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Abstract 

Context: Mucus represents a critical obstacle for self-emulsifying drug delivery systems 

(SEDDS) targeting the epithelial membrane site. 

Objective: The aim of the study was the development of a novel SEDDS to overcome the 

mucus barrier. 

Materials and methods: Two novel conjugates N-dodecyl-4-mercaptobutanimidamide 

(thiobutylamidine-dodecylamine, TBA-D) and 2-mercapto-N-octylacetamide (thioglycolic 

acid-octylamine, TGA-O) were synthesized, incorporated into SEDDS and analysed for 

stability, cytotoxicity and physico-chemical characteristics using dynamic light scattering. 

Mucus interaction studies were performed using in vitro assays based on multiple particle 

tracking, rotational silicone tubes and rheology. 

Results and discussion: TBA-D was synthesized using dodecylamine and iminothiolane as 

thiol precursor (yield=55±5%). TGA-O was obtained via crosslinking of octylamine with 

SATA ((2,5-dioxopyrrolidin-1-yl) 2-acetylsulfanylacetate) (yield=70±6%). The chemical 

structure of target compounds was confirmed via NMR analysis. The thiol-conjugates were 

incorporated in an amount of 3% (m/m) into SEDDS (Cremophor EL 30%, Capmul MCM 

30%, Captex 355 30% and propylene glycole 10%), namely thiolated SEDDS leading to a 

droplet size around 50 nm and zeta potential close to 0 mV. Thiolated SEDDS with an 

effective diffusion coefficient ‹Deff› of up to 0.871 ± 0.122 cm2s-1x10-9 were obtained. 

Rotational silicone studies show increased permeation of the thiolated SEDDS A in 

comparison to unthiolated control. Rheological studies confirmed the mucolytic activity of the 

thiol-conjugates which differed only by 3 % from DTT (dithiothreitol) serving as positive 

control. 

Conclusion: Low molecular weight thiol-conjugates were identified to improve the mucus 

permeation, leading to highly efficient mucus permeating SEDDS, which were superior to 

conventional SEDDS and might thus be a new carrier for lipophilic drug delivery. 
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1. Introduction 

Mucus protects the various mucosal surfaces of the body and represents a major hindrance for 

particulate drug delivery to the underlying mucosal epithelium [1–3]. The mucus hydrogel 

forms a steric barrier and promotes clearance of pathogens, e.g. viruses, trapped within the 

mucus network network [2,4,5]. Similarly drug carriers that are incapable of diffusing fast 

enough through the mucus are held within the adhesive network and degraded prior to their 

delivery to the target absorptive epithelial membrane site [1–4]. Permeating the mucus barrier 

is a major requirement for successful drug targeting to mucosal tissues. Several strategies to 

overcome the mucus barrier were recently summarized by Dünnhaupt [6]. Nano particulate 

systems, bearing enzymatically active compounds or systems possessing a ‘slippery surface’, 

as well as ‘zeta-potential changing systems’ are described in literature[7–10]. Among various 

approaches, SEDDS emerged to have beneficial features to overcome the mucosal barrier. As 

shown by Friedl et al. [11], the composition of SEDDS has great impact on their mucus 

permeating properties. SEDDS consist of an oily phase, containing oil(s), a surfactant(s) and 

co-surfactant that emulsifies spontaneously upon mixing in an aqueous environment [12,13]. 

The resulting droplets are typically in the nanometer scale (< 100 nm) favorable for the 

diffusion through mucus as the mucus is reported to express 50% of its pores below a size of 

200 nm [14,15]. As the dynamic properties of mucus remain a considerable challenge for drug 

targeting, novel mucus permeating systems are needed. 

The aim of the study was the development of a novel mucus permeating system based around 

thiolated SEDDS. The strategy was to equip a nano-emulsion with thiol-moieties that are 

likely to interact with mucus, leading to a destruction of disulfide bonds of mucus network. 

This could be realized by the design of a series of novel thiolated emulsifiers based on 

modified fatty acid derivatives, which structure identification was assessed via NMR. Ease of 

incorporation of the novel highly lipophilic thiol-conjugates into SEDDS led to stable 
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thiolated oil-in-water nano-emulsions which were spontaneously formed upon dilution in 

aqueous environment, namely thiolated SEDDS. 

The novel thiolated SEDDS were evaluated for their cytotoxicity and their muco-interactive 

features. Mucus permeating capacity of the novel designed thiolated SEDDS was evaluated 

using common in vitro models based on multiple particle tracking and on rotating silicone 

tubes. Mucolytic activity of the novel thiolated conjugates was studied using in vitro 

rheological measurements. In addition, computational predictions of the partition coefficient 

of the novel thiolated conjugates were provided. 
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2. Materials and Methods 

2.1. Materials 

Dodecylamine was purchased from Merck Millipore, Austria. Iminothiolane hydrochloride 

and SATA ((2,5-dioxopyrrolidin-1-yl) 2-acetylsulfanylacetate) were purchased from Santa 

Cruz, Biotechnology Heidelberg, Germany. Cremophor EL was purchased from BASF, 

Germany. Captex 355 and Capmul MCM were obtained from Abitec Corporation, United 

States. Propylene glycole was obtained from Gatt-Koller, Absam Austria. 

Fluoresceindiacetate (FDA) and N-acetylcysteine (NAC) and DTT (dithiothreitol) were 

purchased from Sigma-Aldrich, Austria. MEM (minimal essential medium) with and without 

phenol red was purchased from Sigma-Aldrich, Austria. Lumogen ® dye was bought from 

Kremer, Germany. All other chemicals were of analytical grade and from commercial 

sources. Silicone tubes were obtained from Lactan, Austria. 

2.2. Methods 

2.2.1. Synthesis of thiolated conjugates 

Synthesis of TBA-D 

In a round bottom flask 1.816 mmol dodecylamine (1 eqv), 1.816 mmol iminothiolane 

hydrochloride (1 eqv) and 1.998 mmol triethylamine (1.1eqv) were dissolved in a mixture of 

10 ml acetonitrile and 4 ml methanol. The solution was stirred at room temperature for 

approximately 4 h and the solvent was removed under reduced pressure. The crude product 

was purified via chromatography over silica as stationary phase and diethyl ether 100% as 

mobile phase to yield the product as a colorless liquid (yield = 55±5%) (Figure 1A). Finally 

the product was stored under inert gas at -20 °C until further use. 

Synthesis of TGA-O 

In the first reaction step, 2 mmol octylamine (1 eqv), 2 mmol SATA (1 eqv) and 0.2 mmol 

triethylamine (0.1 eqv) were dissolved in 10 ml acetonitrile in a round bottom flask. The 



6 

 

solution was stirred at room temperature and monitored with thin layer chromatography. After 

2.5 h, the solvent was removed under reduced pressure. The crude product was purified via 

chromatography over silica as stationary phase using a mixture of petroleum ether and ethyl 

acetate (7:3) as mobile phase to yield the protected thioester (product A) as a white solid 

(Figure 1B). In the second step the thioester was hydrolysed by suspending TGA-octylamine-

thioester, hydroxylamine hydrochloride, EDTA (2,2',2'',2'''-(ethane-1,2-

diyldinitrilo)tetraacetic acid) and sodium hydrogen carbonate in a mixture of water and 

methanol (1:1). The pH was adjusted to pH 7 and the suspension was stirred at room 

temperature under thin layer chromatographic monitoring. After approximately 3 h, when the 

reaction had reached completion the product was extracted with dichloromethane. The 

organic phases were combined and dried with anhydrous sodium sulfate and the solvent was 

removed under reduced pressure. The product was purified via chromatography over silica as 

stationary phase using a mixture of dichloromethane and ethyl acetate (6:4) as mobile phase 

to yield the TGA-O as a colorless liquid (yield = 70±6%). Finally the product was stored 

under inert gas at -20°C until further use. 

2.2.2. Identification of thiolated compounds: NMR analysis 

The thiol conjugates were analyzed by 1H and 13C NMR spectra (Varian Gemini 200 

spectrometer (1H: 199.98 MHz, 13C: 50.29 MHz). The center of the solvent multiplet (CDCl3) 

was used as internal standard, which was related to TMS δ=7.26 ppm for 1H and δ=77.00 ppm 

for 13C. 

2.2.3. Formulation of SEDDS 

The new thiol-conjugates TBA-D and TGA-O were incorporated in a SEDDS-formulation 

previously developed by our research group [16]. The original SEDDS formulation consists of 

Cremophor EL 30%, Capmul MCM 30%, Captex 355 30 % and propylene glycol 10 %. The 

SEDDS preconcentrate was spiked with 3 % (m/m) of thiol-conjugate referring exemplarily to 

NAC as control. The other thiol-conjugates, TBA-D and TGA-O, were incorporated in an 
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equivalent molar amount. This results of course in different masses of the thiol-conjugates 

due to their different molecular masses. NAC was chosen, as it is reported to be the most 

commonly used mucolytic agent and provides only one thiol moiety on the molecule and is 

thus best comparable to the novel thiol conjugates. The prepared liposolution consisting of 

emulsifier, lipid phase and co-solvent was thoroughly mixed to guarantee a homogeneous 

formulation and then diluted with 0.1 M bis-tris-buffer of pH 6.8 in a ratio of 1:100. 

2.2.4. SEDDS characterisation 

The stability of SEDDS was confirmed via a centrifugation test of 12,100 g for 20 min using 

minispin centrifuge, Eppendorf, Germany. In addition, the particle size was monitored prior to 

experiment via an extended shelf-life study up to 12h using bis-ris buffer pH 6.0, 0.1M in a 

1:100 dilution. To estimate stability of SEDDs in cell culture medium, preliminary tests were 

performed exemplarily for SEDDS A using white MEM as dispersing agent. 

Size, zeta potential and polydispersity index of SEDDS formulations were determined by 

photon correlation spectroscopy using Nicomp PSS 380 DLS/ZLS, Particle Sizing Systems, 

Inc. Port Richey, Florida with a laser wavelength of 650 nm and an E-fields strength of 5 

V/cm. The experiment was performed at room temperature. 

2.2.5. Cell viability assay- resazurin assay 

The potential cytotoxic effect of the thiolated SEDDS was evaluated using the resazurin assay 

on a human colon carcinoma cell line monolayer according to a protocol previously reported 

by our research group [17]. Caco-2 cells were cultured over a period of 14 days in 24-well 

plates. After seeding the cells (d=25 x 103 cells/well) they were fed with 500 µl of minimal 

essential medium (MEM) supplemented with 20% fetal bovine serum (FBS) at 37 °C in 5% 

CO2 environment. Every second day the medium was replaced by fresh medium. The assay 

was performed with resazurin which is reduced to fluorescent resorufin. Before incubating the 

cells with the test medium, they were washed with 500 µl of phosphate buffered saline (PBS) 

and then incubated with 500 µl of 0.5% sample solution (prepared with white MEM, which 
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consists of MEM omitting the indicator). After incubating the samples for 4 hours, the cells 

were washed again with PBS and were incubated with 250 µl of resazurin solution 44 µM for 

another time period of 3 hours. Cells with MEM as positive control and Triton X 100 as 

negative control were treated in the same way. 24-well plates omitting the cells were spiked 

with resazurin and served as blank. Aliquots of the samples were transferred to a microtiter 

plate and the fluorescence intensity was measured using a microplate reader (Tecan; Groedig; 

Salzburg, Austria) at a excitation wavelength of λexc = 540 nm and an absorption wavelength 

of λem = 590 nm. The cell viability was calculated based on to the positive control with white 

MEM [18] 

fluorescence	of	cells	treated	with	samples

fluorescence	of	cells	treated	with	white	MEM
×100. 

 

2.2.6. In vitro mucus permeation studies 

Mucus refinement 

Freshly isolated pig intestinal ileum (5 m length from proximal region) was obtained from a 

local abattoir and kept in ice-cold oxygenated phosphate buffered saline (PBS) prior to sample 

processing. The ileum was processed into 25 cm lengths with each length then incised 

longitudinally. Food and other waste debris were gently rinsed away by ice-cold PBS. The 

mucus was then gently scraped from the intestinal surface with a spoon to avoid excessive 

shedding of intestinal epithelial tissue. Mucus was divided into aliquots (0.5 g) and kept at -20 

°C prior to experimentation [19]. 

2.2.6.1. In vitro permeation study- multiple particle tracking (MPT) in mucus 

The effect of thiolated compounds on droplets permeation within mucus was studied using 

MPT technique according to a protocol reported previously [15]. Therefore, the formulations 

were labelled with the fluorescent dye Lumogen ®. Diffusion of SEDDS droplets through 

intestinal mucus was assessed by MPT [20] a technique that can track particle displacement 

with a tracking resolution (σ) to within 5 nm [21]. In this study the ‘tracking resolution’ (σ) 
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was experimentally determined for each SEDD particle type. Specifically, σ was measured by 

gluing (cyanoacrylate-based glue) the particles to a glass bottom imaging dish followed by 

drying and setting of the glue matrix and video microscopy capture (ImageJ) of particles 

fluorescence. The σ was then calculated by two approaches: (i) independently determining X- 

and Y-direction fluorescence displacement at lowest temporal resolution (33 ms) followed by 

calculation of geometric mean of the data; (ii) Calculation of square root of MSD at lowest 

temporal resolution, with MSD calculated as below. Both approaches gave the same σ data of: 

SEDDS A 4.8 nm; SEDDS B 4.6 nm; SEDDS C 4.7 nm; SEDDS NAC 4.8 nm. Overall the σ 

was confirmed at 5 nm for the SEDD formulations. 

For the mucus permeation studies samples (0.5 g) of porcine intestinal mucus were incubated 

in glass-bottom MatTek imaging dishes at 37 °C. The fluorescently labelled droplets were 

inoculated into each 0.5 g mucus sample in a 25 µl aliquot. To ensure effective droplet 

distribution within the matrix a 2 hours period of equilibration was allowed following 

inoculation and prior to video microscopy capture of droplets movement within the mucus. 

Video capture involved 2-dimensional imaging on a Leica DM IRB wide-field 

epifluorescence microscope (x63 magnification oil immersion lens) using a high speed 

camera with a 20 x digital magnification system (Allied Vision Technologies, UK) running at 

a frame rate of 33 ms i.e. capturing 30 frames sec-1; each completed video film comprised 300 

frames. For each 0.5 g of mucus sample approximately 120 droplets were simultaneously 

tracked and their movements captured. For any distinct droplets species a minimum of three 

distinct mucus samples were analysed, i.e. minimum of 360 individual droplets trajectories 

assessed. Videos were imported into Fiji ImageJ software which converts the movement of 

each droplet into individual droplets trajectories across the full duration of the 10 seconds 

(300 frames). The the movement of each particle within sequential 30 frame segments 

(corresponding to 1 s intervals) is then analysed, i.e. we collect data on a single particle over a 

10 s period and calculate 270 individual movements. One criterion applied is that for 
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inclusion in the sequential analysis the droplet must have displayed a continuous presence in 

the X-Y plane for the 30 sequential frames. This limits the impact of mucin movement upon 

the droplet diffusion calculations [22]. The individual droplet trajectories were converted into 

numeric pixel data (Mosaic Particle Tracker within Fiji ImageJ). This data was then converted 

from pixels into metric distance based on the microscope and video capture settings. The 

distances moved by each droplet over a selected time interval (∆t) in the X-Y trajectory were 

then expressed as a squared displacement (SD). The mean square displacement (MSD) of any 

single droplet (n) represents the geometric mean of the droplet’s squared displacements 

throughout it is entire 30-frame trajectory. The MSD was determined as follows [23]: 

MSD(n) = (X∆t)
2 + (Y∆t)

2          (1) 

In any single experiment an MSD was calculated for at least 120 individual droplets with the 

experiment replicated a further two times, i.e. 360 droplets studied in total. For each droplets 

species under study an “ensemble mean square displacement” (defined by ‹MSD›) was 

determined for each of the three replicate studies.  

The effective diffusion coefficient (‹Deff›) for a particular droplets species was then 

calculated by: 

‹Deff› = ‹MSD›/(4 * ∆t)         (2) 

where 4 is a constant relating to a 2-dimensional mode of video capture and ∆t is the selected 

time interval. 

Proportion of diffusive droplets: Measuring droplet diffusion across various time intervals 

allows description of the proportion of droplets that are diffusive through the mucus matrix 

[22]. Equation 3 was used to determine a diffusivity factor (DF) which expresses the effective 

diffusion coefficient for each individual droplet (Deff) across the time intervals (∆t) of 1 s and 

0.2 s 



11 

 

DF = Deff ∆t=1 s / Deff ∆t=0.2 s         (3) 

where the individual droplet Deff = MSD/(4 * ∆t). Droplets with a DF value of 0.9 and 

greater were defined as diffusive. The proportion of diffusive droplets within a given droplets 

type was then calculated and expressed as % Diffusive droplets. 

Heterogeneity in droplet diffusion: Profiling the diffusive properties of each droplet within 

an entire population provides information on the heterogeneity of droplet movement and the 

presence of outlier sub-populations indicative of distinctive pathways of diffusion through the 

matrix. Here the effective diffusion coefficient for each individual droplet (Deff) was 

calculated at the time interval (∆t) of 1 s, and for any droplets type all 360 Deff ∆t=1 s were 

then ranked to allow comparison of the highest (90th) and lowest (10th) percentiles, where for 

example the 90th percentile is the Deff value below which 90% of the Deff observations may 

be found. 

Droplet diffusion in water: The droplets’ diffusion coefficient (D°) in water was calculated by 

the Stokes-Einstein equation at 37 C° [24]:  

[D° = κT / 6πηr]          (4) 

where κ is Boltzmann constant, T is absolute temperature, η is water viscosity, r is radius of 

the droplet. The diffusion of all droplets was also expressed as the parameter, % ratio [Deff] / 

[D°]. 

2.2.6.2. In vitro mucus diffusion study- rotating tube method 

The permeation study was performed according to a protocol previously reported by our 

research group [25]. In brief, silicon tubes (Ø=3 mm) were filled with a volume of 200 µl of 

mucus and closed at one end, then 50 µl of formulation was applied to the open end of the 

tube and then closed using silicone plug. Formulation was labeled with 0.3% fluoresceine 

diacetate and diluted in a 1:100 dilution of bis-tris-buffer (0.1M) pH 6. The tubes were placed 

in an incubator with a rotating device at gentle rotation for a time period of 4 hours at 37 °C. 
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Then the samples were frozen at -80°C for at least 1 hour. Then the tubes were cut- starting 

from the point where the mucus was added- into 10 slices of 2 mm each, and to each slice of 

mucus containing sample 300 µl of 5 M sodium hydroxide solution were added. In order to 

activate the fluorescent dye, the slices were incubated for 6 hours and fluorescence was 

measured at a wavelength of λ exc = 480 nm and λ em = 520 nm with a microplate reader 

(Tecan; Grödig; Salzburg, Austria). The amount of fluorescein diacetate in each slice was 

quantified using a standard calibration curve. Samples containing only mucus were 

additionally analysed- serving as blank. The experiment was performed in quintuplicate. 

2.2.7. In vitro study of mucolytic activity 

Mucolytic activity was assessed according to a technique previously reported by our research 

group using a plate-plate combination rheometer (Haake Mars Rheometer, 379-0200, Thermo 

Electron GmBH, Karlsruhe, Germany; Rotor: PP35, D=35 mm) [26]. After determining the 

linear viscoelastic region of the gels using the oscillating modulus, the shear stress rate was 

set to a range of 0.1-2 Pa, with a frequency of 1 Hz at a temperature of 37±1°C and the gap 

between two plates was chosen about 0.5 mm. The rheological study was performed with the 

pure thiol-conjugates TBA-dodecylamine and TGA-octylamine using DTT as positive 

control. An ethanolic solution of 30 µmol, in reference to the thiol groups of each respective 

conjugate, was dissolved in 100µl of EtOH and mixed with mucus in a ratio of 1:10 (V/m). 

Mucus, diluted with the same amount of EtOH and treated the same way as the samples 

served as 100 % control for each respective time point. Samples were stored air tight at 

37±1°C until rheological analysis was performed. Each measurement was done in 

quintuplicate.  

 

2.3. Statistical data analysis 

Statistical data analysis was performed using the student t-test with p < 0.05 as the minimal 

level of significance. The results are expressed as the means of at least 3 experiments ± SD.”
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3. Results and discussion 

3.1. Synthesis and characterization of the thiolated conjugates 

The successful coupling of the thiol ligand was supported by NMR analysis. Neither NMR 

nor thin layer chromatography indicated impurity. The protons of TBA-D, bond to 

heteroatoms are not seen in the 1H-NMR (Appendix A). The formation of the amidine bond is 

confirmed by the signal at 172.2 ppm attributed to the amidine carbon (Appendix B). The first 

coupling reaction of TGA-O yields to the acetylated product. In the 1H-NMR you can 

recognize the acetylic group at 2.41 ppm together with a signal at 3.52 ppm corresponding to 

the methylene group connected to the sulfur atom (Appendix C). After the deprotection step, 

the signal referred to the acetyl group lacks, confirming that the reaction was successful 

(Appendix D). At 1.85 ppm a triplet appears corresponding to the thiol group and the singlet 

at 3.52 ppm is replaced by a signal of higher multiplicity included in the multiplet 3.22-3.33 

ppm. In both spectra it is possible to see the proton connected to the nitrogen at 6.19 ppm and 

6.69 ppm.  

The structure of the products was confirmed by NMR spectroscopy (see Appendix A-E). 

TBA-D 1H-NMR (CDCl3): δ 0.88 (t, 3H, CH3, J = 6.4 Hz), 1.20-1.40 (m, 18H, (CH2)9), 1.59-

1.75 (m, 2H, CH2CH2NH), 2.03-2.17 (m, 2H, CH2CH2SH), 2.61-2.69 (m, 2H), 3.13-3.25 (m, 

4H), (CH2NH, CH2CH2CH2SH).  

13C-NMR (CDCl3): δ 14.30 (CH3), 22.87 (CH2), 27.08 (CH2), 27.78 (CH2), 29.53 (CH2), 

29.68 (CH2), 29.80 (CH2), 29.82 (CH2), 29.85 (CH2), 30.64 (CH2), 32.10 (CH2), 33.80 (CH2), 

38.93 (CH2), 58.17 (C-N); 172.24 (C=N). 

TGA-O-Thioester 1H-NMR (CDCl3): δ 0.88 (t, 3H, CH3, J = 6.4 Hz), 1.18-1.35 (m, 10H, 

(CH2)5), 1.41-1.55 (m, 2H, CH2), 2.41 (s, 3H, CH3), 3.21 (q, 2H, CH2NH, J = 6.6 Hz), 3.52 (s, 

2H, COCH2S), 6.19 (s (br), 1H, NH). 
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TGA-O 1H-NMR (CDCl3): δ 0.88 (t, 3H, CH3, J = 6.4 Hz), 1.20-1.40 (m, 10H, (CH2)5), 1.46-

1.60 (m, 2H, CH2), 1.85 (t, SH, J = 9.2 Hz), 3.22-3.33 (m, 4H, CH2NH, COCH2SH), 6.69 (s 

(br), 1H, NH). 

13C-NMR (CDCl3): δ 14.27 (CH3), 22.80 (CH2), 27.06 (CH2), 28.51 (CH2), 29.35 (CH2), 

29.40 (CH2), 29.59 (CH2), 31.95 (CH2), 40.13 (CH2NH), 169.08 (C=O). 

 

3.2. Preparation, stability and characterization of SEDDS 

After 20 min at 12,100 g no visible phase separation could be detected. In addition, the 

extended shelf-life study as shown in Figure 3 demonstrated, that the size of the droplets 

remains stable over 12 h. The polydispersity index and the zeta potential showed no 

significant change in respect to time point zero. In addition, preliminary tests which were 

performed exemplarily for SEDDS A using white MEM as dispersing agent ensure particle 

size of approximately 38.2 nm. As shown in Figure 3, droplet size measurements showed a 

diameter ranging from 36.91 nm to 53.39 nm which is smaller than the mucus average pore 

size, being reported to range from 20-200 nm [22,27,28]. The incorporation of the thiolated 

compounds led to no change in size. In addition, the influence on the surface charge is quite 

limited as the surface charge of the measured formulations was between -0.8 ± 0.9 mV and -

7.1 ± 0.2 mV (see Table 1). Cytotoxicity studies on CaCo-2 cell monolayer proved cell 

viability of the SEDDS formulations of at least 90 % over a time period of 6 hours, indicated 

by reduction of resazurin to fluorescent resorufin by viable cells (Figure 2) [18]. 

 

3.3. In vitro permeation studies 

3.3.1. Multiple particle tracking (MPT) in mucus 

Incorporation of the thiolated compounds led to an increase in ‹Deff›, which is most 

pronounced for the formulation termed SEDDS A, with a 66-fold increase (Table 1) in ‹Deff›, 
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compared to the non-thiolated SEDDS C. Plotting the ‹Deff› versus droplet size (Figure 3) 

indicates that droplet per se is not the primary determinant of this improved ‹Deff› and that 

steric obstruction is unlikely to be influential in the diffusion of any of the SEDDS 

formulations. The SEDDS droplets’s sizes were smaller than the average mucus pore size, 

which is reported to be in the range of 20-200nm [22,27,28]. The porcine mucus, commonly 

used in in-vitro models, was harvested in a way to collect the loose and the adherent mucus 

layers. According to Abdulkarim et al., this technique leads to a median pore size of within 

the mucus mesh of ca. 200 nm with greater than 90% of the pores larger than 100 nm [15]. 

Additionally, electric or ionic interactions seem to have little to no significant influence on the 

‹Deff›. All SEDDS, even the SEDDS C as negative control, which was not containing any 

thiol-compound, showed motility in the mucus. This might be explained by the fact that a 

neutral or slightly negative surface charge is favorable for particles to pass through the mucin 

fiber network [22,27,29,30]. Although the work of Allen et al. [29] refers to gastric and not 

intestinal mucus, the results are in agreement with the literature [29]. The formulations, used 

within this study fulfill this fundamental requirement as no hindrance due to ionic interaction, 

for example, with negatively charged mucoglycoproteins can be detected. Some viruses are 

reported to be highly efficient mucus permeating, an essential feature for their highly infective 

potential [31]. The ‹Deff› obtained for thiolated SEDDS A in this study is superior to the 

diffusion data (assessed using the same model system) obtained for capsid adenoviruses (146 

nm diameter) by some 20-fold [15]. 

The ratio of ‹Deff› to D° provides a measure of the efficiency of the diffusion of the droplets 

through mucus after the size of the droplet is account for. The ratio normalizes for the 

droplet’s intrinsic free Brownian motion in water and as such the impact of droplet size upon 

free diffusion. Here the D° is calculated from the Stokes-Einstein equation and given the 

equivalency of droplet size across the SEDDS formulations (36 to 44 nm; Table 1) the D° 
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values were similar for all tested formulations (Table1). As such the conclusions that can be 

derived for the ‹Deff›/D° ratio varied little from that of the findings with the absolute ‹Deff› 

parameter as discussed above. 

The fraction of SEDD droplets, or indeed any particles, that are truly diffusive within the 

mucus network is a major requirement as immobilization within the in-vivo barrier will lead 

to droplet clearance away from the target epithelial membrane. Comparing individual droplet 

diffusion across various time intervals, i.e. across the time intervals (∆t) of 0.2 s and 1 s, 

allows a description of the proportion of droplets that are truly diffusive. A consistency in 

Deff across the 1s interval to that in the initial 0.2 s interval reveals the droplets o have 

minimal interaction with the micro-domains of the mucin network [15,22]. Figure 4 illustrates 

the Deff profiles for each of 20 randomly selected droplets for the formulations SEDDS A and 

SEDDs C across the aforementioned time intervals; the SEDDS A formulation contained 

TBA-D while the SEDDS C formulation lacks a thiolated compound. The profiles clearly 

show a greater proportion of SEDDS C formulation droplets failing to meet the definition of 

‘diffusive’. The DF data for the SEDDs are shown in Table 1, and show consistency with the 

overall population ‹Deff› data. Specifically, the SEDDS A formulation showed a considerably 

greater DF than any of the other droplet formulations with 59% of the SEDDS A droplets 

defined as diffusive compared to only 16% for the control SEDDS C formulation. The DF 

data obtained for all thiolated SEDDs in this study exceeded the DF data (assessed using the 

same model system) previously reported for capsid adenoviruses (19%) and by PEGylated 

particles (32%) [15]. 

Further analysis of the heterogeneity in diffusion within each of the SEDD formulations was 

undertaken whereby the Deff for each individual droplet within a formulation was determined 

and the resulting Deff measurements ranked into percentiles (Figure 5). A more detailed 

analysis of the heterogeneity in the movement of individual droplets through mucus can 
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provide insight into how different droplet subpopulations within a given formulation type may 

exploit divergent permeation pathways [15]. Of the thiolated SEDDS, formulation A was the 

more homogenous in terms of droplet diffusion with an approximate 20-fold difference 

between 90th percentile (i.e. the Deff value below which 90 % of the Deff observations may 

be found) and 10th percentile (i.e. the Deff value below which 10 % of the Deff observations 

may be found); the SEDDS B and SEDDS NAC formulations showed approximately 60 and 

100-fold differences. The non-thiolated formulation, SEDDS C, show a much higher degree 

of heterogeneity (x1000-fold different) with only 60% of the particles showing negligible to 

no movement in the mucus. Even the fastest sub-populations of droplets for SEDDS C were 

below the median rates seen for SEDDS A. 

3.3.2. In vitro mucus diffusion study- rotating tube method 

The second evaluation of mucus-droplet interaction was done with a static in-vitro model. 

Therefore, diffusion of SEDDS was assessed using a setup of rotating silicone tubes filled 

with mucus and using FDA as model drug. The study supported aforementioned data with 

significant advanced permeation of SEDDS A in respect to control SEDDS C omitting any 

thiol-conjugate (p < 0.05) (Figure 6). The diffusion profile reported, follows a first order 

kinetics, and the SEDDS containing TBA-D show a significant increased concentration of 

FDA in comparison to SEDDS C within the first three slices. The negative control, being 

represented by SEDDS C did not show any significant permeation of droplets than in slice 3. 

The silicone tube test results were conclusive to the data obtained from MPT technique, 

although different fluorescent dyes were used and different experimental set-up were 

performed. 

3.4. In vitro study of mucolytic activity 

As demonstrated in two independent studies, the novel SEDDS showed mucus diffusive 

capacity. The thiolated ingredients, being the single difference between the different 
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formulations were thus characterized for their muco-interactiv properties, which was assessed 

rheologically by monitoring the decrease in dynamic viscosity of small intestinal porcine 

mucus. All tested compounds showed a decrease in dynamic viscosity of mucus over a time 

period of one hour, leading to decrease in dynamic viscosity of up to 73.4 ± 6.6 % in respect 

to the negative control, which consisted of mucus and the solubilizing agent EtOH in an equal 

amount as in the samples (Figure 7). DTT was used in equimolar amount in respect to the free 

thiol groups of the molecule. Reports about a more pronounced potency of DTT to reduce 

viscosity of mucus in comparison to NAC led to the choice of DTT as most suitable control 

[32]. Mucolytic agents expressing a free thiol moiety such as NAC as leading structure are 

reported to reduce the cross-linking of mucin-fibres by cleaving disulphide bonds and thus 

reduce the bulk mucus viscosity [16]. The data obtained show a decrease in viscosity for all 

three molecules, TBA-D, TGA-O and NAC and show structural similarity to NAC by 

expressing a free thiol group. The mucolytic activity of the novel synthesized excipient is 

probably based on a disulphide exchange reaction between the thiol-conjugates and the 

cysteine thiol group in the mucin fibres [5,33,34]. Consequently, the authors assume that the 

enhancement of droplets diffusion through the mucus is favored due to the incorporated thiol-

conjugates. 

Computational calculations of the partition coefficients of all used thiolated molecules were 

calculated by chemsketch [35] (Table 2). The authors assume, that the high partition 

coefficient of the thiol-conjugates TBA-dodecylamine and TGA-octylamine leads to a stable 

incorporation of the thiol-conjugates in the SEDDS while the more hydrophilic controls are 

leaking more quickly giving evidence of a less pronounced and less long lasting effect. The 

SEDDS droplets, exhibiting a highly lipophilic core, shelter the novel thiol-conjugates, 

leading to a sustained release due to a leakage of the compounds into the aqueous 

environment. This continuous and sustained release leads to facilitated mucus permeation, 

presumable due to a destruction of the mucin network. 
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4. Conclusion: 

Within this study, a potential system to overcome the mucus barrier as critical bottleneck on 

drug targeting was investigated. This was done by the development of a new generation of 

SEDDS with mucolytic properties. Incorporation of newly designed thiolated low molecular 

weight conjugates provided the SEDDS with mucus permeating properties as assessed by 

MPT studies as well as rotational tube assay. Their high diffusion coefficient in mucus which 

was faster than that of viruses as well as diffusion in silicone tubes to a greater extent than 

that of the mucolytic control highlight the potential of the new thiolated SEDDS. Additional 

rheological studies give proof of the mucolytic activity of the novel thiolated conjugates. The 

novel thiolated low molecular weight fatty acid derivatives enlarge the field of application of 

SEDDS for future drug delivery. 
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Tables: 

Table 1: Zeta potential, D° (diffusion coefficient in water), ‹Deff› (diffusion coefficient in mucus) and ratio (%) of 

diffusive droplets of various SEDDS preparations. Mucus diffusion was measured by MPT technique using the 

epifluorescence microscopy while diffusion in water was obtained through Stokes-Einstein equation. 

molecule calculated log P 

TBA-dodecylamine 5.83±0.63 

TGA-octylamine 3.14±0.40 

NAC -0.15±-0.47 

DTT 0.09±0.71 

Table 2: Computational determined log P values as calculated by chemsketch 

 

 

 

 

 

 

 

 

 

 

 

 

SEDDS Thiol-
conjugate 

Zeta 
potential 

[mV] 

D
o
 

[cm
2
s

-1
x10

-9] 

‹Deff› 

[cm2s-1 x10
-9] 

% Ratio 

‹Deff› /D
o
 

% 
Diffusive 
droplets 

A TBA-D 
-2.1 + 

0.5 
101.18 

0.87123 
 + 0.1223 

0.8611 59 

B TGA-O 
-2.2 + 

0.4 
82.28 

0.05135 
 + 0.0089 

0.0624 35 

C -- 
-0.8 + 

0.9 
122.12 

0.01318 
 + 0.0003 

0.0108 16 

NAC NAC 
-7.1 + 

0.2 
102.41 

0.24624 
 + 0.0376 

0.2405 40 
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Figures: 

 

Figure 1 : Postulated reaction scheme for coupling reaction. (1A) Scheme for coupling reaction of dodecylamine with 

iminothiolane; (1 B) Scheme for coupling reaction of octylamine with SATA 
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Figure 2: Evaluation of cell viability. The formulations SEDDS A (black bars), SEDDS B (white bars), SEDDS C 

(dark gray bars) and SEDDS D (bright gray bars)were incubated in a concentration of 0.5 % (m/V) in MEM for up to 

6 h. Indicated values are means of at least five experiments (±SD, n=5). 

 

Figure 3: Droplet size of SEDDS loaded with TBA-Dodecylamine (black bars), TGA-Octylamine (white bars) as well 

as SEDDS without any thiol conjugate (dark grey) and SEDDS loaded with N-acetyl-cysteine (bright grey). The 

SEDDS were dispersed in bis-tris buffer pH 6.0, 0.1M. Indicated values are mean of at least three experiments (± SD, 

n=3). 
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Figure 4: Illustrative profiles for individual effective Diffusion Coefficients (Deff) for each of 20 randomly selected 

droplets for: (4A) the SEDDS A formulation containing TBA-Dodecylamine, and (4B) the SEDDS C formulation 

which lacks thiolated compounds. The profiles show discrete measurements for Deff across the entire time interval 

encompassing the 0.2s and 1s time points. For diffusive droplets the Deff over the period of 1s should decline no lower 

than 90% of the Deff obtained in the first 0.2s. The profiles clearly show a greater proportion of droplets falling below 

this requirement for the SEDDS C formulation. The online source random.org was used to randomly select the 

droplets. 
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Figure 5: Heterogeneity of droplet movement through mucus. For each droplet type an Effective Diffusion Coefficient 

‹Deff› was calculated for each of 360 individual droplets over a time interval of 1s. The data were ranked into 

percentiles from the 90th through to 10th percentile, where the 90th percentile is the ‹Deff› value below which 90% of 

the ‹Deff› observations may be found. (A) Data for SEDDS A containing thiobutylamidine-dodecylamine (TBA-

Dodecylamine); (B) data for SEDDS B containing thioglycolic-acid-octylamine (TGA-Octylamine); (C) data for 

reference SEDDS C containing no thiolated compound; (D) data for SEDDS containing N-acetyl-cysteine (NAC). The 

SEDDS contain 3% of thiolated compound and are prepared in a 1:100 dilution in bis-tris buffer pH 6, 0.1 M. Figure 

presents data of three separate experiments, i.e. ≥360 individual droplets examined for each droplet type. 



25 

 

 

Figure 6: Mucus diffusion study-rotating tubes method. Comparison of FDA concentration in mucus. SEDDS A (dark 

gray bars), SEDDS B (dashed bars), SEDDS C (black bars) and SEDDS NAC (white bars) in bis tris buffer ph 6.0. 

Indicated values are means of at least five experiments (± SD, n≥5) 

 

Figure 7: Evaluation of mucolytic effect of TBA-dodecylamine, TGA-octylamine and DTT after 0h (gray bars), 0.5h 

(dashed gray bars) and 1h (dotted gray bars) used as an ethanolic solution (300 µmol/ml) of thiolated conjugates 

mixed in a ratio of 1:10 (V/m) with mucus. Mucus containing 10% of EtOH served as negative control. DTT-mucus 

mixtures prepared in equimolar concentration served as using positive control. Indicated values are means of at least 

five experiments (±SD, n ≥ 5). 



26 

 

Appendix: 

A 1H-NMR spectrum of TBA-D in CDCl3. 

B 13C-NMR spectrum of TBA-D in CDCl3. 

C 
1H-NMR spectrum of TGA-Octylamine-thioester in CDCl3. 

D 1H-NMR spectrum of TGA-O in CDCl3. 

E 
13C-NMR spectrum of TGA-O in CDCl3. 

F 

Relationship between droplet diameter or zeta potential to droplet diffusion kinetics in mucus. 

(A) Plot of droplet diameter of the SEDDS versus Effective Diffusion Coefficient ‹Deff›; (B) 

Plot of zeta potential of the SEDDS versus Effective Diffusion Coefficient ‹Deff›; (C) Plot of 

zeta potential versus % ratio [‹Deff›]/[D°], a measure of the efficiency of a droplet’s diffusion 

in mucus compared to its diffusion in water. Droplet diameter is expressed in nm, zeta potential 

is expressed in mV and ‹Deff› is expressed in cm2s-1x10-9. 
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A: 1H-NMR spectrum of TBA-D in CDCl3. 
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B: 13C-NMR spectrum of TBA-D in CDCl3. 
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C: 1H-NMR spectrum of TGA-Octylamine-thioester in CDCl3. 
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D: 1H-NMR spectrum of TGA-O in CDCl3. 
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E: 13C-NMR spectrum of TGA-O in CDCl3



32 

 

 

F: Relationship between droplet diameter or zeta potential to droplet diffusion kinetics in mucus. (A) Plot of droplet 

diameter of the SEDDS versus Effective Diffusion Coefficient ‹Deff›; (B) Plot of zeta potential of the SEDDS versus 

Effective Diffusion Coefficient ‹Deff›; (C) Plot of zeta potential versus % ratio [‹Deff›]/[D°], a measure of the 

efficiency of a droplet’s diffusion in mucus compared to its diffusion in water. Droplet diameter is expressed in nm, 

zeta potential is expressed in mV and ‹Deff› is expressed in cm2s-1x10-9. 
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