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Abstract
The field of iterated belief change has focused
mainly on revision, with the other main operator
of AGM belief change theory, i.e., contraction re-
ceiving relatively little attention. In this paper we
extend the Harper Identity from single-step change
to define iterated contraction in terms of iterated re-
vision. Specifically, just as the Harper Identity pro-
vides a recipe for defining the belief set resulting
from contracting A in terms of (i) the initial be-
lief set and (ii) the belief set resulting from revision
by ¬A, we look at ways to define the plausibility
ordering over worlds resulting from contracting A
in terms of (iii) the initial plausibility ordering, and
(iv) the plausibility ordering resulting from revision
by ¬A. After noting that the most straightforward
such extension leads to a trivialisation of the space
of permissible orderings, we provide a family of
operators for combining plausibility orderings that
avoid such a result. These operators are charac-
terised in our domain of interest by a pair of in-
tuitively compelling properties, which turn out to
enable the derivation of a number of iterated con-
traction postulates from postulates for iterated revi-
sion. We finish by observing that a salient member
of this family allows for the derivation of counter-
parts for contraction of some well known iterated
revision operators, as well as for defining new iter-
ated contraction operators.

1 Introduction
Since the publication of Darwiche and Pearl’s seminal pa-
per on the topic in the mid 90’s [Darwiche and Pearl, 1997],
a substantial body of research has now accumulated on the
problem of iterated belief revision–the problem of how to
adjust one’s corpus of beliefs in response to a temporal se-
quence of successive additions to its members [Booth and
Meyer, 2006; 2011; Boutilier, 1996; Jin and Thielscher, 2007;
Nayak et al., 2003; Peppas, 2014].

In contrast, work on the parallel problem of iterated
contraction–the problem of how to adjust one’s corpus in re-
sponse to a sequence of successive retractions–was only ini-
tiated far more recently and remains comparatively under-

developed [Chopra et al., 2008; Hansson, 2012; Hild and
Spohn, 2008; Nayak et al., 2006; 2007; Ramachandran et al.,
2012; Rott, 2009].

One obvious way to level out this discrepancy would be
to introduce a principle that enables us to derive, from con-
straints on iterated revision, corresponding constraints on it-
erated contraction. But while there exists a well known and
widely accepted postulate connecting single-shot revision and
contraction, the ‘Harper Identity’ [Harper, 1976], there has
been no discussion to date of how to extend this principle to
the iterated case.1 One idea, which we pursue in this paper, is
that whereas the Harper Identity says the belief set resulting
from contracting sentence A should be formed by combining
(i) the initial belief set and (ii) the belief set resulting from
revision by ¬A, we look for ways to define the plausibility
ordering over worlds resulting from contracting A in terms
of (iii) the initial plausibility ordering, and (iv) the plausibil-
ity ordering resulting from revision by ¬A.

In the present paper, we first of all show that the simplest
extension of the Harper Identity to iterated belief change is
too strong a principle, being inconsistent with basic princi-
ples of belief dynamics on pains of triviality (Section 3). This
leads us to consider a set of collectively weaker principles,
which we show to characterise, in our domain of interest, a
family of binary combination operators for total preorders
that we call TeamQueue combinators (Section 4). After re-
capitulating a number of existing postulates from both iter-
ated revision and contraction, we show how these two lists
of postulates can be linked via the use of any TeamQueue
combinator (Section 5). Then we prove some more specific
results of this type using a particular TeamQueue combinator
that we call Synchronous TeamQueue (Section 6). Finally we
conclude and mention some ideas for future work.

Due to space limitations, proofs or proof sketches are only
provided for a small subset of the propositions stated. A ver-
sion of the paper containing full proofs can be accessed online
at http://arxiv.org/abs/1604.05419.

1It should be noted that [Nayak et al., 2006] and Ramachandran
et al [Ramachandran et al., 2012] do propose a principle that they
call the ‘New Harper Identity’. But while this may be suggestive of
an attempted extension of the Harper Identity to the iterated case, the
New Harper Identity simply appears to be a representation, in terms
of plausibility orderings, of a particular set of postulates for iterated
contraction.



2 Preliminaries
We represent the beliefs of an agent by a so-called belief
state Ψ, which we treat as a primitive. Ψ determines a be-
lief set [Ψ], a deductively closed set of sentences, drawn from
a finitely generated propositional, truth-functional language
L. The set of classical logical consequences of a sentence
A ∈ L is denoted by Cn(A). The set of propositional worlds
is denoted by W , and the set of models of a given sentence A
is denoted by [[A]].

The dynamics of belief states are modelled by two
operations–contraction and revision, which respectively re-
turn the posterior belief states Ψ ∗ A and Ψ ÷ A resulting
from an adjustment of the prior belief state Ψ to accommo-
date, respectively, the inclusion and exclusion of A.

We assume that these operations satisfy the so-called AGM
postulates [Alchourrón et al., 1985], which enforce a princi-
ple of ‘minimal mutilation’ of the initial belief set in meeting
the relevant exclusion or inclusion constraint. Regarding re-
vision, we have:

(AGM∗1) Cn([Ψ ∗A]) ⊆ [Ψ ∗A]

(AGM∗2) A ∈ [Ψ ∗A]

(AGM∗3) [Ψ ∗A] ⊆ Cn([Ψ] ∪ {A})
(AGM∗4) If ¬A /∈ [Ψ], then Cn([Ψ] ∪ {A}) ⊆ [Ψ ∗A]

(AGM∗5) If A is consistent, then so too is [Ψ ∗A]

(AGM∗6) If Cn(A) = Cn(B), then [Ψ ∗A] = [Ψ ∗B]

(AGM∗7) [Ψ ∗ (A ∧B)] ⊆ Cn([Ψ ∗A] ∪ {B})
(AGM∗8) If ¬B /∈ [Ψ ∗A], then Cn([Ψ ∗A] ∪ {B}) ⊆

[Ψ ∗ (A ∧B)]

Regarding contraction:

(AGM÷1) Cn([Ψ÷A]) ⊆ [Ψ÷A]

(AGM÷2) [Ψ÷A] ⊆ [Ψ]

(AGM÷3) If A /∈ [Ψ], then [Ψ÷A] = [Ψ]

(AGM÷4) If A /∈ Cn(∅), then A /∈ [Ψ÷A]

(AGM÷5) If A ∈ [Ψ], then [Ψ] ⊆ Cn([Ψ÷A] ∪ {A})
(AGM÷6) If Cn(A) = Cn(B), then [Ψ÷A] = [Ψ÷B]

(AGM÷7) [Ψ÷A] ∩ [Ψ÷B] ⊆ [Ψ÷A ∧B]

(AGM÷8) If A /∈ [Ψ÷A ∧B], then [Ψ÷A ∧B] ⊆
[Ψ÷A]

We also assume that they are linked in the one-step case by
the Harper Identity (HI):

(HI) [Ψ÷A] = [Ψ] ∩ [Ψ ∗ ¬A]

We follow a number of authors in making use of a ‘semantic’
representation of the ‘syntactic’ one-step revision and con-
traction dispositions associated with a particular belief state
Ψ in terms of a total preorder (tpo) �Ψ over the set W of
possible worlds. Intuitively �Ψ orders the worlds according
to plausibility (with more plausible worlds lower down the
ordering). Then the set min(�Ψ, [[A]]) := {x ∈ [[A]] | ∀y ∈
[[A]], x �Ψ y} of minimal A-worlds corresponds to the set of
worlds in which all and only the sentences in [Ψ∗A] are true,
with [[[Ψ]]] = min(�Ψ,W ) for any Ψ (see, for instance, the

representation results in [Grove, 1988; Katsuno and Mendel-
zon, 1991]). Viewed in this way, the question of iterated be-
lief change becomes a question about the dynamics of�Ψ un-
der contraction and revision, with HI translating into the con-
straint min(�Ψ÷A,W ) = min(�Ψ,W ) ∪min(�Ψ∗¬A,W ).
We will denote the set of all tpos over W by T (W ). The
strict part of �Ψ will be denoted by ≺Ψ and its symmetric
part by ∼Ψ.

A tpo �Ψ can also be represented by an ordered parti-
tion 〈S1, S2, . . . Sm〉 of W , with x �Ψ y iff r(x,�Ψ) ≤
r(y,�Ψ), where r(x,�Ψ) denotes the ‘rank’ of x with re-
spect to �Ψ and is defined by taking Sr(x,�Ψ) to be the cell
in the partition that contains x.

3 A triviality result
What should an agent believe after performing a contraction
followed by a revision? We would like to extend the Harper
Identity to cover this case.

In syntactic terms, the most straightforward suggestion
would be to simply extend HI to cover not just one’s beliefs,
but also one’s commitments to retain or lose various beliefs
upon subsequent revisions:

(EHI) [(Ψ÷A) ∗B] = [Ψ ∗B] ∩ [(Ψ ∗ ¬A) ∗B]

If B ≡ > then we obtain HI as a special case. Note that under
weak assumptions, EHI can equivalently be restated in terms
of contraction only:

Proposition 1 EHI entails

(EHIC) [(Ψ÷A)÷B] = [Ψ] ∩ [Ψ ∗ ¬B] ∩ [Ψ ∗ ¬A]
∩[(Ψ ∗ ¬A) ∗ ¬B]

and is equivalent to it in the presence of AGM∗3 and the Levi
Identity:

(LI) [Ψ ∗A] = Cn([Ψ÷ ¬A] ∪ {A}).

However, as Gärdenfors’ classic triviality result and its sub-
sequent refinements [Gärdenfors, 1986; Rott, 1989; Etlin,
2009] have taught us, the unqualified extension of principles
of belief dynamics to cover conditional beliefs is a risky busi-
ness. And as it turns out, the above proposal is too strong:
it can be shown that, under mild constraints on single shot
revision and contraction, it places unacceptable restrictions
on the space of permissible belief sets resulting from single
revisions:

Proposition 2 In the presence of AGM∗5, AGM∗6 and
AGM÷3, EHI (and more specifically, HI, alongside its left-
to-right half [(Ψ ÷ A) ∗ B] ⊆ [Ψ ∗ B] ∩ [(Ψ ∗ ¬A) ∗ B])
entails that there does not exist a belief state Ψ such that:
(i) [Ψ] = Cn(p ∧ q), (ii) [Ψ ∗ ¬p] = Cn(¬p ∧ q) and (iii)
[Ψ ∗ p ↔ ¬q] = Cn(p ↔ ¬q), where p and q are proposi-
tional atoms.

Proof: We first show that HI and the left-to-right half of EHI
jointly entail that [(Ψ÷A)÷B] ⊆ [Ψ ∗ ¬B]. Indeed, by HI,
[(Ψ÷A)÷B] = [Ψ÷A]∩ [(Ψ÷A)∗¬B] ⊆ [(Ψ÷A)∗¬B].
By the left-to-right half of EHI, we then have [(Ψ÷A)÷B] ⊆
[Ψ ∗ ¬B] ∩ [(Ψ ∗ ¬A) ∗ ¬B] ⊆ [Ψ ∗ ¬B] as required.



We now establish that, in the presence of AGM∗5, AGM∗6
and AGM÷3, HI and the left-to-right half of EHI jointly en-
tail the following “vacuity” principle:
(VAC) If A is consistent and B ∈ [Ψ ∗A], then [Ψ]

∩[Ψ ∗A] ⊆ [Ψ ∗B]

Indeed, assume that A is consistent and that B ∈ [Ψ ∗ A].
Since A is consistent, so too is [Ψ∗A], by AGM∗5, and hence
¬B /∈ [Ψ∗A]. Since, by HI, we have [Ψ÷¬A] = [Ψ]∩[Ψ∗A]
(with help from AGM∗6), it follows that ¬B /∈ [Ψ ÷ ¬A].
Given AGM÷3, we then have [(Ψ÷¬A)÷¬B] = [Ψ÷¬A],
and, by HI, [(Ψ÷¬A)÷¬B] = [Ψ]∩[Ψ∗A]. By the inclusion
[(Ψ ÷ ¬A) ÷ ¬B] ⊆ [Ψ ∗ B], which we have shown above
to be derivable from HI and the left-to-right half of EHI (plus
AGM∗6), it then follows that [Ψ] ∩ [Ψ ∗ A] ⊆ [Ψ ∗ B], as
required.

With this in place, assume VAC and, for reductio, that there
exists a belief set satisfying (i) to (iii). It follows from (ii) that
p ↔ ¬q ∈ [Ψ ∗ ¬p]. Given the latter, it then follows from
VAC that [Ψ] ∩ [Ψ ∗ ¬p] ⊆ [Ψ ∗ p↔ ¬q]. But by (i) and (ii),
[Ψ]∩ [Ψ∗¬p] = Cn(p∧q)∩Cn(¬p∧q) = Cn(q). Hence, by
[Ψ]∩[Ψ∗¬p] ⊆ [Ψ∗p↔ ¬q], we have q ∈ [Ψ∗p↔ ¬q]. But
(iii) tells us that [Ψ∗p↔ ¬q] = Cn(p↔ ¬q). Contradiction.
QED.2

The above strategy and its shortcomings can equivalently be
recast in semantic terms. Let us call a function ⊕ that takes
pairs of tpos as inputs and yields a tpo as an output a tpo
combination operator, or a ‘combinator’. For convenience,
we denote �1⊕�2 by ‘�1⊕2’.

In extending the Harper Identity to the iterated case, we
are essentially looking for an appropriate combinator ⊕ such
that:
(COMBI) �Ψ÷A=�Ψ⊕�Ψ∗¬A

Now, just as HI corresponds, given COMBI, to the following
semantic principle:
(⊕HI) min(�1⊕2,W ) = min(�1,W ) ∪min(�2,W )

EHI amounts to
(⊕EHI) For all S ⊆W , min(�1⊕2, S) = min(�1, S)∪

min(�2, S)

What our result above effectively demonstrates is that no
combinator ⊕ satisfies ⊕EHI unless we place undesirable re-
strictions on its domain: ⊕EHI is too much to ask for.

We will continue approaching our issue of interest from
a predominantly semantic perspective for the remainder of
the paper. In the following section, we retreat from ⊕EHI to
offer an altogether weaker set of minimal postulates for ⊕,
before taking a look at a concrete family of ‘Team Queuing’
combinators that satisfy them. We first establish a general
characterisation of this family before showing that our set of
minimal postulates suffices to characterise it in our restricted
domain of interest.

2The problem that we have just noted for EHI is closely related to
the observation that an intersection of two sets of ‘rational doxastic
conditionals’ need not itself be rational, which is familiar from the
literature on default reasoning [Lehmann and Magidor, 1992].

4 Combinators: the bottom line
Since we are in the business of extending the Harper Iden-
tity, we will begin by requiring satisfaction of ⊕HI. We call
combinators that satisfy this property ‘basic’ combinators.

In addition, even though EHI is too strong, certain weak-
enings of it do seem to be compelling. Specifically, it seems
appropriate to require that our combination method leads to
the following weak lower and upper bound principles:
(LB) [Ψ ∗B] ∩ [(Ψ ∗ ¬A) ∗B] ⊆ [(Ψ÷A) ∗B]

(UB) [(Ψ÷A) ∗B] ⊆ [Ψ ∗B] ∪ [(Ψ ∗ ¬A) ∗B]

We note that the former corresponds to the half of EHI that
was not implicated in our earlier triviality result. Given
COMBI, these will be ensured by requiring, respectively, the
following upper and lower bounds on min(�1⊕2, S) for any
S ⊆ W (note an upper, resp. lower bound on world-sets
yields a lower, resp. upper bound on belief sets):
(⊕UB) min(�1⊕2, S) ⊆ min(�1, S) ∪min(�2, S)

(⊕LB) Either min(�1, S) ⊆ min(�1⊕2, S) or
min(�2, S) ⊆ min(�1⊕2, S)

⊕UB and⊕LB can be repackaged using only binary compar-
isons:
Proposition 3 ⊕UB and ⊕LB are respectively equivalent to
the following:
(⊕SPU+) If x ≺1 y and z ≺2 y then either x ≺1⊕2 y or

z ≺1⊕2 y
(⊕WPU+) If x �1 y and z �2 y then either x �1⊕2 y or

z �1⊕2 y

⊕SPU+ and ⊕WPU+ owe their names to their being respec-
tive strengthenings of the following principles of strict and
weak preference unanimity, which are analogues of the ‘weak
Pareto’ and ‘Pareto weak preference’ principles found in the
social choice literature:
(⊕SPU) If x ≺1 y and x ≺2 y then x ≺1⊕2 y

(⊕WPU) If x �1 y and x �2 y then x �1⊕2 y

We now consider a concrete family of basic combinators that
satisfy both⊕SPU+ and⊕WPU+, and, indeed, can be shown
to be characterised by precisely these principles in our do-
main of interest. We call these ‘TeamQueue’ combinators.

The basic idea behind this family–and motivation behind
the name given to it–can be grasped by means of the follow-
ing analogy: A number of couples go shopping for groceries.
The supermarket that they frequent is equipped with two tills.
For each till, we find a sequence of various groups of peo-
ple queueing to pay for their items. In order to minimise the
time spent in the store, each couple operates by “team queue-
ing”: each member of the pair joins a group in a different
queue and leaves their place to join their partner’s group in
case this group arrives at the till first. After synchronously
processing their first group of customers, the tills may or may
not then operate at different and variable speeds. We consider
the temporal sequence of sets of couples leaving the store. In
our setting, the queues are the two tpos (with lower elements
towards the head of the queue) and the couples are pairs of
copies of each world.



More formally, we assume, for each ordered pair 〈�1,�2〉
of tpos, a sequence 〈a�1,�2(i)〉i∈N such that:

(a1) ∅ 6= a�1,�2(i) ⊆ {1, 2} for each i,
(a2) a�1,�2

(1) = {1, 2}

a�1,�2
(i) specifies which queue is to be processed at each

step. Then (a1) ensures either one or both are processed, and
(a2) says both are processed at the initial stage (which will
ensure ⊕HI holds for the resulting combinators). Then we
construct the ordered partition 〈T1, T2, . . . , Tm〉 correspond-
ing to �1⊕2 inductively as follows:

Ti =
⋃

j∈a�1,�2
(i)

min(
⋂
k<i

T c
k ,�j)

(where ‘T c’ denotes the complement of set T ) and m is min-
imal such that

⋃
i≤m Ti = W . With this in hand, we can now

offer:
Definition 1 ⊕ is a TeamQueue combinator iff, for each
ordered pair 〈�1,�2〉 of tpos there exists a sequence
〈a�1,�2(i)〉i∈N satisfying (a1) and (a2) such that�1⊕2 is ob-
tained as above.
It is easily verified that TeamQueue combinators are indeed
basic combinators. The following example provides an ele-
mentary illustration of the combinator at work:
Example 1 Suppose that W = {w, x, y, z}, that �1 is the
tpo represented by the ordered partition 〈{z}, {w}, {x, y}〉,
and that �2 is represented by 〈{x, z}, {y}, {w}〉. Let ⊕
be a TeamQueue combinator such that 〈a�1,�2

(i)〉i∈N =
〈{1, 2}, {2}, {1}, . . .〉. Then the ordered partition corre-
sponding to�1⊕2 is 〈T1, T2, T3〉 = 〈{x, z}, {y}, {w}〉, since

T1 =
⋃

j∈{1,2}

min(W,�j) = {x, z}

T2 = min(T c
1 ,�2) = {y}

T3 = min(T c
1 ∩ T c

2 ,�1) = {w}
As noted above, TeamQueue combinators satisfy both
⊕SPU+ and ⊕WPU+. In fact, one can show that this fam-
ily can actually be characterised by these two conditions, in
the presence of a third:
Theorem 1 ⊕ is a TeamQueue combinator iff it is a basic
combinator that satisfies⊕SPU+,⊕WPU+ and the following
‘no overtaking’ property;
(⊕NO) For i 6= j, if x ≺i y and z �j y, then

either x ≺1⊕2 y or z �1⊕2 y

Proof: (Outline of completeness part) From any basic com-
binator ⊕ satisfying the postulates we can construct, for each
ordered pair 〈�1,�2〉 of tpos, a sequence 〈a�1,�2

(i)〉i∈N.
Assuming �1⊕2 is represented by 〈S1, . . . , Sn〉, we set

j ∈ a�1,�2(i) iff min(�j ,
⋂
k<i

Sc
k) ⊆ Si.

〈a�1,�2(i)〉i∈N satisfies (a1) by property ⊕TRI below and
satisfies (a2) from ⊕HI. Let ⊕′ denote the TeamQueue com-
binator defined by this sequence. Letting 〈T1, . . . , Tm〉 rep-
resent �1⊕′2, it is then a straightforward inductive proof to
show Ti = Si for all i. QED

Taken together, the three postulates ⊕SPU+, ⊕WPU+ and
⊕NO say that in �1⊕2, no world x is allowed to improve its
position w.r.t. both input orderings �1 and �2. Indeed each
postulate blocks one of the three possible ways in which this
‘no double improvement’ condition could be violated. We
note that this condition can be cashed out in terms of the fol-
lowing remarkable property:

Proposition 4 ⊕ is a TeamQueue combinator iff it is a basic
combinator that satisfies the following ‘trifurcation’ property,
for all S ⊆W :

(⊕TRI) min(�1⊕2, S) is equal to either min(�1, S),
min(�2, S) or min(�1, S) ∪min(�2, S)

Given COMBI, ⊕TRI yields the claim that [(Ψ ÷ A) ∗ B] is
equal to either [Ψ∗B], [(Ψ∗¬A)∗B] or [Ψ∗B]∩[(Ψ∗¬A)∗B].

To wrap up this section, it should be noted that the results
so far have been perfectly domain-general, in the sense that
they hold for combinators whose domain corresponded to the
entire space of pairs of tpos defined over W . Our problem
of interest is somewhat narrower in scope, however, since we
are interested in the special case in which one of the tpos is
obtained from the other by means of a revision. In particular,
we assume the first two semantic postulates of [Darwiche and
Pearl, 1997].

(CR∗1) If x, y ∈ [[A]] then x �Ψ∗A y iff x � y

(CR∗2) If x, y ∈ [[¬A]] then x �Ψ∗A y iff x � y

In other words, �1 and �2 will always be [[A]]-variants for
some sentence A, in the following sense:

Definition 2 Given �1,�2∈ T (W ) and S ⊆ W , we say �1

and �2 are S-variants iff [x �1 y iff x �2 y] holds for all
x, y ∈ (S×S)∪(Sc×Sc). We let V (W ) denote the set of all
〈�1,�2〉 ∈ T (W )× T (W ) such that �1,�2 are S-variants
for some S ⊆W .

Example 2 Suppose that W = {w, x, y, z}, that
�1 is the tpo represented by the ordered partition
〈{w}, {x}, {y}, {z}〉, and that �2 is represented by
〈{w}, {x, y}, {z}〉. Then �1 and �2 are {y, z}-variants,
since (i) w ≺1 x and w ≺2 x, as well as (ii) y ≺1 z and
y ≺2 z. They are not, however, {x, y}-variants, since x ≺1 y
but y �2 x.

This leads to the following domain restriction on ⊕:

(⊕DOM) Domain(⊕) ⊆ V (W )

As it turns out, this constraint allows for a noteworthy simpli-
fication of the characterisation of TeamQueue combinators:

Proposition 5 Given ⊕DOM, ⊕ is a TeamQueue combina-
tor iff it is a basic combinator that satisfies ⊕SPU+ and
⊕WPU+.

We also note, in passing, that

Proposition 6 Given ⊕DOM, ⊕ satisfies ⊕SPU+ and
⊕WPU+ iff it satisfies ⊕SPU and ⊕WPU, respectively.

Given Proposition 4, the potentially surprising upshot of
Proposition 5 is that, in our domain of interest, satisfaction
of ⊕LB and ⊕UB entails satisfaction of ⊕TRI.



5 Iterated Contraction via TeamQueue
Combination

A central result of AGM theory says that, under assumption
of HI, if ∗ satisfies the AGM revision postulates, then ÷ au-
tomatically satisfies the AGM contraction postulates. In this
section we look at some of the postulates for both iterated
revision and contraction that have been proposed in the liter-
ature. We show that, if �Ψ÷A is defined from � and �Ψ∗¬A
using COMBI via a TeamQueue combinator, then satisfaction
of some well known sets of postulates for iterated revision
leads to satisfaction of other well known sets of postulates for
iterated contraction.

The most widely cited postulates for iterated revision are
the four DP postulates of [Darwiche and Pearl, 1997]. These,
like most of the postulates for iterated belief change, come in
two flavours: a semantic one in terms of requirements on the
tpo�Ψ∗A associated to the revised state Ψ∗A, and a syntactic
one in terms of requirements on the belief set [(Ψ ∗ A) ∗ B]
following a sequence of two revisions. Turning first to the
semantic versions, we’ve already encountered the first two
of these postulates–CR∗1 and CR∗2–in the previous section.
The other two are
(CR∗3) If x ∈ [[A]], y ∈ [[¬A]] and x ≺ y then x ≺Ψ∗A y

(CR∗4) If x ∈ [[A]], y ∈ [[¬A]] and x � y then x �Ψ∗A y

Each of these has an equivalent corresponding syntactic ver-
sion as follows:
(C∗1) If A ∈ Cn(B) then [(Ψ ∗A) ∗B] = [Ψ ∗B]

(C∗2) If ¬A ∈ Cn(B) then [(Ψ ∗A) ∗B] = [Ψ ∗B]

(C∗3) If A ∈ [Ψ ∗B] then A ∈ [(Ψ ∗A) ∗B]

(C∗4) If ¬A 6∈ [Ψ ∗B] then ¬A 6∈ [(Ψ ∗A) ∗B]

Chopra et al [2008] proposed a list of ‘counterparts’ to the
DP postulates for the case of Ψ ÷ A. The semantic versions
of these were:
(CR÷1) If x, y ∈ [[¬A]] then x �Ψ÷A y iff x � y

(CR÷2) If x, y ∈ [[A]] then x �Ψ÷A y iff x � y

(CR÷3) If x ∈ [[¬A]], y ∈ [[A]] and x ≺ y then x ≺Ψ÷A y

(CR÷4) If x ∈ [[¬A]], y ∈ [[A]] and x � y then x �Ψ÷A y

Chopra et al [2008] showed (their Theorem 2) that, in the
presence of the AGM postulates (reformulated as in our set-
ting to apply to belief states rather than just belief sets) each
of these postulates has an equivalent syntactic version as fol-
lows:
(C÷1) If ¬A ∈ Cn(B) then [(Ψ÷A) ∗B] = [Ψ ∗B]

(C÷2) If A ∈ Cn(B) then [(Ψ÷A) ∗B] = [Ψ ∗B]

(C÷3) If ¬A ∈ [Ψ ∗B] then ¬A ∈ [(Ψ÷A) ∗B]

(C÷4) A 6∈ [Ψ ∗B] then A 6∈ [(Ψ÷A) ∗B]

As it turns out, the definition of �Ψ÷A from � and �Ψ∗¬A
using COMBI via a TeamQueue combinator allows us to
show the precise sense in which Chopra et al’s postulates are
‘Darwiche-Pearl-like’, as they put it:
Proposition 7 Let ⊕ be a TeamQueue combinator, let ∗ be
an AGM revision operator and let ÷ be such that �Ψ÷A

is defined from ∗ via COMBI using ⊕. Then, for each
i = 1, 2, 3, 4, if ∗ satisfies CR∗i then ÷ satisfies CR÷i.
As a corollary, given the AGM postulates, we recover the
same result for the syntactic versions as well.

Finally, Nayak et al [2007] have endorsed the following
principle of ‘Principled Factored Intersection’, which they
show to be satisfied by a number of proposals for iterated
contraction:
(PFI) Given B ∈ [Ψ÷A]

(a) If ¬B → ¬A ∈ [(Ψ÷A)÷B], then
[(Ψ÷A)÷B] = [Ψ÷A]∩
[Ψ÷ ¬A→ B]

(b) If ¬B → ¬A,¬B → A /∈ [(Ψ÷A)÷B],
then [(Ψ÷A)÷B] = [Ψ÷A]∩
[Ψ÷ ¬A→ B] ∩ [Ψ÷A→ B]

(c) If ¬B → A ∈ [(Ψ÷A)÷B], then
[(Ψ÷A)÷B] = [Ψ÷A] ∩ [Ψ÷A→ B]

The rationale for PFI remains rather unclear to date. In-
deed, the only justifications provided appear to be (a) that
PFI avoids a particular difficulty faced by another constraint
that has been proposed in the literature–namely Rott’s ‘Qual-
ified Intersection’ principle [Rott, 2001]–and which can be
reformulated in a manner that is superficially rather similar
to PFI and (b) that PFI entails a pair of prima facie appealing
principles. Neither of these considerations strike us as being
particularly compelling. For one, Rott’s Qualified Intersec-
tion principle remains itself unclearly motivated. Secondly,
plenty of ill-advised principles can be shown to have certain
plausible consequences.

The TeamQueue approach, however, allows us to rest the
principle on a far firmer foundation. Indeed:
Proposition 8 Let ⊕ be a TeamQueue combinator, let ∗ be
an AGM revision operator and let ÷ be such that �Ψ÷A is
defined from ∗ via COMBI using ⊕. If ∗ satisfies CR∗1 and
CR∗2 then ÷ satisfies PFI.

6 The Synchronous TeamQueue Combinator
A special case of TeamQueue combinators takes a�1,�2

(i) =
{1, 2} for all ordered pairs 〈�1,�2〉 and all i. This represents
a particularly fair way of combining tpos. In terms of our
supermarket analogy, it corresponds to the situation in which
the tills process groups of customers at the same speed.
Definition 3 The Synchronous TeamQueue (STQ) combina-
tor is the TeamQueue combinator for which a�1,�2

(i) =
{1, 2} for all ordered pairs 〈�1,�2〉 and all i. We will de-
note the STQ combinator by ⊕STQ.

Example 3 Suppose W = {x, y, z, w}, that �1 is the
tpo represented by the ordered partition 〈{z}, {w}, {x, y}〉
and �2 is represented by 〈{x, z}, {y}, {w}〉. Then the or-
dered partition corresponding to �1⊕STQ2 is 〈T1, T2〉 =
〈{x, z}, {w, y}〉.
Roughly, �1⊕STQ2 tries to make each world as low in the
ordering as possible, while trying to preserve the information
contained in �1 and �2. (The idea is similar to that of the
rational closure construction in default reasoning [Lehmann



and Magidor, 1992].) We remark that ⊕STQ is commutative,
i.e., �1⊕2=�2⊕1. It can be characterised semantically, in the
absence of domain restrictions, as follows:
Theorem 2 ⊕STQ is the only basic combinator that satisfies
both ⊕SPU+ and the following ‘Parity’ constraint:
(⊕PAR) If x ≺1⊕2 y then for each i ∈ {1, 2} there exists z

s.t. x ∼1⊕2 z and z ≺i y

Note that⊕WPU+ is not listed among the characteristic prin-
ciples: it is entailed by the conjunction of⊕SPU+ and⊕PAR.

Whilst ⊕PAR may not be immediately easy to grasp, it
can be given a nice formulation in our setting in terms of
the notion of strong belief [Battigalli and Siniscalchi, 2002;
Stalnaker, 1996]. A sentence A ∈ [Ψ] is strongly believed in
Ψ in case the only way it can be dislodged by the next revision
input B is if B is logically inconsistent with A. That is, A is
strongly believed in Ψ iff (i) A ∈ [Ψ], and (ii) A ∈ [Ψ∗B] for
all sentences B such that A ∧ B is consistent. Semantically,
a consistent sentence A is strongly believed in Ψ iff every
A-world is strictly more plausible than every ¬A-world, i.e.,
x ≺Ψ y for every x ∈ [[A]], y ∈ [[¬A]]. With this in hand, one
can show:
Proposition 9 ⊕PAR is equivalent to:
(⊕SB) If x ≺1⊕2 y for every x ∈ Sc, y ∈ S, then

min(�1, S) ∪min(�2, S) ⊆ min(�1⊕2, S)

Given COMBI, ⊕SB yields: If ¬B is strongly believed in
Ψ ÷ A then [(Ψ ÷ A) ∗ B] ⊆ [Ψ ∗ B] ∩ [(Ψ ∗ ¬A) ∗ B].
Thus, although we cannot have EHI for all A,B, the STQ
combinator does guarantee it to hold for a certain restricted
class of pairs of sentences, namely those A,B such that ¬B
is strongly believed after removing A.

To finish this section, we turn to further behaviour for it-
erated contraction that can be captured thanks to the further
principles satisfied by ⊕STQ.

Three popular approaches to supplementing the AGM pos-
tulates for revision and the DP postulates can be found in the
literature: the ‘natural’ [Boutilier, 1996], ‘restrained’ [Booth
and Meyer, 2006], and ‘lexicographic’ [Nayak, 1994] ap-
proaches. All of these have the semantic consequence that the
prior tpo �Ψ determines the posterior tpo �Ψ∗A. All three
promote the lowest A-worlds in �Ψ to become the lowest
overall in �Ψ∗A, but differ on what to do with the rest of the
ordering. Natural revision leaves everything else unchanged,
restrained revision preserves the strict ordering ≺Ψ while ad-
ditionally making every A-world x strictly lower than every
¬A-world y for which x �Ψ y, and lexicographic revision
just makes every A-world lower than every ¬A-world, while
preserving the ordering within each of [[A]] and [[¬A]].

This raises an obvious question, namely: Which princi-
ples of iterated contraction does one recover from the natu-
ral, restrained and lexicographic revision operators, respec-
tively, if one defines ÷ from ∗ using ⊕STQ? As it turns out,
both the natural and the restrained revision operator yield the
very same iterated contraction operator, which has been dis-
cussed in the literature under the name of ‘natural contrac-
tion’ [Nayak et al., 2007], and which sets min(�Ψ, [[¬A]])∪
min(�Ψ,W ) to be the lowest rank in �Ψ÷A while leaving
�Ψ÷A otherwise unchanged from �Ψ.

Proposition 10 Let ∗ be any revision operator–such as the
natural or restrained revision operator–satisfying the follow-
ing property:

If x, y /∈ min(�Ψ, [[A]]) and x ≺Ψ y, then
x ≺Ψ∗A y

Let ÷ be the contraction operator defined from ∗ via COMBI
using ⊕STQ. Then ÷ is the natural contraction operator.
We do not have a characterisation of the operator that is re-
covered from lexicographic revision in this manner, which we
call the STQ-lex contraction operator. That is, STQ-lex con-
traction sets �Ψ÷A=�Ψ ⊕STQ �Ψ∗L¬A, where ∗L is lexi-
cographic revision. We can report, however, that it is distinct
from both lexicographic and priority contraction, the other
two iterated contraction operators discussed in the literature
alongside natural contraction [Nayak et al., 2007]. Roughly,
lexicographic contraction works by setting the ith rank Si of
�Ψ÷A to be the union of the ith-lowest A-worlds with the
ith-lowest ¬A-worlds.
Example 4 Suppose W = {x, y, z, w} and �Ψ is the tpo
represented by 〈{x}, {y}, {z}, {w}〉. Let [[A]] = {x,w}, so
that �Ψ∗L¬A= 〈{y}, {z}, {x}, {w}〉. Then lexicographic
contraction yields �Ψ÷A= 〈{x, y}, {z, w}〉 while STQ-lex
contraction yields �Ψ÷A= 〈{x, y}, {z}, {w}〉.
Both lexicographic and priority contraction can, however,
still be recovered via the TeamQueue approach. Lexico-
graphic contraction can be recovered from lexicographic revi-
sion by combining, not �Ψ and �Ψ∗L¬A, but rather �Ψ∗LA

and �Ψ∗L¬A using ⊕STQ. Priority contraction can be re-
covered from lexicographic revision by combining �Ψ and
�Ψ∗¬A using a TeamQueue combinator. However, the com-
binator involved is not⊕STQ but rather the TeamQueue com-
binator that is most ‘biased’ towards �2: the combinator for
which, for all ordered pairs 〈�1,�2〉, a�1,�2(1) = {1, 2},
then a�1,�2(j) = {2} for all j > 1.

7 Conclusions
We have shown that the issue of extending the Harper iden-
tity to iterated belief change (a) is not a straightforward af-
fair but (b) can be fruitfully approached by combining a pair
of total preorders by means of TeamQueue combinator. We
have also noted that one particular such combinator, the Syn-
chronic TeamQueue combinator ⊕STQ can be put to work to
derive various counterparts for contraction of the three best
known iterated revision operators.

Whilst the normative appeal of the characteristic syntactic
properties ⊕LB and ⊕UB of the TeamQueue family of com-
binators is clear enough, we do not, at this stage, have a clear
enough grasp of the normative appeal of the further syntactic
requirement ⊕SB that characterises ⊕STQ. We plan to inves-
tigate this issue further in future work.

A second issue that we would like to explore is the question
of whether or not it is possible to show that the Darwiche-
Pearl postulates are equivalent to the ones proposed by
Chopra et al, given a suitable further bridge principle taking
us from iterated contraction to iterated revision. Such a task
would first involve providing a compelling generalisation of
the Levi Identity mentioned in Proposition 1 above.
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