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Abstract—This paper extends the analysis of the recently in-
troduced row-shift corrected truncation method for paraunitary
matrices to those produced by the state-of-the-art sequential
matrix diagonalisation (SMD) family of polynomial eigenvalue
decomposition (PEVD) algorithms. The row-shift corrected trun-
cation method utilises the ambiguity in the paraunitary matrices
to reduce their order. The results presented in this paper compare
the effect a simple change in PEVD method can have on the
performance of the paraunitary truncation. In the case of the
SMD algorithm the benefits of the new approach are reduced
compared to what has been seen before however there is still a
reduction in both reconstruction error and paraunitary matrix
order.

I. INTRODUCTION

Broadband array processing problems are often formulated

with a space-time covariance matrix R[τ ], which in addition

to a spatial components contains an explicit lag τ . Its z-

transform, R(z) •—◦ R[τ ], yields a polynomial cross-spectral

density (CSD) matrix, which extends the symmetric or Her-

mitian property known from standard matrix algebra to the

parahermitian case as R(z) = R̃(z), whereby the parahermi-

tian operator {̃·} consists of a Hermitian transposition {·}H

and time reversal i.e. R̃(z) = RH(z−1).
Since the eigenvalue decomposition (EVD) of a covariance

matrix provides an optimal factorisation for numerous signal

processing problems, its extension from the narrowband to

the broadband case has led to polynomial EVD (PEVD) as

proposed in [9]. For a parahermitian matrix R(z),

R(z) ≈ Q̃(z)D(z)Q(z) (1)

factorises R(z) into a paraunitary Q(z), such

that Q(z)Q̃(z) = I, and a diagonal parahermtian D(z),

D(z) = diag{D0(z) D1(z) . . . DM−1(z)} . (2)

Extension the idea of an ordered EVD [6], the polynomial

eigenvalues in D(z) are spectrally majorised, i.e. their power

spectral densities Dm(ejΩ) = Dm(z)|z=ejΩ satisfy

Dm+1(e
jΩ) ≥ Dm(ejΩ) ∀ Ω m = 0 . . . (M − 1) . (3)

For FIR paraunitary matrices, the equality in (1) is not

guaranteed [9] but likely valid in close approximation for high

orders of Q(z) [7].

The PEVD enables a number of applications spanning

from filter bank-based channel coding [17], to the design of

broadband precoding and equalisation of MIMO systems [12],

subband coding [10], broadband angle of arrival estimation [1],

and others. A number of these applications are directly influ-

enced by the order of the paraunitary matrix Q(z), such as

polynomial subspace decomposition techniques [1], [12], [17],

and paraunitary matrices of low order therefore can be crucial.

A number of iterative algorithms have been developed

to approximate (1). For example, an approximate PEVD

(APEVD) algorithm with fixed order has been reported in [14],

but has not been proved to converge. Other algorithms have

been proven to converge towards a diagonalised D(z) and

can achieve better diagonalisation than APEVD, including

the family of second order sequential best rotation (SBR2)

algorithms [9], [10] and the family of sequential matrix diago-

nalisation (SMD) algorithms [2], [11]. Although guaranteed to

diagonalise R(z), the SBR2 and SMD algorithms [2], [9]–[11]

are unconstrained in theirorder and therefore the polynomial

degrees of both D(z) and Q(z) grow with the number of

iterations.

The growing order of the diagonal parahermitian matrix

causes difficulties, as its increase is responsible for the rising

complexity of iterative PEVD algorithms such as [2], [9]–[11]

as iterations go on. To this end, trimming small coefficients

at the ends of this matrix has been suggested in [5], [9] in

order to reduce the complexity of iterative PEVD algorithm.

However, the paraunitary matrix also grows with the number of

iterations; while its increase does not impact on the complexity

during iterations, the application cost of the finally extracted

paraunitary matrix can be high for polynomial subspace-

based applications as mentioned above. Therefore, reducing

the order of the paraunitary matrix has been suggested in [13],

whereby similarly to [5], [9] small outer matrix coefficients are

truncated.

In addition to the trimming approach in [13], an enhanced

alternative method has been suggested in [3] and applied to

SBR2. The aim of this paper therefore is to investigate the

so-call shift-corrected version in [3] both SBR2 and SMD

families of iterative PEVD algorithms. To accomplish this,

Sec. II reviews the PEVD algorithms that will be used to

generate paraunitary unitary matrices. Sec. III provides and

overview over the two paraunitary truncation approaches to be

compared. The results from applying the different truncation

methods to the parauntary matrices produced by the two PEVD



methods are presented in Sec. IV and conclusions are given

in Sec. V.

II. PEVD ALGORITHMS

A. General Approach

Starting from the parahermitian matrix R(z), all PEVD

algorithms apply a series of elementary paraunitary matrices in

order to iteratie towards an approximately diagonal polynomial

matrix D(z). At the i-th iteration, building on a partially di-

agonalised parahermitian matrix S(i−1)(z), PEVD algorithms

build an elementary paraunitary matrix Q)i)(z) from two

components: a shift matrix Λ(i)(z) which transfers large off-

diagonal elements of S(i−1)(z) onto the zero lag, followed by

a rotation Q(i) which moves the transfered elements’ energy

onto the diagonal. Thus, for the ith iteration we have

Q(i)(z) = Q(i)Λ(i)(z) . (4)

While various PEVD algorithms share this same general

approach, both Λ(i)(z) and Q(i) are algorithm dependent. The

delay matrix, Λ(i)(z), is determined by the search strategy,

while the rotation Q(i) is defined by the family of algorithms

used. The ith iteration of any iterative PEVD algorithm is then

implemented as

S(i)(z) = Q(i)S(i−1)(z)Q̃
(i)

. (5)

The algorithm is stopped after I iterations if either the off-

diagonal energy of S(i)(z) falls below a predefined threshood

or I reaches a selected limit. Thereafter D̂(z) = S(I)(z) and

Q̂(z) =
I∏

i=1

Q(i)Λ(i)(z) . (6)

Generally, (6) can be calculated after the algorithm has been

executed, as storing the parameters of Q(i) and Λ(i)(z) is

more efficient than storing and updating the whole paraunitary

matrix. Based on the PEVD outline above the following

subsections will go into the unique details for both PEVD

algorithms utilised in the results section.

B. Second Order Sequential Best Rotation

The second order sequential best rotation (SBR2) algorithm

is an extension of the classical Jacobi algorithm for scalar

matrices to the polynomial case [9]. Like the Jacobi algorithm,

SBR2 starts with a search for the maximum off diagonal

element but this now extends to all lags of the polynomial

matrix. Starting from S(0)(z) = R(z), at the i-th iteration the

maximum off diagonal element is found using

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖∞ , i = 1 . . . I . (7)

With the transform pair S(i−1)[τ ] ◦—• S(i−1)(z), the modi-

fied k(i)th column vector, ŝ
(i−1)
k [τ ], contains only off diagonal

elements. The delay matrix Λ(i)(z) is then constructed using

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)
−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} , (8)

where the parameters k(i) and τ are used to advance or delay

the k(i)th column and row, shifting the maximum element

by τ (i) lags onto the zerolag. Finally, the energy from the

maximum element is transferred onto the diagonal using the

Jacobi transformation

Q(i) =










I1

cosϕ(i) . . . ejϑ
(i)

sinϕ(i)

... I2
...

−e−jϑ(i)

sinϕ(i) . . . cosϕ(i)

I3










,

(9)

where the rotation angles ϕ(i) and ϑ(i) are determined by

the value of the maximum element. The dimensions of the

identities in (9), In, n = 1, 2, 3, are (min{m(i), k(i)} − 1),
(|m(i)−k(i)|−1) and (M−max{m(i), k(i)}+1) respectively.

Although (9) has to be applied to all lags of the parahermitian

matrix its sparse nature means that only two rows and columns

are modified when proceeding from S(i−1)(z) to S(i)(z).

C. Sequential Matrix Diagonalisation

In addition to the three main PEVD steps described above

the sequential matrix diagonalisation (SMD) [11] algorithm

includes an additional initialisation step that brings all off

diagonal zerolag energy onto the diagonal prior to any shift

operations. This results in

S(0)(z) = Q(0)R(z)Q(0)H , (10)

where Q(0) is the modal matrix for the EVD of the zerolag

of R(z).
The search step of the SMD is also different in that the l∞

norm in (7) is replaced by an l2 norm, thereby changing the

search from maximum element to maximum column norm

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖2 . (11)

Using the same modified column vector, ŝ
(i−1)
k [τ ], the pa-

rameters k(i) and τ (i) are again used in (8). For the SMD

algorithm, an energy transfer matrix Q(i) that clears all zero

lag off-diagonal elements can be found by an EVD at zero

lag.

In general, the SMD algorithm transfers more energy per

iteration than the SBR2 algorithm. Due to the full EVD

being non-sparse and requireing a full matrix multiplication

for each lag in the parahermitian matrix, each SMD iteration

is more computationally costly than a similar SBR2 iteration.

Therefore, SMD overall has a higher complexity than SBR2 to

compute an approximate PEVD, but is capable of producing

paraunitary matrices of lower order [11], making operations

involving Q̂(z) less costly to apply once the PEVD is calcu-

lated.

III. PARAUNITARY MATRIX TRUNCATION METHODS

To reduce the cost of applying the paraunitary matrix Q̂(z),
two different truncation methods have been proposed in [3],

[13], which are reviewed below.



A. Lag Based Truncation

The truncation approach specified in [13] reduces the order

of the paraunitary matrix by removing the N1 leading and N2

trailing lags, unlike the method for parahermitian truncation

in [5], [9] this is done asymmetrically. The trim function for

paraunitary matrices can be defined as

ftrim(Q̂[n]) =

{

Q̂[n+N1] 0 ≤ n < N −N2 −N1

0 otherwise
.

The proportion of energy removed in the N1 leading and N2

trailing lags of Q̂[n] by the ftrim(·) operation is given by

γtrim = 1−

∑

n ‖ftrim(Q̂[n])‖2F
∑

n ‖Q̂[n]‖2F

= 1−
1

M

∑

n

‖ftrim(Q̂[n])‖2F ,

where ‖·‖F is the Frobenius norm. To control the impact of the

truncation operation on the paraunitary matrix, the parameter

µ is used as an upper bound for the proportion of energy

removed, γtrim. Here we want to maximise the number of

lags removed, N1 + N2, whilst keeping the energy removed

below µ, hence the constrained optimisation problem:

maximise (N1 +N2) (12)

s.t. γtrim ≤ µ . (13)

The implementation of ftrim(·) is as simple as sequentially

removing the outermost matrix cofficients of polynomial Q(z),
at either leading or trialling lags, which possess the smallest

Frobenius norm whilst ensuring (13) is satisfied.

B. Row-Shift Corrected Truncation

The row-shift corrected truncation method [3] exploits the

ambiguity in paraunitary matrices [3], [8]. The ambiguity

permits Q(z), from (1), to be replaced by Q̄(z) where

Q̄(z) = Γ(z)Q(z). As argued in [3], the only viable option

for the polynomial matrix Γ(z) takes the form

Γ(z) = diag
{
z−τ1 z−τ2 . . . z−τM

}
(14)

which consists of M row shifts by τm samples, where m =
1 . . .M , i.e. for each row of the paraunitary matrix. These row

shifts can now be used to align the maximum values in each

row so that the overall paraunitary matrix can be truncated

further.

We can subdivide the paraunitary matrix, Q̂(z), into its M

row vectors q̂m(z), m = 1 . . .M ,

˜̂
Q(z) = [q̂1(z) . . . q̂M (z)] . (15)

For the row-shift corrected method each row is truncated

individually using

fshift(q̂m[n]) =

{
q̂m[n+N1,m] 0 ≤ n < Tm

0 otherwise
, (16)

where the overall length of the truncated vector is Tm = N −
N2,m −N1,m. The row shifts, τm, in (14) are then set equal

to N1,m ∀ m = 1 . . .M . As each vector has unit energy the

proportion of energy to be removed from each row, using the

vector-valued truncation, fshift(q̂m[n]), becomes

γshift,m = 1−
∑

n

‖fshift(q̂m[n])‖22 . (17)

Similar to the lag-based method, this presents us with the

following constrained optimisation problem for fshift(·):

maximise min
m

(N1,m +N2,m) (18)

s.t. γshift,m ≤
µ′

M
∀ m = 1 . . .M . (19)

The length of resulting paraunitary matrix will be maxm Tm

and the maximum proportion of energy removed will be µ′.

The process outlined above is equivalent to truncating each

row of Q̂(z) with the lag based truncation method in Sec. III-A

and [13].

IV. RESULTS

To compare the performance of the different truncation

approaches on the two PEVD methods, performance metrics

for this comparison are given first, followed by the simulation

scenarios over which the comparisons are made.

A. Performance Metrics

Reconstruction Error. When the paraunitary matrix, Q̂(z), is

truncated, the paraunitary property is lost. The paraunitary

property states Q̂(z)
˜̂
Q(z) = I therefore the difference from

paraunitary is

E(z) = IM×M − Q̂T(z)
˜̂
QT(z) . (20)

with Q̂T(z) being the truncated matrix, and the transform

E[τ ] ◦—• E(z). When Q̂(z) is a filter bank, the loss in

paraunitarity can be measured as the reconstruction error [16]

ξ =
1

M

∑

τ

‖E[τ ]‖2F . (21)

Diagonalisation. The goal of the PEVD algorithms is to itera-

tively approximate a diagonal parahermitian matrix. Therefore,

a second performance critrion measures the reduction in off-

diagonal energy calculated as

E(i)
norm =

∑

τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
, (22)

where ŝ
(i)
k [τ ] is the modified coulmn vector from (7) contain-

ing only off-diagonal elements.

B. Simulation Scenario

For the following results, the PEVD algorithms are run

for 100 iterations recording the performance metrics from

Sec. IV-A along with the paraunitary matrix order at each itera-

tion. All results apart from those shown in Sec. IV-E have been

averaged over an ensemble of 103 instantiations. The initial

parahermitian matrix, R(z), for all of the simulations below

was generated using the source model described in [11], which
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Fig. 1. Ensemble reconstruction error E{ξ} vs. PEVD iterations for the
different truncation approaches and PEVD methods.

is randomised to produce a unique R(z) for each instantiation.

The paraunitary matrix produced is R(z) ∈ C6× 6 for all of

the simulations excluding Sec. IV-E where the dimensions are

reduced to R(z) ∈ C4× 4 with the number of lags for all

R(z) set at 47.

C. Reconstruction Error

Based on the results in [3], the truncation parameter for

the row-shift corrected method is increased by a factor of

5, which leads to the error of the two approaches being ap-

proximately equal. For comparison, the truncation parameters

across the PEVD methods remain the same with µ = 10−4

and µ′ = 5µ. Fig. 1 shows the reconstruction error for the

different PEVD methods, here the SBR2 algorithm using the

row-shift corrected method performs the best with an error of

4.5 × 10−4 and SBR2 using the original truncation is worst

with an error of 4.8 × 10−4 after 100 iterations. Initially the

error curves start very low but they quickly increase as the

outer elements become smaller and the truncation algorithms

begin to remove their full quota of energy, be it µ or µ′. Even

with the compensation of µ′ = 5µ, the row-shift correction

method still tends to have a slightly lower error for both

PEVD methods despite being permitted to remove five times

the energy.

D. Truncated Order and Diagonalisation

As previously shown in [3], the row-shift corrected method

has a significant effect on reducing the paraunitary order for

the SBR2 method, however with the SMD algorithm the same

reduction paraunitary order is not apparent for the selected

source model. There is still a slight benefit to using the row-

shift corrected truncation but due to the nature of the SMD

algorithm there tends to be fewer outliers which need to be

corrected by the row-shift truncation.

Fig. 3 shows the diagonalisation measure vs. paraunitary or-

der for the different PEVD algorithms and truncation methods.

In Fig. 3 there is a similar trend to Fig. 2, with the row-shift

corrected method SBR2 outperforming the SMD equivalent.
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Fig. 2. Average order after truncation of Q̂(z) vs. PEVD iterations for the
different truncation approaches.
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Fig. 3. Diagonalisation metric vs. average order of Q̂(z) after truncation.

Crucially for a set level of diagonalisation, SBR2 with the

row-corrected truncation generates a paraunitary matrix of

lower cost than SMD, thereby negating one of the benefits

of the SMD approach identified in Sec. II and in [11] for this

particular source model.

E. Examples of Truncated Paraunitary Matrices

Figs. 4 and 5 illustrate the differences in the paraunitary

matrices for both the lag-based truncation method with the

row-corrected results overlaid. For clarity of the figures, the

initial parahermitian matrix has been reduced to R(z) ∈ C4×4

with all other simulation parameters remaining the same.

Clearly in the SBR2 paraunitary matrix the row shift corrected

approach has more of an effect than it does for SMD. Whereas

the maxima in the rows of the SBR2 paraunitary matrix are

delayed and spread out with respect to one another, the SMD

paraunitary maxima are clustered and delayed by a similar

amount. With SMD, the row-shift correction does not aid

in reducing the paraunitary matrix length. For the examples

shown in Figs. 4 and 5 the average reduction in order for the

row-corrected method is 21 for the SBR2 paraunitary matrix

but only 1 for SMD, and the total average row -orrected lengths
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Fig. 4. SBR2 paraunitary matrix truncated with µ = 10−4 using the lag
based [13] and row-shift corrected [3] truncation methods.
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Fig. 5. SMD paraunitary matrix truncated with µ = 10−4 using the lag
based [13] and row-shift corrected [3] truncation methods.

are 21 and 29 respectively.

V. CONCLUSION

The recently developed row-shift corrected truncation

method has been applied to both the SBR2 and now the

SMD PEVD algorithms with varying results. When applied

to paraunitary matrices produced by the SMD algorithm the

row corrected approach has less of an affect than it does

when paraunitary matrices from SBR2 are used. Although

not as dramatic as the SBR2 benefits, there are some minor

reductions in both reconstruction error and average paraunitary

order once the compensation factor for µ′ is applied. Rather

than using the approach of allowing a proportion of energy to

be removed from the paraunitary matrix it may be better to

specify a maximum acceptable reconstruction error as without

µ′ the row corrected approach would not be as effective.
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