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Summary of Thesis

Progress towards large format, background limited detector arrays in and around the tera-

hertz or sub-millimetre region of the electromagnetic spectrum has – until recently – been

hampered by the complexities in fabrication and cryogenic electronic readout associated

with increasing pixel counts. Kinetic inductance detectors or KIDs are a superconducting

pair breaking detector technology designed to overcome these complexities.

Traditionally, KID arrays have been developed for imaging in astronomy. However,

the high sensitivities, broadband responses, fast time constants and high detector counts

that are achievable – along with the simplicity of fabrication and readout compared

to other contemporary technologies – make them suitable (and in fact desirable) for a

variety of applications.

This thesis documents the development of a concept instrument to demonstrate

KID technology for general purpose imaging applications. Specifically, I present the

design, construction and performance of a near background limited, quasi-video rate,

passive imaging system based on arrays of Aluminium lumped-element KIDs. The

camera operates in two atmospheric windows at 150 GHz (2 mm) and 350GHz (850µm)

with 60 and 152 pixels, respectively. Array fabrication was achieved with a single

photolithographic cycle of thin film deposition, patterning and etching. Full array readout

is with a single cryogenic amplifier and room temperature FPGA based frequency domain

multiplexing electronics.

The camera is the first of its kind in applying KID arrays to imaging systems outside

of pure astrophysics research and is the result of efforts from the staff and students of the

Astronomy Instrumentation Group (AIG) in the School of Physics and Astronomy with

support from QMC Instruments Ltd. The system exemplifies the AIG’s world-leading

expertise in the development of far-infrared/sub-mm instrumentation as well as QMCI’s

vision to provide the highest quality terahertz optical components and detector systems

to the global marketplace.
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S11 complex input reflection coefficient scattering parameter.

S12 complex reverse voltage gain scattering parameter.

S21 complex forward voltage gain scattering parameter.

S22 complex output reflection coefficient scattering parameter.

σ2
x variance in x, units of x2.

Sϕ(f) phase noise, dBc Hz−1.

STO aperture stop plane in Zemax simulations.

Sx(f) single sided power spectral density of x, x2 Hz−1.

T lens thickness, mm.

T temperature, K.

Ta amplifier noise temperature, K.

τ integration time, s.

τ0 electron-phonon interaction time, ns.

Tc superconducting critical temperature, K.

∆t sample period, s.

Teff effective temperature, K.

TEm,n the (m, n)th transverse electric mode.

TMm,n the (m, n)th transverse magnetic mode.

τqp quasiparticle lifetime, s.
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VL inductor volume, µm3.

ω angular frequency, rad s−1.

ωr KID resonant frequency, rad s−1.

Z impedance, Ω.

Z0 characteristic impedance, usually |Z0| = 50Ω.
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Chapter 1

Introduction and Background

1.1 Thesis outline

This thesis presents the design, implementation, characterisation and overall performance

of the first passive terahertz video camera based on superconducting lumped element

kinetic inductance detectors (LEKIDs). Superconducting detectors such as LEKIDs

or TES bolometers offer vast improvements in sensitivity over common, commercially

available, uncooled devices. LEKIDs have further advantages over similar cooled devices,

including the relative ease of fabrication of large format arrays and the reduced cryogenic

complexity of the readout electronics. The key result of this thesis has been to demonstrate

that LEKID technology is now suitable for application in a range of fields where ultra-high

sensitivity to terahertz radiation is required.

The following chapters present the various results of my research that have lead to the

successful completion and integration of the core components of a LEKID based system

into a fully operational camera. The thesis concludes with a comparison of the overall

theoretical and measured system performances, and a comparison of the final system

specifications with those of contemporary systems based on other detector technologies.

The chapter-by-chapter layout is as follows:

Chapter 1: Introduction and Background

This summary and some additional background on terahertz imaging, kinetic

inductance detectors and the KID camera. Concluding with a short list of some my

original contributions to the fields of terahertz imaging and general KID research,

as described in this thesis.

Chapter 2: Instrument Overview

A complete overview of the camera, including the design and performance of the

instrument in its final configuration at 350GHz, as adapted from the instrument

paper published in the peer reviewed journal Review of Scientific Instruments.

Chapter 3: The Optical System

The design and performance of the optics system and field scanning mechanism,
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1.1. Thesis outline

including results from preliminary analyses through to the final characterisations

of both the 150GHz and 350GHz channels. Fitting a low-cost, high magnification

optical system into an existing cryostat was challenging and issues with LEKID

susceptibility to stray light were identified. Results from a far field beam mapping

system show improved optical coupling efficiency with the addition of a feed-horn

array at the focal plane.

Chapter 4: The Detector System

The design and performance of the detector arrays, including both the 60 pixel

array at 150GHz and the 152 pixel array at 350GHz. The noise, responsivity

and microwave performance of the detectors were characterised in the group’s low

background test cryostat as a function of base temperature with early indications

of photon noise limited performance. A study of the final detector performance

was completed under high background in the camera cryostat as a function of the

incident optical power from a variable temperature blackbody source at the focal

plane. Results indicate that the LEKID device sensitivities are more than sufficient

for background limited imaging.

Chapter 5: The Electronic Readout System

A brief study of KID readout techniques, including single pixel and multiplexing

systems, as well as the design, implementation and characterisation of the two

multiplexing systems utilised in this instrument. After successful imaging with

the 60 pixel system, the initial architecture of the FPGA system was modified to

include additional time division multiplexing capabilities for the characterisation of

the 152 pixel array. A high-performance NIKEL system was then acquired, setup

and configured to run at frame rates suitable for video rate imaging.

Chapter 6: The Software System and Image Generation

Overviews of the novel software systems for camera control, data acquisition, image

generation and real-time video display, including calibrations, inputs, processes,

outputs and data storage. Fully automated algorithms and routines are presented

that operate in real-time for setting readout tones, sweeping out LEKIDs, tone power

level optimisation, response calculations, flat-field calibrations, image generation

and video display. A user friendly GUI system was developed to provide a front end

for the operation of the camera while background processes collect and interpret

the detector output signals, providing sufficient feedback into the input probe

signals to optimise detector performance across the array. Single-shot images,

time-lapses and recordings of live video streams are presented. These successfully

demonstrate LEKID technology’s potential for background limited passive imaging

in the terahertz band.

Chapter 7: Camera Performance and Future Considerations

The performance of the camera in its final configuration with the 350GHz array in
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Chapter 1. Introduction and Background

place, including a summary of system noise and sensitivity properties, a comparison

with similar commercially available systems, and some considerations for future

developments. Detailed models of the key system components – including an

electro-thermal analysis of photon noise and stray light propagation through the

camera, field-of-view scanning strategies, detector noise (G-R and TLS), and

readout electronics/amplifier noise floors – are combined to indicate that the

system operates within only a factor of two in NEP from the ideal background

limited sensitivity.
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1.2. Terahertz or sub-millimetre radiation

1.2 Terahertz or sub-millimetre radiation

The terahertz region of the electromagnetic spectrum sits between the microwave and

infrared regions. Definitions of the precise extents vary from a broad 0.1–10 THz range to

a narrower 0.3–3 THz range. The latter band – with wavelengths between 1 and 0.1 mm

– is known as the sub-millimetre (sub-mm) and extends from the millimetre (mm-wave)

to the far-infrared (FIR). Terahertz photons have energies ranging from ∼0.12 to ∼12

meV and effective colour temperatures between 3 and 30 K.

The region is notable for the so-called terahertz gap, where technology for the

generation, transmission, and detection of radiation has lagged behind that of the rest

of the spectrum. Astronomers and atmospheric scientists have been keen to adopt the

newest technological advances at these frequencies since the late 1950s and early 60s,

and continue to be major drivers in the development of terahertz technology to the

modern day [Siegel, 2002]. In recent decades, interest in spectroscopy and imaging in the

terahertz has reached fields far and wide, from art history and the biomedical sciences,

to the cosmetics industry, defence, and beyond.

1.2.1 Sources

Natural sources of terahertz radiation are generally limited to thermal blackbody emission

from warm bodies – indeed, half of the total luminosity and 98% of photons emitted

since the big-bang fall in the FIR. Giant molecular clouds, Bok globules, protostellar

cores, massive star forming regions, planetary nebulae, supernova remnants and even

the region around the supermassive black hole at the galactic centre, are all interspersed

with ’cold’ gas and dust where thermal emission peaks in the FIR. At these frequencies

we are offered un-obscured views of star formation and stellar evolution across the Milky

Way.

Furthermore, observations from the Herschel Space Observatory indicate that up to

90% of the galaxies in the local universe have spectral energy distributions with peak

intensities in the FIR, and, as we look further out, these peaks are redshifted into the

sub-mm and mm-wave regimes. The distributions and morphologies of these galaxies,

combined with information from gravitational lenses, the cosmic microwave background

and the Sunyaev-Zel’dovich effect – all available in the terahertz – allows us to probe

galactic evolution, map out large-scale structure, and develop refined cosmological models

of the progression of the universe throughout cosmic time.

Here on Earth, progress towards compact, coherent, high power terahertz sources is

well under way. Some devices emit directly at terahertz frequencies such as gas lasers and

quantum cascade lasers (QCLs), while lower frequencies – such as those emitted by Gunn

diode or other parametric oscillators – can be converted up to the terahertz by fast diode

or varactor based frequency multipliers. Continuous wave (CW) coherent sources such as

these are typically very narrow band and only available at specific frequencies. Tunable

frequency sources are becoming more accessible such as tunable QCLs, free-electron
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Chapter 1. Introduction and Background

Figure 1.1: The Rosette molecular cloud, seen by the Herschel PACS and SPIRE
instruments at 70, 160 and 250 microns is a beautiful example of astronomical imaging.
Image source: ESA/PACS & SPIRE Consortium/HOBYS Key Programme Consortia
[Motte et al., 2010].
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1.2. Terahertz or sub-millimetre radiation

lasers, and other complex heterodyne based systems. Modern vector network analysers

(VNAs) with off the shelf frequency multipliers can operate in CW or swept frequency

mode at up to ∼2THz.

Broadband terahertz radiation is most commonly generated by illuminating certain

semiconductor materials with ultra-short (femtosecond) optical laser pulses or by the

optical rectification of femtosecond laser pulses. Terahertz pulsed imaging techniques

such as that presented in Figure 1.2 enable the structural analysis of a variety of materials.

Spectral analysis using pulsed sources is also common.

Very high powered (many megawatts) coherent terahertz radiation can now be

generated with gyrotron devices. These high powered sources are being used to probe the

plasmas in experimental nuclear fusion reactors and there are even experiments under

way into using high powered pulsed THz radiation for launching payloads into orbit

around the earth [Fukunari et al., 2014].

Low power (tens of milliwatts) sources are now being microfabricated and coupled via

micromachined transmission lines to terahertz transistors, mixers and other components

in single chip systems in a terahertz extension to monolithic microwave integrated circuits.

Amongst other things, these compact systems are desirable for future portable medical

diagnosis systems1.

The number of applications involving the measurement of the transmission and

reflection of locally generated terahertz waves is growing rapidly. Structural analysis of

bulk materials and 3-D tomography, remote sensing, chemical and molecular analysis

(organic and/or inorganic), and high speed telecommunications are but a few of the

techniques enabled by the terahertz sources mentioned.

1.2.2 Detectors

In general, techniques for the detection of electromagnetic radiation can be classified

according into two main schemes depending on which side of the terahertz gap one is

observing. In the (high-energy) optical scheme, direct detectors absorb discrete packets

of electromagnetic energy (photons) and convert them into measurable signals such

as electrical currents. This is how a CCD sensor in a digital camera works. In the

(low-energy) radio scheme, antennae are employed to coherently couple electromagnetic

waves into electronic circuits where they can be operated upon by any number of solid

state components such as transistors or diodes. This is how an FM radio works.

Classically, the challenge with the direct detection of terahertz photons has been that

the photon energy, hν, is too low to promote electrons across the band gaps of common

optical and infrared semiconductor photosensors. Bolometric sensors have become the

direct detectors of choice as these rely on the measurement of thermal rather than

electrical excitations. Kilopixel arrays of superconducting bolometers with transition

edge sensors (TESs) and time domain or frequency domain SQUID readouts are the

1http://tricorder.xprize.org/about/overview
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Chapter 1. Introduction and Background

Figure 1.2: Time domain pulsed THz imaging: defect detection in tablet coatings with a
TeraView Imaga 2000 system operating at 2THz. Image source: Vision-Systems article
by A. Portieri, TeraView Ltd. [Portieri, 2012].
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present state of the art in terms of broadband sensitivity to terahertz radiation.

On the other hand, the challenge with high sensitivity coherent detection of terahertz

waves has been that the oscillation frequencies of the electromagnetic fields are too fast

for common solid state components to respond to. Heterodyne downconversion is the

standard method for demodulating high frequency signals and bringing them into a

usable intermediate frequency (IF) bandwidth, however, tremendously high speed local

oscillators and mixers are required as well as low noise and high bandwidth IF amplifiers.

State of the art systems utilise high power continuous wave sources such as QCLs (or lower

frequency sources bumped up with frequency multipliers) as the local oscillators, ultra

wide band low noise cryogenic HBT or HEMT based IF amplifiers, and critically, very

low noise terahertz frequency mixers based on superconductor-insulator-superconductor

(SIS) junctions or hot electron bolometer (HEB) devices.

Heterodyne systems are naturally better suited for narrow band detection applications

such as high resolution spectroscopy. On the contrary, direct detectors are better for

broad band detection applications such as continuum observations and low resolution

spectroscopy. Direct detectors have the relative advantage of ease of fabrication into

multi pixel arrays (e.g. the SCUBA-2 multi kilopixel arrays).

Heterodyne systems will always be limited in sensitivity by quantum noise in the

mixers. Direct detectors do not suffer from this and commonly reach photon noise

limited sensitivities. Cooling the detectors is key for achieving the highest sensitivities

– not only does cooling reduce the thermal optical background, it opens the door for

superconducting techniques for detection and readout.

1.2.3 Imaging

Imaging systems in the terahertz come in two flavours, passive and active. Passive systems

capture the radiation that is naturally emitted by or scattered from a target. Active

systems employ a terahertz source to illuminate a target and then capture either the

transmitted or reflected rays. Figures 1.3 and 1.4 illustrate the differences in the particular

case of concealed item detection in security applications. Figure 1.3 demonstrates two

techniques for passive imaging: the first image (taken in an indoor setting) makes use of

the thermal emission from the target gentleman to provide contrast against the opaque

items concealed beneath his jumper; the second image (taken outdoors) derives its

contrast from reflections of the cold, opaque atmosphere. The jumper and the newspaper

clearly exhibit high transparency at terahertz frequencies. The active imaging system in

Figure 1.4 (a body scanner now commonly found at airport security checkpoints) utilises

high intensity terahertz sources and room temperature detectors to scan and measure

the reflectance of the target.

Aside from the obvious privacy concerns with terahertz and mm-wave body scanners,

active systems for the imaging of people (and living organisms in general) are seen

as controversial as the health effects of exposure to high intensity terahertz/mm-wave
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Figure 1.3: Passive imaging for security applications: The left image is from the passive
mm-wave imaging system from Millitech in 1995 and took 30 minutes to acquire with a
single pixel 94GHz Schottky diode heterodyne receiver. The image on the right was taken
with a similar passive mm-wave scanner from QinetiQ in the mid 2000s. Image sources:
Airline Passenger Security Screening, National Academies Press [National Research
Council, 1996], and [Appleby et al., 1994].

Figure 1.4: Active imaging for security applications: the Provision system, from L3
Communications, found in many airports and other security checkpoints scans a target
in roughly one second by measuring the reflectance from a high intensity THz source.
Concerns with active systems have been aired regarding the invasion of privacy and the
safety of exposure to the high intensity mm-waves used. Image source: C. Charisius,
Reuters; and, ITWorld article by S.J. Vaughan-Nichols.
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radiation have not been studied thoroughly. This aside, there are emerging markets

for both active and passive systems. Applications include the analysis of sub-surface

features in historical art works, imaging and spectroscopy in the biomedical sciences,

structural and molecular analysis of cosmetics products and other pharmaceuticals (as in

Figure 1.2), remote sensing in automatic navigation systems and in civil defence threat

assessment; the list grows.

A number of time domain (pulsed imaging and spectroscopy) systems such as the

TeraView Ltd. system shown in Figure 1.2 are commercially available, as are some

active body scanners such as those from L3 Communications2 (see Figure 1.4), Smiths

Detection3 and Rhode & Schwarz4. Additionally, some general-purpose uncooled passive

systems are now available off the shelf, for example, NEC Corporation produces a

hand held, passive, broadband (1-7THz) terahertz camera5 with a 320× 240 element

microbolometer focal plane array, a quoted sensitivity of 10−10W (unspecified bandwidth)

noise equivalent power (NEP) and a 30FPS frame rate. Cooled passive imaging systems

can provide many orders of magnitude greater sensitivity than this, and at the time of

writing, passive systems based on cryogenic bolometer arrays with ∼ 100 sensors have

been developed although no commercially available products are available as of yet.

This thesis presents progress towards a full video rate passive imaging system based

on arrays of direct detecting kinetic inductance detectors (KIDs) with sensitivities

on the order of 10−16W/
√
Hz. These detectors take advantage of superconducting

microresonator structures to vastly simplify the fabrication and electronic readout of

large format arrays. The incredibly reduced cryogenic complexity of KID systems makes

them an attractive option for future scientific and commercial imaging systems that will

require ≫ 1000s of detecting elements at terahertz frequencies.

1.3 Kinetic Inductance Detectors

Kinetic inductance detectors are thin film superconducting microwave microresonator

structures that act as thermal (or square-law) detectors with optical responses that are

proportional to the incident optical power. Absorbed photons break Cooper pairs in the

superconductor causing variations in the complex surface impedance of the film. These

variations affect the resonator quality factor Qr and the resonant frequency f0 which

are both monitored by measuring the forward transmission S21 of a microwave readout

signal that passes along a nearby feed line. A KID’s response can only be measured

when the readout tone frequency fr is close to f0.

Multiple KIDs, each with a different f0, may be constructed along the same feed line,

then they can all be monitored simultaneously with just one microwave signal that is the

2L£ Provision: http://www.sds.l-3com.com/advancedimaging/provision-2.htm
3Smiths Detection ’eqo’ scanners: http://www.smithsdetection.com/
4R&S QPS100 system: http://www.microwavejournal.com/ext/resources/pdf-downloads/

EuMW2014DefenseForum/RandS-def-Forum.pdf
5NEC passive video camera: http://www.nec.com/en/global/prod/terahertz/
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sum of each of the individual resonator’s required tones. In practice, thousands of KIDs

can be read out along a single line before the up/downstream dynamic range or electronic

bandwidth of the readout electronics system is exceeded – the very latest backend units

have advanced DSP systems that can process over 2000 detector channels simultaneously.

A-MKID [Janssen et al., 2014] is a 350 and 850GHz dual colour instrument – currently

in the commissioning phase at the the APEX telescope in the Atacama Desert – that

has a total of ∼24,000 KIDs that are read out with multiple feed lines and parallel sets

of multiplexing backends.

Absorption of radiation can be either direct or via antenna. In the case of distributed

KIDs, incoming radiation is captured with an antenna or some other absorbing element

and directed into the resonant structure of the KID for detection. With lumped element

KIDs (or LEKIDs), the absorbing element is itself part of the resonant structure and

there is no need for additional coupling components. In either case, radiation can only

be detected if the incident photon energy hν is greater than twice the superconducting

gap energy 2∆, which for common aluminium devices sets a lower limit of ν ∼ 90GHz

(∼ 3mm). There is no upper limit to the energy that can be directly absorbed, so KID

systems are practicable all the way up to x-ray frequencies and beyond. And, since

the number of quasiparticles generated in a detection event is proportional to hν, the

possibility opens up for energy resolving single photon counting imaging spectroscopy

systems. The ARCHONS instrument [Mazin et al., 2013] operates on this principle at

infrared to UV frequencies with a 1024 pixel aluminium optical lumped element KID

(OLEKID) array.

The fabrication of entire KID arrays can be very straightforward. Once the pixel

geometries and array layout have been optimised for the application in hand, the designs

can be patterned into a thin metal film in a single lithographic cycle. The arrays tested in

this thesis were etched from a single Al layer on a Si substrate with > 3µm feature sizes,

and they operate with close to background limited sensitivities. More complex processes

can be applied as with recent on-chip spectrometer devices that require many materials

and layers. For example, SuperSpec [Shirokoff et al., 2014] is a prototype mm-wave

superconducting spectrometer based on a broadband waveguide coupled horn antenna

with a lithographed transition probe for coupling to a niobium microstrip feedline. 74

niobium ’U’-shaped spectral stripline filters, 74 corresponding titanium nitride LEKIDs,

and a further CPW readout line enable the concurrent readout of each of the R = 700

spectral channels centred at 250GHz. The 20 nm thick TiN LEKIDs are partially covered

with a protective SiO2 layer and the optical and readout feedlines each have a Nb ground

plane deposited over them with an internal Si3NX dielectric layer. [Barry, 2014]. The

entire structure is temporarily mounted to a handle layer for the etching of the transition

probe on the back side of the SOI substrate. All in all this is a relatively complicated

design but it would be considerably more so were it not for the relative simplicity of the

superconducting stripline filters, and the LEKIDs.

The fundamental ease of both fabrication and multiplexed readout makes KIDs the
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ideal detectors for future instruments where large format arrays (∼ 106 detectors) will be

desired. The complexity of array readout lies in the backend electronics and although the

requirements increase proportionally with the pixel count, the cryogenic requirements will

remain negligible and the capabilities of cutting edge DSP systems will continue progress

in a Moore’s Law fashion. The only real limit with fabrication and deployment of such

large arrays is the physical size of the arrays given the finite dimensions of individual

pixels.

Systems based on other comparably sensitive detectors, such as TES bolometers, will

not be able to compete at such high pixel counts. They require highly intricate and

elaborate fabrication processes as well as complex cryogenic SQUID based multiplexing

systems. This results in very expensive systems when compared with KIDs. Schematics

of the cross-sections of the LEKIDs tested in this thesis and the TESs utilised in the

SCUBA-2 astronomical camera are presented in Figure 1.5 to highlight the comparative

complexity of TES devices. For example, deep trenches and fragile SiN membranes

are required to maintain strong thermal isolation between individual elements. Scaling

this kind of technology – even to multi kilopixel arrays as with SCUBA-2 – is a highly

challenging. Figure 1.6 presents schematics of the cryogenic readout electronics required

for typical KID and TES systems. The amount of cryogenic wiring required for the

TESs is vast, as is the number of Josephson junctions required for the SQUIDs. TES

readouts based on SQUIDs coupled to kinetic inductance resonators are being developed

to reduce the amount of wiring required between the cold stages however these systems

will remain complex compared the pure KID based systems.

The historical trend of increasing pixel counts in direct detecting astronomical

instruments operating across the sub-mm band is shown in Figure 1.7. The very first

CMB probes of the late 80s to early 90s had a handful of individual bolometric detectors

and the count per instrument has increased steadily ever since. KIDs are catching up

very quickly with up and coming instruments – such as A-MKID, the NIKA-2 facility

instrument at the IRAM 30m telescope and the stratospheric polarimeter that is The

Next Generation Blast Experiment – poised to become some of the most sensitive

astronomical cameras to date in the far-infrared/sub-mm.

1.4 The KID camera

The Cardiff KID camera is a passive terrestrial terahertz imaging system based on lumped

element KIDs. The mission was to demonstrate that KID technology is maturing beyond

the niches of experimental astrophysics research to the point where it can be easily

applied in a typical laboratory setting and that commercial exploitation in a variety of

applications should be viable in the near future.

The camera has been a success thanks to the Astronomy Instrumentation Group’s

experience in various forms of terahertz technology, particularly in detector physics,

terahertz optics, and instrument design. However, the camera would not be here were it
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TES:

LEKID:

LEKID 

top view:

Figure 1.5: A comparison of detector cross sections for a SCUBA-2 TES bolometer and
a Cardiff LEKID. Fabrication of KID detectors can be remarkably simple compared to
TES detectors. Image sources: [Hollister, 2009] and [Doyle, 2008].
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(a) A schematic of a common cryogenic SQUID based time domain multiplexing readout system
developed at NIST for arrays of TES bolometers. Four readout lines are needed per column and
precisely synchronised timing signals are required to switch between the various rows. For a
square array of n elements this method reduces the wiring requirements to O(

√
n) wires rather

than the O(n) that would be necessary without multiplexing. Image source: [Zmuidzinas and
Richards, 2004]
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(b) A schematic of the cryogenic frequency domain readout of typical KID arrays. Each detector
is capacitively coupled to a transmission line and modulates a small portion of the input signal
bandwidth. The only required cryogenic components are an attenuator and a low noise amplifier,
no additional electrical signalling is required and only O(1) wires are needed into the cold stage.

Figure 1.6: A comparison of common multiplexed readout schemes for KIDs and TESs.
The cryogenic requirements of the KID readout are absolutely minimal.
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Figure 1.7: Instruments for far-infrared/sub-mm astronomy. A graph of detector count
per instrument over time. Semiconductor and TES bolometer based instruments shown in
red and gold respectively, while KID instruments are in green. The trends of exponential
increase in pixel count are indicated by the coloured lines. The Cardiff passive imager is
included for comparison although it is not an astronomical instrument.
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not for QMC Instruments Ltd. and their drive and dedication to provide their world

wide client base with the latest advances in terahertz technology.

A brief overview of the development and progression from project conception to the

fully operational camera is given here. First of all, a set of requirements were defined for

the kind of demonstrator we wanted to make. Initial design reviews concluded with an

approach based on a refractive optics system with a linear detector array and linear field

scanning mechanism. Major modifications were made to an existing cryostat, including

the installation of a very large window in the base, and the incorporation of cold optics

and a band defining filter stack. Some preliminary detector arrays were constructed to

operate in the 2mm (150GHz) atmospheric window but were limited to, at most, 60

pixels. This was well matched to an existing multiplexing readout system that I helped

to developed as part of my Masters Degree, however, the DACs and ADCs were limited

in capacity and a full video rate camera would require much faster components.

First light was achieved a year or so into the project but image quality was not . Issues

with the optics system were identified and an extensive evaluation was performed. The

results indicated inconsistencies between the design and manufactured lens parameters

as well as the presence of significant stray light on the focal plane. A remodelling and

consequent adjustment of the refractive system and the inclusion of optical baffles and

a feedhorn coupling plate at the focal plane greatly improved the overall performance.

The second round of imaging – both still and quasi-video rate – showed a marked

improvement.

The detector array was upgraded to a horncoupled 152 pixel array operating in the

850µm (350GHz) window and an agreement was made with the NIKA team for access

to one of their high performance ’NIKEL’ multiplexing electronics systems. Prior to the

arrival of the new system, extensive modifications were made to the original multiplexing

system in order to characterise the new detector array – the effective bandwidth was

increased at the expense of reducing the final frame rate. The new system was eventually

incorporated into our own to great effect.

At this stage, the VeriCold pulse tube cooler (PTC) failed. An upgrade was ordered

but incorporation of the new PTC required extensive modifications to the cryostat as

well as a the application of novel mechanical and galvanic isolation system, upgraded

thermometry, and re-optimised refrigeration cycles. After a final verification of the

optics, electronics and detector systems, focus was shifted to improving the real-time

video and imaging software. Some fine tuning of the calibration and image processing

methods worked to clean up the images and videos. Beyond this point, no further

improvements were possible without the application of major upgrades to the optics

system, the scanning mechanism, the detector array and/or the readout electronics.

The camera serves well its purpose as a demonstrator of KID technology. It has

attracted the attention of people and organisations around the world who are keen to

apply high sensitivity passive imaging systems to their particular fields of interest. The

camera also serves as useful testbed for KID systems in general as it is very easy to
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swap out the focal plane arrays. A number of investigations into device physics have

been performed with our system. Finally, the system is an excellent working example

of how technology transfer can occur from purely academic research in astronomy and

experimental astrophysics into terrestrial applications in the scientific, industrial, and

commercial sectors.

1.5 Original contributions to the field

An adapted version of the published instrument paper is given in the following chapter.

It describes the camera, its performance and its significance in the context of the field of

terahertz imaging. A list of my primary original contributions to the field is given here:

• Demonstration of an ultra-high sensitivity camera for background limited, video

rate, passive terahertz imaging.

• Development of a cryogen-free cooling platform suitable for ultra-high sensitivity

terahertz imaging.

• Development and characterisation of arrays of lumped element kinetic inductance

detectors suited for terahertz imaging in room temperature environments.

• Demonstration of significant improvements in optical coupling to LEKID arrays

and stray light reduction in high magnification, terahertz frequency optical systems

through the inclusion of feed-horn arrays and optical baffles.

• Development of a multiplexing electronic readout system with a novel time-domain

switching capability that extends the effective IF bandwidth of the system and

enables the simultaneous readout of very large KID arrays without the need for

very high bandwidth components.

• Development of real-time control and acquisition systems for automatic detec-

tor readout, including IQ calibrations, optical response calculations and data

storage/display.

• Demonstration of significant improvements in KID array yield and overall system

sensitivity with the optimised fine-tuning of individual detector probe signal levels.

Including an innovative automated process to run the optimisation during system

operation.

• Development of efficient real-time image generation/processing software and novel

flat-field calibration schemes for real-time terahertz imaging with LEKIDs.

• Demonstration of real-time stand-off scanning and concealed object identification

using LEKID technology.
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Chapter 2

Instrument Overview

This chapter presents a complete overview of the design and performance of the terahertz

camera in its final configuration, as adapted from the instrument paper published in the

AIP journal, Review of Scientific Instruments: http://dx.doi.org/10.1063/1.4941661.

2.1 Introduction

Modern astronomy requires state-of-the-art technology for the efficient detection of

the faintest light from the farthest reaches of the universe. It is not uncommon for

the technologies developed by astronomers to find uses in everyday life. Rosenberg et

al [Rosenberg et al., 2014] have compiled numerous examples of such technology transfer

including, but not limited to: CCDs – popularized by the Hubble Space Telescope and

now used in practically every digital camera; wireless local area networking – utilizing

algorithms from image processing in radio astronomy; computerized tomography in mod-

ern medical scanners – based on aperture synthesis techniques from radio interferometry;

and gamma ray spectrometers for lunar/planetary surface composition analysis – now

used to probe historical buildings and artefacts.

Ongoing successes in sub-millimeter astronomy (e.g. the Herschel [Pilbratt et al.,

2010,Griffin et al., 2010,Poglitsch et al., 2010,de Graauw et al., 2010] and Planck [Planck

Collaboration et al., 2011,Lamarre et al., 2010,Bersanelli et al., 2010] space telescopes)

and the ever present demand for instruments with improved sensitivities and mapping

speeds at terahertz (THz) frequencies have spurred the development of highly sensitive

detectors, sophisticated optical components, cutting edge electronics, and advanced data

processing techniques.

Kinetic Inductance Detectors (KIDs) are contemporary superconducting pair-breaking

detectors that operate across the spectrum from x-ray to sub-THz frequencies [Day et al.,

2003, Mazin et al., 2006, Mazin et al., 2013, Monfardini et al., 2010]. Compared to

alternative THz technologies such as semiconductor or Transition Edge Sensor (TES)

bolometers, KIDs are relatively simple to fabricate and read out. As such, they provide

a practical and cost-effective solution to the manufacture and operation of the large
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format arrays required for advances in many fields of THz astronomy. A variant known

as the Lumped Element KID, or LEKID [Doyle et al., 2008], has been demonstrated to

provide state-of-the-art performance at millimeter-wavelengths [Mauskopf et al., 2014]

and has seen first light as part of the NIKA [Monfardini et al., 2014] instrument at the

IRAM 30-m telescope. Projects such as The Next Generation Blast Experiment [Galitzki

et al., 2014], NIKA-2 [Monfardini et al., 2014] and A-MKID 1 are currently under way

to incorporate multi-kilopixel KID arrays into astronomical cameras with the potential

for THz megapixel imaging within the next decade.

Beyond astronomy, the THz region of the electromagnetic spectrum (0.1-10THz) has

applications in a range of fields – academic and industrial [Siegel, 2002]. In addition

to the presence of a multitude of interesting spectral features, many typically opaque

materials become transparent when viewed in this frequency range. Various disciplines –

including biomedical sensing, non-destructive testing, and security screening – now have

the opportunity to benefit from the highly sensitive and highly multiplexable detector

technology being developed by astronomers.

For example, THz radiation is being used to study protein dynamics [Knab et al.,

2007], to investigate interactions between THz waves and human DNA [Titova et al.,

2013], and as a potential imaging modality for the improved identification of skin

cancers [Woodward et al., 2003]. However, there are currently no off-the-shelf THz

imaging spectrometers or cameras available to help proceed more rapidly with these

investigations.

The analysis and restoration of cultural artefacts benefits from the unique differential

penetration of THz radiation, making it ideal for the non-destructive investigation of the

internal paint layers in pieces of art [Seco-Martorell et al., 2013]. Time domain techniques

have been used to show that unique information can be gleaned at THz frequencies to

verify the age, chemical composition and structure of works of art.

Far larger potential demand is associated with the detection of hidden objects (such

as land mines [Osiander et al., 2003]), process control in manufacturing [Fitzgerald et al.,

2005], and security screening [Grossman et al., 2010]. Active mm-wave scanners are

now widely deployed in airports across the globe and large format KID arrays could be

used to produce systems with improved sensitivity at a comparable cost. The capacity

for truly passive imaging, and the fast time-response of LEKID detectors (typically

< 10−4 sec) enables, for the first time, the possibility of capturing images at video rate for

so called “walk through” systems. This is regarded as desirable by ECAC (the European

Civil Aviation Conference) and opens up the possibility of use in situations where

requiring people to stand one-by-one in a booth is not practical [European Commission,

2010]. Furthermore, multi-spectral observations would improve image contrast and

reduce the number of false positives – a common occurrence with current active systems.

However, the efficacy of passive terahertz imaging for security applications has yet to

be fully demonstrated under and a range of environmental conditions and a systematic

1http://www3.mpifr-bonn.mpg.de/div/submmtech/bolometer/A-MKID/a-mkidmain.html
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study into the direct and indirect effects of temperature, humidity and precipitation

on the appearance of the subjects undergoing screening would be a worthy endeavour.

Unfortunately, this remains outside of the scope of this article.

To demonstrate the capabilities described above, we have built and characterized a

simple field scanning camera based on a 152 element linear array of LEKIDs operating

at 350GHz. The detectors have been optimized to perform under the optical loads

present at ambient room temperatures (∼300K), which are substantially higher than

the backgrounds present during astronomical observations. The instrument, in its

present configuration, is comparable in performance to other recent passive imaging

systems including those based on room temperature microbolometer focal plane arrays

(FPAs) [Shumaker et al., 2013,Oda et al., 2014], cooled bolometer arrays [Grossman

et al., 2010], and superconducting TES arrays [Becker et al., 2010,Heinz et al., 2012].

This chapter describes the camera and its achieved performance as a quasi-video-rate

system. It concludes with discussions of the improvements which will be implemented

for the next generation camera in order to achieve a full video-rate, photon-noise limited

imaging system.

2.2 Requirements

Our goal was to demonstrate a video rate scanner capable of imaging variations in the

thermal THz radiation received from a moving target (a person) with sufficient sensitivity

to detect and identify concealed objects - akin to airport-style security scanners or other

stand-off scanning instruments. The basic requirements were for a simple-to-use system

with the necessary spatial resolution, scanning speed and sensitivity to identify objects

of a few cm in size concealed behind clothing or inside bags or other luggage.

The camera is designed to provide a 1 × 2m useful field of view (typical of body

scanners) with operation at a distance of 3-5m from the target and a linear resolution

of roughly 1 cm. The camera observes in the 350GHz transparent atmospheric window

with a ≤ 10% wide band to minimize the loading and thermal fluctuations present at

less transparent frequencies. As a demonstration system, quasi-video rate imaging with

frames updating at least every second was deemed acceptable although the goal would be

to reach full 25Hz video rate. A 0.1K noise equivalent temperature difference, NE∆T, in

each frame is required as this enables high fidelity imaging and will ease the identification

of the shape of concealed objects. Deitlein et al [Dietlein et al., 2006] neatly present the

detrimental effects of increased image noise on the ease of object identification. Finally,

the superconducting detectors need to be operated at around 0.25K, so the camera

requires a completely dry cryogenic system which, unlike wet systems, can be easily

deployed in the field.

Ideally, the noise performance of the system would be limited by variance in the

arrival of photons from the source rather than from any components of the camera itself.

The noise equivalent power due to photons measured at the detector focal plane in a
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diffraction limited optics system is given by [Lamarre, 1986]

NEPphoton =

√

2Phν +
2P 2

m∆ν
, (2.1)

where h is Planck’s constant, ν is the frequency, ∆ν is the optical bandwidth, and m = 2

for a detector absorbing light in both polarizations. P is the power in a band of width

∆ν:

P = ηoptηdetAΩǫ(ν)Bν(T )∆ν , (2.2)

where AΩ is the camera throughput or étendue, ǫ(ν) is the emissivity and Bν(T ) is the

blackbody radiance of a source at temperature T , while ηopt and ηdet are respectively the

optics and detector efficiencies. It is important to note that the two terms in Equation 2.1

account for both the familiar photon shot noise (signal variance caused by the random

distribution of independent light particles) and the additional photon wave noise (a signal

variance introduced by the bunching of photons in highly coherent quantum states).

2.3 Camera Design

The camera employs a linear array of detectors housed in a research cryostat retrofitted

with a large (250mm diameter) window in the base. Incoming radiation is coupled to

the detectors through a refractive optics system and a flat beam-folding mirror. A thin

horizontal section of the object plane is observed in any one instant and this section is

scanned continuously in the vertical direction by oscillation of the beam-folding mirror.

This is illustrated in Figure 2.1. The orientation of the mirror is recorded with an

absolute encoder and images are reconstructed in real time by the acquisition electronics

in a scheme no dissimilar to that of a common office desktop scanner.

2.3.1 Optics

A fast (f/0.9) triplet of high-density polyethylene (HDPE) lenses was designed to keep

the optics simple and compact given limitations on where the focal plane array could be

situated within the cryostat. To achieve the desired resolution at these frequencies, a

large diameter (440mm) primary lens, L1, was chosen. The focal distance of the camera

is designed to be adjustable between 3 and 5 meters depending on the position of the

secondary lens, L2. At a distance of 3.5m, the scanned field of view is 0.8×1.6m and

the working depth of field is approximately ±150mm inside and outside of the focus.

The third lens, L3, visible in the CAD model in Figure 2.2, is housed within the cryostat

behind the HDPE window and a number of thermal blocking filters [Tucker and Ade,

2006] (not shown in the figure).

The lens and window absorptivities were measured in band and are non-negligible,

with combined losses of up to 45% expected through the optics chain. Furthermore,

the HDPE components are not anti-reflection coated and are uncooled (except L3).
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Figure 2.1: A photo of the current system (left) and a schematic (right) of the system
overlaid with the Zemax model and ray traces. The camera sees a small horizontal strip
of the object plane in one instance with the oscillating fold mirror providing full sampling
in the vertical direction.

Consequently, stray light from these sources contributes significantly to detector loading.

The oscillating beam-folding mirror is constructed from a thin, polished sheet of

aluminium (800mm long by 550mm wide) braced with strut profile and mounted to the

camera’s main frame via a set of bearings on the central horizontal axis. The oscillation

is brought about by a crank wheel driven by a servo motor located behind the mirror.

A small steel rod with bearings at each end connects the mirror to the wheel. The

oscillation rate is controlled by a motor driver that is configured via USB from the control

station. This mechanism can modulate the field of view at a maximum frequency of 2-3

frames per second, this ultimately limits the video rate output.

A series of quasi-optical metal-mesh filters [Ade et al., 2006] define the optical

bandwidth of the system. Currently, three low-pass edges with cut-offs at 630GHz,

540GHz, and 450GHz and two 10% wide band-pass filters define a combined 6% wide

band centred at 347GHz. The additional bandpass filter was added as a precaution

against detector saturation with the effect of reducing the overall bandwidth and the

camera optical efficiency. The filter profiles were measured by a Fourier Transform

Spectrometer (FTS) from 200GHz to 1THz with 1GHz resolution and are displayed

in Figure 2.3. Inset to the figure is a plot of the total transmittance of the filter stack.

The peak in-band transmission is 45% and the out-of-band rejection at high frequency is

better than 100 dB.

The large cryostat window and the requirement for fast optics make the focal plane

susceptible to off axis radiation. To lessen any stray light effects, SiC blackened metal

baffles are arranged at the entrances to the three radiation shields and a feedhorn plate

is mounted to the detector array at the focal plane, see Figure 2.2. The back-to-back

copper feed-horns are each approximately f/1.3 and whilst this helps prevent stray light
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Figure 2.2: Cross sections of the cryostat and focal plane assembly. The model on the
left shows the focal plane array (teal) mounted via various thermally isolating support
structures to the 4K base plate and connected to the He-10 fridge (yellow). Optical paths
from the focal plane, through the quasi-optical filters, baffles (not shown), cold lens and
the cryostat window are indicated the transparent cones for pixels in the centre and edges
of the array. The schematics on the right shows sections of the horn coupling system with
a zoom in of a single array element. The aluminium LEKID device is back-illuminated
through the silicon substrate via a back-to-back conical feedhorn (for off-axis stray-light
reduction) and the final band-defining filter. Any radiation that transmits though the
detector is caught by a layer of silicon carbide infused epoxy at the back of the array
packaging.
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Figure 2.3: The spectral transmittance of the band-defining quasi-optical filters as
measured by a Fourier transform spectrometer. Thermal filters are excluded for clarity as
these have ∼100% transmission in band. (Inset) The product of these measured profiles
is computed numerically and presented on logarithmic scale to indicate the expected
high out of band rejection of source power.
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reaching the detectors, there is a slight mismatch with the f/0.9 refracting optics. The

cylindrical waveguides connecting the back-to-back horns admit at most two transverse

electromagnetic modes, the TE11 and TM01 modes.

2.3.2 Array definition

The number of detectors in the array needed to achieve the required performance is

estimated. Each lens in the system is characterized by its emissivity and transmission

properties. L1 and L2 and the window operate at 300K, while the cold lens, L3, operates

close to 150K. Having measured the HDPE transmission (the absorption coefficient is

0.127m−1 at 350GHz), we estimate the overall lens transmission using Zemax2. The

overall instrument efficiency, including the filters, is 23%. Upon consideration of thermal

emission from the each of the optical components, this corresponds to an expected load

of 131 pW per detector at the focal plane assembly. The photon noise (including both

the shot noise and wave noise components) at the focal plane is then calculated from

Equation 2.1 to be 3.0mK
√
s. This allows us to estimate that in order to achieve an image

sensitivity of ∼0.1K per frame at a 25Hz frame rate and a 1 cm resolution, 150 detectors

are sufficient, which is compatible with the available space in the cryostat focal plane

and electronic readout limitations. Note that to first order this estimate is independent

from the detector and optical efficiencies, as the photon wave noise dominates the noise

budget with NEPshot

NEPwave
= 0.23.

The detector array in use for this demonstration system is composed of 152 LEKIDs

arranged in 8 rows of 19 columns. The columns are skewed such that the instantaneous

field of view is Nyquist sampled in the horizontal direction (see Figure 2.4).

2.3.3 Detector system

In general, a kinetic inductance detector (KID) is fabricated by patterning a thin film

of superconducting material in such a way as to create an LC resonant circuit with

frequency f0 = 1/(2π
√
LC). The inductance of the superconductor, L, has two key

components, L = Lgeometric + Lkinetic. These depend, respectively, on the shape of the

patterned detector and the density of Cooper pairs in the film. Photons that couple

into the resonator with sufficient energy to overcome the superconducting gap will break

Cooper pairs into unbound pairs of quasiparticle excitations, leading to a decrease in

f0. Then, any variations in incident optical power are monitored by measuring the

variations in f0. This is achieved by monitoring the complex transmission of a probe

signal that is fed through a microwave transmission line adjacent to the resonator.

Multiple resonators, each with a different f0, may be coupled to the same transmission

line and read out simultaneously with a superposition of probe signals. This inherent

multiplexing capability considerably reduces the requirement for complex cryogenic

circuitry.

2http://www.zemax.com
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Figure 2.4: The array and packaging. The detectors are arranged to Nyquist sample
a horizontal section of the object plane. For readout, each detector modulates a small
range of the total bandwidth of the probe signal that propagates along the feedline. The
feedline can be seen winding between the rows of detectors and is terminated to SMA
type connectors at each end.

Lumped-element KIDs – as opposed to distributed KIDs – are designed such that

the absorbing element of the detector is part of the resonator structure itself. In this

configuration it is possible to achieve very high filling factors in focal plane arrays without

the need for additional coupling optics such as microlens or feedhorn arrays. Note that

the feed-horns used in this system are for stray light reduction only and would not be

necessary in a fully baffled optical system.

Each lumped resonator in the current focal plane array has three sections: an

inductor, an interdigital capacitor and a coupling capacitor. These are highlighted by the

different coloured sections in the design and the equivalent circuit in Figure 2.5a. The

inductor section is a 4th order Hilbert curve which efficiently couples to both orthogonal

polarizations of incoming radiation [Roesch et al., 2012]. Variations in the length of the

interdigital capacitor sections have been designed to set a range of resonant frequencies

centred at 1.5GHz and each separated by 3MHz. The detectors are capacitively coupled

to a coplanar waveguide (CPW) feedline, with the length of the coupling capacitor

section and its distance from the feedline limiting the Q-factor of the resonators to be of

the order of 10,000.

The array is fabricated from a 40 nm aluminium film deposited by thermal evaporation

onto a 500µm high resistivity float-zone silicon wafer. The array design was patterned

into the aluminium in a single photolithographic step with a wet etch of orthophosphoric

acid, nitric acid, and water in a 25:2:6 ratio. The CPW line is cross-bonded with wire

bridges at regular intervals to ensure a constant potential across the ground plane, thus
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Figure 2.5: The LEKID design used in this camera. The absorbing inductive meander
(orange), the interdigital capacitor (green), the coupling capacitor (violet), the CPW
feedline (red) and the ground plane (grey) are etched from a 40 nm Al film on a Si
dielectric substrate (white).

inhibiting problematic slotline modes in the CPW line.

Figure 2.2 includes a cross section of a single detecting element in the focal plane

assembly. Optical coupling is optimised by back-illumination of the detectors through

the silicon substrate.

2.3.4 Cryogenics

Thin film aluminium has a superconducting transition temperature of Tc ∼ 1.5K and

KID arrays require cooling to at least Tc/6 in order to sufficiently reduce the density

of quasiparticles in the superconducting film. The current system utilizes a Cryomech3

PT400 series pulse-tube-cooler (PTC) and air-cooled compressor unit that operate

off mains electricity only so that no liquid cryogens are required. A closed-cycle He-

10 adsorption fridge from Chase Cryogenics [Chase Research Cryogenics Ltd., ] cools

the focal plane assembly to the required sub-Kelvin temperatures. Thermometry and

fridge-cycling are fully automated and may be monitored/controlled remotely.

Cool-down of this thermally unoptimised demonstration system from room temper-

ature takes around 36 hours with the PTC cold head settling at 3.2K. The optical

baffles on the radiation shields settle at 4.2K and 60K respectively, and the cold lens

settles with a radial temperature gradient ranging between 100-150K. In the present

3http://www.cryomech.com
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Figure 2.6: An overview of the readout system. Tones are output by the NIKEL digital
electronics system, mixed up to the required KID resonant frequency range, and passed
into the cryostat through a single coaxial cable. The probe signal is attenuated before
reaching the detectors and then boosted by a Si-Ge cryogenic low noise amplifier at the
4Kelvin stage. Outside of the cryostat the signal is mixed back down to the DAQ band
and read back in to the NIKEL electronics for spectral decomposition. The I and Q
components of the 152 readout signals are sent, via Ethernet, to the control computer
for processing and image generation.

(un-optimised) cryogenic configuration, the fridge runs for approximately 16-18 hours

at a time at 250mK and require 3 to 4 hours for recycling. Although not incorporated

in this demonstrator, continuous cooling can be readily achieved at these temperatures

with so-called ’push-me-pull-me’ or tandem refrigerators. Klemencic [Klemencic et al.,

2015] presents a novel and economical closed cycle design that can provide steady cooling

power over time scales of several months (at least) of operation.

2.3.5 Electronic Readout

The electronic readout system consists of cryogenic, warm and digital components (see

Figure 2.6), as well as a suite of software to control the camera components, to monitor

the housekeeping system and to generate and display images in real-time. The nature of

multi-channel KID read out is such that the complexity of the cryogenic electronics is

reduced to an absolute minimum. Aside from the detector array itself, a single attenuator,

a single low noise amplifier, and a single pair of coaxial cables are the only components

required within the cold stages.

The ends of the aluminium CPW transmission line on the array wafer are wire-bonded

to SMA connectors mounted to the copper array packaging. A pair of semi-rigid coaxial

cables then feed out to the 4K stage where a cold RF attenuator on the input channel

reduces the power (and the thermal noise) in the multiplexed probe signal prior to the
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detector array, and A Caltech CITLF4 SiGe low noise amplifier (LNA) 4 – with <7K

noise temperature – sits on the output channel boosts the probe signal prior to readout.

Further semi-rigid coaxial cables then feed out to hermetic SMA connectors on the

cryostat exterior. Stainless steel coaxial cables are used between the 250mK and 4K

stages to minimise the thermal load on the fridge head – the additional cable attenuation

introduced prior to the LNA does not significantly affect the signal quality. Copper coax

cables are used through the rest of the system where thermal loading requirements are

more relaxed. A schematic of the cryogenic readout system is presented in Figure 2.5(b).

A room temperature analog mixing circuit converts the probe signal to and from the

1.25-1.75GHz detector readout band and the 0-500MHz digital electronics band. An

R&S SMF100A signal generator is used as the LO input for a pair of Marki IQ mixers

and a combination of amplifiers and variable attenuators are in place to balance the

incoming and outgoing power levels.

The digital system is a NIKEL [Bourrion et al., 2012] (New IRAM KID Electronics)

frequency domain multiplexing system developed for the NIKA astronomical camera.

It has the ability to output the in-phase and quadrature (I and Q) components of the

superposition of up to 400 CORDIC-generated tones across 500MHz of DAC bandwidth.

A single ADC feeds into a polyphase filter bank and the resultant 400 independent

decomposed I and Q time-streams (as well as the mirror encoder values and other

housekeeping data) are decimated and sent via the on-board computer over Ethernet

to the control station. The sample rate is limited to 477Hz which provides a data

rate of 24Mbps. The control station is a desktop computer equipped with a custom

software suite for control of the readout electronics, data acquisition, image generation

and graphical display. The readout electronics system is initialized with commands sent

over UDP to the NIKEL on-board computer.

The detector responses (variations in f0, otherwise referred to as δf or df) are

computed from linear transformations of the raw I and Q time-streams using coefficients

from frequency sweep data taken across the resonators during initialization. A flat

field calibration is performed at the start of each run where the detector responses are

measured between a 30◦C glow bar and a room temperature section of the field of view.

Low frequency gain variations between detectors will eventually have a detrimental

impact on the final video frame quality, so the flat field coefficients can be remeasured

on demand. This generally required after roughly 30 minutes of continuous operation.

The raw I and Q, the transformed amplitude, phase, and df , and the calibrated

response time-streams can be accessed and displayed alongside their power spectral

densities using the real-time plotting software KST5. Otherwise, image generation is

performed on a scan-by-scan basis by reading the latest data, applying the transformations

and calibrations, binning these products into a map, and updating the graphical interface

with a new frame. Broken or poorly performing detectors can cause blank or noisy

4http://radiometer.caltech.edu/datasheets/amplifiers/CITLF4.pdf
5https://kst-plot.kde.org/
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Figure 2.7: Beam profile maps and central slices from two channels measured with
a 50 ◦C chopped blackbody source of 10mm circular aperture. (a) is from a typical
detector with a measured FWHM of 13mm at a distance of 3.5m. (b) is from a detector
on the right edge of the array with a broader 15mm FWHM beam and some strong
aberration. Both beams show some off-centre low-level response attributable to light
leaks from neighbouring feed-horns.

columns in the image frames however these can be digitally filtered or interpolated over

in real-time to improve the overall image quality.

2.4 Performance

The optics system was tested with a measurement scheme based on raster scans of a

chopped 50◦C blackbody across the object plane. Maps of the beam profiles for each

working detector were made down to a 25 dB signal to noise level. A typical beam

(Figure 2.7a) is approximately Gaussian and the full width at half maximum (FWHM) is

11mm at 3.5m after deconvolution of the 10mm diameter source aperture. This provides

a resolution close to that expected for a diffraction limited system in this configuration,

although, some channels show mild broadening and aberrations (Figure 2.7b), particularly

at one edge of the focal plane. There is also some indication of localized leakage from

adjacent feed-horns at a level typically less than 5-10% of the main beam level.

The operational yield of the current detector array is 85% with the majority of

unusable pixels suffering from resonator overlap due to non-uniformities of the thickness

of the aluminium film. Aside from this resonator clash there is no indication of any other

electromagnetic cross coupling between resonators down to the measured 25 dB level.

A noise power spectrum for a typical detector channel sampled at the maximum

– 31 –



2.4. Performance

Detector NET / mK✁s

N
o
r
m
a
l
i
s
e
d
 
H
i
s
t
o
g
r
a
m

Figure 2.8: A normalized histogram of noise equivalent temperature over each of the
N = 152 detectors, sampled at 100Hz where white noise is predominant. The distribution
is well approximated by a log-normal function (black curve), the modal value of which
is 6.1mK

√
s. (Inset) An example noise spectrum as measured from a typical detector

timeline across the fully sampled post-detection bandwidth.

rate of 477Hz is presented in the inset to Figure 2.8. The spectrum shows white noise

down to ∼1Hz which is typical across all of the detectors. The excess below this knee

frequency is attributed to the warm electronics system, as are the spurious components at

95.5Hz and 191Hz. These unwanted narrowband features are digitally filtered from the

detector timelines prior to image generation. The filters are implemented as fifth-order,

Butterworth bandstop filters that operate on the timelines in the time domain on a

frame-by-frame basis.

The distribution of NETs sampled at the white noise frequencies (sampled at around

100Hz) is indicated in the histogram in Figure 2.8. The distribution is approximately

log-normal with a peak NET value of 6.1mK
√
s, a factor of 2 higher than the expected

limit from photon noise in this system. The excess is thought to be due to stray infrared

radiation leaking from the 4K stage.

The constraint set by the scanning mechanism and the higher than expected noise

currently limit the update rate to 2 frames per second for an NE∆T of 0.1K per frame

with the camera in its present configuration. Figure 2.9 shows a single frame taken from

a combined “three-colour” video. The sensitivity is clearly sufficient to identify objects

that are invisible to thermal NIR cameras and standard digital video cameras.
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Figure 2.9: A snap shot from a 2 FPS video in which the 350GHz frames (right) were
displayed simultaneously with frames from a standard webcam (left) and a thermal NIR
camera (centre). Objects such as (A) a wallet, (B) an air pistol, and (C) some loose
change, are hidden by the high opacity of the coat at higher frequencies but become
apparent at 350GHz.

2.5 Discussions / Future Development

In most respects, the camera presented here has achieved the required specifications. The

presence of parasitic optical loading on the detector array limits the noise performance

so that full video rate could not be achieved – even if a faster field modulation system

was employed. However, a second generation system could overcome this in a number of

ways. For example, by utilizing a reflective optics approach, especially one with a cold

Lyot-stop, such as that used in the BLAST-TNG telescope [Galitzki et al., 2014]. This

would help to inhibit stray light loads on the detectors and also, in this case, eliminate

the requirement for the feedhorn coupling.

Additionally, the field scanning mechanism of the present system is purely linear and

thus does not employ any cross linking between detector channels. As such, the video

frames suffer from vertical striping due to broken/noisy detectors and low frequency

gain fluctuations between individual detectors. Transitioning to a dual-axis circular or

Lissajous style scanning strategy would remedy this and is an advisable approach for

any future system.

A general purpose instrument similar to that presented here would benefit from a

modular (rather than fixed) optics system. Providing an additional image plane located

externally to the cryostat would enable fast turnaround between a variety of application

specific imaging formats without the need for any modification to the cryogenic platform.
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2.6 Conclusions

Kinetic inductance detectors originally developed for far-infrared astronomy are now

suitable for use in a range of applications requiring high sensitivity and/or fast mapping

of objects at terahertz frequencies.

The instrument presented here mimics stand-off imaging systems for the detection of

concealed items but could easily be transformed for other applications by modification of

the optics platform. This LEKID based system operates close to the ideal photon noise

limited sensitivity estimated with Equation 2.1 and is comparable in performance to the

latest passive THz imaging systems.

The development of larger KID arrays is ongoing and next generation instruments

will benefit from order of magnitude increases in detecting elements with no considerable

penalty in array fabrication or readout complexity.
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Chapter 3

The Optical System

In any camera or imaging device, the optics system is responsible for directing the light

emitted or scattered by some object (within a well defined field of view, FOV) onto some

focal plane so that it may be viewed and/or measured. This chapter presents the design,

implementation, characterisation, and overall performance of the optics system employed

in our kinetic inductance camera.

It is worth noting here that, after the requirements for the system had been decided

(see chapter 2), two important optics design issues arose. Firstly, given the modest

detector count (60 pixels at 150GHz and 152 pixels at 350GHz), what kind of scanning

strategy should be employed to fully sample the FOV. Secondly, given limited freedom

in the positioning of the detector focal plane array within the cold stage of a pre-existing

cryostat, where on the cryostat should the window be installed and thus, what imaging

optics could be employed to couple light though to the focal plane array.

As with many of the design choices in this project, the solutions were chosen to

minimise the cost and complexity of the instrument – it is, after all, a demonstration

system. Consequently, these solutions – although they were effective in the end –

fundamentally limited the overall performance of the system.

The author acknowledges supporting contributions from a number of people including

Dr P. Hargrave for optics design and modelling; Prof P.A.R. Ade and Dr R. Sudiwala for

support with preliminary characterisation measurements; Dr W. Granger for designing the

scanning mirror system; and, Prof C. Tucker and Prof. P.A.R. Ade for the band-defining

and thermal filters.

3.1 Design

The focal plane array consists of a linear array of detectors that see out of the base of

cryostat through a large HDPE window, via an oscillating fold mirror located beneath

that scans the FOV. The detector arrays were designed to Nyquist sample the FOV in the

(horizontal) x-direction while the mirror oscillates at a sufficient rate to Nyquist sample

the the FOV in the (vertical) y-direction. Images are reconstructed after sampling over
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(a) Lens design and configuration.
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(b) Ray traces from the object plane to the image plane.

Figure 3.1: Views of the nominally prescribed optics model. See table 3.1 on page 38
for the parameters defining the precise shapes, sizes and positions.
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one or more half-periods of revolution of the mirror. See figure 2.1 on page 23 for the

schematic of the scanning system.

The mirror, M, is constructed from a thin, flat sheet of polished aluminium supported

by aluminium strut profile and connected by a steel arm at one end to a servomotor

driven circular cam. An absolute rotary encoder is mounted on the central axle of the

mirror to report the orientation to the data acquisition system.

A half-meter primary aperture is required to achieve the desired diffraction-limited

spatial resolution of 1 cm at a distance of 4-5 m (0.13◦ angular resolution) when operating

in the 350GHz (850µm) band. The resolution increases linearly with wavelength so in

the 150GHz (2mm) band a 2.5 cm resolution is expected at the same distance, or 0.3◦.

A biconvex HDPE lens, L1, was chosen but manufacturing processes limited its diameter

to 0.44m.

An additional feature included in the design was the ability to adjust the focal length

of the system in order to re-focus on objects that were slightly closer or further away

than the standard 4-5m distance (in the z-direction). To that end, a secondary HDPE

lens, L2, with adjustable height was included behind the primary lens.

A third HDPE lens, L3, is included inside the cryostat in order to keep the optics

chain compact. The lens mounts onto the end of the 50 K radiation shield and required

an extension to the vacuum can in order to fit it in.

This triplet of lenses was optimised using the Zemax modelling software and is

presented in figure 3.1 on the preceding page. Table 3.1 on the following page is taken

from the Zemax file representing the nominal system. It contains all the parameters

required to describe each surface in the optics system starting from the object, OBJ, and

ending at the image, IMA, including the primary aperture stop, STO.

The low effective image-space f -number, f/0.9, and the high primary aperture

diameter make for quite a fast convergence of rays from L3 to the image at the focal

plane. This, in combination with the large window size and a lack of any pupil or cold

stop, makes the system especially vulnerable to stray light. Detector response and optical

resolving power are shown to be improved by the inclusion of optical baffles within the

cold section of the optics chain and by horn-coupling to the detector array. More detail

on this is included later in this chapter.

3.2 Lens manufacture

The first measurements with the camera were taken shortly after the initial assembly of

the optics system. The 150GHz detector array was in position within the cold cryostat,

the multiplexing readout system was operational, and the data acquisition software was

presenting detector response timelines live on the computer display. Characterisation of

the the system began with the controlled scanning of a bright source across the field of

view. This would help to confirm such parameters as the focal length and the spatial

resolution. This was, however, when we realised that something was not quite right with
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Table 3.1: The nominal optics design as taken from the Zemax model. Rc is the radius
of curvature, T is the thickness; Glass is the refractive index, D is the diameter, K is the
conic constant, and X− Tilt is the axial tilt.

Surf. Comment Rc/mm T/mm Glass D/mm K X-Tilt/◦

OBJ ∞ 3700.0 800 0.000 0

1 Coord. Break 0.0 +45

2 Fold Mirror ∞ 0.0 MIRROR 338.3 0.000 0

3 Coord. Break -300.0 +45

4 L1 Centre ∞ -33.6 0

STO Aperture Stop ∞ 33.6 420 0.000 0

6 L1 Front 704.2 77.0 1.52 440 -1.962 0

7 L1 Rear -690.4 295.5 440 -10.072 0

8 L2 Front 384.8 47.0 1.52 380 -0.113 0

9 L2 Rear 636.8 168.8 380 -46.996 0

10 L3 Front 147.7 51.2 1.52 214 -0.597 0

11 L3 Rear ∞ 72.9 214 0.000 0

IMA ∞ - 77 0.000 0

the optics. See figure 3.2 for the measured beam profiles for a selection of detectors.

The scans were taken at the position of greatest response for the central pixel. This

was found to be 2.9m from L1, considerably closer than the expected focal length of

3.7m. Furthermore, the angular widths of the beams were typically 0.5◦, almost a factor

of 2 broader than the 0.3◦ expected for the 150GHz band. And finally, the beams showed

strong off centre anomalies or ’ghosts’.

To troubleshoot these problems, the manufactured lens dimensions were checked

against the design specification. The lenses and the cryostat window had been cut from

single blocks of HDPE by CNC lathe at TK Instruments Ltd. and were checked by CMM

Figure 3.2: Initial results from scanning a bright source across detector beams in the
horizontal (x) and vertical (y) directions, for three KIDs spread across the 150GHz array
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Table 3.2: Nominal versus manufactured lens parameters. Rc is the radius of curvature,
T the thickness, and K the conic constant.

Surface Rc/mm T/mm K

Nominal Manufact. Nominal Manufact. Nominal Manufact.

L1 Front 704.2 698.55 77.0 77.12 -1.96 -10.243

L1 Rear -690.4 -708.30 295.5 -10.07 -0.590

L2 Front 384.8 373.22 47.0 48.36 0.11 -0.038

L2 Rear 636.8 621.66 168.8 -46.99 -45.221

L3 Front 147.7 148.21 51.2 50.97 -0.60 -0.609

L3 Rear ∞ 72.9 0.00

Table 3.3: Re-optimised lens positions to compensate for errors in manufacture.

Distance/mm Nominal Compensated

L1 Rear to L2 Front 295.487 384.650

L2 Rear to L3 Front 168.763 122.471

L3 Rear to Image 72.857 72.857

(coordinate measuring machine) in the department. Subtle but significant differences

were found, as indicated in table 3.2.

Fortunately, a suitable re-optimisation of the optics model based on the newly

measured lens parameters was found to compensate for this error. The simulated

performance of the re-optimised system in terms of focal length and beam size was

sufficiently close to the nominal performance that the project was able to move on

without requiring any modifications to the lenses. See table 3.3 for the re-optimised

configuration.

Before continuing back with the camera, a preliminary analysis of the optics system

was performed externally from the cryogenic system. Measurements would be made with

a single, fully optically characterised bolometer in place of the KID array. This would

confirm the optics performance against the newly optimised specification, and hopefully,

shed some light on the cause of the ghosts by eliminating any degeneracies that might

have been introduced by the cryogenic and/or detector configurations.

3.3 Preliminary evaluation

3.3.1 Measurement setup

A measurement system was set up to test the optics under various conditions. The

optical components were arranged outside of the cryostat by laser alignment as per the

re-optimised Zemax model and a bright source was scanned across the object plane with
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a receiver at the image plane to measure the optical response. Figure 3.3a presents a

basic schematic of the setup.

Linear XYZ 

Translation Stage

Feedhorn

and

Bolometer

Pre-Amp
Lock-In 

Amplifier
Lenses

Hg Arc-Lamp

and

Modulator

Reference for Lock-In

x
y

z DAQ

(a) A schematic of the experimental setup.

(b) Photographs of the experimental setup. The source (left) and the receiver (right).

Figure 3.3: The measurement setup for the preliminary characterisation of the re-
optimised optics system.

The receiver, a 4K InSb hot electron bolometer, was housed in a portable liquid He4

cryostat with a coupling feedhorn of 1.6mm aperture and a 350GHz optical band-defining

filter. The cryostat was placed on a manual translation stage for measurements as a

function of detector position across the image plane. See the photo on the right of

figure 3.3b. The bolometer readout was performed with a standard, low noise readout

circuit and preamplifier.

The source was a Hg vapour arc-lamp with a blackbody temperature of ∼1500K and

a 10mm aperture chopped at 28Hz by a vibrating vane modulator. Its position was

variable in three dimensions with a triple stage ’XYZ’ scanner (3× single Thorlabs linear

scanners). The remotely controlled scanners were stepper motor driven with a maximum

throw of 300mm and an accuracy no better than 5 µm in each dimension. The exterior

of the arc-lamp casing was covered in high-absorption foam to minimise reflections. See

the photo on the left part of figure 3.3b.

The bolometer output and the chopper reference signal were fed into a Stanford

Research Systems SR810 DSP Lock-In Amplifier and the demodulated response was

digitised using a National Instruments ADC. A Labview Virtual Instrument recorded
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the XYZ positions and bolometer responses into ASCII text files for analysis.

Individual measurements typically required an initial alignment of the source to the

centre of the receiver’s beam. This was performed by manually adjusting the XYZ scanner

until the detector response (displayed digitally on the SR810) reached a maximum. The

object plane would then be scanned in two perpendicular sections (x and y) orthogonal

to the optical axis (z), with each section crossing the centre of the beam.

Where necessary, the heights, widths and centres of the beam profiles were estimated

by fitting to a Gaussian function of the form

g(x) = A0 +A exp

(

−1

2

(

x− x0
σx

)2
)

, (3.1)

where x is the distance along the direction of the scan, x0 is the central offset, A0 is

the baseline level, A is the height or amplitude, and σx is the dispersion. The term

’width’ shall be used refer to the full width at half maximum, which is calculated from

the dispersion by

FWHM = 2
√
2 ln 2 σx. (3.2)

A suite of tests, each involving multiple repetitions of this measurement scheme, was

carried out. The results are presented below.

3.3.2 Diffraction limited resolution and depth of field

The aim of the first set of tests was to characterise the beam shape and size with

the receiver centred in the image plane at (x′, y′) = (0, 0) = (x′0, y
′
0). The source was

positioned, initially, at the location of maximum response in the object plane, defined

here as the origin, (x, y) = (0, 0) = (x0, y0). The focal length, z0, was found to be 3.35m

normal to the front surface of L1.

Scans were completed across x = x0 ± 50mm and y = y0 ± 50mm with 1mm steps

and repeated at z = z0 ± 150mm to estimate the depth of field of the system. All the

beam profiles were normalised against the peak response of the z = z0 case. The signal

to noise (peak response over standard deviation at the baseline level) in the z = z0 case

was measured as approximately 2500 or, equivalently, 34 dB.

Gaussians were successfully fitted to the beam profiles and the measured profiles and

fits are displayed in figure 3.4 along with residuals as percentages of the measured values.

The normalised amplitude and beam FWHM of each scan is presented in table 3.4.

The results were promising, with ∼ 13mm wide in-focus beams corresponding to

an angular resolution of 0.22◦. A better estimate of the minimum resolvable feature

size (i.e. the width of the point spread function) was found by the deconvolution of the

beam profiles with the circular aperture of the source (10mm diameter). This resulted

in 11mm at 3.35m or 0.19◦, in line with but not exactly matching the expected limit

from diffraction of 8mm at 3.35m or 0.14◦.

Depth of field is loosely defined as the distance between the nearest and furthest
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Figure 3.4: Normalised detector response and Gaussian fits as source is scanned through
image plane in x-direction (left) and y-direction (right). Blue is with the source in focus
at z = 3350mm. Red and green respectively are with the source ±150mm out of focus.

Table 3.4: Preliminary beam profile parameters measured with the source 3350mm from
the front surface of L1.

Z-offset/mm Gaussian fit to X-scans Gaussian fit to Y-scans

Amplitude FWHM/mm Amplitude FWHM/mm

-150 0.66 13.2 0.66 14.1

0 1.01 11.1 1.01 11.5

+150 0.63 13.5 0.56 13.8

objects that remain in sharp focus in an image. At z = z0 ± 150mm, the beam widths

increase by 20%. The camera requirements only specify a sufficient depth of field to image

a human target and, without a well defined limit on an acceptable circle of confusion,

the defocus across this 300mm range is considered, rather subjectively, to be acceptable

for this system.

3.3.3 Field of view and plate scale

The aim of the second set of tests was to characterise the instantaneous field of view

of the optics. The responses that would be measured by the linear array of detectors

are simulated by measuring beam profiles as a function of receiver position in the x

direction of the image plane. The x and y scans are performed with the receiver between

x′ = −50mm and x′ = +40mm with 10mm steps and y′ = 0mm. For reference, the

maximum distance between the outermost detectors in the focal plane arrays is at most

80mm.

Summaries of the results are included in figure 3.5 where the beam widths, amplitudes

and central x-offsets are plotted against receiver offset.

– 42 –



Chapter 3. The Optical System

Figure 3.5: Beam parameters measured with the receiver swept horizontally across the
image plane to mimic the parameters expected across the KID focal plane array.

The response of the beam widths to the receiver offset was mostly flat out to

x′ = ±30mm however, the widths increase very rapidly beyond ±40mm. The response

of the beam amplitudes was much less flat and not symmetric about the optical axis.

Beam amplitudes greater than 90% of the peak value were observed in the range

(−10 ≤ x′ ≤ +30), falling steeply outside of this range.

The calculated plate scale was 9.02, meaning that a 1mm offset in the image plane

corresponds to a 9.02mm offset in the object plane. Plate scale is a measure of comparison

between the angular size of an object viewed through a telescope and the linear size

of the image presented at the focal plane. The angular object size is converted to a

linear object size and the scale is calculated as the gradient of a linear fit of the detector

x′-offsets versus the x-offsets of the centres of the measured beams. Given that the

detector arrays have up to an 80mm extent in the image plane, the horizontal extent

in the object plane would be 80× 9.02 = 722mm. This is somewhat smaller than the

1m specified in the requirements, but is still sufficient to image a person standing in the

field of view.

3.3.4 Refocusing optics

The added feature of an adjustable secondary lens enables the refocussing of the camera

onto objects that are offset from the nominal object plane. The nominal distance from

the rear surface of L2 to the front of L3, taken from table 3.3 is 122mm. Beam profiles

were measured with L2 at this position and with ±5mm and ±10mm offsets. Data from

the +5mm test is unavailable.

In figure 3.6, variations in the in-focus position of the object are displayed on the left

and variations in beam widths are on the right. Beam profiles were measured in-focus at

z = z0, as well as at z = z0 ± 150mm out of focus. No negative effect on the shape or

size of the beams was seen.
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Figure 3.6: Refocusing optics. Left: Variations of focal distance (left) and beam widths
(right) upon shift of refocusing lens, L2.

Moving L2 through a full 20mm caused the focal length to vary by only 300mm,

so, further refocusing could be applied before any significant performance degradation

would occur, should this ever be required.

3.3.5 Additional optical components

A final set of tests was carried out to check the performance of the optics with the

addition of various components that would be present in the full system. The series of

cumulative additions of components went as follows:

1. The basic optics system, as characterised in this section.

2. The cryostat window, requiring a +7mm shift in L2 to compensate for defocus.

3. The 21 cm−1 low pass edge filter.

4. A copper annulus to mimic the detector array holder, placed 4mm in front of the

receiver.

5. The 15 cm−1 low pass edge filter, placed (a) 50mm from L1, towards the receiver,

(b) 15mm from the receiver and (c) 1mm from the receiver.

6. The 350GHz (850µm) band pass filter. Five scans were averaged to improve the

signal to noise.

The amplitudes and widths of the x and y beam profiles are presented in table 3.5.

Aside from the expected dimming introduced by some of the components, and some very

minor beam broadening, no further issues became evident upon the completion of this

test.

3.3.6 Summary

In summary, manufacturing errors in key components of the optical system meant that

the performance in the nominally prescribed configuration did not meet the required
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Table 3.5: List of tests with additional optical components

Test Comment Normalised Amplitude FWHM / mm

X-Scans Y-Scans X-Scans Y-Scans

1 Base system 1.00 1.00 11.26 11.76

2 + cryostat window 0.85 0.86 11.36 11.79

3 + 21 icm LPE 0.53 0.53 11.71 11.89

4 + annulus 0.52 0.52 11.70 11.89

5a + 15 icm LPE (50mm) 0.38 0.38 11.96 12.19

5b + 15 icm LPE (15mm) 0.38 0.38 11.96 12.20

5c + 15 icm LPE (1mm) 0.39 0.39 12.11 12.30

6 + 850 micron BP 0.04 0.04 11.89 11.65

specification for the camera. After a suitable re-optimisation was found, the key compo-

nents were arranged externally to the cryogenic system, and an analysis was undertaken

using a single pixel bolometric detector and a scanning optical blackbody source.

Aperture deconvolved beam widths, measured in the object plane at the new nominal

focal length of 3.35m, were found to be around 11mm on the central axis. The beam

widths expected from diffraction alone ought to be 8.3mm. Beam profiles measured in

the vertical direction were consistently but not significantly broader than those in the

horizontal. The results were repeatable with the receiver positioned ±30mm about the

central axis in the image plane, however, the performance dropped off sharply outside of

this range. The peak amplitudes of the beams dropped off quickly when the receiver was

positioned beyond ±20mm centred at +10mm from the central axis in the image plane.

The spatial distribution of KIDs in the focal plane arrays ranges between ±40mm about

the central axis so some optical attenuation and distortions are expected at the extremes

of the array.

The beams were broadened by only 20% when measured ±150mm out of focus, this

indicates a sufficient depth of field as to allow for the imaging of a human target without

significant blurring.

Refocusing of nearby or faraway targets was confirmed in a 300mm range centred

about the nominal focus without any measurable performance degradation. It is expected

that this range could be extended, in practice, before any negative effects emerge.

The presence of additional optical components such as the band defining filters, the

cryostat window and a copper ring to mimic the detector array housing, caused roughly

a 10% broadening of the beams as well the expected dimming from optical absorption.

In all cases, beam profiles were successfully fitted by Gaussian functions with residuals

at levels typically lower than 2%. In no cases were any distortions in the beam shapes

noted nor was there any sign of ghosting as seen in the very first run of the fully integrated,

non-optimised system.
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3.4 Full system evaluation

The following sections present the evaluation of the camera optics in the fully integrated

configuration based on the preliminarily confirmed, re-optimised model. Full details of

the measurement setup and the methodologies for data processing and analysis are given

first. Then the results and conclusions from the tests in the 150GHz and 350GHz optical

bands will be presented.

3.4.1 Measurement setup

Hot blackbody 

and chopper wheel

on linear

XYZ translation

stage

x
y

z

(a) A schematic of the experimental setup.

(b) Photographs of the detector arrays for the 150GHz band (left) and 350GHz band (right).
The detectors are highlighted to indicate the spatial arrangement.

Figure 3.7: Measurement setup for the final characterisation of the fully incorporated,
re-optimised optics system.

A similar strategy to that of the preliminary evaluation was employed, the key

difference being the inclusion of actual KID arrays for measurement. The simultaneous

multi-pixel readout enabled an efficient characterisation of the system, however, without

any knowledge of the detector responsivities or absorption efficiencies, uncertainties

would remain in the absolute optical power reaching the focal plane.

The original Hg arc-lamp that was used as the blackbody source for the preliminary

measurements was unavailable during this characterisation, so a replacement system was

put together. This consisted of a small metal plate painted black with SiC infused epoxy

resin and heated by a series of resistors. The plate was warmed up to 125◦C, as measured

by FLIR thermal infrared camera, when supplied with 14W of electrical power.
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A 10mm diameter aperture stop was placed in front of the hot plate along with a

room temperature chopper wheel to modulate the source. This ∆T of 100K was an

order of magnitude lower than the 1200K provided by the arc lamp so the optical power

received would be, accordingly, also an order of magnitude lower.

A choice was made not to incorporate a reference signal from the new chopper wheel

into the housekeeping systems of the multiplexing electronics. The resources required

to build such an interface were seen as unnecessary given the convenience of a software

based demodulation.

This new source was mounted to the triple stage linear scanner and the acquisition

system for the XYZ position information was modified to transmit the values over UDP

to the multiplexing electronics housekeeping systems. This resulted in a ∼15ms latency

between detector data acquisition and XYZ acquisition - a small but significant factor

that required careful consideration when analysing data from the scans.

Initial x and y scans indicated that the camera’s focal length and beam size were

considerably improved by applying the re-optimised configuration. However, the ghosts

were back and they were present in all of the measured beams, in some cases at up to

50% of the main beam level. To gain further insight into the cause of these ghosts, a

new scanning strategy was devised. One in which the source was raster scanned across

the x, y plane to map out the entire instantaneous field of view of the camera. The XYZ

scanner has a maximum range of 300 × 300mm, so three separate side by side scans

were required to be taken and stitched together in order to create a full map for every

detector in each of the focal plane arrays.

A schematic of the measurement setup is given at the top of figure 3.7. Also included

in the figure are photos of the detector arrays with the individual pixels highlighted to

indicate their spatial distributions. Details of the map making process and the digital

demodulation, are described below.

3.4.2 Data processing

Multiple processing stages were required in order to generate and analyse the 2-D maps

of the detector beam profiles of the fully integrated camera. Firstly, the detector I and

Q data had to be converted into detector response timelines. These timelines then had

to undergo filtering to lock-in to the optical signal – as modulated by the chopper wheel.

Then, using the XYZ scanner position data, these demodulated optical responses had to

be binned into appropriately sized 2-D arrays. Finally, any gaps in these undersampled

arrays were interpolated between. The beams were then available for inspection and,

where appropriate, the beam parameters could be estimated by fitting Gaussian functions.

Timelines

For the purposes of this chapter, details of the readout electronics systems and ’raw’

detector timelines will be skipped over. It suffices to consider that for an array of N
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detectors, N files can be generated, each one containing regularly sampled values of one

detector’s response (measured in Hertz) over time. The responses should be assumed to

vary linearly with respect to the optical power incident upon each detector.

An example of such a timeline is displayed in blue in the upper part of figure 3.8a.

The modulated source can be seen passing through the beam of the detector over the

course of a number of raster scan sub-scans. A close up of a single pass through a roughly

Gaussian looking beam is inset to the figure. A further close up of the timeline reveals

the square wave modulation imparted by the optical chopper wheel.

The power spectral density (PSD) corresponding to the timeline is given in green in

the lower part of the figure. The PSD shows a strong component at the frequency of the

optical chopper (28Hz), as well as harmonics from the squareness of the chop, and other

noise.

The XYZ positions are acquired from the linear scanning system at the same rate as

the detector responses.

Lock-in

Demodulation of the chopped signal is presented in the figures 3.8b and 3.8c. The process

involves an initial baseline removal to offset the effects of any detector drifts that might

occur over the duration of the raster scans.

The baselined timelines are then passed though a zero-phase Butterworth bandpass

filter1, designed to let the 28Hz chopper signal pass but to stop everything else. The

rejection can be seen down to -200 dB in the implementation shown by green line in the

PSD in figure 3.8b. The zoom in of the timeline in blue shows a relatively pure sinusoidal

modulation compared to the square wave present prior to bandpass filtering.

Finally, the absolute value of the bandpassed timelines are taken and lowpass filtered,

again with zero-phase Butterworth IIR filters. The lowpass cut-off frequency is designed

such that the 28Hz modulation is smoothed out without smoothing over the larger

structure of the beams.

The end results of this process are timelines of detector response to the 28Hz chopped

optical signal which are ready to be binned into maps.

Map making

The whole beam mapping process was time consuming. The XYZ scanner could perform

a full 300mm sub-scan in, at fastest, 30 seconds, effectively providing one data sample

per 20 µm, at a 500Hz sampling rate, in the x-direction. Depending on the spatial

extent and resolution desired in the y-direction, anywhere from 50 to 100 sub-scans

1Butterworth filters were chosen to keep the passband response as flat as possible. Since the minimal
phase and hence the minimal group delay of a Butterworth filter is not naturally zero, each stage of
filtering was completed in two passes, forward-and-backward, to cancel out the group delays introduced
by each pass. Without a zero group delay, the detector responses would be shifted relative to the XYZ
positions, meaning further processing would be required before the binning of any maps.
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(a) An unprocessed timeline of detector response over the course of the beam
mapping process (upper), and the corresponding power spectrum (lower).

(b) Locking-in to the modulated signal: the band-pass filtered response and
spectrum.

(c) Finally, a lowpass filter on the absolute value of the bandpassed timelines.
The timeline is ready for map binning.

Figure 3.8: Map making, part 1: Timeline filtering for the digital lock-in.
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(a) A section of a raw map. Note the raster scan path.

(b) A section of an interpolated map with all gaps filled.

(c) A logarithmic colour scale shows low level structure. The background
noise in the map is measured in the given region.

(d) Beam parameter estimation with half power contours of the measured
beam (dotted line) and the Gaussian fit (solid line).

Figure 3.9: Map making, part 2: Map binning, interpolation, and analysis.
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would be required to sample the beams well. Furthermore, mapping out each and every

detector beam in the far field required three full raster scans due to the limited throw of

the linear scanners. That makes nearly three hours to fully map out the field of view,

including the time taken to manually offset the scanning system. The stitching of the

three individual sets of data involved a simple concatenation of the filtered timelines.

However, unevenness of the floor in the lab where the measurements were carried out,

and small errors in the repositioning between raster scans led to inconsistencies between

the reported XYZ positions and the actual spatial position of the source in the field of

view. These were accounted for in the map making process with offsets and rotations

applied to the XYZ positions.

The spatial extent in the object plane of the instantaneous FOV of the camera was

roughly 700× 50mm in the 150GHz band and 700× 150mm in the 350GHz band. Scans

were continued beyond this range to typically 900 × 250mm, in attempt to catch the

ghosts. Empty arrays were allocated with typically 900 × 250 elements, providing a

1× 1mm spatial bin size. One array was allocated for each detector channel, as well as

an array for the number of samples collected in each bin.

For each detector channel, the map binning process involved a single loop over each

timeline. The precise XYZ positions were converted into the indexes of the empty arrays,

and a running sum of the detector response was calculated for each bin. Each array of

the total summed response was, finally, divided by the array of the hit counts per bin to

generate the response maps.

Given the number of sub-scans relative to the spatial extent and bin size, as well as

the occasional missing data packet, the response maps were not necessarily fully filled. A

qualitative analysis then becomes challenging as seen with the raw map in figure 3.9a, so

an interpolation is performed over the remaining empty elements. Figure 3.9b presents

an interpolated map.

Analysis

A lot can be inferred by simply looking at the maps, however as with the preliminary

analysis, more quantitative analysis techniques are available. For example, by choosing

a region in the map where there is a distinct lack of signal, the background noise level

can be measured, and thus, a signal to noise ratio can be calculated for the map. See

figure 3.9c.

Also as before, the widths and other parameters of the beams can be estimated by

fitting Gaussian functions. A more advanced analysis can be performed on 2-D maps

rather than on 1-D sections by fitting 2-D Gaussian functions to the data. These functions

look like ellipses when taken in slices of constant amplitude and have a rotational degree

of freedom. The form of the seven parameter 2-D Gaussian functions typically used in
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this analysis is

g(x, y) = A0 +A exp

(

−1

2

(

(

x′

σx′

)2

+

(

y′

σy′

)2
))

, (3.3)

where A0 is a baseline level, A is the amplitude, and σx′ and σy′ are the dispersions in

the major and minor axes, respectively. The positions in the rotated coordinate system,

x′ and y′, are given by

x′ = (x− x0) cosφ− (y − y0) sinφ (3.4a)

y′ = (x− x0) sinφ+ (y − y0) cosφ , (3.4b)

where φ is the rotation angle and (x0, y0) is the location of the centre of the function in

the unrotated map coordinates, x and y.

An example fit is presented in figure 3.9d with half power contours of the data (dotted

line) and the fit (solid line) overlaid onto the map. The fit is performed as a non-linear

least squares minimisation based on the Levenberg-Marquardt algorithm. In some cases

the 2-D Gaussian model may not be optimal for the results in hand, however, it can and

will provide a reasonable approximation for at least some of the parameters.

In this analysis, the FWHM may be presented either as a pair of values (major and

minor axis widths) each calculated from the dispersions as in equation 3.2, or as a single

value that is the mean of these.

Finally, where necessary, any glitches that have propagated through the data process-

ing pipeline can be masked out and ignored.

3.4.3 Performance at 150 GHz

The first run with the system in its full configuration was with the 60 pixel 150GHz

array. Initial scans had indicated strong ghosting in the beams and the preliminary

optics evaluation ruled out the lenses as the cause of this. 2-D beam maps over the full

field of view confirmed the presence of the ghosts and hinted that they might be due to

reflections from the edges of the array packaging. Stacking the beam maps by computing

the average over every map clearly confirmed this (see figure 3.10a) by showing that the

ghosts were each part of a larger more more general structure of the same shape as the

entrance to the array holder.

The system was then modified to reduce these stray reflections by arranging blackened

baffles at the entrances of the various radiation shields, and by installing a horn plate in

front of the detector array. A second run of the beam mapping process showed consid-

erably improved performance in terms of reduced contributions from stray reflections

as well as improved beam widths and signal to noise ratios however some cross leakage

from the other horns was evident. A third run was undertaken with horns of wider

entrance apertures to further improve the optical coupling. Although the overall signal
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to noise ratios were improved, the horn leakage was not effected significantly, stray light

reflections from the optical baffles were visible, and the beams appeared distorted in

some cases.

Example beams are presented in figure 3.10. The three parts of the figure correspond

to the three cases mentioned: direct illumination; horn coupling; and horn coupling with

widened apertures. In each part, maps of the leftmost, central and rightmost pixels are

presented as well as the stacked average over all the maps. The maps on the left half of

the figure are of signal to noise ratio normalised to the baseline level of each pixel, while

the maps on the right half are of signal to noise ratio normalised to the peak response of

each pixel and displayed with a logarithmic colour scale to highlight low level details.

The distributions of signal to noise ratios and beam widths are presented in the

histograms in figure 3.11. The same results are presented in figure 3.12 but as a function

of the detector position in the focal plane array. A similar trend to that found in the

preliminary evaluation is present in that the beams are generally narrowest and strongest

in the center of the focal plane with a particularly weak and broad region on one edge.

The first horn coupling test seems anomalous in the this respect as the signal to noise

ratios are somewhat lower in the centre of focal plane. However it should be noted that

the signal to noise ratios here are dependant on the individual detector performances

and are not direct indicators of the optical power present. Poor noise performance or

reduced responsivity can skew the results considerably.

3.4.4 Performance at 350 GHz

Tests of the 350GHz array were performed in the horn coupling mode only. Stray light

reflections from the baffles and array packaging were notably absent, however, the beams

showed a number of interesting distortions. While they were well described by Gaussians

at their peaks, extensive non-Gaussian tails were present. Additionally, new ghosts were

present in most of the maps at positions slightly offset in the horizontal from the main

beam.

These new ghosts were found to be due a misalignment of the horn plate with respect

to the detector array. A second run with the correct alignment eliminated the ghosts

and improved the singal to noise level, although the low-level non-Gaussianity remained.

These contributions (clearly visible in the logarithmic maps in figure 3.13b) are most

likely the result of further light leakage from the neighbouring feed horns.

Finally, a coma-like aberration is present a number of channels localised to one edge

of the array. This is a manifestation of the edge distortions noted in the 150GHz and

preliminary evaluations. The aberrations affect the outputs of the Gaussian fitting

function and lead to the reporting of beams with high ellipticities. As a measure of the

resolving power of the system, the histograms in the lower right part of figure 3.14 are

then somewhat biased as indicated by excesses in the reported major axis widths.

The spatial distribution of the aberrations can be seen in figure 3.13c where some
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(a) Direct illumination: Broader than expected and low SNR beams with considerable
ghosting and off axis response.

(b) Horn coupling: reduced stray light, improved SNR and beam widths. Light leaks from
neighbouring horns visible.

(c) Horn coupling with widened horns: very good SNRs, some distortions in beam shapes
and reduced horn leakage.

Figure 3.10: 150GHz maps: A selection of beam maps over three runs of the 60 pixel
array. Horn coupling the detectors to the refractive optics system vastly improves the
detector response and reduces stray light loading.
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Figure 3.11: Histograms of signal to noise ratio (left) and beam width (right) for the
N = 58 working channels in the 150GHz array.

Figure 3.12: 150GHz optics performance as a function of position across the focal plane.
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(a) Misaligned horn plate: the main beams are accompanied by numerous minor beams
originating from nearby feed horns.

(b) Properly aligned horn plate: the strongest minor side beams are gone but horn leakage
is still present. The rightmost beam shows some considerable aberration.

(c) Properly aligned horn plate: the distribution of the optical aberrations is shown by
overlaying the peaks of each beam.

Figure 3.13: 350GHz maps: A selection of beam maps over two runs of the 152 pixel
array. Correct alignment if the horn plate to the detector array vastly improves the
detector response and reduces contributions from horn leakage. Strong optical distortions
are visible on one edge of the array.
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Figure 3.14: Histograms of signal to noise (left) and beam width (right) for the N = 152
detectors in the 350GHz array. There are some ellipticities to the beams so the major,
minor and mean beam widths are differentiated.

Figure 3.15: 350GHz optics performance as a function of position across the focal plane.
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preliminary results from a beam-mapping run are overlaid. The distorted beams do not

exactly match the locations of the broadest width beams indicated in figure 3.15 because

they were taken in a different run prior to minor optical adjustments, however the trend

is the same: broader and more distorted beams on the right hand edge of the focal plane.

It should again be noted that the signal to noise ratios presented here are a product

of the optics response of the system as well as the detectors’ noise performance and

responsivity. Further analysis is required to decouple the individual detector responses

although it is believed that only in a few cases do the detector noise performances have

a noticeable effect. One example of this is that there appear to be some regularly spaced

pairs of detectors with reduced signal to noise in regions were the average signal to noise

is high. This seems to be correlated with the locations of detectors with similar resonant

frequencies.

3.5 Scanning mechanism

A graphical overview of the field scanning mechanism was given in figure 2.1 on page 23.

The system involves rotating the main beam-folding mirror in an oscillatory manner to

repeatedly sample the field of view. This is achieved by linking the back of the mirror via

a short arm to a small circular cam that is driven by a feedback controlled servomotor.

The angular orientation of the mirror is reported back to the readout electronics

system with an absolute rotary encoder and the timelines are used to generate the real

time images. Figure 3.16 shows some example timelines for various frame rates up to

2FPS. A close look at the high rate timelines reveals small bumps as the angle approaches

the lower extreme of each cycle. This is caused by weakness in the bearings that connect

the mirror to the arm and the arm to the cam. This small bump can provide quite a kick

to the system and repeated kicks can cause the camera frame to oscillate and eventually

lead to the cold stage of the cryostat warming up. As such, the frame rate is kept below

2FPS.

The circular cam defines a sinusoidal scanning pattern and is not ideal, however

no suitable alternative – such as a linear scan based on a heart-shaped cam – was

implemented. In the sinusoidal case, less time is spent imaging the centre of the field of

view and this is indicated in comparison to the ideal linear scan by the histograms in

figure 3.17. At faster rates, unsampled spatial bins are interpolated over in the image

generation software.

3.6 Optical efficiency

Given the parameters provided by the Zemax model of the optics system, along with

other measured factors, it is possible to estimate the optical power present at the focal

plane and to infer an optical efficiency. The diameter of the primary aperture is 0.44m,

the optimal focal length is 3.35m, and a typical beam FWHM at focus is 11mm. Zemax
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Figure 3.16: Timelines from mirror encoder (blue) normalised between zero and one for
increasing frame rates – note the bumping at higher frequencies that leads to shaking of
the camera frame and warming of the cold stage. The single step difference (green) is a
measure of the mirror velocity – note the clear departure from a sinusoidal form with
increasing frame rate

Figure 3.17: Distribution of spatial field sampling for a simulated ideal linear scan rate
(top), a simulated sinusoidal scan rate (middle), and the measured sinusoidal scan rate
(bottom). In each case the frame rate is set to 1 FPS, the data rate is 500 Hz, the time
duration is 1 second, and the spatial bin width is 5mm.
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Table 3.6: . The measured transmission and emission properties of the optics system. For
each of the key components, estimates are made of the power radiated by the component
Ps and the power presented to a detector at the focal plane PFP. The total power is
used to calculate the photon noise limited sensitivity given in Table 7.1.

Component Thick. Temp. Peak Trans. Peak Emiss. PS PFP

[mm] [K] [%] [%] [pW] [pW]

Source - 308 - 0.99 312 68

Mirror - 293 - 0.01 0.9 0.2

L1 100 293 0.77 0.27 80 23

L2 65 293 0.84 0.17 50 16

Window 15 293 0.96 0.04 11 4.8

L3 70 150 0.83 0.19 28 12

630GHz LPE - 150 0.93 - - -

540GHz LPE - 150 0.94 - - -

450GHz LPE - 10 0.88 - - -

350GHz BP - 10 0.80 - - -

350GHz BP - 0.25 0.69 - - -

Total signal power at horn entrance: 68

Total stray light power at horn entrance: 56

Total power at horn entrance: 124

Detector Efficiency 25% Total detected signal power: 17

Total detected stray light power: 14

Total detected power: 31

informs us that the camera throughput is AΩ = 1.33× 10−6m2 sr, the measured filter

profiles (see figure 2.3) indicate a ∆ν = 6% wide band centred at ν = 348GHz or

λ = 862µm, so the number of spatial modes in the beam is 1.84, which is consistent with

the two electromagnetic modes that are permissible through the feed-horn and waveguide

to the detector (see figure 2.2. The transmission and emission properties of the optical

components were measured and are summarised in Table 3.6 along with estimates of the

in-band power from a human target present through the optics system onto each horn in

the focal plane. The total incident power per horn is 124 pW, of which 68 pW is from

the 308K source and 56 pW is stray light from the optics. Given that the power emitted

from the 308K source into the main beam is 312 pW (estimated from Equation 2.2), the

overall optical efficiency of the camera is ηopt = 22%.

3.7 Summary

The design and performance of the optics system have been presented, including not

only the final working performance but also some of the issues that were faced in getting

– 60 –



Chapter 3. The Optical System

the system up and running. The optics are by no means perfect and the detectors are

not uniformly illuminated across the field of view, however, the cost and complexity of

the system are minimal and the performance is sufficient for a working camera.

The large window and the fast, refractive optics contribute to a considerable excess

in optical loading on the focal plane array. Further discussions on this and other stray

light effects are summarised in the noise budget analysis in Chapter 7.
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Chapter 4

The Detector System

The ultimate goal for a general purpose imaging system operating in the terahertz would

be to achieve high resolution, video rate imaging of large fields of view with background

limited sensitivities. Kinetic inductance detectors have recently been demonstrated

with background limited sensitivities under very low optical loading conditions [Yates

et al., 2011,Mauskopf et al., 2014], they have fast response times, and relative to other

comparable technologies – they are easy to manufacture into large arrays which are

also relatively easy to read out. This makes them an ideal choice for terahertz imaging

applications, and the instrument we have developed has proven that the technology is

can be a viable and cost-effective option.

Initial runs with the camera were with a 60 pixel LEKID array operating in a

narrow optical band at 150GHz or 2mm. The camera was then upgraded to a 150 pixel

LEKID array at 350GHz or 850µm in order to improve the image resolution as set by

the diffraction limited optics. The two arrays have worked well enough for successful

demonstrations of the camera and at no point have they been a limiting factor in the

performance of the system. As such, not a great deal of detector development has been

involved in this project to date. Most of the development time has been spent on optical,

electronic, cryogenic, and software engineering.

In this short chapter, I present the design and characterisation of the two LEKID

arrays. Dr Doyle is acknowledged for the design and modelling. Dr Dunscombe is

acknowledged for the fabrication. A side-by-side comparison of the differences between

the arrays in the two bands is given in Table 4.1 on page 73, and some estimations of

detector noise and responsivity are given towards the end.

4.1 150GHz design

The 150GHz pixels are based on the classical LEKID design [Doyle et al., 2008]:

• The aluminium is 40 nm thick and sits on a 525µm high resistivity silicon substrate.

• Absorption is direct with the aluminium facing out of the focal plane. See Figure 4.1.
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Figure 4.1: The 150GHz LEKID optical coupling design: (left) the aluminium LEKIDs
sit on the top of the wafer and are directly illuminated by incoming photons, and (right)
the equivalent transmission line model of electromagnetic wave propagation. Figure
adapted from [Doyle, 2008] with permission.
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Figure 4.2: The 150GHz LEKID devices are based on the classic inductively coupled
LEKID design: (left) the photomask, and (right) the equivalent microwave readout
circuit.
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Figure 4.3: Optical coupling efficiency of the 150GHz LEKID meander including a
section of the feedhorn is modelled in HFSS: (top) the model, and (bottom) the results:
∼30% efficiency at 150GHz.

Figure 4.4: The 150GHz array layout: Two rows of 30 LEKIDs are spaced evenly
along the microstrip transmission line. The rows are offset by half of the single-row pixel
separation. This separation is sufficient to Nyquist sample the horizontal axes of the
image plane given the diffraction limited spot-size expected from the optics system at
150GHz.
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• The 1875×1875µm absorber element is a classical, straight, inductive meander

that is sensitive to a single polarisation. The meander has 8 turns with a line width

of 4µm and a separation of 275µm. See Figure 4.2.

• The HFSS model indicates around 30% coupling efficiency in a 10% wide band

centred at 150GHz. See Figure 4.3.

• The interdigital capacitor section has 7 fingers, each 6µm wide and separated by

18µm.

• The linear array is composed of 60 LEKIDs separated by Fλ/2 in the horizontal

axis so that the focal plane is Nyquist sampled. See Figure 4.4.

• The resonators are inductively coupled to a microstrip transmission line of width

240µm at a distance of 500µm. The stainless steel array packaging acts as the

ground plane.

• The variable length of the the outer capacitor finger sets the resonant frequencies

to be around 1.5GHz with 2MHz spacing between resonances, providing an overall

readout bandwidth of 120MHz.

• The total inductor volume is 2700µm3 and the spatial filling factor is 1.9%.

4.2 150GHz characterisation

The array was installed into the camera and the microwave transmission was measured

with a vector network analyser. The results are displayed in Figure 4.5. A total of 58

resonances were identified from the amplitude of S21 sweep. The data set was reduced

to keep only the points close to each resonance and the individual resonant frequencies

and quality factors were measured. The resonant frequencies range from 1.425GHz

to 1.545GHz giving a total bandwidth of 120MHz, as expected from the design. The

separation between resonances varies considerably from as much as 8MHz down to a few

hundred kHz in some cases. If any resonances are too close together, the response of

one can affect the response of the other and neither can be used for imaging. In total,

four pairs of closely coupled resonators had to be ignored due this effect, bringing the

total array yield to 50 out of 60, or 83.3%. The resonator quality factors are limited by

coupling losses to around 20000. The quality factor distribution is uniform across the

array.

A single pixel was selected for a more detailed analysis of optical response and noise.

LEKID 03 (fres = 1.4313GHz) was chosen due to its central spatial position along the

array, and also because it showed microwave properties typical of the majority of the

detectors in the array. A variable temperature blackbody source was set up in the field

of view of the camera at the point of focus of LEKID 03. Frequency sweeps were taken

with a standard homodyne readout system as the blackbody was varied in temperature
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Figure 4.5: Microwave characterisation of the 150GHz LEKID array with a VNA sweep
driven at −65 dBm: (top) the magnitude of S21(f), (middle) the IQ plane representation,
and (bottom) extracted resonant frequencies and quality factors.
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Figure 4.6: The response to variations in optical power for LEKID 03 at 1.4313GHz.
(left) the frequency response, (centre) the dissipative response, and (right) the variation
in quasiparticle lifetime.

Figure 4.7: Noise power spectra for LEKID 03 measured with a fixed tone on resonance
and a fixed tone off resonance: (green lines) the LEKID is looking out of the camera into
the room, and (blue lines) a mirror is placed under the window so that the LEKID sees
the cold interior of the cryostat.

between 310 and 380K. The resonant frequency and quality factors were calculated

as a function of temperature and are displayed in the first two graphs in Figure 4.6.

The responses were linear with temperature as expected for blackbodies emitting in the

Rayleigh-Jeans portion of the spectrum. The same LEKID was measured with a fixed

readout tone from the same homodyne readout system and the quasiparticle lifetime

was measured at three different temperatures. No significant variation was noted with

temperature and the lifetime was typically measured at 30 to 40 µs. The results are

included the third graph in Figure 4.6.

The resonant frequency response of the KID was sampled repeatedly with a fixed

readout tone centred at the resonant frequency for one minute at a slow rate (2 kSPS)

and for one second at a high rate (200 kSPS). Measurements were also taken with the

readout tone positioned away from the resonance. This was repeated with the cryostat
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window open and with the cryostat window blocked by a mirror – in the first case, the

KID sees the warm (300K) room and in the second case, the KID sees the cold interior

of the cryostat (100-150K). The resulting noise power spectra are displayed in Figure 4.7.

The on-resonance spectra show the characteristic mid-frequency white noise and high

frequency roll-off. This is not present in the off-resonance spectra. The white noise at

−110 dBc comes from the cryogenic amplifier and the white noise at −85 dBc is due to

fluctuations in quasiparticle density. The high- and low-load results are almost identical

except that the roll-off occurs at a very slightly higher frequency in the high optical

loading case. There is an argument here that the increased optical power dominates

the quasiparticle dynamics and that, therefore, the detector sensitivity is fundamentally

limited by the photon noise.

4.3 350GHz design

The 350GHz pixels are based on the dual polarisation design from [Roesch et al., 2012]:

• The aluminium is 40 nm thick and sits on a 500,µm high resistivity silicon substrate.

• Absorption is through the back of the substrate with the aluminium facing down

towards the base of the array packaging which is covered in a layer of silicon-

carbide-blackened epoxy to absorb stray optical radiation. See Figure 4.8.

• The 1450×1450µm absorber element is a 4th order Hilbert design that is sensitive

to both polarisations. The line width of the Hilbert meander is 3µm and the unit

section length is 95µm. See Figure 4.9.

• The HFSS model indicates around 35% coupling efficiency in a 10% wide band

centred at 350GHz. See Figure 4.10.

• The interdigital capacitor has 6 fingers, each 6µm wide and separated by 9µm.

• The linear array is composed of 152 LEKIDs separated by Fλ/2 in the horizontal

axis so that the focal plane is Nyquist sampled. See Figure 4.11.

• The resonators are capacitively coupled to a co-planar waveguide transmission line

with a central conductor width of 485µm, free space gaps of 24µm and a return

conductor width of 21µm in the vicinity of the LEKIDs. The coupling capacitor

is 21µm wide, 1450µm long, and separated by 6µm from the return conductor

(ground plane).

• The resonant frequencies are deigned to be around 1.5GHz with 3MHz spacing

between resonances, providing an overall readout bandwidth of 450MHz.

• The total inductor volume is 2900µm3 and the spatial filling factor is 3.45%.
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Figure 4.8: The 350GHz LEKID optical coupling design: (Left) the aluminium LEKIDs
sit between the substrate and the absorber and are back-illuminated through the substrate:
(right) the equivalent transmission line model of electromagnetic wave propagation. Figure
adapted from [Doyle, 2008] with permission.
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Figure 4.9: The 350GHz LEKID devices are capacitively coupled to a CPW transmission
line and the absorber is based on a 4th order Hilbert curve: (left) the photomask, and
(right) the equivalent microwave readout circuit.
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Figure 4.10: Optical coupling efficiency of the 350GHz LEKID meander including a
section of the feedhorn is modelled in HFSS: (top) the model, and (bottom) the results:
∼35% efficiency at 350GHz.

Figure 4.11: The 350GHz array layout (ground plane not shown): 8 rows of 19 LEKIDs
are spaced evenly along the CPW transmission line. The rows are offset by roughly one
eighth of the single-row pixel separation. This arrangement is also sufficient to Nyquist
sample the horizontal axis of the image plane given the diffraction limited spot-size
expected from the optics system at 350GHz.
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4.4 350GHz characterisation

A similar characterisation to that performed on the 150GHz array was performed on the

350GHz array.

From the microwave analysis in Figure 4.12, the resonant frequencies span from 1.25

to 1.73GHz – a slightly higher range than the expected 450MHz but still within the

500MHz bandwidth of the NIKEL readout electronics system. Some broad band features

are present in the S21 plot that interfere with a number of resonators. The total number

of KIDs identified with an automatic KID finding algorithm was 138, of which 8 are too

closely coupled to be of use. The brings the useful detector yield in this array to 130 out

of 150 or 86.6%.

Again, the resonator quality factors are limited by coupling losses to around 20000-

30000. The distribution varies across the the array with lower frequency KIDs tending

to have higher Q-factors.

Measurements of the overall sensitivity using the multiplexed readout system were

taken and these results are included in the final chapter of this thesis. The quasiparticle

lifetime was measured for one 30µs detector.

An additional dark characterisation was performed with a dedicated low-background

LEKID test system based in our group here in Cardiff. Twelve random selected KIDs

were measured as a function of bath tmerperature in, effectively, a completely dark

environment. The results are presented in Figure 4.6. The first graph shows the classic

Mattis-Bardeen response of fractional frequency shift (x) to bath temperature. The

second graph shows the expected drop in quality factors with bath temperature. The

third graph compares the two results in order to fit the proportionality constant(β).

4.5 Detector noise

4.5.1 Generation-recombination noise

Thermal lattice vibrations within a superconductor break Cooper pairs and generate

quasiparticles, as will any external power sources that couple in such as optical photons

or electronic readout signals. Quasiparticle excitations will relax and recombine back into

Cooper pairs in a mean time τqp ∝ 1/nqp where nqp is the quasiparticle density. These

intrinsic thermal fluctuations in nqp are indistinguishable from any externally sourced

fluctuations and will always be present in the superconductor, although at exponentially

lower levels as the temperature is reduced. This sets a fundamental limit to the sensitivity

of a kinetic inductance detector.

For a LEKID at a temperature T ≪ Tc, with an inductive meander of volume VL, the

number of quasiparticles present Nqp due to thermal (phonon) excitations is given by

Nqp(T ) = nqp(T )VL = 2N0VL

√

2πkBT∆ exp

( −∆

kBT

)

, (4.1)
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Figure 4.12: Microwave characterisation of the 350GHz LEKID array with a VNA sweep
driven at −70 dBm: (top) the magnitude of S21(f), (middle) the IQ plane representation,
and (bottom) extracted resonant frequencies and quality factors.
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Table 4.1: A comparison of the detector array characteristics between the two optical
bands.

Frequency 150GHz 350GHz

Wavelength 2mm 850µm

Filter bandwidth 10% 10%

Number of pixels 60 152

Array layout 2× 30 8× 19

Optical coupling Direct Through substrate

Optical efficiency 30% 35%

Polarisation sensitivity Single pol. Dual pol.

Microwave coupling Inductive Capacitive

Microwave transmission line Microstrip CPW

Microwave frequency separation 2MHz 3MHz

Microwave centre frequency 1.5GHz 1.5GHz

Microwave bandwidth 120MHz 450MHz

Figure 4.13: The response to variations in bath temperature power for a random sample
of 12 LEKIDs. (left) the fractional frequency response, (centre) the dissipative response,
and (right) fitting β.
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and the quasiparticle lifetime τqp is

τqp(T ) =
τ0√
π

(

kBTc

2∆

)5/2
√

Tc

T
exp

(

∆

kBT

)

[s] , (4.2)

where the material dependent parameters N0, τ0, ∆, and Tc are respectively the normal

state single spin density of states at the Fermi surface, the electron-phonon interaction

time, the superconducting gap energy, and the superconducting critical temperature.

Typical values for the thin film aluminium used in our devices is given in Table 4.2. For

a given device, the proportionality between Nqp and τqp is described by the temperature

independent constant,

Nqpτqp = N0τ0VL
k3BT

3
c

2∆2
[s] , (4.3)

Table 4.2: Material dependent parameters for estimating GR noise of the 350GHz thin
aluminium LEKIDs described in this thesis.

Parameter Symbol Value Unit

Normal state single spin density of states N0 1.7×1010 µm−3 eV−1

Electron-phonon interaction time τ0 80 ns

Superconducting energy gap ∆ 180 µeV

Superconducting critical temperature Tc 1.4 K

LEKID inductor volume VL 3000 µm3

Generation-recombination (G-R) noise is characterised by the power spectral density

of fluctuations in the number of quasiparticles due to thermal interactions as a function

of frequency, as given by

SNqp(f) =
4Nqpτqp

1 + (2πfτqp)2
[

Hz−1
]

. (4.4)

The noise spectrum is typically flat but rolls off when the sampling interval (∆τ = 1/fs)

is of order τqp or faster.

The responsivity of a KID is defined as the change in quasiparticle number for a

given change in absorbed optical power and can be be shown to be equal to

RNqp =
dNqp

dPabs
=

ηeτqp
∆

[

W−1
]

, (4.5)

where ηe is the quasiparticle production efficiency. For a standard BCS superconductor,

ηe ≈ 0.6 when absorbing photons with hν & 4∆ [de Visser et al., 2015].

The noise equivalent power, NEP, referring to the equivalent absorbed optical signal
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power required to equal the G-R noise power is then

NEPGR(fs) =
2∆

ηe

√

Nqp

τqp

1
√

1 + (2πfsτqp)2

[

WHz−
1

2

]

. (4.6)

However, this model is only valid in the case of a dark detector. Any KID that is

under an optical load will have an excess of quasiparticles and, therefore, a reduced

quasiparticle lifetime and increased G-R noise. A corrected estimate for the NEP can be

made by applying a model where the KID sits at an elevated effective temperature Teff

that is dependent on the incident optical power. The power transferred from Cooper

pair states to the quasiparticles gas by phonon interactions is given, to first order, by

Pphonon =
Nqp∆

τqp
[W] . (4.7)

Thus, we can write the optically unloaded quasiparticle number as a function of the

phonon power,

Nqp, unloaded =

√

N0τ0VLPphonon

2

(

kBTc

∆

)3/2

. (4.8)

The optically loaded quasiparticle number is then simply

Nqp, loaded =

√

N0τ0VL(Pphonon + Pabs)

2

(

kBTc

∆

)3/2

. (4.9)

Then, Teff can be found by solving Equation 4.1 for T , the loaded quasiparticle lifetime

can be computed from Equation 4.2 as τqp, loaded = τqp(Teff), and the corrected G-R NEP

can be computed from Equation 4.6.

For the 350GHz detectors, the noise equivalent power due to G-R noise is estimated

using the method described above at NEPGR = 6.5× 10−17W/
√
Hz.

4.5.2 TLS noise

Amorphous structure in the thin film lattices, especially at the boundaries between the

film, the substrate, the oxide layer and free space, cause non-uniformities in the electric

potential around a KID. So called Two-Level-System (TLS) interactions occur where

electrons tunnel between the various minima of the potential. This leads to localized

variations in the quasiparticle density and dielectric constant of the superconductor, and

manifests as noise in the resonant frequency of the KID.

The effects of TLS noise can be mitigated by driving KID resonators with more

powerful readout tones such that the noisy TLS states become ’saturated’ and fluctuations

are reduced. The detectors in use in this thesis already require high power levels and

TLS noise has never been an issue.

The noise power spectrum of TLS fluctuations has a 1/f distribution and typically

dominates on time-scales lower than ∼10Hz. This has been a problem for astronomical
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systems that are modulated at low frequencies but, again, this is less of an issue in this

system as the detectors are modulated at a much higher rate (∼500Hz).

4.6 Summary

In summary, two detector arrays were designed and fabricated within the group here at

Cardiff. The microwave performance of the arrays was as expected although some overlap

between resonance lead to the reduced detector yields of 85% on each array. Responses

to optical power and bath temperature have been presented and no unexpected effects

were noted. The detector sensitivity is estimated to be of order 6× 10−17 W/
√
Hz. This

results is discussed further in the overall sensitivity analysis in Chapter 7. From the

offset, the detector arrays performance was suitable for imaging purposes and there was

never any need for any further investigations into any possible performance limitations.

Development was focussed on the more pressing issues of electronic readout and software

development.
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Chapter 5

The Electronic Readout System

Kinetic inductance detectors exhibit variations in complex electrical impedance when

light is absorbed. Electronic readout systems are responsible for measuring and recording

the magnitude of this change. In this chapter I present an overview of the main KID

readout techniques, including mechanisms for single pixel and multiplexed readout. I go

on to describe the design and characterisation of the two multiplexing systems used in

our terahertz camera.

5.1 KID readout techniques

KID readout is achieved by monitoring the complex forward transmission, S21, of a probe

signal that couples to KID resonators. If a1 and b1 are, respectively, the transmitted and

reflected components of the probe signal at the input to a detector array, and a2 and

b2 are the transmitted and reflected components at the output, then the S21 scattering

parameter is defined by the following linear relationship:







b1

b2






=







S11 S12

S21 S22













a1

a2






. (5.1)

KID 

Array
Port 1 Port 2

a2

b2a1

b1

Figure 5.1: Scattering parameters describe the relationships between transmitted and
reflected waves at the ports of an n-port network. The S-parameters for a two port
network such as a KID array are defined in Equation 5.1.

For an inductively coupled KID resonator, S21 as a function of angular frequency ω
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is given by [Doyle, 2008,F. S. Porter, 2002,Zmuidzinas et al., 2002,Barry, 2014]

S21(ω) =
2

2 + Z0/Zin(ω)
=

Qr/Qi + 2jQrxr
1 + 2Qrxr

, (5.2)

from, where Z0 is the characteristic impedance of the transmission line (typically 50Ω)

and Zin is the KID’s complex impedance. Qr and Qi are the total and internal (i.e. loaded

and unloaded) quality factors of the KID, and xr is the coupling-modified fractional

frequency shift, which is a function of ω and of the resonant frequency ωr of the KID.

Absorbed optical power modifies Zin which produces measurable changes in Qi

(dissipative response) and ωr (frequency response). The frequency response is typically

characterised by the standard fractional frequency shift, x = δωr/ωr. The dissipative

response is typically characterised by the change in the inverse of the internal quality

factor, δQ−1
i . The two responses are related by a frequency dependent factor β, where

β(ω) = 2 δQ−1
i /x.

Detector characterisation is achieved by measuring S21(ω) across a range of frequencies

(by shifting the frequency of the probe signal) and then fitting to the parameters that

define the resonance. This is actually quite a time consuming process and becomes

impractical when reading out KIDs at high rates. Instead, a fixed frequency probe is

used and the frequency and dissipation responses are then estimated or inferred from

the variations in S21 at that frequency alone. For a probe signal set at ωr, variations

in the S21 amplitude are a proxy for the dissipative response and variations in the S21

phase are a proxy for the frequency response.

S21 is usually measured in terms of I and Q, where S21 = I + jQ. In this IQ

representation, the amplitude and phase as functions of time are given by

A(t) =
√

I(t)2 +Q(t)2 (5.3a)

φ(t) = tan−1

(

Q(t)

I(t)

)

. (5.3b)

Schematics of optical response to optical in amplitude, A, and phase, φ, are presented in

Figure 5.2. A different representation of the phase that gives a greater response for a

given change in resonant frequency is that of the phase measured from the centre of the

resonance circle (Ic, Qc) in the IQ plane, given by

φ(t) = tan−1

(

Q(t)−Qc

I(t)− Ic

)

, (5.4)

and indicated in the right hand part of Figure 5.2. In practice, calculating the phase is

computationally expensive due to the inverse tangent operations. A more convenient
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Figure 5.2: KID response: a fixed frequency readout tone indicated by the dotted black
line takes on the amplitude and phase values indicated by the purple dots. When the
KID resonance changes due to an optical load, the amplitude and phase measured at the
probe frequency will vary as indicated by the blue and green arrows.

proxy for the detector frequency shift, referred to as δf , is given by

δf(t) =

(I0 − I(t)) dI
df

∣

∣

∣

f0

+ (Q0 −Q(t)) dQ
df

∣

∣

∣

f0

dI
df

∣

∣

∣

2

f0

+ dQ
df

∣

∣

∣

2

f0

[Hz] , (5.5)

where I0 and Q0 are the optically unloaded I and Q values at the readout tone frequency;
dI
df

∣

∣

∣

f0

and dQ
df

∣

∣

∣

f0

are the gradients of the optically unloaded I(f) and Q(f) sweeps at the

readout tone frequency; and, f = ω/2π. This approximation to the frequency shift of

the resonator involves computationally inexpensive, linear, algebraic operations and is

valid in the limit of frequency shifts lower than a couple of line-widths. A derivation is

provided in Appendix A.1.

Calculation of the φ(t) and/or δf(t) values requires prior knowledge of the location

of the resonance circle centre in the IQ plane and/or the gradients of the I(f) and Q(f)

curves. As such, frequency sweeps must be performed and the values extracted prior to

the start of any fixed frequency probe readout.

Everything described so far for single KID readout also holds for multiple KID readout.

The only difference is that the single-tone probe signal is replaced by a super-position of

tones where each tone frequencies matches one of the KID resonant frequencies. That is,

s(t) =

N
∑

i=1

aie
j(ωit+ϕi), (5.6)

where N is the number of channels, ai is an individual tone’s amplitude, ωi is an individual

tone’s frequency, and ϕi is the phase offset for an individual tone.

When this multiplexed signal is fed into the KID array’s transmission line, the

resonators are free to modulate their corresponding tones. Once the signal has left the

array we must demultiplex it to extract the individual modulations. This is generally

achieved by digitising the signal and applying either an FFT or an array of lock-ins to
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KID 
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Cryostat

Input

Cryostat

Output

Attenuator Amplifier

Figure 5.3: A schematic of the cryogenic electronics requirements for a typical KID
system. Theoretically, 1000s of KIDs can be read out through a single cryogenic amplifier
before saturation becomes a problem.

extract the I and Q components of the individual readout channels, and then performing

the appropriate signal transformations (see Equations 5.3-5.5) to compute the individual

detector responses.

5.1.1 Cryogenic electronics

Kinetic inductance detectors are superconducting devices that require cooling to sub-

Kelvin temperatures for operation. The main advantage that KIDs have over other

low temperature detectors is that the frequency domain multiplexed readout approach

requires only one physical line into the detector array and only one line out. Other

contemporary low temperature detector technologies generally require O(N) wires where

N is the number of detectors. The incorporation of modern cryogenic time-division

multiplexing systems can reduce this to around O(
√
N), however, these systems are not

cheap, are not always 100% reliable, and still require considerable cryogenic engineering

efforts. KID systems, therefore, have to the potential to match the performance of other

modern systems at considerably lower costs with, potentially, greater reliability and

vastly reduced overall complexities.

The power levels of KID readout tones have to be sufficiently low so as not to drive

electrical current densities above the superconducting critical point. The levels required

by the KIDs in our system are typically −70 to −60 dBm or 10 to 100 pW – which is

relatively high compared to other KID systems. In order to maintain good dynamic

range in the readout tones, they are generated at considerably higher levels than this

and attenuated down prior to reaching the detector arrays. The tones then require

amplification before they are digitised and processed. The attenuation and amplification

are best performed within the cold stages of the cooling platforms as the reduced noise

temperatures maintain good dynamic range in the probe signal. The Caltech CITLF4

amplifiers used in this camera have noise temperatures of around 5K between 0.1 and

6GHz when operated at temperatures below 20K. Broad-band attenuators that operate

at typical KID frequencies commonly available but good quality low-noise cryogenic

amplifiers cost at least a few thousand pounds and have hold times of many months.

A schematic of typical cryogenic requirements for a KID readout system is given in

Figure 5.3.
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Figure 5.4: A schematic of a homodyne readout system.
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Figure 5.5: Homodyne sweeps are performed by repeatedly stepping the LO frequency
until the desired bandwidth has be probed. The DC mixer outputs trace out the S21

curves.

5.1.2 Homodyne readout

The simplest practical way to read out a KID device is with the homodyne mixing system

illustrated in Figure 5.4. A variable frequency signal generator or local oscillator (LO)

outputs a readout tone which is split in two by a power divider. One half of the signal is

passed through the detector array and the other is not. The two are combined in an IQ

mixer and the resultant I and Q components are digitised. Because the LO and RF input

ports of the IQ mixer receive the signals of the same frequency, the I and Q outputs will

be DC levels with I + jQ proportional to the S21 of cryogenic system.

KID resonators can be characterised, one at a time, as a function of frequency by

stepping the LO frequency while synchronously sampling the ADCs as indicated in

Figure 5.5. Single channel fixed tone readout is trivial and – with fast enough ADCs –

enables the measurement of KID quasiparticle lifetimes.

The downside to the homodyne readout system is that multiplexing is impossible and

only one KID can be measured at a time. Although, full array characterisation can still

be achieved on sensible time-scales with a decent automatic measurement and control

system.

5.1.3 Heterodyne readout

A heterodyne readout system makes multiplexed readout possible when the KID resonant

frequencies are beyond the reach of the digital electronics – as has been the case with

most KID system to date. Initially, a digital multiplexed probe signal is computed and

converted to analog with a DAC. The tone frequencies are limited to some intermediate

frequency (IF) range determined by the DAC bandwidth. This IF signal is up-mixed
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Figure 5.6: A schematic of a heterodyne readout system. Image rejection relies on a 90◦

phase shift present between each reaout tone’s I and Q signals.
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Figure 5.7: Another schematic of a heterodyne readout system. This time, image
rejection is performed by combining IQ mixer IF ports with quadrature hybrid couplers.

with an LO to the required RF frequencies and passed into the KID array. The output

is then down-mixed, with the same LO, back to the IF band where it is digitised and

demultiplexed.

Care must be taken to reject unused sidebands when mixing, otherwise unwanted

noise will be mixed back down on to the readout tones. If two DACs are available,

sideband rejection in the IQ mixer can be established by ensuring, digitally, that the

required 90◦ phase offsets are present between the I and Q signals. The heterodyne

readout system in Figure 5.6 relies on this method for image rejection. Sideband rejection

is also possible using analog components as illustrated in Figure 5.7. The quadrature

hybrid coupler on the left hand side splits the probe signal into I and Q components

with the correct phase offsets to ensure image rejection in the IQ mixer.

Sweeping KIDs with a heterodyne readout system is pleasingly straightforward.

Changing the LO frequency instantly changes the frequencies of all of the up-mixed

tones. By sweeping just the LO frequency, all of the KID resonators in an array can be

swept out simultaneously. This is indicated in Figure 5.8.

5.2 The Altera readout system

The Altera readout system is a complete frequency domain multiplexing readout system

with both analog and digital electronic components. The system can generate, acquire

and process multiplexed readout signals with up to 150 tones in up to 80MHz of IF
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Figure 5.8: A multiplexed heterodyne readout system enables simultaneous multi channel
sweeping simply by shifting the frequency of the local oscillator. Suppression of either
the upper sideband (USB) or the lower sideband (LSB) is vital to reduce excess noise
after down-mixing.

bandwidth. The digital aspect is based on an Altera Stratix II DSP Development Kit

which was initially developed as part of my Masters research. The Altera Corporation1

and their University Program is gratefully acknowledged for the donation of the FPGA

kit and the associated development software. The analog system includes an external

LO input, a pair of IQ mixers and pair of hybrid couplers for RF signal conversion. The

single-sideband heterodyne mixing circuit is identical to that described in Figure 5.7. The

primary RF bandwidth is limited by the IQ mixers 1.5 to 4.5GHz, which is suitable for

readout of the KIDs used in our camera. An additional set of mixers with 4.5 to 9GHz

of bandwidth are included in the system that are activated by switching an external set

of jumpers, should the need for higher frequency readout arise. The readout system also

houses an encoder readout circuit for monitoring the orientation of the field scanning

mirror. The contents of the readout system are visible in the photograph in Figure 5.9.

The digital signal processing system is implemented on a Stratix II FPGA and was

developed with the Quartus II IDE. The FPGA device came mounted to a development

board that contains amongst other things, two 160 MSPS DACs, two 140MSPS ADCs,

an 10/100 Ethernet port, a USB port, a VGA port, programmable LEDs, flash memory,

RAM, a 100MHz crystal oscillator, numerous TTL input lines, and a JTAG port

for firmware uploading. The FPGA architecture was developed with subsystems for

multiplexed readout tone generation, analog and digital conversion, Fourier analysis,

channelisation, averaging/decimation, data transfer over Ethernet, absolute encoder

readout, and other general purpose inputs and outputs (GPIO):

• Tone generation is implemented with a circular RAM buffer connected to the DAC.

The multiplexed readout signal is computed externally and copied into the buffer.

The contents of the buffer are then continuously and repeatedly passed - element

by element - to the DAC. The waveform upload process is not instantaneous due

to the large size of the buffer, but it does allow for the generation of arbitrary

1Altera University Program:
https://www.altera.com/support/training/university/overview.html
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Figure 5.9: A photo of the contents of the Altera multiplexed readout system.
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waveforms including single or multiple tones of any frequency, amplitude and phase,

as well as broad band chirps or even white noise.

• Fourier analysis is implemented with a propriety realtime FFT engine. The FFT

can be programmed with a range of different sizes and data types. After a short

initial hold-period, it outputs complex spectra at the same rate as data is input.

• Channelisation and decimation are implemented directly into the FPGA logic.

FFT frequency bin selection is performed based on a list of tone frequencies that

must be uploaded to the system. Complex output channels are stored in memory

and coadded together an arbitrarily set number of times before passing to data

transfer server.

• An embedded, reduced instruction set microprocessor based on the NIOS archi-

tecture is implemented with the µC/OS-II real-time operating system. The OS

kernel is implemented with a number of features, including an Ethernet driver with

custom NicheStack TCP/IP network stack for communication with the control

station, and a DMA controller for direct data access. A user space task stack is set

up with a command server and a data server. The command server listens for and

actions requests from the control station. The data server generates and sends a

continual stream of data packets onto the network for acquisition by the control

station. Data packets contain demultiplexed IQ data, mirror encoder data and

other auxiliary information.

• The base clock for the system comes from the 100MHz crystal oscillator. A

proprietary PLL routine is used to multiply this up to 160MHz for driving the

DACs. A further 80MHz derived clock is generated to drive the ADC, the FFT

engine and the channeliser/decimator, while a separate clock is in place to drive

the embedded processor.

The limited IF bandwidth of the Altera system meant that full array readout was

not initially possible. The 60 pixel, 150ĠHz array was spread out over 120MHz centred

at around 1.5GHz but the Altera system has only 80MHz of instantaneous bandwidth.

The FPGA firmware system was upgraded to implement an additional time division

multiplexing (TDM) system. The tone generation, FFT, channelisation, and averaging

subsystems were synchronised with the local oscillator via an external trigger input on the

synthesiser. Then, at regular intervals, the LO would switch frequency and intermittently

change the RF coverage of the KID array. This successfully enabled full array readout

but at the expense of reducing the overall sample rate of the system. The TDM system

implementation allowed for an arbitrarily large number of multiplexing divisions. This

meant that full readout of the 150 pixel, 350GHz array became possible – up to 8

separate sub-bands were utilised in the characterisation of that array. A schematic of

the TDM approach is illustrated in Figure 5.10
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Figure 5.10: A schematic of the process of time division multiplexing of a multiplexed
heterodyne readout system. A time-division factor of 4 is presented in this example.

The overall demultiplexed sample rate of the Altera system was typically 150Hz,

which meant only 75 samples per second with a 2-channel TDM in place. This was

eventually upgraded to 750Hz which enabled full 350GHz array readout with 5-chanel

TDM at 150 samples per second. While not fast enough for video rate imaging, this rate

was sufficient to enable the development and testing of the real-time imaging software.

5.3 The NIKEL readout system

The NIKEL readout system was acquired as a replacement for the Altera system. The

system was developed originally for the readout of the NIKA millimeter-wave astronomical

KID camera ( [Bourrion et al., 2011], [Bourrion et al., 2012], and [Monfardini et al.,

2014]) and was adapted to work with our terrestrial terahertz imaging camera. The

hardware specifications are a vast improvement on the Altera system with 1GSPS ADCs

and DACs providing 500MHz of IF bandwidth, the capability for multiplexed generation

and subsequent processing of up to 400 readout tones, and a full demultiplexed output

sample rate of up to 500Hz.

The heterodyne mixing system is implemented in a method similar to that described

in Figure 5.6 but with a single ADC input. The second IF port of the final IQ mixer is

terminated with a matched load meaning that sideband rejection is only implemented in

the up-mixing stage. The readout system was adapted to include IF and RF amplifiers

and RF variable attenuators for gain control of the incoming and outgoing multiplexed

probe signals. Further additions included an encoder readout system for the scanning

mirror, and a controller to drive an LED calibration source that is located within the

cryostat. A photo of the contents of the readout system is included in Figure 5.11.

The digital system is based on a custom designed main board with a combination of
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six Xilinx Virtex-6 FPGAs with a single ADC, five DACs plus a combiner, a reference

clock and PLL, DC/DC power converters and a USB controller for communication with

a mini PC that is housed with readout unit. The NIKEL provides an optional means for

multiplexed output signal modulation but we have not implemented this in our system.

Further details are available in [Bourrion et al., 2012]. Many thanks are due to Dr

Bideaud for his efforts in setting up software interfaces on the NIKEL server system.

Some key differences from the Altera system include the tone generation system, the

spectral analysis, and the command and data server systems:

• Tone generation is implemented digitally with arrays of CORDIC sin/cos-generators

and digital attenuators for gain adjustment. Five FPGAs can generate up to 80

tones each which are passed to five corresponding DACs prior to combination and

heterodyne mixing.

• Spectral decomposition is performed with a five-channel polyphase-filter-bank

and direct digital downconversion (DDC) mixers. The system is similar to a

array of lock-in amplifiers and is applied digitally with a series of finite impulse

response filters, frequency shifters and multipliers, to match the input and reference

frequencies for each tone.

• The main control system for NIKEL electronics is located in the mini PC that

is directly connected to the main readout board. This system was modified to

listen and action request from the main camera control system. An API was

developed to control the various components of the system, including for example

to tone generation, or frequency sweeping. A data server was set to up to gather

the I and Q data for each tone and stream them over the network to the control

station. Auxiliary data such timestamps, tone frequencies, mirror positions, etc.,

are included in the data packets.

The NIKEL system was something of a black-box when it arrived and many aspects

of its operation were not, initially, well understood. A full characterisation of the output

multiplexed readout signal was performed to ensure the correct placement of tones into

the RF band. Spectrum analyser measurements of the DAC outputs were carried out to

characterise the tone powers and frequencies. Details of the five sub-bands contained in

the DAC outputs are described in Table 5.1.
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Table 5.1: Frequency limits of the 5 NIKEL DAC bands

Measured Recommended

Start [MHz] Stop [MHz] Start [MHz] Stop [MHz]

DAC-0 0.185† 120† 1 100

DAC-1 87.5 230† 100 200

DAC-2 187.5 315† 200 300

DAC-3 287.5 410† 300 400

DAC-4 387.5 499.9985 400 499

† Not a sharp start/stop. Values given are of the 3 dB cut-on/off.

Tones are set in the NIKEL by specifying a tone frequency fTone, a tone gain GTone

and a DAC band. Each DAC band also has a variable gain GDAC that affects all the

tones in that band. A model, based on empirical measurements, was developed to

estimate the output tone power given the requested tone parameters, the model is given

in Equation 5.7 and the measurements are given in Figure 5.12. Derived coefficients

describing the linear relationship between GDAC, GTone and the measured RMS tone

voltages are given in Table 5.2, along with power estimates, power measurements and

the error for a set of example tones.

PTone = 10 log10

(

1000

50

[

GToneGDAC
dVRMS

dGDAC

]2
)

± 0.5 [dBm] (5.7)

Table 5.2: Tone power estimation for the NIKEL electronics. The gains
used in this example are GDAC = 10000 and GTone = 5.

dVRMS/dGDAC Estimated Power Measured Power Error

[V/unit] [dBm] [dBm] [dB]

DAC-0 8.09× 10−8 −34.85 −34.57 +0.28

DAC-1 6.95× 10−8 −36.17 −34.57 −0.63

DAC-2 8.67× 10−8 −34.25 −33.81 +0.44

DAC-3 5.64× 10−8 −37.98 −38.23 −0.25

DAC-4 4.19× 10−8 −40.57 −40.33 +0.24
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Figure 5.12: Measurements (points) and results from the power estimation model
(curves) of the readout tone output power measured from the DAC-I port on the NIKEL
electronics main board.

– 90 –



Chapter 5. The Electronic Readout System

5.4 Amplifier noise

The power levels of the tones in the probe signal used to read out the LEKIDs in this

system are typically 100 pW< Pg <1 nW (-70 dBm< Pg <-60 dBm) so it is necessary to

insert microwave attenuators along the RF chain to reduce the readout powers sufficiently.

As mentioned previously, these are fairly high levels when compared to other KID systems,

however, they are still sufficiently low to require amplification prior to sampling. Inclusion

of a cryogenic, high gain, low noise amplifier (LNA) close to the detector array improves

the dynamic range in the outgoing probe signals by taking advantage of the reduced

Johnson noise at low temperatures. The power spectral density of the voltage noise

imparted by an amplifier with input impedance Z0 (typically 50Ω) and noise temperature

Ta is given by

SV = 4kBTaZ0

[

V2Hz−1
]

. (5.8)

In computing an NEP for the amplifier noise, it is convenient to convert the voltage

noise into the corresponding noise in the detector response. In terms of the resonator

fractional frequency shift x = (f − f0)/f it can be shown that

Sx = SV

(

dx

dV

)2

=
kBTaQ

2
c

PgQ4
r

[

Hz−1
]

, (5.9)

where Qc and Qr are the coupling and resonator quality factors of the detector under test,

and Pg is the power of the readout tone at the input to the detector. The responsivity

to optical power in this scheme is

Rx = − dx

dPabs
=

βηeτqp
2∆NqpQi

[

W−1
]

, (5.10)

where Qi is the internal quality factor of the KID resonator and β is the ratio of the

real and imaginary parts of the complex conductivity of the superconductor. For most

materials, β > 1 and can be measured by comparing the dissipative (real) and frequency

(imaginary) responses of a resonator under a range of loads.

Finally, the NEP, or the equivalent variance in absorbed optical power that would be

required to equal the noise power due to the thermal fluctuations in the cold amplifier is

NEPamp =
QcQi

Q2
r

2∆Nqp

βηeτqp

√

kBTa

Pg

[

WHz−
1

2

]

, (5.11)

Given this approach and taking typical parameters for the detectors in our sys-

tem, the expected amplifier noise equivalent power is computed to be NEPamp =

8.5×10−18W/
√
Hz.
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5.5 Digitisation noise

The digital-to-analog and analog-to-digital converters (DACs and ADCs) that are used in

KID readout systems have limited dynamic range and so it is important to make sure that

any signals do not saturate these components or that quantisation noise is not dominant.

A common measure of the signal-to-noise or dynamic range of any signal, especially from

a DAC or ADC, is the phase noise. The single sided phase noise spectral density Sϕ(f)

of a time domain carrier signal x(t) is defined as the signal variance relative to the carrier

power measured in a 1Hz band offset from the carrier frequency by some amount f . It

is usually quoted in units of decibels relative to the carrier per Hertz (dBc/Hz) and is

closely related to jitter or timing/phase offset variations in the timestream.

In general, in a KID system, the noise introduced by the readout electronics should

not be higher than the noise from the cryogenic amplifier. An amplifier with noise

temperature Ta and N input tones of power Pg will impart a phase noise equal to

Sϕ, amp = 10 log10

(

2kBTa

NPg

)

[

dBcHz−1
]

. (5.12)

This phase noise reduces with increased number of tones or increased power per tone,

placing more stringent requirements on the dynamic range of the remainder of the

readout system. Generally, state-of-the-art DACs outperform state-of-the-art ADCs and

have higher bit counts for a given sample frequency, so the ADC becomes the limiting

component. For example the 16-bit, 1GSPS DACs in the NIKEL electronics used for

this project have quoted noise spectral densities (NSDs) of -174 dBFS/Hz, while the

12-bit, 1GSPS ADCs have -147 dBFS/Hz. The dBFS unit is the decibel at full scale,

meaning the NSD was measured on a carrier that fills the full dynamic range (uses all

the bits) of the converter. Ideally,

NSDFS,ADC ≤ Sϕ, amp − 3 dB . (5.13)

It is becoming more common for DAC and ADC manufacturers to quote noise spectral

densities for their components but, more often than not, only signal-to-noise ratios (SNRs)

and other related figures of merit are presented. SNR in dBFS can easily be converted to

a noise spectral density. First, invert the SNR to compute the quantisation noise floor at

the full scale from a 0 dB reference, then divide by the Nyquist bandwidth. For example,

an ADC sampling at fs samples per second has a bandwidth ∆fs and

NSDFS = 0dB− SNR− 10 log10∆fs
[

dBFSHz−1
]

. (5.14)

To calculate an absolute level for the floor of the NSD, a reference to the full scale range

is required. If the quoted ADC full scale input voltage is VFS volts then

NSDdBV = 20 log10 VFS − SNR− 10 log10∆fs
[

dBVHz−1
]

, (5.15)
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where 1 dBV is 101/20V and VFS is typically 1.5-2V. In a KID readout system, the actual

noise floor will be higher than this due to the presence of multiple tones in the readout

signal. If N tones are present,

NSDMUX = NSDdBV + 10 log10N
[

dBVHz−1
]

. (5.16)

For an ideal converter, fluctuations in the least significant bit (LSB) set the quantisa-

tion noise limit. The full scale noise floor or the full scale dynamic range is set by the

resolution, ie. the number of bits Nb, as

SNRideal = 20 log10 2
Nb + 10 log10

3
2 [dBFS] . (5.17)

In practice, a converter has inherent noise and jitter that reduces the SNR. As such,

devices are specified with an effective number of bits (ENOB) which relates the actual

SNR performance to the ideal performance, where

SNRactual = 20 log10 2
ENOB + 10 log10

3
2 [dBFS] . (5.18)

For example, consider the 12-bit, 1GSPS ADC with 9.5 ENOBs used in the NIKEL

readout electronics. There are 212 possible output levels across a 500MHz bandwidth. It

ideally would provide ∼74 dBFS signal-to-noise, so the noise spectral density would be

-161 dBFS/Hz. In practice, the actual signal-to-noise is only ∼59 dBFS and the noise

spectral density is -146 dBFS/Hz. Signal processing that occurs after digitisation can

reduce the noise level below the quantisation limit, for example, channelisation and

decimation with finite impulse response filters can serve to reduce the noise.

As with the previous noise sources, we desire a readout NEP or a limiting sensitivity

due to readout electronics noise. The method for estimation is similar to that used in

the amplifier NEP calculation. We already have the voltage noise power spectral density

due to quantisation in the ADC, which we convert out of dB units,

SV = 10NSDMUX/10
[

V2Hz−1
]

. (5.19)

Then for a given set of detector parameters this is converted to a variation in the detector

response Sx as

Sx = SV

(

dx

dV

)2

= 10NSDMUX/10 Q2
c

4Q4
rPgZ0

[

Hz−1
]

, (5.20)

where Qr and Qc are the resonator and coupling quality factors, Pg is the power in the

readout tone at the input to the detector, and Z0 is the impedance of the line at the

input to the detector. The responsivity to optical power is the same as in Equation 5.10,

so the NEP, or equivalent absorbed optical signal power required to equal the readout
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noise in a 1Hz bandwidth is

NEPreadout =
QcQi

Q2
r

∆Nqp

βηeτqp

√

10NSDMUX/10

PgZ0

[

WHz−
1

2

]

. (5.21)

A number of other factors can affect the noise such as improper filtering, saturation of

active devices, mains pick-up, and a variety of other kinds of pick-up, however these

are (often) easily remedied. The computed limit for the digitisation noise equivalent

power expected in this camera for a typical set of detector parameters is NEPreadout =

2.8× 10−18W/
√
Hz.

5.6 Summary

A review of some the important methods for single- and multi-tone KID readout has been

presented, including cryogenic requirements, homodyne mixing systems and heterodyne

mixing systems.

The two electronic readout system developed for our terahertz camera have been

introduced and some of the key details of their modes of operation have been described.

Particular focus was made on the implementation of a time division multiplexing system

to extend the effective bandwidth of the Altera system. This technique could be effective

in other systems where bandwidth is limited. Additional attention was made to the tone

generation system of the NIKEL electronics system. Accurate knowledge of tone powers

is vital for the effective operation of a KID readout system.

Noise sources and limiting sensitivity estimates from the cold amplifier and the digital

electronics system were estimated and a further discussion of the contribution to the

overall camera sensitivity is given in chapter 7.
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The Software System and Image

Generation

6.1 Overview

The successful development of the terahertz camera required the engineering of a consid-

erable amount of computer software, ranging from low level hardware controls and data

manipulation routines to higher level application design and image processing algorithms.

Software systems in general can be viewed from a variety of different perspectives in-

cluding those of end-users, developers, testers, maintainers, etc. In this chapter I focus

on some of the key software components from a mostly technical standpoint in order to

communicate the details of component design and implementation.

As far as any end-user/camera operator is concerned, the application software required

to switch the camera on and take pictures should be straightforward and easy to use.

Assuming that the cryogenic system is already cold, the procedure to begin imaging is

simply to power up the electronics and field scanning mechanism, log-in to the control

station, start the main camera application, and then wait for initialisation and calibration

before the real-time video appears on the display. Interaction with the GUI enables

image contrast adjustment, single frame snapshots, and a frame stacking mode where

new frames are continuously averaged together in order to improve the SNR. Further

options are available by modification of system configuration files prior to running the

main application. Adjustment of these advanced settings can affect the image output

format, calibration parameters, timeline and/or image filtering, the frame update rate

and the integration time per frame.

In actuality, the underlying system is a bit more complex than this. A combination of

command line interfaces, graphical interfaces, configuration files, Labview VIs, compiled

and interpreted programs, embedded systems firmwares, and proprietary software appli-

cations are utilised to control all aspects of the camera. A view of the general architecture

is given in Figure 6.1 where the system is broken down into four key concurrently running

components:
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Figure 6.1: Overview of the software architecture

• The control system is responsible for setting up and running the camera as a whole,

especially with regard to controlling the readout electronics systems, initialising

and starting data acquisition, performing frequency sweeps and calibrations, and

providing other general information to the image generation system.

• The data acquisition system is responsible for reading and saving raw data streams

from the readout electronics. It provides a means for direct access to timelines of

detector response and other information channels.

• The readout electronics firmwares are responsible for the generation and acquisition

of the multiplexed probe signals that enter the cryostat as well as monitoring the

scanning mirror orientation through the absolute encoder.

• The image generation system provides the user with a graphical interface that

displays the real-time video. It has access to real-time and auxiliary data and has

tools for calibration, timeline filtering, map making, image processing and real-time

display.

6.2 Control system

This is, essentially, a collection of purpose built Python modules with functions to control

and run all aspects of the camera. In this section I describe some of the most important

functionalities, from basic operations to more complex procedures and algorithms.
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6.2.1 Basic functionalities

Communications

Communication with the NIKEL and Altera electronics – as well as with other hardware

devices such as local oscillators, variable attenuators and power supplies – is typically

performed over Ethernet. Functions based around the Berkeley Sockets API are in place

to create and manage IP network sockets, to establish reliable communications over TCP

connections, and to send and receive multicast UDP datagrams1.

Command servers in both the Altera (TCP based) and the NIKEL (UDP based)

systems were set up to listen for data packets, to parse the contents for certain pre-defined

strings, and to respond with the appropriate pre-programmed actions. Examples of the

some of the most commonly used commands include requests for data transfers, requests

for adjustment of readout tone frequencies or amplitudes, requests to change sample

rates and averaging levels, requests to change the local oscillator frequency and requests

to change the RF attenuator levels.

UDP data servers in the readout systems were set up to provide continuous, low

latency streams of the demultiplexed detector outputs and other information channels.

Data packet formats are described in the previous chapter and transfer rates reach up to

5Mbit/sec from the Altera and 25Mbit/sec from the NIKEL.

Initialisations

The control software system contains startup scripts to configure various hardware devices

upon power-up and to setup and run the data acquisition and imaging software. The

readout electronics systems are initialised remotely. The Altera system, including the

on-board microprocessor and OS, is started over USB through the Quartus II sotware

suite; the NIKEL system is started through an SSH session. Once the command server

of the system in use has loaded, requests can be sent to initialise the system, setup the

multiplexed readout tones and begin the transmission of the demultiplexed detector

outputs. A standard, client-side initialisation script is outlined in Listing 6.1.

Setting tones

As described in the previous chapter, the tone generation systems vary considerably

between the two readout systems. The Altera system utilises a single circular waveform

buffer, while the NIKEL has multiple CORDIC-based generators spread across five DAC

sub-bands. The software system handles requests for the setting of tones appropriately

and, in both cases, the input lists of tone frequencies and powers are first validated against

the known hardware limitations. With the Altera system, the multiplexed waveform is

computed locally and uploaded to the FPGA – along with the list of tone frequencies so

that the firmware knows which FFT bins to pass to the data server. With the NIKEL

1See the IP(7) and SOCKET(7) man pages.
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1 from nikel import *

2

3 join()

4 #register as a client with the readout system

5 set_synth_hardware(HW_SYNTH_DEFAULT)

6 #specify which synthesiser is in use for this run

7 set_synth_freq(1.5e9)

8 #set the frequency of the chosen synthesiser to 1.5GHz

9 set_synth_power(16)

10 #set the output of the synthesiser to 16dBm

11 set_synth_state("ON")

12 #switch the sythesiser output on

13 set_attenuator_hardware(HW_ATTS_DEFAULT)

14 #specify which attenuators are in use for this run

15 set_attenuations(60,60)

16 #set the attenuation values to a safe level

17 set_averaging(1)

18 #set the number of data packets to average (reduces data rate)

19 set_tones(TONES_DEFAULT)

20 #set the tone frequencies and amplitudes to the default values

21 start()

22 #start streaming data packets

Listing 6.1: A typical control system initialisation script for the NIKEL readout elec-
tronics.

system, the input tones list is divided into five sub-lists of tones-per-sub-band and

these sub-lists are uploaded to the FPGA where the CORDIC generators are updated

immediately. Tone validation is extended to include the physical limits of each sub-band

of the NIKEL system.

Raw data access

Control software modules have access to the data acquisition system’s main storage

structure as this is necessary for the user to view sweep data and perform such tasks as

KID finding, IQ and tone power calibrations, and imaging. Collecting the raw data from

the readout electronics is generally the job of the data acquisition system, however, the

control system can also request access to this data. This is useful, for example, when

performing frequency sweeps and for general system characterisation where individual

data samples and even complete FFT outputs are required.

Frequency sweeping

Frequency sweeping of the readout tones across KID resonators is one of the most

important jobs that the readout systems perform. Access to the sweep products is

vital for two primary readout activities; first, finding the frequencies of KID resonators

and second, characterising the KID responses in order to calculate the final calibrated

timelines. When implementing a heterodyne mixing system (as is the case with the present
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Altera and NIKEL systems) sweeping is straightforward in that only the local oscillator

frequency need be shifted – all of the readout tone frequencies and demultiplexed output

channels remain fixed during the course of the sweep. The control system commands

and monitors the sweeping of the LO and has methods for collecting and processing the

sweep data. Sweeps are defined with pairs of start/stop or centre/span frequencies and

either a step-size or a number of points.

The sweep process generally involves discretely stepping the LO frequency while

synchronously sampling the demultiplexed output. However, RF synthesisers have finite

settling times after change of frequency and so, when collecting data, it is necessary

to either introduce a time delay prior to manually sampling the readout or to ignore a

fixed number of samples if manual sampling is not available. With the Altera system,

data samples are requested between steps of the LO independently from the main data

acquisition system and are easily collected and saved during the sweep process. With

the NIKEL system, sweep samples are automatically flagged in the data acquisition

system’s main storage structure and are easily extracted by searching through the storage

structure.

If the KID resonant frequencies are initially unknown, they can be identified by

sweeping-out and inspecting a wide range of frequencies – this is similar to how a

spectrum analyser operates. Sweeping across the full bandwidth of the KID arrays used

in this system (∼500MHz) can be a very slow process. A typical sweep of 1 kHz step-size

requiring at least 1000 seconds to complete if sampling at 500 SPS. This can be greatly

sped up by sweeping with a number of tones spaced evenly across the IF bandwidth.

The LO only needs to sweep a short range equal to the tone separation and the full

bandwidth is sampled by concatenating the outputs from each of the readout tones. In

the example given, the sweep time can be reduced to five seconds if sweeping with 200

tones.

When the KID frequencies are known, small sweeps about the KID centres are used

to infer their properties and to calculate optical responses. Firstly, the LO frequency is

set close to the first KID frequency, then multiple readout tones are added to line up

with the KIDs’ centre frequencies. The LO is then swept about its initial frequency and

the readout electronics then returns the I,Q and frequency data for each KID. For every

sweep taken, the data is saved, processed to extract the key parameters, and optionally

displayed in either IQ, amplitude or phase format.

KID finding

Given a set of sweep data, including I, Q and frequency information, identifying the

locations of the KID resonances is another fundamentally important process. A manual

inspection of amplitude or phase sweeps is usually the most reliable way to identify the

resonant frequencies but this takes a long time and can be a challenge if very low-Q

and/or strongly coupled resonators are present. Automatic KID finding algorithms will
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also struggle if the quality of the data is poor but they take practically no time at all.

A standard automatic algorithm involves applying initial digital filters to the raw

I and Q data to remove high frequency noise and low frequency ripples. Then, an

element-wise search through either the amplitude data or the gradient of the phase data

highlights any regions beyond some given threshold parameter. The resonant frequency

is found by searching each region for the position of its extremal value. This method

by itself is fairly robust but is subject to false positives if any glitches are present in

the sweep, so a deglitching pass is performed on the raw I and Q timelines prior to any

digital filtering. This method is also prone to missing one or more resonances if they are

closely coupled together – the stronger/deeper of the two resonances dominates and the

weaker/shallower is skipped over.

6.2.2 Tone locking

Every time the camera is run, a new calibration sweep of the detectors is required.

Previous calibrations are invalidated by a combination of low frequency, thermal variations

in the electronics system gains, and small variations in KID resonant frequency caused by

stochastic variations in magnetic field trapping in the superconductors during cool-downs.

Two variations on a single method are implemented in the control software system to set

readout tones onto KID resonances and perform the calibration sweep. This process is

referred to as locking-on to the KIDs and the general algorithm is as follows:

1. Find the approximate KID frequencies.

Variation 1: The KIDs are found with a full sweep, see Figure 6.2a.

Variation 2: KID frequencies are taken from a list.

2. Set tones at the approximate frequencies and find precise KID frequencies with a

short sweep that spans a typical KID bandwidth. See Figure 6.2b.

Variation 1: All the data from the sweep is utilised.

Variation 2: Selected regions of individual sweeps are excluded to isolate closely

coupled KIDs from their nearby neighbours.

3. Set tones at the new frequencies, perform a second short sweep across the resonances

and reset the LO to the centre of the sweep. See Figure 6.2c

Variation 1: All the data from the sweep is utilised.

Variation 2: Selected regions of individual sweeps are excluded to isolate closely

coupled KIDs from their nearby neighbours.

4. Save sweeps and calibration parameters and apply them to incoming raw I and Q

timelines to get the calibrated phases and/or frequency shifts.

The first variation was upgraded to the second variation in order to help isolate

closely coupled resonators. The first variation is more useful when the KID environment
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(a) Finding KID resonant frequencies: a low resolution frequency sweep over 500MHz is taken
by concatenation of IQ data from 150 evenly spaced tones. This is searched through to identify
the resonant frequencies. Full view (top) and zoom (bottom).

(b) Refined sweep: a high resolution sweep with tones centered at the frequencies found in
the initial full sweep to precisely measure the resonant frequencies. Full view (top) and zoom
(bottom).
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(c) Calibration sweep: Tones are set to the precise resonant frequencies and a second round of
high resolution sweeping provides the IQ data necessary to perform the response calibration. The
plots are of the gradient of the phase slope (dφ/df) for each of the 141 found KIDs found in this
run.

Figure 6.2: Three stages of an automatic tone locking algorithm.
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is regularly changing – as it is during a typical development process. The second variation

relies on the KIDs not moving around too much between runs and is more useful in a

fixed, stable system.

6.2.3 Tone power optimisation

A KID’s performance is strongly dependent on the power of the readout tone used to

probe it. Not enough power causes an increase in TLS noise and too much power causes

the response becomes strongly non-linear. It is important to make sure the power levels

are just right. Furthermore, the KID arrays used in this camera show strong variations

in the ideal power levels between individual KIDs. Two methods have been implemented

to optimise the power levels across the full array. The first method is a manual method

where a large data set is visually inspected and the ideal powers are selected by hand.

The second method is based on an iterative process to maximise the signal-to-noise

ratio measured from a fixed intensity calibration source situated within the cryostat.

Both methods show overall improvements in the detector performance, however, neither

method is actually ideal. Further investigations and developments are required to fully

optimise the readout tones.

Method 1

Working on the assumption that KIDs perform best when the tone power maximises the

detector phase response while ensuring that no strongly non-linear effects are in play, we

initially characterise the phase response as a function of readout power. A large dataset

is collected and we manually identify the ideal power levels. These values are saved and

used for future runs. While it is shown that the phase response is consistently improved,

the detector noise levels have not been fully characterised as of yet. As such, it is not

confirmed if the signal-to-noise ratios are fully maximised. Figure 6.3 offers a view of

the frequency versus power versus phase response dataset. Six KIDs are visible and the

chosen power levels are indicated by the white arrows.

Method 2

A 1.5µm LED was installed at the 4K stage of the cryostat and coupled into the

350GHz focal plane unit via a multimoded fibre-optic cable. Pulsing the LED produces

a large response in some of the detectors and is used to directly measure the detector

signal-to-noise ratios (SNRs). A second LED was installed in the same way in an attempt

to provide more uniform illumination across the array however some channels remained

relatively insensitive to the pulses while others showed very large responses. The outline

of the iterative optimisation method is as follows:

1. Lock-on to the KIDs with powers at the lowest level and check SNR with calibration

source.
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Figure 6.3: Manual identification of optimal readout power: Full sweeps were taken at a
range of readout powers and the optimal frequencies and powers of individual tones were
set by clicking on the desired region of the resulting interactive graph as indicated by
the white arrows in the figure.

Figure 6.4: Histograms indicating the effect of the tone power optimisation routine on
detector SNR.
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2. Raise each of the tone powers by one unit, lock-on again and measure SNR again.

3. For each KID: if the SNR decreases, drop the power on that tone by one unit.

4. Repeat items 2 and 3 until all tone powers are optimal.

This method is fully automatic and works well to improve the SNR, especially in the

most poorly performing detectors. Histograms of the measured SNRs with and without

optimised tone powers are given in Figure 6.4. A more uniform array illumination by

the calibration LED would, no doubt, provide further improvements.

6.3 Data acquisition system

The data acquisition system is responsible for the continual collection, parsing and

storage of data from the readout electronics. The main application is a multi-threaded C

program that is started by the control system and continues indefinitely unless it receives

a signal to terminate – in which case it gracefully shuts down, freeing any memory and

closing any open files and sockets. In the main thread, a UDP socket listens for data

packets from the readout electronics and copies the packet contents into a shared FIFO

buffer. In a second thread, packets are popped from the FIFO and parsed for information

content that is then written to disk in the main storage structure. Here they are free to

be accessed by either the control system or the image generation system.

For the purpose of efficiency, the data acquisition system makes use of slow and fast

channels within individual data packets. Fast channels update every sample and are

always written to the Dirfile. The rate is defined by the amount of averaging applied on

the readout electronics and is anywhere up to 477 SPS. Slow channels do not update

every sample so consecutive data packets will contain repeated data. They are written

to the Dirfile at the slow rate which is defined to always be 1 SPS.

6.3.1 Storage

The main storage structure consists of Dirfiles. These are directories of binary data files

(referred to as raw fields) with an ASCII format file to specify the binary data formats2.

For each new run of the camera, the data acquisition systems creates a new Dirfile named

by the time of creation in the system data directory, i.e. /data/<unix-time>.d/ where

<unix-time> is the number of seconds since midnight, 01/01/1970. A symbolic link

to the most recently created Dirfile is written at /data/etc/dirfile.lnk for ease of

access. Data samples that have been parsed from the packets are written to their own

fields (files) within the Dirfile structure. The list of raw fields and their formats is given

in Table 6.1.

2Dirfile Standards: http://getdata.sourceforge.net/dirfile.html
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Table 6.1: The data acquisition system’s raw fields, as present in the transmitted and
received data packets and as specified in the Dirfile format file.

Field Name Type Format Rate

i000...399 RAW INT32 Fast

q000...399 RAW INT32 Fast

freq000...399 RAW UINT32 Slow

gain000...399 RAW UINT32 Slow

dac gain 0...4 RAW UINT32 Slow

averaging RAW UINT32 Slow

adc lev RAW UINT32 Fast

dac lev RAW UINT32 Fast

flags RAW UINT32 Fast

lo freq RAW UINT64 Fast

mirror encoder RAW UINT16 Fast

sample RAW UINT32 Fast

stage x RAW FLOAT32 Fast

stage y RAW FLOAT32 Fast

stage z RAW FLOAT32 Fast

time RAW UNIT64 Fast
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Figure 6.5: KST plot: Real-time display of calibrated timelines of resonant frequency
shift information for 8 channels sampled at 477Hz with 20 seconds worth of samples per
channel. Modulating the field of view by waving a hand in front the camera causes shifts
of around 2000Hz at resonant frequencies of roughly 1.25GHz.

6.3.2 Access and display

Dirfile format files are easy enough to read directly but using calls to the GetData

library3 allows us to take advantage of a special class of derived fields. These fields can

be specified in the format file and enable direct access to mathematically manipulated

forms of the raw fields. Magnitudes and phases of complex numbers, multiplications,

divisions, linear combinations, bitmasking, timeshifting, multiplexing and a range of

other functions are available. These provide us with a means to access an arbitrary

number of samples of fully calibrated detector response timelines with incredible easily

and minimal CPU and RAM overheads.

Timestream analysis is enhanced by using the real-time plotting software KST4. It can

simultaneously access and display millions of samples from thousands of files of various

formats (including Dirfiles) and has an extensive toolkit for processing, filtering and

manipulating timestreams and their spectra. A screenshot show showing the real-time

display of detector response from 8 channels is presented in Figure 6.5. With a sufficiently

high resolution computer screen it is possible to monitor all of the 150 detector timelines,

or all of the 150 power spectra, at the same time.

6.4 Image generation system

The real-time imaging system provides a graphical front-end to the camera operator

with a main window to display video frames. The frames are generated and displayed

in real-time as the raw data arrives into the system, although the option is available to

playback previously recorded videos. The application was designed and written by Dr.

3The GetData Project: http://getdata.sourceforge.net/
4KST: https://kst-plot.kde.org/

– 106 –

http://getdata.sourceforge.net/
https://kst-plot.kde.org/


Chapter 6. The Software System and Image Generation

Papageorgiou in Python using a combination of NumPy, SciPy, Matplolib and PIL for

image generation, and TkInter for the GUI. In this section I briefly outline the workings

of the system.

Before starting the system, some prerequisite information for the production of

individual image frames must be available, including:

• A list of KID spatial position in the focal plane, in order to correctly map detector

outputs to image pixels.

• The location of detector response and mirror position timelines in the file system,

in order to gather data for processing.

• The dimensions of the required image frame and pixel size, measured in image

plane coordinates.

• The frame update rate, as set by the mirror oscillation rate.

• The integration time per frame.

• An optional starting frame number and playback speed if reviewing previously

recorded frames.

Once the application is started, the GUI loads up and an automatic calibration

process begins. Part of this process is the measurement of flat-field correction coefficients

for each detector. This is done over the course of a few scanning-mirror cycles by

comparing detector responses to a warm calibration bar that is positioned horizontally

across the top of the FOV, see Figure 6.6 Any noisy or broken channels are identified

and excluded from the remainder of the image generation process.

At this point the program’s main loop is started. A diagram representing the key

software classes and their methods and attributes is presented in Figure 6.8. An outline

of the main loop is given here:

1. For each detector:

(a) Read the detector and mirror data

(b) Calculate responses

(c) Perform timeline filtering

(d) Perform flat-field calibration

(e) Bin detector responses into the image array

2. Apply any additional image filters

3. Apply colour and contrast settings

4. Interpolate over missing pixels - see Figure 6.7

5. Update the display with the image

6. Listen for and handle any GUI events

7. Restart main loop
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Figure 6.6: Flat field calibration: A blackened metal bar is heated by an evenly spaced
arrangement of electrical resistors to a few degrees above ambient room temperature.
Detector outputs are calibrated between this and a fixed region of the background to
provide a uniform response across the field of view.

Figure 6.7: Image interpolation: Three methods of image interpolation are presented
against the case with no interpolation. The processing times for each method are included
as computed in single core on an Intel i7 2.8GHz CPU. The outputs of each method are
very similar, so the nearest neighbour method is implemented as this is the fastest.
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Figure 6.8: The imaging software broken down by class. For each class the attributes
(information that is stored) and operations (functions that can be performed) are
described. The direction of data flow through over each iteration of the main loop is
indicated by the large arrow arrow. The small arrows show data flow between the classes.
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Image quality

Figure 6.9 presents three video frames taken at 350GHz over the course of development

of the image generation process.

• The left hand frame has image-plane pixel sizes of 10×10mm, contains data from
noisy detector channels and uses an un-optimal flat-field calibration.

• The centre frame has a smaller pixel size of 5×5mm, excludes most of the noisy
pixels and has improved flat-field coefficients.

• In the right hand frame, the field scanning mechanism was adjusted to scan out the
full 2m vertical FOV. While this does not considerable affect the data quality, the
image quality is improved greatly as the subject is not longer cut of at the knees.
The varying contrasts introduced by the subject’s clothing layers add improved
aesthetics to the frame.

Figure 6.9: Variations in image quality.

6.5 Concealed object detection

The following figures demonstrate the detection of concealed items by terahertz imaging.

Figure 6.10 contains the first images ever taken by the camera (in the 150GHz band),

and Figure 6.11 has a more recent 350GHz image. The camera images are presented

next to visible and FLIR thermal near-infrared (NIR) images to highlight the unique

optical transmission properties of common materials at terahertz frequencies.
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Figure 6.10: Dr. Doyle posing for the camera in the 150GHz band with (right) and
without (left) a metallic item concealed beneath his clothes. The presence of the object
is notable in the terahertz (bottom) but not in the thermal NIR (middle) or visible (top).

Figure 6.11: Ken Wood holding a paper envelope in the visible (left), thermal NIR
(centre), and terahertz (right). The star shaped band-pass filter in the envelope is clearly
visible in the terahertz.
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6.6 Video

Frames from two videos are presented in the following two figures:

• In the first case (Figure 6.12) visible, NIR, and 350GHz videos were recorded

simultaneously and stitched together into a single film. Individual frames from

one minute of a 2 FPS video are arranged in mosaics separated by optical band

for clarity. The frames show a person moving around and removing their jacket.

In the first half of this film, a cardboard box in the foreground obscures the field

of view. This does not prevent us from seeing the person clearly in the terahertz.

Some of the the items concealed beneath the persons clothing are visible, even

through the cardboard box.

• The second case (Figure 6.13) is more of a time-lapse than a true video – roughly

one frame per minute was saved and recorded into the video file. The purpose of

the film was to demonstrate that the heat signatures imparted by living creatures

confined in small spaces are detectable by terahertz cameras. Of course a standard

thermal imaging system could easily repeat this test, however the terahertz system

has the advantage that it could be used to screen containers through the side of

soft sided transporters without requiring a direct, visible line of sight. In the film,

at t=0, somebody climbs into the box and closes the lid. Within only a couple of

minutes the box is seen to warm up. After 30 minutes, the person climbs out and

box begins to cool down. The temperature inside the box was measured with a

thermometer at regular intervals and is displayed on the individual video frames.

6.7 Summary

The overall architecture of the software system has been presented, including description of

the control, data acquisition and image generation systems. Details of various algorithms

have been outlined, including the methods used to lock readout tones onto KID resonators

and optimise the tone powers. The image processing application has been described and

video frames have been presented with various factors affecting the image quality having

been described. Analysis of image quality can be somewhat subjective and in the next

chapter I describe the camera performance quantitatively in terms of the detector and

system sensitivities.
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Figure 6.12: Individual frames from a 2 FPS video where visible, NIR and terahertz
images were played side-by-side. In the first half of the video, the FOV is blocked by
a cardboard box. This does not prevent us from clearly seeing the person moving in
the background in the terahertz, or indeed, from seeing the items concealed beneath his
clothing layers..
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Figure 6.13: Frames from a time lapse video taken one minute apart for nearly an hour.
A wooden packing crate is seen to warm up immediately after somebody climbs in and
closes the lid. The signal to noise level is sufficient to enable the rapid detection of
concealed animals or even people. Though this is indeed possible with a regular infrared
camera, the advantage of a THz system is that the heat source will remain visible even
through multiple layers of infrared-opaque material such as further wooden panelling or
even the soft-sided exteriors of heavy goods vehicles.

– 114 –



Chapter 7

Camera Performance and Future

Considerations

The goal of this project was to develop a video rate passive imaging system to demonstrate

LEKID focal plane array technology as a viable option for applications requiring ultra-

high sensitivity at terahertz frequencies. The camera was designed to operate in the same

vein as airport body scanners or other stand-off scanning systems utilised in the security

industry. Accordingly, a successful system would provide a means for the real-time

identification of concealed items on a moving human target.

The following chapter concludes this thesis with an analysis of the overall performance

of the terahertz camera in its most recent configuration. A number of factors can affect

the ultimate sensitivity, as have been described in previous chapters of this thesis.

Expectations for the various limiting sensitivities are recapped and compared with the

measured noise properties. The limitations that currently prevent the system from

achieving full video rate imaging are discussed, a comparison is given against other

commercially available terahertz imaging systems, and finally, important considerations

for a next generation system are presented.

7.1 Sensitivity

7.1.1 The ideal system sensitivity

An ideal passive terahertz camera would not introduce any significant noise into the

images it generates. The limiting noise source ought to be that of the random fluctuations

in the photon distribution due to the variations in light source itself and not the camera.

A discussion of photon noise and the associated sensitivity limits is give in appendix B.2.

A target noise equivalent differential temperature (NEDT) was put forward of ∼0.1K

NEDT per frame as this is close to the expected background noise limit due to random

temperature fluctuations of a human body if it were sampled at a 25Hz frame rate with

a 1 cm spatial resolution at a focal distance of 3-5m, a 1×2m field of view, a 25Hz
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refresh rate, and with operation in a 10% wide optical band centred on the 350GHz

atmospheric window. The photon noise level is estimated here given these parameters

and the goal would be to ensure that this remains the limiting factor, with detector noise

and electronic noise not becoming dominant.

A 0.5m primary lens with a focal length of 4.5m provides a diffraction limited

resolution of 1.04 cm and a single-moded throughput AΩ = 7.6× 10−7m2 sr. Assuming,

initially, no losses in lens transmission, an ideal top-hat optical filter profile with ∆ν =

35GHz, and a detector sensitive to both polarisations, the expected power received

from a 300K blackbody source is ∼290 pW. The total photon noise NEP is estimated

from equation B.16 to be 1.65 × 10−15W/
√
Hz, which is dominated by wave noise

with NEPshot

NEPwave
= 0.23. This is equivalent to an noise equivalent temperature, NET,

of 1.26mK/
√
Hz or 1.13mK

√
s assuming the Rayleigh-Jeans approximation for the

responsivity of optical power to temperature (see appendix B.1.

A fully Nyquist sampled image requires 4× 1×2
0.01042

= 74000 pixels, and the requirement

for a 25Hz frame rate means the integration time per image pixel is 0.5µs if a single

detector is used. The estimated NEDT per frame using Equation B.7 is then 1.55K

for a photon noise limited detector. The detector count for this instrument was set at

150 as this would provide an NEDT of 0.127K per frame at 25Hz, and the expected

integration time per detector per pixel would then be 107µs. This NEDT is close to

the desired 0.1K and the modest detector count allows for a broad ∼3MHz spacing

between resonators which minimises the likelihood of resonator clash within the 500MHz

of readout bandwidth.

7.1.2 The overall system sensitivity estimate

In practice the system is not perfect and factors such as the camera optical efficiency,

the detector absorption efficiency and stray light need to be accounted for. The optical

efficiency was estimated in chapter 3 to be ηopt = 22%. An estimate of the detector

efficiency can be made by combining estimates for the detector absorption efficiency

and the horn efficiency. The HFSS simulation of the 350GHz detector architecture in

chapter 4 indicates a 35% peak in-band efficiency to incoming plane waves, and a mid-

range estimate of the feed-horn efficiency is 70%, which combine to give a total detector

efficiency ηdet = 25%. The total power measured by the detector is then expected to be

31 pW (17 pW from the source and 14 pW stray) so the photon noise limiting sensitivity

is NEPγ = 2.88× 10−16W/
√
Hz. This expected power is low enough that the shot noise

component now marginally dominates over the wave noise, with NEPshot

NEPwave
= 1.5.

Estimates for the remaining NEPs are presented in Table 7.1. The values are

calculated according to the formulae presented in this thesis and, where applicable,

are based on typical system properties (detector Q-factors, β-factors etc.) that were

measured during operation of the camera. Optical illumination is not identical across the

whole focal plane and individual detectors do not perform identically, so the parameters
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Table 7.1: The total expected system sensitivity in NEP and NET. The results are
computed from the average of a number of typical detectors. Photon noise is clearly the
limiting factor.

Sensitivity γ G-R Amplifier Readout Total

NEP [W/
√
Hz] 2.9×10−16 6.5×10−17 8.5×10−18 2.8×10−18 3.0×10−16

NET [mK
√
s] 3.66 0.82 0.11 0.035 3.75

vary by about a factor of two-to-three from KID to KID. Nevertheless, it is clear that it

is photon noise that remains the most significant noise contribution.

Using a Rayleigh-Jeans responsivity of
(

dP
dT

)

RJ
= 5.64× 10−14W/K, the estimated

overall NET per detector is 3.75mK
√
s. Given that the measured extent of the field

of view in the object plane is 0.6× 2.15 (thus the number of pixels per image frame is

41100) the expected NEDT per frame is 0.09K for a frame rate of 2Hz (the integration

time per pixel is 1.1ms). So the target NEDT has been met but unfortunately this is at

the expense of the target frame rate.

7.1.3 The measured sensitivity

Sensitivities as function of frequency were found for each detector by dividing the

power spectral densities of the detector frequency response timelines by the detector

responsivities. The responsivities were found by recording the detector response between

the hot calibration bar and a section of the background and then comparing against

the independently measured temperature difference. The power spectral densities were

computed from FFTs of 60 seconds worth of samples that were taken while staring at a

fixed source of constant temperature. The 152 NET spectra are presented in the upper

part Figure 7.1.

The majority of the channels show similar performance with white noise down to

a few Hertz. The sensitivity at the white noise level was sampled for each detector at

approximately 100Hz and the values are displayed in the histogram in the lower part of

the figure. The distribution is approximated by a log-normal fit and the modal average

of the sensitivities was found to be 6.1mK
√
s.

This value is roughly a factor of two higher than the sensitivity we expect for the

camera in its present configuration and the likelihood is that there is leak of high frequency

(infrared) radiation through one of the band defining filters. Only a few infrared photons

from the ∼150K cold lens are necessary to add a significant optical load to the detectors,

thus increasing the quasiparticle density (as well as the photon shot noise).

With the detectors twice less sensitive than estimated, we expect the images to be

twice less sensitive as well. The new estimate is simply 2×0.09 = 0.18K per frame at 2

FPS. In fact, an NEDT of 0.13K was measured in the uniform region of the temperature

map given in Figure 7.2. The sensitivity map to the right of the temperature map shows
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Figure 7.1: Measured detector sensitivity. (Top) Plots of NET versus frequency for
the 152 detectors over 60 seconds of sampling. (Bottom) The histogram of the detector
NETs measured at the white noise levels. A log-normal fit indicates a modal value for
the NET of 6.1mK

√
s, which is worse – by around a factor of two – than the expected

sensitivity.

the NEDT per pixel by averaging the per pixel variance over a number of frames and,

although it is not directly representative of the single frame NEDT, it does indicate the

relative sensitivity as a function of spatial position in the image plane.

7.2 Factors limiting the performance

The current scanning mechanism ultimately limits the frame rate of the system and

vertical stripes in the images are one of the worst factors affecting the overall image

quality. These are an artefact of the uni-axial scan which become significant when

individual detectors malfunction. The 85% array yield is good, however a system that

does not cross link between channels will suffer. A redesign of the scanning mechanism

to incorporate a fast 2-axis scanner would remedy this.

The image generation algorithm is presently non-optimal as data samples are mapped

into single points in the images. In reality, point sources are should appear spread out

over a number image pixels. An algorithm utilising full convolution of detector point

spread functions should improve image quality.

The camera sensitivity is around 0.13K per frame at a rate of 2FPS, however the

goal was for full video rate (∼25FPS) imaging at 0.1K per frame. The integration time
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Figure 7.2: Image sensitivity: Sample count per image pixel (left), a temperature map
(centre) and a noise map (right). The NEDT per single frame is calculated from the
variance in the temperature map. The highlighted region has a fairly flat background so
the NEDT is accurately measured. The per pixel NEDT displayed on the right required
sampling over 10 frames in order to gather the required statistics – as such, low frequency
noise (see Figure 7.1) is strong and the sensitivity is poorer than for a single frame.
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per image pixel at full video rate will be 12.5 times lower than at present, so a factor of√
12.5 = 3.5 increase in sensitivity is required. There are a number of ways this could be

done but each requires major adjustments to the camera.

Stray light is single most significant factor limiting the overall sensitivity. Isolating

and fixing the stray infrared leak would provide an immediate factor of two improvement

before the estimated photon noise limit is reached. Reduction of the remaining stray

light would help to improve the system responsivity, however, this would require a total

redesign of the optical system in order to move away from lossy refractive components.

With the current optical configuration, simply operating with 12.5 times more sensors

in the focal plane (1850 KIDs) would enable a 25Hz refresh rate. This would require

some effort in array design and fabrication, a new focal plane unit with horn block, new

readout electronics (or just four more NIKEL units), and some software updates, but

this is totally feasible, in principle. Multi-kilopixel array development is already under

way in astronomical cameras such as NIKA-2, and the relatively high optical powers

involved with terrestrial imaging place relatively less stringent sensitivity requirements

on the individual detectors.

7.3 Performance comparison with other systems

The following table (Table 7.2) presents the key specifications and measured performance

of this KID camera next to the specifications of similar terahertz imaging systems.

Commercially available systems tend not to use cooled detectors so they can be very

compact, however, they lack the high sensitivity of cooled systems. Bear in mind that

the system presented in this thesis is only a prototype technology demonstrator and is

not currently suited for market deployment.

7.4 Thoughts for future developments

Optics

• LEKIDs are direct detectors and therefore are sensitive to radiation from all

directions. As such, slow optics, effective baffles, and cold aperture stops should

be in place. Feed horns are shown to be effective at improving beam shape and

improving optical coupling.

• Reflective optics can reduce stray light contributions relative to refractive optics.

The photon noise level should not be increased by unwanted radiation from emissive

components in the optical chain.

• Cross linking between detectors over the course of an imaging scan with a two-axis

strategy such as a circular, spiral, or Lissajous pattern is vital to remove dead

space from broken/poorly functioning detectors.
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Producer Cardiff AIG TeraSense INO NEC alphanov Digital Barriers IPHT Jena NIST/VTT

Product KID cam TeraFAST-256-HS IRXCAM-384THZ IR/V-T0831 TERACAM Thruvision TS5 – –

Commercial no yes yes yes yes yes no no

Frequency 350± 10GHz 50-700GHz 94-4000GHz 1-7THz 0.1-30THz 250± 20GHz 350GHz 350GHz

Sensors 152 256 384× 288 320× 240 40× 40 ? ? 251

Type LEKID GaAs µbolo FPA µbolo FPA ? ? TES TES

Operating T. 0.25K 300K 300K 300K 300K ? 0.5K <0.5K

NEP 6×10−16 W/
√
Hz 1×10−9 W/

√
Hz ? 1×10−10 W 1×10−6 W ? BLIP ?

NEDT per frame 0.1 ? ? ? ? ? BLIP ?

Frame rate 2 Hz 5000 Hz 48 Hz 30 Hz ? 6Hz < 25Hz ?

Field of view 1× 2 m n/a F=44mm,f/0.9 15.0◦×11.2◦ ? 1×1m at 10m < 2m ?

Range 3.5 m n/a ? ? ? 6-15m 3-10m 16-28m

Resolution 1 cm @ 3.5m n/a ? ? ? ? 1-2 cm 1:4 cm

Dimensions [cm] 200×100×100 30×10×10 6.5×5.9×10.5 6×6×20 6×6×30 95×68×31 <100×100×200 <100×100×200
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7.4. Thoughts for future developments

• A modular optics approach is sensible. The ability to swap out various optics

systems with a variety of focal lengths, depths of fields, resolutions, etc. without

requiring any modification of the cryogenic system is desirable. This could be

acheived by coupling the detector array to an image plane located externally to

the cryostat, perhaps with a small lens in place of a large window.

Detectors

• Improved optical coupling efficiency is not necessarily beneficial when operating

in the wave noise limit, however the reduction of the stray light reflections from

poorly absorbing detectors is desirable. Good matching of wafer thickness to optical

wavelength and the inclusion of anti-reflection coatings are advisable.

• Detectors with higher quality factors are more responsive however the power

handling and dynamic range need to be well matched to the expected incident

optical power levels.

• Reduction in the overlap of resonators will improve array yields. Moving to lower

resonant frequencies, and ensuring more uniform film thickness across the array

should inhibit the deviations in resonant frequency and quality factor from the

designed values.

• Operation at higher temperatures is desirable. Aluminium KIDs work best at

around a few hundred mK and so require sub-Kelvin cooling platforms such as

sorption fridges, ADRs or dilutors. Other metals have higher Tc and so it may be

possible to operate off of liquid helium or PTCs only.

• KIDs are broadband detectors and, as such, the potential exists for multi-colour

imaging. Low resolution imaging spectroscopy at terahertz frequencies is desirable

and could be achieved with the selective positioning of bandpass filters over a

detector array. Mid resolution (R < 1000) spectroscopy has been achieved with

KIDs and designs for imaging spectrometers are under development. However,

the number of detecting elements rises very steeply as the spectral and spatial

resolutions increase.

Electronics

• Greater ADC/DAC bandwidth and resolution allows for the simultaneous readout

of more channels. The accelerating growth in the microwave electronics industry

means cutting edge, high speed devices will continue to be affordable in years to

come.

• Full video rate imaging requires high data sample rates, so good quality FPGAs

with high Fmax and plentiful DSP blocks are needed for the rapid demultiplexing

and filtering of readout signals.
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Chapter 7. Camera Performance and Future Considerations

• Good independent control of tone powers is necessary to drive individual KIDs at

their point of maximum response.

• The FPGA firmware for KID readout systems should be multi functional - not

only should it allow for the real-time detector readout for imaging mode, but it

should also provide a means for detector characterisation and other debugging

and diagnostic features. Tools for network analysis (frequency sweeping) and

high speed sampling (for quasiparticle lifetime measurements) are definitely worth

incorporating into firmware designs.

Software

• Software should not affect the performance of any imaging system, however, at

high frame rates or with large format images, real-time imaging code can lag.

Optimisation of algorithms is important and the use of GPU systems for rapid

processing (for example, timeline filtering, real-time PSF convolutions, image

filtering) is advisable.

7.5 Conclusion

Kinetic inductance detectors are highly sensitive, broadband, electromagnetic radiation

detectors designed specifically to overcome the challenges of large format array fabrication

and electronic readout at terahertz frequencies. Lumped element KIDs are a variant

originally proposed and developed within the Astronomy Instrumentation Group at

Cardiff University. International efforts on KID/LEKID development have focussed

primarily on experimental astrophysics research with excellent results to date.

We have designed, built and characterised a prototype passive terahertz video camera

based primarily on a 152 pixel array of aluminium LEKIDs with the aim of demonstrating

that KID technology is suitable for use in a range of terrestrial applications where ultra-

high sensitivity imaging is desired.

The goal of generating images of a sufficient quality to identify objects concealed

beneath layers of clothing on human targets has been achieved and the camera successfully

operates in real-time at a few frames per second with close to background limited

sensitivity. The frame rate limit is currently set by the field scanning mechanism and

the sensitivity is limited by excess noise that is probably due to stray infrared radiation

leaking into the focal plane.

Pixel counts of KID based imaging instruments are increasing (see Figure 1.5) faster

than any other technology in the terahertz. Order of magnitude increases in mapping

speeds at background limited sensitivities in a range of astronomical and terrestrial

settings are expected within the next decade.
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Appendix A

Derivations

A.1 Estimation of resonant frequency shift with fixed tone

readout

KIDs respond to changes in incident optical power with changes in complex electrical

surface impedance. The affected measurable quantities, resonant frequency, f0, and

quality factor, Q0, are found by sampling the forward transmission, S21, of a readout

tone as a function of frequency across the KID resonator and then fitting to the resulting

curve. In practice, it is much more convenient to operate with a fixed frequency readout

tone and to estimate changes in f0 and Q0 with some linear combination of the sampled

I(t) an Q(t) values. Measuring S21(f) around the resonator just once at the beginning

of a run can provide enough information for a reasonable first order estimation of the

response as a function of time.

The forward transmission scattering parameter has a complex value

S21 = I + jQ , (A.1)

where I and Q are the in-phase and quadrature components of the microwave readout

signal. To first order, a small change in resonant frequency from the initial value of f0

can be estimated from the change in S21 and the gradient of the S21 frequency sweep at

f0 as

δf =
δS21

dS21

df

∣

∣

∣

f0

. (A.2)

Expanding this out in terms of I and Q gives

δS21 = δI + jδQ , (A.3)

and
dS21

df

∣

∣

∣

∣

∣

f0

=
dI

df

∣

∣

∣

∣

∣

f0

+ j
dQ

df

∣

∣

∣

∣

∣

f0

. (A.4)
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Then the small change in resonant frequency is

δf =
δI + jδQ

dI
df

∣

∣

∣

f0

+ j dQdf

∣

∣

∣

f0

. (A.5)

The complex denominator can be rationalised out, leaving

δf =

(

δI + jδQ
)(

dI
df

∣

∣

∣

f0

− j dQdf

∣

∣

∣

f0

)

dI
df

∣

∣

∣

2

f0

+ dQ
df

∣

∣

∣

2

f0

, (A.6)

which can be expressed in real and imaginary parts as

δf =

δI dI
df

∣

∣

∣

f0

+ δQdQ
df

∣

∣

∣

f0

dI
df

∣

∣

∣

2

f0

+ dQ
df

∣

∣

∣

2

f0

+ j









δQdI
df

∣

∣

∣

f0

− δI dQ
df

∣

∣

∣

f0

dI
df

∣

∣

∣

2

f0

+ dQ
df

∣

∣

∣

2

f0









. (A.7)

We are only interested in the real part of the frequency shift so we can discard the

imaginary part. Finally, δI and δQ are simply I(t)− I0 and Q(t)−Q0, where I0 and Q0

are the values of I and Q with the readout tone fixed at f0. The response as a function

of time can be then estimated as

δf(t) =

(I(t)− I0)
dI
df

∣

∣

∣

f0

+ (Q(t)−Q0)
dQ
df

∣

∣

∣

f0

dI
df

∣

∣

∣

2

f0

+ dQ
df

∣

∣

∣

2

f0

. (A.8)
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Appendix B

General sensitivity and photon

noise calculations

B.1 Sensitivity

The low signal levels present (∼100 pW per detector), along with the need to recognise

tiny variations in temperature and emissivity (less than a few percent), on top of the

requirements for a large field of view (∼500 sq. deg.) and high frame rate (25 FPS), make

sensitivity the key factor in the overall performance of this terahertz camera.

A standard measure of detector sensitivity is the noise equivalent power (NEP) which

is defined as the optical signal strength required to equal the noise in a 1Hz post detection

bandwidth, corresponding to a half second of integration. NEP is usually quoted in

units of Watts per root Hertz (W/
√
Hz) and, for a time domain signal x(t) sampled at

a frequency fs, is computed as a function of frequency f by taking the square root of

the single sided power spectral density Sx(f) and dividing by the detector responsivity

Rx. Responsivity is the change in detector response, dx, for a given change in absorbed

optical signal power, dP and may be written explicitly as dx/dP , so that

NEP(f) =

√

Sx(f)

Rx
=
√

Sx(f)

(

dx

dP

)−1
[

WHz−
1

2

]

. (B.1)

In certain situations it is convenient to replace the power spectral density with

the signal variance σ2
x although one must remember to divide by the post-detection

bandwidth ∆fs to maintain the requirement for the half second of integration. For a

Nyquist sampled signal, ∆fs = fs/2.

A number of different factors will contribute to the overall sensitivity of a detector.

For LEKID based systems, possible noise sources include the cryogenic amplifier, the

readout electronics, and the detectors themselves – including quasiparticle generation-

recombination (G-R) noise and two level system (TLS) noise. An ideal detector would

be sensitive enough that the dominant source of noise comes from the inherent variance

of the incident optical signal. Such a detector is said to be photon (γ) noise limited. An
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NEP can be computed for each of the sources of noise and the overall sensitivity is then

the quadrature sum of the individual NEPs, so for a LEKID based system such as ours,

NEP 2
total = NEP 2

γ + NEP 2
GR + NEP 2

TLS + NEP 2
amplifier + NEP 2

readout . (B.2)

It is common to quote detector sensitivity in terms of noise equivalent temperature

(NET). This is the minimum equivalent signal temperature required to equal the noise

in a 1Hz bandwidth and is related to the NEP as

NEP = NET
dP

dT
, (B.3)

where the derivative relates the radiated power P to the source temperature T . At the

energy scales within which we operate, an approximation to dP/dT can be made based

on blackbody sources emitting in the Rayleigh-Jeans limit, where the blackbody spectral

radiance Bν(T ) varies linearly with temperature, dBν/dT = 2ν2kB/c
2.

For convenience, NET is often quoted in units of Kelvin root seconds (K
√
s) which is

the equivalent signal temperature required to equal the noise in a one second integration

time. Note that conversion to this form involves a division by a factor of
√
2 to account

for the extra half second of integration. That is,

NET
[

K
√
s
]

=
1√
2
NET

[

K√
Hz

]

. (B.4)

With imaging systems, it is common to quote the sensitivity per image frame. Noise

equivalent differential temperature (NEDT, NE∆T, or NETD) is a measure of the

temperature difference required to equal the noise in a single frame and is quoted in

units of temperature (K), where the integration time is accounted for in the frame rate.

For a camera composed of a detector array of Ndet elements that operates by simply

staring at an object, the per-frame NEDT is the average of the per-pixel NEDTs which,

in turn, is the average of the detector NETs in K
√
s divided by the square root of the

integration time τ per frame,

NEDTstaring =
1√
τ

1

Ndet

Ndet
∑

i=1

NETi [K] . (B.5)

For a scanning camera such as that presented in this thesis, each detector contributes

some signal to a number of image pixels so estimating an NEDT becomes slightly more

complicated. A system with Ndet detectors that scans a scene to generate an image with

Npix pixels will have an NEDT per pixel that depends the arrangement of the detectors

within the array and the scanning trajectory. It becomes necessary to calculate which

detectors have contributed signal to which pixel and how long they have integrated over
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that pixel. If the ith detector integrates on the jth pixel for a time τj,i, then

NEDTscanning =
1

Npix

Npix
∑

j=1

NEDTj (B.6a)

=
1

Npix

Npix
∑

j=1

Ndet
∑

i=1

1
√
τj,i

NETi [K] . (B.6b)

Estimation of the NEDT for a scanning system can be simplified by applying a simple

scaling factor to the staring case given by Equation B.5. In general, the factor is the

square root of the ratio of image pixel count to detector count and gives

NEDTestimated =
1√
τ

1

Ndet

√

Npix

Ndet

Ndet
∑

i=1

NETi [K] , (B.7)

where τ is now simply the frame duration.

B.2 Photon noise

Photon noise is a variation in detected optical power that comes from variations inherent

in the photon flux itself. Leclercq in [Leclercq, 2007] brings together a number of

historical approaches to photon NEP estimation into a unified framework and Zmuidzinas

[Zmuidzinas, 2003] provides a comprehensive review of the definitions for photon noise

NEP given a a variety of optical configurations. An estimate for the measured photon

noise NEP as a function of source power for a system such as ours is given here.

The number of photons per second per unit spectral bandwidth per spatial mode,

propagating through free space from a blackbody radiation source is equivalent to the

number of photons per standing wave mode in an isothermal cavity of temperature T .

Thus, the mean and variance of the photon occupancy number ni within the ith free

space mode can be estimated from the Bose-Einstein distribution derived from statistical

mechanics. The mean is

n̄i =
1

exp (hν/kBT )− 1
(B.8)

and the variance is

σ2
ni

= n̄i(1 + n̄i) . (B.9)

In the limit hν/kBT ≫ 1, the variance reduces to n̄i and the distribution is Poissonian.

This is the well known photon shot noise associated with the arrival of independent

discrete particles of light. In the opposing limit, hν/kBT ≪ 1, the variance reduces to n̄2
i

and is interpreted, in a quantum sense, as noise due to the correlated arrival of photons

that are coherently ’bunched’ together within individual modes. The latter effect can be

explained classically by considering the interference of electromagnetic waves and, as

such, this variance is commonly known as wave noise.
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Spatial, spectral and polarisation modes must be considered in the beam describing

the paths from source to detector. The number of spatial modes is estimated by the

ratio of the optical throughput or étendue, AΩ, to the étendue of coherence, λ2 = c2/ν2.

The number of spectral modes is the product of the detector integration time and the

spectral bandwidth, τ∆ν. The number of polarisation modes m is between 1 and 2. So,

the total number of modes available is

g =
mAΩν2τ∆ν

c2
, (B.10)

the mean number of photons expected across all modes is

n = gn̄i , (B.11)

and the overall variance is

σ2
n = gσ2

ni
= n

(

1 +
n

g

)(

g − 1

g + 1

)

. (B.12)

The final term in the last equation comes from the fact that individual photons can

switch between occupation states. This term is only significant when g is very small.

The average power Ps radiated by the source into the beam in a time τ can be

calculated from the energy in the modes as

Ps =
nhν

τ
=

gn̄ihν

τ
= mAΩ∆ν

hν3

c2
1

exp(hν/kBT )− 1
(B.13a)

=
1

2
mAΩ∆νBν(ν, T ) [W] , (B.13b)

where Bν(ν, T ) is the common Planck form for blackbody spectral radiance. Similarly,

the mean squared noise in the power radiated per unit integration time σ2
Ps

can be

calculated from the variance as

σ2
Ps

=
σ2
nh

2ν2

τ2
=

(

nh2ν2

τ2
+

n2h2ν2

gτ2

)(

g − 1

g + 1

)

(B.14a)

=

(

hνPs

τ
+

c2P 2
s

mAΩν2τ∆ν

)(

g − 1

g + 1

)

[

W2
]

. (B.14b)

’Electrical’ NEP is defined as the signal power required to equal the noise power in

an optically lossless system measured in a 1Hz detection bandwidth, ∆fs = 1Hz. The

Nyquist-Shannon sampling theorem requires that ∆fs = 1/2τ , so

NEPγ,electrical =

√

σ2
Ps

∆fs
(B.15a)

=

√

(

2hνPs +
2c2P 2

s

mAΩν2∆ν

)(

g − 1

g + 1

)

[

WHz−
1

2

]

. (B.15b)
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In practice, losses in the system must be accounted for. For example, optical power

will be attenuated by lenses and filters in the system so that the power input to the

detector Pin = ηoptPs, where the optical efficiency ηopt < 1. Additionally, the detector

will not convert all of the power incident upon it into useful signal, so the detected power

Pdet = ηdetPin = ηdetηoptPs, where the detector efficiency ηdet < 1 also. The photon

limited ’optical’ NEP measured by a detector for a given source power is then

NEPγ,optical =
1

ηdet

√

σ2
Pdet

∆fs
(B.16a)

=

√

√

√

√

(

2hνηoptPs

ηdet
+

2c2η2optP
2
s

mAΩν2∆ν

)

(

g − 1

g + 1

)

[

WHz−
1

2

]

. (B.16b)

Stray light

Stray light is any form of detected but unwanted optical signal. It will contribute to the

power absorbed by a detector and thus it will contribute to the photon noise. However,

it will not affect the responsivity of the detector, and so it can lead to a reduction in

overall sensitivity.

The ghosts described in Chapter 3 are examples of stray light reflections and more

often than not these kinds of reflections can be well baffled with proper shielding or with

anti-reflection coatings. Stray emissions are more of a challenge to hold back. They

can come from any warm body in the optical path, such as lenses, mirrors, filters or

the atmosphere and they will always contribute some load onto a detector. Lowering

the temperatures of the emissive optical components is the best way to reduce these

emissions. SPICA1 is a next generation space-based infrared observatory and will utilise

a 3.5m primary mirror that is actively cooled to 4.5K to reduce emissions and enable

ultra-sensitive detection at terahertz frequencies.

1SPICA: http://sci.esa.int/cosmic-vision/53635-spica/
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