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Abstract. In recent years, there has been a dramatic increase in the
number of images captured by users. This is due to the wide availability
of digital cameras and mobile phones which are able to capture and
transmit images. Simultaneously, image-editing applications have be-
come more usable, and a casual user can easily improve the quality of an
image or change its content. The most common type of image modi�ca-
tion is cloning, or copy-move forgery (CMF), which is easy to implement
and di�cult to detect. In most cases, it is hard to detect CMF with
the naked eye and many possible manipulations (attacks) can be used to
make the doctored image more realistic. In CMF, the forger copies part(s)
of the image and pastes them back into the same image. One possible
transformation is rotation, where an object is copied, rotated and pasted.
Rotation-invariant features need to be used to detect Copy-Rotate-Move
(CRM) forgery. In this paper we presented three contributions. First, a
new technique to detect CMF is developed, using Dense Scale-Invariant
Feature Transform (DSIFT). Second, a new improved DSIFT descriptor
is implemented which is more robust to rotation than Zernike moments.
Third, a new method to remove false matching is proposed. Extensive ex-
periments have been conducted to train, evaluate and test the algorithms,
the new feature vector and the suggested method to remove false match-
ing. We show that the proposed method can detect forgery in images
with blurring, brightness change, colour reduction, JPEG compression,
variations in contrast and added noise.

Keywords: Copy-Move Forgery, Copy-Rotate-Move, DSIFT Descrip-
tor, Zernike Moments.

1 Introduction

Copy-move is the most common image manipulation (copy and paste), where
regions of the image are cloned to hide/cover objects in the scene. If this is
done with care, visual detection of cloning will be di�cult. Moreover, because
the cloned regions can be in any location or can have any shape, searching
all possible image portions in di�erent sizes and locations is computationally
infeasible.
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In Copy-Move Forgery (CMF), part(s) of the image are copied and pasted
into the same image but in di�erent places, possibly after a rotation. Moreover,
because the copied-pasted region is from the same image, its characteristics
(e.g. colour and noise) are compatible with that image. This type of forgery is
more challenging to detect than other types, such as splicing and retouching.
This is because the usual methods of detecting incompatibilities, using statis-
tical measurements to compare di�erent parts of the image, will be useless for
CMF detection [1]. The �rst method to detect CMF was suggested by Fridrich
et al. [?]. They divided the image into overlapping blocks and quantised the dis-
crete cosine transform (DCT) coe�cients of each block; they then sorted them
lexicographically and checked the similarity between adjacent blocks.

Fig. 1. The general block diagram of CMF detection.

A large number of CMF detection methods have been proposed; most of
them follow a common pipeline, as shown in Fig 1. The general CMF detection
system consists of several main steps. The �rst step is to pre-process the image,
for example, by converting the RGB colour image to a greyscale image.

The second step is to extract features from the image. There are two di�er-
ent methods of carrying out this extraction, by dividing the image into blocks
(densely) or by detecting interest points in the image (sparsely).

In the �rst method, the image can be divided into overlapping or non-
overlapping blocks, and these blocks can have a square or circular shape. The
features are extracted from the blocks. In the second, the numbers and the lo-
cations of the interest points vary and depend on the method itself (e.g. SIFT,
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MSER, SURF, HOG, etc.). The features are then extracted in the neighbour-
hood of the interest points.

The third step is to �nd the matches (similarity) between extracted features.
Many possible methods can be used to locate this similarity. The most common
methods either 1/ sort the features vectors lexicographically and compute the
Euclidean distance between adjacent stored blocks or 2/ build a kd-tree to all
feature vectors and �nd the 2nd Approximate Nearest Neighbour (2ANN) for
each feature. We tested both methods in our work.

In the �nal step, the false matches should be removed to re�ne the primary
result.

Many methods of detecting CMF have been suggested. Christlein et al. [2]
tested the 15 most prominent feature sets by creating a real-world copy-move
dataset and a software framework for systematic image manipulation. They anal-
ysed the performance of the detection on a per-pixel basis and per-image basis.
According to their experiments, SIFT and SURF keypoint-based features work
very well, as well as block-based DCT, DWT, kernel PCA, PCA and Zernike
moments.

Keypoint-based methods have the advantage of low computational complex-
ity. There is a big di�erence in computational cost and amount of detected details
in block-based methods and keypoint-based methods.

According to Christlein et al. [2] the Zernike moments achieved the most
precise detection results (state of the art). Therefore, we compared our improved
DSIFT with Zernike moments to determine the performance of our improved
DSIFT descriptor versus the state of art feature.

One of our contributions is the combination of ideas from the keypoint and
block-based methods. We chose the Scale Invariant Feature Transform (SIFT)
method and applied it densely to enable block-based matching. SIFT is the
most widely used descriptor; it is distinctive and relatively fast. However, in
some cases, the high dimensionality of the descriptor is considered a drawback
during the matching step [3].

2 Related works

Several papers have used SIFT to detect CMF, but as far as we are aware,
none have used DSIFT [4] for this purpose. Huang et al. [3] extract SIFT key-
points from the image, and store them in a kd-tree to enable e�cient retrieval
of the 2nd Nearest Neighbours (2NN). In their work, they used images from
the internet. This method can partially detect CMF (one clone only), but there
was no consideration for post processing methods and they did not report the
accuracy of their method.

Pan and Lyu [5], detected sparse SIFT keypoints, and used the best-bin-�rst
algorithm followed by RANdom Sample Consensus (RANSAC)[6] to estimate
the possible geometric transformations. They built a correlation coe�cient map
between pixels in the same region and applied Gaussian �ltering (7×7) to reduce
noise and threshold their results. They used their own forged images and their
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method failed to detect forgery in some images with translation. Moreover, they
falsely detected forgery in some original (untampered) images.

Amerini et al. [7] extracted SIFT features and used 2ANN to �nd multiple
matches between feature vectors. They applied hierarchical clustering to their
matched points and used RANSAC to estimate the geometric transform. The
authors employed the Columbia photographic image repository [8] and other
personal collected images . This method can partially detect multiple cloned
regions, but it missed some objects and falsely detected forgery in some cases.
Moreover, the authors did not consider forged images with rotation in their work.

Ryu et al. [9] divided the image into overlapping 24×24 blocks and calculated
the Zernike moments for each block. They sorted the Zernike feature vectors
lexicographically and computed the Euclidean distance between adjacent stored
blocks. If the distance is smaller than a speci�c threshold, they consider these
blocks as cloned. They conducted their experiments with 12 TIFF images from
their personal collection and other papers. They considered the Copy-Rotate
Move (CRM) with rotations in the range of 0◦ to 90◦ in 10◦ steps. In their follow-
up paper [10], they computed the 5th order Zernike moments from overlapping
block to generate their feature vectors. Locality sensitive hashing with Euclidean
distance was used to �nd similar feature vectors. The authors applied RANSAC
at the feature level to remove false matches. Then, they tested their work on their
forged images, which were rotated between 0◦ to 90◦, in steps of 10◦. They built
their forged images by duplicating random square patches, with di�erent sizes,
on original images. This makes CMF/CRM detection much easier and produces
unrealistic forged images. Moreover, their method generates a considerable rate
of Pixel False Positive (PFP) values.

Li et al. [11] followed a di�erent approach. They segmented the image into
more than 100 patches, extracted the SIFT features from the whole image and
found possible matches using a kd-tree and KNN. They estimated the transfor-
mation matrix using RANSAC. Then, they re�ned their results using an EM-
based algorithm. They tested their work on two datasets and were unable to
detect forgery in some plain forged images. Moreover, they identi�ed some un-
forged images as counterfeit.

3 Forgery detection algorithms

This section �rst describes the steps taken to improve the DSIFT descriptor,
and then presents our suggested algorithm for CMF detection using our im-
proved DSIFT descriptor. Subsequently, three di�erent methods of removing
false matches are discussed, and we propose an algorithm to remove false matches
using neighbourhood clustering within a radius.

3.1 Steps to improve DSIFT

CRM forgery detection requires a rotation-invariant descriptor; thus, we im-
proved the DSIFT descriptor to make it rotation invariant. Based on local image
properties, SIFT assigns a dominant orientation for each keypoint. The keypoint
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descriptor rotates each patch according to this orientation so that the subsequent
descriptor is robust to rotation [12].

We improved the DSIFT descriptor in two steps; �rst, we used a di�er-
ent method to compute the dominant orientation, and second, we used circular
blocks instead of square ones.

Step one: SIFT uses the following approach to detect dominant orientation
for each patch. For each keypoint, we compute the gradient orientations in its
16×16 neighbourhood. Build orientation histogram has 36 bins covering 360◦.
Each value added to the histogram is weighted by its gradient magnitude. The
peak in the orientation histogram represents the dominant directions of the key-
point. The standard setting of SIFT uses 36 bins, which causes a quantisation of
the estimated dominant orientation, and this error in the orientation will cause
problems in the CMF stage. It is possible to increase the number of bins to 360,
but this would substantially increase the run time. Obviously, there is a trade-
o� between quantisation error and robustness. Therefore, we used the following
method to detect the dominant orientation in our work.

In our suggested method to improve the detection of dominant orientation,
we used the second order and the third order central moments to detect the
dominant orientation. This method is more accurate and faster than the SIFT's
method for detecting dominant orientation. The second order central moment
(moment of inertia) can be used to detect the principle axes of the patch, the
region around keypoint. The angle of the principle axis of the least inertia is
used to describe the object orientation. This angle has a 180◦ ambiguity; the
third central moment (projection skewness) was used to solve this ambiguity.
The rotation of an object by 180◦ changes the sign of the projection's skewness
on either axis. In other words, the sign of µ30 was used to di�erentiate between
the possible orientations [13]. This method works very well and is much faster
than the SIFT method (see section 4.3).

Step two: SIFT considers a square region around the keypoint, which in-
creases the border e�ects on this region. Simply, we considered a circular area
instead of square area to reduce the border e�ects. Each block within a radius
of 8 is divided into 4×4 sub-regions. A comparison between circular and square
neighbourhoods will be described in section 4.3.

The steps to build our improved DSIFT descriptor are as follows: 1/Trans-
form a colour image into greyscale. 2/At each pixel, consider its 16×16 neigh-
bourhood. 3/Mask each neighbourhood to use only the central disk with a radius
equal to 8. 4/Use the moments based method to �nd the dominant orientation
for each circular patch. 5/Rotate each circular patch according to its dominant
orientation. 6/Compute the gradient magnitude and orientation for each circu-
lar patch. 7/Use the Gaussian function to weight the gradient magnitude. 8/For
each 4×4 sub-region in the patch, build an 8 bin histogram. 9/Accumulate each
bin according to its gradient magnitude of orientation. 10/Concatenate the 16
histograms to build a 128 feature vector.
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3.2 CMF Detection with translation/rotation

Computing DSIFT for a 512×512 image with block size of 16×16 generates
247009 feature vectors. Computing sparse SIFT for the same image size typi-
cally generates about 750 to 1350 keypoints/feature vectors. Using SIFT densely
increases the running time but provides robust features which are systematically
distributed over the whole image.

The full algorithm for CMFD with translation/rotation

Input: IRGB % Coloured image

Output: IForgery % Forged image

IG=RGB2Grey(RGB); % Convert coloured image to greyscale image

(M,N)=size(IG);

K=0;

For i=1:M-15

For j=N-15

Iij=IG(i:i+15,j:j+15);

If MAD(Iij)> T1 % Compute Median Absolute Deviation

K=K+1;

B(K)=DSIFT(Iij);

end if

end for

end for

Tkd=KDtree(B);

For L1=1:K

V1=B(L1);

Index=ANN2(V1);

V2=B(Index);

If ||V1-V2|| < T2

List=(V1,V2);

end if

End for

NCList=Neighbourhood_Clustering (List); % Reduce the false matches

RList=RANSAC(NCList);

IForgery=IRGB.GreenColor(RList);

CC=connected_components_labelling(RList)

For F=1: size(CC)

If CC(F).area < T3

IForgery.CC(F).Pixel=IRGB.CC(F).Pixel;%Restore original image colour

end if

End for

Flat regions increase false matches. Such �at regions occur where the pixel in-
tensity values are similar to each other and change smoothly over comparatively
large regions (e.g. sky and sea). The similarity between pixel intensity values
in a large region produces a large number of similar feature vectors, which are
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considered as copy-move regions in the matching step. We used the median abso-
lute deviation (MAD) to reduce the e�ect of �at regions. We checked the block's
MAD value and if it was larger than a threshold, we build the descriptor to
those tested block; otherwise, we neglected it. The proposed method reduces the
number of the false matches in the �at region(s) and decreases the run time sig-
ni�cantly. We considered Neighbourhood Clustering with CRM forgery detection
only to decrease the false matches and reduce the number of outliers. Without
Neighbourhood Clustering, RANSAC cannot e�ciently estimate the transfor-
mation because of the large number of outliers. In comparison, the number of
outliers is relatively small in translation.

3.3 False match removal

We tested the three following methods to remove potential false matches:
1. Counting shift vectors: This method involved creating a list of coordinates

for each potential cloned patch and sorting it. Then, the shift vector (spatial
distance) between each related point was computed. If the number of each of
the shift vectors was greater than the threshold, the patches were considered to
be a forgery. This method is appropriate in the case of translation but not for
CRM forgery detection.

2. Neighbourhood Clustering: The copied and pasted blocks each had to
comprise at least three neighbouring blocks. This method produced very good
result; details of Neighbourhood Clustering are given in section 3.4.

3. RANSAC: This is an iterative method of estimating parameters of a math-
ematical model from a set of observed data which contains outliers. In the initial
stage, RANSAC uses a dataset which is as small as possible; it enlarges this
dataset consistently when possible. RANSAC can robustly estimate the geomet-
ric transformation between matched points and remove outlier blocks [6]. It can
cope with more than 50% outliers, making it more robust than many other pa-
rameter estimation techniques (such as the least median of squares) [14]. Figure
3 is an example of using RANSAC for CMF detection to remove false matching.

3.4 Neighbourhood clustering

As the second contribution of this paper, we propose a new method to remove
false matches by analysing a potential match's neighbourhood. We extensively
experimented and optimised all thresholds and parameters (see Fig. 2).

The full algorithm for Neighbourhood Clustering within a radius

Input:A={A1,A2,..,An},B={B1,B2,..,Bn};%A & B are lists of coordinates

where Bi is a potential match to Ai.

Output:AB={Am1,Bm1,Am2,Bm2,...Amq,Bmq};

% q is the number of matching pairs.

[Tkd,Ind]= KDtree(A);
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For i=1:n

Aa=Tkd(i)=A(Ind(i));

ai=ANNk(Aa) % Find k Approximate

Nearest Neighbour{ai1,ai2,..aik} ∈ A

Count=0;

For j=1: k

e1=ai(j);

d1=||Aa-e1|| ;

if d1 < r % r = specific Radius

e2= match(B,e1) % Find the matching coordinates of e1 in B.

Bb=B(Ind(i));

d2=||Bb-e2||;

If d2 <= r

count=count+1;

End if

End if

End for j

If Count > T

Add {Aa,Bb} into AB.

End if

End for i

Fig. 2. An example of matching two blocks using the Neighbourhood Clustering
method (left), a block diagram of two matched blocks using Neighbourhood Clustering
within a radius (right).

4 Experiments and evaluation method

4.1 Datasets and evaluation method

We tested our method using the image database for Copy-Move Forgery Detec-
tion (CoMoFoD) [15]. CoMoFoD consists of 260 forged images categorised into
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two categories (small 512×512, and large 3000×2000). The small category con-
sists of 200 original images with di�erent types of forgery. We considered only
the small images in our work. In the small category, images are divided into 5
di�erent groups according to the applied manipulation, as follows: translation,
rotation, scaling, distortion and a combination of all previous manipulations.
Moreover, di�erent types of post-processing methods (e.g. blurring, brightness
change, colour reduction, JPEG compression, contrast adjustments and added
noise), are applied to all forged and original images in each group. The total
number of images in the small group is 10400 images with di�erent types of
manipulations.

As an example of alternative datasets, CASIA [?] has realistic forgery images
which are categorised according to their contents into 9 categories (scene, animal,
architecture, character, plant, article, nature indoor and texture). However, it
contains limited post-processing methods, speci�cally JPEG compression and
blurring and the majority of the images are small (384×256). The MICC-F2000,
MICC-F220, MICC-F8multi and MICC-F600 datasets [7] contain 2000, 220, 8
and 600 images, respectively. These datasets have unrealistic forged images and
in most cases, the forgery is perceptually very obvious.

We used the F measure at the pixel level to evaluate the accuracy of our
results.

4.2 Experiments and results for CMF/CRM forgery detection

A. Experiment to compute the F measure with plain CMF Detection
(translation)
We tested 40 di�erent images with plain CMF and could detect forgery in all
images, but some false detections were incurred (see Fig. 3). To remove the false
matching, we tested three di�erent methods; RANSAC produced the best results
with a very short run time, as shown in Table (1).

Table 1. The results of experiments in translation

Post-processing Method to
Remove False Matching

F Measure Running Time

Without Post-processing 0.8764 155 sec
Shift Vector 0.8792 45 min

Neighbourhood Clustering 0.9123 6.4 min
RANSAC 0.9367 170 sec

B. Experiments to compute the F measure with CMF Detection (trans-
lation) and attacks
To create more realistic CMF images and to hide the traces of forgery, the forger
could use some post-processing methods. In our work, we considered di�erent
types of attack (image blurring, brightness change, colour reduction, JPEG com-
pression, contrast adjustments and added noise). We used our suggested method
to test 200 images with di�erent types of post-processing. Then, we tested the
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Fig. 3. From the left: The forged input image, forgery detection with false matches,
the result of RANSAC, the generated masks.

same images using Zernike moments. In most cases, our improved DSIFT pro-
duced better results than Zernike moments, our method detected the forgery in
198 images out of 200 (see Table 2). However, the Zernike moments is more ro-
bust to JPEG compression than our method. This is because the DCT operation
in JPEG compression has a strong in�uence on the gradient magnitude, which
e�ected our improved DSIFT.

Table 2. Comparison between improved DSIFT and Zernike moments for CMF de-
tection with di�erent types of attacks

Attacks

F Measure
using

improved
DSIFT

Detected
images
with

improved
DSIFT

F Measure
using
Zernike
moments

Detected
images
with

Zernike
moments

Image Blurring,
(5×5 average �lter)

0.7894 38 0.5632 34

Brightness Change Range
(0.01, 0.8)

0.8739 40 0.4544 33

Colour Reduction
(32 intensity levels)

0.9045 40 0.4999 33

JPEG Compression
(quality factor= 40)

0.3819 40 0.6078 33

Contrast Adjustment Range
(0.01,0.8)

0.9033 40 0.4868 32

Then, we used our improved DSIFT to detect CMF with di�erent levels of
added noise. Then, we used Zernike moments to detect CMF with the same noisy
images. We achieved satisfactory results and we get better results than Zernike
moments, see Table 3.

C. Comparison between improved DSIFT, Zernike moments and orig-
inal DSIFT
Christlein et al. [3] tested the 15 most prominent features to detect CMF, and
Zernike moments achieved the most precise detection results. Therefore, we chose
to compare Zernike moments with our method and tested our improved DSIFT
descriptor. We conducted experiments on 40 di�erent CoMoFoD images with
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Fig. 4. Top row: blurred image(left), detected forgery (centre), generated mask (right).
Bottom row: contrast-adjusted image(left), detected forgery (centre), generated mask
(right).

Table 3. Comparison between improved DSIFT and Zernike moments on detection
CMF with di�erent levels of noise

The value of
White Gaussian Noise

(AWGN)

F Measure
using

improved
DSIFT

Detected
images with
improved
DSIFT

F Measure
using
Zernike
moments

Detected
images with
Zernike
moments

0.000001 0.6846 36 0.6362 36
0.000005 0.5424 32 0.5148 31
0.00001 0.4883 32 0.4188 26

CMF (translation). In the �rst experiment, we tested our algorithm on trans-
lation, both with and without RANSAC post-processing. In both cases, our
method achieved higher F measure values than Zernike moments (see Table 4).
Moreover, the results of using our improved DSIFT and original DSIFT, with
translation, were similar.

Table 4. Comparison between improved DSIFT and Zernike moments in CMF

The average of
F Measure using
Improved DSIFT

The average of
F Measure using
Zernike moments

Without post-processing 0.8764 0.8070
With post-processing 0.9367 0.8865

Another experiment was conducted with 40 di�erent images with CRM forgery.
These forged images had object(s) rotated by di�erent angles (e.g. 180◦, 90◦, 10◦,
2◦, 4◦, -4◦, 5◦, -7◦, -3◦, 1◦...etc.). In this experiment, we removed false positives
in two steps. In the �rst step, for each potential forgery blocks, we tested the
8 neighbouring blocks and if we found that at least 3 neighbouring blocks were
matched, we forwarded these blocks to the next step. In the second step, we used
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RANSAC to remove the outliers, which improved the results (see Fig. 5). This
experiment illustrated the robustness of our descriptor. We obtained a higher F
measure value than we did from Zernike moments and the original DSIFT (see
Table 5). Therefore, our suggested improved DSIFT descriptor is more accurate
under changes in rotation than Zernike moments and the original DSIFT.

Table 5. Comparison between improved DSIFT, Zernike moment and original DSIFT
in 40 images with CRM forgery

The average of
F Measure using
Improved DSIFT

The average of
F Measure using
Zernike moments

The average of
F Measure using
Original DSIFT

Without
post-processing

0.4005 0.2899 0.3268

With
post-processing

0.7613 0.6398 0.5436

Fig. 5. Examples of using our proposed method for Detection CRM Forgery3

4.3 An experiment to test rotation invariant of improved DSIFT

In section 3.1, we described how the level of rotational invariance of the DSIFT
descriptor was improved. We also conducted an experiment to test our descriptor.

For 40 di�erent forgery images, we randomly selected 100 blocks from each
image and computed our improved DSIFT descriptors for these blocks. Next, we
randomly rotated these blocks, considering all possible rotation angles (0◦-360◦),
and computed our improved DSIFT descriptors for these rotated blocks. Then,
we computed the Euclidean distance between the descriptors of the original and
rotated blocks. The average pairs of Euclidean distance between 4000 improved
DSIFT descriptors, built from 4000 di�erent blocks before and after rotation,
was 0.0487 (see Fig. 6a).

To compare our improved DSIFT rotation robustness with the original DSIFT,
we repeated the previous experiment using the original DSIFT. The average

3 True Positive (TP),True Negative (TN), False Positive (FP), False Negative (FN)
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pairs of Euclidean distance between 4000 descriptors (square block), built from
4000 di�erent blocks before and after rotation, was 0.8787(see Fig. 6b). We then
repeated the same experiment using the original DSIFT with circular blocks
instead of square ones, and the value of the Euclidean distance was 0.3396(see
Fig. 6c).

Fig. 6. Histogram of the Euclidean distance between 4000 DSIFT descriptors in: (a)
the improved DSIFT (left), (b) the original DSIFT with square blocks (centre), (c) the
original DSIFT with circular blocks (right).

4.4 An experiment to �nd the di�erence between matching points
algorithms in CMF Detection

From previous works, we found that there are two major methods suggested to
�nd similar blocks in CMF Detection: The �rst method is sorting the feature
vectors lexicographically and computing the dissimilarity value between blocks
(the Euclidean distance). The second approach is building the kd-tree and �nding
the 2ANN. We tested both methods and found them to be similar for translation,
but the �rst method failed with rotation and we could not detect forgery with it.
To understand the reason for the failure of the �rst method, we carried out an
experiment: We computed the descriptors for two cloned blocks and saved them.
Then, we built the descriptors of the whole image, sorted them lexicographically
and searched for the two saved descriptors. If the lexicographic sorting worked
properly with our method, the two saved descriptors would be adjacent. We
found that there were 189 descriptors between the two saved descriptors. The
reason for this is that the lexicographical sorting is in a column-wise manner,
like a dictionary, so obviously it cannot be used to detect forgery with rotation.

5 Conclusion

In this paper, we considered copy-move forgery incorporating translation and
rotation . A new technique was suggested to detect CMF/CRM Forgery. We
obtained excellent results on translation and very good results on rotation. We
improved the accuracy of the rotation robustness of DSIFT; thus, we achieved
better results than for Zernike moment in rotation. A new method of removing
false matching was developed and extensively tested.
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