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Abstract
We continue recent work on the problem of aggregating labellings of an argumentation framework
by adapting the distance-based framework of Miller and Osherson from binary judgment aggregation
to the argumentation setting. To instantiate the framework we employ some notions of labelling-
distance recently introduced by Booth et al., in the process generalising and extending some of the
latters’ results. We introduce some new postulates for distance methods based on the concept of
qualitative distance, and check their validity.

1 Introduction
The aggregation of conflicting opinions into a collective one is fundamental in multi-agent systems.
Individuals presented with the same set of conflicting arguments might take different rational positions.
The problem of aggregation in abstract argumentation has been explored in a number of recent papers
[1, 4, 10] which employ techniques from judgment aggregation (JA) [8] to the problem of aggregating
3-valued argument labellings. These works have shown that, as with classical JA, it is not possible to
define general aggregation operators that satisfy a number of seemingly mild constraints while ensuring
collective rationality of the outcome.

One way of getting around this problem in JA is to use one of the distance-based solution methods
that were studied by Miller and Osherson (hereafter MO)[9] within the framework of binary judgment
aggregation. As the name suggests these depend on a provided notion of distance measure between
binary judgment sets. In this paper we show how this option can also be used in the argumentation
setting. We first modify the MO framework for our purposes, before bringing in some notions of distance
between argument labellings that have been defined in [2]. We thus illustrate the usefulness of the
distance measures defined in that paper.

Along the way we generalise and extend some of the results in [2]. For example some of the MO
aggregation methods require a distance to be defined between any two arbitrary labellings of an argu-
mentation framework, whereas the most interesting distance measures of [2], such as the issue-based
distance, are defined only between complete labellings. We thus extend the definition of these distances
to apply to arbitrary labellings. We also look at two new postulates for distance measures between
labellings, based on the Normality and Increasing properties introduced by MO in the JA setting, and
confirm to what extent our distance methods conform with these postulates.

As well as a distance-measure, the MO methods also require up-front specification of an initial
aggregation operator, which intuitively can be thought of as a gold standard operator that satisfies a
number of basic postulates, without always yielding collectively rational results. In fact the MO methods
can be viewed as offering recipes to repair the result of this operator in the cases when it does not give
a collectively rational outcome. In the argumentation setting, Caminada and Pigozzi already suggested
another way to carry out such a repair in these cases, using what they called the down-admissible and
up-complete procedures [4]. Our work thus provides an alternative solution.
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2 Preliminaries
We use the familiar setting of abstract argumentation [5]. We start by assuming a countably infinite
set U of argument names, from which all possible argumentation frameworks are built. We restrict
ourselves to finite argumentation frameworks.

Definition 1. An argumentation framework (AF for short) A = (Args,⇀) is a pair consisting of a finite
set Args ⊆U of arguments and an attack relation ⇀⊆ Args×Args. We also use ArgsA and ⇀A to
denote the arguments and attack relation of a given AF A .

Definition 2. Let A = (Args,⇀) be an AF. An A -labelling is a function L : Args→{in,out,undec}.
The set of all A -labellings is denoted by Labs(A ). Given A⊆ Args we denote by L[A] the restriction of
L to A.

For notational purposes it is useful to define a unary “negation” operator on the set of labels by
¬in= out, ¬out= in and ¬undec= undec.

Of course a rational labelling should somehow respect the attack relation. This is embodied in the
following definition:

Definition 3. Let A be an AF and L ∈ Labs(A ). For any argument a ∈ ArgsA we say:

• a is legally in if L(a) = in and L(b) = out for all b ∈ ArgsA s.t. b ⇀A a,

• a is legally out if L(a) = out and L(b) = in for some b ∈ ArgsA s.t. b ⇀A a,

• a is legally undec if L(a) = undec and there is no b ∈ ArgsA s.t. b ⇀A a and L(b) = in, and
there exists c ∈ ArgsA s.t. c ⇀A a and L(c) = undec.

L is complete iff it has no illegally in and no illegally out and no illegally undec arguments. We denote
the set of complete A -labellings by Comp(A ).

In the rest of this paper we identify rational A -labellings with complete A -labellings. This is
because they form the basis for other semantics such as preferred, stable, semi-stable, etc (see [3]). This
choice is also in line with other works on aggregation in argumentation [1, 4, 10]. However we will also
make use later of the notion of admissible A -labelling, which is an A -labelling containing no illegally
in or illegally out arguments (but possibly containing illegally undec arguments).

Figure 1: Two aggregation frameworks with all their complete labellings (A1: l1-l9, A2: l1-l6), and three
other labellings (n1-n3).

Example 1. AFs can be visualised as directed graphs with nodes and edges representing arguments and
attacks respectively. Throughout the paper we will use the following two running example AFs A1 and
A2, both consisting of the five arguments {a,b,c,d,e}. We represent labellings by a string of letters i,
u and o corresponding to in,undec and out respectively. AF A1 has 9 complete labellings l1-l9. In A2
labellings l7− l9 are no longer complete because argument a is illegally-in due to the additional attack.
For both AFs the labellings n1 and n3 are not admissible (and hence not complete). For A1 the labelling
n2 is admissible but not complete. For A2 it is even not admissible because argument a is illegally-in.

Now we come to aggregation. We assume a set of agents Ag = {1, . . . ,n} (with n≥ 2) is fixed.

Definition 4. Let A be an AF. An A -profile is any n-tuple of A -labellings L = (L1, . . . ,Ln). If every
Li is a complete A -labelling then we call L a complete A -profile.

What we seek is a way to construct aggregation operators that, given any A -profile L as input,
return a set of A -labellings FA (L). Note that an aggregation operator is always defined in a context of
some specific AF A . More generally we are interested in an aggregation method that given any context
AF A will return in a systematic way an aggregation operator for A .



Definition 5. Let A be an AF. An (irresolute) aggregation operator (for A ) is a function FA that
assigns, to each A -profile L a set FA (L)⊆ Labs(A ). An aggregation method is a mapping that, given
any context AF A , returns an aggregation operator FA for A .

From now on we will drop the irresolute and just say aggregation operator. In previous works on
aggregation in argumentation the output is usually taken to be a single labelling, but we relax that here.
When important, we say a resolute aggregation operator for an operator which returns always a singleton
set. Also note for each A , FA is defined for all A -profiles (not necessarily just the complete ones), and
that the output of FA (L) is allowed to be any subset of A -labellings. Ideally, of course, we would like
the output to consist only of complete A -labellings, i.e., we want the following to hold:

Collective Rationality For all A and A -profiles L, FA (L)⊆Comp(A )

3 Miller and Osherson aggregation methods.
Miller and Osherson (hereafter MO) [9] described a framework for using distance measures to define
aggregation methods in binary judgment aggregation. In that setting agents evaluate a set of logical
propositions called an agenda by providing a judgement set which is an assignment of either True or
False to each proposition in the agenda. Their framework requires specification of two things:

1. An initial resolute aggregation method M that is able to give collectively rational answers in
simple cases. In their case they only considered the proposition-wise majority method, but in
principle any M can be used. The intuition is that if the outcome produced by M happens to be
collectively rational then there is no need to choose a different outcome.

2. A measure of distance between any two judgment sets of any given agenda. This measure is
assumed to be a metric.

Definition 6. A metric on a set X is a function d : X×X→R such that for all x,y,z∈ X , (i) if d(x,y) = 0
then x = y, (ii) d(x,x) = 0, (iii) d(x,y) = d(y,x), (iv) d(x,z) ≤ d(x,y)+d(y,z). A function d satisfying
(ii)-(iv) but not (i) is called a pseudometric.

In our argumentation setting, the roles of the agenda and the judgment set are filled by the AF A
and A -labelling respectively. We will make use of a distance method, which for each AF A returns a
distance measure over A -labellings.

Definition 7. Let A be an AF. A distance measure dA for A is a metric on the set Labs(A ). A distance
method d is a function that associates a distance measure dA to each AF A .

We can extend a distance measure dA so that it also returns distance from an A -profile to an A -
labelling, as well as distance between 2 A -profiles. For L ∈ Labs(A ) and profiles L = (L1, . . . ,Ln),
L′ = (L′1, . . . ,L

′
n) ∈ Labs(A )n we define

dA (L,L) =
n

∑
i=1

dA (Li,L), dA (L,L′) =
n

∑
i=1

dA (Li,L′i).

Also required for MO is the notion of M-consistent profile. These are the profiles that, when passed
to M, result in a collectively rational outcome.

Definition 8. Let A be an AF, L ∈ Labs(A )n and M a resolute aggregation method. Then L is M-
consistent (for A ) iff MA (L)∈Comp(A ). We denote by ConsA (M) the set of M-consistent A -profiles,
and by ConsA (M,Comp) the set ConsA (M)∩Comp(A )n.

MO describe four different ways in which all the above ingredients can be combined, resulting in
four classes of aggregation methods which we now describe. First some notation: For any function
f : X → Y and sets D⊆ X , C ⊆ Y we denote the image of D by f (D) = { f (x) | x ∈ D} and the inverse
image of C by f−1(C) = {x ∈ X | f (x) ∈C}. The subset of D for which f obtains its minimal value is
returned by the operator argminx∈D f (x) = {x ∈ D | f (x)≤ f (x′) for all x′ ∈ D}.



Definition 9 ([9]). Let d be distance method and M a resolute aggregation method. The four aggregation
methods Pd , EM,d , FM,d and OM,d are defined by setting, for each AF A and A -profile L:

Pd
A (L) = argmin

L∈Comp(A )

dA (L,L)

E
M,d
A (L) = argmin

L∈Comp(A )

dA (MA (L),L)

F
M,d
A (L) = MA

(
argmin

L′∈ConsA (M,Comp)
dA (L,L′)

)
O

M,d
A (L) = MA

(
argmin

L′∈ConsA (M)

dA (L,L′)
)

All four MO aggregation methods minimise distance to ensure the collective outcome is rational.
The P and E methods minimise the distance over all complete labellings. P (or Prototype) returns the
complete labellings closest to the profile L. E (or Endpoint) returns the complete labellings closest to the
labelling returned by initial aggregator MA (L), which possibly is not complete. The F and O (for Full
and Output resp.) methods select the M-consistent profiles closest to L and then applies MA to them.
The difference between these two is that O performs its selection from among all M-consistent profiles,
while F selects only from those that are, in addition, themselves complete.

Some observations in these definitions: (i) All four aggregation methods are potentially irresolute.
(ii) P doesn’t require an initial aggregator M, only a distance method d. The other three all rely on M.
(iii) A distance method d used in E and O needs to return the distance between all labellings. In contrast,
for P and F it is enough that d is defined only between complete labellings.

If we want to apply MO to our problem of aggregating labellings we need to instantiate the two
parameters M and d. Let’s look at each in turn.

3.1 Initial aggregation methods
An interesting family of resolute aggregation methods has been defined in [1], namely the interval
aggregation methods. Formally, let Intn be the set of intervals of non-zero length in {0,1, . . . ,n}, i.e.,
Intn = {(k, l) | k < l, k, l ∈ {0,1, . . . ,n}}. Let Y ⊆ Intn be some subset of distinguished intervals in Intn.
Then we define aggregation method FY by setting, for each A , A -profile L and a ∈ ArgsA :

[FY
A (L)](a) =

{
x if x ∈ {in,out} and (|V L

a:¬x|, |V L
a:x|) ∈ Y

undec otherwise,

where, for any x ∈ {in,out,undec}, V L
a:x denotes {i ∈ Ag | Li(a) = x}. A particular member of this

family, which we will use in our examples, is the credulous aggregation method [4], denoted by cio.
This is obtained by taking Ycio = {(0, l) ∈ Intn | l > 0}. The credulous method cio returns a collective
label of in (resp. out) to an argument if at least one agent votes for in (resp. out) while none vote for
the opposite label out (resp. in). Otherwise it returns undec.

Interval methods may be characterised by a number of postulates such as Anonymity, Unanimity and
AF-Independence (the collective label of a is calculated independently of which other arguments might
be present or absent from A ). However, despite their simplicity, there is no interval method that satisfies
Collective Rationality (we refer the reader to [1] for the details).

3.2 Labelling distance methods
In [2] a few distance methods were proposed, although that paper was concerned only in defining dis-
tances between complete A -labellings rather than between any two arbitrary A -labellings. (This is a
point we will return to later.) The idea is first to define a distance diff over the set {in,out,undec} of
labels and then define the distance between two A -labellings as a sum over some set of arguments of
the distances between labels assigned by those A -labellings to arguments from the set. Formally, all of
the distance methods of [2] shared the following form, given A and L1,L2 ∈Comp(A ):

ddiff ,S
A (L1,L2) = ∑

a∈S(A )

diff (L1(a),L2(a)) (1)

where (i) diff is a metric over the set of labels and (ii) S is a function that, for each AF A selects a
subset A ⊆ ArgsA of “important” arguments in A . A number of different combinations of diff and S
were considered in [2].



In particular two distance metrics between labels were considered - discrete metrics, i.e. diff D(x,y)=
1 if x 6= y, diff D(x,y) = 0 if x= y (which, when plugged into the method sddiff below results in taking
the Hamming distance between labellings), and a distance metric which assigns 2 to the hard conflict,
i.e. diff rh(in,out) = 2, and 1 to soft conflicts, i.e. diff rh(in,undec) = diff rh(out,undec) = 1 (which
when plugged into sddiff results in the refined Hamming distance - see [2]).

Regarding S, three options were considered. The most obvious idea is to take S(A ) = ArgsA . We
denote by sddiff the resulting distance method. As was shown in [2][Sect. 6], the drawback with this
method is that it somehow leads to “double-counting” of label differences that are already in some sense
implied by others. This leads us to focus on critical sets (originally due to [6] but here generalised to
make it relative to X ).

Definition 10. Given A and X ∈ {Labs,Comp}, a set of arguments A⊆ ArgsA is X -critical (for A )
iff for any L1,L2 ∈X (A ), if L1[A] = L2[A] then L1 = L2.

A X -critical set is a set of arguments such that any two X -labellings are different iff they label at
least one argument in the set differently. Note there is only one Labs-critical set for A , namely ArgsA .
An idea explored in [2] was for S(A ) to always select some ⊆-minimal Comp-critical set for A . This
leads to the definition of the critical sets distance method, denoted by cddiff ,S. A problem with this
is that different choices of minimal critical set can yield quite different results. The distance method
finally arrived at in [2] uses the notion of issue (again generalised below to make it relative to X ).

Definition 11. Given X ∈ {Labs,Comp} we define an equivalence relation≡X over ArgsA by setting
a ≡X b iff either [L(a) = L(b) for all L ∈X (A )] or [L(a) = ¬L(b) for all L ∈X (A )]. Each ≡X -
equivalence class is called an X -issue, and we denote the ≡X -equivalence class to which a belongs
by [a]X .

If a≡X b then either a,b are always labelled the same by every labelling in X , or they are always
labelled “opposite”. Thus changing the label of one of them always produces a change of equal magni-
tude in the label of the other. The idea behind the issue-based distance method iddiff ,S is to form S(A )
by selecting one representative from each Comp-issue. Note S(A ) so defined will return a Comp-
critical set for A , though not necessarily a minimal one. It was also shown in [2] that the resulting
distance is independent of the choice of representative from the Comp-issue. In [2] it was shown that
iddiff ,S forms a metric over Comp(A ). Below we give a more general result.

Proposition 1. Let X ∈ {Labs,Comp}. For any label metric diff and any function S, the function
ddiff ,S

A defined in (1) defines a pseudometric over X (A ). Moreover, it defines a metric over X (A ) iff
S(A ) is X -critical.

In [2] it was assumed the above distances were defined only between complete labellings. In this
case iddiff ,S seems to be a good candidate to use in MO. But two of the MO aggregation methods,
namely E and O, require distance to be defined between all labellings, and in this case Prop. 1 gives us a
problem, for it tells us that the only way for any distance method of the form (1) to yield a metric over
the whole set Labs(A ) is if S(A ) = ArgsA . The question is, is there any alternative way to define a
distance method such that dA is a metric over Labs(A ), but which agrees with iddiff ,S on Comp(A )?
Here we give one possibility. The idea is to take a sum over all arguments, but to weight the contribution
of a in the sum by the inverse of the size of the Comp-issue to which a belongs. This gives rise to the
extended issue-based distance method eiddiff .

eiddiff
A (L1,L2) = ∑

a∈ArgsA

diff (L1(a),L2(a))
|[a]Comp|

Proposition 2. (i). eiddiff
A is a metric over Labs(A ) (ii). eiddiff

A (L1,L2) = iddiff ,S
A (L1,L2) for all L1,L2 ∈

Comp(A ).

Therefore we have two distance methods that can be used freely on Labs(A ): sddiff and eiddiff .

Example 2. Table 1 presents some distances returned by d = eiddiff
A2

, where diff = diff rh and A2 is from
Fig. 1. ArgsA2

partitions into three Comp-issues {a,b},{c} and {d,e}. Let us calculate a few entries
as an example: d(l1, l2) = 2 because there is no conflict over first two issues and there is a hard conflict
over the last one (0+0+2); d(l3, l4) = 2 because there are two soft conflicts over the first and the last
issue and no conflict on the middle one (1+0+1); d(l5,n4) = 1.5 because there is half of a soft conflict
over the first issue and a soft conflict over the second one (0.5+1+0); etc.



l1 l2 l3 l4 l5 l6 n1 n2 n3 n4
l1 : oioio 0.0 2.0 1.0 1.0 4.0 3.0 2.0 5.0 5.0 4.5
l2 : oiooi 2.0 0.0 1.0 3.0 2.0 3.0 2.0 3.0 3.0 2.5
l3 : oiouu 1.0 1.0 0.0 2.0 3.0 2.0 1.0 4.0 4.0 3.5
l4 : uuoio 1.0 3.0 2.0 0.0 3.0 2.0 1.0 4.0 4.0 4.5
l5 : uuuoi 4.0 2.0 3.0 3.0 0.0 1.0 2.0 1.0 1.0 1.5
l6 : uuuuu 3.0 3.0 2.0 2.0 1.0 0.0 1.0 2.0 2.0 2.5
n1 : uuouu 2.0 2.0 1.0 1.0 2.0 1.0 0.0 3.0 3.0 3.5
n2 : iouoi 5.0 3.0 4.0 4.0 1.0 2.0 3.0 0.0 2.0 2.5
n3 : uuioi 5.0 3.0 4.0 4.0 1.0 2.0 3.0 2.0 0.0 0.5
n4 : uiioi 4.5 2.5 3.5 4.5 1.5 2.5 3.5 2.5 0.5 0.0

Table 1: Distance between labellings by eiddiff with refined Hamming distance diff rh over the labels.

cio(L) P(L) E(L) O(L) F(L) cio(L) P(L) E(L) O(L) F(L)
n1 l5 l3 l4 l6 l3 l6 l3 n1 l5 l6 l6 l3

a u u o u u o u o a u u u u o
b u u i u u i u i b u u u u i
c o u o o u o u o c o u u u o
d u o u i u u u u d u o u u u
e u i u o u u u u e u i u u u

Table 2: Aggregation of the profile L = (l4 : uuoio, l5 : uuuoi, l5 : uuuoi) - outcomes for different MO
aggregation methods used with: extended issue-based labelling distance (left table), and sum over all
arguments (right table). In both columns refined hamming distance over the labels and credulous initial
operator were used.

3.3 Example of the MO methods
We illustrate the MO methods in our setting by continuing with the AF A2 from Fig. 1. The A2-
profile L = (l4 : uuoio, l5 : uuuoi, l5 : uuuoi) aggregated with cio results in the non-complete labelling
n1 : uuouu. The result of repairing it with MO methods is listed in Table 2.

In the left column the MO methods were instantiated with eiddiff with diff = diff rh. Method P returns
the closest complete labelling to the profile L. We calculate the distance between L and labellings l1− l6
by adding distances from the row l4 (Table 1) to the doubled distances from the row l5 and receive
9,7,8,6,3,4 respectively. The minimum is obtained for labelling l5 : uuuoi.

The E procedure returns the closest complete labelling to cio(L). We inspect the row n1 in Table 1
to find that the minimum distance 1 is obtained for l3, l4 and l6.

The F and O procedures search for closest cio-consistent profiles L′ to profile L. The F procedure is
restricted to the complete cio-consistent profiles. Consider L′ = (l1 : oioio, l5 : uuoio, l5 : uuoio). It
is a cio-consistent profile with cio(L′) = l3 : oiouu. It is also minimal. The profiles L and L′ differ just
on l1 and l4 with distance 1 (soft conflict on issue {a,b}). There are no other complete cio-consistent
profiles with different cio outcome and same distance, because any change of labelling l4 to another
complete labelling costs more than 1. The only other candidate for change is labelling l5. It can be
changed to l6 : uuuuu for a cost of 1 but to affect the outcome of cio both occurrences of l5 in L would
have to be changed with a total cost of 2. The profile L′ works for the O procedure as well but O is
not restricted to complete cio-consistent profiles. Changing one of the l5 labellings to a non-complete
labelling n3 : uuioi with distance 1 creates additional conflict on argument c. As a result the labelling
l6 : uuuuu is produced.

The results change when we switch to using sddiff (with diff = diff rh) rather than eiddiff (right col-
umn). In this case size of the issues does matter. The E procedure only selects l6 because it differs with
n1 over issue {c}with one argument, while the other two labellings l3, l4 differ over the two-argument is-
sues {a,b} and {d,e} respectively. Similarly in the case of O changing l5 into n3 over a single-argument
issue is closer than the change of l4 into l1 over an issue with two arguments.

4 Qualitative distance postulates
In this section we consider two new postulates for distance measures in argumentation, which are in-
spired by similar postulates considered in the binary aggregation of MO.



One intuition that MO have about distance between judgment sets in their setting is that the quan-
titative distance between two judgment sets X ,Y , expressed by d(X ,Y ), should depend only on the
qualitative distance between them. In their binary setting in which every judgment set either accepts or
rejects each agenda item, the natural way to measure such qualitative distance is simply to take the set
of agenda items that X and Y differ on. In our 3-valued setting we can have two labellings that disagree
on an argument to differing degrees. We thus adapt the notion of qualitative distance as follows:

Definition 12. Let A be an AF and L1,L2 ∈ Labs(A ). The qualitative distance between L1 and L2,
denoted L1	L2, is defined as L1	L2 = 〈C(L1,L2),H(L1,L2)〉, where C(L1,L2) and H(L1,L2) are resp.

the sets of conflicts and of hard conflicts between L1 and L2, i.e., C(L1,L2)
def
= {a ∈ ArgsA | L1(a) 6=

L2(a)} and H(L1,L2)
def
= {a ∈ ArgsA | L1(a) = ¬L2(a) 6= undec}.

Note that H(L1,L2) ⊆ C(L1,L2). We can define a natural ordering between different qualitative
distances as follows:

L1	L2 � N1	N2 iff [C(L1,L2)⊆C(N1,N2) and H(L1,L2)⊆ H(N1,N2)]

So if every conflict, resp. hard conflict, between L1,L2 remains a conflict, resp. hard conflict, between
N1,N2 then the disagreement between N1,N2 is qualitatively at least as large as that between L1,L2. One
can check that� forms a preorder on Labs(A )2. We denote the strict part of� by≺. We can now adapt
the distance property of Normality [9] to our setting. It expresses that a (weak) increase in qualitative
distance should yield a (weak) increase in quantitative distance.

Normality If L1	L2 � N1	N2 then dA (L1,L2)≤ dA (N1,N2)

If Normality holds then clearly we also have that if L1	L2 =N1	N2 then dA (L1,L2) = dA (N1,N2).
Thus if Normality is required then the problem of defining a distance measure dA for A essentially
reduces to the problem of assigning a number to L1	L2 for each L1,L2 ∈ Labs(A )2.

Example 3. For A2 from Fig. 1 we have l2	 l3 = l5	 l6 = 〈{d,e}, /0〉 � 〈{d,e},{d,e}〉= l1	 l2. Hence
if d satisfies Normality we must have dA2(l2, l3) = dA2(l5, l6)≤ dA2(l1, l2).

Similarly we can postulate that a strict increase in qualitative distance should lead to a strict increase
in quantitative distance, leading to the following adaptation of the Increasing property of MO:

Increasing If L1	L2 ≺ N1	N2 then dA (L1,L2)< dA (N1,N2)

How do the distance methods described in the previous section fare with respect to Normality and
Increasing? As we see, provided diff satisfies certain conditions then at least some of them validate
these postulates.

Proposition 3. (i). Assume the label metric diff satisfies diff (in,out)≥ diff (in,undec)= diff (out,undec).
Then all of sddiff

A , cddiff ,S
A , iddiff ,S

A and eiddiff
A satisfy Normality over Labs(A ) (and hence also over

Comp(A )).
(ii). Assume the label metric diff satisfies diff (in,out) > diff (in,undec) = diff (out,undec). Then
(1). sddiff

A and eiddiff
A satisfy Increasing over Labs(A ) (and hence also Comp(A )). (2). iddiff ,S

A sat-
isfies Increasing over Comp(A ), but not over Labs(A ). (3) cddiff ,S

A does not satisfy Increasing over
Comp(A ) (and hence also not over Labs(A )).

Observe that diff rh satisfies both conditions mentioned in (i), (ii) above, and so can be plugged into
sddiff or eiddiff to obtain a distance method satisfying both Normality and Increasing.

Surprisingly, cddiff ,S fails Increasing even when restricted to Comp(A ), as the next example demon-
strates.

Example 4. Consider A1 from Fig. 1. There are three Comp-issues: {a,b},{c},{d,e}. But the label
of e is determined by the labels of the other arguments, so there are 4 possible minimal Comp-critical
sets {a,b} × {d,e}. Let’s take {a,d} as our selected minimal set (though the counterexample will
also work for any of the other three possible choices). Consider labellings l1 : oioio, l8 : ioioi and
l2 : oiooi, l7 : iooio. We have l2	 l7 = 〈{a,b,d,e},{a,b,d,e}〉≺ 〈{a,b,c,d,e},{a,b,c,d,e}〉= l1	 l8
but d(l2, l7) = d(l1, l8) = 2×diff (in,out).



5 Conclusions
We have continued work on distance methods for argumentation that was initiated in [2], illustrating
how they can be employed to address problems of aggregation in argumentation. To do this we adapted
the framework of Miller and Osherson from binary judgment aggregation to our setting, defining several
operators for aggregating argument labellings. In the process we extended and generalised some results
on the distance measures from [2]. We also examined an adaptation of the MO postulates Normality
and Increasing to our setting and were able to identify the circumstances under which they hold. Under
some mild conditions on the label metric diff , it turned out that only two of our distance methods,
namely sddiff and the extended issue-based method eiddiff are able to satisfy both without restriction on
their domain Labs(A ).

There are several avenues open for future work. Firstly, a feature of our examples (see Sect. 3.3) is
that the different aggregation methods can all yield quite different results. This raises the question of
which method to prefer. We plan to classify the different methods in terms of the postulates they satisfy.
Previous works on labelling aggregation [1, 10] have examined postulates for such operators (inspired
by postulates from JA), but have done so only for resolute aggregation methods. We will generalise
these to irresolute methods, perhaps taking a lead from similar generalisations from JA [7].

Secondly, it can be shown that aggregation methods which use the down-admissible and up-complete
procedures of [4] can be represented as an instance of Endpoint method. We would like to investigate
the classes of aggregation operators given by different distance methods and relate them to the ones
which use down-admissible and up-complete procedures.

Another interesting question is to consider what happens if you aggregate all complete A -labellings
of an AF. This question was considered in [4], but again only for resolute operators. In this way the
operators of [4] were able to characterise certain single-status argumentation semantics (i.e., grounded
and ideal). Our move to irresolute aggregation opens the possibility that we might be able to capture
also some multiple-status semantics such as preferred [5]. That is, does aggregating all complete A -
labellings yield precisely the set of preferred A -labellings?
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