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Background.  

Neurocognitive performance deficits have been observed in mood disorder patients and their 

unaffected relatives and may therefore qualify as endophenotypes. However, the precise 

time course of neurocognitive deficits has not been studied so that it is unknown whether 

neurocognitive abnormalities reflect the early effects of familial vulnerability to mood 

disorders or if they emerge at illness onset. 

Method.

A neuropsychological test battery was administered at baseline and after a 2-year follow-up 

interval in 111 initially unaffected young adults at high familial risk of mood disorders and 93 

healthy controls (HC). During the follow-up period, 20 high-risk subjects developed major 

depressive disorder (HR-MDD), with the remainder remaining well (HRwell). 

Linear mixed-effects models were used to investigate differences and longitudinal changes in 

the domains of attentional processing, working memory, verbal learning and memory, and 

cognitive flexibility. 

Results. 

Reduced long delay verbal memory and extradimensional set-shifting performance across 

both time points were found in the HR-well group relative to controls. The HR-MDD group 

displayed decreased extradimensional set shifting abilities across both time points as 

compared with the HC group only. There were no significant performance differences 

between the two high-risk groups. 

Conclusions. 

Reduced verbal memory and cognitive flexibility are familial trait markers for vulnerability to 

mood disorders in individuals with a close family history of bipolar disorder. Both 

neurocognitive performance deficits appear to be relatively stable over a 2-year time period 

and do not appear to be linked to the onset of MDD. These findings support their use as stable 

quantitative endophenotypes for mood disorders. 

Introduction 

Mood disorders including bipolar disorder (BD) and major depressive disorder (MDD) are 

among the most common mental disorders worldwide and a leading cause of disability 



(Kessler et al. 2005). They are known to aggregate in families, with first-degree relatives of BD 

patients having a 10-fold excess risk of BD compared with the general population, and a 

3-fold increased risk of MDD (Smoller & Finn, 2003). Taking into account that the prevalence 

of MDD in the population is substantially greater than that of BD, with lifetime prevalence 

estimates for MDD being in the range of 16% (Kessler et al. 2005) versus 1% for BD 

(Merikangas et al. 2011), the absolute risk of developing MDD in first-degree BD relatives is 

much greater than their absolute risk of developing BD (Smoller & Finn, 2003). Moreover, the 

majority of first-degree BD relatives who go on to develop BD themselves are initially 

diagnosed with MDD since depressive episodes commonly emerge prior to the onset of manic 

episodes (Hillegers et al. 2005; Duffy, 2010). This finding together with moderate to high 

heritability estimates and evidence of a shared genetic architecture provides strong support 

for overlapping causal pathways in BD and MDD (McGuffin et al. 2003; Craddock, 2006; Cross-

Disorder Group of the Psychiatric Genomics Consortium, 2013; Schulze et al. 2014). 

To enhance the identification of susceptibility genes for complex, polygenetic disorders such 

as BD and MDD, the endophenotype approach has been applied. Endophenotypes are 

disease-associated traits that are more proximal to the molecular mechanisms than the 

clinical phenotype. Criteria for the identification of endophenotypes include that they must 

be: (a) associated with the illness; (b) heritable; (c) state-independent; (d) co-segregate with 

illness within families; and (e) found in unaffected relatives at higher rates than in the general 

population (Gottesman & Gould, 2003). 

Several lines of evidence suggest that distinct neurocognitive deficits may qualify as 

endophenotypes for mood disorders. First of all, the majority of neurocognitive domains are 

strongly influenced by genetic factors and are highly heritable (Glahn et al. 2004, 2012). 

Second, neurocognitive deficits are known to be found in individuals with manifest mood 

disorder. A recent meta-analysis of neuropsychological performance in first-episode MDD 

patients observed neurocognitive impairments in attentional processing speed and cognitive 

flexibility (Lee et al. 2012). Similarly, meta-analyses of first-episode or euthymic BD patients 

reported reduced attentional processing speed and cognitive flexibility performance (Bourne 

et al. 2013; Lee et al. 2014). Moreover, these studies detected verbal learning and memory 

deficits as well as working memory impairments in BD patients (Bourne et al. 2013; Lee 

et al. 2014). These neuropsychological impairments were evident in both symptomatic and 

euthymic patients, hence suggesting that they may be relatively state-independent. 

Third, neurocognitive deficits observed in affected patients have also been found in close 

unaffected relatives. In particular, first-degree relatives of BD patients have been shown to 

have deficits during tasks involving attentional processing (Glahn et al. 2010), verbal learning 

and memory (Arts et al. 2008; Balanza-Martinez et al. 2008; Bora et al. 2009), cognitive 

flexibility (Bora et al. 2009) and working memory (Balanza-Martinez et al. 2008; Glahn et al. 

2010). However, the magnitude and consistency of these findings in first-degree relatives is 

generally reduced in comparison with affected individuals. Accordingly, it has been suggested 

that the more severe and widespread deficits observed in mood disorders patients may be 

related to disease-associated factors such as medication, illness progression or psychiatric co-

morbidity (Balanza-Martinez et al. 2008). This hypothesis is in line with previous findings of 

associations between neuropsychological impairment in mood disorders with illness 

progression (Elgamal et al. 2010) or medication (Snyder, 2013). 



Most studies on neurocognition in mood disorders have assessed neuropsychological 

performance cross sectionally in affected individuals or unaffected first-degree relatives. 

Accordingly, they only provide indirect evidence for the endophenotype criterion of state-

independence. They do not, however, provide insights into the precise time course of the 

evolution of cognitive deficits in mood disorders by assessing patients or unaffected relatives 

at various disease stages over time. Given the relative lack of longitudinal studies, it remains 

largely unknown if cognitive deficits remain relatively stable across time or whether they 

exhibit dynamic changes over time.  

The Scottish Bipolar Family Study is a longitudinal cohort study based on familial risk which 

allows the examination of the time course of development of neurocognitive deficits in mood 

disorders and their relationship to familial risk and onset of illness. Based on the 

neurocognitive endophenotype literature reviewed above, we compared measures of 

attentional processing speed as assessed with the Digit Span forwards, working memory, 

verbal learning and memory, and cognitive flexibility. These were compared over a 2-year 

time interval between three groups of participants: high-risk of mood disorders individuals 

who were well at baseline but developed MDD during the follow-up period (HR-MDD), high-

risk individuals who remained well over the same time period (HR-well) and unaffected 

healthy control (HC) subjects. We hypothesized that subtle neurocognitive performance 

deficits related to familial risk of mood disorders are present before the onset of illness. 

Furthermore, we hypothesized that these performance parameters worsen progressively in 

the 2-year period prior to illness and that an onset of MDD is associated with more 

pronounced neurocognitive deficits as compared with individuals who remain well. 

Method 

Participants 

Participants were recruited as part of the Bipolar Family Study (Sprooten et al. 2011; Whalley 

et al. 2011). Individuals at high risk of mood disorders, because of a close family history of BD, 

were identified via affected relatives. They were considered at increased risk of mood 

disorders because of the known cross-over of risk between BD and MDD as outlined in the 

Introduction. In brief, it has been well established that first-degree relatives of BD patients 

are at increased risk of developing MDD or BD as compared with the general population 

(Smoller & Finn, 2003). Overall, they are more likely to develop MDD than BD as their absolute 

risk of developing MDD is at least twofold increased as compared with their absolute risk of 

BD (Smoller & Finn, 2003). Psychiatrists across Scotland referred patients to the study with a 

primary diagnosis of BD, type I (BDI). The diagnosis of affected subjects was confirmed with 

the Operational Criteria Symptom Checklist (McGuffin et al. 1991) using information from 

clinical 3318 M. Papmeyer et al. The BDI patients were asked to identify close family members 

aged 16–25 years. Following informed consent, unaffected individuals with at least one first-

degree, or two second-degree relatives with BDI were invited to participate. The participants 

at high risk of mood disorders were interviewed to confirm a lifetime absence of mood 

disorders or schizophrenia and to ensure that they did not fulfil any exclusion criteria outlined 

below. 

Unaffected, unrelated control subjects with no personal or family history of BD were 

identified from the social contacts of the high-risk subjects and group matched for age, sex 

and pre-morbid intelligence estimated with the National Adult Reading Test (Nelson, 



1982). Comparison subjects were screened for Axis I disorders using the SCID. At baseline, 

exclusion criteria for all study groups included a personal history of MDD, mania or 

hypomania, psychosis, or any major neurological or psychiatric disorder, substance 

dependence, learning disability, head injury that included loss of consciousness and any 

contraindications to magnetic resonance imaging. 

Approximately 2 years after the initial baseline examination, all participants were invited for 

a follow up assessment. Written informed consent was acquired from all subjects and the 

study was approved by the Research Ethics Committee for Scotland. 

Clinical assessment 

Clinical assessments were conducted at the time of the first and second neuropsychological 

assessments. The mean interval between assessments was closely matched between the 

groups (p40.820), being 2.13 (S.D. 0.22), 2.15 (S.D. 0.22), 2.10 (S.D. 0.13) years for the HC, HR-

well and HR-MDD groups. The diagnostic status of consenting subjects not returning for a 

second assessment was determined through written contact with the National Health Service 

(NHS). Clinical interviews were conducted by experienced psychiatrists (A. M.M., J.E.S.). Based 

on the follow-up clinical examination or information from case notes, high-risk subjects were 

grouped into those who remained well (HR-well) and those who subsequently developed 

MDD (HR-MDD). At both assessments, current manic and depressive symptoms were rated 

using the Young Mania Rating Scale (YMRS; Young et al. 2000) and Hamilton Depression 

Rating Scale (HAM-D; Hamilton, 1960). 

Neuropsychological assessment 

Neuropsychological tasks examining a broad range of neurocognitive domains that have been 

previously found to be commonly impaired in mood disorders were administered at baseline 

and follow-up assessment by trained research assistants (A.M., A.P.). To assess attentional 

processing speed and working memory, the Digit Span of the Wechsler Adult Intelligence 

Scale (Wechsler, 1955) was administered. The number of correctly recalled strings of numbers 

during the forwards condition of the task was calculated to examine attentional processing 

speed. The number of correctly recalled strings of numbers during the backwards condition 

of the Digit Span served as an indicator of working memory performance. To assess verbal 

learning and memory, the California Verbal Learning Test (CVLT; Delis et al. 2000) was 

administered. Here, the number of words correctly recalled during trials 1–5 (CVLT learning) 

served as an index of verbal learning ability. The number of words recalled during the free 

short delay recall (CVLT short delay) and free long delay recall (CVLT long delay) were 

calculated to estimate verbal memory performance. 

Cognitive flexibility was examined using the Intra-/ Extradimensional Set-Shifting Task (IED) 

of the Cambridge Neuropsychological Test Automated Battery (CANTAB; Roberts et al. 1988). 

For the IED, the number of trials needed to complete task stage 1 and the number of trials 

needed to complete task stages 2, 5 and 7 were calculated to assess simple discrimination 

learning and reversal learning performance, respectively. Furthermore, the number of trials 

needed to complete task stage 6 and the number of trials needed to complete task stage 8 

were computed to extract intradimensional set-shifting and extradimensional set-shifting 

ability, respectively. The neuropsychological performance parameters extracted for analyses 

are presented in Table 1. 



Statistical analyses 

Statistical analyses of demographic and clinical data were conducted using one-way analysis 

of variance (ANOVA), χ2 tests or Kruskal–Wallis tests where appropriate using SPSS, version 

19 (http://www.spss. com; IBM Corp., USA). All statistical analyses regarding 

neuropsychological performance were computed in SPSS version 19, too, except for false 

discovery rate (FDR) corrections (Benjamini & Hochberg, 1995) which were conducted in R 

version 2.13.0 (http:// www.r-project.org; R Foundation for Statistical Computing, Austria), 

using the ‘p.adjust(BH)’ function of the ‘stats’ package. 

Given the longitudinal study design and the fact that the data consist of non-uniform numbers 

of repeated measurements, linear mixed-effects models were applied to investigate 

neuropsychological performance overtime.   

CVLT, California Verbal Learning Test; IED, Intra-/ Extradimensional Set-Shifting Task; SDL, simple 

discrimination learning; RL, reversal learning; IDS, intradimensional set-shifting; EDS, extradimensional set-

shifting. 



Linear mixed-effects modelling has several advantages over the commonly applied repeated 

measures ANOVA as case wise deletion of missing data is not necessary which allows the 

analysis of all available data. Moreover, it handles the correlation structures of repeated 

measurements nested within participants. In the linear mixed-effects model used, the 

intercept term is treated as a random effect that varies by individual so that intraindividual 

correlation among the neuropsychological performance measures of a particular individual is 

taken into account. The following independent variables were used as predictors of 

neurocognitive function: group; time (baseline v. follow-up assessment); group × time 

interaction. Age and sex served as covariates. 

Accordingly, significant group effects represent differences in neuropsychological 

performance between the groups across both time points. Time effects represent differences 

in neurocognitive function between baseline and follow-up examination. Group × time 

interactions represent differences in neuropsychological performance over time between 

groups. 

A statistical significance level of pFDR40.05 was chosen, fully corrected for multiple 

comparisons using the Benjamini and Hochberg FDR procedure (Benjamini & Hochberg, 

1995). For ease of comparison of our results with future findings, we report the original 

uncorrected p values (puncorrected) and whether or not they survived the FDR procedure. 

Wherever significant between-group differences or interaction effects were found, pairwise 

comparisons were performed between the three groups, for which p values were corrected 

according to Tukey’s ‘honestly significant difference’ (HSD) method (pHSD40.05). 

Wherever significant between-group differences were found in the longitudinal analysis, an 

additional analysis of covariance (ANCOVA) was conducted between the groups for 

neuropsychological performance at baseline, adjusted for age and sex. This analysis was 

intended to assess whether observed longitudinal neuropsychological impairments were also 

predictive at baseline for an onset of MDD. 

To assess the relationship between severity of depressive symptoms and neuropsychological 

performance, we calculated the Spearman correlation coefficient between the HAM-D total 

score and the neuropsychological performance parameters for each group. In each case, p 

values were corrected using the FDR procedure and considered significant when pFDR40.05.  

To examine potentially confounding effects of exposure to medication and relatedness of 

subjects on neuropsychological performance, we performed the following additional analyses 

for significant findings: We first repeated our analyses excluding medicated HR-MDD subjects 

(n = 4), followed by randomly excluding related subjects from the same pedigree (n = 2 HC; n 

= 17 HR-well; n = 2 HR-MDD). 

Ethical standards 

All procedures contributing to this work comply with the ethical standards of the relevant 

national and institutional committees on human experimentation and with the Helsinki 

Declaration of 1975, as revised in 2008. 

Results 

Sociodemographic and clinical characteristics  



In total, 114 high-risk individuals provided neuropsychological data along with clinical 

information at baseline, at which time point none of them had a clinical mood disorder. 

Overall, 20 high-risk participants received a diagnosis of MDD within the 2-year period, but 

one individual had to be excluded from baseline analysis since he did not complete the 

neuropsychological test battery. Two of the 114 high-risk individuals developed BD during the 

2-year follow-up period and were excluded from all analyses due to the small sample size. 

Accordingly, our analyses included 92 HR-well and 19 HR-MDD subjects at baseline. Of the HC 

individuals, 96 provided neuropsychological data along with clinical information at baseline. 

Three developed MDD in the follow-up period and were therefore excluded from all analyses, 

leading to a sample size of 93 HC subjects. At follow-up, 63 HR-well, 20 HR-MDD and 62 HC 

subjects provided suitable data. Four HR-MDD participants were prescribed antidepressant 

medication at follow-up. Three subjects were taking selective serotonin reuptake inhibitors 

(one fluoxetine, one citalopram, one sertraline) and one participant was on a tricyclic 

antidepressant (lofepramine). The remaining 16 HR-MDD subjects were unmedicated. 

There were no significant differences between the groups in terms of age, sex, handedness, 

verbal intelligence and YMRS sum score at any assessment point (see Table 2). There were, 

however, significant group differences at baseline (puncorrected40.007) and followup 

(puncorrected40.023) for clinical measures of depression from the HAM-D. At baseline, HR-

well and HR-MDD subjects had significantly higher depression scores (pHSD40.047 and 

pHSD40.003, respectively) than HC individuals, with no significant differences between the 

high-risk groups. At follow-up, HR-MDD subjects had higher depression scores than HC and 

HR-well individuals (pHSD40.013 and pHSD40.010, respectively) as expected, with no 

significant differences between HC and HR-well individuals. 

Neurocognitive performance over time 

Table 3 provides the results of the linear mixed-effects model analyses. A significant group 

effect was found for the long delay free recall of the CVLT (puncorrected- 40.003) and 

extradimensional set-shifting of the CANTAB (puncorrected40.004) that passed the FDR 

procedure (see Fig. 1). Post-hoc analyses revealed that HC subjects recalled significantly more 

words over both assessment time points during the long delay free recall than HR-well 

participants (pHSD40.002), with no significant differences between the HC and HR-MDD 

groups (pHSD40.136) or the HR-well and HR-MDD groups (pHSD40.485). For the 

extradimensional set shifting performance, post-hoc analyses showed that HC subjects had a 

significantly superior task performance across both time points as compared with HR-well 

(pHSD40.031) and HR-MDD subjects (pHSD40.004), with no significant difference between 

the two high-risk groups (pHSD40.077). These findings are in line with our hypothesis that 

subtle neurocognitive performance deficits related to familial risk of mood disorders are 

present before the onset of illness.  

Moreover, a significant effect of time was observed for the Digit Span forwards 

(puncorrected40.009), verbal learning (puncorrected40.003), free short delay recall 

(puncorrected40.006), simple discrimination learning (puncorrected40.003) and 

extradimensional set-shifting (puncorrected40.001) that passed the FDR procedure. For all 

neurocognitive measures except for simple discrimination learning, the effect was driven by 

all participant groups displaying enhanced performance during the follow-up assessment as 

compared with the baseline assessment. By contrast, the time effect for simple discrimination 



learning ability was in the opposite direction, with all participant groups showing worse 

performance at the follow-up appointment as compared with the baseline appointment. 

The analyses revealed no significant group × time interactions. This finding is in contrast to 

our hypothesis that neurocognitive performance parameters worsen progressively in the 2-

year period prior to illness onset in HR-MDD as compared with HR-well and HC individuals. 

Neurocognitive performance as a predictor of illness onset 

To assess whether the observed longitudinal group effects for the long delay free recall of the 

CVLT and extradimensional set-shifting were also predictive at baseline assessment for a 

subsequent onset of MDD, additional ANCOVAs were performed for these two 

neurocognitive measure at baseline (see online Supplementary Table S1). There was a 

significant group effect for extradimensional set-shifting (puncorrected40.021). Post-hoc 

tests indicated that the HR-MDD group (pHSD40.019) and the HR-well group (pHSD40.038) 

needed more trials to successfully complete the extradimensional set shifting stage of the IED 

as compared with HC participants, with no performance differences between the high-risk 

groups (pHSD40.232). There were no significant differences between the groups at baseline 

for performance during the long delay free recall of the CVLT (puncorrected4 0.231). 

Correlation analysis 

There were no significant FDR-adjusted correlations between neurocognitive performance 

measures and depressive symptom severity as measured with the HAM-D total score (see 

online Supplementary Table S2). 

All results remained significant after FDR correction



Analysis of potential confounders 

All results remained significant after FDR correction when randomly excluding related 

subjects. A significant group effect was found for the long delay free recall 

(puncorrected40.003) and extradimensional set-shifting (puncorrected40.003). Moreover, a 

significant effect of time was observed as in the original analysis for the Digit Span forwards 

(puncorrected40.012), verbal learning (puncorrected40.005), free short delay recall 

(puncorrected40.012), simple discrimination learning (puncorrected40.004) and 

extradimensional set-shifting (puncorrected40.001). 

When excluding medicated HR-MDD subjects from the analysis, the significant group effect 

for the long delay free recall (puncorrected40.003) remained significant after FDR correction. 

The group effect for extradimensional set-shifting (puncorrected40.035) remained significant 

at nominal level only. The significant effects of time for simple discrimination learning 

(puncorrected- 40.003) and extradimensional set-shifting (puncorrected40.001) remained 

significant after the FDR procedure. The observed time effects for the Digit Span forwards 



(puncorrected40.019), verbal learning (puncorrected40.029) and free short delay recall 

(puncorrected40.045) remained significant at a nominal level only. All results are shown in 

online Supplementary Tables S3 and S4. 

Discussion 

This is, to the best of our knowledge, the first prospective longitudinal study examining 

neurocognitive performance in high-risk of mood disorders individuals who were unaffected 

at initial assessment and either developed MDD or remained well during the follow up period. 

Reduced long delay verbal memory and extradimensional set-shifting performance across the 

two time points were found in the HR-well group relative to controls, with the HR-MDD group 

displaying decreased extradimensional set-shifting abilities as compared with the HC group 

only. An additional analysis of these two neurocognitive domains revealed no significant 

differences between the two high-risk groups at baseline so that they do not appear to be 

predictive for a subsequent onset of disease. 

In line with our hypothesis, the finding of reduced long delay verbal memory and 

extradimensional setshifting performance in the HR-well group across time suggests that 

neurocognitive deficits in these domains constitute a familial trait marker for vulnerability to 

mood disorders in close relatives of BD patients. It cannot be determined from the data if the 

decreased task performance is a consequence of shared genetic and/or environmental 

effects. Given that they are already present in early adulthood, they are unlikely to be of 

degenerative origin but probably represent disturbances of normal brain development 

predisposing to illness. Since no significant differences between the two high-risk groups and 

no group × time interaction emerged, the results do not speak towards reduced verbal  

abilities to be directly linked to an onset of MDD. These findings are in contrast to our 

hypothesis that neurocognitive performance parameters worsen progressively in the 2-year 

period prior to illness onset in HR-MDD as compared with HR-well and HC individuals. It 

should be highlighted, however, that visual inspection of extradimensional set-shifting 

performance (Fig. 1) shows that the HR-MDD group performed worse than the HR-well group 

across time. Accordingly, it cannot be ruled out that the small sample size of the HR-MDD 

group did not allow for detection of significant effects due to a lack of power. Indeed, a meta-

analysis by Bora et al. (2009) showed that effect sizes for cognitive flexibility in healthy 

relatives of BD patients were small. It appears therefore important to investigate 

neurocognition further in a larger sample size of high-risk subjects who go on to develop MDD. 

Our finding of decreased verbal memory and extradimensional set-shifting in relatives of BD 

patients are in line with findings from recent meta-analyses (Arts et al. 2008; Balanza-

Martinez et al. 2008; Bora et al. 2009). However, it should be noted that the analyses 

presented here do not confirm previous meta-analyses of attentional processing, verbal 

learning and working memory deficits in high-risk BD subjects (Arts et al. 2008; Balanza-

Martinez et al. 2008; Bora et al. 2009). As outlined previously, one potential reason for the 

absence of significant findings may be the large sample size that can only be obtained using 

meta-analyses to detect subtle differences in relatives in these domains (Arts et al. 2008). 

Another putative reason relates to the heterogeneity in neurocognitive tasks that have been 

employed to study these neurocognitive domains. 



From a neuroanatomical point of view, both short term and long-term storage and retrieval 

of verbal information have been linked to a bilateral frontal and parietal network of brain 

regions, including the posterior inferior frontal, anterior middle frontal, anterior cingulate and 

supramarginal gyrus (Andreasen et al. 1995; Henson et al. 2000; Dupont et al. 2002). 

Moreover, it has been shown that enhanced performance during the CVLT is associated with 

higher engagement of the right hippocampus and right frontal lobe (Johnson et al. 2001). 

Dysfunction of this network of brain regions may well be in line with studies suggesting that 

there may be diminished prefrontal modulation of various brain regions including the anterior 

cingulate that results in dysregulation of mood as evident in BD (Strakowski et al. 2005). 

While complex tasks involving extradimensional setshifting undoubtedly rely on the interplay 

of various brain regions including lateral prefrontal, orbital and parietal brain areas that may 

serve as a supervisory attentional network, the ventrolateral prefrontal cortex in particular 

has been hypothesized to be functionally specialized for extradimensional set-shifting 

(Hampshire & Owen, 2006). Reduced extradimensional set-shifting performance may thus be 

in line with a hypothesis of malfunction of the ventral brain system to be underlying the 

pathogenesis of BD which is thought to be essential for affective processing  and modulation, 

with the ventrolateral prefrontal cortex playing a central role (Phillips et al. 2003a, b). In line 

with this, Dias et al. (1996) showed that lesions in the ventrolateral prefrontal cortex of 

marmoset monkeys selectively impair extradimensional set-shifting performance as assessed 

with the same task that we employed in this study. 

Importantly, extradimensional set-shifting deficits have also been documented in obsessive–

compulsive disorder patients as well as their unaffected first-degree relatives (Chamberlain 

et al. 2007). Accordingly, extradimensional set-shifting deficits appear to form a 

neurocognitive endophenotype that is not specific to mood disorders such as BD and MDD 

but rather appears to be a risk marker for a variety of psychiatric conditions. The 

pathophysiological mechanisms underlying this overlap remain currently unknown. One 

potential explanation may be related to the function of the ventrolateral prefrontal cortex 

which is thought to be central to extradimensional set-shifting as described before 

(Hampshire & Owen, 2006). Ventral aspects of the prefrontal cortex have not only been 

associated with extradimensional set-shifting performance but also with emotional 

regulation (Phillips et al. 2003b). 

The finding of significant time effects for attentional processing speed as assessed with the 

Digit Span forwards, verbal learning, short delay verbal memory and extradimensional set-

shifting in the direction of superior performance during follow-up as compared with baseline 

assessment across groups most probably reflects the effects of repeated task presentation. 

These practice effects during neuropsychological examinations have been well documented 

in the literature (Bartels et al. 2010). There was also a significant effect of time for simple 

discrimination learning due to decreased task performance at follow-up as compared with 

baseline assessment across all groups. One plausible explanation for this conflicting result 

may be that participants remembered the task from the baseline assessment and already 

shifted their attention to the currently irrelevant stimulus as they were expecting the reversal 

of the rule to occur at follow-up examination. 



The strengths of this study are its longitudinal nature, the assessment of subjects prior to 

illness onset, the relatively young age of the participants and the comparatively large sample 

size of high-risk subjects and controls. In addition, all subjects underwent careful clinical 

assessment at both time points and the effects of medication and relatedness of subjects 

were ruled out. 

Nevertheless, some limitations need to be addressed. First, it remains unknown whether 

currently unaffected HR-well subjects may develop a mood disorder in the future. Second, 

previous longitudinal studies have reported that the majority of the high-risk subjects who 

developed BD themselves experienced depressive episodes years before conversion 

(Hillegers et al. 2005; Duffy, 2010) so that it appears likely that some of our HR-MDD subjects 

may develop BD in the future. The follow-up assessments of our study cohort will clarify if 

some of the HR-MDD participants will convert to BD and if some of our HR-well subjects go 

on to develop a mood disorder. Third, our study groups differed with respect to depression 

symptom severity at baseline. However, the median of the HAM-D total score was only 1 in 

the HR-MDD group, suggesting only subsyndromal depression symptoms. Moreover, our 

correlation analysis revealed no relationship between depression symptom severity and our 

neurocognitive performance measures. Therefore, it appears unlikely that general mood 

differences at baseline between the groups have influenced our findings. Fourth, as already 

highlighted previously, the relatively small HR-MDD sample size might have resulted in a lack 

of power to detect significant effects. Last, we only assessed neurocognitive function 2 years 

after the initial baseline assessment and can thus not draw any conclusions if neurocognitive 

function fluctuated in between the two assessment points. It should be highlighted, however, 

that the assessment of neurocognitive function using narrower time intervals would have 

probably caused extensive training effects which are already evident at the follow-up 

assessment and which would have probably hampered the interpretation of results. 

In summary, our findings suggest that reduced long delay verbal memory and 

extradimensional set shifting performance across time constitute familial trait markers for 

vulnerability to mood disorders in close relatives of BD patients. Both neurocognitive 

performance deficits appear to be relatively stable over a 2-year time period and do not 

appear to be linked to an onset of MDD. Accordingly, verbal memory and extradimensional 

set-shifting appear to be relatively state-independent, which supports their potential as 

putative endophenotypes for mood disorders. These findings add important information for 

the identification of neurocognitive endophenotypes for mood disorders. Future longitudinal 

studies should particularly examine the time course of neurocognitive performance before 

and after the onset of depression using longer time intervals and larger sample sizes. 
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