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We consider a Markovian queueing system with N heterogeneous service facilities, each of which has multiple
servers available, linear holding costs, a fixed value of service and a first-come-first-serve queue discipline.
Customers arriving in the system can be either rejected or sent to one of the N facilities. Two different types of control
policies are considered, which we refer to as ‘selfishly optimal’ and ‘socially optimal’. We prove the equivalence of
two different Markov Decision Process formulations, and then show that classicalM/M/1 queue results from the early
literature on behavioural queueing theory can be generalized to multiple dimensions in an elegant way. In particular,
the state space of the continuous-timeMarkov process induced by a socially optimal policy is contained within that of
the selfishly optimal policy. We also show that this result holds when customers are divided into an arbitrary number
of heterogeneous classes, provided that the service rates remain non-discriminatory.
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1. Introduction

One of the most persistent themes in the literature on beha-
vioural queueing theory is the sub-optimality of greedy or
‘selfish’ customer behaviour in the context of overall social
welfare. In order to induce the most favourable scenario for
society as a whole, customers are typically required to deviate
in some way from the actions that they would choose if they
were motivated only by their own interests. This principle has
been observed in many of the classical queueing system
models, including M/M/1, GI/M/1, GI/M/s and others (see, eg,
Naor, 1969; Yechiali, 1971; Knudsen, 1972; Yechiali, 1972;
Littlechild, 1974; Edelson and Hildebrand, 1975; Lippman and
Stidham, 1977; Stidham, 1978). More recently, this theme has
been explored in applications including queues with setup and
closedown times (Sun et al, 2010), queues with server break-
downs and delayed repairs (Wang and Zhang, 2011), vacation
queues with partial information (Guo and Li, 2013), queues
with compartmented waiting space (Economou and Kanta,
2008) and routing in public services (Knight et al, 2012;
Knight and Harper, 2013). More generally, the implications
of selfish and social decision making have been studied in
various applications of economics and computer science;
Roughgarden’s (2005) monograph provides an overview of this
work and poses some open problems.

The first author to compare ‘self-optimization’ with ‘overall
optimization’ in a queueing setting was Naor (1969), whose
classical model consists of anM/M/1 system with linear waiting
costs and a fixed service value. The general queueing system
that we consider in this paper may be regarded as an extension
of Naor’s model to a higher-dimensional space. We consider a
system with N⩾ 2 heterogeneous service facilities in parallel,
each of which has its own queue and operates with a cost and
reward structure similar to that of Naor’s single-server model
(see Figure 1). In addition, we generalize the system by
assuming that each facility i may serve up to ci customers
simultaneously, so that we are essentially considering a network
of non-identicalM/M/ci queues.
The inspiration for our work is derived primarily from

public service settings in which customers may receive
service at any one of a number of different locations. For
example, in a healthcare setting, patients requiring a
particular operation procedure might choose between var-
ious different healthcare providers (or a choice might be
made on their behalf by a central authority). In this context,
the ith provider is able to treat up to ci patients at once, and
any further arrivals are required to join a waiting list, or
seek treatment elsewhere. A further application of this work
involves the queueing process at immigration control at
ports and/or airports. These queues are often centrally
controlled by an officer aiming to ensure that congestion is
reduced. Finally, computer data traffic provides yet another
application of this work. When transferring packets of data
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over a network, there arise instances at which choices of
available servers can have a major impact on the efficacy of
the entire network.
The queueing system that we consider in this work evolves

stochastically according to transitions which we assume are
governed by Markovian distributions. We address the problem
of finding an optimal routing and admission control policy and
model this as a Markov Decision Process (MDP) (see, eg,
Puterman, 1994) for a complete description and rigorous
theoretical treatment of MDPs). Stidham and Weber (1993)
provide an overview of MDP models for the control of
queueing networks. It is well-known that optimal policies for
the allocation of customers to parallel heterogeneous queues are
not easy to characterize; for this reason, heuristic approaches
have been developed which have achieved promising results in
applications (see Argon et al, 2009; Glazebrook et al, 2009). In
attempting to identify or approximate an optimal policy, one
aims to find a dynamic decision-making scheme which opti-
mizes the overall performance of the system with respect to a
given criterion; we refer to such a scheme as a socially optimal
solution to the optimization problem associated with the MDP.
In this paper our objective is to draw inferences about the
nature of a socially optimal solution from the structure of the
corresponding selfishly optimal solution. A selfishly optimal
solution may be regarded as a simple heuristic rule which
optimizes a customer’s immediate outcome without giving due
consideration to long-term consequences. The remaining sec-
tions in this paper are organized as follows:

● In Section 2 we provide anMDP formulation of our queueing
system and define all of the input parameters. We also offer an
alternative formulation and show that it is equivalent.

● In Section 3 we define ‘selfishly optimal’ and ‘socially
optimal’ policies in more detail. We then show that our
model satisfies certain conditions which imply the existence
of a stationary socially optimal policy, and prove an
important relationship between the structures of the selfishly
and socially optimal policies.

● In Section 4 we draw comparisons between the results of
Section 3 and known results for systems of unobservable
queues.

● In Section 5 we show that the results of Section 3 hold when
customers are divided into an arbitrary number of hetero-
geneous classes. These classes are heterogeneous with
respect to demand rates, holding costs and service values,
but not service rates.

● Finally, in Section 6, we discuss the results of this paper and
possible avenues for future research.

2. Model formulation

We consider a queueing system with N service facilities.
Customers arrive from a single demand node according to a
stationary Poisson process with demand rate λ> 0. Let
facility i (for i= 1, 2,…, N) have ci identical service chan-
nels, a linear holding cost βi> 0 per customer per unit time,
and a fixed value of service (or fixed reward) αi> 0. Service
times at any server of facility i are assumed to be exponen-
tially distributed with mean μi

− 1. We assume αi⩾ βi/μi for
each facility i in order to avoid degenerate cases where the
reward for service fails to compensate for the expected costs
accrued during a service time. When a customer arrives, they
can proceed to one of the N facilities or, alternatively, exit
from the system without receiving service (referred to as
balking). Thus, there are N + 1 possible decisions that can be
made upon a customer’s arrival. The decision chosen is
assumed to be irrevocable; we do not allow reneging or
jockeying between queues. The queue discipline at each
facility is first-come-first-served (FCFS). A diagrammatic
representation of the system is given in Figure 1.
We define S :¼ fx ¼ ðx1; x2; :::xNÞ : x1; x2; :::; xN 2 N0g to

be the state space of our system, where xi (the ith component of
the vector x) is the number of customers present (including
those in service and those waiting in the queue) at facility i.
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Figure 1 A diagrammatic representation of the queueing system.
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It is assumed that the system state is always known and can be
used to inform decision making.
No binding assumption is made in this paper as to whether

decisions are made by individual customers themselves, or
whether actions are chosen on their behalf by a central
controller. It is natural to suppose that selfish decision making
occurs in the former case, whereas socially optimal behaviour
requires some form of central control, and the discussion in this
paper will tend to be consistent with this viewpoint; however,
the results in this paper remain valid under alternative perspec-
tives (eg, socially optimal behaviour might arise from selfless
co-operation between customers).
We do not assume any upper bound on the value of λ in terms

of the other parameters. However, the types of policies that we
consider in this work always induce system stability. For
convenience, we will use the notation xi+ to denote the state
which is identical to x except that one extra customer is present
at facility i; similarly, when xi⩾ 1, we use xi− to denote the state
with one fewer customer present at facility i. That is:

xi + :¼ x + ei

xi - :¼ x - ei

where ei is the ith vector in the standard orthonormal basis
of RN :
Let us discretize the system by defining:

Δ ¼ λ +
XN
i¼1

ciμi

 ! - 1

and considering an MDP which evolves in discrete time steps
of size Δ. Using the well-known technique of uniformization,
usually attributed to Lippman (1975) (see also Serfozo, 1979),
we can analyse the system within a discrete-time framework,
in which arrivals and service completions occur only at the
‘jump times’ of the discretized process. At any time step, the
probability that a customer arrives is λΔ, and the probability
that a service completes at facility i is either ciμiΔ or xiμiΔ,
depending on whether or not all of the channels at facility i are
in use. At each time step, an action a∈ {0, 1, 2,…,N} is chosen
which represents the destination of any customer who arrives at
that particular step; if a= 0 then the customer balks from the
system, and if a= i (for i∈ {1, 2,…,N}) then the customer
joins facility i. This leads to the following definition for the
transition probabilities pxy(a) for transferring from state x to y
in a single discrete time step, given that action a is chosen:

pxy að Þ ¼

λΔ; y ¼ xi + and a ¼ i≠ 0;

min xi; cið ÞμiΔ; y ¼ xi - ;

1 - I a≠ 0ð ÞλΔ +
PN
i¼1

min xi; cið ÞμiΔ
� �

; y ¼ x;

0; otherwise

8>>>>>>><
>>>>>>>:

Here we have used I to denote the indicator function. Since
the units of time can always be re-scaled, we may assumeΔ= 1

without loss of generality, and we therefore suppress Δ in the
remainder of this work. Figure 2 illustrates these transition
probabilities diagrammatically.
If the system is in some state x∈ S at a particular time step,

the sum of the holding costs incurred is Σi=1
N βixi; meanwhile,

services are completing at an overall rate Σi=1
N min(xi, ci)μi and

the value of service at facility i is αi. This leads to the following
definition for the single-step expected net reward r(x) asso-
ciated with being in state x at a particular time step:

r xð Þ :¼
XN
i¼1

min xi; cið Þαiμi - βixið Þ (1)

The system may be controlled by means of a policy which
determines, for each n 2 N0; the action an to be chosen after
n time steps. In this paper we focus on stationary non-
randomized policies, under which the action an is chosen
deterministically according to the accompanying system state
xn, and is not dependent on other factors (such as the history of
past states and actions, or the time index n). In Section 3 it will
be shown that it is always possible to find a policy of the
aforementioned type which achieves optimality in our system.
Let xn and an be, respectively, the state of the system and
accompanying action chosen after n time steps, and let us use
θ to denote the stationary policy being followed. The long-run
average net reward gθ(x, r) per time step, given an initial state
x0= x and reward function r, is given by:

gθ x; rð Þ ¼ lim
t!1 t - 1Eθ

Xt - 1
n¼0

r xnð Þ j x0 ¼ x

" #
(2)

where the dependence of xn on the previous state xn− 1 and
action an− 1 is implicit. Before proceeding, we will show that an
alternative definition of the reward function r yields the same
long-run average reward (assuming that the same policy is
followed). If a customer joins facility i under system state x,
then their individual expected net reward, taking into account
the expected waiting time, holding cost βi and value of service
αi, is given by αi− βi/μi if they begin service immediately, and

Figure 2 Transition probabilities (marked next to arrows) from an
arbitrary state x∈ S.
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αi− βi(xi+1)/(ciμi) otherwise. Given that the probability
of a customer arriving at any time step is λ, this suggests the
possibility of a new reward function r̂; which (unlike the
function r defined in (1)) depends on the chosen action a in
addition to the state x:

r̂ x; að Þ ¼
λ αi -

βi
μi

� �
; a ¼ i≠ 0; xi<ci;

λ αi -
βi xi + 1ð Þ

ciμi

� �
; a ¼ i≠ 0; xi ⩾ ci;

0; a ¼ 0

8>>>><
>>>>:

(3)

The two reward functions in (1) and (3) look very different at
first sight, but both formulations are entirely logical. The
original definition in (1) is based on the real-time holding costs
and rewards accrued during the system’s evolution, while the
alternative formulation in (3) is based on an unbiased estimate
of each individual customer’s contribution to the aggregate net
reward, made at the time of their entry to the system. We will
henceforth refer to the function r in (1) as the real-time reward
function, and the function r̂ in (3) as the anticipatory reward
function. Our first result proves algebraically that these two
reward formulations are equivalent.

Lemma 1 For any stationary policy θ we have:

gθ x; rð Þ ¼ gθ x; r̂ð Þ (4)

where r and r̂ are defined as in (1) and (3) respectively.
That is, the long-run average net reward under θ is the
same under either reward formulation.

Proof We assume the existence of a stationary distribution
{πθ (x)}x∈S, where πθ (x) is the steady-state probability of
being in state x∈ S under the stationary policy θ and
∑x∈ S πθ(x)= 1. If no such distribution exists, then the
system is unstable under θ and both quantities in (4) are
infinite. Under steady-state conditions, we can write:

gθ x; rð Þ ¼
X
x2S

πθ xð Þr xð Þ;

gθ x; r̂ð Þ ¼
X
x2S

πθ xð Þr̂ x; θ xð Þð Þ

noting, as before, that r̂ (unlike r) has a dependence on the
action θ(x) associated with x. For each x∈ S, the steady-
state probability πθ(x) is the same under either reward
formulation since we are considering a fixed stationary
policy. Our objective is to show:

X
x2S

πθ xð Þr xð Þ ¼
X
x2S

πθ xð Þr̂ x; θ xð Þð Þ

We begin by partitioning the state space S into disjoint
subsets. For each facility i∈ {1, 2,…,N}, let Si denote the
(possibly empty) set of states at which the action chosen

under the policy θ is to join i. Then Si= Si− ∪ Si+ , where:

Si - :¼ x 2 S : θ xð Þ ¼ i and xi < cif g

Si + :¼ x 2 S : θ xð Þ ¼ i and xi ⩾ cif g

We also let S0 denote the set of states at which the action
chosen under θ is to balk. Now let gθ (x, r) and gθðx; r̂Þ be
divided into ‘positive’ and ‘negative’ constituents in the
following way:

g+
θ x; rð Þ :¼ P

x2S

PN
i¼1

πθ xð Þmin xi; cið Þαiμi;

g-
θ x; rð Þ :¼ -

P
x2S

PN
i¼1

πθ xð Þβixi;

g+
θ x; r̂ð Þ :¼ λ

PN
i¼1

P
x2Si

πθ xð Þαi;

g-
θ x; r̂ð Þ :¼ - λ

PN
i¼1

P
x2Si-

πθ xð Þ βiμi +
P

x2Si+
πθ xð Þ βiðxi + 1Þciμi

 !

By referring to (1) and (3), it can be checked that gθ(x,r)=
gθ
+(x, r) + gθ

−(x, r) and gθðx; r̂Þ ¼ g +
θ ðx; r̂Þ + g -

θ ðx; r̂Þ:
It will be sufficient to show that g +

θ ðx; rÞ ¼ g+
θ ðx; r̂Þ and

g -
θ ðx; rÞ ¼ g-

θ ðx; r̂Þ. Let Si,k⊆ Si (for k= 0, 1, 2,…) be the
set of states at which the action chosen under θ is to join
facility i, given that there are k customers present there.
That is:

Si;k :¼ fx 2 S : θðxÞ ¼ i and xi ¼ kg

Using the detailed balance equations for ergodic Markov
chains under steady-state conditions (see, eg, Cinlar, 1975)
we may assert that for every facility i and k⩾ 0, the total
flow from all states x∈ S with xi= k up to states with
xi= k+1 must equal the total flow from states with xi=
k+1 down to xi= k. Hence:

λ
X
x2Si;k

πθ xð Þ ¼
X

x2S
xi¼k + 1

πθ xð Þminðxi; ciÞμi (5)

Summing over all k 2 N0, we obtain:

λ
X
x2Si

πθ xð Þ ¼
X
x2S

πθ xð Þmin xi; cið Þμi (6)

which holds for i∈ {1, 2,…,N}. The physical interpreta-
tion of (6) is that, under steady-state conditions, the rate at
which customers join facility i is equal to the rate at which
service completions occur at i. Multiplying both sides of
(6) by αi and summing over i∈ {1, 2,…,N}, we have:

λ
XN
i¼1

X
x2Si

πθ xð Þαi ¼
XN
i¼1

X
x2S

πθ xð Þmin xi; cið Þαiμi
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which states that g +
θ ðx; r̂Þ ¼ g +

θ ðx; rÞ as required.
It remains for us to show that g -

θ ðx; r̂Þ ¼ g -
θ ðx; rÞ:

We proceed as follows: in (5) (which holds for all k 2 N0

and i∈ {1, 2, ..,N}), put k= ci to obtain:

λ
X
x2Si;ci

πθ xð Þ ¼
X

x2S
xi¼ci + 1

πθ xð Þciμi (7)

Suppose we multiply both sides of (7) by ci+1. Since the
sum on the left-hand side is over x 2 Si;ci and the sum on
the right-hand side is over states with xi= ci+1, this is
equivalent to multiplying each summand on the left-hand
side by xi+1 and each summand on the right-hand side by
xi. In addition, multiplying both sides by βi/(ciμi) yields:

λ
X
x2Si;ci

πθ xð Þ βi xi + 1ð Þ
ciμi

¼
X

x2S
xi¼ci + 1

πθ xð Þβixi (8)

We can write similar expressions with k= ci+1, ci+2 and
so on. Recall that

S1
k¼ci

Si;k ¼ Si + by definition. Hence, by
summing over all k⩾ ci in (8) we obtain:

λ
X
x2Si +

πθ xð Þ βi xi + 1ð Þ
ciμi

¼
X

x2S
xi⩾ci + 1

πθ xð Þβixi (9)

Note also that multiplying both sides of (5) by βi/μi
and summing over all k< ci (and recalling that

Sci - 1
k¼0

Si;k ¼ Si - ) gives:

λ
X
x2Si -

πθ xð Þ βi
μi

¼
X
x2S
xi⩽ ci

πθ xð Þβixi (10)

Hence, from (9) and (10) we have:

λ
X
x2Si -

πθ xð Þ βi
μi

+
X
x2Si+

πθ xð Þ βi xi + 1ð Þ
ciμi

 !
¼
X
x2S

πθ xð Þβixi

Summing over i∈ {1, 2,…,N} gives g -
θ ðx; r̂Þ ¼ g-

θ ðx; rÞ
as required. We have already shown that g +

θ ðx; r̂Þ ¼
g+
θ ðx; rÞ; so this completes the proof that gθðx; r̂Þ ¼
gθðx; rÞ. □

It follows from Lemma 1 that any policy which is optimal
among stationary policies under one reward formulation (either
r or r̂) is likewise optimal under the other formulation, with the
same long-run average reward. The interchangeability of these
two reward formulations will assist us in proving later results.

3. Containment of socially optimal policies

Let us define what we will refer to as ‘selfishly optimal’ and
‘socially optimal’ policies. The terminology used in this paper

is slightly incongruous to that which is typically found in the
literature on MDPs, and the main reason for this is that we wish
to draw analogies with the work of Naor (1969). The policies
which we describe as ‘socially optimal’ are those which satisfy
the well-known Bellman optimality equations of dynamic
programming (introduced by Bellman, 1957), and would be
referred to by many authors simply as ‘optimal’ policies; on the
other hand, the ‘selfishly optimal’ policies that we will describe
could alternatively be referred to as ‘greedy’ or ‘myopic’
policies.
We begin with selfishly optimal policies. Suppose that each

customer arriving in the system is allowed to make his or her
own decision (as opposed to being directed by a central
decision-maker). It is assumed throughout this work that the
queueing system is fully observable and therefore the customer
is able to observe the exact state of the system, including the
length of each queue and the occupancy of each facility (the
case of unobservable queues is a separate problem; see, eg, Bell
and Stidham, 1983; Haviv and Roughgarden, 2007; Shone et al,
2013). Under this scenario, a customer may calculate their
expected net reward (taking into account the expected cost of
waiting and the value of service) at each facility based on the
number of customers present there using a formula similar to
(3); if they act selfishly, they will simply choose the option
which maximizes this expected net reward. If the congestion
level of the system is such that all of these expected net rewards
are negative, we assume that the (selfish) customer’s decision is
to balk. This definition of selfish behaviour generalizes Naor’s
simple decision rule for deciding whether to join or balk in an
M/M/1 system. We note that since the FCFS queue discipline is
assumed at each facility, a selfish customer’s behaviour
depends only on the existing state, and is not influenced by the
knowledge that other customers act selfishly.
Taking advantage of the ‘anticipatory’ reward formulation in

(3), we can define a selfishly optimal policy ~θ by:

~θðxÞ 2 arg max
a2f0;1;2;:::;Ng

r̂ x; að Þ x 2 Sð Þ

In the case of ties, we assume that the customer joins the
facility with the smallest index i; however, balking is never
chosen over joining facility i when r̂ðx; iÞ ¼ 0: This is in
keeping with Naor’s convention.
A socially optimal policy, denoted θ*, is any policy which

maximizes the long-run average net reward defined in (2). The
optimality equations for our system, derived from the classical
Bellman optimality equations for average reward problems
(see, eg, Puterman, 1994) and assuming the real-time reward
formulation in (1), may be expressed as:

g* + h xð Þ ¼ r xð Þ + λmax
a

h xa +ð Þf g +
XN
i¼1

min xi; cið Þμih xi -
� �

+ 1 - λ -
XN
i¼1

min xi; cið Þμi
 !

h xð Þ x 2 Sð Þ ð11Þ
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where h(x) is a relative value function and g* is the optimal
long-run average net reward. (We adopt the notational conven-
tion that x0+ = x to deal with the case where balking is optimal
in (11).) Under the anticipatory reward formulation in (3) these
optimality equations are similar except that r(x) is replaced by
r̂ðx; aÞ, which must obviously be included within the maximi-
zation operator. Indeed, by adopting r̂ðx; aÞ as our reward
formulation we may observe the fundamental difference
between the selfishly and socially optimal policies: the selfish
policy simply maximizes the immediate reward r̂ðx; aÞ, without
taking into account the extra term h(xa+ ); this is why it may be
called a myopic policy. The physical interpretation is that under
the selfish policy, customers consider only the outcome to
themselves, without taking into account the implications for
future customers, who may suffer undesirable consequences as
a result of their behaviour.
In this work we assume an infinite time horizon, but we use

the method of successive approximations (see Ross, 1983) to
treat the infinite horizon problem as the limiting case of a finite
horizon problem. We therefore state the finite horizon optim-
ality equations corresponding to the infinite horizon equations
in (11):

v*n + 1 xð Þ ¼ r xð Þ + λmax
a

v*n xa +ð Þ� 	
+
XN
i¼1

min xi; cið Þμiv*n xi -
� �

+ 1 - λ -
XN
i¼1

min xi; cið Þμi
 !

v*n xð Þ x 2 S; n⩾ 0ð Þ ð12Þ

where v*n(x) is the maximal expected total reward from a
problem with n time steps, given an initial state x∈ S (we define
v*0(x)= 0 for all x∈ S).

Remark It has already been shown (Lemma 1) that, in an
infinite-horizon problem, a stationary policy earns the same
long-run average reward under either of the reward
formulations r and r̂. However, this equivalence is lost
when we consider finite-horizon problems. Indeed, given a
finite horizon n, a policy which is optimal under reward
function r may perform extremely poorly under r̂: This is
especially likely to be the case if n is small.

Given that selfish customers refuse to choose facility i if
r̂ðx; iÞ< 0; it follows that for i= 1, 2,…,N there exists an upper
threshold bi which represents the greatest possible number of
customers at i under steady-state conditions. The value bi can be

derived from (3) as:

bi :¼ ciαiμi
βi


 �

where b � c denotes the integer part. Two important ways in

which the selfishly optimal policy ~θ differs from a socially
optimal policy are as follows:

1. The decisions made under ~θ are entirely independent of the
demand rate λ.

2. The threshold bi (representing the steady-state maximum
occupancy at i) is independent of the parameters for the other
facilities j≠i.

Because of the thresholds bi, a selfishly optimal policy ~θ
induces an ergodic Markov chain defined on a finite set of

states ~S � S: Formally, we have:

~S :¼ x1; x2; :::; xNð Þ : xi ⩽ bi for all if g (13)

We will refer to ~S as the selfishly optimal state space.
Note that, due to the convention that the facility with the
smallest index i is chosen in the case of a tie between the
expected net rewards at two or more facilities, the selfishly

optimal policy ~θ is unique in any given problem. Changing
the ordering of the facilities (and thereby the tie-breaking

rules) affects the policy ~θ; but does not alter the boundaries
of ~S:
Let Sθ* denote the set of positive recurrent states belonging to

the Markov chain induced by a socially optimal policy θ*
satisfying the optimality equations in (11). The main result to be
proved in this section is that Sθ* is not only finite, but must also

be contained in ~S.

Example 1 Consider a system with demand rate λ= 12 and
only two facilities. The first facility has two channels
available (c1= 2) and a service rate μ1= 5, holding cost
β1= 3 and fixed reward α1= 1. The parameters for the
second facility are c2= 2, μ2= 1, β2= 3 and α2= 3, so it
offers a higher reward but a slower service rate. We can
uniformize the system by taking Δ= 1/24, so that

(λ+∑iciμi)Δ= 1. The selfishly optimal state space ~S for
this system consists of 12 states. Figure 3 shows the

Selfish Policy Social Policy

Figure 3 Selfishly and socially optimal policies for Example 1.
Note: For each state x ¼ ðx1; x2Þ 2 ~S, the corresponding decisions under the respective policies are shown.
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decisions taken at these states under the selfishly optimal

policy ~θ; and also the corresponding decisions taken under
a socially optimal policy θ*.
By comparing the tables in Figure 3 we may observe the

differences between the policies ~θ and θ*. At the states
(2, 0), (2, 1), (2, 2) and (3, 1), the socially optimal policy

θ* deviates from the selfish policy ~θ (incidentally, the sub-
optimality of the selfish policy is about 22%). More striking,
however, is the fact that under the socially optimal policy,

some of the states in ~S are actually unattainable under
steady-state conditions. Indeed, the recurrent state space Sθ*
consists of only six states (enclosed by the bold rectangle in

the figure). Thus, for this system, Sθ* � ~S and in this
section we aim to prove that this result holds in general.

It is known that for a general MDP defined on an infinite set
of states, an average reward optimal policy need not exist, and
that even if such a policy exists, it may be non-stationary. In
1983, Ross provides counter-examples to demonstrate both of
these facts. Thus, it is desirable to establish the existence of an
optimal stationary policy before aiming to examine its proper-
ties. Our approach in this section is based on the results of
Sennott (1989), who has established sufficient conditions for
the existence of an average reward optimal stationary policy for
anMDP defined on an infinite state space (this problem has also
been addressed by other authors; see, eg, Zijm, 1985; Cavazos-
Cadena, 1989). We will proceed to show that Sennott’s
conditions are satisfied for our system, and then deduce that
for any socially optimal policy θ*, Sθ* must be contained in ~S:
Sennott’s approach is based on the theory of discounted reward
problems, in which a reward earned n steps into the future is
discounted by a factor γn, where 0< γ< 1. A policy θ is said to
be γ-discount optimal if it maximizes the total expected
discounted reward (abbreviated henceforth as TEDR) over an
infinite time horizon, defined (for reward function r̂) as:

vθ;γ x; r̂ð Þ ¼ Eθ

X1
n¼0

γnr̂ xn; anð Þ j x0 ¼ x

" #
x 2 Sð Þ (14)

Let θ*γ denote an optimal policy under discount rate γ, and let
v*γ ðx; r̂Þ be the corresponding TEDR, so that v*γ ðx; r̂Þ ¼
supθvθ;γðx; r̂Þ: It is known that v*γ ðx; r̂Þ satisfies the discount

optimality equations (see Puterman, 1994):

v*γ x; r̂ð Þ ¼ max
a

r̂ x; að Þ + γ
X
y2S

pxy að Þv*γ y; r̂ð Þ
( )

x 2 Sð Þ

We proceed to show that in our system, the discount optimal
value function v*γ satisfies conditions which are sufficient for
the existence of an average reward optimal stationary policy.
In the proofs of the upcoming results, we adopt the anticipatory
reward function r̂ defined in (3).

Lemma 2 For every state x∈ S and discount rate 0< γ< 1:

v*γ x; r̂ð Þ⩾ 0

Proof Let θ0 be the trivial policy of balking under every
state. Each reward r̂ðxn; θ0ðxnÞÞ is zero and hence
vθ0;γðx; r̂Þ ¼ 0. Since v*γðx; r̂Þ ¼ supθvθ;γðx; r̂Þ by defini-

tion, the result follows. □

The next result establishes an important monotonicity prop-
erty of the function v*γðx; r̂Þ which, incidentally, does not hold
for its counterpart v*γ ðx; rÞ under the real-time reward

formulation (1).

Lemma 3 For every state x∈ S, discount rate 0< γ< 1 and
facility i∈ {1, 2,…,N}, we have:

v*γ xi + ; r̂
� �

⩽ v*γ x; r̂ð Þ

Proof We rely on the finite horizon optimality equations (for
discounted problems) and prove the result using induction
on the number of stages. The finite horizon optimality
equations are:

v*γ;n + 1 x; r̂ð Þ ¼ max
a

r̂ x; að Þ + γλv*γ;n xa + ; r̂ð Þ
n o

+ γ
XN
i¼1

min xi; cið Þμiv*γ;n xi - ; r̂
� �"

+ 1 - λ -
XN
i¼1

min xi; cið Þμi
 !

v*γ;n x; r̂ð Þ
#

x 2 S; n⩾ 0ð Þ ð15Þ

It is sufficient to show that for each state x∈ S, discount
rate 0< γ< 1, facility i∈ {1, 2,…,N} and integer n⩾ 0:

v*γ;n xi + ; r̂
� �

⩽ v*γ;n x; r̂ð Þ (16)

We define v*γ;0ðx; r̂Þ ¼ 0 for all x∈ S. In order to show

that (16) holds when n= 1, we need to show, for i=
1, 2,…,N:

max
a

r̂ xi + ; a
� �

⩽max
b

r̂ x; bð Þ ðx 2 SÞ

Indeed, let a* 2 argmaxa r̂ðxi + ; aÞ. It follows from the
definition of r̂ðx; aÞ in (3) that r̂ðxi + ; aÞ⩽ r̂ðx; aÞ for any
fixed action a and facility i. Hence:

max
a

r̂ xi + ; a
� � ¼ r̂ xi + ; a*

� �
⩽ r̂ x; a*
� �

⩽max
b

r̂ x; bð Þ
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Now let us assume that (16) also holds for n= k,
where k⩾ 1 is arbitrary, and aim to show
v*γ;k + 1ðxi + ; r̂Þ⩽v*γ;k + 1ðx; r̂Þ. We have:

v*γ;k + 1 xi + ; r̂ð Þ - v*γ;k + 1 x; r̂ð Þ

¼ max
a

r̂ xi + ; a
� �

+ γλv*γ;k xi +
� �a +

; r̂
� �n o

- max
b

r̂ x; bð Þ + γλv*γ;k xb + ; r̂
� �n o

+ γ
XN
j¼1

min xj; cj
� �

μj v*γ;k xi +
� �j -

; r̂
� �

- v*γ;k xj - ; r̂
� �� �

+ γ 1 - λ -
XN
j¼1

min xj; cj
� �

μj

 !
v*γ;k xi + ; r̂
� �

- v*γ;k x; r̂ð Þ
� �

- γI xi<cið Þμi v*γ;k xi + ; r̂
� �

- v*γ;k x; r̂ð Þ
� �

ð17Þ

Note that the indicator term in (17) arises because, under
state xi+ , there may (or may not) be one extra service
in progress at facility i, depending on whether or not
xi< ci. Recall that we assume λ+Σi= 1

N ciμi= 1, hence
(1− λ−Σj= 1

N min(xj,cj)μj− I(xi< ci)μi) must always be non-
negative. We also have v*γ;kðxi + ; r̂Þ⩽v*γ;kðx; r̂Þ and

v*γ;kððxi + Þj - ; r̂Þ⩽v*γ;kðxj - ; r̂Þ (for j= 1, 2,…,N) using our

inductive assumption of monotonicity at stage k. Hence, in
order to verify that (17) is non-positive, it suffices to show:

max
a

r̂ xi + ; a
� �

+ γλv*γ;k xi +
� �a +

; r̂
� �n o

⩽max
b

r̂ x; bð Þ + γλv*γ;k xb + ; r̂
� �n o

ð18Þ

Here, let a* be a maximizing action on the left-hand side,
that is

a* 2 arg max
a

r̂ xi + ; a
� �

+ γλv*γ;k xi +
� �a +

; r̂
� �n o

By the monotonicity of r̂ and our inductive assumption, we
have:

r̂ xi + ; a*
� �

⩽r̂ x; a*
� �

;

v*γ;k xa
* +

� �i +
; r̂

� �
⩽v*γ;k xa

* + ; r̂
� �

Hence the left-hand side of (18) is bounded above by

r̂ðx; a*Þ + γλv*γ;kðxa
* + ; r̂Þ, which in turn is bounded above

by maxb r̂ðx; bÞ + γλv*γ;kðxb + ; r̂Þ
n o

. This shows that

v*γ;k + 1ðxi + ; r̂Þ⩽v*γ;k + 1ðx; r̂Þ, which completes the inductive

proof that (16) holds for all n 2 N. Using the method of

‘successive approximations’, Ross (1983) proves that
limn!1v*γ;nðx; r̂Þ ¼ v*γðx; r̂Þ for all x∈ S, and so we con-

clude that v*γðxi + ; r̂Þ⩽v*γ ðx; r̂Þ as required. □

We require another lemma to establish a state-dependent
lower bound for the relative value function h.

Lemma 4 For every x∈ S, there exists a value M(x)> 0 such
that, for every discount rate 0< γ< 1:

v*γ x; r̂ð Þ - v*γ 0; r̂ð Þ⩾ -M xð Þ
where 0 denotes the ‘empty system’ state, (0, 0,…, 0).

Proof Let αmax=maxi∈ {1, 2,…, N}αi denote the maximum
value of service across all facilities. For each discount
rate 0< γ< 1 and policy θ, let us define a new function
wθ,γ by:

wθ;γðx; r̂Þ :¼ Eθ

X1
n¼0

γn r̂ xn; anð Þ - λαmaxð Þ j x0 ¼ x

" #

x 2 Sð Þ

By comparison with the definition of vθ,γ in (14), we
have:

wθ;γ x; r̂ð Þ ¼ vθ;γ x; r̂ð Þ - λαmax

1 - γ

and since the subtraction of a constant from each single-
step reward does not affect our optimality criterion, we
also have:

w*
γ x; r̂ð Þ ¼ v*γ x; r̂ð Þ - λαmax

1 - γ
(19)

where w*
γ ðx; r̂Þ ¼ supθwθ;γðx; r̂Þ. By the definition of r̂ in

(3) it can be checked that r̂ðx; aÞ⩽λαmax for all state-
action pairs (x, a). Therefore w*

γðx; r̂Þ is a sum of non-

positive terms and must be non-positive itself. Further-
more, w*γ is the TEDR function for a new MDP which is
identical to our original MDP except that we replace each
r̂ðxn; anÞ (for n= 0, 1, 2,…) by r̂ðxn; anÞ - λαmax. Thus,
w*γ satisfies:

w*
γðx; r̂Þ ¼max

a
r̂ðx; aÞ - λαmax + γ

X
y2S

pxyðaÞw*
γ ðy; r̂Þ

( )

ðx 2 SÞ ð20Þ

Consider x= 0i+ , for an arbitrary i∈ {1, 2,…,N}. Using
(20) we have, for all actions a:

w*
γ 0i + ; r̂
� �

⩾r̂ 0i + ; a
� �

- λαmax + γ
X
y2S

p0i + ;y að Þw*
γ y; r̂ð Þ
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In particular, if the action a= 0 is to balk then r̂ð0i + ; aÞ ¼
0 and the only possible transitions are to states 0 or 0i+ .
Hence:

w*
γ 0i + ; r̂
� �

⩾ - λαmax + γμiw
*
γ 0; r̂ð Þ + γ 1 - μið Þw*

γ 0i + ; r̂
� �

Then, since γ⩽ 1 and by the non-positivity of w*
γð0; r̂Þ and

w*
γð0i + ; r̂Þ:
w*
γ 0i + ; r̂
� �

⩾ - λαmax + μiw
*
γ 0; r̂ð Þ + 1 - μið Þw*

γ 0i + ; r̂
� �

(21)

From (19) and (21) we derive:

v*γ 0i + ; r̂
� �

- v*γ 0; r̂ð Þ ¼ w*
γ 0i + ; r̂
� �

-w*
γ 0; r̂ð Þ⩾ -

λαmax

μi
(22)

so we have a lower bound for v*γ ð0i + ; r̂Þ - v*γ ð0; r̂Þ which
is independent of γ as required. We need to show that
for each x∈ S, a lower bound can be found for
v*γðx; r̂Þ - v*γð0; r̂Þ. Let us form a hypothesis as follows:

for each state x∈ S, there exists a value ψ(x) such that, for
all γ:

v*γ x; r̂ð Þ - v*γ 0; r̂ð Þ⩾ - λαmaxψðxÞ (23)

We have ψ(0)= 0 and, from (22), ψ(0i+ )= μi
− 1 for i= 1,-

2,…,N. Let us aim to show that (23) holds for an
arbitrary x≠0, under the assumption that for all j∈ {1, 2,-
…,N} with xj⩾ 1, (23) holds for the state xj−. Using
similar steps to those used for 0i + earlier, we have:

w*
γ x; r̂ð Þ⩾ - λαmax + γ

XN
j¼1

min xj; cj
� �

μjw
*
γ xj - ; r̂
� �

+ γ 1 -
XN
j¼1

min xj; cj
� �

μj

 !
w*
γ x; r̂ð Þ

and hence:

XN
j¼1

min xj; cj
� �

μj w*
γ x; r̂ð Þ -w*

γ xj - ; r̂
� �� �

⩾ - λαmax

Then, using our inductive assumption that, for each
j∈ {1,2,…,N}, w*

γ ðxj - ; r̂Þ -w*
γ ð0; r̂Þ is bounded below

by− λαmaxψ(x
j− ):

w*
γ x; r̂ð Þ -w*

γ 0; r̂ð Þ⩾ - λαmax
1 +
PN

j¼1 min xj; cj
� �

μjψ xj -ð ÞPN
j¼1 min xj; cj

� �
μj

 !

(24)

Using (19), we conclude that the right-hand side of (24) is
also a lower bound for v*γðxj - ; r̂Þ - v*γ ð0; r̂Þ. Therefore we
can define:

ψ xð Þ :¼ 1 +
PN

j¼1 min xj; cj
� �

μjψ xj -ð ÞPN
j¼1 min xj; cj

� �
μj

with the result that v*γ ðx; r̂Þ - v*γ ð0; r̂Þ is bounded below by

an expression which depends only on the system input
parameters λ, αmax and the service rates μ1, μ2,…, μN as
required. Using an inductive procedure, we can derive a
lower bound of this form for every x∈ S. □

Lemma 5 For all states x∈S and actions a∈ {0, 1, 2,…,N}:X
y2S

pxyðaÞMðyÞ<1

Where−M(y) is the lower bound for v*γðy; r̂Þ - v*γ ð0; r̂Þ
derived in Lemma 4.

Proof This is immediate from Lemma 4 since, for any x∈ S,
the number of ‘neighbouring’ states y that can be reached
via a single transition from x is finite (regardless of the
action chosen), and eachM(y) is finite. □

The results presented in this section thus far confirm that our
system satisfies Sennott’s (1989) conditions for the existence of
an average reward optimal stationary policy. We now state this
as a theorem.

Theorem 1 Consider a sequence of discount rates (γn)
converging to 1, with ðθ*γnÞ the associated sequence of

discount-optimal stationary policies. There exists a subse-
quence (ηn) of (γn) such that the limit

θ* :¼ lim
n!1 θ*ηn

exists, and the stationary policy θ* is average reward
optimal. Furthermore, the policy θ* yields an average
reward g* ¼ limγ"1ð1 - γÞv*γðxÞ which, together with a

function h(x), satisfies the optimality equations:

g* + hðxÞ ¼ max
a

r̂ðx; aÞ +
X
y2S

pxyðaÞhðyÞ
( )

ðx 2 SÞ

ð25Þ

Proof We refer to Sennott (1989), who presents four assump-
tions which (together) are sufficient for the existence of an
average reward optimal stationary policy in an MDP with
an infinite state space. From Lemma 2 we have v*γ ðx; r̂Þ⩾0
for every x∈ S and γ∈ (0,1), so a stronger version of
Assumption 1 in Sennott (1989) holds. From Lemma 3 we
have v*γ ðxi + ; r̂Þ⩽v*γ ðx; r̂Þ for all x, i∈ {1, 2,…,N} and γ,
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which implies v*γ ðx; r̂Þ - v*γ ð0; r̂Þ⩽0 using an inductive

argument. Therefore Assumption 2 in Sennott (1989) also
holds. Assumptions 3 and 3* in Sennott (1989) follow
directly from Lemmas 4 and 5. □

Our next result establishes the containment property of
socially optimal policies which we alluded to earlier in this
section.

Theorem 2 There exists a stationary policy θ* which satisfies
the average reward optimality equations and which
induces an ergodic Markov chain on some finite set Sθ* of

states contained in ~S.

Informally, we say ‘the socially optimal state space is
contained within the selfishly optimal state space’.

Proof From the definition of ~S in (13) we note that it is
sufficient to show that for some stationary optimal policy
θ*, the action θ*(x) prescribed under state x∈ S is never to
join facility i when xi= bi (i= 1, 2,…,N). The policy θ*
described in Theorem 1 is obtained as a limit of the
discount-optimal stationary policies ðθ*ηnÞ. It follows that

for every state x∈ S there exists an integer U(x) such that
θ*ðxÞ ¼ θ*ηnðxÞ for all n⩾U(x), and therefore it suffices to

show that for any discount rate 0< γ< 1, the discount-
optimal policy θ*γ forbids joining facility i under states x
with xi= bi. For a contradiction, suppose xi= bi and
θ*γ(x)= 1 for some state x, facility i and discount rate γ.
Then the discount optimality equations in (15) imply:

r̂ x; ið Þ + γλv*γ xi + ; r̂
� �

⩾γλv*γ x; r̂ð Þ (26)

that is, joining i is preferable to balking at state x. Given
that xi= bi, we have r̂ðx; iÞ<0 and therefore (26) implies
v*γðxi + ; r̂Þ>v*γ ðx; r̂Þ, but this contradicts the result of

Lemma 3. □

Having shown that some socially optimal policy exists which
induces a Markov chain with a positive recurrent class of states
contained in ~S, we proceed to show that, in fact, any socially
optimal policy has this property.

Lemma 6 Any stationary policy θ* which maximizes the
long-run average reward defined in (2) induces an ergodic

Markov chain on some set of states contained in ~S.

Proof Suppose, for a contradiction, that we have a stationary
policy θ which maximizes (2) and θðxÞ ¼ i for some state
x 2 S with xi ¼ bi and πθðxÞ>0. We proceed using a
sample path argument. We start two processes at an
arbitrary state x0∈ S and apply policy θ to the first process,
which follows path x(t). Let (x(t), t) denote the state-time
of the system. Since θ is stationary, we may abbreviate
θ(x(t), t) to θ(x(t)). We also apply a non-stationary policy
ϕ to the second process, which follows path y(t). The policy
ϕ operates as follows: it chooses the same actions as θ at all

times, unless the first process is in state x, in which case ϕ
chooses to balk instead of joining facility i. In notation:

ϕðyðtÞ; tÞ ¼
θ x tð Þð Þ if x tð Þ≠ x;

0 otherwise

(

Initially, x(0)=y(0)=x0. Let t1 denote the first time, during
the system’s evolution, that the first process is in state x. At
this point the process earns a negative reward r̂ðx; iÞ by
choosing action i; meanwhile, the second process earns a
reward of zero by choosing to balk. An arrival may or may
not occur at t1; if it does, the first process acquires an extra
customer, and if not, both processes remain in state x (but
nevertheless, due to the reward formulation in (3), the
second process earns a greater reward at time t1). Let u1
denote the time of the next visit (after time t1) of the first
process to the regenerative state 0. In the interval (t1, u1], the
first process may acquire a certain number of extra custo-
mers at facility i (possibly more than one) in comparison to
the second process due to further arrivals occurring under
state x. Throughout the interval (t1, u1], x(t) dominates y(t)
in the sense that every facility has at least as many customers
present under x(t) as under y(t). Consequently, at time u1 or
earlier, the processes are coupled again. At each of the time
epochs t1 + 1, t1 + 2,…, u1 we note that the reward earned by
the first process cannot possibly exceed the reward earned
by the second process; this is because the presence of extra
customers at facility i results in either a smaller reward (if
facility i is chosen) or an equal reward (if a different facility,
or balking, is chosen). Therefore the total reward earned by
the first process up until time u1 is smaller than that earned
by the second process.
Using similar arguments, we can say that if t2 denotes
the time of the next visit (after u1) of the first process to
state x, the second process must earn a greater total
reward than the first process in the interval (t2, u2], where
u2 is the time of the next visit (after t2) of the first process
to state 0. Given that πθðxÞ>0, the state x is visited
infinitely often. Hence, by repetition of this argument,
it is easy to see that θ is strictly inferior to the non-
stationary policy ϕ in terms of expected long-run
average reward. We know (by Theorem 1) that an optimal
stationary policy exists, so there must be another station-
ary policy which is superior to θ. □

Theorem 1 may be regarded as a generalisation of a famous
result which is due to Naor. In 1969, Naor shows (in the context
of a singleM/M/1 queue) that the selfishly optimal and socially
optimal strategies are both threshold strategies, with thresholds
ns and no, respectively, and that no⩽ ns. This is the M/M/1
version of the containment property which we have proved for
multiple, heterogeneous facilities (each with multiple service
channels allowed). We also note that Theorem 1 assures us of
being able to find a socially optimal policy by searching within
the class of stationary policies which remain ‘contained’ in the
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finite set ~S. This means that we can apply the established
techniques of dynamic programming (eg, value iteration, policy
improvement) by restricting the state space so that it only

includes states in ~S; any policy that would take us outside ~S can
be ignored, since we know that such a policy would be sub-
optimal. For example, when implementing value iteration, we

loop over all states in ~S on each iteration and simply restrict the
set of actions so that joining facility i is not allowed at any state
x with xi= bi. This ‘capping’ technique enables us to avoid
the use of alternative techniques which have been proposed in
the literature for searching for optimal policies on infinite state
spaces (see, eg, the method of ‘approximating sequences’
proposed by Sennott (1991), or Ha’s (1997) method of
approximating the limiting behaviour of the value function).

4. Comparison with unobservable systems

The results proved in Section 3 bear certain analogies to results
which may be proved for systems of unobservable queues, in
which routing decisions are made independently of the state of
the system. In this section we briefly discuss the case of
unobservable queues, in order to draw comparisons with the
observable case. Comparisons between selfishly and socially
optimal policies in unobservable queueing systems have
already received considerable attention in the literature (see,
eg, Littlechild, 1974; Edelson and Hildebrand, 1975; Bell and
Stidham, 1983; Haviv and Roughgarden, 2007; Knight and
Harper, 2013).
Consider a multiple-facility queueing system with a formula-

tion identical to that given in Section 2, but with the added
stipulation that the action an chosen at time step n must be
selected independently of the system state xn. In effect, we
assume that the system state is hidden from the decision-maker.
Furthermore, the decision-maker lacks the ability to ‘guess’ the
state of the system based on the waiting times of customers who
have already passed through the system, and must simply
assign customers to facilities according to a vector of routing
probabilities (p1, p2,…, pN) which remains constant over time.
We assume that Σi= 1

N pi⩽ 1, where pi is the probability of
routing a customer to facility i. Hence, p0≔1−Σi= 1

N pi is the
probability that a customer will be rejected.
Naturally, the arrival process at facility i∈ {1, 2,…,N}

under a randomized admission policy is a Poisson process with
demand rate λi:= λpi, where (as before) λ is the demand rate for
the system as a whole. Let gi(λi) denote the expected average
net reward per unit time at facility i, given that it operates with a
Poisson arrival rate λi. Then:

gi λið Þ ¼ λiαi - βiLi λið Þ (27)

where Li(λi) is the expected number of customers present at i
under demand rate λi. In this context, a socially optimal
policy is a vector (λ*1, λ*2,…, λ*N) which maximizes the sum
Σi= 1
N gi(λ*i). On the other hand, a selfishly optimal policy is a

vector ð~λ1;~λ2; :::;~λNÞ which causes the system to remain in

equilibrium, in the sense that no self-interested customer has an
incentive to deviate from the randomized policy in question (see
Bell and Stidham, 1983, p 834). More specifically, individual
customers make decisions according to a probability distribu-

tion f~pig (where λ~pi ¼ ~λi for each i∈ {1, 2,…,N}) and, in
order for equilibrium to be maintained, it is necessary for all of
the actions chosen with non-zero probability to yield the same
expected net reward.
First of all, it is worth making the point that no theoretical

upper bound exists for the number of customers who may be
present at any individual facility i under a Poisson demand rate
λi which is independent of the system state (unless, of course,
λi= 0). Indeed, standard results for M/M/c queues (see Gross
and Harris, 1998, p 69) imply that the steady-state probability of
n customers being present at a facility with a positive demand
rate is positive for each n⩾ 0. As such, the positive recurrent
state spaces under the selfishly and socially optimal policies are
both unbounded in the unobservable case, and there is no
prospect of being able to prove a ‘containment’ result similar to
that of Theorem 2. However, it is straightforward to prove an
alternative result involving the total effective admission rates
under the two policies which is consistent with the general
theme of socially optimal policies generating ‘less busy’
systems than their selfish counterparts.
Figure 4 illustrates the general shapes of the expected net

reward for an individual customer (henceforth denoted wi(λi))
and the expected long-run average reward gi(λi) as functions of
the Poisson queue-joining rate λi at an individual facility i.
Naturally, wi(λi) is a strictly decreasing function of λi and,
assuming that the demand rate for the system is sufficiently
large, the joining rate at facility i under an equilibrium (selfish)

policy is the unique value ~λi which equates wi(λi) to zero.
Indeed, if this were not the case, then a selfish customer would
deviate from the equilibrium policy by choosing to join the
queue with probability 1 (if wi(λi) was positive) or balk with
probability 1 (if wi(λi) was negative). On the other hand, it is
known from the queueing theory literature (see Grassmann,
1983; Lee and Cohen, 1983) that the expected queue length
Li(λi) is a strictly convex function of λi, and hence the function
gi(λi) in (27) is strictly concave in λi. Under a socially optimal
policy, the joining rate at facility i is the unique value λ*i which
maximizes gi(λi) (assuming, once again, that the demand rate

Demand
rate at i 

Individual's expected net reward

Expected long-run average net reward

0
*λi

~
λi

Figure 4 The general shapes of wi(λi) and gi(λi) as functions of λi.
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for the system as a whole is large enough to permit this flow of
traffic at facility i).
It is worth noting that the theory of non-atomic routing

games (see Roughgarden, 2005) assures us that the equili-
brium and socially optimal policies both exist and are unique.
This allows a simple argument to be formed in order to show
that the sum of the joining rates at the individual facilities
under a socially optimal policy (let us denote this by η*)
cannot possibly exceed the corresponding sum under an
equilibrium policy (denoted ~ηÞ. Indeed, it is clear that if the
system demand rate λ is sufficiently large, then the selfishly
and socially optimal joining rates at any individual facility i

will attain their ‘ideal’ values ~λi and λ*i (as depicted in
Figure 4), respectively, and so in this case it follows trivially
that η*⩽ ~η. On the other hand, suppose that λ is not large
enough to permit wi(λi)= 0 for all facilities i. In this case,
wi(λi) must be strictly positive for some facility i, and
therefore the probability of a customer balking under an
equilibrium strategy is zero (since balking is unfavourable in
comparison to joining facility i). Hence, one has ~η ¼ λ in this
case, and since η* is also bounded above by λ the result η*⩽ ~η
follows.
The conclusion of this section is that, while the ‘containment’

property of observable systems proved in Section 3 does not
have an exact analogue in the unobservable case, the general
principle that selfish customers create ‘busier’ systems still
persists (albeit in a slightly different guise).

5. Heterogeneous customers

An advantage of the anticipatory reward formulation in (3)
is that it enables the results from Section 3 to be extended to
a scenario involving heterogeneous customers without a
re-description of the state space S being required. Suppose
we have M⩾ 2 customer classes, and customers of the
ith class arrive in the system via their own independent
Poisson process with demand rate λi (i= 1, 2, ..,M). In this
case we assume, without loss of generality, that ∑iλi +
∑jcjμj= 1. For convenience we will define λ:=∑iλi as the
total demand rate. We allow the holding costs and fixed
rewards in our model (but not the service rates) to depend
on these customer classes; that is, the fixed reward for
serving a customer of class i at facility j is now αij, and the
holding cost (per unit time) is βij. Various physical inter-
pretations of this model are possible; for example, suppose
we have a healthcare system in which patients arrive from
various different geographical locations. Then the para-
meters αij and βij may be configured according to the
distance of service provider j from region i (among other
factors), so that patients’ commuting costs are taken into
account.
Suppose we wanted to use a ‘real-time’ reward formulation,

similar to (1), for the reward r(⋅) in our extended model. Then
the system state would need to include information about the

classes of customers in service at each facility, and also the total
number of customers of each class waiting in each queue.
However, using an ‘anticipatory’ reward formulation, we can
allow the state space representation to be the same as before;
that is, S ¼ fx ¼ ðx1; x2; :::; xNÞ : x1; x2; :::; xN 2 N0g, where
xj is simply the number of customers present (irrespective of
class) at facility j, for j= 1, 2,…,N. On the other hand, the set
of actions A available at each state x∈ S has a more complicated
representation. We now define A as follows:

A ¼ a ¼ a1; a2; :::; aMð Þ : a1; a2; :::; aM 2 0; 1; :::;Nf gf g
That is, the action a is a vector which prescribes, for each

customer class i∈ {1, 2,…,M}, the destination ai of any
customer of class i who arrives at the present epoch of time,
with the system having been uniformized so that it evolves
in discrete time steps of size Δ= (∑iλi+∑jcjμj)

− 1. The reward
r̂ðx; aÞ for taking action a∈A at state x is then:

r̂ x; að Þ ¼
XM
i¼1

r̂i x; aið Þ

where ai is the i
th component of a, and:

r̂iðx; aiÞ :¼
λi αij -

βij
μj

� �
; ai ¼ j≠ 0; xj<cj

λi αij -
βijðxj + 1Þ

cjμj

� �
; ai ¼ j≠ 0; xj⩾cj

0; ai ¼ 0

8>>>><
>>>>:

for i= 1, 2…,M. We note that expanding the action set in
this manner is not the only possible way of formulating our
new model (with heterogeneous customers) as an MDP, but it
is the natural extension of the formulation adopted in the
previous section. An alternative approach would be to
augment the state space so that information about the class
of the most recent customer to arrive is included in the state
description; actions would then need to be chosen only at
arrival epochs, and these actions would simply be integers in
the set {0, 1,…, N} as opposed to vectors (see Puterman,
1994, p 568) for an example involving admission control in
an M/M/1 queue). By keeping the state space S unchanged,
however, we are able to show that the results of Section 3 can
be generalized very easily.
Under our new formulation, the discount optimality equa-

tions (using the anticipatory reward functions r̂i) are as
follows:

v*γ x; r̂ð Þ ¼
XM
i¼1

max
ai2A

r̂i x; aið Þ + γλiv*γ xai + ; r̂ð Þ
n o

+ γ
XN
j¼1

min xj; cj
� �

μjv
*
γ xj - ; r̂
� �"

+ 1 - λ -
XN
j¼1

min xj; cj
� �

μj

 !
v*γ x; r̂ð Þ

#
ð28Þ

Note that the maximization in (28) can be carried
out in a componentwise fashion, so that instead of having
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to find the maximizer among all vectors a in A (of which
the total number is (N+1)M), we can simply find, for each
customer class i∈M, the ‘marginal’ action ai which maximizes
r̂iðx; aiÞ + γλiv*γ ðxai + ; r̂Þ. This can be exploited in the imple-

mentation of dynamic programming algorithms (eg, value
iteration), so that computation times increase only in proportion
to the number of customer classesM.
As before, we define the selfishly optimal policy to be the

policy under which the action chosen for each customer arriving
in the system is the action which maximizes r̂iðx; aiÞ (obviously
this action now depends on the customer class). A selfish
customer of class i accepts service at facility j if and only if,
prior to joining, the number xj of customers at facility j, satisfies
xj⩽ bij, where:

bij :¼
cjαijμj
βij

$ %

Consequently, under steady-state conditions, the number of
customers present at facility j is bounded above by maxibij.
It follows that we now have the following definition for the

selfishly optimal state space ~S:

~S :¼ ðx1; x2; :::; xNÞ : xj⩽max
i

bij; j ¼ 1; 2; :::;N

� 

Example 2 We modify Example 1 from earlier so that there
are now two classes of customer, with demand rates
λ1= 12 and λ2= 10 respectively. The first class has the
same cost and reward parameters as in Example 1; that is,
β11= 3, α11= 1 (for the first facility) and β12= 3, α12= 3
(for the second facility). The second class of customer
has steeper holding costs and a much greater value of
service at the second facility: β21= β22= 5, α21= 1,
α22= 12. Both facilities have two service channels and the
service rates μ1= 5 and μ2= 1 remain independent of
customer class. We take Δ= (∑iλi+∑jcjμj)

− 1= 1/34 to
uniformize the system.
We have previously seen that customers of the first class
acting selfishly will cause the system state to remain
within a set of 12 states under steady-state conditions,
with x1⩽ 3 and x2⩽ 2 at all times. The incorporation
of a second class of customer has no effect on the
selfish decisions made by the first class of customer, so
(as shown in Figure 5) these decisions remain the same
as shown in Figure 3 previously. The first table in
Figure 5 shows that selfish customers of the second
class are unwilling to join the first facility when x1⩾ 2;
however, under certain states they will choose to join
the second facility when x2= 3 (but never when x2> 3).

As a result, the selfish state space ~S is expanded from 12
states to 20.
Figure 5 shows that the new selfish state space ~S may be
represented diagrammatically as the smallest rectangle

which encompasses both ~S1 and ~S2, where (for i= 1, 2)
we have defined:

~Si :¼ x1; x2; :::; xNð Þ : xj⩽bij; j ¼ 1; 2; :::;N
� 	

It is somewhat interesting to observe that ~S includes states in

the ‘intersection of complements’ ~Sc1\~Sc2. These states would
not occur (under steady-state conditions) if the system
operated with only a single class of customer of either type,
but they do occur with both customer types present.
The policy θ* depicted in the second table in Figure 5 has
been obtained using value iteration, and illustrates the
containment property for systems with heterogeneous cus-
tomer classes. It may easily be seen that the socially optimal
state space Sθ* consists of only 9 states; under steady-state
conditions, the system will remain within this smaller class
of states. We also observe that, unlike the selfish decisions,
the socially optimal decisions for a particular class of
customer are affected by the decisions made by the other
class of customer (as can be seen, in the case of the first
customer class, by direct comparison with Figure 3 from
Example 1). Indeed, under θ*, customers of the first class
never join Facility 2, and customers of the second class
never join Facility 1.

It can be verified that the results of Lemmas 2–5, Theorems
1–2 and Lemma 6 apply to the model with heterogeneous
customers, with only small modifications required to the proofs.
For example, in Lemma 3 we prove the inequality
v*γðxj + ; r̂Þ⩽v*γ ðx; r̂Þ by showing that, for all classes i∈ {1, 2,

…,M} and facilities j∈ {1, 2,…,N}, we have:

max
ai

r̂i xj + ; ai
� �

+ γλiv*γ;k xj +
� �ai + ; r̂� �n o

⩽max
bi

r̂i x; bið Þ + γλiv*γ;k xbi + ; r̂
� �n o

for all k 2 N0. In Lemma 4, we can define αmax=maxi,jαij and
establish a lower bound for w*

γ ð0j + ; r̂Þ -w*
γ ð0; r̂Þ similar to (22)

Selfish Policy

Social Policy

Figure 5 Selfishly and socially optimal policies for Example 2.
Note: At each state x= (x1, x2), the corresponding decision vector
a= (a1, a2) is shown.
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by writing r̂ð0j + ; 0Þ and p0j + ;yð0Þ instead of r̂ð0j + ; 0Þ and

p0j+ ;yð0Þ respectively (so that the action at state 0j+ is the zero
vector 0, ie all customer classes balk); the rest of the inductive
proof goes through using similar adjustments. Theorem 2 holds
because if Sθ* was not contained in ~S, then the discount
optimality equations would imply, for some i∈ {1, 2,…,M}
and j∈ {1, 2,…,N}:

r̂i x; jð Þ + γλiv*γ xj + ; r̂
� �

⩾γλiv*γ x; r̂ð Þ
with r̂iðx; jÞ<0, thus contradicting the result of (the modified)
Lemma 3. The sample path argument in Lemma 6 can be applied
to a customer of any class, with only trivial adjustments needed.

6. Conclusions

The principle that selfish users create busier systems is well-
observed in the literature on behavioural queueing theory.
While this principle is interesting in itself, we also believe that
it has the potential to be utilized much more widely in
applications. As we have demonstrated, the search for a socially
optimal policy may be greatly simplified by reducing the search
space according to the bounds of the corresponding ‘selfish’
policy, so that the methods of dynamic programming can be
more easily employed.
Our results in this paper hold for an arbitrary number of

facilities N, and (in addition) the results in Section 5 hold for an
arbitrary number of customer classesM. This lack of restriction
makes the results powerful from a theoretical point of view, but
we must also point out that in practice, the ‘curse of dimension-
ality’ often prohibits the exact computation of optimal policies
in large-scale systems, even when the state space can be
assumed finite. This problem could be partially addressed if
certain structural properties (eg monotonicity properties) of
socially optimal policies could be proved with the same level
of generality as our ‘containment’ results. It can be shown
trivially that selfish policies are monotonic in various respects
(eg, balking at the state x implies balking at state xj+ , for any
facility j) and, indeed, the optimality of monotone policies is a
popular theme in the literature, although in our experience these
properties are usually not trivial to prove for an arbitrary
number of facilities. In future work, we intend to investigate
how the search for socially optimal policies can be further
simplified by exploiting their theoretical structure.
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