
Exploiting Parallelism for Hard Problems in Abstract Argumentation
Federico Cerutti

Dept. Computing Science
University of Aberdeen, UK

Ilias Tachmazidis and Mauro Vallati and Sotirios Batsakis
School of Computing and Engineering

University of Huddersfield, UK

Massimiliano Giacomin
Dept. of Information Engineering

University of Brescia, I

Grigoris Antoniou
School of Computing and Engineering

University of Huddersfield, UK

Abstract

Abstract argumentation framework (AF) is a unifying
framework able to encompass a variety of nonmono-
tonic reasoning approaches, logic programming and
computational argumentation. Yet, efficient approaches
for most of the decision and enumeration problems as-
sociated to AF s are missing, thus limiting the efficacy
of argumentation-based approaches in real domains. In
this paper, we present an algorithm for enumerating the
preferred extensions of abstract argumentation frame-
works which exploits parallel computation. To this pur-
pose, the SCC-recursive semantics definition schema is
adopted, where extensions are defined at the level of
specific sub-frameworks. The algorithm shows signif-
icant performance improvements in large frameworks,
in terms of number of solutions found and speedup.

Introduction
Dung’s theory of abstract argumentation (Dung 1995) is a
unifying framework able to encompass a large variety of
specific formalisms in the areas of nonmonotonic reason-
ing, logic programming and computational argumentation.
It is based on the notion of argumentation framework (AF),
consisting of a set of arguments and an attack relation be-
tween them. Different argumentation semantics introduce
in a declarative way the criteria to determine which argu-
ments emerge as ‘justified’ from the conflict, by identifying
a number of extensions, i.e. sets of arguments that can “sur-
vive the conflict together”. In (Dung 1995) four “traditional”
semantics were introduced, namely complete, grounded, sta-
ble, and preferred semantics. For an introduction on alterna-
tive semantics see (Baroni, Caminada, and Giacomin 2011).

The main computational problems in abstract argumen-
tation include decision and construction problems, and turn
out to be computationally intractable for most of argumenta-
tion semantics (Dunne and Wooldridge 2009). In this paper
we focus on the extension enumeration problem, i.e. con-
structing all extensions for a givenAF : its solution provides
complete information about the justification status of argu-
ments and subsumes the solutions to the other problems.

In this paper we propose the first parallel approach for
enumerating preferred extensions — a problem which lies

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

at the second level of the polynomial hierarchy — which
exploits the SCC-recursive schema (Baroni, Giacomin, and
Guida 2005), a semantics definition schema where exten-
sions are defined at the level of the sub-frameworks iden-
tified by the strongly connected components. A similar ap-
proach has been recently discussed in (Cerutti et al. 2014a):
however, in this work we (1) show that preferred exten-
sions can be derived from the solution of independent sub-
problems; (2) identify independent clusters of SCCs to con-
sider when solving such sub-problems; (3) develop efficient
algorithms and data structures for exploiting such indepen-
dence using parallel and dynamic programming techniques.

As large-scale argumentation is vastly unexplored, there
is no further work directly related to our approach. The
closest work is in the context of Assumption-Based Argu-
mentation (ABA) Frameworks (Bondarenko et al. 1997), an
abstract framework for default reasoning which can be in-
stantiated with different deductive systems (e.g. logic pro-
gramming, autoepistemic logic, default logic). (Craven et al.
2012) describes a parallel implementation for credulous ac-
ceptance under the acceptablity semantics for some specific
instances of ABAs in the medical domain. It considers com-
petitive parallel executions: multiple versions — equivalent
w.r.t. their outcome — of a sequential process are created
and then started in parallel. Once one version finds a solu-
tion to the problem, the others are killed.

Our work can be seen as part of a broader recent push
towards large-scale reasoning which, among others, con-
cerns simple semantic web reasoning (Urbani et al. 2012),
fuzzy ontologies (Liu et al. 2012) and logic programming
(Tachmazidis, Antoniou, and Faber 2014). Indeed, the fast-
growing field of argument mining from content in the Web
(Grosse et al. 2012; Cabrio and Villata 2013) highlights the
lack of large-scale reasoning approaches in formal argumen-
tation, and thus increases the importance of our research.

The paper is organised as follows. In the first section we
recall some necessary background on Dung’s AF , the SCC-
recursive schema and the existing algorithmic approach ex-
ploiting it. In the subsequent section we present our ap-
proach for exploiting the SCC-recursive schema in a paral-
lel fashion, and we discuss the theoretical remarks granting
the correctness of the approach. An exhaustive experimental
analysis is then presented in the forthcoming section. The
last section concludes the paper and discusses future work.

Background
Dung’s Argumentation Framework
An argumentation framework (Dung 1995) consists of a set
of arguments1 and a binary attack relation between them.
Definition 1. An argumentation framework (AF) is a pair
Γ = 〈A,R〉 whereA is a set of arguments andR ⊆ A×A.
We say that b attacks a iff 〈b, a〉 ∈ R, also denoted as b→ a.
The set of attackers of an argument a will be denoted as
a− , {b : b → a}, the set of arguments attacked by a will
be denoted as a+ , {b : a → b}. We also extend these
notations to sets of arguments, i.e. given E ⊆ A, E− , {b |
∃a ∈ E, b→ a} and E+ , {b | ∃a ∈ E, a→ b}.

An argument a without attackers, i.e. such that a− = ∅, is
said initial. Moreover, each AF has an associated directed
graph where the vertices are the arguments, and the edges
are the attacks.

The basic properties of conflict–freeness, acceptability,
and admissibility of a set of arguments are fundamental for
the definition of argumentation semantics.
Definition 2. Given an AF Γ = 〈A,R〉:
• a set T ⊆ A is a conflict–free set of Γ if @ a, b ∈ T s.t.

a→ b;
• an argument a ∈ A is acceptable with respect to a set
T ⊆ A of Γ if ∀b ∈ A s.t. b→ a, ∃ c ∈ T s.t. c→ b;

• a set T ⊆ A is an admissible set of Γ if T is a conflict–free
set of Γ and every element of T is acceptable with respect
to T of Γ.
An argumentation semantics σ prescribes for any AF Γ a

set of extensions, denoted as Eσ(Γ), namely a set of sets of
arguments satisfying the conditions dictated by σ. Here we
recall the definitions of complete (denoted as CO), grounded
(denoted as GR) and preferred (denoted as PR) semantics.
Definition 3. Given an AF Γ = 〈A,R〉:
• a set T ⊆ A is a complete extension of Γ, i.e. T ∈
ECO(Γ), iff T is admissible and ∀a ∈ A s.t. a is accept-
able w.r.t. T , a ∈ T ;

• a set T ⊆ A is the grounded extension of Γ, i.e. T ∈
EGR(Γ), iff T is the minimal (w.r.t.⊆) complete extension
of Γ. Its existence and uniqueness have been proved in
(Dung, Mancarella, and Toni 2006);

• a set T ⊆ A is a preferred extension of Γ, i.e. T ∈
EPR(Γ), iff T is a maximal (w.r.t. ⊆) complete extension
of Γ.
Each extension T implicitly defines a three-valued la-

belling of arguments: an argument a is labelled in iff a ∈ T ;
out iff ∃ b ∈ T s.t. b → a; undec otherwise. Argu-
mentation semantics can be equivalently defined in terms
of labellings rather than of extensions (Caminada 2006;
Baroni, Caminada, and Giacomin 2011).
Definition 4. Given a set of arguments T , a labelling of T is
a total function Lab : T 7→ {in, out, undec}. The set of all
labellings of T is denoted as LT . Given anAF Γ = 〈A,R〉,
a labelling of Γ is a labelling of A. The set of all labellings
of Γ is denoted as L(Γ).

1In this paper we consider only finite sets of arguments: see
(Baroni et al. 2013) for a discussion on infinite sets of arguments.

Complete labellings can be defined as follows.

Definition 5. Let Γ = 〈A,R〉 be an AF . A labelling Lab ∈
L(Γ) is a complete labelling of Γ iff it satisfies the following
conditions for any a ∈ A:
• Lab(a) = in⇔ ∀b ∈ a−Lab(b) = out;
• Lab(a) = out⇔ ∃b ∈ a− : Lab(b) = in.

The grounded and preferred labelling can then be defined
on the basis of complete labellings.

Definition 6. Let Γ = 〈A,R〉 be an AF . A labelling
Lab ∈ L(Γ) is the grounded labelling of Γ if it is the com-
plete labelling of Γ minimizing the set of arguments labelled
in, and it is a preferred labelling of Γ if it is a complete
labelling of Γ maximizing the set of arguments labelled in.

The function Ext2Lab provides the connection between
extensions and labellings.

Definition 7. Given an AF Γ = 〈A,R〉 and a conflict–
free set T ⊆ A, the corresponding labelling Ext2Lab(T) is
defined as Ext2Lab(T) ≡ Lab, where
• Lab(a) = in⇔ a ∈ T
• Lab(a) = out⇔ ∃ b ∈ T s.t. b→ a
• Lab(a) = undec⇔ a /∈ T ∧ @ b ∈ T s.t. b→ a

(Caminada 2006) shows that there is a bijective corre-
spondence between extensions and labellings for complete,
grounded, and preferred semantics.

Proposition 1. Given an AF Γ = 〈A,R〉, Lab is a com-
plete (grounded, preferred) labelling of Γ if and only if there
is a complete (grounded, preferred) extension T of Γ such
that Lab = Ext2Lab(T).

The set of complete labellings of Γ is denoted as LCO(Γ),
the set of preferred labellings as LPR(Γ), while LGR(Γ)
denotes the set including the grounded labelling.

SCC-Recursiveness
In (Baroni and Giacomin 2004) an extension-based seman-
tics definition schema has been introduced, called SCC
(strongly connected component)-recursiveness, based on the
graph-theoretical notion of SCCs (Tarjan 1972, Lemma 9)
and on the observation that most argumentation semantics
can be equivalently defined at the level of SCCs.

The following definitions introduce the SCC-recursive
schema (Baroni, Giacomin, and Guida 2005). First, let us
recall the definition of restriction of an AF Γ to a set of
arguments I , in symbol Γ↓I .

Definition 8. Given an AF Γ = 〈A,R〉 and a set I ⊆ A,
the restriction of Γ to I is defined as Γ↓I ≡ (I,R∩(I×I)).

Then, Definition 9 introduces the function GF(Γ, C)
which recursively computes the semantics extensions on the
basis of the SCCs of Γ. Let us denote as SCCΓ the set in-
cluding the SCCs of an AF Γ.

Definition 9. A given argumentation semantics σ is SCC-
recursive if for any AF Γ = 〈A,R〉, Eσ(Γ) = GF(Γ,A) ⊆
2A. For any Γ = 〈A,R〉 and for any set C ⊆ A,
E ∈ GF(Γ, C) if and only if

• E ∈ BFσ(Γ, C) if |SCCΓ| = 1

• ∀S ∈ SCCΓ (E ∩ S) ∈ GF(Γ↓S\(E\S)+ , UΓ(S,E) ∩C)
otherwise

where
• BFσ(Γ, C) is a function, called base function, that, given

an AF Γ = 〈A,R〉 such that |SCCΓ| = 1 and a set
C ⊆ A, gives a subset of 2A

• UΓ(S,E) = {a ∈ S\(E\S)+ | ∀b ∈ (a−\S), b ∈ E+}
The schema is based on the notions of extension of anAF

in a set of arguments.

Definition 10. Given an AF Γ = 〈A,R〉 and a set C ⊆ A,
a set E ⊆ A is: an admissible set of Γ in C if and only if E
is an admissible set of Γ and E ⊆ C; a complete extension
of Γ in C if and only if E is an admissible set of Γ in C,
and every argument α ∈ C which is acceptable with respect
to E belongs to E; the grounded extension of Γ in C if and
only if it is the least (w.r.t. ⊆) complete extension of Γ in C;
a preferred extension of Γ in C if and only if it is a maximal
(w.r.t. ⊆) complete extension of Γ in C.

The existence and uniqueness of the grounded exten-
sion in C, as well as the existence of at least a preferred
extension in C, have been proved in (Baroni, Giacomin,
and Guida 2005). Moreover, (Baroni, Giacomin, and Guida
2005) proves that GF(Γ, C), as defined in Def. 9, returns the
σ-extensions inC (with σ ∈ {CO,GR,PR}), provided that
BFσ(Γ, C) returns the complete, grounded, and preferred
extensions in C, respectively.

(Cerutti et al. 2014a) introduces the notions of com-
plete, grounded and preferred labellings of Γ in C, i.e. the
labelling-based counterparts of the corresponding notions
of Definition 10, and describes a preliminary algorithm —
R-PREF — exploiting the SCC-recursive schema. R-PREF
implements GF (Def. 9), where the chosen base function
BFPR is computed by a refinement of the algorithm in
(Cerutti et al. 2013) which exploits a SAT solver as a NP-
oracle to determine the preferred labellings. R-PREF ex-
ploits the SCC-recursive schema by constructing a sequence
of strongly connected components of Γ in a topological or-
der. Preferred labellings are incrementally constructed along
the SCCs, by computing the preferred labellings of each
SCC and merging them with those identified in the previous
SCCs. In the following, we take advantage of two algorithms
mentioned in (Cerutti et al. 2014a), namely GROUNDED
(Cerutti et al. 2014a, Alg. 3) and B-PR (Cerutti et al. 2014a,
Alg. 4): their usage is described in the following section.

Exploiting Parallel Computation
In this section we present our approach exploiting parallel
computation in the context of the SCC-recursive schema.
First of all, we need to identify when it is possible to paral-
lelise the process aimed at verifying that given Γ = 〈A,R〉,
∀E ⊆ A,∀C ⊆ A, E ∈ GF(Γ, C).

Theoretical Remarks
Two elements guaranteeing independence and thus the pos-
sibility to parallelise the process can be identified. First of
all, each preferred extension can be computed independently
from the others.

Remark 1. Given an Γ = 〈A,R〉, ∀E ∈ Eσ(Γ),∀C ⊆ A,
proving thatE ∈ GF(Γ, C) does not require any knowledge
about E ∈ Eσ(Γ) \ {E}.

A second, rather more articulated, condition of inde-
pendence requires to identify two sets of SCCs, S =
{S1, . . . , Sn} ⊆ SCCΓ and PS = {P1, . . . , Pm} ⊆ SCCΓ

such that (1) each SCC in S does not attack the others in S;
and (2) each SCC in S is attacked only by SCCs in PS .

Remark 2. Given an Γ = 〈A,R〉, ∀E ⊆ A,∀C ⊆
A, if there exist S = {S1, . . . , Sn} ⊆ SCCΓ such that
∀Si, Sj , S+

i ∩ Sj = ∅, and there exists PS ⊆ SCCΓ such
that ∀Si ∈ S, (Si− \ Si) ⊆

⋃
P∈PS

P , then ∀S ∈ S prov-
ing that (E ∩ S) ∈ GF(Γ↓S\(E\S)+ , UΓ(S,E) ∩ C) can
be determined in function of PS and does not require any
knowledge about S′ ∈ S \ {S}.

The P-SCC-REC Algorithm
In this section we introduce a meta-algorithm —
P-SCC-REC (Alg. 2) — which exploits the SCC-recursive
schema using parallel computation and a pro-active greedy
approach which memoizes some notable cases.

First of all, the function P-PREF (Algorithm 1) receives
as input an AF Γ = 〈A,R〉 and returns the set of preferred
labellings of Γ. This is simply achieved by invoking (at line
3) P-SCC-REC(Γ,A), where the function P-SCC-REC (GF
in Def. 9) receives as input an AF Γ = 〈A,R〉 and a set
C ⊆ A, and computes the set LPR(Γ, C), i.e. the set of
preferred labellings of Γ in C.

P-SCC-REC first pre-processes (at line 3) — via the func-
tion GROUNDED (Cerutti et al. 2014a, Alg. 3) — Γ by
computing the grounded labelling in C: Lab contains the re-
striction of the grounded labelling to those arguments which
are either in or out; U is the set of arguments that are la-
belled undec in the grounded labelling.

At line 4 P-SCC-REC initialises to {Lab} the vari-
able Ep, which stores the set of labellings that are in-
crementally constructed. At line 5 P-SCC-REC restricts
Γ to Γ↓U . Then, at line 6, P-SCC-REC exploits Re-
mark 2 by building a list L := (L1, . . . , Ln) of sets
of SCCs — (Cormen et al. 2009, p. 617) with some
modifications — such that ∀Li ∈ L,Li = {Sij ∈
SCCΓ | (Sij)

− \ Sij ∈
⋃
z∈{1,...,i−1}

⋃
S∈Lz S and (Sij)

+ \
Sij ∈

⋃
z∈{i+1,...,n}

⋃
S∈Lz S}.

At line 7, the GREEDY function (Alg. 3) is called; it re-
ceives as input the list of SCCsL and the set of argumentsC,
and returns a set M of pairs (Si, Bi) where Si ∈ SCCΓ, and
Bi = LPR(Γ↓Si

, Si ∩ C). Bi — computed by the function
B-PR (Cerutti et al. 2014a, Alg. 4) — is the set of preferred
labellings for Si when no argument in Si is attacked by in
or undec arguments in previous, w.r.t. the L list, SCCs.

Then, at lines 8 − 36, P-SCC-REC performs a first loop
among the elements of the list L. At line 9 a rather articu-
lated data structure, El, is initialised. For each S ∈ Ll, ESl
is a list of pairs (Lab,ESl [Lab] ⊆ LS): to ease of notation,
hereafter we omit the pair-structure thus referring directly to
ESl [Lab] which contains the set of preferred labellings of S

Algorithm 1 Computing preferred labellings of an AF
P-PREF(Γ)

1: Input: Γ = 〈A,R〉
2: Output: Ep ∈ 2L(Γ)

3: return P-SCC-REC(Γ,A)

Algorithm 2 Computing preferred labellings of an AF in C
P-SCC-REC(Γ, C)

1: Input: Γ = 〈A,R〉, C ⊆ A
2: Output: Ep ∈ 2L(Γ)

3: (Lab, U) = GROUNDED(Γ, C)
4: Ep := {Lab}
5: Γ = Γ↓U
6: L:= (L1 := {S1

1 , . . . , S
1
k}, . . . , Ln := {Sn1 , . . . , Snh})

= SCCS-LIST(Γ)
7: M := {. . . , (Si, Bi), . . .} = GREEDY(L,C)
8: for l ∈ {1, . . . , n} do
9: El := {ES1

l := (), . . . , ESk

l := ()}
10: for S ∈ Ll do in parallel
11: for Lab ∈ Ep do in parallel
12: (O, I) := L-COND(Γ, S, Ll,Lab)
13: if I = ∅ then
14: ESl [Lab] ={{(a, out) | a ∈ O} ∪

{(a, undec) | a ∈ S \O}}
15: else
16: if I = S then
17: ESl [Lab] = B where (S,B) ∈M
18: else
19: if O = ∅ then
20: ESl [Lab] = B-PR(Γ↓S , I ∩ C)

21: else
22: ESl [Lab]={{(a, out) | a ∈ O}}
23: ESl [Lab] = ESl [Lab]⊗

P-SCC-REC(Γ↓S\O, I ∩ C)

24: end if
25: end if
26: end if
27: end for
28: end for
29: for S ∈ Ll do
30: E′p := ∅
31: for Lab ∈ Ep do in parallel
32: E′p = E′p ∪ ({Lab} ⊗ ESl [Lab])
33: end for
34: Ep := E′p
35: end for
36: end for
37: return Ep

constructed on the basis of a specific labellingLab identified

Algorithm 3 Greedy computation of base cases
GREEDY(L,C)

1: Input: L = (L1, . . . , Ln := {Sn1 , . . . , Snh}), C ⊆ A
2: Output: M = {. . . , (Si, Bi), . . .}
3: M := ∅
4: for S ∈

⋃n
i=1 L

i do in parallel
5: B := B-PR(Γ↓S , S ∩ C)
6: M = M ∪ {(S,B)}
7: end for
8: return M

in the previous (w.r.t. the list L) SCCs.
Two more loops are thus considered and their execution

can be safely parallelised: the loop at lines 10− 28 exploits
Remark 2 by considering each SCC in a given element of
the list L; while the loop at lines 11− 27 considers a single
preferred labelling, each of which is independent from the
others — cf. Remark 1.

L-COND(Γ, S, Ll,Lab) at line 12 computes the effect of
previous SCCs, and returns (O, I), where:
• O = {a ∈ S | ∃b ∈ T ∩ a− : Lab(b) = in} and
• I = {a ∈ S | ∀ b ∈ T ∩ a−,Lab(b) = out},
with T ≡

⋃l−1
i=1

⋃
S∈Li

S. Variable O is set to include argu-
ments of S that are attacked by “outside” in-labelled argu-
ments according toLab, and variable I is set to include argu-
ments of S that are only attacked by “outside” out-labelled
arguments. This gives rise to three cases:

1. each argument of S is attacked by in or undec arguments
in previous SCCs — hence each argument of S is labelled
out or undec (line 14);

2. no argument of S is attacked by in arguments in previous
SCCs: this is the base case of the recursion and thus ei-
ther we exploit the memoization technique implemented
with the GREEDY algorithm (line 17) or we exploit the
function B-PR (line 20);

3. in the remaining case, arguments attacked by in-
arguments are labelled as out and P-SCC-REC is recur-
sively called on the restriction of S to the unlabelled ar-
guments (lines 22− 23).
Finally, at lines 29 − 35 the computed preferred la-

bellings ESl [Lab] are merged together (E1⊗E2 = {Lab1 ∪
Lab2|Lab1 ∈ E1,Lab2 ∈ E2}) with the Lab labelling of
previous SCCs. Once again, due to Remark 1, this process
can be parallelised (lines 31− 33).

Then the algorithm considers the next element in the list
L. Once the outer loop is exited, all strongly connected com-
ponents have been processed, thus Ep is returned as the set
of preferred labellings in C (line 37). Proof of the correct-
ness of Alg. 2 is provided in (Cerutti et al. 2014b).

Empirical Analysis
The solvers have been run on a cluster with computing nodes
equipped with 2.4 Ghz Dual Core AMD OpteronTM, 8 GB
of RAM and Linux operating system. As in the Interna-
tional Planning Competition (IPC) (Jiménez et al. 2012),
a cutoff of 900 seconds was imposed to compute the pre-
ferred extensions for each AF . No limit was imposed on

P1 P2 P2G P4 P4G
IPC score 50.0 58.6 44.7 74.9 56.9
% success 58.8 68.3 57.3 74.9 65.8
% best 1.0 0.0 0.0 74.4 0.0
Avg runtime 439.4 464.3 385.7 269.6 384.8
Speedup – 1.9 1.3 2.8 1.7

Table 1: Performance achieved by using 1, 2 and 4 proces-
sors with/out exploiting the greedy approach (+G). Results
are shown in terms of normalised IPC score, percentages of
success, percentages of AF s in which the system has been
the fastest, average runtime (considering AF s in which at
least one approach succeeded) and max speedup against P1.
Values in bold indicate the best results.

the RAM usage, but a run fails at saturation of the avail-
able memory. Moreover, we adopted the IPC speed score,
also borrowed from the planning community, which is de-
fined as follows. For each AF , each system gets a score of
1/(1 + log10(T/T ∗)), where T is its execution time and T ∗
the best execution time among the compared systems, or a
score of 0 if it fails in that case. Runtimes below 0.01 sec
get by default the maximal score of 1. In our experimental
analysis, IPC score is normalised to 100. For each solver we
recorded the overall result: success (if it finds each preferred
extension), crashed, timed-out or ran out of memory.

As shown in (Cerutti, Giacomin, and Vallati 2014a), most
of the state-of-the-art approaches for enumerating preferred
extensions hardly solve large (w.r.t. the number of argu-
ments) frameworks. In this work, we focus on extremely
large AF s; the largest – as far as we know – that have ever
been used for testing solvers.

We randomly generated a set of 200 AF s, varying the
number of SCCs between 90 — 80 SCCs is the upper-bound
for experiments in (Cerutti et al. 2014a) — and 210, the
number of arguments between 2,700 and 8,400, and consid-
ering different uniformly distributed probabilities of attacks,
either between arguments or between different SCCs, lead-
ing toAF s with a number of attacks between approximately
100 thousands and 2 millions. AF s were generated using
AFBenchGen (Cerutti, Giacomin, and Vallati 2014b).

Table 1 shows the results of the overall comparison be-
tween R-PREF (henceforth P1) and P-SCC-REC (hence-
forth P2 or P4, according to the number of processors). The
latter exploits either two or four processors, and has been
run with and without the greedy approach. From Table 1,
two main conclusions can be derived. First, the exploitation
of greedy approach introduces a significant overhead, due
to the required pre-calculation. In our testing instances, pre-
calculated knowledge is not used by algorithms and there-
fore, exploiting a greedy approach has a detrimental effect
on P2 and P4 performance. This behaviour is confirmed also
by a comparison (not shown) between P1 with/out greedy
approach. Given this result, the greedy approach will not be
considered in the rest of this section.

The second conclusion we derive from Table 1 is that
parallelisation improves significantly the performance of
both runtime and the number of successfully analysed AF s.

0

150

300

450

600

750

900

0 150 300 450 600 750 900

P1 vs P2

0

150

300

450

600

750

900

0 150 300 450 600 750 900

P1 vs P4

Figure 1: CPU-time of P2 (upper) or P4 (lower) w.r.t. P1 for
all the considered AF s. The x-axis refers to CPU seconds
of P1; the y-axis refers to CPU seconds of P2 (upper) or P4
(lower). CPU-time of 900 seconds indicates timeout.

Since the normalised IPC score of P4 is equal to its per-
centage of successes, P4 is always the fastest approach on
the whole testing set. Both P4 and P2 — according to the
Wilcoxon Signed-Rank Test (WSRT) (Wilcoxon 1945) —
perform significantly better than P1 (p < 0.05). Using 2
(resp. 4) processors provides a maximum speed-up of 1.9
(resp. 2.8) times w.r.t. serial execution. Such results justify
the use of parallel approaches in abstract argumentation.

Figure 1 provides results in the form of scatterplots, show-
ing the performance of P1 and, respectively, P2 and P4. Us-
ing 2 processors has a remarkable impact on runtimes, in
particular on complex AF s, which require approximately
more than 300 seconds. A larger number ofAF s can be suc-
cessfully analysed by P2: this can be derived by observing
the elements on the right axis of the graph. On simple AF s,
the impact of using 2 processors is not so clear. On the other
hand, parallelising on 4 processors guarantee to obtain lower
runtimes on the whole testing set. This behaviour is proba-
bly due to the fact that the overhead introduced by paralleli-
sation (generating threads, communication overhead, etc.)

20

30

40

50

60

70

80

90

100

0 25 50 75
Probability of Attacks %

IPC value (normalised) w.r.t. different attack probabilities

P4 P2 P1

0

20

40

60

80

100

90 120 150 180 210
|SCCs|

IPC value (normalised) w.r.t. the number of SCCs

P4 P2 P1

Figure 2: IPC scores of P2, P4 and P1 w.r.t. the probability
of attacks between different SCCs (upper) and the number
of SCCs (lower).

is not completely compensated by using 2 processors only,
specially when a short amount of CPU time is needed for
enumerating the extensions of a given AF .

The number of SCCs in the same set, cf. Remark 2, criti-
cally affects the performance of the proposed parallel algo-
rithm. The larger the size of each level — i.e. each element
of list L, Alg. 2, line 6 — the higher the degree of paralleli-
sation that can be reached, since parallelisation is primarily
based on processing simultaneously SCCs that are located
on the same level. Figure 2 (upper) show the IPC score of
parallelised and serial algorithms, with regards to the prob-
ability of attacks between SCCs. As expected, the perfor-
mance gap between parallelised (P2, P4) and serial (P1) al-
gorithms is maximum when the probability is 0 — i.e., all
the SCCs are on the same level — and slowly decreases as
the percentage increases. With a probability of 75%, most
of the levels have a single SCC, therefore parallelisation
does not provide a great speedup. It is worthy to notice
that at higher attacks probability percentages, enumerating
all the preferred extensions is very complex, and requires a
significant amount of CPU-time. The differences of perfor-

mance between P1 and P4 are always statistically significant
(WSRT p < 0.05). It is not the case of P1 and P2, their per-
formance are statistically indistinguishable when the proba-
bility of attacks is 50% (p = 0.39) and 75% (p = 0.66).

Finally, Figure 2 shows how IPC score of considered al-
gorithms changes with regard to the number of SCCs of the
AF s. As a general trend, increasing the number of SCCs in-
creases the runtime (and decreases the number of successes)
for all implementations. This is expected, as larger inputs
are harder to solve. On the other hand, P1 is very quick on
smallest considered AF s; on average it is faster than P2. P1
performance rapidly decreases as the number of SCCs in-
creases. This is also confirmed by the WSRT: while P4 is
always statistically better than P1, P2 performs statistically
worse than P1 on AF s with |SCCs| = 90, but it performs
statistically better when |SCCs| ≥ 120. Generally, paralleli-
sation provides best speedup on very large AF s, with lower
probability of attacks among SCCs.

Conclusions
In this paper we propose an approach for exploiting the
SCC-recursive schema for computing semantics extensions
in Dung’s AF s taking advantage of parallel executions and
dynamic programming. It is worth mentioning that Alg. 1, in
conjunction with Algs. 2 and 3, are meta-algorithms that im-
plement the SCC-recursive schema independently from the
chosen semantics. Although we chose to consider the pre-
ferred semantics in order to provide a direct comparison with
recent works (Cerutti et al. 2014a) — in essence equivalent
to P1 — , the same algorithms can work for all the SCC-
recursive semantics (Baroni, Giacomin, and Guida 2005).

Moreover, the empirical analysis shows that there is a
substantial statistically significant increment of performance
due to the partial parallel execution of the proposed algo-
rithms. This results in:

1. an increment (approx. 50%) of the number of AF s for
which we can solve the preferred semantics enumeration
problem before the chosen cutoff time;

2. a significant speedup of the computation of preferred ex-
tension up to 280% just considering 4 processors.
Future work is already envisaged in the area of additional

experimentation analyses by considering different bench-
marks, including (Correia, Cruz, and Leite 2014), in partic-
ular for assessing the relationship between number of cores
and performance, and for investigating the worst-cases sce-
narios and the effects of graph shapes.

We also plan to apply more dynamic programming tech-
niques (e.g. memoization) by improving the current proposal
of the greedy computation of some preferred labelling —
Alg. 3. In addition, we will compare our approach with
(Dvořák et al. 2011; Liao, Lei, and Dai 2013; Ellmauthaler
and Strass 2014; Nofal, Atkinson, and Dunne 2014), which
adopt different techniques for enumerating preferred exten-
sions, like reducing such a problem to an ASP program. Fi-
nally, recent works on Input/Output behaviour characteri-
sation of AF s (Baroni et al. 2012; 2014) can be exploited
for determining conditions of independent computation and
thus exploiting parallel executions on structures different
from SCCs.

References
Baroni, P., and Giacomin, M. 2004. A General Recursive
Schema for Argumentation Semantics. In Proc. of the 14th
European Conf. on Artif. Intell. (ECAI 2004), 783–787.
Baroni, P.; Boella, G.; Cerutti, F.; Giacomin, M.; van der
Torre, L.; and Villata, S. 2012. On Input/Output Argumen-
tation Frameworks. In Proc. of the 4th Int. Conf. on Compu-
tational Models of Arguments (COMMA 2012), 358–365.
Baroni, P.; Cerutti, F.; Dunne, P. E.; and Giacomin, M. 2013.
Automata for Infinite Argumentation Structures. Artif. In-
tell. 203(0):104–150.
Baroni, P.; Boella, G.; Cerutti, F.; Giacomin, M.; van der
Torre, L.; and Villata, S. 2014. On the input/output behavior
of argumentation frameworks. Artif. Intell. 217(0):144–197.
Baroni, P.; Caminada, M.; and Giacomin, M. 2011. An
introduction to argumentation semantics. Knowl. Eng. Rev.
26(4):365–410.
Baroni, P.; Giacomin, M.; and Guida, G. 2005. SCC-
recursiveness: a general schema for argumentation seman-
tics. Artif. Intell. 168(1-2):165–210.
Bondarenko, A.; Dung, P.; Kowalski, R.; and Toni, F. 1997.
An abstract, argumentation-theoretic approach to default
reasoning. Artif. Intell. 93(1–2):63–101.
Cabrio, E., and Villata, S. 2013. A natural language bipolar
argumentation approach to support users in online debate
interactions. Argument & Computation 4(3):209–230.
Caminada, M. 2006. On the Issue of Reinstatement in Ar-
gumentation. In Proc. of the 10th European Conf. on Logics
in Artif. Intell. (JELIA 2006), 111–123.
Cerutti, F.; Dunne, P. E.; Giacomin, M.; and Vallati, M.
2013. Computing Preferred Extensions in Abstract Argu-
mentation: A SAT-Based Approach. In Proc. of Theory and
Applications of Formal Argumentation (TAFA 2013), 176–
193.
Cerutti, F.; Giacomin, M.; Vallati, M.; and Zanella, M.
2014a. A SCC recursive meta-algorithm for computing pre-
ferred labellings in abstract argumentation. In Proc. of the
14th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2014), 42–51.
Cerutti, F.; Tachmazidis, I.; Vallati, M.; Batsakis, S.; Gia-
comin, M.; and Antoniou, G. 2014b. Exploiting Parallelism
for Hard Problems in Abstract Argumentation: Technical
Report. http://arxiv.org/abs/1411.2800.
Cerutti, F.; Giacomin, M.; and Vallati, M. 2014a. Algorithm
selection for preferred extensions enumeration. In Proc. of
the 5th Int. Conf. on Computational Models of Argument
(COMMA 2014), 221–232.
Cerutti, F.; Giacomin, M.; and Vallati, M. 2014b. Generating
challenging benchmark AFs. In Proc. of the 5th Int. Conf. on
Computational Models of Argument (COMMA 2014), 457–
458.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2009. Introduction to Algorithms. MIT Press.
Correia, M.; Cruz, J.; and Leite, J. a. 2014. On the Efficient
Implementation of Social Abstract Argumentation. In Proc.

of the 21st European Conf. on Artif. Intell. (ECAI 2014),
225–230.
Craven, R.; Toni, F.; Cadar, C.; Hadad, A.; and Williams, M.
2012. Efficient argumentation for medical decision-making.
In Proc. of the 13th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2012), 598–602.
Dung, P. M.; Mancarella, P.; and Toni, F. 2006. A dialectic
procedure for sceptical, assumption-based argumentation. In
Prooceedings of the 1st Int. Conf. on Computational Models
of Arguments (COMMA 2006), 145–156.
Dung, P. M. 1995. On the Acceptability of Arguments and
Its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming, and n-Person Games. Artif. Intell. 77(2):321–
357.
Dunne, P. E., and Wooldridge, M. 2009. Complexity of
abstract argumentation. In Rahwan, I., and Simari, G., eds.,
Argumentation in AI. Springer-Verlag. chapter 5, 85–104.
Dvořák, W.; Gaggl, S. A.; Wallner, J.; and Woltran, S. 2011.
Making Use of Advances in Answer-Set Programming for
Abstract Argumentation Systems. In Proc. of the 19th
Int. Conf. on Applications of Declarative Programming and
Knowledge Management (INAP 2011).
Ellmauthaler, S., and Strass, H. 2014. The DIAMOND Sys-
tem for Computing with Abstract Dialectical Frameworks.
In Proc. of the 5th Int. Conf. on Computational Models of
Argument (COMMA 2014), 233–240.
Grosse, K.; Chesñevar, C. I.; Maguitman, A. G.; and Es-
tevez, E. 2012. Empowering an e-government platform
through twitter-based arguments. Inteligencia Artificial, Re-
vista Iberoamericana de Inteligencia Artificial 15(50):46–
56.
Jiménez, S.; de la Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. Knowl. Eng. Rev. 27(4):433–467.
Liao, B.; Lei, L.; and Dai, J. 2013. Computing Preferred La-
bellings by Exploiting SCCs and Most Sceptically Rejected
Arguments. In Second Int. Workshop on Theory and Appli-
cations of Formal Argumentation (TAFA-13).
Liu, C.; Qi, G.; Wang, H.; and Yu, Y. 2012. Reasoning with
Large Scale Ontologies in Fuzzy pD* Using MapReduce.
IEEE CIM 7(2):54–66.
Nofal, S.; Atkinson, K.; and Dunne, P. E. 2014. Algorithms
for decision problems in argument systems under preferred
semantics. Artif. Intell. 207:23–51.
Tachmazidis, I.; Antoniou, G.; and Faber, W. 2014. Efficient
Computation of the Well-Founded Semantics over Big Data.
TPLP 14(4-5):445–459.
Tarjan, R. E. 1972. Depth-first search and linear graph al-
gorithms. SIAM J. Comput. 1(2):146–160.
Urbani, J.; Kotoulas, S.; Maassen, J.; Van Harmelen, F.; and
Bal, H. 2012. WebPIE: A Web-scale Parallel Inference En-
gine using MapReduce. J. Web Sem. 10:59–75.
Wilcoxon, F. 1945. Individual comparisons by ranking
methods. Biometrics Bulletin 1(6):80–83.

