly enough for inclusion in the model at least,

whilst achieving comparable performance.

These results suggest that GP may better represent the potentially non-linear relation-

ship of (a smaller subset of) the strongest predictors. To test the first part of this hypo-

thesis—that GP can represent the potential non-linear relationships that exist between

predictors—the shape of the predictor effects were plotted to evaluate whether or not

the effects were non-linear in nature. Using the ’final’ GP model, the effects of each
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predictor’s values were plotted against log hazard, whilst the other values were held

at their reference values. Reference values were the modal class for binary variables

and the mean of continuous variables. Figure D.1 of appendix D illustrates that the

the ’final’ model developed by GP is modelling non-linear effects for the continuous

predictors age, initma media thickness and homocysteine.

To test the second part of this hypothesis—that GP can better represent these rela-

tionships between predictors using fewer variables—we repeated the GP runs with

exactly the same experimental set-up, but restricting the inputs to predictors that were

selected with a relatively high frequency (>0.5) in the original GP run of the primary

experiment. The covariates included age, previous atherosclerosis, homocysteine, and

albumin. This produced very similar results (detailed in appendix E) both in terms

of calibration and discrimination. Both these findings support the hypothesis that GP

may better represent the potentially non-linear relationship of (a smaller subset of) the

strongest predictors.

Whilst considerable effort was made to relax the linearity of the Cox regression, through

transformation of predictors, the nature of the approach relies on linear combinations of

predictors. The fact that GP required fewer predictors to achieve similar performance

may have an advantage in practical application of the developed clinical prediction

model. The acquisition of information that forms the inputs to such a model can be

prohibitively onerous in routine clinical practice. Therefore a prediction model that re-

quires fewer inputs, especially if the information relating to these inputs is in practice

recorded easily and to a good quality, would considerably increase adoption and utility.

This work has limitations introduced by its use of data from the SMART study, a

study from a secondary prevention setting, designed to predict the risk of subsequent

cardiovascular events in patients with already presenting with clinical CVD. Through

its use of the SMART study data this work has demonstrated the utility of GP in a

secondary prevention setting, however, there are limitations in the generalisability of

these findings to the other clinical settings of cardiovascular risk prediction. Indeed,
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secondary prevention in stable cardiovascular patients is not the most common clinical

setting for the application of cardiovascular risk prediction models in routine practice.

6.5 Conclusion

To our knowledge, this is the first empirical study to assess the value of GP for clinical

prediction purposes compared to the well-known and widely applied Cox PH regres-

sion technique. Using data from the SMART study we demonstrated that a symbolic

regression model developed by SSOGP has predictive ability comparable to that of Cox

regression for the prediction of future cardiovascular events in a secondary prevention

setting, i.e in patients with symptomatic cardiovascular disease. These experiments

compared an untuned SSOGP symbolic regression model that was developed in an

automated fashion using basic parameter values recommended from the GP literature,

with a highly tuned Cox regression model that was developed in a very involved man-

ner that required a certain amount of clinical and statistical expertise.

Whilst the highly tuned Cox regression model performed marginally better in the val-

idation data, both in terms of calibration and discrimination, the performance of the

automatically generated prediction model was generally comparable.

These findings demonstrate the utility of GP as a methodology for automated develop-

ment of clinical prediction models for diagnostic and prognostic purposes, where the

primary goal is accurate prediction. These findings also confirm the prognostic signi-

ficance of age, previous atherosclerosis, homocysteine, and to a lesser extent albumin

and IMT, for cardiovascular risk in patients with symptomatic CVD. Finally, further

validation is required to assess the utility of GP for automated development of new

clinical prediction models in other clinical and environmental settings.

In the next chapter we discuss a series of experiments using a very similar method-

ology and experimental set-up to those used in this chapter. However, the developed
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GP approach is applied to different dataset refined from CPRD in a primary preven-

tion setting in patients with T2DM, rather than the secondary prevention setting in the

general population used in this chapter. We look to see if we observe similar results to

this chapter and further demonstrate the utility of GP for clinical prediction modelling

in censored survival data in different clinical setting.
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Chapter 7

Experiment 3: A case study in

asymptomatic cardiovascular disease

in type 2 diabetes using CPRD

Next we perform our third and final set of experiments—which have a very similar

experimental set-up those in the previous chapter—to further test our main hypothesis

that application of GP can provide more accurate representation of factors that predict

the risk of CVD when compared with existing methods, but this time using a different

clinical setting and datasource.

We assess the utility of the developed SSOGP approach for the automatic development

of clinical prediction models for risk prediction of future cardiovascular events, assess-

ing its performance and examining the prognostic significance of different risk factors

when compared with the de facto statical method in a much larger observational cohort

of patients from CPRD in a primary prevention clinical setting, where patients have

asymptomatic CVD.

Background & Aims The aim of this study was to demonstrate the utility of genetic

programming for the automatic development of clinical prediction models using symp-

tomatic cardiovascular disease in patients with T2DM as a case study.

Study Design and Setting We compared genetic programming against the commonly

used Cox regression technique in terms of development and performance of a cardi-
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ovascular risk score using data from CPRD to refine a retrospective observations cohort

of T2DM patients with asymptomatic cardiovascular disease. The event predicted was

a composite cardiovascular event, comprising of cardiovascular death, non-fatal stroke,

and myocardial infarction. The predictive ability of both models was assessed in terms

of discrimination and calibration.

Results The study cohort consisted of 63,496 patients with T2DM, registered with

practices between 1999 and 2011, aged 35-85 years with a total of 14,804 cardiovas-

cular events. The study cohort was split 70:30 into derivation and validation sets, used

for model fitting and assessment of performance of both the genetic programming and

Cox regression models. The discrimination of both models was comparable, albeit in

favour in Cox regression; at time points t=2, 5, and 8 years the C-index was 0.69, 0.65,

0.67, and 0.71, 0.70, 0.70, for the genetic programming and Cox regression models,

respectively. At the same time points, the calibration of both models was also compar-

able, with no significant lack calibrated to the validation data.

Conclusions Using empirical data, we have confirmed the findings of the previous

chapter in a new clinical context—primary prevention—demonstrating that a predic-

tion model developed automatically by genetic programming has predictive ability

comparable to that of manually ’tuned’ Cox regression. The genetic programming

model was more complex but was developed in a fully automated fashion, used sig-

nificantly fewer predictors as inputs, and did not require the expertise needed for sur-

vival analysis. Genetic programming demonstrated potential as a methodology for the

automated development of clinical prediction models for diagnostic and prognostic

purposes.

7.1 Introduction

CVD is the leading cause of mortality and a major cause of morbidity globally and in

the UK. Asymptomatic patients that are suspected to be at high risk need to be identi-
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fied by general practitioners so they can offer advice about lifestyle changes and initiate

preventative treatment. To facilitate this, general practitioners need tools that can ac-

curately and reliably predict cardiovascular risk in their patients. National policies for

the management of both CVD and type 2 diabetes advocate the calculation of CVD

risk in order to identify high-risk patients for targeted interventions [264, 295, 245,

66, 216]. As discussed in chapter 3, several multivariable risk-prediction models have

been developed for the general, non-diabetic population that also account for diabetes,

but only a few are specific to type 2 diabetes [303].

In chapter 5 we carried out an external validation of the performance of the UKPDS-RE

on a large, relatively contemporary retrospective cohort of UK-resident patients with

T2DM from CPRD. Results showed that the UKPDS-RE had a reasonable ability to

identify high-risk patients (discrimination) but were generally poor at quantifying the

absolute risk (calibration). Our findings suggested that the use of UKPDS-RE in clin-

ical practice will lead to over-estimation of CVD risk in patients with newly diagnosed

T2DM. Considering the widespread application of these prediction models in clin-

ical practice, drug reimbursement, and public health decision-making, we suggest that

there is a need for revised risk equations in T2DM.

The objective of this study was to compare the GP approach for censored longitudinal

data developed in section 6.2.1, with multi-variable Cox regression in the development

of a clinical prediction model for the occurrence of vascular events in a large, relatively

contemporary dataset of UK-resident patients with T2DM. Models were developed

using SSOGP and multi-variable Cox regression, and their performance was evaluated

in terms of discrimination and calibration in a validation data set.

The experiments in this chapter differ from chapter 6 in terms of the clinical setting

and the cohort of patients. In the previous experiment we assessed the developed GP

approach in the clinical setting of secondary prevention, where we are predicting sub-

sequent cardiovascular events in patients with a clinical diagnosis of CVD, using data

from a prospective cohort study designed to identify predictors of future cardiovascular
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events in patients with symptomatic CVD. In this chapter we evaluate the developed

GP approach in the primary prevention setting, where we are predicting the risk of

a primary cardiovascular event in a much larger retrospective observational cohort of

patients with T2DM from UK general practice.

7.2 Patients and Methods

This study was carried out using data from CPRD and linked data from the ONS and

HES. Ethical approval for the study was granted by the CPRD Independent Scientific

Advisory Committee on 9th October 2012, protocol number 12_111R (Appendix F).

The CPRD dataset and its associated linked datasets have been described previously in

sections 2.6 and .

This study considers a prospective open cohort of CVD-free patients with T2DM in

the January 2013 build of CPRD, over 14 years from 1997 to 2011, aged 30-85 years

at index date and registered with practices participating in CPRD-HES/ONS linkage to

ensure accurate cause of death, ethnicity and socioeconomic status. For each patient,

the start of follow-up is defined as the latest of: patient registration date, practice Up-

To-Standard (UTS) date, start of HES coverage, and start of ONS coverage; the index

date is then calculated as the start of follow-up plus 365 days wash-in (see below). End

of follow-up is defined as the earliest of: patient transfer-out date (where not internal),

ONS death date, practice last-data-collection date, patient HES linkage date, end of

HES coverage, and end of ONS coverage. In addition, the ONS SES linkage period

must overlap the follow-up period by at least one day.

Patients were excluded from the cohort that have any one of the following criteria: a

recorded diagnosis of cardiovascular or cerebrovascular disease prior to the index date;

any temporary residence status; interrupted periods of registration with the practice;

no valid Index of Multiple Deprivation (SES); were taking statins at index; implaus-

ible or improbable dates; or recorded risk factor values out of plausible range. Patients
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were selected that were eligible for linkage schemes with the HES, ONS mortality data

and Index of Multiple Deprivation data throughout their respective period of follow-

up. This should provide accurate ascertainment of ethnicity, socioeconomic status, and

cause of death. Issues with ethnicity data where within the non-missing data there are

a large proportion of ethnicities recorded as ’unknown’ will be addressed by recoding

the ’unknown’ responses as ’white’, with the rationale that, assuming the study popu-

lation is comparable with the UK population, 93% or more of people without ethnicity

recorded would be expected to be from a white ethnic group.

Patients were considered for selection if they had a clinical (Read or ICD-10) code

indicative of diabetes mellitus in their CPRD or linked HES records. As not all clinical

codes for diabetes distinguish between type 1 diabetes and type 2 diabetes, and some

patient histories may erroneously have contained both type 1 and type 2 diabetes codes,

these patients were categorised as having type 2 diabetes if they met one or more of

the following criteria:

• Clinical codes exclusively indicative of type 2 diabetes

• At least one clinical code indicative of type 2 diabetes (regardless of others in-

dicative of type 1 or non-specific diabetes) and at least one prescription for an

Oral Hypoglycaemic Agent (OHA)

• Prescription of two or more classes of OHA

• Diagnoses of both type 1 and type 2 diabetes and an age of diagnosis older than

35 years.

Any patient with evidence of diabetes secondary to other causes was excluded. The

date of diabetes incidence was defined as the date of either first diagnosis or first pre-

scription of a diabetes medication, whichever was earlier. A ’wash-in’ period of 365

days was applied to exclude non-incident T2DM cases.
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The primary outcome is first CVD event either before or at death, with CVD being

defined here as coronary heart disease (including myocardial infarction and angina) or

cerebrovascular disease (including stroke and transient ischemic attack). A wash-in

of 365 days is applied to ensure no prior history of CVD. Either a diagnosis of CVD

or an intervention to treat CVD—such as an angioplasty or coronary bypass—will

be considered an event. These events will be recorded as Read codes in the CPRD

Clinical or Referral tables; as ICD-10 or OPCS codes in HES diagnosis or procedure

tables, respectively; or as ICD-10 or ICD-9 codes in the OPCS cause-of-death data.

Lists of the relevant codes are supplied as part of the approved ISAC protocol for this

study (Appendix F).

For our study we a priori selected 23 candidate predictors—values for which were

taken from CPRD observations around the index date—based on previous prognostic

studies (e.g UKPDS). These 23 candidate predictors included indicators of baseline

comorbidity (Charleston Index, no. general practitice attendances in year prior, treated

hypertension, durations of diabetes, a recorded diagnosis of the following; some other

form of CVD not defined in the outcome, renal disease, rheumatoid arthritis, atrial

Fibrillation), demographics (age, gender, self assigned ethnicity, and quintiles of the

Index of Multiple Deprivation) and risk factors for vascular events in the general popu-

lation (smoking status, BMI, SBP, and lipids). Treated hypertension is defined as dia-

gnosis of hypertension and at least one current prescription of at least one antihyper-

tensive agent(e.g. thiazide, Beta-blocker, calcium channel blocker, or Angiotensin-

Converting-Enzyme (ACE) inhibitor). Prescribed related drugs (lipid-lowering, ACE,

Angiotensin Receptor Blockers (ARB), Beta-blocker, and Anti-Platelet Therapy (APT)

therapies), table 6.5) were also considered as it is conceivable that they are relevant to

predict future events in patients with asymptomatic vascular disease. We note that the

primary focus of these models is achieving accurate predictions rather than insight into

the predictor effects.

Multiple imputation was considered to replace missing values for ethnicity, smoking
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status, BMI, SBP, TC, HDL, LDL and triglycerides. However, the proportions of

missing data exceeded what can be reliably imputed using even the more advanced

multiple imputation techniques. Instead categorical predictors were given an addi-

tional ’missing’ categories and continuous predictors were categorised into clinical

meaningful categories, also with an additional ’missing’ category. In the clinical con-

text of primary prevention thus level of missing data for many predictors in question

is not unexpected, as they would not normally be recorded unless the general practi-

tioner already suspects some above average risk of CVD. Whilst, to some degree, in

categorising the continuous predictors that have missing values we discard some of the

information, this loss is outweighed by the loss of not including these predictors at all,

or in removing observations with these missing values (complete case analysis) as this

would considerably reduce the sample size and in turn the power to detect the patterns

in the data.

7.2.1 Methods

The data set was split, randomly, into two parts: a derivation set of approximately

66.67% (42,331 patients) and a validation set of approximately 33.33% (21,165 pa-

tients). The derivation set was used for model development (both by Cox regression

and by genetic programming) and the validation set to access the performance of the

two models. The aim for both models was to predict the absolute risk of occurrence

of vascular events (stroke, myocardial infarction or cardiovascular death). Given the

available follow-up, 2-, 5-, and 8-year risks could be assessed. With respect to sample

size in the derivation set, the balance of 9,878 events and 23 predictors is reasonable,

(table 6.5). At least 10-20 events per candidate predictor have been proposed in previ-

ous guidelines for the sensible development of predictions models [112, 236, 285, 286].
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Cox Regression

In the derivation set, we fitted a Cox regression model using a similar modelling

strategy that was described in chapter 6 in the development of a clinical prediction

model in the cohort developed from the CPRD data set. Briefly, the we first fitted a

full main effects model. Biologically implausible values were set to missing (prior

to imputation) and extreme values truncated at the 1st and 99th centile. To enhance

the flexibility of the Cox regression and enable fairer comparison with the (unrestric-

ted) genetic programming, we considered continuous predictors (e.g. age, duration

of diabetes) for transformation. Several transformations were considered in adding

polynomials, fractional polynomial terms, transformations (e.g. log, square root, ex-

ponential), restricted cubic splines (with varying number of knots) and linear coding

(i.e categorisation). To further enhance a fair comparison with genetic programming,

we considered interaction effects between predictors.

Key limitations of the Cox PH model include the assumption of proportional hazards

- that hazard functions in the different strata are proportional over time, assumptions

of linearity and additivity which are implicit in regression’s linear combinations, and

the fact that the baseline hazard is never specified (although this last one may be ad-

vantage in some cases). All model assumptions relevant to the Cox proportion hazards

model were tested. A reduced model was obtained by applying a backwards selection

procedure, with Akaike information criterion (AIC) as the stopping criterion.

Internal validation of the model was performed using a bootstrapping re-sampling pro-

cedure [22, 75, 111]. Random samples were drawn (with replacement) from the de-

rivation set with 200 replications, and the backwards selection of predictors for the

reduced model repeated each time. Bootstrapping yielded an estimate of optimism of

the reduced models as expressed by the concordance (C) statistic, which for a bin-

ary outcome is identical to the area under the receiver operating characteristic (ROC)

curve. A shrinkage factor was derived from the bootstrap estimates to re-calibrate the

model to adjust for optimism. The re-calibrated model was applied to the validation set
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to estimate its discrimination and calibration in an independent sample. All analyses

were carried out in R (v3.0.1) [247].

Symbolic Regression

For the experiments in this chapter we implemented the same tree-based SSOGP ap-

proached as in the previous SMART experiments chapter (discussed in chapters 4

and 6) to fit symbolic regression models to the data to estimate discrete hazard, thus

predicting the risk for cardiovascular events. Findings from the previous experiments

in the SMART study data (chapter 6) found that the GSOGP and, GMOGP search

strategies were too computationally expensive for the computing resources available.

As the CPRD cohort used in these experiments is considerably larger than that of the

SMART cohort, and thus more computationally expensive, the generational GP ap-

proached were not considered in this experiment.

Symbolic regression was performed using the RGP package in the R statistical pro-

gramming language, with the SSOGP search heuristic using the same parameter set-

tings as the previous experiments, detailed in table 7.1.

Briefly, the default RGP function set (+,−,÷,×, sin, cos, tan,√, exp, log) was used

to enable the representation of potential non-linear relationships present in the train-

ing data. Koza’s [167] ramped half-and-half random initialisation method was used

with a maximum tree depth of 156, which was calculated as a function of the expected

solution depth of 52. The GP approach utilised is untyped with the search space con-

strained by the use of fitness penalties. Specifically, the ’death penalty’ is used where

invalid solutions, such invalid mathematical operations (e.g. dividing by 0), have their

fitness value set to∞ giving them the lowest possible fitness (section 4.2.1).

Again, as in the previous experiments, expiration of a fixed time compute budget was

chosen as the termination criterion. The compute time budget for these experiments

was set to 12 hours wall-time and these experiments were run on a single thread on an
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Intel Westmere 2.8GHz CPU with 48 GB of memory.

Table 7.1: Parameters of the SSOGP search heuristic.
Variable (Symbol) Domain Setting

Population Size mu (µ) N 1,000

Tournament Size tournamentSize (stournament ) N 4

Recombination Probability recombinationProbabilty (prec) [0, 1] 0.5

We did not perform internal validation in the genetic programming approach using a

bootstrap as we did with the Cox regression, because it would not have been possible

to convert it into a shrinkage factor in the same way as we would for a Cox regression.

The genetic programming system is a stochastic process, with each run potentially

yielding models with differing complex structures (i.e. symbolic regression). As a

result regression coefficients do not exist in genetic programming models in the same

way that they do in regression models. Instead the training data was split 2/3:1/3 into

training and holdout sets, using a stratified random split to ensure proportionate number

of events. The first 2/3, the training set, was used for training to induce a population

of prediction models. The remaining 1/3, the holdout set, was used at the end of

the genetic programming run to calculate the fitness of the population of models and

thus determine the fittest or ’best of run’ model to be returned as the output of the

genetic programming system. In this way the final genetic programming model was

selected based on its fit to unseen data using a sample other than which it was trained

or developed.

To understand variable selection in the genetic programming and enable comparison

with bootstrapped backwards selection of the Cox model, the genetic programming

system was executed 25 times to produce 25 ’suggested’ models. For each iteration

the training data was randomly (stratified) split 2:1. The final genetic programming

model was applied to the validation data set to assess its performance, in terms of

discrimination and calibration in an independent sample. All analyses were carried out
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in R version 3.1.2 [247].

Comparison of both methods

The two clinical prediction models, one obtained from Cox progression and three from

symbolic regression (SSOGP), were evaluated in terms of overall survival curves, dis-

crimination and calibration in the validation data set. The models were used to predict

the discrete hazards h(t) at t = 2, 5, and 8 years. Model were first evaluated visually

by comparing the survival probabilities S(t) predicted by the models with estimates

obtained using the KM method. The agreement between these curves and the KM

estimates were assessed visually.

Discrimination was assessed using the concordance statistic (C-statistic) [109, 110,

111, 300], which was evaluated considering truncation of the survival/censoring times

at t=2, 5, and 8 years.

Model calibration was assessed using calibration plots and the generalisation of the

Hosmer-Lemeshow test statistic for survival data [56]. Calibration was evaluated by

grouping subjects according to the predicted S(t) at t = 2, 5, and 8 years. All analyses

were carried out in R version 3.1.2.

7.3 Results

7.3.1 Descriptives

There were no major differences in the baseline characteristics of the patients between

the derivation and validation sets (table 7.2). Data were available on 255,478 and

126,937 person-years collected during a median follow-up of 5.33 (range, 0-13 years)

and 5.25 years (0-13 years) for the derivation and validation sets, respectively. In
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the derivation set a total of 9,834 events occurred, corresponding to 2-, 5-, and 8-

year cumulative incidences of 6.8%, 17.0% and 26.0% respectively. In the validation

set a total of 4,970 events occurred, corresponding to 2-, 5-, and 8-year cumulative

incidences of 6.8%, 17.0% and 27.0% respectively.

7.3.2 Model Derivation

Prior to modelling extreme values in continuous predictors were truncated at the 1st

and 99th centile. Categorical predictors with missing values were given an additional

’missing’ categories and continuous predictors with missing values were categorised

into clinical meaningful categories, also with an additional ’missing’ category.

The full Cox regression model consisted of 23 predictors, some of which had limited

contributions. Predictors that had a relatively large effect were age, ethnicity, gender,

smoking status, SES, no. of general practitioner contacts in previous year, recorded

diagnosis of ’other’ CVD, atrial fibrillation, BMI, SBP, lipids, ACE/ARB therapy, and

APT therapy. The proportionality of hazards was tested using an overall test which was

not significant. We judged our sample size to large enough to allow for some model

reduction (9,834 events and a full model with 39 degrees of freedom), facilitating easier

practical application and clinical interpretation. We applied a backwards step-wise

selection procedure, using AIC as the stopping rule, to achieve a reduced Cox model.

The reduced step-wise selected model was found to be optimal with 20 predictors

(table 7.3). Predictors with relatively weaker effects (treated hypertension, LDL, and

duration of T2DM) were excluded from the reduced model.

Bootstrapping of the reduced model yielded an estimate of required shrinkage for the

coefficients in the step-wise selected model of 0.99, suggesting that each coefficient

should be reduced by 1% to obtain a re-calibrated model that corrects for optimism.

This shrinkage factor was applied to the reduced backwards step-wise model and con-

sidered the calibrated ’final’ Cox regression model (table 7.4).
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Table 7.2: Baseline characteristics of patients in the CPRD cohort, by derivation

and validation sets (n=63,496).

N Test set Training set Test Statistic

N = 21165 N = 42331

Cardiovascular event 63496 23% ( 4970) 23% ( 9834) χ2
1 = 0.5, P = 0.481

Age (at baseline) years 63496 52 62 71 52 62 71 F1,63494 = 0.19, P = 0.662

Ethnicity : Mssn 63496 18% ( 3816) 18% ( 7673) χ2
3 = 0.44, P = 0.931

Nn-W 8% ( 1638) 8% ( 3219)

Unkn 15% ( 3174) 15% ( 6371)

Whit 59% (12537) 59% (25068)

Gender : Feml 63496 47% ( 9909) 47% (19736) χ2
1 = 0.22, P = 0.641

Smoking status : Crrn 63496 19% ( 3940) 19% ( 7999) χ2
3 = 1.4, P = 0.711

Frmr 23% ( 4837) 23% ( 9754)

Nevr 51% (10738) 50% (21290)

Mssn 8% ( 1650) 8% ( 3288)

Index of Multiple Deprivation quintiles : 1 63496 18% (3741) 18% (7804) χ2
4 = 6.2, P = 0.191

2 22% (4695) 22% (9197)

3 20% (4315) 20% (8603)

4 21% (4456) 21% (8898)

5 19% (3958) 18% (7829)

Charlson index : 0 63496 3% ( 560) 3% ( 1130) χ2
4 = 4.8, P = 0.311

1 66% (13900) 65% (27595)

2 19% ( 3979) 19% ( 8254)

3 9% ( 1800) 8% ( 3540)

4 4% ( 926) 4% ( 1812)

No. GP attendances year prior 63496 5 9 15 5 9 15 F1,63494 = 0.04, P = 0.852

Recorded diagnosis of Other CVD 63496 17% ( 3695) 18% ( 7499) χ2
1 = 0.64, P = 0.421

Treated hypertension 63496 39% ( 8280) 39% (16316) χ2
1 = 2, P = 0.161

Renal disease 63496 7% ( 1498) 7% ( 3028) χ2
1 = 0.12, P = 0.731

Rheumatoid arthritis 63496 1% ( 297) 2% ( 652) χ2
1 = 1.8, P = 0.181

Atrial Fibrillation 63496 3% ( 615) 3% ( 1301) χ2
1 = 1.4, P = 0.241

Duration of T2DM days 63496 17 49 106 17 49 106 F1,63494 = 0.02, P = 0.92

Body mass index Kg/m2 45656 26 29 33 26 29 33 F1,45654 = 0.79, P = 0.372

Systolic blood pressure mm Hg 51930 130 140 150 130 140 150 F1,51928 = 0, P = 0.952

Total cholesterol mmol/L 37817 4.2 4.9 5.7 4.2 4.9 5.7 F1,37815 = 0.5, P = 0.482

High-density lipoprotein cholesterol mmol/L 23071 1.0 1.2 1.4 1.0 1.2 1.4 F1,23069 = 2.5, P = 0.112

Low-density lipoprotein cholesterol mmol/L 18470 2.1 2.7 3.4 2.1 2.6 3.4 F1,18468 = 0.49, P = 0.482

Triglycerides mmol/L 27390 1.2 1.7 2.5 1.2 1.7 2.5 F1,27388 = 0.46, P = 0.52

Lipid lowering Tx 63496 31% ( 6624) 31% (13224) χ2
1 = 0.02, P = 0.881

ACE/ARB Tx 63496 35% ( 7349) 34% (14596) χ2
1 = 0.36, P = 0.551

Beta-blockers Tx 63496 14% ( 2902) 13% ( 5401) χ2
1 = 11, P < 0.0011

Anti-Platelet Tx 63496 20% ( 4262) 20% ( 8516) χ2
1 = 0, P = 0.951

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables. N is the number of non–

missing values. Numbers after percents are frequencies. NA represent missing values. Tests used:1Pearson test; 2Wilcoxon test.

Tx represents therapy.
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Table 7.3: Cox regression coefficients in the full model, and stepwise selected

model (using AIC).

Predictor Full Stepwise

ACE/ARB Tx ACEARB=1 0.1008 0.1088

Atrial Fibrillation AF=1 0.2032 0.1992

Age (at baseline) AGE 0.0445 0.0441

Anti-Platelet Tx APT=1 0.2634 0.2605

Beta-blockers Tx BETAB=1 0.0811 0.0857

Body mass index BMIf=O/P- −0.1166 −0.1174

BMIf=Obes −0.0613 −0.0630

BMIf=Un/N −0.0528 −0.0547

Charlson index CHARLS 0.0346 0.0342

No. GP attendances year prior CONT 0.0106 0.0106

Recorded diagnosis of Other CVD CVD.other=1 0.2548 0.2516

Ethnicity ETHNICf=Nn-W 1.4759 1.4617

ETHNICf=Unkn 1.2071 1.1957

ETHNICf=Whit 1.3145 1.3031

High-density lipoprotein cholesterol HDLf=Best −0.0675 −0.0664

HDLf=Bttr −0.1135 −0.1110

HDLf=Mssn 0.0454 0.0715

Treated hypertension HYPER=1 0.0164

Low-density lipoprotein cholesterol LDLf=Mssn 0.0269

LDLf=NrOp 0.0355

LDLf=Optm −0.0811

Lipid lowering Tx LLT=1 −0.0449 −0.0512

Rheumatoid arthritis RA=1 0.1194 0.1195

Renal disease RENAL=1 0.1069 0.1041

Systolic blood pressure SBPf=Hy/N −0.0739 −0.0767

SBPf=Mssn 0.0077 0.0070

SBPf=NrmH −0.0805 −0.0825

Index of Multiple Deprivation SES_5 0.0533 0.0528

Gender SEX=Feml −0.2142 −0.2124

Smoking status SMOKf=Frmr −0.2166 −0.2134

SMOKf=Mssn −0.1548 −0.1506

SMOKf=Nevr −0.2705 −0.2670

Duration of T2DM T2DM.dur 0.0000

Total cholesterol TCf=BrdH 0.1012 0.1162

TCf=High 0.1870 0.1996

TCf=Mssn 0.0862 0.0909

Triglycerides TRIGf=Dsrb −0.0736 −0.0760

TRIGf=High 0.0631 0.0643

TRIGf=Mssn 0.0254 0.0328
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Table 7.4: Association of each predictor with cardiovascular events in the calib-

rated final Cox model.

Low High ∆ Effect S.E. Lower 0.95 Upper 0.95

AGE 52 71 19 0.8378000 0.019885 0.7988200 0.8767700

Hazard Ratio 52 71 19 2.3113000 2.2229000 2.4031000

SES_5 2 4 2 0.1055100 0.015017 0.0760730 0.1349400

Hazard Ratio 2 4 2 1.1113000 1.0790000 1.1445000

CHARLS 1 2 1 0.0342070 0.012211 0.0102730 0.0581410

Hazard Ratio 1 2 1 1.0348000 1.0103000 1.0599000

CONT 5 15 10 0.1058000 0.012740 0.0808310 0.1307700

Hazard Ratio 5 15 10 1.1116000 1.0842000 1.1397000

ETHNICf — Mssn:Whit 4 1 -1.3031000 0.053376 -1.4077000 -1.1985000

Hazard Ratio 4 1 0.2716900 0.2447000 0.3016500

ETHNICf — Nn—W:Whit 4 2 0.1585700 0.040632 0.0789350 0.2382100

Hazard Ratio 4 2 1.1718000 1.0821000 1.2690000

ETHNICf — Unkn:Whit 4 3 -0.1074100 0.028978 -0.1642000 -0.0506120

Hazard Ratio 4 3 0.8981600 0.8485700 0.9506500

SEX — Feml:Male 1 2 -0.2123800 0.021353 -0.2542400 -0.1705300

Hazard Ratio 1 2 0.8086500 0.7755100 0.8432200

SMOKf — Crrn:Nevr 3 1 0.2669500 0.028446 0.2112000 0.3227100

Hazard Ratio 3 1 1.3060000 1.2352000 1.3809000

SMOKf — Frmr:Nevr 3 2 0.0535600 0.026013 0.0025756 0.1045400

Hazard Ratio 3 2 1.0550000 1.0026000 1.1102000

SMOKf — Mssn:Nevr 3 4 0.1163900 0.037252 0.0433750 0.1894000

Hazard Ratio 3 4 1.1234000 1.0443000 1.2085000

CVD.other — 1:0 1 2 0.2516000 0.026515 0.1996300 0.3035700

Hazard Ratio 1 2 1.2861000 1.2210000 1.3547000

RENAL — 1:0 1 2 0.1040500 0.042783 0.0202000 0.1879100

Hazard Ratio 1 2 1.1097000 1.0204000 1.2067000

RA — 1:0 1 2 0.1195100 0.073803 -0.0251380 0.2641600

Hazard Ratio 1 2 1.1269000 0.9751700 1.3023000

AF — 1:0 1 2 0.1992400 0.049470 0.1022800 0.2962000

Hazard Ratio 1 2 1.2205000 1.1077000 1.3447000

BMIf — Mssn:Obes 2 1 0.0629870 0.033153 -0.0019920 0.1279700

Hazard Ratio 2 1 1.0650000 0.9980100 1.1365000

BMIf — O/P—:Obes 2 3 -0.0544540 0.029073 -0.1114400 0.0025290

Hazard Ratio 2 3 0.9470000 0.8945500 1.0025000

BMIf — Un/N:Obes 2 4 0.0082777 0.034289 -0.0589270 0.0754830

Hazard Ratio 2 4 1.0083000 0.9427800 1.0784000

SBPf — Hy/N:Hypr 1 2 -0.0766970 0.050911 -0.1764800 0.0230880

Hazard Ratio 1 2 0.9261700 0.8382100 1.0234000

SBPf — Mssn:Hypr 1 3 0.0070265 0.033982 -0.0595770 0.0736310

Hazard Ratio 1 3 1.0071000 0.9421600 1.0764000

SBPf — NrmH:Hypr 1 4 -0.0824550 0.026521 -0.1344400 -0.0304740

Hazard Ratio 1 4 0.9208500 0.8742100 0.9699900

TCf — Dsrb:Mssn 4 1 -0.0909320 0.034001 -0.1575700 -0.0242920

Hazard Ratio 4 1 0.9130800 0.8542100 0.9760000

TCf — BrdH:Mssn 4 2 0.0252240 0.034996 -0.0433660 0.0938140

Hazard Ratio 4 2 1.0255000 0.9575600 1.0984000

TCf — High:Mssn 4 3 0.1086300 0.039523 0.0311700 0.1861000

Hazard Ratio 4 3 1.1148000 1.0317000 1.2045000

HDLf — Poor:Mssn 4 1 -0.0715470 0.039955 -0.1498600 0.0067627

Hazard Ratio 4 1 0.9309500 0.8608300 1.0068000

HDLf — Bttr:Mssn 4 2 -0.1825500 0.059112 -0.2984000 -0.0666910

Hazard Ratio 4 2 0.8331500 0.7420000 0.9354800

HDLf — Best:Mssn 4 3 -0.1379300 0.052705 -0.2412300 -0.0346290

Hazard Ratio 4 3 0.8711600 0.7856600 0.9659600

TRIGf — BrdH:Mssn 4 1 -0.0327550 0.048791 -0.1283800 0.0628740

Hazard Ratio 4 1 0.9677800 0.8795200 1.0649000

TRIGf — Dsrb:Mssn 4 2 -0.1088000 0.041304 -0.1897600 -0.0278510

Hazard Ratio 4 2 0.8969100 0.8271600 0.9725300

TRIGf — High:Mssn 4 3 0.0315420 0.042669 -0.0520870 0.1151700

Hazard Ratio 4 3 1.0320000 0.9492500 1.1221000

LLT — 1:0 1 2 -0.0511850 0.028526 -0.1070900 0.0047251

Hazard Ratio 1 2 0.9501000 0.8984400 1.0047000

ACEARB — 1:0 1 2 0.1088200 0.023102 0.0635440 0.1541000

Hazard Ratio 1 2 1.1150000 1.0656000 1.1666000

BETAB — 1:0 1 2 0.0856990 0.028756 0.0293370 0.1420600

Hazard Ratio 1 2 1.0895000 1.0298000 1.1526000

APT — 1:0 1 2 0.2605300 0.026711 0.2081800 0.3128900

Hazard Ratio 1 2 1.2976000 1.2314000 1.3674000
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Figure 7.1 describes the run statistics for the 25 SSOGP runs performed, based on the

parameter settings detailed in section 7.2.1, on the different stratified re-samples of the

derivation data set. The figure depicts the evolution of the different GP run’s best fitness

(bestFit) and complexity, quantified using mean visitation length (meanVisLen), over

time. Time is represented as iterative or evolutionary steps (stepNo), where an evol-

utionary step is each time that tournament selection is performed and new individuals

are generated and considered for inclusion in the population. The ’final’ symbolic re-

gression model is the individual the best (i.e. lowest) fitness at the end of all 25 GP

runs. We can see that there is significant variation in the best fitness and complexity of

the individuals developed by the different GP runs. However, in general the improve-

ment in best fitness appears to level out towards the over time in all runs, confirming

that the selected fixed time compute budget of 12 hours wall time is acceptable. A

range of different run statistics for all 25 SSOGP runs are detailed in Appendix G.

The final symbolic regression model produced by SSOGP included 7 predictors: age

(AGEn), recorded diagnosis of ’other’ CVD (CVD.other.n), lipid-lowering therapy

(LLTn), ethnicity (ETHNICf), SBP(SBPf), LDL (LDLf), and triglycerides (TRIGf),

in addition to the discrete time indicator (tj), which is present in all the genetic pro-

gramming models to represent the jth time interval. The final prediction model gen-

erated by genetic programming is presented in figure 7.2, which is a binary parse tree

representing Equation 7.1.
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Figure 7.1: Selected runs statisitcs for the 25 SSOGP runs in the CPRD experi-

ments.

λ̂(tj, X) =Prob(T = tj|T ≥ tj, X) =
1

1 + e−Xβ̂
, where

Xβ̂ = cos(sin(sin(ETHNICfMssn.n ∗ −2.599 + sin(LDLfOptm.n∗

(LDLfOptm.n ∗ −4.092 + tan(cos(CVD .other .n + sin(

ETHNICfMssn.n ∗ −2.599 + sin(LDLfOptm.n ∗ (LDLfOptm.n∗

− 4.092 + tan(cos(CVD .other .n + sin(sin(ETHNICfMssn.n∗

− 2.599 + sin(LDLfOptm.n ∗ (LDLfOptm.n ∗ −3.631 + tan(cos(

CVD .other .n + LLTn)) + sin(TRIGfBrdH .n + tan(1.449)))) + sin(

2.057))))) + sin(time.d ∗ −0.733 + sin(SBPfHyN .n)))) + sin(2.0566

∗ −2.599)))) + sin(sin(sin(LDLfOptm.n ∗ −4.092 + tan(cos(

CVD .other .n +−0.733))))))) + sin(ETHNICfMssn.n ∗ −2.599+

sin(sin(LDLfOptm.n ∗ (LDLfOptm.n ∗ −4.092 + tan(cos(

CVD .other .n + sin(sin(exp(sin(SBPfNrmH .n)) + sin(2.057)))))

+ sin(−4.092)))) + sin(2.057))))) ∗ (2.057 ∗ −2.599 + sin(AGEn)+

sin(ETHNICfMssn.n ∗ −2.599 + sin(LDLfOptm.n ∗ (

LDLfOptm.n ∗ −4.092 + tan(cos(CVD .other .n + sin(AGEn)))+

sin(time.d ∗ −0.733 + ETHNICfMssn.n))) + sin(sin(−4.092))))

(7.1)
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Figure 7.2: The final model developed by genetic programming, presented as a

binary tree.

The other 24 prediction model generated by genetic programming are presented in

Appendix H.

The genetic programming approach was applied 25 times, each time trained and tested

on a different stratified re-sample of the derivation data set. This leads to a pool 25

different ’best of run’ models, each of which may have selected different subset of

predictors as inputs and as such may have differing levels of performance. In this pool

of genetic programming models, the mean number of predictors used was 5 (Inter-
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Quartile Range (IQR): 4—7). The backwards step-wise selection procedure used in

the Cox modelling was also repeated 25 times, using bootstrap re-sampling to better

understand the frequencies at which different subsets of predictors were selected. In

the pool of 25 backwards selected Cox models the mean number of predictors used was

20 (IQR: 19—21). There was a reasonable association between the estimated effect

of a predictor according in the reduced backwards step-wise model and the frequency

of the selection when the step-wise selection was repeated in the bootstrap procedure

(table 7.5).

Generally the features selected by repeating the GP were far more variable than the

features selected by the Cox regression stepwise selection procedure (table 7.5). This

is to be be expected as GP is a stochastic system, where as the stepwise procedure is

deterministic, only giving variable results because we are repeating the procedure on

different bootstrap resamples of the derivation data set. Despite this, the predictors that

were estimated to have the largest effect in the final stepwise selected Cox model which

were also selected with the high frequency in bootstrapped stepwise selection—age, re-

corded diagnosis of ’other’ CVD, and ethnicity—were selected (relatively) frequently

when GP was repeated. Interestingly, stepwise selection also often selected ACE/ARB

therapy, atrial fibrillation, APT therapy, Beta-blocker therapy, BMI, Charlson index,

No. GP attendances year prior, HDL, diagnosis of renal disease, SBP, SES, gender,

smoking status, TC, and triglycerides as predictors, however, these featured in a low

proportion of the GP models. However, SBP and triglycerides did feature in the best

performing ’final’ GP model. Conversely, the final GP model featured lipid-lowering

therapy and LDL as predictors, predictors that was estimated to have small effect s and

were selected in low proportion of Cox models by the stepwise selection procedure.

7.3.3 Model Validation

labelsubsec:cprd_validation Using the validation data set, the average performance of

the 25 ’best of run’ prediction models automatically generated by genetic programming
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Table 7.5: Number (proportion) of times predictors were selected duting the 25

repititions of Cox regression backwards step-wise selection procedure and genetic

programming.

Predictor Cox Regression Genetic Programming

ACE/ARB Tx ACEARB 25 (1.00) 1 (0.04)

Atrial Fibrillation AF 25 (1.00) 4 (0.16)

Age (at baseline) AGE 25 (1.00) 20 (0.80)

Anti-Platelet Tx APT 25 (1.00) 9 (0.36)

Beta-blocker Tx BETAB 23 (0.92) 0 (0.00)

Body mass index BMIf 22 (0.88) 0 (0.00)

Charlson index CHARLS 23 (0.92) 2 (0.08)

No. GP attendances year prior CONT 25 (1.00) 1 (0.04)

Recorded diagnosis of Other CVD CVD.other 25 (1.00) 19 (0.76)

Ethnicity ETHNICf 25 (1.00) 20 (0.80)

High-density lipoprotein cholesterol HDLf 20 (0.80) 4 (0.16)

Treated hypertension HYPER 6 (0.24) 1 (0.04)

Low-density lipoprotein cholesterol LDLf 14 (0.56) 7 (0.28)

Lipid lowering Tx LLT 13 (0.52) 3 (0.12)

Rheumatoid arthritis RA 16 (0.64) 0 (0.00)

Renal disease RENAL 24 (0.96) 2 (0.08)

Systolic blood pressure SBPf 24 (0.96) 2 (0.08)

Index of Multiple Deprivation SES_5 25 (1.00) 1 (0.04)

Gender SEX 25 (1.00) 3 (0.12)

Smoking status SMOKf 25 (1.00) 9 (0.36)

Duration of T2DM T2DM.dur 14 (0.56) 0 (0.00)

Total cholesterol TCf 25 (1.00) 5 (0.20)

Triglycerides TRIGf 25 (1.00) 7 (0.28)
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was compared with the calibrated final Cox model. Graphical comparisons of the

S(t) values produced by each model with those obtained by the KM method in the

validation set are shown in figure 7.3. As can be seen from this figure, both the Cox

and genetic programming models produced similar values that had good agreement

with the KM estimates in the earlier years. However, this agreement deteriorated in

the latter years, where the KM estimates have high variability, as indicates by the large

error bars. This high variation my be explained by the fact that with a median follow-

up time of 5.2 years, there are far fewer events and number of subjects in the latter

time periods. Whilst agreement deteriorated in the latter time-points, both models had

generally acceptable overall agreement.

Figure 7.3: Average survival curves for the Cox regression and genetic program-

ming models. The error bars represent ±2 standard errors of the KM estimates.

The discriminative performance in the validation set, according to the C-statistic, of the

models at different time points is shown in table 7.6 and figure 7.4. From the C-statistic

estimates we can see that a satisfactory performance of >0.6 was reached in both mod-

els, at all time points. There was generally comparable discriminative performance of

both models, with the Cox model showing marginally better discrimination at all time

points.
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Figure 7.4: C-statistic estimates by model for t=1, 3 and 5 years

The calibration plots evaluated by grouping subjects according to quantiles of predicted

risk (1 − S(t)) at t = 2, 5, and 8 years are shown in figure 7.5. From the graphical

inspection of the calibration plots we can see that there was no tendency to system-

atically over- or under-predict at any of the time points in either the Cox or genetic

programming models. Again from visual inspection, the genetic programming model

appeared to be marginally less calibrated than the Cox model, however, both models

demonstrated comparable performance with significant lack of calibration at any time
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Table 7.6: C-statistic estimates by model at t=2, 5, and 8 years

Time (years) Cox PH Regression Genetic Programming

2 0.713 0.656

5 0.703 0.621

8 0.701 0.631

point.

The corresponding χ2 statistics and p-values are shown in table 7.7 for completeness

only. As with any statistical test, the power increases with sample size; this can be

undesirable for goodness of fit tests because in very large data sets, small departures

from the proposed model will be considered significant. Because of the very large

sample sizes studied here, a statistically significant Hosmer-Lemeshow statistic (as

detailed in table 7.7) is not considered informative with respect to calibration [81, 235].

Figure 7.5: Calibration plots for the Cox regression and genetic programming

models, at t=2, 5, and 8 years..
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Table 7.7: χ2 statistic for the comparison between observed versus expected (ac-

cording to the model) number of events in groups of patients defined according to

the predicted 1− S(t) at t=2, 5, and 8 years.

Time (years) Cox Regression Genetic Programming

t χ2 p-value χ2 p-value

2 1589 < 0.001 1575 < 0.001

5 4612 < 0.001 4146 < 0.001

8 8236 < 0.001 6937 < 0.001

7.4 Discussion

This study showed that Cox regression and GP produced similar results when evaluated

in a common validation data set. After re-calibration the discriminative ability of the

Cox model in the validation set was slightly larger than that of the GP model at all time

points. Despite slight relative differences, both models demonstrated an acceptable

level of discriminative ability (C-index >0.6) at all times points. The GP model had

marginally poorer calibration when visually compared with the Cox model. However,

both models demonstrated no significant lack of calibration at any time point.

Despite generally comparable performance, albeit in favour of the Cox model, the

predictors selected for representing their relationship with the outcome were quite dif-

ferent. The final reduced Cox model used 20 predictors, in contrast to 7 predictors used

in the GP model. The GP model used significantly fewer predictors, further confirmed

by repeating the the GP and the stepwise selection procedure used in the Cox model-

ling, resulting in mean numbers of predictors of 5 (IQR: 4—7) and 20 (IQR: 19—21),

respectively.

Predictors that were estimated to have larger contributions to the final Cox model and

that frequently selected during stepwise selection—age, recorded diagnosis of ’other’
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CVD, and ethnicity—were selected in the final GP model and with (relatively) high

frequency when the GP was repeated. However, others predictors that had large to

moderate contributions to the final Cox model—ACE/ARB therapy, atrial fibrillation,

APT therapy, Beta-blocker therapy,BMI, Charlson index, No. GP attendances year

prior, HDL, diagnosis of renal disease, SBP, SES, gender, smoking status, TC, and

triglycerides —were selected infrequently when GP was repeated. However, SBP and

triglycerides did feature in the best performing ’final’ GP model. Conversely, the final

GP model also featured lipid-lowering therapy and LDL as predictors, predictors that

was estimated to have small effect s and were selected in low proportion of Cox mod-

els by the stepwise selection procedure. Whilst these results confirm the prognostic

significance of a small number of the most highly associated predictors in the Cox

modelling, symbolic regression model did not estimate such a large number predictors

to be strongly associated with the outcome, associated strongly enough for inclusion

in the model at least, whilst achieving comparable performance.

As with the experiments in the previous chapter, these results suggest that GP may bet-

ter represent the potentially non-linear relationship of (a smaller subset of) the strongest

predictors. To test the first part of this hypothesis—that GP can represent the poten-

tial non-linear relationships that exist between predictors—the shape of the predictor

effects were plotted to evaluate whether or not the effects were non-linear in nature.

Using the ’final’ GP model, the effects of each predictor’s values were plotted against

log hazard, whilst the other values were held at their reference values. Reference values

were the modal class for binary variables and the mean of continuous variables. Fig-

ure I.1 of appendix I illustrates that the the ’final’ model developed by GP is modelling

non-linear effects for the continuous predictor age (which was the only continuous

predictor in the model, all the others were binary).

To test the second part of this hypothesis—that GP can better represent these relation-

ships between predictors using fewer variables—we repeated the GP runs with exactly

the same experimental set-up, but restricting the inputs to predictors that were selected
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with a relatively high frequency (>0.5) in the original GP run of the primary experi-

ment. The covariates included age, recorded diagnosis of other CVD, and ethnicity.

This produced very similar results (detailed in appendix J) both in terms of calibra-

tion and discrimination. Both these findings support the hypothesis that GP may better

represent the potentially non-linear relationship of (a smaller subset of) the strongest

predictors.

Whilst considerable effort was made to relax the linearity of the Cox regression, through

transformation of predictors, the nature of the approach relies on linear combinations of

predictors. The fact that GP required fewer predictors to achieve similar performance

may have an advantage in practical application of the developed clinical prediction

model. The acquisition of information that forms the inputs to such a model can be

prohibitively onerous in routine clinical practice. Therefore a prediction model that re-

quires fewer inputs, especially if the information relating to these inputs is in practice

recorded easily and to a good quality, would considerably increase adoption and utility.

This work has limitations introduced by its use of data from CPRD to refine a cohort

of patients, a cohort from a primary prevention setting, designed to predict the risk of

primary cardiovascular events in patients withT2DM who have presented with clinical

CVD. Through its use of the CPRD data this work has demonstrated the utility of GP

in a primary prevention setting, however, there are limitations in the generalisability

of these findings to the other clinical settings of cardiovascular risk prediction. How-

ever, its important to note primary prevention in asymptotic cardiovascular patients is

arguably the most common clinical setting for the application of cardiovascular risk

prediction models in routine practice.

7.5 Conclusion

Using data from CPRD we demonstrated that a symbolic regression model developed

by SSOGP has predictive ability comparable to that of Cox regression for the predic-
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tion of future cardiovascular events in patients with T2DM in a primary prevention

setting, i.e in T2DM patients with asymptomatic cardiovascular disease. These experi-

ments compared an untuned SSOGP symbolic regression model that was developed in

an automated fashion using basic parameter values recommended from the GP literat-

ure, with a highly tuned Cox regression model that was developed in a very involved

manner that required a certain amount of clinical and statistical expertise. Whilst the

highly tuned Cox regression model was better calibrated to validation data and the un-

tuned genetic programming model had better discriminative ability, the performance of

the automatically generated prediction model was generally comparable. These find-

ings confirm those of the previous experiments and demonstrate the utility of GP as a

methodology for automated development of clinical prediction models for diagnostic

and prognostic purposes, where the primary goal is accurate prediction. These findings

also confirm the prognostic significance of age, recorded diagnosis of ’other’ CVD, and

ethnicity, and to a lesser extent SBP and triglycerides, for cardiovascular risk in T2DM

patients with asymptomatic CVD.

In the next chapter the hypotheses and goals of this thesis are revisited and contri-

butions discussed in light of the results of this work. These results are summarised,

discussed, and put into context. Limitations of this work are critically assessed and

opportunities for further research identified.
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Chapter 8

Discussion & Conclusions

The previous chapters have described the wider context clinical prediction modelling

and the UK health system, defining the challenges of predicting risk in the presence

of censored data, and providing motivation for the application of GP for cardiovas-

cular risk prediction. Then we surveyed and critically assessed the existing research

related to this thesis. Next we gave an overview of the essential common themes in

the diverse field of GP and discussed the specific methodological elements that formed

the developed GP approach for censored longitudinal data, which was implemented

and assessed in the subsequent experiment chapters. Then we performed our first set

of experiments that independently and externally validated the performance of the de

facto cardiovascular risk prediction model for patients with T2DM, the UKPDS-RE,

using data from CPRD. The results of these experiments showed poor performance,

suggesting that the UKPDS-RE is not suitable for predicting cardiovascular risk in UK

subjects with T2DM and that there is a need for revised risk models in T2DM. Next we

discussed our second set of experiments that demonstrated the utility of the developed

GP approach for the automatic development of clinical prediction models for risk pre-

diction of future cardiovascular events in patients with symptomatic cardiovascular

disease using censored survival data from the SMART study. Finally, we discussed our

third and final set of experiments with a very similar experimental set-up those in the

previous chapter, that demonstrated the utility of the developed GP approach for the

automatic development of clinical prediction models for risk prediction of future car-

diovascular events, but used a much larger observational cohort of patients from CPRD
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in a primary prevention clinical setting, where patients have asymptomatic CVD.

In this chapter the hypotheses and goals of this thesis are revisited and contributions

discussed in light of the results of this work. These results are summarised, discussed,

and put into context. Limitations of this work are critically assessed and opportunities

for further research identified.

8.1 Contributions of this Work

This thesis makes six main contributions:

1. The de facto cardiovascular risk prediction models for T2DM may be unsuitable

Using data from CPRD this work has preformed the largest, independent, ex-

ternal validation of the de facto cardiovascular risk model for people with T2DM,

the UKPDS-RE, in a diverse and contemporary setting. This work showed poor

performance, suggesting that the UKPDS-RE is not suitable for predicting car-

diovascular risk in UK subjects with T2DM. Considering the widespread ap-

plication of these prediction models, this work suggests a need for revised risk

equations in T2DM.

2. Developement of a GP approach for survial analysis of censored data GP is

a general methodology, the specific implementation of which requires devel-

opment of several different specific elements such as problem representation,

fitness, selection and genetic variation. This work has developed a tree-based

untyped SSOGP approach for the automated development of clinical prediction

models in the presence of censored longitudinal data. Specific GP elements were

developed and implemented, such as fitness functions and search heuristics, to

handle the problem-specific complexities of censored data and facilitate survival

analysis.
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3. Generational GP approaches are too computionally expesive for large observa-

tional cohorts This work attempted to implement and evaluate the utility of two

broad classes of GP, steady-state GP common in modern GP systems and the

more traditional generational GP approach. Despite considerable effort, when

the developed generational approaches were applied to the large observational

datasets of censored longitudinal data identified for this work, they failed as a

result of requiring more memory that was available in the computing resources

allocated for this work. This serves to demonstrate the utility of the relatively

computationally efficient steady-state GP approach for analysing large observa-

tional cohorts of patients.

4. GP has utility for the automatic development of clinical prediction models in cen-

sored data Using data from the SMART study and from CPRD we have demon-

strated that symbolic regression models generated by the developed SSOGP

approach had predictive ability comparable to that of the de facto statistical

method—Cox regression—for the prediction of future cardiovascular events in

patients with symptomatic and asymptomatic CVD. These experiments com-

pared untuned SSOGP symbolic regression models that were developed in an

automated fashion using only basic parameters settings recommended from the

GP literature, with highly tuned Cox regression models that were developed in a

very involved manner that required a certain amount of clinical and statistical ex-

pertise. Whilst the highly tuned Cox regression models performed slightly better

in their validation datasets, the performance of the automatically generated sym-

bolic regression models were generally comparable, and on average consisting

of considerably fewer predictors. Using symptomatic and asymptomatic CVD

as case studies—for secondary and primary prevention clinical settings, respect-

ively—these findings demonstrate the utility of GP as a methodology for auto-

mated development of clinical prediction models for diagnostic and prognostic

purposes in the presence of censored longitudinal data.
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5. Confirmation of the prognostic significance of certain risk factors in symtomatic

CVD This work has applied GP to examine the prognostic significance of differ-

ent risk factors together with their non-linear combinations in predicting car-

diovascular outcomes in patients with symptomatic and asymptomatic CVD.

Whilst the application of GP did not provide more accurate representations of

factors that predict the risk of both symptomatic and asymptomatic CVD when

compared with existing methods, GP did offer comparable performance. Des-

pite generally comparable performance, albeit in slight favour of the Cox model,

the predictors selected for representing their relationships with the outcome were

quite different and, on average, the models developed using GP used consider-

ably fewer predictors. The results of the GP confirm the prognostic significance

of a small number of the most highly associated predictors in the Cox modelling;

age, previous atherosclerosis, and albumin for secondary prevention; age, recor-

ded diagnosis of ’other’ CVD, and ethnicity for primary prevention in patients

with T2DM. When considered as a whole, GP did not produce a better perform-

ing clinical prediction model, rather it utilised fewer predictors, most of which

were the predictors that the Cox regression estimated be most strongly associ-

ated with the outcome, whilst achieving comparable performance. This suggests

that GP may better represent the potentially non-linear relationship of (a smaller

subset of) the strongest predictors.

6. In practice GP is robust By implementing SSOGP without model tuning, us-

ing only basic parameters values recommended from general GP literature, ob-

serving that it has performance comparable to the de facto statistical method, we

have confirmed the observations of other authors, that in practice GP is robust

and likely to work well over a wide range of parameter values.

As stated in the introduction, the main hypothesis of this research is that the applic-

ation of GP can provide more accurate representation of factors that predict the risk

of cardiovascular disease when compared with existing methods. This work repres-
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ents a successful first attempt at evaluating this hypothesis. The results of this work

may not be able to confirm conclusively whether GP offers a more accurate repres-

entation of factors that predict the risk of cardiovascular disease when compared with

Cox regression. However, they can confirm that GP offers comparable accuracy, whilst

developing clinical prediction models in an automated fashion that require fewer pre-

dictors.

Specifically, in-line with main goals of this work described in the section 1.2, this

work has provided evidence that the de facto cardiovascular risk prediction models

for T2DM may be unsuitable - motivating the need for improved clinical risk predic-

tion methods and models for survival outcomes in contemporary populations. It has

also demonstrated the utility of GP for the automatic development of clinical predic-

tion models and examined the prognostic significance of different risk factors together

with their non-linear combinations, using two different CVD case studies. This work

has successfully achieved these three main goals in contributions one, four, and five,

respectively.

8.2 Discussion

GP is a general methodology, the specific implementation of which requires develop-

ment of several different specific elements such as problem representation, fitness, se-

lection and genetic variation. In chapter 4 we developed a tree-based untyped SSOGP

approach for the automated development of clinical prediction models in the presence

of censored longitudinal data. Specific GP elements were developed and implemented,

such as fitness functions and search heuristics, to handle the problem-specific complex-

ities of censored data and facilitate survival analysis. In fact, single and multi-objective

generation GP approaches (GSOGP and GMOGP) were also developed. However, the

utility of these approaches could not be assessed because when implemented using our

experimental set-up, these generational approaches proved too memory intensive for
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the computing resources available (42Gb memory).

Problem representation was addressed by taking advantage of the fact that the hazard

function corresponds to a conditional probability in the discrete time domain, casting

the original survival analysis problem into a classification problem that required the

estimation of a conditional probability. However, to address the problem of censor-

ing the data needed to be pre-processed into the counting process format, with mul-

tiple rows per subject, one for each observed discrete-time interval. A suitable fitness

measure was developed for symbolic regression in the presence of censored survival

data based on ML estimation to calculate the distance between the natural log of the

predicted probability of the event to the actual observed outcome. The developed fit-

ness function expresses the joint probability of obtaining the data actually observed

on the subjects in the study as a function of the unknown population parameters. In

the absence of suitable existing GP system, the developed GP approach was imple-

mented from scratch using the R statistical programming language. However, it was

only implemented from scratch in the general sense, i.e. we did not use an existing

GP system. Existing GP- and EA-specific R packages provided a significant amount

of problem-agnostic functionality required to implement our GP system. However,

in implementing a GP system for survival analysis there was significant development

required, mainly with respect to the implementation a suitable fitness function for cen-

sored data, modification of search operators, and heuristics to work with the specific

problem representation and associated counting process data format.

In chapter 5 we evaluated the performance of the de facto cardiovascular risk for people

T2DM, the UKPDS-RE, for predicting the 10-year risk of CVD in a cohort of UK pa-

tients from CPRD newly diagnosed with T2DM. At the time of writing, this work is the

largest, independent, external validation of the UKPDS-RE, in a diverse contemporary

setting. The four UKPDS risk equations constituting the UKPDS-RE showed a reas-

onable ability to identify high-risk patients (discrimination) but were generally poor

at quantifying the absolute risk (calibration). The UKPDS-RE CHD risk equations
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consistently overestimated absolute risk, whereas the UKPDS-RE stroke equations

performed relatively well. However, when considered as a whole, the UKPDS-RE

was unsuitable for predicting CVD risk in UK subjects with newly diagnosed T2DM.

These findings suggest that the use of UKPDS-RE in clinical practice will lead to

over-estimation of CVD risk in patients with newly diagnosed T2DM. This in turn is

likely to lead to selection of preventative treatments, for which, for some patients, the

balance of risks may outweigh the benefits. Considering the widespread application

of these prediction models in clinical practice, drug reimbursement, and public health

decision-making, these results suggest that there is a need for revised risk equations in

T2DM.

In chapters 6 and 7 we compared the performance of the de facto statistical method

for survival analysis, Cox regression, with the developed SSOGP approach in the de-

velopment of clinical prediction models for the prediction of future cardiovascular

events in patients with symptomatic and asymptomatic cardiovascular disease, using

data from the SMART study and CPRD, respectively. Both these experiments showed

that Cox regression and the developed SSOGP approach produced similar results when

evaluated in common validation datasets. Despite slight relative differences, both ap-

proaches demonstrated an acceptable level of discriminative and calibration at a range

of times points.

Whilst the application of GP did not provide more accurate representations of factors

that predict the risk of both symptomatic and asymptomatic CVD when compared with

existing methods, GP did offer comparable performance. Despite generally compar-

able performance, albeit in slight favour of the Cox model, the predictors selected for

representing their relationships with the outcome were quite different and, on average,

the models developed using GP used considerably fewer predictors. The results of the

GP confirm the prognostic significance of a small number of the most highly associated

predictors in the Cox modelling; age, previous atherosclerosis, and albumin for sec-

ondary prevention; age, recorded diagnosis of ’other’ CVD, and ethnicity for primary
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prevention in patients with T2DM. When considered as a whole, GP did not produce

a better performing clinical prediction model, rather it utilised fewer predictors, most

of which were the predictors that the Cox regression estimated be most strongly asso-

ciated with the outcome, whilst achieving comparable performance. This suggests that

GP may better represent the potentially non-linear relationship of (a smaller subset of)

the strongest predictors.

Whilst considerable effort was made to relax the linearity of the Cox regression, through

transformation of predictors, the nature of the approach relies on linear combinations

of predictors. The fact that symbolic regression required fewer predictors to achieve

similar performance may have an advantage in practical application of the developed

clinical prediction model. The acquisition of information that forms the inputs to such

a model can be prohibitively onerous in routine clinical practice. Therefore a predic-

tion model that requires fewer inputs, especially if the information relating to these

inputs is in practice recorded easily and to a good quality, would considerably increase

adoption and utility.

Unlike other machine learning algorithms, GP in not a ’black box’ method and provides

a mathematical formula as its output. However, the model structure in the GP model

is typically more complex than that of the Cox regression model. This hinders the

interpretation of the (relative) effects of predictors on the outcome and if the primary

objective of the modelling is to understand these effects, such as in aetiologic research,

then Cox regression and other related approaches still remain the first choice. How-

ever, if the primary goal of the research is accurate risk prediction, then GP has some

utility when compared with its regression counterpart. GP offers advantages that in-

clude its ability to learn complex non-linear relationships that may exist in the data,

it is not confined by the statistical assumptions that underpin Cox regression (such as

proportional hazards), its inherent feature selection, and that GP models are developed

in automated fashion.

An advantage of Cox regression was its ability to be calibrated using all available
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data by applying a shrinkage factor - an measure of the models optimism (or over-

fitting) - estimated though bootstrapping or penalised regression methods. Whereas

with GP we cannot estimate a shrinkage factor in the same way and need validation

sample. This suggests that in cases where the data is scarce, Cox regression may be a

better approach. In contrast where there the data is large, possibly with a large number

of predictors and potential interactions effects, GP would have a distinct advantage.

Whilst interaction effects can be modelled using regression techniques, this can be

onerous and require a degree of expertise.

The considerable statistical and clinical expertise required in the development of ap-

propriate clinical predictions should not be understated. Problems with step-wise fea-

ture selection methods are another concern; including biased R2 values, confidence

intervals for effects and predicted values that are falsely narrow, biased regression

coefficients that need shrinkage, and severe problems in the presence of collinearity.

Both Cox regression and step-wise selection are widely used, and widely abused, in

prognostic and aetiologic research. Whilst fitting models using these techniques is

relatively straightforward and intuitive, sometimes they are applied blindly without ap-

propriate testing of the underlying assumptions. Whilst Cox regression is a powerful

tool, its correct application requires a certain amount of statistical rigour and expertise

from the researcher, and cannot be used in certain data if its underpinning assumptions

are violated. Another weakness of Cox model is that it does not explicitly define the

underlying baseline hazard, which means that technically its predictions are only valid

at the time points observed in the data and that it may not appropriate for extrapolation

to non-observed time points. It should be noted, however, that other regression meth-

ods for survival analysis, such as parametric survival models, can define the baseline

hazard and are appropriate for extrapolation. However parametric modelling of sur-

vival is even more involved than Cox modelling, requiring greater technical expertise,

and as such features far less in published aetiologic research.

The main weakness of the GP approach is that the data need to be converted into the
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counting process format, which leads to large data sets and longer executions times. So

whilst methodologically GP works better on large data sets, in practice the long execu-

tion times can make its use prohibitive. However, this weakness can addressed though

parallel processing. GP is a method that can be described as "naturally parallelizable",

and as such can adapted to execute in parallel across multiple machines or processors.

Finally, the GP model has a number of parameters that need to be specified a priori.

These parameters include the size of the population, the building block of models such

as mathematical operators, how many runs to perform, the rates at which to apply

genetic variation such as crossover and mutation, and parameters such as maximum

tree depth that control the complexity, and thus potential of over fitting, of final GP

model. Often the choice of these parameters in based on trail and error, model tuning,

or from the literature. Model tuning refers to repeating the same experiment many

times whilst simultaneously varying multiple parameters and quantifying relationship

between them and the quality of resultant models to understand which parameters are

important.

However, there are little or no literature on the relative importance of specific para-

meters of survival analysis. Model tuning was outside of the scope of this work, but

further research is warranted into characterising the association of GP parameters and

performance in a survival analysis setting. In the absence of modelling tuning and suit-

able literature, we used arbitrarily selected model parameters that were in an order of

magnitude with widely accepted starting parameters of GP applied in other settings.

8.3 Critical Assessment

There are typically a number of limitations of when using real-world observational

data, and the experiments in this thesis are no exception. Data have been collated from

routine clinical practice, thus there are missing and erroneous data, coding imperfec-

tions, lack of standardisation of biochemical measures (such as lipid profiles), vari-
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ations between biochemical test centres and measurements are taken with varying peri-

odicity. Measurement error in identifying the CVD outcomes will have been present

in the analysis, but this work has endeavoured to select appropriate medical codes for

the cardiovascular endpoints involved, consulting clinical expertise whenever possible.

Certain covariates of interest such as smoking status, BMI, lipids, family history of

CVD, etc, may not be recorded consistently. There are also limitations with ethnicity

data where even within the non-missing data there are a large proportion of ethnicit-

ies recorded as ’unknown’. Removal or exclusion of patients with missing data may

introduce bias into the study; this was addressed by using multiple imputation tech-

niques to impute missing values or modelling as categorical variables with a missing

level/category, where appropriate. There are also limitations in specifying covariates or

predictors a priori as there is potential to miss important factors and relationships that

exist with variables not considered. There are limitations on the split-sample validation

approach where predictive accuracy estimates, although unbiased, can be imprecise.

There are also limitations inherent in the classic statistical modelling techniques used

in this work, each of which have their own set of assumptions, such as non-informative

censoring, linearity, additively, proportionality, etc., that need to be satisfied in order

to order to take a given approach. Violation of such statistical assumptions may have

precluded the use of certain techniques and/or consideration of all covariates.

A key strength of the experiments in this thesis have been the size of the datasets util-

ised and study design adopted. We have used real-world observation medical datasets

with a retrospective cohort study design to minimise the selection bias by using real

patient data, observed in routine clinical practice, that has not been subject to the se-

lection biases inherent in other types of data and study designs, such those associated

with RCT data. We have used relatively large datasets which are important to give

adequate statistical power to detect the associations with the outcome, something even

more important in the context of CVD, where generally events are quite rare and thus

large sample sizes are required. However, the strength of the these large datasets has in-

troduced key challenges from the resultant increase in computational expense required
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to analyses them. Potentially, smaller datasets could have been used, or subsets of the

selected datasets, however this was not done because of the resultant loss of statistical

power to detect the associations between the predictors and the outcome, which in the

context of this thesis are rare cardiovascular events.

The choice of implementation language, the R statistical programming language, did

not help with computational issues, as a key disadvantage of R is its performance for

computationally expensive tasks. However, it was felt that the disadvantages of the

Rs computational inefficiency were outweighed by the advantages of how it intern-

ally represents expressions as trees, supporting direct manipulation of expression trees

through the same syntax for manipulating nested lists, making implementation of GP

operators in R simple, succinct, and easy for proficient R users to understand.

The computational issues from the size of the data were further exasperated by re-

quirement, by the fitness function and other elements of the approach developed for

this work, to have the data in the counting process or long format. This meant that

rather than requiring one row per subject, multiple rows per subject—one for each

time segment for which the subject was observed—were required. This requirement

significantly increases the size of the data and the number of fitness cases that needed

to be evaluated, in turn, significantly increasing the computational expense of the ana-

lysis.

Another limitation is the use of the death penalty for constraining the search space.

The literature suggests that this approach is generally not the best and that, in the

first instance, measures that penalise individuals based on some degree of invalidity or

infeasibility are superior. The rationale was that the death penalty is computationally

cheap when compared to other methods and that due to the nature of the experiments

in this that computational expense had become an important consideration.

At the outset it was the intention to evaluate steady-state and generational, as well

as single- and multi-objective approaches to symbolic regression for clinical predic-

tion modelling of censored survival data. Whilst Steady-state Multi-Objective Genetic
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Programming (SMOGP) was not supported in the R packages selected for this work,

SSOGP, GSOGP and, GMOGP were. However, during the experiments the genera-

tional approaches (GSOGP and GMOGP), were unsuccessful due to the fact that they

exceeded the available memory when applied to the large datasets selected for the ex-

periments. As a result, only models developed using SSOGP we able to be evaluated

in this work. The fact that only single-objective GP was evaluated in a key limitation

of this thesis.

Using only a simple single-objective steady-state search heuristic (i.e. SSOGP) there

wasn’t any mechanism to preserve genetic diversity in the population. A multi-objective

search heuristic would have helped with controlling the size and complexity of the

solutions developed and thus controlling bloat, however this has been controlled for to

a lesser degree, buy constraining the maximum depth of new individuals or subtrees

developed from the initialisation and variation operators. A SMOGP search heuristic

was not developed from scratch, for which a significant amount of work would have

been required to integrate it with the existing R packages used for the problem agnostic

elements, as it would have been beyond the scope of this work.

Another limitation of examining only steady-state GP is the noise that is introduced

thought the random selection of individuals in tournament selection. Meaning that

individuals with average fitness can have some chance of being selected and their off-

spring featuring in future generations. However, steady-state GP is far more compu-

tationally efficient, which was major consideration when analysing large observation

datasets. This is reflected in the fact that whilst this work attempted to evaluate single

and multi-objective generational approaches, they were too computationally expensive

to be used the large datasets identified for this thesis. The fact that the utility of gener-

ational GP approaches for clinical prediction modelling in censored survival data was

not evaluated is another limitation of this work.

In this work we have chosen to consider the most common type of GP, untyped tree-

based GP. A limitation of this work is that we have not characterised the utility of
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other types of GP, such as linear or graph-based GP. Evaluating other types of GP

was considered outside the scope of this work as we wanted to access the utility of the

most accessible and most researched type of GP with basic parameters settings, rather

than evaluate more specialised forms of GP where the literature may be more sparse.

For this thesis we enforced closure and defined the valid search space through fitness

penalisation, which is a computationally less efficient approach, as many invalid solu-

tions would have been created and not considered by giving them the lowest possible

fitness. A more efficient approach may have been to implement a typed GP system to

explicitly define the valid search space and avoid the evaluation of invalid solutions.

However, this does not mean that the not excluding invalid search spaces would have

lead to better solutions, as these invalid regions can form an important intermediate

steps towards a (near-)optimal solutions, just that in this case a more computationally

efficient GP implementation would have reduced the required resources and possibly

enabled a wider range of experiments to be performed.

Another limitation of this work is that it did not characterise the association of GP

parameters and performance in a survival analysis setting. This is because model tun-

ing was outside of the scope of this work. In the absence of modelling tuning and

suitable literature, we used arbitrarily selected model parameters that were in an order

of magnitude with widely accepted starting parameters of GP applied in other settings.

However, the literature suggests that in practice GP is robust and likely to work well

over a wide range of parameter values.

8.4 Further Work

A key weakness of the GP approach for censored data presented in this work is that the

data needed to be converted into the counting process format, which leads to even lar-

ger data sets, longer executions times and increased memory requirements. So whilst

methodologically GP works better on large data sets, in practice the long execution
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times can make its use prohibitive. Further work is required to reduce the computa-

tional expense of GP, both in terms of reducing execution times and in the reduction of

hardware requirements. Speeding up GP runs and reducing memory requirements—so

that analyses on large datasets could be done on standard commodity hardware in an

amount of time in the same order of magnitude as classical regression methods—would

make GP far more accessible to a broader audience, facilitate, and expedite research

into extensions and applications of GP in the big data era.

Reduction in the computational expense of GP may enable another area of potential

further work, the characterisation of the utility of generation GP approaches for clinical

prediction modelling in the censored data. In this work using large medical datasets,

the memory requirements of the generational search heuristics exceeded the available

computing resources, even using compute nodes with 42Gb of memory. Although bey-

ond the scope of this work, these issues of execution time and hardware requirements

can addressed though parallel processing. GP is a method that can be described as

’naturally parallelisable’, and as such can adapted to execute in parallel across multiple

machines or processors. The landscape of big data analytics has changed dramatically

in the last few years, a trend that looks set to continue for some years to come, with

exciting new technologies such as Hadoop and Spark facilitating highly distributed

computing on commodity hardware.

Also, an approach for performing GP on censored survival data that does not require

the data to be pre-processed into the long format would be advantageous in terms of re-

ducing the computation expense. However, it must be noted that although not explored

in this work, the long format enables the analysis of time-varying covariates which

can be highly advantageous when answering certain prognostic research questions, an-

other potential avenue for further research. The development of other fitness measures

and constraint handling approaches specific to survival analysis would be an important

area for further research. It would be very interesting to compare their performance

and understand how these effect the search and the resultant solutions.
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Another area of further work would be assess the impact of using a multi-objective

steady-state GP on the performance of clinical prediction models developed on cen-

sored survival data. It would be interesting to understand how controlling genetic

diversity and bloat though additional jointly-optimised objectives would effect the per-

formance of the survival models developed by GP, and whether they could outperform

the de facto statistical methods for survival analysis.

Whilst this work supports the observations of other authors, that GP is robust and works

well on a range parameter settings, further work is required to characterise relation-

ship between GP run parameters and the performance of the resulting survival models.

Model tuning was outside of the scope of this work, however, characterising the re-

lative effects of GP parameter settings on the performance of the developed clinical

prediction models may have a number of benefits. By understanding which parameters

do not drive performance we could potentially reduce the computational expense by

constraining some aspect of the experimental design or search space, such as reducing

the number of fitness evaluations or reducing the number and average size of individu-

als. By understanding the near-optimal GP parameter settings for the development of

clinical prediction models in censored survival data, GP may be able to provide more

accurate representation of factors that predict the risk of cardiovascular disease and

demonstrate improved performance when compared with existing methods.

Finally, further work is required to assess the utility of the developed GP approach for

automated development of new clinical prediction models in other clinical and envir-

onmental settings, preferably comparing their performance against more established

risk prediction models currently used in routine clinical practice (for example QRISK

2 [125] and SCORE [46] for primary prevention of CVD, the GRACE score [99, 63] in

acute coronary syndromes and, euroSCORE [215] in Cardiac surgery). Further work

will also be required to identify the most appropriate clinical parameters required for

GP risk modelling in order to optimise their predictive power in the relevant setting

and to ensure that these required measures are not only practical to measure at scale in
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routine clinical practice but also cost effective.

8.5 Conclusions

To our knowledge, this work is the first empirical study to assess the value of GP for

clinical prediction purposes compared to the well-known and widely applied Cox PH

regression technique. Using real-world data this work has demonstrated that symbolic

regression models developed by SSOGP have predictive ability comparable to that of

Cox regression models. The symbolic regression models were more complex and thus

more difficult to validate by domain experts, however these models were developed

in an automated fashion, using considerably fewer input variables, without the need

for domain specific knowledge and expertise required to appropriately perform sur-

vival analysis. GP has demonstrated strong potential as a methodology for automated

development of clinical prediction models for diagnostic and prognostic purposes.

This work compared untuned SSOGP symbolic regression models that were developed

in an automated fashion with highly tuned Cox regression models that were developed

in a very involved manner that required a certain amount of clinical and statistical

expertise. Whilst the highly tuned Cox regression models performed slightly better

in validation data, the performance of the automatically generated prediction models

were generally comparable. The comparable performance demonstrates the utility of

GP for clinical prediction modelling and prognostic research, where the primary goal

is accurate prediction. In aetiological research, where the primary goal is to examine

the relative strength of association between risk factors and the outcome, then Cox

regression and its variants remain as the de facto approach.

In hypothesis-driven research, the user formally specifies some idea—the hypothesis—a

priori and uses data to prove (or disprove) this idea. In contrast, with a data-driven ap-

proach the user does not formally specify a hypothesis a priori, but uses the data to

discover patterns and relationships, thus generating hypotheses. Frequentist statist-
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ical approaches for clinical prediction modelling (such as Cox regression) are typically

hypothesis-driven. Typically the user specifies the variables of interest and the general

model form (e.g. Cox regression) a priori . There are ways in which these methods can

be more data-driven, such as considering a broad set of variables and using stepwise

feature selection procedures to select the subset of important predictors. However, as

discussed previously in this chapter, there are problems with stepwise feature selection

procedures and this is only partially data-driven, the general model form has already

been specified a priori and limited to linear combinations of predictors. In contrast GP

is a data-driven approach, it automatically solves problems without requiring the user

to know or specify the form or structure of the solution in advance. In addition to ef-

ficiently searching for potentially complex non-linear associations between predictors

and outcome, GP also searches for the optimal model form (or structure) and—intrinsic

to its evolutionary process—automatically selects a subset of features.

In an era of evidence-based medicine and shared decision-making, medicine and health-

care is becoming increasingly data-driven, so too increases its overlap with the field

of computer science. With increasing amounts of medical data becoming available

through EPR systems and consumer-facing wearables, the opportunity for computer

science to significantly reduce the burden of disease continues to grow. Computer

science can be used to extract knowledge from large datasets and use it to ultimately

improve both the services provided and the quality outcomes for the patient. For ex-

ample, accurate risk prediction models can extracted from the data for a potentially

unlimited number of disease and therapeutic areas, helping to understand in advance

what course of action is more likely to have the desired outcome and how to spend

resources effectively. Models can be automatically and efficiently retrained and recal-

ibrated to reflect new tests, new interventions, new patients, and any other updates to

the underlying data. This becomes more advantageous as both the volumes of medical

data and efficient mechanisms for data collection continue to increase. Therefore, auto-

matically generated and updated models are more likely to remain relevant and valid

for longer, and thus be more cost-effective to develop and maintain, when compared
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with hand-crafted models. Routine application of automated clinical prediction mod-

els could be used to screen entire populations and offer timely targeted interventions to

those identified to be at risk, thus having potential economic and quality of life impact

for society.
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ISAC Protocol: UKPDS-RE Validation



   

ISAC v1.0: 27/03/2012 

ISAC APPLICATION FORM   
PROTOCOLS FOR RESEARCH USING THE CLINICAL PRACTICE RESEARCH DATALINK (CPRD) 

 
ISAC use only: 
Protocol Number 
Date submitted 

 
............................. 
............................. 

IMPORTANT 
If you have any queries, please contact ISAC Secretariat: 
ISAC@cprd.com 

 
1. Study Title  

Comparison of cardiovascular outcomes observed in patients with type 2 diabetes and those 
predicted by the UKPDS Risk Engine 

2. Does this protocol describe a purely observational study using CPRD data (this may include the review of 
anonymised free text)? 
 
Yes    No   

 
3. Does this protocol seek access to data held under the CPRD Data Linkage Scheme? 
 

Yes    No   
 
4. If you are seeking access to data held under the CPRD Data Linkage Scheme, please select the source(s) of linked 

data being requested. 
 

 Hospital Episode Statistics   Cancer Registry Data                MINAP                                                       
 ONS Mortality Data    Index of Multiple Deprivation/ Townsend Score  
 Mother Baby Link                 Other: (please specify)  

     

 
 
 
5. If you are seeking access to data held under the CPRD Data Linkage Scheme, have you already discussed your 

request with a member of the Research team?  
 

Yes    No*   
 
*Please contact the CPRD Research Team on +44 (20) 3080 6383 or email kc@cprd.com to discuss your 
requirements before submitting your application. 
 

6. Does this protocol involve requesting any additional information from GPs?  
 

Yes*    No   
 
 * Please indicate what will be required:  
   Completion of questionnaires by the GPψ     Yes      No   
 Provision of anonymised records (e.g.  hospital discharge summaries)  Yes      No   
 Other (please describe)       

     

 
 
ψ Any questionnaire for completion by GPs needs to be approved by ISAC before being sent out for completion.   
 
 
GUIDANCE ON ANSWERING QUESTIONS 2-3: 
These questions must be completed by all applicants.  You should note the following:   
 
(i) If you have answered NO to question 2, you may need to seek separate ethics approval from an NHS 

Research Ethics Committee for this study. The ISAC will provide advice on whether this may be 
needed. 

 
 (ii) If you have answered YES answered to question 2 above and you will be using data obtained from the 

CPRD Group at the MHRA (question 3), this study does not require separate ethics approval from an 
NHS Research Ethics Committee.  
 

If you will be using data obtained from EPIC, you will need to consult the data provider regarding their 
arrangements for obtaining ethics approval for the study.  
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NB: Answering YES to question 2 means that the answers to questions 8-10 should all be NO. If any of the answers 
below are YES please review your answer to question 2 as it should be NO. 
 
7. Has this protocol been peer reviewed by another Committee? 
 

Yes*    No   
 

* Please state in your protocol the name of the reviewing Committee(s) and provide an outline of the review process 
and outcome. 
8. Does the study involve linking to patient identifiable data from other sources? 
 

Yes     No   
 
9. Does this study require contact with patients in order for them to complete a questionnaire? 
 

Yes     No   
 
10. Does this study require contact with patients in order to collect a sample? 
 

Yes*    No   
 
* Please state what will be collected 

     

   
11. Type of Study (please tick one box below) 
 

Adverse Drug Reaction  Drug Use   Disease Epidemiology 
Pharmacoeconomic   Drug Effectiveness  Other    

 
12. Data source  (please tick one box below) 
 

CPRD :        
 
Sponsor has on-line access   Purchase of ad hoc dataset   
Commissioned study    
Other        (please specify)    
 

13. Financial Sponsor of study 
 
Pharmaceutical Industry (please specify)   

     

 Academia(please specify)  Cardiff 
University 
Government / NHS (please specify)    

     

 None    
Other (please specify)     

     

 
 

14. This study is intended for: 
 

Publication in peer reviewed journals   Presentation at scientific conference   
Presentation at company/institutional meetings  Other     

     

 
 

15. Principal Investigator (full name, job title, organisation & e-mail address for correspondence regarding this 
protocol) 
Christian Bannister, MSc, Postgraduate Researcher, Cardiff University, bannisterca@cf.ac.uk 

 
16. Affiliation (full address) 
Cardiff University School of Medicine, Primary Care & Public Health, Cardiff Medicentre, Heath Park, Cardiff, CF14 4UJ 

17. Type of Institution (please tick one box below) 
 

Academia  Research Service Provider  Pharmaceutical Industry  
NHS   Government Departments  Others    
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18. Experience/expertise available  
 
Please complete the following questions to indicate the experience/expertise available within the team of researchers 
actively involved in the proposed research, including  analysis of data and interpretation of results 

 Previous GPRD/CPRD Studies  Publications using GPRD/CPRD data 
 
None                               
1-3                                
> 3                                

          Yes                              No 
Is statistical expertise available within the research team?       
                           If yes, please outline level of experience   The research team has statistical 
expertise appropriate to use of large datasets for epidemiological research. Additional expertise can be sought from 
colleagues within Cardiff School or Medicine as required. 
 
Is experience of handling large data sets (>1 million records)  
available within the research team?           
                           If yes, please outline level of experience   CP and CC and SJJ have extensive 
experience of using large routine NHS datasets including HES, GRPD and THIN. 
 
Is UK primary care experience available within the research team?       
                           If yes, please outline level of experience   The team has experience of using 
primary care data form a variety of studies.  Specific clinical assistance can be sought if required from colleagues from 
the department of Primary Care and Public Health within Cardiff School of Medicine 
19. Other collaborators (if applicable: please list names and affiliations of all collaborators) 
Dr. Chris Poole 
Senior Lecturer in Evaluation of Medicines, Cardiff University 
Sara Jenkins-Jones, MSc 
Postgraduate Researcher, Cardiff University 
Professor Craig Currie 
Professor of Applied Pharmacoepidemiology, Cardiff University 
 
20. Protocol’s Author (if different from PI) 
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PROTOCOL CONTENT CHECKLIST 
 
All protocols using CPRD data which are submitted for review by ISAC must contain information on the 
areas detailed in the instructions.  If you do not feel that a specific area required by ISAC is relevant for 
your protocol, you will need to justify this decision to ISAC.  
 
Applicants must complete the checklist below to confirm that the protocol being submitted includes all the 
areas required by ISAC, or to provide justification where a required area is not considered to be relevant 
for a specific protocol.  Protocols will not be circulated to ISAC for review until the checklist has been 
completed by the applicant.  
 
Please note, your protocol will be returned to you if you do not complete this checklist, or if 
you answer ‘no’ and fail to include justification for the omission of any required area. 
 
 Included in 

protocol? 
 

Required area Yes No If no, reason for 
omission 

Lay Summary (max.200 words)   

     

 

Background   

     

 

Objective, specific aims and rationale   

     

 

Study Type 
Hypothesis Generating 
Hypothesis Testing 

 
 
 

  
 
 

 

     

 

     

 
Study Design   

     

 
Sample size/ power calculation  
(Please provide detailed justification of  
sample size in the protocol) 

  

     

 

Study population  
(including estimate of expected number of  
relevant patients in the CPRD) 

 
 

 
 

 

     

 

Selection of comparison group(s) or controls   N/A to this study 

Exposures, outcomes and covariates   

     

 

Data/ Statistical Analysis 
Hypothesis Generating 
Hypothesis Testing 

 
 
 

 
 
 

 

     

 

     

 
Patient/ user group involvement †   N/A to this study 

Limitations of the study design, data sources  
and analytic methods 

  

     

 

Plans for disseminating and communicating 
study results 

  

     

 

 
† It is expected that many studies will benefit from the involvement of patient or user groups 
in their planning and refinement, and/or in the interpretation of the results and plans for 
further work. This is particularly, but not exclusively true of studies with interests in the 
impact on quality of life.   Please indicate whether or not you intend to engage patients in any 
of the ways mentioned above. 
 
ISAC strongly recommends that researchers using CPRD consider registering as a NRR data provider in 
order that others engaged in research within the UK can be made aware of current works. The National 
Research Register (NRR) is a register of ongoing and recently completed research projects funded by, 
or of interest to, the United Kingdom's National Health Service. Information on the NRR is available on 
www.nrr.nhs.uk . 
 
Please Note: Registration with the NRR is entirely voluntary and will not replace information 
on ISAC approved protocols that are published in summary minutes or in the ISAC annual 
report.   
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Lay summary 

The UK Prospective Diabetes Study (UKPDS) was a clinical trial designed to show the long-
term benefits of controlling both blood sugar and blood pressure in individuals newly 
diagnosed with type 2 diabetes (T2DM).  The UKPDS Risk Engine was developed from the 
trial data and calculates the absolute risk of coronary heart disease and stroke for individuals 
diagnosed with T2DM.   The UKPDS Risk Engine is widely utilised in the economic 
evaluation of various T2DM-related interventions across the world as well as in the UK.   
 
A growing number of trials have failed to demonstrate the causal relationship between lower 
blood glucose and improved outcomes, some even suggesting that there is a harmful effect of 
lowering blood sugar too aggressively.  Therefore the benefits of improved glycaemic control 
predicted by models such as the UKPDS Risk Engine may be overestimated. 
 
The purpose of this epidemiological study is to compare observed cardiovascular outcomes 
with those predicted by the UKPDS Risk Engine in a representative population of people 
with T2DM managed according to routine standard of care. This study of real-life data should 
give a better understanding of the applicability of the UKPDS Risk Engine to the general 
population of people with T2DM.  
 

Introduction 

Diabetes is on the rise, in the UK and around the world1-7.  Forecasting models have shown 
that the prevalence of diabetes is steadily increasing, and that diabetes is not a localised 
chronic condition8-12.  Major contributors to this increase in prevalence are obesity and an 
ageing population, both of which increase risk of type 2 diabetes (T2DM).  Understanding the 
costs and effectiveness of healthcare delivery in diabetes is of clear importance to health 
services.   
 
There are many different predictive risk models for diabetes used in health economics, such 
as the UKPDS Risk Engine13, the UKPDS Outcomes Model14 and the Center for Outcomes 
Research Diabetes Model15.  All these models are based on epidemiological data derived 
from the UKPDS23.  As such, while assumptions may hold true in a clinical setting with a 
specific population of individuals who have specific risk factors used in the UKPDS, these 
models may not accurately reflect the actual incidence, prevalence, mortality and costs 
related to the late complications of diabetes in the general population today or after a given 
duration16. 
 
Moreover, models derived from UKPDS epidemiological data13-15 include estimates of 
reduced mortality and cardiovascular events associated with a reduction in HbA1c for 
patients with T2DM.  However, a growing number of large randomised, controlled trials have 
failed to demonstrate a causal relationship between clinically important reductions in HbA1c 
and improved outcomes16-20.  
 
The recent Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial21 and  
retrospective cohort study assessing survival as a function of HbA1c

22 even suggests potential 
harm associated with aggressive glycaemic control in this patient population.  The benefits of 
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improved glycaemic control for people with T2DM may therefore be overestimated in these 
models. 
 
Another important factor is the manner in which the UKPDS Risk Engine13 is used in health 
economics. The risk engine was designed to predict the future risk of specific cardiovascular 
events in patients newly diagnosed with T2DM over a specified time horizon.  However, the 
model is often used at other stages of the care pathway, not just at the beginning as intended, 
with the assumption that the model performs the same at any level of treatment 
intensification.  The validity of this assumption is far reaching as many T2DM interventions 
have been evaluated in this way for use by the NHS and other health services worldwide. 
 
A review of previous work carried to externally validate the UKPDS risk engine revealed that 
the risk engine has been previously validated on prospective cohorts; 10,137 from 
Norfolk[23] ; 428 from Poole[24]; 1,622 from Germany and the Netherlands[25]; 1,482 from 
the Netherlands[26] and 7,067 from China[27].   However none of these studies have 
validated the UKPDS risk engine on a UK-wide prospective cohort, nor have any studies 
evaluated its performance at different stages of the diabetes care pathway. 
 
In the light of new research that challenges our understanding of the impact of glycaemic 
control on long-term outcomes in T2DM, this study requests approval to use GPRD data in 
evaluating the appropriateness of the UKPDS Risk Engine and the assumption that the Risk 
Engine can be used at any stage of the T2DM treatment pathway. 
 
Objective 

The purpose of the proposed study is to characterise the appropriateness of the UKPDS Risk 
Engine for the prediction of cardiovascular events for individuals with T2DM from the 
general population. 
 

Methods 

Data source     

GPRD 

 

Study type 

The study will be hypothesis testing with regard to cardiovascular risk in patients with 

T2DM. 

 

Study design 

The study will use a retrospective cohort design. 

 

Study population and cohorts 
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The aim of the study is not to replicate the UKPDS, but to access the appropriateness of using 
the UKPDS Risk Engine (developed using data from the UKPDS) in the UK T2DM 
population.  We achieve this by adopting selection criteria to develop a cohort of incident 
cases of T2DM, with no recent history of myocardial infarction (MI), angina or heart failure 
from GPRD and test the performance of the risk engine on this cohort.  
 

The study comprises of a single cohort of incident cases of type 2 diabetes registered with 
practices between 1991 and 2011.  A wash-in of 365 days has been applied to exclude non-
incident T2DM patients (see table 1, item 5).  Patients will be selected who have had a 
diagnosis of type 2 diabetes with no frank diagnoses of diabetes secondary to other causes 
e.g. gestational or iatrogenic. Subjects will be classified as type 2 diabetes on the basis of 
frank differential diagnosis. More specifically, patients will be classified as having T2DM if 
they have a diagnosis of diabetes and one or more of the following: 

1. More than one diagnostic record exclusively for type 2 diabetes OR  
2. Prescription of two or more differing classes of OAD OR  
3. A diagnostic code indicative of T2DM (regardless of conflicting diagnoses of type 1 

or non-specific diabetes) plus a prescription for an OAD. 
Patients diagnosed before the age of 35 with no OAD and a prescription for insulin were 
classified as type 1 and hence excluded.  In the absence of such a diagnosis, a prescription 
history including exposure to oral hypoglycaemic agents (assignment to T2DM if >6 separate 
OHA prescriptions) where the age at incident diabetes event is greater than 40 years of age.   
 
Patients will be selected that have linkage with Hospital Episode Statistics (HES) data and 
Office for National Statistics (ONS) mortality data.  This will provide the ethnicity and cause 
of death information required for this study as well as more accurate ascertainment of 
cardiovascular events.  This will possibly result in some data loss (see table 1) as the data that 
is eligible for HES and/or ONS linkage is a subset of the data available through GPRD.   
 

Stage Description Lost Remaining 
1 GPRD patients with T2DM of status 'accept' (GPRD 

quality indicator) 
N/A 490,084 

2 Omit patients in 1 with unknown dates of first 
diagnosis or first prescription 

14,096 475,988 

3 Omit patients in 2 where year of DM presentation* > 
year of birth or > 2011 

1 475,987 

4 Omit patients in 3 where year of DM presentation* < 
1991 

44,462 431,525 

5 Omit patients in 4 where wash-in from registration to 
DM presentation* < 365 days 

106,406 325,119 

6 Omit patients in 5 where sex is neither male nor female 24 325,095 
7 Omit patients in 6 where age at DM presentation* < 21 4,838 320,257 
9 Omit patients in 7 not having smoking status at baseline 

(DM presentation*) 
8,897 311,360 

8 Omit patients in 7 who are ineligible for HES linkage 180,205 131,155 
10 Omit patients in 9 not having ethnicity of types 1, 2, or 

3 (see 'Model Covariates' section) 
26,512 104,643 

11 Omit patients in 10 who are ineligible for ONS 
Mortality linkage (and hence cause of death) 

778 103,865 

*DM Presentation refers to the earlier of two dates; date of first DM diagnosis or date of first prescription of DM drugs 

Table 1: Sample data loss from inclusion/exclusion criteria  
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Sample size and power calculation  

The UKPDS risk engine was developed on 4,540 patients from the UKPDS and is 
conservatively assumed as the minimum sample size for this study.  This minimum number 
of subjects is easily achievable, where we estimate that >100,000 suitable subjects with 
incident of T2DM are available in GPRD; even with ‘acceptable quality status’ (see table 1).  
 
Outcomes 

The primary outcomes are the four cardiovascular events predicted by the UKPDS Risk 
Engine are coronary heart disease (CHD), fatal CHD, stoke and fatal stroke. This study 
proposes to use the same endpoints to ensure that we are predicting the same events.  Using 
ICD-9and ICD-10, Table 2 below details the exact coding of the endpoints used in UKPDS28 

risk engine that are proposed for this study.  For hard endpoints of stroke and CHD we will 
be reliant on data from HES and ONS.  For HES we will consider patients admitted as 
emergencies with a primary diagnosis of the relevant event.  For ONS we will consider 
deaths with a primary or contributory cause of death of stoke or CHD. 
 
Endpoint ICD -10 Codes ICD-9 Code 
CHD I21-I25, I46.1 410-414.9 798.9 (fatal or non-fatal 

MI and Sudden death) 
Fatal CHD I21-I25, I46.1 410-414.9 798.9 (fatal MI or 

Sudden death) 
Stroke I60-I69 430-438.9 (fatal or non-fatal 

Stroke) 
Fatal Stroke I60-I69 430-438.9 (fatal Stroke) 
Table 2:  ICD-9 and ICD-10 coding of cardiovascular endpoints used in UKPDS and 
proposed for study. 
   
CHD is defined as the occurrence of fatal or non-fatal myocardial infarction (MI) or sudden 
death.28 In patients with multiple CHD events, only the first event is considered in this study.  
Stroke is defined as a neurological deficit with symptoms or signs lasting 1 month or more.28 
No distinction was made between ischemic, embolic, and hemorrhagic strokes. In patients 
with multiple strokes, only the first stroke is considered here.  Death from causes other than 
the defined outcomes of interest will be treated as censored.  
 

 

Model covariates 

Covariates are those required by the UKPDS Risk Engine as inputs, as follows: 

AGE  Age in years (over 20 years) at diagnosis 
SEX   F for female; M for male  
ETHNIC 1 for Caucasian, 2 for Afro-Caribbean; 3 for Asian-Indian   
SMOK  0 for never, 1 for past, 2 for current smoker of tobacco in any form, at index of 

each care pathway 
DUR  Duration of diabetes (positive integer) 
AF  Presence of Atrial Fibrillation (Y for yes, N for no) 
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SBP  Systolic blood pressure (mmHg), mean of values for years 1 and 2 
A1C   HbA1c (%), mean of values for years 1 and 2   
TC  Total cholesterol, mean of values for years 1 and 2 (mmol/l) 
HDL  HDL cholesterol, mean of values for years 1 and 2 (mmol/l) 
H  No of readings for HbA1c used in calculating mean value used 
BP  No of readings for SysBP used in calculating mean value used 
CHOL  No readings TC/HDL used in calculating mean value used 
 
To improve model stability HbA1c, SysBP, TC and HDL will be taken as mean values one 
year apart 
 

Data/statistical analysis 

The UKPDS Risk Engine will be evaluated with a series of diagnostic plots, comparing 
survival probabilities for the study population calculated by the UKPDS Risk Engine with 
survival probabilities for the study population calculated by non- parametric methods. A 
version of the UKPDS Risk Engine has been obtained for this purpose, with the permission of 
the Diabetes Trails Unit at the University of Oxford.  The non-parametric method proposed is 
the life-table method with one-year intervals, which also provides 95% confidence 
intervals29.  The life-table method, also known as Actuarial Estimate of survivor function is a 
technique for estimating the survival function S(t) of censored data.  The life-table method is 
analogous to the Kaplan-Meier estimate of the survival function, but with the life-table 
method intervals can predefined and uniform (e.g. 1-year), whereas with Kaplan-Meier time 
intervals are defined by event times.  A more detailed explanation is outlined in appendix A. 
This methodology is the same used in the development and evaluation of the UKPDS Risk 
Engine13 and should therefore aid comparison.  Declining secular trends in diabetes mortality 
and all-cause mortality in the general population shall be addressed by performing a 
sensitivity analysis using 5-year periods.  Where appropriate missing data shall be handled 
using multiple imputation.  Multiple imputation is a powerful technique that offers substantial 
improvements over the biased and flawed value replacement approaches based on complete 
cases or cases matched for age and sex[30-31].  It involves creating multiple copies of the data 
and imputing the missing values with sensible values randomly selected from their predicted 
distribution. We propose to use the Multivariate Imputation by Chained Equations (MICE) 
approach.   
 
In order to evaluate the performance of the UKPDS Risk Engine at various stages of the 
diabetes care pathway, four levels of glycaemia treatment levels have been defined: 

1. Diet	
  and	
  lifestyle	
  modification	
  
2. Metformin	
  monotherapy	
  
3. Metformin	
  in	
  combination	
  with	
  other	
  oral	
  hypoglycaemic	
  agents	
  (OHA)	
  
4. Insulin–based	
  therapy	
  (with	
  or	
  without	
  OHAs)	
  

 
The UKPDS Risk Engine will be evaluated using all available patients in the study 
population as they enter each of the pre-defined treatment pathways, this will be carried out 
for each of the four outcomes.  The behaviour of the UKPDS Risk Engine at each of these 
treatment stages will be compared and contrasted with the parametric life-table method using 
diagnostic plots as described above. 
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Limitations of the study design, data sources and analytic methods 

This study has a number of limitations. GPRD collates data from routine practice, thus there 
are missing data, there are coding imperfections, and there is no standardisation of measures 
such as HbA1c. The normal ranges for HbA1c do vary between biochemical test centers 
(unless test is specifically reported as DCCT−aligned), and measurements are taken with 
varying periodicity. We consider these limitations may introduce noise into the study but 
have no reason to suspect they will introduce bias. Duration of diabetes is an important 
covariate but one which must be treated with caution.  
 

 

Plans for disseminating and communicating study results 

Findings from this study will be disseminated through scientific meetings and peer-reviewed 
manuscript(s). 
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Appendix A:  Life-Table Method 

The life-table estimate of the survivor function, also known as the Actuarial estimate of the 
survivor function, is obtained by first dividing the period of observation into a series of time 
intervals.  These intervals need not necessarily be of equal length but often are.  
Suppose that the jth of m such intervals, j=1, 2,…, m, extends from time t’j to t’j+1, and let dj 
and cj denote the number of deaths and number of censored survival times, respectively, in 
this time interval.  Also let nj be the number of individuals who are alive, and therefore at risk 
of death, at the start of the jth interval.  We now make the assumption that the censored 
survival times occur uniformly throughout the jth interval, so that the average number of 
individuals who are at risk during this interval is 
 

j!n = jn − jc
2

 

 
This assumption is sometimes known as the actuarial assumption. 
 
In the jth interval, the probability of death can be estimated by dj/n’j, so that the 
corresponding survival probability is (n’j-dj)/n’j.  Now consider the probability that an 
individual survives beyond time t’k, k=1, 2, …, m, that is, until some time after the start of the 
kth interval.  This will be the product of the probabilities that an individual survives beyond 
the start of kth interval and through each of the k-1 preceding intervals, and so the life-table 
estimate of the survivor function is given by 
 

*S (t) = jn ' − jd
jn '

"

#
$
$

%

&
'
'

j=1

k

∏  

 
For t’k<= t < t’k+1, k=1, 2. …, m.  A graphical estimate of the survivor function will then be a 
step-function with constant values of the function in each time interval. 
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Appendix B

Run statistics: SMART experiments

The full range of run statistics for the 25 GP runs in the SMART experiments in

chapter 6
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Figure B.1: The full range of runs statisitcs for the 25 SSOGP runs in the SMART

experiments in chapter 6.
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Appendix C

Final Models: SMART experiments

The final 25 models developed by SSOGP the SMART experiments in chapter 6,

presented as a binary trees
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Appendix D

Predictor Effects: SMART

experiments

Plots of the effects of predictor values on log hazard in the ’final’ GP model in the

SMART experiments in chapter 6
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Figure D.1: Plots of the effects of predictor values on log hazard in the ’final’ GP

model in the SMART experiments in chapter 6.
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Appendix E

Results: SMART experiments

(secondary analysis)

Results of the additional experiments that repeat the SMART experiments in chapter 6,

but only on the subset of covariates that were selected with a relatively high frequency

(> 0.5) in the main experiment.

Figure E.1: Average survival curves for the Cox regression and genetic program-

ming models. The error bars represent ±2 standard errors of the KM estimates.
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Figure E.2: C-statistic estimates by model for t=1, 3 and 5 years

Table E.1: C-statistic estimates by model at t=1, 3, and 5 years

Time (years) Genetic Programming (superset) Genetic Programming (subset)

1 0.59 0.59

3 0.69 0.70

5 0.64 0.64
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Figure E.3: Calibration plots for the Cox regression and genetic programming

models, at t=1, 3, and 5 years..

Table E.2: χ2 statistic for the comparison between observed versus expected (ac-

cording to the model) number of events in groups of patients defined according to

the predicted 1− S(t) at t=1, 3, and 5 years.

Time (years) Genetic Programming (superset) Genetic Programming (subset)

t χ2 p-value χ2 p-value

1 5.18 0.818 3.44 0.944

3 9.99 0.352 12.13 0.206

5 16.17 0.063 21.88 0.009
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Appendix F

ISAC Protocol: CPRD Experiments



   

ISAC v1.0-Jun 2012 

ISAC APPLICATION FORM 
PROTOCOLS FOR RESEARCH USING THE CLINICAL PRACTICE RESEARCH DATALINK (CPRD) 

 
ISAC use only: 
Protocol Number 
Date submitted 

 
............................. 
............................. 

IMPORTANT 
If you have any queries, please contact ISAC Secretariat: 
ISAC@cprd.com 

 
1. Study Title  

Developing a new cardiovascular risk score for the UK general population 
 
2. Principal Investigator (full name, job title, organisation & e-mail address for correspondence regarding this 

protocol) 
Christian Bannister, MSc, Postgraduate Researcher, Cardiff University, bannisterca@cf.ac.uk 

 
3. Affiliation (full address) 
Cardiff University School of Medicine, Primary Care & Public Health, Cardiff Medicentre, Heath Park, Cardiff, CF14 4UJ 

4. Protocol’s Author (if different from the principal investigator) 

     

 

5. Type of Institution (please tick one box below) 
 

Academia  Research Service Provider  Pharmaceutical Industry  
NHS   Government Departments  Others    
 

6. Financial Sponsor of study 
 
Pharmaceutical Industry (please specify)   

     

 Academia(please specify)  Cardiff 
University 
Government / NHS (please specify)    

     

 None    
Other (please specify)     

     

 
 

7. Data source  (please tick one box below) 
 

      
 
Sponsor has on-line access   Purchase of ad hoc dataset   
Commissioned study    
Other      (please specify)  

     

 
 

8. Has this protocol been peer reviewed by another Committee? 
 

Yes*    No   
 

* Please state in your protocol the name of the reviewing Committee(s) and provide an outline of the review process 
and outcome. 
 
9. Type of Study (please tick all the relevant boxes which apply) 
 
Adverse Drug Reaction/Drug Safety  Drug Use   Disease Epidemiology  
Drug Effectiveness   Pharmacoeconomic          Other    
 
10. This study is intended for: 
 

Publication in peer reviewed journals   Presentation at scientific conference   
Presentation at company/institutional meetings  Other     Form 
chapter(s) of PhD thesis 
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11. Does this protocol also seek access to data held under the CPRD Data Linkage Scheme? 
 

Yes    No   
 

 
12. If you are seeking access to data held under the CPRD Data Linkage Scheme, please select the 

source(s) of linked data being requested. 
 

 Hospital Episode Statistics   Cancer Registry Data*               MINAP                                                       
 ONS Mortality Data    Index of Multiple Deprivation/ Townsend Score  
 Mother Baby Link    Other: (please specify)  

     

 
 

*Please note that applicants seeking access to cancer registry data must provide consent for publication 
of their study title and study institution on the UK Cancer Registry website. Please contact the CPRD 
Research Team on +44 (20) 3080 6383 or email admin@cprd.com to discuss this requirement further. 
 
 
13. If you are seeking access to data held under the CPRD Data Linkage Scheme, have you already 

discussed your request with a member of the Research team?  
 

Yes    No*   
 
*Please contact the CPRD Research Team on +44 (20) 3080 6383 or email admin@cprd.com to discuss 
your requirements before submitting your application. 
 
Please list below  the name of the person/s at the CPRD with whom you have discussed your request. 
 Tarita Murray Thomas (MHRA/CPRD Enquiry Reference: OCR9669) 
 
14. Does this protocol involve requesting any additional information from GPs?  
 

Yes*   No   
 
 * Please indicate what will be required:  
   Completion of questionnaires by the GPψ     Yes      No   
 Provision of anonymised records (e.g.  hospital discharge summaries)  Yes      No   
 Other (please describe)       

     

 
 
ψ Any questionnaire for completion by GPs or other health care professional must be approved by ISAC 
before circulation for completion.   
15. Does this protocol describe a purely observational study using CPRD data (this may include the 

review of anonymised free text)? 
 
Yes*   No**   

 
* Yes: If you will be using data obtained from the CPRD Group, this study does not require separate 
ethics approval from an NHS Research Ethics Committee. 
** No: You may need to seek separate ethics approval from an NHS Research Ethics Committee for this 
study. The ISAC will provide advice on whether this may be needed. 
 
16. Does this study involve linking to patient identifiable data from other sources? 
 

Yes    No   
 
17. Does this study require contact with patients in order for them to complete a questionnaire? 
 

Yes    No   
 
N.B. Any questionnaire for completion by patients must be approved by ISAC before circulation for 
completion.   
18. Does this study require contact with patients in order to collect a sample? 
 

Yes*   No   
 
* Please state what will be collected 
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19. Experience/expertise available  
 
Please complete the following questions to indicate the experience/expertise available within the team of researchers 
actively involved in the proposed research, including  analysis of data and interpretation of results 

 Previous GPRD/CPRD Studies  Publications using GPRD/CPRD data 
 
None      
1-3       
> 3       

          Yes                              No 
Is statistical expertise available within the research team?       
                           If yes, please outline level of experience   The research team has statistical 
expertise appropriate to use of large datasets for epidemiological research. Additional expertise can be sought from 
colleagues within Cardiff School of Medicine as required. 
 
 
Is experience of handling large data sets (>1 million records)  
available within the research team?           
                           If yes, please outline level of experience   The research team have extensive 
experience of using large routine NHS datasets including HES, GRPD and THIN. 
 
Is UK primary care experience available within the research team?       
                           If yes, please outline level of experience   The team has experience of using 
primary care data form a variety of studies.  Specific clinical assistance can be sought if required from colleagues from 
the department of Primary Care and Public Health within Cardiff School of Medicine 
 
20.  References relating to your study 
 
Please list up to 3 references (most relevant) relating to your proposed study. 
 
1 Anderson KM, Odell PM, Wilson PWF, KannelWB. Cardiovascular disease risk profiles.Am Heart J 1991;121(1 

pt 2):293-8.  

2 Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J,Minhas R, Sheikh A, et al. Predicting cardiovascular risk 
in England andWales: prospective derivation and validation of QRISK2. BMJ 2008;336:1475-82, 
doi:10.1136/bmj.39609.449676.25.  

3 Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J,MayM, Brindle P. Derivation and validation of QRISK, 
a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ 
2007;335:136, doi:10.1136/bmj.39261.471806.55.  

 
21. List of all investigators/collaborators (please list the names, affiliations and e-mail addresses* of all collaborators, 

other than the principal investigator) 
Sara Jenkins-Jones, MSc 
Postgraduate Researcher, Cardiff University  
s.jenkins-jones@cs.cardiff.ac.uk 
 
Professor Craig Currie 
Professor of Applied Pharmacoepidemiology, Cardiff University 
currie@cardiff.ac.uk 
 
*Please note that your ISAC application form and protocol must be copied to all e-mail addresses listed above at the time of 
submission of your application to the ISAC mailbox. Failure to do so will result in delays in the processing of your application. 
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PROTOCOL CONTENT CHECKLIST 
In order to help ensure that protocols submitted for review contain adequate information for protocol evaluation, 
ISAC have produced instructions on the content of protocols for research using CPRD data. These instructions 
are available on the CPRD website (www.cprd.com/ISAC). All protocols using CPRD data which are submitted for 
review by ISAC must contain information on the areas detailed in the instructions.  IF you do not feel that a 
specific area required by ISAC is relevant for your protocol, you will need to justify this decision to ISAC.  
 
Applicants must complete the checklist below to confirm that the protocol being submitted includes all the areas 
required by ISAC, or to provide justification where a required area is not considered to be relevant for a specific 
protocol.  Protocols will not be circulated to ISAC for review until the checklist has been completed by the 
applicant.  
 
Please note, your protocol will be returned to you if you do not complete this checklist, or if you 
answer ‘no’ and fail to include justification for the omission of any required area. 
 
 Included in 

protocol? 
 

Required area Yes No If no, reason for omission 

Lay Summary (max.200 words)   

     

 

Background   

     

 

Objective, specific aims and rationale   

     

 

Study Type 
Descriptive 
Hypothesis Generating 
Hypothesis Testing 

 
 
 
 

 

  
 
 
 

 
Study is primarily hypothesis 
testing 

Study Design   

     

 
Sample size/power calculation  
(Please provide justification of  
sample size in the protocol) 

  

     

 

Study population  
(including estimate of expected number of  
relevant patients in the CPRD) 

 
 

 
 

 

     

 

Selection of comparison group(s) or controls   

     

 

Exposures, outcomes and covariates 
Exposures are clearly described  
Outcomes are clearly described 

 
 
 

 
 
 

     

 

     

 

Data/ Statistical Analysis Plan 
There is plan for addressing confounding  
There is a plan for addressing missing data 

 
 
 

 
 
 

     

 

     

 

Patient/ user group involvement †   n/a 

Limitations of the study design, data sources  
and analytic methods 

  

     

 

Plans for disseminating and communicating study 
results 

  

     

 

 
† It is expected that many studies will benefit from the involvement of patient or user groups in 
their planning and refinement, and/or in the interpretation of the results and plans for further 
work. This is particularly, but not exclusively true of studies with interests in the impact on quality 
of life.   Please indicate whether or not you intend to engage patients in any of the ways mentioned 
above. 
 
ISAC strongly recommends that researchers using CPRD consider registering as a NRR data provider in order that 
others engaged in research within the UK can be made aware of current works. The National Research 
Register (NRR) is a register of ongoing and recently completed research projects funded by, or of interest to, 
the United Kingdom's National Health Service. Information on the NRR is available on www.nrr.nhs.uk .  
Please Note: Registration with the NRR is entirely voluntary and will not replace information on 
ISAC approved protocols that are published in summary minutes or in the ISAC annual report.   
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Lay summary 
Cardiovascular disease (CVD) is the leading cause of mortality and a major cause of morbidity 
globally and in the UK.  National policies support targeting of interventions to reduce risk of 
cardiovascular disease among high-risk patients.  General practitioners use validated risk prediction 
models to identify these high risk patients. Numerous multivariate risk models have been developed to 
estimate a patient’s risk of cardiovascular disease based on key known risk factors.   
 
Until recently in the UK, the National Institute for Clinical Excellence (NICE) recommended the 
long-established Framingham equation for cardiovascular risk prediction.  Published reviews have 
suggested that Framingham may over-estimate risk by up to 50% in contemporary northern European 
populations.  NICE have now ceased recommendation of any single model, leaving practitioners to 
decide which model to use. The purposes of the proposed study is develop a new model to predict 
cardiovascular risk that is more closely calibrated to the UK general population and to validate its 
performance against current risk models used in UK general practice. 
 

Introduction 
Cardiovascular disease (CVD) is a group of disorders of the heart and blood vessels and include 
coronary heart disease, cerebrovascular disease, peripheral arterial disease, rheumatic heart disease, 
congenital heart disease, deep vein thrombosis, pulmonary embolism, hypertension and heart failure. 
The most important behavioral risk factors of heart disease and stroke are unhealthy diet, physical 
inactivity, tobacco use and harmful use of alcohol[1]. CVD is the leading cause of death globally: [1]. 
An estimated 17.3 million people died from CVD in 2008, representing 30% of all global deaths. Of 
these deaths, an estimated 7.3 million were due to coronary heart disease and 6.2 million were due to 
cerebrovascular disease.  By 2030, almost 23.6 million people will die from CVD, mainly from heart 
disease and cerebrovascular disease. These are projected to remain the single leading causes of 
death[1]. 
 
Asymptomatic patients that are suspected to be at high risk need to be identified by General 
Practitioners so they can offer advice about lifestyle changes and initiate preventative treatment.  To 
facilitate this, General Practitioners need tools that can accurately and reliably predict cardiovascular 
risk in their patients.  National policies now support targeting of interventions to reduce risk of 
cardiovascular disease among high-risk patients[2-5].  There are numerous risk models that have been 
developed to predict the risk of cardiovascular outcomes for a 10-year time horizon based using key 
known risk factors.  Such models include the Framingham Risk Score[6] and the Reynolds Risk 
Score[7], both developed from US data.  The SCORE risk function was developed using data from 
various European countries[8]; ASSIGN originated from Scottish data[9]; while QRISK2[10-12] and the 
Joint British Society (JBS)[13] models were computed from UK data.  Framingham is the most 
commonly used model in the UK[6] but has some well-documented limitations; namely that it is poorly 
calibrated to an ethnically diverse population such as the UK[14]. Framingham may perform well in 
ethno-demographically similar populations to its source but may over-estimate risk by up to 50% in 
contemporary northern European populations[20].   
 
Thus far the models discussed have all been examples of validated 10-year risk models with an 
absolute risk threshold of 20% specified by the NICE[3].  Patients with a 10-year score above 20% are 
considered high risk and targeted for primary prevention measures.   Applying this 20% risk threshold 
for intervention may not identify younger patients who, because of their age, have a low absolute 10-
year risk but who have a high relative risk compared with their peers[16]. This is because age has such 
a dominant effect in calculating absolute cardiovascular risk. Some argue that younger patients with 
an adverse risk profile may have more to gain during their lifetime if interventions are started at a 
younger age rather than waiting until they cross the 20% threshold[17-20].  However lifetime risk 
models predict the cumulative risk of the event of interest over the remainder of the patient’s life[21] 
and may provide a more appropriate assessment of future risks, particularly for younger ages[16-19].  
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There is currently only a single published model[16] that predicts lifetime risk of cardiovascular disease 
derived from contemporary UK data, and no mention of such models in UK guidelines. 
 
A recent systematic review of cardiovascular risk models[37] reported that in none of the 21 risk scores 
reviewed was the effect of treatment fully assessed or adjusted for.  The review suggests that two 
treatment effects need to be considered: (1) prior treatment (started before enrolment in the study) and 
(2) subsequent treatment started during study follow-up (treatment drop-ins). None of the risk scores 
addressed the effect of subsequent treatment[37].   
 
The current body of research and a lack of consensus on which risk score is most appropriate for UK 
general practice suggests the need for cardiovascular risk models that are closely calibrated to the 
contemporary UK population and can adequately account for treatment effects.  Such models would 
enable GPs to not only understand the risk of a certain outcome but also understand the changes in 
risk resulting from changes in treatment. Models that could adequately account for treatment effects 
would be a first, making a contribution to this body of research and avoid some of limitations of the 
existing models. The proposed study requests approvals to use Clinical Practice Research Datalink 
(CPRD) data to derive and validate new cardiovascular risk scores that, whilst accounting for 
treatment effects, provide accurate estimates of cardiovascular risk in patients from different ethnic 
groups in the UK general population. 
 
Objective 
The objective of the proposed study is to develop and validate new cardiovascular risk algorithms 
that, whilst accounting for treatment effects, provide accurate estimates of cardiovascular risk in 
patients from different ethnic groups in the UK general population. 
 

Methods 
Data source     
CPRD with linked HES, ONS and Census datasets. 

Study type 
The study will be primarily hypothesis testing with regard to cardiovascular risk in the general 
population. 
 
Study design 
The study will use a prospective open cohort design. 

Study population and cohorts 
The study proposes a single open cohort from the general population, over 14 years from 1997 to 
2011.  To ensure completeness of recording of morbidity and prescribing data, practices in CPRD that 
have been ‘Up-To-Standard’ (UTS) for at least one year will be considered eligible for inclusion.  An 
open cohort of all patients, aged 35-74 years at index date, drawn from all patients registered with 
eligible practices from 1 January 1997 to 31 December 2011.  Index date will be the latest of the 
following dates: mid-year estimate of 35th birthday, date of registration with the practice, practice 
UTS date, and the beginning of the study period (1 January 1997). In addition we will only include 
patients in the analysis once they have a minimum of one year’s complete data after the UTS date. 
 
Patients will be excluded from the cohort that have any one of the following criteria: a recorded 
diagnosis of cardiovascular or cerebrovascular disease prior to the index date; any temporary 
residence status; interrupted periods of registration with the practice; no valid Townsend Score; were 
taking statins at index; implausible or improbable dates; or recorded risk factor values out of plausible 
range.  A ‘wash-in’ period of 365 days will be applied prior to the index to further ensure excluding 
prior history of cardiovascular or cerebrovascular disease and that patients weren’t taking statins at 
baseline.  Patients will be selected that are eligible for linkage schemes with the Hospital Episode 
Statistics (HES), Office of National Statistics (ONS) mortality data and Index of Multiple 
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Deprivation/ Townsend Score data throughout their respective period of follow-up.  This should 
provide accurate ascertainment of ethnicity, socioeconomic status, and cause of death.  Issues with 
ethnicity data where within the non-missing data there are a large proportion of ethnicities recorded as 
‘unknown’ will be addressed by recoding the ‘unknown’ responses as ‘white’, with the rationale that, 
assuming the study population is comparable with the UK population, 93% or more of people without 
ethnicity recorded would be expected to be from a white ethnic group.  Linkage with MINAP was 
considered but its merits were thought to be outweighed by the reduction in cohort size and study 
period from linkage scheme eligibility constraints.  Table 1 below provides an estimate of expected 
number of eligible patients for this study. 
 

Stage Description Lost Remaining 

1 CPRD patients with status 'accept' (CPRD quality indicator) n/a 11,801,879 

2 Omit patients in 1 where ineligible for required linkage 
schemes 

9,537,894 2,263,985 

3 Omit patients in 2 where age at eligibility for entry into study 
between 35 and 74 

133,242 2,130,743 

4 Omit patients in 3 where date at eligibility for entry between 
'1997-01-01' and '2011-12-31' 

1,165,441 965,302 

5 Omit patients in 4 taking statins at baseline 287,641 677,661 

6 Omit patients in 5 with CVD at baseline 18,143 659,518 

7 Omit patients using a 'wash-in' of 365 days for 5 and 6 24,669 634,849 
Table 1:  Attrition from cohort selection criteria indicating expected numbers of eligible patients 
 
Sample size and power calculation  
A sample size calculation has not been carried a priori as this the study does not intend to take a 
sample per se but rather to use all available data in GPRD that meets the selection criteria.    
 
Selection of comparison group(s) or controls  
A split-sample (or cross-validation) approach will be taken for model development, 70% of the 
eligible patients shall be randomly allocated to a training set and 30% will be randomly allocated to a 
test set.  Based on estimates of study cohort size from table 1, expected numbers of patients in the 
training and test sets would be 444,394 and 190,455 respectively.  Data from the training set will be 
used to derive the new risk score and the test used to validate it.  Although this method provides some 
assurance that the model will ‘overfit’ the data, this approach is not an adequate surrogate for external 
validation.  
 
Outcomes 
Primary outcome measure is first recorded diagnosis of cardiovascular disease recorded by the general 
practice either before or at death or via their linked ONS death certificate within the study period. 
Cardiovascular disease is defined as coronary heart disease (myocardial infarction, angina), stroke or 
transient ischaemic attacks in the term cardiovascular disease but not peripheral vascular disease.  
Read code definitions will be used for case identification of coronary heart disease and 
cerebrovascular disease in general practice records.  ICD-9 and ICD-10 codes will be used for case 
identification in HES data and on ONS death certificates.  For HES we will consider patients admitted 
as emergencies with a primary diagnosis of the relevant event.  For ONS we will consider deaths with 
a primary or contributory cause of death of coronary heart disease or cerebrovascular disease.  A 
preliminary set of outcome codes for this study have been included as appendix A.   
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Model covariates 
Covariates proposed for model derivation include the following (where appropriate these risk factors 
will be modelled as time-independent, time-dependent or both): 

1. Age (years)  
2. Self assigned ethnicity (white/not recorded, Indian, Pakistani, Bangladeshi, other Asian, black 

African, black Caribbean, Chinese, other including mixed) 
3. Sex (male v female) 
4. Smoking status (current smoker, non-smoker (including ex-smoker)) 
5. SBP (continuous) 
6. Lipid Profile: 

a. Total serum cholesterol (continuous) 
b. High-density lipids (continuous) 
c. Low-density lipids (continuous) 
d. Triglycerides  (continuous) 
e. Ratio of total serum cholesterol: HDL cholesterol (continuous) 

7. BMI (continuous) 
8. Family history of CHD in first-degree relative under 60 years (yes/no) 
9. Townsend deprivation score (output area level 2001 census data evaluated as a continuous 

variable) 
10. Treated hypertension (diagnosis of hypertension and at least one current prescription of at 

least one antihypertensive agent-e.g. thiazide, β blocker, calcium channel blocker, or 
angiotensin converting enzyme inhibitor) (yes/no) 

11. T2DM (yes/no) 
12. Renal disease (yes/no) 
13. Atrial fibrillation (yes/no) 
14. Rheumatoid arthritis (yes/no) 
15. Charleston Index (categorical) 
16. No. GP attendances in year prior 
17. Angiotensin-converting-enzyme inhibitor or angiotensin receptor blockers (yes/no) 
18. β -blockers (yes/no) 
19. Anti-Platelet Therapy (yes/no) 
20. Statin therapy  (categorical) 
21. Other Lipid-lowering therapies (yes/no) 
22. Other cardiovascular disease (yes/no) 

 
Prior treatment effects will be accounted for by time-independent covariates capturing status at 
baseline.  Where appropriate, subsequent treatment effects will be accounted for by time-dependent 
covariates in two forms: ever exposed (e.g. was the patient exposed to therapy x at any time during 
the study period) and cumulative effect (e.g. over how many time periods, if any, was the patient 
exposed to therapy x during the study period).  
 
Data/statistical analysis 
Descriptive data on the study population shall be evaluated to determine the comparability of the 
randomly assigned training and test groups and evaluate the likelihood of any selection bias or 
confounding.  Baseline characteristics will also be evaluated to help determine the generalisability of 
the study population to other populations.   Declining secular trends in cardiovascular mortality and 
all-cause mortality in the general population shall be addressed by performing a sensitivity analysis 
using 5-year periods.  Where appropriate missing data shall be handled using multiple imputation.  
Multiple imputation is a powerful technique that offers substantial improvements over the biased and 
flawed value replacement approaches based on complete cases or cases matched for age and sex[22-23].  
It involves creating multiple copies of the data and imputing the missing values with sensible values 
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randomly selected from their predicted distribution. We propose to use the Multivariate Imputation by 
Chained Equations (MICE) approach.   
 
All the risk scores mentioned thus far[6-13] have been developed using regression techniques, namely 
survival analysis.   The study proposes two regression approaches for the derivation of a new 
cardiovascular risk model, the long-established survival model methods and a newer regression 
method called symbolic regression.   
 
 
Survival Analysis 
The study proposes the use of survival models (such as Cox proportional hazards or parametric 
survival models) on the training dataset to estimate the coefficients associated with each potential risk 
factor for the prediction of the outcome of interest (first recorded diagnosis of cardiovascular disease) 
for men and women separately.  We have proposed a set of potential variables a priori but will 
consider these variables for inclusion in the model using significance tests and models will be 
compared using likelihood measures such as Akaike Information Criterion (AIC). The proportional 
hazards assumptions will be checked for each variable and tested for any non-linear relation between 
continuous independent variables and the outcome.  Covariate interactions effects will also be 
considered for inclusion in the model. If there are missing values for key predictors then multiple 
imputation will be performed.   
 
The coefficients (i.e. weights for the new cardiovascular disease risk equation) from the final survival 
model, built using the training dataset, will be used to obtain the predicted risk scores for all patients 
in the previously unseen test dataset.  These predicted risk scores from the test dataset shall then be 
used to evaluate its performance of the final model in terms of calibration and discrimination.  
Calibration refers to how closely the predicted risk of cardiovascular disease agrees with the observed 
risk for a certain period.  This will be assessed for each tenth of predicted risk, ensuring 10 equally 
sized groups, and for each 5 year age band by calculating the ratio of predicted to observed risk of 
cardiovascular disease separately for men and for women. Calibration of the risk score predictions 
will be assessed by plotting observed proportions versus predicted probabilities. Calibration measures 
such as Brier Score (adjusted version for censored data)[24] and R2 statistic[26] will also be calculated.  
Discrimination is the ability of the risk score to differentiate between patients who experience a 
cardiovascular event during the study and those who do not. This shall be measured using the D 
statistic[25] and Area Under the Receiver Operating Characteristic (ROC) Curve statistic[27].  As in the 
training set, missing values in the test dataset will be imputed as required.   
 
Symbolic Regression 
Genetic programming (GP) is an evolutionary computation technique that automatically solves 
problems without requiring the user to know or specify the form or structure of the solution in 
advance. At the most abstract level GP is a systematic, domain-independent method that allows 
computers to solve problems automatically starting from a high-level statement of the problem [28].  
 
Symbolic regression attempts to find a function that fits the given data points without making any 
assumptions about the structure of that function. Since GP makes no such assumption, it is well suited 
to this sort of discovery task[28]. Symbolic regression was one of the earliest applications of GP[29], and 
continues to be widely studied[30-33].  Although computationally intensive, GP is well suited to large 
datasets such as CPRD with the ability to handle a large number of variables and/or cases, inherently 
performing feature selection (i.e. selection of which variables should be included in the models) 
leading to parsimonious models. The data and analysis steps that are proposed for the survival models 
will be the same for the symbolic regression. The only difference will be that the model itself, the risk 
equation, will be developed using the symbolic method. 
 
Model Comparisons  

278 8.5 Conclusions



   

bannisterca@cardiff.ac.uk  12 
 

We propose to compare the performance of the derived survival and symbolic regression models on 
the test dataset.  We shall calculate the predicted cardiovascular risk for each patient in the test dataset 
using the developed survival and symbolic regression models.  We shall then calculate the mean 
predicted risk for each model and the observed risk from the data.  We shall then compare the 
predicted and observed risk by 10th of predicted risk for each score.  Observed risk will be obtained 
using Kaplan-Meier estimates.  We also propose to use the 20% risk threshold as specified by NICE 
guidelines [3] to calculate and compare the proportions of patients that would be classified as at ‘high-
risk’ by each model. 
 

Limitations of the study design, data sources and analytic methods 
This study has a number of limitations. CPRD collates data from routine practice, thus there are 
missing and erroneous data, coding imperfections, lack of standardisation of biochemical measures 
(such as lipid profiles), variations between biochemical test centres and measurements are taken with 
varying periodicity.  Certain covariates of interest such as smoking status, BMI, lipids, family history 
of CVD may not be recorded consistently within CPRD. There are limitations to the size of the cohort 
available for consideration as only a subset of CPRD patients are eligible for the data linkage schemes 
required.  There are also limitations with ethnicity data where even within the non-missing data there 
are a large proportion of ethnicities recorded as ‘unknown’.  Limitations arise from recording the 
‘unknown’ responses as ‘white’, with the rationale that, assuming the study population is comparable 
with the UK population, 93% or more of people without ethnicity recorded would be expected to be 
from a white ethnic group.  Removal or exclusion of patients with missing data may introduce bias 
into the study; this can often be addressed by using multiple imputation techniques to impute missing 
values where appropriate.  There are also limitations in specifying input variables a priori as there is 
potential to miss important factors and relationships that exist with variables not considered.  There 
are limitations on the split-sample validation approach where predictive accuracy estimates, although 
unbiased, can be imprecise.  There are also limitations inherent in all statistical modeling techniques 
each of which have their own set of assumptions, such as non-informative censoring, linearity, 
additively, proportionality, etc., that need to be satisfied in order to order to take a given approach.  
Violation of such statistical assumptions may preclude the use of certain techniques and/or 
consideration of all covariates.  The proposed survival analysis approach has many such assumptions 
that will need to be satisfied whereas the Symbolic regression via GP has no such limitations.  The 
computational expense such as available memory and processing speed (and thus time) may also be 
another limiting factor where certain techniques, main effects and n-way interaction effects cannot be 
considered within such computational constraints.  The GP approach to symbolic regression is 
considered computationally expensive whereas survival analysis is computationally cheap in 
comparison. There may also be bias introduced due to QOF incentivisation, where general practices 
are paid according to the reporting under certain criteria, which will be explored using sensitivity 
analyses.  
 
Plans for disseminating and communicating study results 
Findings from this study will be disseminated through scientific meetings, peer-reviewed 
manuscript(s) and form part of a PhD thesis. 
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11610	
   7920300	
   CHD	
   Saphenous	
  vein	
  graft	
  replacement	
  of	
  four+	
  coronary	
  arteries	
  
7137	
   7920y00	
   CHD	
   Saphenous	
  vein	
  graft	
  replacement	
  of	
  coronary	
  artery	
  OS	
  

51515	
   7920z00	
   CHD	
   Saphenous	
  vein	
  graft	
  replacement	
  coronary	
  artery	
  NOS	
  
9414	
   7921.00	
   CHD	
   Other	
  autograft	
  replacement	
  of	
  coronary	
  artery	
  
7134	
   7921.11	
   CHD	
   Other	
  autograft	
  bypass	
  of	
  coronary	
  artery	
  

44561	
   7921000	
   CHD	
   Autograft	
  replacement	
  of	
  one	
  coronary	
  artery	
  NEC	
  
19413	
   7921100	
   CHD	
   Autograft	
  replacement	
  of	
  two	
  coronary	
  arteries	
  NEC	
  
10209	
   7921200	
   CHD	
   Autograft	
  replacement	
  of	
  three	
  coronary	
  arteries	
  NEC	
  
42708	
   7921300	
   CHD	
   Autograft	
  replacement	
  of	
  four	
  of	
  more	
  coronary	
  arteries	
  NEC	
  
61310	
   7921y00	
   CHD	
   Other	
  autograft	
  replacement	
  of	
  coronary	
  artery	
  OS	
  
7609	
   7921z00	
   CHD	
   Other	
  autograft	
  replacement	
  of	
  coronary	
  artery	
  NOS	
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   7922.00	
   CHD	
   Allograft	
  replacement	
  of	
  coronary	
  artery	
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   7922.11	
   CHD	
   Allograft	
  bypass	
  of	
  coronary	
  artery	
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   CHD	
   Allograft	
  replacement	
  of	
  one	
  coronary	
  artery	
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   CHD	
   Allograft	
  replacement	
  of	
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  coronary	
  arteries	
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   7922200	
   CHD	
   Allograft	
  replacement	
  of	
  three	
  coronary	
  arteries	
  
45370	
   7922300	
   CHD	
   Allograft	
  replacement	
  of	
  four	
  or	
  more	
  coronary	
  arteries	
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   7922y00	
   CHD	
   Other	
  specified	
  allograft	
  replacement	
  of	
  coronary	
  artery	
  
48767	
   7922z00	
   CHD	
   Allograft	
  replacement	
  of	
  coronary	
  artery	
  NOS	
  
19402	
   7923.00	
   CHD	
   Prosthetic	
  replacement	
  of	
  coronary	
  artery	
  
36011	
   7923.11	
   CHD	
   Prosthetic	
  bypass	
  of	
  coronary	
  artery	
  
92419	
   7923000	
   CHD	
   Prosthetic	
  replacement	
  of	
  one	
  coronary	
  artery	
  
66664	
   7923100	
   CHD	
   Prosthetic	
  replacement	
  of	
  two	
  coronary	
  arteries	
  
66236	
   7923200	
   CHD	
   Prosthetic	
  replacement	
  of	
  three	
  coronary	
  arteries	
  
67761	
   7923300	
   CHD	
   Prosthetic	
  replacement	
  of	
  four	
  or	
  more	
  coronary	
  arteries	
  
19193	
   7923z00	
   CHD	
   Prosthetic	
  replacement	
  of	
  coronary	
  artery	
  NOS	
  
33461	
   7924.00	
   CHD	
   Revision	
  of	
  bypass	
  for	
  coronary	
  artery	
  
52938	
   7924000	
   CHD	
   Revision	
  of	
  bypass	
  for	
  one	
  coronary	
  artery	
  
67554	
   7924100	
   CHD	
   Revision	
  of	
  bypass	
  for	
  two	
  coronary	
  arteries	
  
31540	
   7924200	
   CHD	
   Revision	
  of	
  bypass	
  for	
  three	
  coronary	
  arteries	
  

101569	
   7924300	
   CHD	
   Revision	
  of	
  bypass	
  for	
  four	
  or	
  more	
  coronary	
  arteries	
  
63153	
   7924500	
   CHD	
   Revision	
  of	
  implantation	
  of	
  thoracic	
  artery	
  into	
  heart	
  
97953	
   7924y00	
   CHD	
   Other	
  specified	
  revision	
  of	
  bypass	
  for	
  coronary	
  artery	
  
57634	
   7924z00	
   CHD	
   Revision	
  of	
  bypass	
  for	
  coronary	
  artery	
  NOS	
  
37682	
   7925.00	
   CHD	
   Connection	
  of	
  mammary	
  artery	
  to	
  coronary	
  artery	
  
28837	
   7925.11	
   CHD	
   Creation	
  of	
  bypass	
  from	
  mammary	
  artery	
  to	
  coronary	
  artery	
  
33718	
   7925000	
   CHD	
   Double	
  anastomosis	
  of	
  mammary	
  arteries	
  to	
  coronary	
  arteries	
  
48822	
   7925011	
   CHD	
   LIMA	
  sequential	
  anastomosis	
  
92233	
   7925012	
   CHD	
   RIMA	
  sequential	
  anastomosis	
  
31519	
   7925100	
   CHD	
   Double	
  implant	
  of	
  mammary	
  arteries	
  into	
  coronary	
  arteries	
  
44723	
   7925200	
   CHD	
   Single	
  anast	
  mammary	
  art	
  to	
  left	
  ant	
  descend	
  coronary	
  art	
  
51507	
   7925300	
   CHD	
   Single	
  anastomosis	
  of	
  mammary	
  artery	
  to	
  coronary	
  artery	
  NEC	
  
22647	
   7925311	
   CHD	
   LIMA	
  single	
  anastomosis	
  
68123	
   7925312	
   CHD	
   RIMA	
  single	
  anastomosis	
  
68139	
   7925400	
   CHD	
   Single	
  implantation	
  of	
  mammary	
  artery	
  into	
  coronary	
  artery	
  
37719	
   7925y00	
   CHD	
   Connection	
  of	
  mammary	
  artery	
  to	
  coronary	
  artery	
  OS	
  
56990	
   7925z00	
   CHD	
   Connection	
  of	
  mammary	
  artery	
  to	
  coronary	
  artery	
  NOS	
  
96804	
   7926.00	
   CHD	
   Connection	
  of	
  other	
  thoracic	
  artery	
  to	
  coronary	
  artery	
  
62608	
   7926000	
   CHD	
   Double	
  anastom	
  thoracic	
  arteries	
  to	
  coronary	
  arteries	
  NEC	
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67591	
   7926200	
   CHD	
   Single	
  anastomosis	
  of	
  thoracic	
  artery	
  to	
  coronary	
  artery	
  NEC	
  
60753	
   7926300	
   CHD	
   Single	
  implantation	
  thoracic	
  artery	
  into	
  coronary	
  artery	
  NEC	
  
72780	
   7926z00	
   CHD	
   Connection	
  of	
  other	
  thoracic	
  artery	
  to	
  coronary	
  artery	
  NOS	
  
47788	
   7927.00	
   CHD	
   Other	
  open	
  operations	
  on	
  coronary	
  artery	
  
18903	
   7927000	
   CHD	
   Repair	
  of	
  arteriovenous	
  fistula	
  of	
  coronary	
  artery	
  
19164	
   7927100	
   CHD	
   Repair	
  of	
  aneurysm	
  of	
  coronary	
  artery	
  
61592	
   7927200	
   CHD	
   Transection	
  of	
  muscle	
  bridge	
  of	
  coronary	
  artery	
  
48206	
   7927300	
   CHD	
   Transposition	
  of	
  coronary	
  artery	
  NEC	
  
51702	
   7927400	
   CHD	
   Exploration	
  of	
  coronary	
  artery	
  
5744	
   7927500	
   CHD	
   Open	
  angioplasty	
  of	
  coronary	
  artery	
  

95382	
   7927y00	
   CHD	
   Other	
  specified	
  other	
  open	
  operation	
  on	
  coronary	
  artery	
  
41757	
   7927z00	
   CHD	
   Other	
  open	
  operation	
  on	
  coronary	
  artery	
  NOS	
  
2901	
   7928.00	
   CHD	
   Transluminal	
  balloon	
  angioplasty	
  of	
  coronary	
  artery	
  
5703	
   7928.11	
   CHD	
   Percutaneous	
  balloon	
  coronary	
  angioplasty	
  

18670	
   7928000	
   CHD	
   Percut	
  transluminal	
  balloon	
  angioplasty	
  one	
  coronary	
  artery	
  
33735	
   7928100	
   CHD	
   Percut	
  translum	
  balloon	
  angioplasty	
  mult	
  coronary	
  arteries	
  
42462	
   7928200	
   CHD	
   Percut	
  translum	
  balloon	
  angioplasty	
  bypass	
  graft	
  coronary	
  a	
  
86071	
   7928300	
   CHD	
   Percut	
  translum	
  cutting	
  balloon	
  angioplasty	
  coronary	
  artery	
  
41547	
   7928y00	
   CHD	
   Transluminal	
  balloon	
  angioplasty	
  of	
  coronary	
  artery	
  OS	
  

732	
   7928z00	
   CHD	
   Transluminal	
  balloon	
  angioplasty	
  of	
  coronary	
  artery	
  NOS	
  
24888	
   7929.00	
   CHD	
   Other	
  therapeutic	
  transluminal	
  operations	
  on	
  coronary	
  artery	
  
22828	
   7929000	
   CHD	
   Percutaneous	
  transluminal	
  laser	
  coronary	
  angioplasty	
  
33650	
   7929100	
   CHD	
   Percut	
  transluminal	
  coronary	
  thrombolysis	
  with	
  streptokinase	
  
40996	
   7929111	
   CHD	
   Percut	
  translum	
  coronary	
  thrombolytic	
  therapy-­‐	
  streptokinase	
  
66583	
   7929200	
   CHD	
   Percut	
  translum	
  inject	
  therap	
  subst	
  to	
  coronary	
  artery	
  NEC	
  
19046	
   7929300	
   CHD	
   Rotary	
  blade	
  coronary	
  angioplasty	
  
8942	
   7929400	
   CHD	
   Insertion	
  of	
  coronary	
  artery	
  stent	
  

42304	
   7929500	
   CHD	
   Insertion	
  of	
  drug-­‐eluting	
  coronary	
  artery	
  stent	
  
93618	
   7929600	
   CHD	
   Percutaneous	
  transluminal	
  atherectomy	
  of	
  coronary	
  artery	
  
6182	
   7929y00	
   CHD	
   Other	
  therapeutic	
  transluminal	
  op	
  on	
  coronary	
  artery	
  OS	
  

31679	
   7929z00	
   CHD	
   Other	
  therapeutic	
  transluminal	
  op	
  on	
  coronary	
  artery	
  NOS	
  
34965	
   792A.00	
   CHD	
   Diagnostic	
  transluminal	
  operations	
  on	
  coronary	
  artery	
  
19681	
   792A000	
   CHD	
   Percutaneous	
  transluminal	
  angioscopy	
  
43446	
   792A100	
   CHD	
   Intravascular	
  ultrasound	
  of	
  coronary	
  artery	
  
56905	
   792Ay00	
   CHD	
   Diagnostic	
  transluminal	
  operation	
  on	
  coronary	
  artery	
  OS	
  
61248	
   792Az00	
   CHD	
   Diagnostic	
  transluminal	
  operation	
  on	
  coronary	
  artery	
  NOS	
  
33620	
   792B.00	
   CHD	
   Repair	
  of	
  coronary	
  artery	
  NEC	
  
22020	
   792B000	
   CHD	
   Endarterectomy	
  of	
  coronary	
  artery	
  NEC	
  
94783	
   792B100	
   CHD	
   Repair	
  of	
  rupture	
  of	
  coronary	
  artery	
  
93432	
   792B200	
   CHD	
   Repair	
  of	
  arteriovenous	
  malformation	
  of	
  coronary	
  artery	
  
69247	
   792By00	
   CHD	
   Other	
  specified	
  repair	
  of	
  coronary	
  artery	
  
44585	
   792Bz00	
   CHD	
   Repair	
  of	
  coronary	
  artery	
  NOS	
  
55598	
   792C.00	
   CHD	
   Other	
  replacement	
  of	
  coronary	
  artery	
  
55092	
   792C000	
   CHD	
   Replacement	
  of	
  coronary	
  arteries	
  using	
  multiple	
  methods	
  
93828	
   792Cy00	
   CHD	
   Other	
  specified	
  replacement	
  of	
  coronary	
  artery	
  
70755	
   792Cz00	
   CHD	
   Replacement	
  of	
  coronary	
  artery	
  NOS	
  
34963	
   792D.00	
   CHD	
   Other	
  bypass	
  of	
  coronary	
  artery	
  
3159	
   792Dy00	
   CHD	
   Other	
  specified	
  other	
  bypass	
  of	
  coronary	
  artery	
  

33471	
   792Dz00	
   CHD	
   Other	
  bypass	
  of	
  coronary	
  artery	
  NOS	
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31571	
   792y.00	
   CHD	
   Other	
  specified	
  operations	
  on	
  coronary	
  artery	
  
10603	
   792z.00	
   CHD	
   Coronary	
  artery	
  operations	
  NOS	
  
45960	
   8B27.00	
   CHD	
   Antianginal	
  therapy	
  

240	
   G3...00	
   CHD	
   Ischaemic	
  heart	
  disease	
  
24783	
   G3...11	
   CHD	
   Arteriosclerotic	
  heart	
  disease	
  
20416	
   G3...12	
   CHD	
   Atherosclerotic	
  heart	
  disease	
  
1792	
   G3...13	
   CHD	
   IHD	
  -­‐	
  Ischaemic	
  heart	
  disease	
  
241	
   G30..00	
   CHD	
   Acute	
  myocardial	
  infarction	
  

13566	
   G30..11	
   CHD	
   Attack	
  -­‐	
  heart	
  
2491	
   G30..12	
   CHD	
   Coronary	
  thrombosis	
  

30421	
   G30..13	
   CHD	
   Cardiac	
  rupture	
  following	
  myocardial	
  infarction	
  (MI)	
  
1204	
   G30..14	
   CHD	
   Heart	
  attack	
  
1677	
   G30..15	
   CHD	
   MI	
  -­‐	
  acute	
  myocardial	
  infarction	
  

13571	
   G30..16	
   CHD	
   Thrombosis	
  -­‐	
  coronary	
  
17689	
   G30..17	
   CHD	
   Silent	
  myocardial	
  infarction	
  
12139	
   G300.00	
   CHD	
   Acute	
  anterolateral	
  infarction	
  
5387	
   G301.00	
   CHD	
   Other	
  specified	
  anterior	
  myocardial	
  infarction	
  

40429	
   G301000	
   CHD	
   Acute	
  anteroapical	
  infarction	
  
17872	
   G301100	
   CHD	
   Acute	
  anteroseptal	
  infarction	
  
14897	
   G301z00	
   CHD	
   Anterior	
  myocardial	
  infarction	
  NOS	
  
8935	
   G302.00	
   CHD	
   Acute	
  inferolateral	
  infarction	
  

29643	
   G303.00	
   CHD	
   Acute	
  inferoposterior	
  infarction	
  
23892	
   G304.00	
   CHD	
   Posterior	
  myocardial	
  infarction	
  NOS	
  
14898	
   G305.00	
   CHD	
   Lateral	
  myocardial	
  infarction	
  NOS	
  
63467	
   G306.00	
   CHD	
   True	
  posterior	
  myocardial	
  infarction	
  
3704	
   G307.00	
   CHD	
   Acute	
  subendocardial	
  infarction	
  
9507	
   G307000	
   CHD	
   Acute	
  non-­‐Q	
  wave	
  infarction	
  

10562	
   G307100	
   CHD	
   Acute	
  non-­‐ST	
  segment	
  elevation	
  myocardial	
  infarction	
  
1678	
   G308.00	
   CHD	
   Inferior	
  myocardial	
  infarction	
  NOS	
  

30330	
   G309.00	
   CHD	
   Acute	
  Q-­‐wave	
  infarct	
  
17133	
   G30A.00	
   CHD	
   Mural	
  thrombosis	
  
32854	
   G30B.00	
   CHD	
   Acute	
  posterolateral	
  myocardial	
  infarction	
  
29758	
   G30X.00	
   CHD	
   Acute	
  transmural	
  myocardial	
  infarction	
  of	
  unspecif	
  site	
  
12229	
   G30X000	
   CHD	
   Acute	
  ST	
  segment	
  elevation	
  myocardial	
  infarction	
  
34803	
   G30y.00	
   CHD	
   Other	
  acute	
  myocardial	
  infarction	
  
28736	
   G30y000	
   CHD	
   Acute	
  atrial	
  infarction	
  
62626	
   G30y100	
   CHD	
   Acute	
  papillary	
  muscle	
  infarction	
  
41221	
   G30y200	
   CHD	
   Acute	
  septal	
  infarction	
  
46017	
   G30yz00	
   CHD	
   Other	
  acute	
  myocardial	
  infarction	
  NOS	
  
14658	
   G30z.00	
   CHD	
   Acute	
  myocardial	
  infarction	
  NOS	
  
27951	
   G31..00	
   CHD	
   Other	
  acute	
  and	
  subacute	
  ischaemic	
  heart	
  disease	
  
23579	
   G310.00	
   CHD	
   Postmyocardial	
  infarction	
  syndrome	
  
15661	
   G310.11	
   CHD	
   Dressler's	
  syndrome	
  
36523	
   G311.00	
   CHD	
   Preinfarction	
  syndrome	
  
4656	
   G311.11	
   CHD	
   Crescendo	
  angina	
  

39655	
   G311.12	
   CHD	
   Impending	
  infarction	
  
1431	
   G311.13	
   CHD	
   Unstable	
  angina	
  

19655	
   G311.14	
   CHD	
   Angina	
  at	
  rest	
  
61072	
   G311000	
   CHD	
   Myocardial	
  infarction	
  aborted	
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55137	
   G311011	
   CHD	
   MI	
  -­‐	
  myocardial	
  infarction	
  aborted	
  
7347	
   G311100	
   CHD	
   Unstable	
  angina	
  

17307	
   G311200	
   CHD	
   Angina	
  at	
  rest	
  
34328	
   G311300	
   CHD	
   Refractory	
  angina	
  
18118	
   G311400	
   CHD	
   Worsening	
  angina	
  
11983	
   G311500	
   CHD	
   Acute	
  coronary	
  syndrome	
  
54251	
   G311z00	
   CHD	
   Preinfarction	
  syndrome	
  NOS	
  
39449	
   G312.00	
   CHD	
   Coronary	
  thrombosis	
  not	
  resulting	
  in	
  myocardial	
  infarction	
  
9413	
   G31y.00	
   CHD	
   Other	
  acute	
  and	
  subacute	
  ischaemic	
  heart	
  disease	
  
9276	
   G31y000	
   CHD	
   Acute	
  coronary	
  insufficiency	
  

68357	
   G31y100	
   CHD	
   Microinfarction	
  of	
  heart	
  
39693	
   G31y200	
   CHD	
   Subendocardial	
  ischaemia	
  
21844	
   G31y300	
   CHD	
   Transient	
  myocardial	
  ischaemia	
  
27977	
   G31yz00	
   CHD	
   Other	
  acute	
  and	
  subacute	
  ischaemic	
  heart	
  disease	
  NOS	
  
4017	
   G32..00	
   CHD	
   Old	
  myocardial	
  infarction	
  

16408	
   G32..11	
   CHD	
   Healed	
  myocardial	
  infarction	
  
17464	
   G32..12	
   CHD	
   Personal	
  history	
  of	
  myocardial	
  infarction	
  
1430	
   G33..00	
   CHD	
   Angina	
  pectoris	
  

20095	
   G330.00	
   CHD	
   Angina	
  decubitus	
  
18125	
   G330000	
   CHD	
   Nocturnal	
  angina	
  
29902	
   G330z00	
   CHD	
   Angina	
  decubitus	
  NOS	
  
12986	
   G331.00	
   CHD	
   Prinzmetal's	
  angina	
  
11048	
   G331.11	
   CHD	
   Variant	
  angina	
  pectoris	
  
36854	
   G332.00	
   CHD	
   Coronary	
  artery	
  spasm	
  
25842	
   G33z.00	
   CHD	
   Angina	
  pectoris	
  NOS	
  
66388	
   G33z000	
   CHD	
   Status	
  anginosus	
  
54535	
   G33z100	
   CHD	
   Stenocardia	
  
7696	
   G33z200	
   CHD	
   Syncope	
  anginosa	
  
1414	
   G33z300	
   CHD	
   Angina	
  on	
  effort	
  

32450	
   G33z400	
   CHD	
   Ischaemic	
  chest	
  pain	
  
9555	
   G33z500	
   CHD	
   Post	
  infarct	
  angina	
  

26863	
   G33z600	
   CHD	
   New	
  onset	
  angina	
  
12804	
   G33z700	
   CHD	
   Stable	
  angina	
  
28554	
   G33zz00	
   CHD	
   Angina	
  pectoris	
  NOS	
  
28138	
   G34..00	
   CHD	
   Other	
  chronic	
  ischaemic	
  heart	
  disease	
  
5413	
   G340.00	
   CHD	
   Coronary	
  atherosclerosis	
  
1655	
   G340.11	
   CHD	
   Triple	
  vessel	
  disease	
  of	
  the	
  heart	
  
1344	
   G340.12	
   CHD	
   Coronary	
  artery	
  disease	
  
3999	
   G340000	
   CHD	
   Single	
  coronary	
  vessel	
  disease	
  
5254	
   G340100	
   CHD	
   Double	
  coronary	
  vessel	
  disease	
  
6331	
   G341.00	
   CHD	
   Aneurysm	
  of	
  heart	
  

27484	
   G341.11	
   CHD	
   Cardiac	
  aneurysm	
  
2155	
   G341000	
   CHD	
   Ventricular	
  cardiac	
  aneurysm	
  

67087	
   G341100	
   CHD	
   Other	
  cardiac	
  wall	
  aneurysm	
  
59193	
   G341200	
   CHD	
   Aneurysm	
  of	
  coronary	
  vessels	
  
91774	
   G341300	
   CHD	
   Acquired	
  atrioventricular	
  fistula	
  of	
  heart	
  
41677	
   G341z00	
   CHD	
   Aneurysm	
  of	
  heart	
  NOS	
  
36609	
   G342.00	
   CHD	
   Atherosclerotic	
  cardiovascular	
  disease	
  
7320	
   G343.00	
   CHD	
   Ischaemic	
  cardiomyopathy	
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29421	
   G344.00	
   CHD	
   Silent	
  myocardial	
  ischaemia	
  
34633	
   G34y.00	
   CHD	
   Other	
  specified	
  chronic	
  ischaemic	
  heart	
  disease	
  
24540	
   G34y000	
   CHD	
   Chronic	
  coronary	
  insufficiency	
  
23078	
   G34y100	
   CHD	
   Chronic	
  myocardial	
  ischaemia	
  
35713	
   G34yz00	
   CHD	
   Other	
  specified	
  chronic	
  ischaemic	
  heart	
  disease	
  NOS	
  
15754	
   G34z.00	
   CHD	
   Other	
  chronic	
  ischaemic	
  heart	
  disease	
  NOS	
  
18889	
   G34z000	
   CHD	
   Asymptomatic	
  coronary	
  heart	
  disease	
  
18842	
   G35..00	
   CHD	
   Subsequent	
  myocardial	
  infarction	
  
45809	
   G350.00	
   CHD	
   Subsequent	
  myocardial	
  infarction	
  of	
  anterior	
  wall	
  
38609	
   G351.00	
   CHD	
   Subsequent	
  myocardial	
  infarction	
  of	
  inferior	
  wall	
  
72562	
   G353.00	
   CHD	
   Subsequent	
  myocardial	
  infarction	
  of	
  other	
  sites	
  
46166	
   G35X.00	
   CHD	
   Subsequent	
  myocardial	
  infarction	
  of	
  unspecified	
  site	
  
36423	
   G36..00	
   CHD	
   Certain	
  current	
  complication	
  follow	
  acute	
  myocardial	
  infarct	
  
24126	
   G360.00	
   CHD	
   Haemopericardium/current	
  comp	
  folow	
  acut	
  myocard	
  infarct	
  
23708	
   G361.00	
   CHD	
   Atrial	
  septal	
  defect/curr	
  comp	
  folow	
  acut	
  myocardal	
  infarct	
  
37657	
   G362.00	
   CHD	
   Ventric	
  septal	
  defect/curr	
  comp	
  fol	
  acut	
  myocardal	
  infarctn	
  
59189	
   G363.00	
   CHD	
   Ruptur	
  cardiac	
  wall	
  w'out	
  haemopericard/cur	
  comp	
  fol	
  ac	
  MI	
  
59940	
   G364.00	
   CHD	
   Ruptur	
  chordae	
  tendinae/curr	
  comp	
  fol	
  acute	
  myocard	
  infarct	
  
69474	
   G365.00	
   CHD	
   Rupture	
  papillary	
  muscle/curr	
  comp	
  fol	
  acute	
  myocard	
  infarct	
  
29553	
   G366.00	
   CHD	
   Thrombosis	
  atrium,auric	
  append&vent/curr	
  comp	
  foll	
  acute	
  MI	
  
8568	
   G37..00	
   CHD	
   Cardiac	
  syndrome	
  X	
  

32272	
   G38..00	
   CHD	
   Postoperative	
  myocardial	
  infarction	
  
46112	
   G380.00	
   CHD	
   Postoperative	
  transmural	
  myocardial	
  infarction	
  anterior	
  wall	
  
46276	
   G381.00	
   CHD	
   Postoperative	
  transmural	
  myocardial	
  infarction	
  inferior	
  wall	
  
41835	
   G384.00	
   CHD	
   Postoperative	
  subendocardial	
  myocardial	
  infarction	
  
68748	
   G38z.00	
   CHD	
   Postoperative	
  myocardial	
  infarction,	
  unspecified	
  
22383	
   G3y..00	
   CHD	
   Other	
  specified	
  ischaemic	
  heart	
  disease	
  
1676	
   G3z..00	
   CHD	
   Ischaemic	
  heart	
  disease	
  NOS	
  

35119	
   G501.00	
   CHD	
   Post	
  infarction	
  pericarditis	
  
39546	
   Gyu3000	
   CHD	
   [X]Other	
  forms	
  of	
  angina	
  pectoris	
  
68401	
   Gyu3200	
   CHD	
   [X]Other	
  forms	
  of	
  acute	
  ischaemic	
  heart	
  disease	
  
47637	
   Gyu3300	
   CHD	
   [X]Other	
  forms	
  of	
  chronic	
  ischaemic	
  heart	
  disease	
  
96838	
   Gyu3400	
   CHD	
   [X]Acute	
  transmural	
  myocardial	
  infarction	
  of	
  unspecif	
  site	
  
99991	
   Gyu3600	
   CHD	
   [X]Subsequent	
  myocardial	
  infarction	
  of	
  unspecified	
  site	
  
code	
   type	
   endpoint	
   description	
  
430	
   ICD9	
   stroke	
   Subarachnoid	
  hemorrhage	
  
431	
   ICD9	
   stroke	
   Intracerebral	
  hemorrhage	
  
432	
   ICD9	
   stroke	
   Other	
  and	
  unspecified	
  intracranial	
  hemorrhage	
  

432.9	
   ICD9	
   stroke	
   Hemorrhage,	
  intracranial,	
  NOS	
  
433	
   ICD9	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  precerebral	
  arteries	
  

433.0	
   ICD9	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  basilar	
  artery	
  
433.1	
   ICD9	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  carotid	
  artery	
  
433.2	
   ICD9	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  vertebral	
  artery	
  
434	
   ICD9	
   stroke	
   Occlusion	
  of	
  cerebral	
  arteries	
  

434.0	
   ICD9	
   stroke	
   Cerebral	
  thrombosis	
  
434.00	
   ICD9	
   stroke	
   Cerebral	
  thrombosis	
  without	
  cerebral	
  infarction	
  
434.01	
   ICD9	
   stroke	
   Cerebral	
  thrombosis	
  with	
  cerebral	
  infarction	
  
434.1	
   ICD9	
   stroke	
   Cerebral	
  embolism	
  

434.10	
   ICD9	
   stroke	
   Cerebral	
  embolism	
  without	
  cerebral	
  infarction	
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434.11	
   ICD9	
   stroke	
   Cerebral	
  embolism	
  with	
  cerebral	
  infarction	
  
434.9	
   ICD9	
   stroke	
   Cerebral	
  artery	
  occlusion,	
  unspecified	
  
435	
   ICD9	
   stroke	
   Transient	
  cerebral	
  ischemia	
  

435.0	
   ICD9	
   stroke	
   Basilar	
  artery	
  syndrome	
  
435.1	
   ICD9	
   stroke	
   Vertebral	
  artery	
  syndrome	
  
435.2	
   ICD9	
   stroke	
   Subclavian	
  steal	
  syndrome	
  
435.3	
   ICD9	
   stroke	
   Vertebrobasilar	
  artery	
  syndrome	
  
435.9	
   ICD9	
   stroke	
   Transient	
  ischemic	
  attack,	
  unspec.	
  
436	
   ICD9	
   stroke	
   Acute	
  but	
  ill-­‐defined	
  cerebrovascular	
  disease	
  
437	
   ICD9	
   stroke	
   Other	
  and	
  ill-­‐defined	
  cerebrovascular	
  disease	
  

437.0	
   ICD9	
   stroke	
   Cerebral	
  atherosclerosis	
  
437.1	
   ICD9	
   stroke	
   Other	
  generalized	
  ischemic	
  cerebrovascular	
  disease	
  
437.2	
   ICD9	
   stroke	
   Hypertensive	
  encephalopathy	
  
437.3	
   ICD9	
   stroke	
   Cerebral	
  aneurysm	
  nonruptured	
  
437.4	
   ICD9	
   stroke	
   Cerebral	
  arteritis	
  
437.5	
   ICD9	
   stroke	
   Moyamoya	
  disease	
  
437.6	
   ICD9	
   stroke	
   Nonpyogenic	
  thrombosis	
  of	
  intracranial	
  venous	
  sinus	
  
437.7	
   ICD9	
   stroke	
   Transient	
  global	
  amnesia	
  
438	
   ICD9	
   stroke	
   Late	
  effects	
  of	
  cerebrovascular	
  disease	
  

438.0	
   ICD9	
   stroke	
   Cognitive	
  deficits	
  
438.1	
   ICD9	
   stroke	
   Speech	
  and	
  language	
  deficits	
  

438.10	
   ICD9	
   stroke	
   Speech	
  and	
  language	
  deficits,	
  unspecified	
  
438.11	
   ICD9	
   stroke	
   Aphasia	
  
438.12	
   ICD9	
   stroke	
   Dysphasia	
  
438.19	
   ICD9	
   stroke	
   Other	
  speech	
  and	
  language	
  deficits	
  
438.2	
   ICD9	
   stroke	
   Hemiplegia/hemiparesis	
  

438.20	
   ICD9	
   stroke	
   Hemiplegia	
  affecting	
  unspecified	
  side	
  
438.21	
   ICD9	
   stroke	
   Hemiplegia	
  affecting	
  dominant	
  side	
  
438.22	
   ICD9	
   stroke	
   Hemiplegia	
  affecting	
  nondominant	
  side	
  
438.3	
   ICD9	
   stroke	
   Monoplegia	
  of	
  upper	
  limb	
  
438.4	
   ICD9	
   stroke	
   Monoplegia	
  of	
  lower	
  limb	
  
438.5	
   ICD9	
   stroke	
   Other	
  paralytic	
  syndrome	
  
438.8	
   ICD9	
   stroke	
   Other	
  late	
  effects	
  of	
  cerebrovascular	
  disease	
  

438.81	
   ICD9	
   stroke	
   Apraxia	
  cerebrovascular	
  disease	
  
438.82	
   ICD9	
   stroke	
   Dysphagia	
  cerebrovascular	
  disease	
  
438.83	
   ICD9	
   stroke	
   Facial	
  weakness	
  
438.84	
   ICD9	
   stroke	
   Ataxia	
  
438.85	
   ICD9	
   stroke	
   Vertigo	
  
438.9	
   ICD9	
   stroke	
   CVA,	
  late	
  effect,	
  unspec.	
  
G45	
   ICD10	
   stroke	
   Transient	
  cerebral	
  ischaemic	
  attacks	
  and	
  related	
  syndromes	
  	
  	
  

G45.0	
   ICD10	
   stroke	
   Vertebro-­‐basilar	
  artery	
  syndrome	
  	
  	
  
G45.1	
   ICD10	
   stroke	
   Carotid	
  artery	
  syndrome	
  (hemispheric)	
  	
  	
  
G45.2	
   ICD10	
   stroke	
   Multiple	
  and	
  bilateral	
  precerebral	
  artery	
  syndromes	
  	
  	
  
G45.4	
   ICD10	
   stroke	
   Transient	
  global	
  amnesia	
  	
  	
  
G45.8	
   ICD10	
   stroke	
   Other	
  transient	
  cerebral	
  ischaemic	
  attacks	
  and	
  related	
  syndromes	
  	
  	
  
G45.9	
   ICD10	
   stroke	
   Transient	
  cerebral	
  ischaemic	
  attack,	
  unspecified	
  	
  	
  

I60	
   ICD10	
   stroke	
   Subarachnoid	
  haemorrhage	
  
I60.0	
   ICD10	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  carotid	
  siphon	
  and	
  bifurcation	
  
I60.1	
   ICD10	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  middle	
  cerebral	
  artery	
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I60.2	
   ICD10	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  anterior	
  communicating	
  artery	
  
I60.3	
   ICD10	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  posterior	
  communicating	
  artery	
  
I60.4	
   ICD10	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  basilar	
  artery	
  
I60.5	
   ICD10	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  vertebral	
  artery	
  
I60.6	
   ICD10	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  other	
  intracranial	
  arteries	
  
I60.7	
   ICD10	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  intracranial	
  artery,	
  unspecified	
  
I60.8	
   ICD10	
   stroke	
   Other	
  subarachnoid	
  haemorrhage	
  
I60.9	
   ICD10	
   stroke	
   Subarachnoid	
  haemorrhage,	
  unspecified	
  
I61	
   ICD10	
   stroke	
   Intracerebral	
  haemorrhage	
  

I61.0	
   ICD10	
   stroke	
   Intracerebral	
  haemorrhage	
  in	
  hemisphere,	
  subcortical	
  
I61.1	
   ICD10	
   stroke	
   Intracerebral	
  haemorrhage	
  in	
  hemisphere,	
  cortical	
  
I61.2	
   ICD10	
   stroke	
   Intracerebral	
  haemorrhage	
  in	
  hemisphere,	
  unspecified	
  
I61.3	
   ICD10	
   stroke	
   Intracerebral	
  haemorrhage	
  in	
  brain	
  stem	
  
I61.4	
   ICD10	
   stroke	
   Intracerebral	
  haemorrhage	
  in	
  cerebellum	
  
I61.5	
   ICD10	
   stroke	
   Intracerebral	
  haemorrhage,	
  intraventricular	
  
I61.6	
   ICD10	
   stroke	
   Intracerebral	
  haemorrhage,	
  multiple	
  localized	
  
I61.8	
   ICD10	
   stroke	
   Other	
  intracerebral	
  haemorrhage	
  
I61.9	
   ICD10	
   stroke	
   Intracerebral	
  haemorrhage,	
  unspecified	
  
I62	
   ICD10	
   stroke	
   Other	
  nontraumatic	
  intracranial	
  haemorrhage	
  

I62.0	
   ICD10	
   stroke	
   Subdural	
  haemorrhage	
  (acute)(nontraumatic)	
  
I62.1	
   ICD10	
   stroke	
   Nontraumatic	
  extradural	
  haemorrhage	
  
I62.9	
   ICD10	
   stroke	
   Intracranial	
  haemorrhage	
  (nontraumatic),	
  unspecified	
  
I63	
   ICD10	
   stroke	
   Cerebral	
  infarction	
  

I63.0	
   ICD10	
   stroke	
   Cerebral	
  infarction	
  due	
  to	
  thrombosis	
  of	
  precerebral	
  arteries	
  
I63.1	
   ICD10	
   stroke	
   Cerebral	
  infarction	
  due	
  to	
  embolism	
  of	
  precerebral	
  arteries	
  

I63.2	
   ICD10	
   stroke	
  
Cerebral	
  infarction	
  due	
  to	
  unspecified	
  occlusion	
  or	
  stenosis	
  of	
  precerebral	
  
arteries	
  

I63.3	
   ICD10	
   stroke	
   Cerebral	
  infarction	
  due	
  to	
  thrombosis	
  of	
  cerebral	
  arteries	
  
I63.4	
   ICD10	
   stroke	
   Cerebral	
  infarction	
  due	
  to	
  embolism	
  of	
  cerebral	
  arteries	
  

I63.5	
   ICD10	
   stroke	
  
Cerebral	
  infarction	
  due	
  to	
  unspecified	
  occlusion	
  or	
  stenosis	
  of	
  cerebral	
  
arteries	
  

I63.6	
   ICD10	
   stroke	
   Cerebral	
  infarction	
  due	
  to	
  cerebral	
  venous	
  thrombosis,	
  nonpyogenic	
  
I63.8	
   ICD10	
   stroke	
   Other	
  cerebral	
  infarction	
  
I63.9	
   ICD10	
   stroke	
   Cerebral	
  infarction,	
  unspecified	
  
I64	
   ICD10	
   stroke	
   Stroke,	
  not	
  specified	
  as	
  haemorrhage	
  or	
  infarction	
  

I65	
   ICD10	
   stroke	
  
Occlusion	
  and	
  stenosis	
  of	
  precerebral	
  arteries,	
  not	
  resulting	
  in	
  cerebral	
  
infarction	
  

I65.0	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  vertebral	
  artery	
  
I65.1	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  basilar	
  artery	
  
I65.2	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  carotid	
  artery	
  
I65.3	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  multiple	
  and	
  bilateral	
  precerebral	
  arteries	
  
I65.8	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  other	
  precerebral	
  artery	
  
I65.9	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  unspecified	
  precerebral	
  artery	
  

I66	
   ICD10	
   stroke	
  
Occlusion	
  and	
  stenosis	
  of	
  cerebral	
  arteries,	
  not	
  resulting	
  in	
  cerebral	
  
infarction	
  

I66.0	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  middle	
  cerebral	
  artery	
  
I66.1	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  anterior	
  cerebral	
  artery	
  
I66.2	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  posterior	
  cerebral	
  artery	
  
I66.3	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  cerebellar	
  arteries	
  
I66.4	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  multiple	
  and	
  bilateral	
  cerebral	
  arteries	
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I66.8	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  other	
  cerebral	
  artery	
  
I66.9	
   ICD10	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  unspecified	
  cerebral	
  artery	
  
I67.1	
   ICD10	
   stroke	
   Cerebral	
  aneurysm,	
  nonruptured	
  
I67.2	
   ICD10	
   stroke	
   Cerebral	
  atherosclerosis	
  
I67.4	
   ICD10	
   stroke	
   Hypertensive	
  encephalopathy	
  
I67.5	
   ICD10	
   stroke	
   Moyamoya	
  disease	
  
I67.6	
   ICD10	
   stroke	
   Nonpyogenic	
  thrombosis	
  of	
  intracranial	
  venous	
  system	
  
I67.7	
   ICD10	
   stroke	
   Cerebral	
  arteritis,	
  not	
  elsewhere	
  classified	
  
I67.8	
   ICD10	
   stroke	
   Other	
  specified	
  cerebrovascular	
  diseases	
  
I67.9	
   ICD10	
   stroke	
   Cerebrovascular	
  disease,	
  unspecified	
  
I68.0	
   ICD10	
   stroke	
   Cerebral	
  amyloid	
  angiopathy	
  
I68.2	
   ICD10	
   stroke	
   Cerebral	
  arteritis	
  in	
  other	
  diseases	
  classified	
  elsewhere	
  
I68.8	
   ICD10	
   stroke	
   Other	
  cerebrovascular	
  disorders	
  in	
  diseases	
  classified	
  elsewhere	
  
I69	
   ICD10	
   stroke	
   Sequelae	
  of	
  cerebrovascular	
  disease	
  

I69.0	
   ICD10	
   stroke	
   Sequelae	
  of	
  subarachnoid	
  haemorrhage	
  
I69.1	
   ICD10	
   stroke	
   Sequelae	
  of	
  intracerebral	
  haemorrhage	
  
I69.2	
   ICD10	
   stroke	
   Sequelae	
  of	
  other	
  nontraumatic	
  intracranial	
  haemorrhage	
  
I69.3	
   ICD10	
   stroke	
   Sequelae	
  of	
  cerebral	
  infarction	
  
I69.4	
   ICD10	
   stroke	
   Sequelae	
  of	
  stroke,	
  not	
  specified	
  as	
  haemorrhage	
  or	
  infarction	
  
I69.8	
   ICD10	
   stroke	
   Sequelae	
  of	
  other	
  and	
  unspecified	
  cerebrovascular	
  diseases	
  

medcode	
   readcode	
   endpoint	
   description	
  
34135	
   14A7.00	
   stroke	
   H/O:	
  CVA/stroke	
  
6305	
   14A7.11	
   stroke	
   H/O:	
  CVA	
  
5871	
   14A7.12	
   stroke	
   H/O:	
  stroke	
  

13567	
   14AB.00	
   stroke	
   H/O:	
  TIA	
  
16554	
   14AF.00	
   stroke	
   H/O	
  sub-­‐arachnoid	
  haemorrhage	
  
66873	
   14AK.00	
   stroke	
   H/O:	
  Stroke	
  in	
  last	
  year	
  

100639	
   1M4..00	
   stroke	
   Central	
  post-­‐stroke	
  pain	
  
18686	
   662e.00	
   stroke	
   Stroke/CVA	
  annual	
  review	
  
10792	
   662M.00	
   stroke	
   Stroke	
  monitoring	
  
28914	
   662o.00	
   stroke	
   Haemorrhagic	
  stroke	
  monitoring	
  
35916	
   7A20300	
   stroke	
   Endarterectomy	
  and	
  patch	
  repair	
  of	
  carotid	
  artery	
  
12733	
   7A20311	
   stroke	
   Carotid	
  endarterectomy	
  and	
  patch	
  
2654	
   7A20400	
   stroke	
   Endarterectomy	
  of	
  carotid	
  artery	
  NEC	
  

25910	
   7A22.00	
   stroke	
   Transluminal	
  operations	
  on	
  carotid	
  artery	
  
29973	
   7A22000	
   stroke	
   Percutaneous	
  transluminal	
  angioplasty	
  of	
  carotid	
  artery	
  
2659	
   7A22100	
   stroke	
   Arteriography	
  of	
  carotid	
  artery	
  

68069	
   7A22200	
   stroke	
   Endovascular	
  repair	
  of	
  carotid	
  artery	
  
47580	
   7A22300	
   stroke	
   Percutaneous	
  transluminal	
  insertion	
  stent	
  carotid	
  artery	
  
62661	
   7A22y00	
   stroke	
   Other	
  specified	
  transluminal	
  operation	
  on	
  carotid	
  artery	
  
41703	
   7A22z00	
   stroke	
   Transluminal	
  operation	
  on	
  carotid	
  artery	
  NOS	
  
53999	
   7A23.00	
   stroke	
   Cerebral	
  artery	
  and	
  circle	
  of	
  Willis	
  aneurysm	
  operations	
  
5365	
   7A23.11	
   stroke	
   Cerebral	
  artery	
  aneurysm	
  operations	
  

50929	
   7A23.12	
   stroke	
   Circle	
  of	
  Willis	
  aneurysm	
  operations	
  
45897	
   7A23000	
   stroke	
   Excision	
  of	
  aneurysm	
  of	
  cerebral	
  artery	
  
71034	
   7A23100	
   stroke	
   Excision	
  of	
  aneurysm	
  of	
  circle	
  of	
  Willis	
  
10625	
   7A23200	
   stroke	
   Clipping	
  of	
  aneurysm	
  of	
  cerebral	
  artery	
  
45450	
   7A23300	
   stroke	
   Clipping	
  of	
  aneurysm	
  of	
  circle	
  of	
  Willis	
  
37823	
   7A23400	
   stroke	
   Ligation	
  of	
  aneurysm	
  of	
  cerebral	
  artery	
  NEC	
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97937	
   7A23500	
   stroke	
   Ligation	
  of	
  aneurysm	
  of	
  circle	
  of	
  Willis	
  NEC	
  
58757	
   7A23600	
   stroke	
   Obliteration	
  of	
  aneurysm	
  of	
  cerebral	
  artery	
  NEC	
  
94491	
   7A23700	
   stroke	
   Obliteration	
  of	
  aneurysm	
  of	
  circle	
  of	
  Willis	
  NEC	
  
30415	
   7A23800	
   stroke	
   Percutaneous	
  coil	
  embolisation	
  of	
  cerebral	
  artery	
  aneurysm	
  
63903	
   7A23y00	
   stroke	
   Operation	
  on	
  cerebral	
  artery/	
  circle	
  of	
  Willis	
  aneurysm	
  OS	
  
50260	
   7A23z00	
   stroke	
   Operation	
  on	
  cerebral	
  artery/	
  circle	
  of	
  Willis	
  aneurysm	
  NOS	
  
55351	
   7P24200	
   stroke	
   Delivery	
  of	
  rehabilitation	
  for	
  stroke	
  
13707	
   8HBJ.00	
   stroke	
   Stroke	
  /	
  transient	
  ischaemic	
  attack	
  referral	
  
56458	
   8HHM.00	
   stroke	
   Ref	
  to	
  multidisciplinary	
  stroke	
  function	
  improvement	
  service	
  
18804	
   8HTQ.00	
   stroke	
   Referral	
  to	
  stroke	
  clinic	
  
32959	
   9N0p.00	
   stroke	
   Seen	
  in	
  stroke	
  clinic	
  
18687	
   9N4X.00	
   stroke	
   DNA	
  -­‐	
  Did	
  not	
  attend	
  stroke	
  clinic	
  
31218	
   9Om..00	
   stroke	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  administration	
  
28753	
   9Om0.00	
   stroke	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  first	
  letter	
  
34245	
   9Om1.00	
   stroke	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  second	
  letter	
  
34375	
   9Om2.00	
   stroke	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  third	
  letter	
  
51465	
   9Om3.00	
   stroke	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  verbal	
  invitati	
  
89913	
   9Om4.00	
   stroke	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  telephone	
  invte	
  
54744	
   F11x200	
   stroke	
   Cerebral	
  degeneration	
  due	
  to	
  cerebrovascular	
  disease	
  
2418	
   G6...00	
   stroke	
   Cerebrovascular	
  disease	
  
1786	
   G60..00	
   stroke	
   Subarachnoid	
  haemorrhage	
  

29939	
   G600.00	
   stroke	
   Ruptured	
  berry	
  aneurysm	
  
56007	
   G601.00	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  carotid	
  siphon	
  and	
  bifurcation	
  
19412	
   G602.00	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  middle	
  cerebral	
  artery	
  
42331	
   G603.00	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  anterior	
  communicating	
  artery	
  
9696	
   G604.00	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  posterior	
  communicating	
  artery	
  

41910	
   G605.00	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  basilar	
  artery	
  
60692	
   G606.00	
   stroke	
   Subarachnoid	
  haemorrhage	
  from	
  vertebral	
  artery	
  
17326	
   G60X.00	
   stroke	
   Subarachnoid	
  haemorrh	
  from	
  intracranial	
  artery,	
  unspecif	
  
23580	
   G60z.00	
   stroke	
   Subarachnoid	
  haemorrhage	
  NOS	
  
5051	
   G61..00	
   stroke	
   Intracerebral	
  haemorrhage	
  
6960	
   G61..11	
   stroke	
   CVA	
  -­‐	
  cerebrovascular	
  accid	
  due	
  to	
  intracerebral	
  haemorrhage	
  

18604	
   G61..12	
   stroke	
   Stroke	
  due	
  to	
  intracerebral	
  haemorrhage	
  
31595	
   G610.00	
   stroke	
   Cortical	
  haemorrhage	
  
40338	
   G611.00	
   stroke	
   Internal	
  capsule	
  haemorrhage	
  
46316	
   G612.00	
   stroke	
   Basal	
  nucleus	
  haemorrhage	
  
13564	
   G613.00	
   stroke	
   Cerebellar	
  haemorrhage	
  
7912	
   G614.00	
   stroke	
   Pontine	
  haemorrhage	
  

62342	
   G615.00	
   stroke	
   Bulbar	
  haemorrhage	
  
30045	
   G616.00	
   stroke	
   External	
  capsule	
  haemorrhage	
  
30202	
   G617.00	
   stroke	
   Intracerebral	
  haemorrhage,	
  intraventricular	
  
57315	
   G618.00	
   stroke	
   Intracerebral	
  haemorrhage,	
  multiple	
  localized	
  
31060	
   G61X.00	
   stroke	
   Intracerebral	
  haemorrhage	
  in	
  hemisphere,	
  unspecified	
  
28314	
   G61X000	
   stroke	
   Left	
  sided	
  intracerebral	
  haemorrhage,	
  unspecified	
  
19201	
   G61X100	
   stroke	
   Right	
  sided	
  intracerebral	
  haemorrhage,	
  unspecified	
  
3535	
   G61z.00	
   stroke	
   Intracerebral	
  haemorrhage	
  NOS	
  

31805	
   G62..00	
   stroke	
   Other	
  and	
  unspecified	
  intracranial	
  haemorrhage	
  
36178	
   G620.00	
   stroke	
   Extradural	
  haemorrhage	
  -­‐	
  nontraumatic	
  
4273	
   G621.00	
   stroke	
   Subdural	
  haemorrhage	
  -­‐	
  nontraumatic	
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17734	
   G622.00	
   stroke	
   Subdural	
  haematoma	
  -­‐	
  nontraumatic	
  
18912	
   G623.00	
   stroke	
   Subdural	
  haemorrhage	
  NOS	
  
20284	
   G62z.00	
   stroke	
   Intracranial	
  haemorrhage	
  NOS	
  
45781	
   G63..00	
   stroke	
   Precerebral	
  arterial	
  occlusion	
  
57495	
   G63..11	
   stroke	
   Infarction	
  -­‐	
  precerebral	
  
63830	
   G63..12	
   stroke	
   Stenosis	
  of	
  precerebral	
  arteries	
  
32447	
   G630.00	
   stroke	
   Basilar	
  artery	
  occlusion	
  
4240	
   G631.00	
   stroke	
   Carotid	
  artery	
  occlusion	
  
2156	
   G631.11	
   stroke	
   Stenosis,	
  carotid	
  artery	
  
4152	
   G631.12	
   stroke	
   Thrombosis,	
  carotid	
  artery	
  

40847	
   G632.00	
   stroke	
   Vertebral	
  artery	
  occlusion	
  
98642	
   G633.00	
   stroke	
   Multiple	
  and	
  bilateral	
  precerebral	
  arterial	
  occlusion	
  
2652	
   G634.00	
   stroke	
   Carotid	
  artery	
  stenosis	
  

51326	
   G63y.00	
   stroke	
   Other	
  precerebral	
  artery	
  occlusion	
  
23671	
   G63y000	
   stroke	
   Cerebral	
  infarct	
  due	
  to	
  thrombosis	
  of	
  precerebral	
  arteries	
  
24446	
   G63y100	
   stroke	
   Cerebral	
  infarction	
  due	
  to	
  embolism	
  of	
  precerebral	
  arteries	
  
71585	
   G63z.00	
   stroke	
   Precerebral	
  artery	
  occlusion	
  NOS	
  
8837	
   G64..00	
   stroke	
   Cerebral	
  arterial	
  occlusion	
  
5363	
   G64..11	
   stroke	
   CVA	
  -­‐	
  cerebral	
  artery	
  occlusion	
  
569	
   G64..12	
   stroke	
   Infarction	
  -­‐	
  cerebral	
  

6155	
   G64..13	
   stroke	
   Stroke	
  due	
  to	
  cerebral	
  arterial	
  occlusion	
  
16517	
   G640.00	
   stroke	
   Cerebral	
  thrombosis	
  
36717	
   G640000	
   stroke	
   Cerebral	
  infarction	
  due	
  to	
  thrombosis	
  of	
  cerebral	
  arteries	
  
15019	
   G641.00	
   stroke	
   Cerebral	
  embolism	
  
34758	
   G641.11	
   stroke	
   Cerebral	
  embolus	
  
27975	
   G641000	
   stroke	
   Cerebral	
  infarction	
  due	
  to	
  embolism	
  of	
  cerebral	
  arteries	
  
3149	
   G64z.00	
   stroke	
   Cerebral	
  infarction	
  NOS	
  

15252	
   G64z.11	
   stroke	
   Brainstem	
  infarction	
  NOS	
  
5602	
   G64z.12	
   stroke	
   Cerebellar	
  infarction	
  

25615	
   G64z000	
   stroke	
   Brainstem	
  infarction	
  
47642	
   G64z100	
   stroke	
   Wallenberg	
  syndrome	
  
5185	
   G64z111	
   stroke	
   Lateral	
  medullary	
  syndrome	
  
9985	
   G64z200	
   stroke	
   Left	
  sided	
  cerebral	
  infarction	
  

10504	
   G64z300	
   stroke	
   Right	
  sided	
  cerebral	
  infarction	
  
26424	
   G64z400	
   stroke	
   Infarction	
  of	
  basal	
  ganglia	
  

504	
   G65..00	
   stroke	
   Transient	
  cerebral	
  ischaemia	
  
3132	
   G65..11	
   stroke	
   Drop	
  attack	
  
1433	
   G65..12	
   stroke	
   Transient	
  ischaemic	
  attack	
  
2417	
   G65..13	
   stroke	
   Vertebro-­‐basilar	
  insufficiency	
  

23942	
   G650.00	
   stroke	
   Basilar	
  artery	
  syndrome	
  
5268	
   G650.11	
   stroke	
   Insufficiency	
  -­‐	
  basilar	
  artery	
  

33377	
   G651.00	
   stroke	
   Vertebral	
  artery	
  syndrome	
  
21118	
   G651000	
   stroke	
   Vertebro-­‐basilar	
  artery	
  syndrome	
  
23465	
   G652.00	
   stroke	
   Subclavian	
  steal	
  syndrome	
  
44765	
   G653.00	
   stroke	
   Carotid	
  artery	
  syndrome	
  hemispheric	
  
50594	
   G654.00	
   stroke	
   Multiple	
  and	
  bilateral	
  precerebral	
  artery	
  syndromes	
  
6489	
   G655.00	
   stroke	
   Transient	
  global	
  amnesia	
  

10794	
   G656.00	
   stroke	
   Vertebrobasilar	
  insufficiency	
  
19354	
   G65y.00	
   stroke	
   Other	
  transient	
  cerebral	
  ischaemia	
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1895	
   G65z.00	
   stroke	
   Transient	
  cerebral	
  ischaemia	
  NOS	
  
55247	
   G65z000	
   stroke	
   Impending	
  cerebral	
  ischaemia	
  
16507	
   G65z100	
   stroke	
   Intermittent	
  cerebral	
  ischaemia	
  
15788	
   G65zz00	
   stroke	
   Transient	
  cerebral	
  ischaemia	
  NOS	
  
1469	
   G66..00	
   stroke	
   Stroke	
  and	
  cerebrovascular	
  accident	
  unspecified	
  
1298	
   G66..11	
   stroke	
   CVA	
  unspecified	
  
6253	
   G66..12	
   stroke	
   Stroke	
  unspecified	
  
6116	
   G66..13	
   stroke	
   CVA	
  -­‐	
  Cerebrovascular	
  accident	
  unspecified	
  

18689	
   G660.00	
   stroke	
   Middle	
  cerebral	
  artery	
  syndrome	
  
19280	
   G661.00	
   stroke	
   Anterior	
  cerebral	
  artery	
  syndrome	
  
19260	
   G662.00	
   stroke	
   Posterior	
  cerebral	
  artery	
  syndrome	
  
8443	
   G663.00	
   stroke	
   Brain	
  stem	
  stroke	
  syndrome	
  

17322	
   G664.00	
   stroke	
   Cerebellar	
  stroke	
  syndrome	
  
33499	
   G665.00	
   stroke	
   Pure	
  motor	
  lacunar	
  syndrome	
  
51767	
   G666.00	
   stroke	
   Pure	
  sensory	
  lacunar	
  syndrome	
  
7780	
   G667.00	
   stroke	
   Left	
  sided	
  CVA	
  

12833	
   G668.00	
   stroke	
   Right	
  sided	
  CVA	
  
16956	
   G669.00	
   stroke	
   Cerebral	
  palsy,	
  not	
  congenital	
  or	
  infantile,	
  acute	
  
13577	
   G67..00	
   stroke	
   Other	
  cerebrovascular	
  disease	
  
11171	
   G670.00	
   stroke	
   Cerebral	
  atherosclerosis	
  
5184	
   G670.11	
   stroke	
   Precerebral	
  atherosclerosis	
  

40053	
   G671.00	
   stroke	
   Generalised	
  ischaemic	
  cerebrovascular	
  disease	
  NOS	
  
70536	
   G671000	
   stroke	
   Acute	
  cerebrovascular	
  insufficiency	
  NOS	
  
24385	
   G671100	
   stroke	
   Chronic	
  cerebral	
  ischaemia	
  
12555	
   G671z00	
   stroke	
   Generalised	
  ischaemic	
  cerebrovascular	
  disease	
  NOS	
  
3979	
   G672.00	
   stroke	
   Hypertensive	
  encephalopathy	
  

31816	
   G672.11	
   stroke	
   Hypertensive	
  crisis	
  
4635	
   G673.00	
   stroke	
   Cerebral	
  aneurysm,	
  nonruptured	
  

22018	
   G673000	
   stroke	
   Dissection	
  of	
  cerebral	
  arteries,	
  nonruptured	
  
35059	
   G673100	
   stroke	
   Carotico-­‐cavernous	
  sinus	
  fistula	
  
12634	
   G673200	
   stroke	
   Carotid	
  artery	
  dissection	
  
97122	
   G673300	
   stroke	
   Vertebral	
  artery	
  dissection	
  
22400	
   G674.00	
   stroke	
   Cerebral	
  arteritis	
  
10189	
   G674000	
   stroke	
   Cerebral	
  amyloid	
  angiopathy	
  
32310	
   G675.00	
   stroke	
   Moyamoya	
  disease	
  
37947	
   G676.00	
   stroke	
   Nonpyogenic	
  venous	
  sinus	
  thrombosis	
  
39344	
   G676000	
   stroke	
   Cereb	
  infarct	
  due	
  cerebral	
  venous	
  thrombosis,	
  nonpyogenic	
  
31704	
   G677.00	
   stroke	
   Occlusion/stenosis	
  cerebral	
  arts	
  not	
  result	
  cerebral	
  infarct	
  
51759	
   G677000	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  middle	
  cerebral	
  artery	
  
57527	
   G677100	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  anterior	
  cerebral	
  artery	
  
65770	
   G677200	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  posterior	
  cerebral	
  artery	
  
55602	
   G677300	
   stroke	
   Occlusion	
  and	
  stenosis	
  of	
  cerebellar	
  arteries	
  
71274	
   G677400	
   stroke	
   Occlusion+stenosis	
  of	
  multiple	
  and	
  bilat	
  cerebral	
  arteries	
  
9943	
   G678.00	
   stroke	
   Cereb	
  autosom	
  dominant	
  arteriop	
  subcort	
  infarcts	
  leukoenceph	
  

98188	
   G679.00	
   stroke	
   Small	
  vessel	
  cerebrovascular	
  disease	
  
101733	
   G67A.00	
   stroke	
   Cerebral	
  vein	
  thrombosis	
  
34117	
   G67y.00	
   stroke	
   Other	
  cerebrovascular	
  disease	
  OS	
  
37493	
   G67z.00	
   stroke	
   Other	
  cerebrovascular	
  disease	
  NOS	
  
23361	
   G68..00	
   stroke	
   Late	
  effects	
  of	
  cerebrovascular	
  disease	
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44740	
   G680.00	
   stroke	
   Sequelae	
  of	
  subarachnoid	
  haemorrhage	
  
48149	
   G681.00	
   stroke	
   Sequelae	
  of	
  intracerebral	
  haemorrhage	
  
43451	
   G682.00	
   stroke	
   Sequelae	
  of	
  other	
  nontraumatic	
  intracranial	
  haemorrhage	
  
39403	
   G683.00	
   stroke	
   Sequelae	
  of	
  cerebral	
  infarction	
  
51138	
   G68W.00	
   stroke	
   Sequelae/other	
  +	
  unspecified	
  cerebrovascular	
  diseases	
  
6228	
   G68X.00	
   stroke	
   Sequelae	
  of	
  stroke,not	
  specfd	
  as	
  h'morrhage	
  or	
  infarction	
  

40758	
   G6W..00	
   stroke	
   Cereb	
  infarct	
  due	
  unsp	
  occlus/stenos	
  precerebr	
  arteries	
  
33543	
   G6X..00	
   stroke	
   Cerebrl	
  infarctn	
  due/unspcf	
  occlusn	
  or	
  sten/cerebrl	
  artrs	
  
51311	
   G6y..00	
   stroke	
   Other	
  specified	
  cerebrovascular	
  disease	
  
10062	
   G6z..00	
   stroke	
   Cerebrovascular	
  disease	
  NOS	
  
73901	
   Gyu6.00	
   stroke	
   [X]Cerebrovascular	
  diseases	
  
65745	
   Gyu6100	
   stroke	
   [X]Other	
  subarachnoid	
  haemorrhage	
  
53810	
   Gyu6200	
   stroke	
   [X]Other	
  intracerebral	
  haemorrhage	
  
91627	
   Gyu6300	
   stroke	
   [X]Cerebrl	
  infarctn	
  due/unspcf	
  occlusn	
  or	
  sten/cerebrl	
  artrs	
  
53745	
   Gyu6400	
   stroke	
   [X]Other	
  cerebral	
  infarction	
  
90572	
   Gyu6500	
   stroke	
   [X]Occlusion	
  and	
  stenosis	
  of	
  other	
  precerebral	
  arteries	
  
92036	
   Gyu6600	
   stroke	
   [X]Occlusion	
  and	
  stenosis	
  of	
  other	
  cerebral	
  arteries	
  
96630	
   Gyu6F00	
   stroke	
   [X]Intracerebral	
  haemorrhage	
  in	
  hemisphere,	
  unspecified	
  
94482	
   Gyu6G00	
   stroke	
   [X]Cereb	
  infarct	
  due	
  unsp	
  occlus/stenos	
  precerebr	
  arteries	
  
42248	
   ZLEP.00	
   stroke	
   Discharge	
  from	
  stroke	
  serv	
  
19348	
   ZV12511	
   stroke	
   [V]Personal	
  history	
  of	
  stroke	
  
7138	
   ZV12512	
   stroke	
   [V]Personal	
  history	
  of	
  cerebrovascular	
  accident	
  (CVA)	
  
code	
   type	
   endpoint	
   description	
  

G45	
   ICD-­‐10	
   TIA	
  
Transient	
  cerebral	
  ischaemic	
  attacks	
  and	
  related	
  syndromes	
  (excl:	
  
neonatal	
  cerebral	
  ischaemia	
  (P91.0))	
  

G45.0	
   ICD-­‐10	
   TIA	
   Vertebro-­‐basilar	
  artery	
  syndrome	
  
G45.1	
   ICD-­‐10	
   TIA	
   Carotid	
  artery	
  syndrome	
  (hemispheric)	
  
G45.2	
   ICD-­‐10	
   TIA	
   Multiple	
  and	
  bilateral	
  precerebral	
  artery	
  syndromes	
  
G45.3	
   ICD-­‐10	
   TIA	
   Amaurosis	
  fugax	
  
G45.4	
   ICD-­‐10	
   TIA	
   Transient	
  global	
  amnesia	
  excl.	
  amnesia	
  NOS	
  (R41.3)	
  
G45.8	
   ICD-­‐10	
   TIA	
   Other	
  transient	
  cerebral	
  ischaemic	
  attacks	
  and	
  related	
  syndromes	
  

G45.9	
   ICD-­‐10	
   TIA	
  
Transient	
  cerebral	
  ischaemic	
  attack,	
  unspecified	
  (Spasm	
  of	
  cerebral	
  artery,	
  
Transient	
  cerebral	
  ischaemia	
  NOS)	
  

medcode	
   readcode	
   desc	
  
21844	
   G31y300	
   Transient	
  myocardial	
  ischaemia	
  
55878	
   Q494.00	
   Transient	
  myocardial	
  ischaemia	
  of	
  newborn	
  

102326	
   1JK..00	
   Suspected	
  transient	
  ischaemic	
  attack	
  
1433	
   G65..12	
   Transient	
  ischaemic	
  attack	
  
504	
   G65..00	
   Transient	
  cerebral	
  ischaemia	
  

89913	
   9Om4.00	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  telephone	
  invte	
  
28753	
   9Om0.00	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  first	
  letter	
  
34375	
   9Om2.00	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  third	
  letter	
  
15788	
   G65zz00	
   Transient	
  cerebral	
  ischaemia	
  NOS	
  
19354	
   G65y.00	
   Other	
  transient	
  cerebral	
  ischaemia	
  
13707	
   8HBJ.00	
   Stroke	
  /	
  transient	
  ischaemic	
  attack	
  referral	
  

101251	
   ZV12D00	
   [V]Personal	
  history	
  of	
  transient	
  ischaemic	
  attack	
  
100015	
   8CRB.00	
   Transient	
  ischaemic	
  attack	
  clinical	
  management	
  plan	
  
31218	
   9Om..00	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  administration	
  
34245	
   9Om1.00	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  second	
  letter	
  
51465	
   9Om3.00	
   Stroke/transient	
  ischaemic	
  attack	
  monitoring	
  verbal	
  invitati	
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1895	
   G65z.00	
   Transient	
  cerebral	
  ischaemia	
  NOS	
  
42720	
   F580200	
   Transient	
  ischaemic	
  deafness	
  
2417	
   G65..13	
   Vertebro-­‐basilar	
  insufficiency	
  

10794	
   G656.00	
   Vertebrobasilar	
  insufficiency	
  
21118	
   G651000	
   Vertebro-­‐basilar	
  artery	
  syndrome	
  
44765	
   G653.00	
   Carotid	
  artery	
  syndrome	
  hemispheric	
  
51326	
   G63y.00	
   Other	
  precerebral	
  artery	
  occlusion	
  
71585	
   G63z.00	
   Precerebral	
  artery	
  occlusion	
  NOS	
  
50594	
   G654.00	
   Multiple	
  and	
  bilateral	
  precerebral	
  artery	
  syndromes	
  
1195	
   F423600	
   Amaurosis	
  fugax	
  

28278	
   1B1S.00	
   Transient	
  global	
  amnesia	
  
19004	
   Z7CE711	
   TGA	
  -­‐	
  Transient	
  global	
  amnesia	
  
18996	
   Z7CE700	
   Transient	
  global	
  amnesia	
  
6489	
   G655.00	
   Transient	
  global	
  amnesia	
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Appendix G

Run statistics: CPRD experiments

The full range of run statistics for the 25 GP runs in the CPRD experiments in chapter 7
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Figure G.1: The full range of runs statisitcs for the 25 SSOGP runs in the CPRD

experiments in chapter 7.



301

Appendix H

Final Models: CPRD experiments

The final 25 models developed by SSOGP the CPRD experiments in chapter 7, presen-

ted as a binary trees
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Appendix I

Predictor Effects: CPRD experiments

Plots of the effects of predictor values on log hazard in the ’final’ GP model in the

CPRD experiments in chapter 7

Figure I.1: Plots of the effects of predictor values on log hazard in the ’final’ GP

model in the CPRD experiments in chapter 7.
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Appendix J

Results: CPRD experiments

(secondary analysis)

Results of the additional experiments that repeat the CPRD experiments in chapter 7,

but only on the subset of covariates that were selected with a relatively high fre-

quency(> 0.5) in the main experiment.

Figure J.1: Average survival curves for the Cox regression and genetic program-

ming models. The error bars represent ±2 standard errors of the KM estimates.
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Figure J.2: C-statistic estimates by model for t=1, 3 and 5 years

Table J.1: C-statistic estimates by model at t=2, 5, and 8 years

Time (years) Genetic Programming (superset) Genetic Programming (subset)

2 0.656 0.682

5 0.621 0.645

8 0.631 0.656
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Figure J.3: Calibration plots for the Cox regression and genetic programming

models, at t=1, 3, and 5 years..

Table J.2: χ2 statistic for the comparison between observed versus expected (ac-

cording to the model) number of events in groups of patients defined according to

the predicted 1− S(t) at t=2, 5, and 8 years.

Time (years) Genetic Programming (superset) Genetic Programming (subset)

t χ2 p-value χ2 p-value

2 1589 < 0.001 1590 < 0.001

5 4146 < 0.001 4256 < 0.001

8 6937 < 0.001 7129 < 0.001
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