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The congruent evaporation temperature Tc of GaAs (001) is critical for many technological

processes and is fundamental to the control and stability of Ga droplets for quantum structure

fabrication. We apply the technique of local droplet etching (LDE) to measure Tc for

technologically important molecular beam epitaxy (MBE) grown GaAs (001). Below Tc, Ga

droplets deposited on the surface shrink and form nanoholes via LDE and thermal widening.

Above Tc, droplets grow by capturing excess Ga. From the transition between both regimes, we

determine Tc¼ 680 6 10 �C. Additionally, we find that the nanohole/droplet densities follow an

Arrhenius-type temperature dependence with an activation energy of 1.31 eV. The method probes

the stability of pre-existing droplets formed by deposition and so avoids the complication of nucle-

ation barriers and readily allows the measurement of Tc for technologically important planar GaAs

surfaces in any standard MBE system. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4934218]

The congruent evaporation temperature of GaAs (001)

is a fundamental property which has been extensively stud-

ied due to its scientific and technological importance.1–6

When GaAs evaporates into a vacuum (Langmuir evapora-

tion), the Ga and As fluxes leaving the surface are equal, pro-

vided that the temperature T is below the congruent

evaporation temperature Tc. Compound stoichiometry is

therefore preserved. However, above Tc, As preferentially

evaporates, leaving behind Ga-rich liquid droplets.7,8 Tc

plays a crucial role in the stability6 and motion9 of Ga drop-

lets, which are the basis of fabricating quantum structures

via the droplet epitaxy technique.10 It is therefore important

to measure Tc for technologically relevant molecular beam

epitaxy (MBE) grown material which is the purpose of this

letter.

Measurement of Tc for GaAs (001) has received signifi-

cant attention over the years.1–4 However, the reported val-

ues are widely spread. For instance, Tc¼ 690 �C has been

measured using mass spectrometry during evaporation from

a Knudsen cell,1 Tc¼ 660 �C using modulated beam mass

spectrometry in a MBE chamber,2 in situ low energy electron

microscopy under ultra-high vacuum (UHV) conditions3

scaled temperature measurements under As flux to the litera-

ture value of Tc¼ 625 �C,5 and Tc¼ 663 �C obtained with

mass spectrometry in UHV.4

These experiments have primarily focussed on rough

surfaces where the oxide has been thermally desorbed1–3 or

the surface cleaned by sputtering.4 Furthermore, in each

case, the samples were necessarily subjected to different

background As pressures due to the different experimental

arrangements employed. Recently, however, it has been

shown that Tc depends on both surface morphology11 and the

As flux impinging on the surface.3 This might explain dis-

crepancies in Tc measurements made on different sample

morphologies under different conditions and defines the

need to measure Tc for smooth MBE grown material which

is relevant to droplet epitaxy. In this letter, we utilise the vis-

ibility of nanoholes formed by local droplet etching (LDE)

to map the temperature regime where T < Tc. Above Tc,

droplets increase in size, and no nanoholes are present. This

allows us to estimate Tc from the transition between these

two regimes using atomic force microscopy (AFM).

Our samples are fabricated using solid-source MBE

with a valved cracker cell for As evaporation. First, the sur-

face oxide was thermally desorbed by slowly increasing the

temperature of the epi-ready (001) GaAs wafer up to the

oxide desorption temperature of 582 �C,12 as observed in

the reflection high energy electron diffraction (RHEED)

pattern. The samples are then annealed at T¼ 620 �C for

30 s followed by MBE deposition of 100 nm of GaAs at an

As flux corresponding to a beam effective pressure of

PAs¼ 1.5� 10�5 Torr. Subsequently, the surface was

annealed at 650 �C for 300 s under a minimal As back-

ground pressure of PAs < 10�7 Torr, which is reduced by

two orders of magnitude compared with typical GaAs MBE

growth conditions. This is therefore a technologically rele-

vant minimum characteristic pressure of a typical MBE sys-

tem in which an MBE prepared surface can be annealed for

droplet epitaxy or etching experiments. We note this is

nearly 100 times larger than the background pressure asso-

ciated with UHV imaging systems.3,9

A typical surface morphology obtained by this deposi-

tion procedure is shown in Fig. 1(a). The oxide desorbed sur-

face has been smoothed by MBE growth of a 100 nm GaAs

layer yielding a nearly atomically flat surface with low step-

density and areal route mean square roughness rRMS of only

0.23 nm measured over a 3� 3 lm2 area. Two monolayers

(MLs) of Ga was then deposited on the surface at 650 �C
with PAs < 10�7 Torr to form droplets in Volmer-Weber

growth mode,13 as shown in Fig. 1(b). The Ga fluxa)heyn@physnet.uni-hamburg.de
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corresponds to a GaAs growth rate of 0.8 ML/s, and the

Arsenic-cell valve and shutter as well as the main shutter in

front of the sample surface are closed to reduce PAs. Further

details of the droplet formation procedure are described in

Refs. 14 and 15.

To determine the congruent evaporation temperature,

samples containing surface droplets were annealed at a tem-

perature T for a time t under low As background pressure

conditions (PAs < 10�7 Torr). The same temperature is used

for Ga droplet material deposition and heating. Temperature

is determined using a thermocouple calibrated by the GaAs

oxide desorption temperature visible in RHEED and an

infrared pyrometer. Samples were subsequently quenched

and the surface morphology analysed using atomic force

microscopy (AFM) in tapping mode.

Our method for determining Tc depends on the thermo-

dynamics of Ga droplets and the GaAs surface. During con-

gruent evaporation, Ga and As evaporate at equal rates from

the surface so that the Ga surface chemical potential lGa

attains a steady-state value. With increasing temperature,

lGa will increase to make As and Ga evaporation rates equal

but eventually reaches the Ga liquidus value lL which

defines the upper limit T¼ Tc for congruent evaporation.

Above Tc, lGa > lL so that excess Ga can collect as droplets

FIG. 1. Initial surfaces used for the

evaporation experiments. (a) GaAs sur-

face after oxide desorption, 100 nm

GaAs deposition with MBE, and

annealing at 650 �C for 300 s. (b) GaAs

surface from (a) with Ga droplets after

deposition of 2.0 ML of Ga.

FIG. 2. GaAs surfaces with deposited

Ga droplets after annealing (a) at

T¼ 720 �C for t¼ 1800 s and (b) at

T¼ 650 �C for t¼ 1800 s. AFM micro-

graphs with different scales are shown

with associated linescans.
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which are assumed to remain close to liquidus composition

in equilibrium with the GaAs substrate. The droplets there-

fore act as sinks for surface Ga adatoms which pins lGa close

to lL. This prevents the increase in Ga so that above Tc, As

evaporates more rapidly than Ga and the Ga droplets grow.

Droplet growth due to excess Ga incorporation can be

seen in Fig. 2(a) where droplets have been annealed at

T¼ 720 �C for 1800 s. Here, the average droplet volume has

increased relative to that of the deposited droplets

(Fig. 1(b)), indicating that Tc < 720 �C. The AFM image in

Fig. 2(a) also reveals droplet traces with depth 6–16 nm indi-

cating droplet motion along [110] directions during anneal-

ing. This is consistent with a driving force for motion

depending on the disequilibrium between droplet and surface

when T 6¼ Tc.9 The dark depressions of depth 35 6 5 nm,

which are also visible in the image, are the signature of

asymmetric coalescence events where a droplet has co-

alesced with a neighbouring droplet, leaving behind a surface

etch pit.16 The areal roughness rRMS of free areas on this sur-

face is 0.37 nm, which is close to that of the initial MBE

grown GaAs layer.

Conversely, when T is below Tc, we have lGa < lL and

droplets will lose Ga to the surrounding surface and shrink.

During this process, the droplets locally etch the surface cre-

ating nanoholes.14–18 We note that for LDE to occur, there

must be some departure from liquidus but this is assumed

small. From a technological perspective, these structures are

of interest because they can be filled with a different material

from the substrate in order to create various types of novel

nanostructures.19–22 For the purpose of this paper, we can

utilise such holes as a signature of droplet shrinkage, which

can be detected by AFM to establish T < Tc. Nanohole for-

mation by droplet etching and thermal widening23 can be

observed in Fig. 2(b) for an annealing temperature

T¼ 650 �C for 1800 s. Droplets have therefore shrunk and

disappeared at this temperature indicating that Tc > 650 �C.

The absence of trails evident for T < Tc suggests that

LDE rapidly pins the droplets and restricts droplet motion.16

The areal roughness of free areas on this surface is rRMS

’ 0.27 nm.

To focus in on the congruent evaporation temperature

where lGa ¼ lL and the droplets neither shrink nor grow, we

have performed a series of annealing experiments to deter-

mine the boundary between droplet growth and shrinkage

(nanohole formation). This is summarised in Fig. 3 where we

determine Tc¼ 680 6 10 �C for MBE grown GaAs with

PAs < 10�7 Torr.

It should be noted that during droplet etching every de-

posited droplet is transformed into a nanohole.14 Thus, the

nanohole density at T < Tc is equal to the density of the ini-

tial deposited droplets and can be compared to the droplet

density at T > Tc. The continuous evolution of the hole and

droplet densities in Fig. 3 suggests that excess surface Ga is

captured by the deposited droplets and no additional droplet

nucleation takes place during heating above Tc. An analysis

of hole and droplet densities agrees with an Arrhenius-type

temperature dependence and yields an activation energy

EA¼ 1.31 eV (Fig. 3). Droplet formation is relatively compli-

cated involving adatom diffusion, droplet nucleation, and

growth.24 While we cannot identify the precise nature of the

physical process corresponding to the measured energy bar-

rier, its magnitude provides quantitative insight into the rate

limiting process as droplets are formed.

In summary, we have used LDE to measure the congru-

ent evaporation temperature of MBE grown GaAs (001) as

Tc¼ 680 6 10 �C. The measurement contrasts with previous

experiments undertaken on rough surfaces and applies to a

standard MBE system with a background As pressure PAs

< 10�7 Torr. The LDE method utilises the shrinkage/growth

of deposited Ga droplets and therefore avoids the possibility

of nucleation barriers influencing the measurement of Tc. It

can be applied to measure Tc for any MBE system to provide

an important reference point for the control and manipulation

of droplets for quantum structure fabrication. Since the

method relies on determining the transition between droplet

etching and droplet growth regimes, it should also be appli-

cable to similar systems such as InAs and GaP as well as

other material combinations.
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