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� A data pre-processing methodology for dealing with EVs charging data was presented.
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a b s t r a c t

As the number of electric vehicles increases, the impact of their charging on distribution networks is
being investigated using different load profiles. Due to the lack of real charging data, the majority of these
load impact studies are making assumptions for the electric vehicle charging demand profiles. In this
paper a two-step modelling framework was developed to extract the useful information hidden in real
EVs charging event data. Real EVs charging demand data were obtained from Plugged-in Midlands
(PiM) project, one of the eight ‘Plugged-in Places’ projects supported by the UK Office for Low
Emission Vehicles (OLEV). A data mining model was developed to investigate the characteristics of elec-
tric vehicle charging demand in a geographical area. A Fuzzy-Based model aggregates these characteris-
tics and estimates the potential relative risk level of EVs charging demand among different geographical
areas independently to their actual corresponding distribution networks. A case study with real charging
and weather data from three counties in UK is presented to demonstrate the modelling framework.
� 2015 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Electric Vehicles (EVs) offer reduced transportation related
emissions, reduce the energy cost of driving and in some cases
eliminate the use of fossil fuels. The total electricity demand is
expected to grow as the number of EVs increases [1]. The impact
of EVs charging on distribution networks has been investigated
in the literature. The majority of these studies use synthetic data
to assess the impact of the EVs charging load due to limited access
to real EVs charging data. In [2–19] data from travel surveys are
used to create EVs charging load profiles, assuming that EVs are
travelling like conventional internal combustion engine vehicles.
Although EVs adoption is at an early stage, some utilities and
aggregators are already collecting information from charging sta-
tions. A limited number of EVs pilots exist around the world, allow-
ing some preliminary studies on charging demand profiles. In [20],
statistical analysis of 4933 charge events in the Victorian EVs Trial
in Australia was performed. Statistical models for charge duration,
daily charge frequency, energy consumed, start time of charge
event, and time to next charge event were estimated to express
the uncertainty of usage patterns due to different user behaviours.
Data from the Western Australian Electric Vehicle Trial
(2010–2012) were analysed in [21,22], investigating the drivers’
recharging behaviours and patterns. In [23], 7704 electric vehicle
recharging event data from the SwitchEV trials in the north east
of England were used to analyse the recharging patterns of 65
EVs. The results showed that minimal recharging occurred during
off peak times. In [24] data from the same project were combined
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Table 1
Charging event data.

Attribute name Attribute description

Connection time Start time of charging event
in dd/mm/yyyy hh:mm format

Disconnection time End time of charging event in
dd/mm/yyyy hh:mm format

Energy drawn Energy demand of charging event in kW h
User Unique ID for every EVs, e.g. EV1, EV2 etc.
Charging station Unique ID for every charging station

Table 2
Charging station data.

Attribute name Attribute description

Charging station Unique ID for every charging station
Latitude Latitude of charging station’s location
Longitude Longitude of charging station’s location
Road The road name of charging station’s location
Post code The post code of charging station’s location
County The county name of charging station’s location
Location category e.g. Private Parking, Public Parking etc.
Location subcategory e.g. Public Car Park, Public On-street etc.
Ownership e.g. Dealership, Hotel, Train Station
Host Name of the charging station host
NCR Whether or not the charging station is

registered on the
National Charging Registry (NCR) of UK

Manufacturer The charging station manufacturer
Supplier The operator of charging station
Charger type Power rate of charging station in kW
Connector1 Socket Pin Type e.g. 3 Pin, 5 Pin etc.
Connector2 If exists, the second Socket Pin Type
Mounting type e.g. Ground, Wall, Wall (tethered)
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with low voltage smart meter data from Customer Led Network
Revolution (CLNR) project and the impact of the combined demand
profile was assessed on three different distribution networks. The
results showed that the spatial and temporal diversity of EVs
charging demand reduce its impact on those distribution networks.
Finally, data from over 580,000 charging sessions and from 2000
non-residential electric vehicle supply equipment’s (EVSE) located
in Northern California were analysed in [25]. The scope of this
analysis was to investigate the potential benefits of smart charging
utilising the extracted information regarding the actual trips and
customer characteristics.

Monitoring the charging events will inevitably create large
volumes of data. These data require effective data mining methods
for their analysis in order to extract useful information. In [26–28]
various data mining techniques were utilized to address challenges
in the energy sector, such as load forecasting and profiling. In
[29–31] data mining modelling frameworks were applied to
electricity consumption data to support the characterisation of
end-user demand profiles.

In this paper, a framework was developed to characterize the
EVs charging demand of a geographical area. The technical contri-
butions of this paper are summarised below:

(i) Real EVs charging data from UK were acquired and analysed.
The diverse data were organised and classified into attri-
butes. To the authors’ best of knowledge, this is the first time
that real EVs charging data are presented using this level of
detail.

(ii) A comprehensive data cleaning and formatting methodology
is presented, developed specifically for dealing with EVs
charging data.

(iii) A data mining model was developed to extract the useful
information. Three key characteristics of EVs charging
demand in a geographical area were investigated using the
proposed methodology, namely shape of the typical daily
profile, predictability with respect to weather and trend.
Clustering, correlation and regression analysis were per-
formed to study each characteristic, using factors to quantify
them. Analysing these characteristics resulted in assessing
the potential risks and uncertainties which affect the mid-
term normal operation of the corresponding distribution
network.

(iv) A fuzzy logic decision model was developed that aggregates
the three factors into one ‘‘risk level” index. The ‘‘risk level”
index was defined in order to characterize the EVs charging
demand, reflecting its potential impact on the energy
demand in a geographical area. Areas with high ‘‘risk level”
values imply a potential risk for the mid-term normal
operation of the distribution networks and such analysis
could be important for the distribution network operator
(DNO). No similar research work that quantifies the
mid-term relative risk of the EVs charging demand among
different geographical areas independently to their actual
corresponding distribution networks was done so far.

(v) Furthermore, this paper fills a gap in the literature related to
handling real EVs charging data, by proposing a complete
data analysis methodology.

The rest of the paper is organized as follows: Section 2 describes
the real EVs charging data analysed. In Section 3 the proposed
methodology to characterize the EVs charging demand is illus-
trated. A case study is presented in Section 4, applying the model
on real EVs charging events from UK to study the charging demand
characteristics, and assess their potential impact. Finally, conclu-
sions are drawn in Section 5.
2. Data description

EVs charging demand data were obtained from the Plugged-in
Midlands (PiM) project (http://www.pluggedinmidlands.co.uk/).
The Plugged-in Midlands project, managed by Cenex, is one of
the eight ‘Plugged-in Places’ projects supported by OLEV, the Office
for Low Emission Vehicles in the UK. Two datasets were provided
by Cenex, with information regarding the charging events and
charging stations respectively. The charging events dataset con-
sists of 21,918 charging events from 255 different charging stations
and 587 unique EVs drivers. The charging event dataset includes
information about the connection/disconnection times and the
energy of each charging event for the period of 2012–2013 with
event-occurrence granularity. The charging station dataset con-
tains time-independent information regarding the location and
technical specifications of all charging points (e.g. the charging
power rate). The contents of the two datasets are listed in Tables
1 and 2.

An additional dataset was acquired from the UK Met Office,
with information regarding the weather in the Midlands, the geo-
graphical area under study. This dataset includes the values of var-
ious weather information (e.g. air temperature) with daily
granularity for the period of 2012–2013. The weather attributes
are listed in Table 3.
3. Methodology

The characterisation framework consists of three models: (i)
Data Pre-processing Model, (ii) Data Mining Model and (iii) Fuzzy
Based Characterisation Model. The Data Pre-processing Model pro-
vides data merging, cleaning and formatting to prepare the data

http://www.pluggedinmidlands.co.uk/


Table 3
Weather data.

Attribute name Attribute description

Max air temperature Daily maximum air temperature (�C)
Min air temperature Daily minimum air temperature (�C)
Mean air temperature Daily average air temperature (�C)
Mean wind speed Daily average wind speed (knots)
Max gust Daily maximum wind speed (knots)
Rainfall Daily precipitation (mm)
Daily global radiation Daily amount of solar energy falling on a horizontal

surface (kJ/m2)
Daily sunny hours Daily sunshine duration (h)
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for the Data Mining model. The Data Mining Model consists of three
modules namely Clustering Module, Correlation Module and
Regression Module. These modules were used to investigate the
shape of the typical daily profile, the predictability with respect
to weather and the trend of EVs charging demand respectively.
The Fuzzy Based Characterisation Model aggregates the outputs of
the Data Mining model into a ‘‘risk level” index of EVs charging
demand in a geographical area using fuzzy logic. The characterisa-
tion framework is illustrated with Fig. 1.
3.1. Data pre-processing model

Data of the Connection Time, Disconnection Time, Energy
Drawn, Charging Station ID, Charger Type and County were
selected and merged into one dataset (EV dataset). The EV dataset
and the weather dataset were cleaned, removing missing and
incorrect values. In the EV dataset, charging events with zero/neg-
ative energy were removed from the dataset. Charging events with
average charging power higher than the nominal charger rate were
corrected by calculating the actual charging duration using the
nominal charger power rate. This consideration is based on the
assumption that some EVs may be connected (parked) in a charg-
ing station but they are not charging. Therefore, the duration of EVs
being connected to a charging station can be different to their
actual charging duration. Duplicate data entries were also discov-
ered and removed from both datasets.

Data regarding a charging event is recorded from the charging
station and then forwarded to one or more data collection centres.
This process involves a number of components and communication
links increasing the risk of a potential failure in this chain.
Data Pre-processing model

Fuzzy Based 
Characterisation Model

Clustering 
Module

Correlation 
Module

Regression 
Module

Charging Events 
and Weather Data

EVs Charging Demand 
Risk Level 

Data
Mining 
Model

Fig. 1. Characterisation framework.
Corrupted or missing data are not a rare phenomenon in such com-
plex communication networks. However, a careful analysis at this
stage is also beneficial to find the location or the station’s ID from
where the corrupted data are recorded, an indication of an abnor-
mal operation.

The next stage of the Data Pre-processing model is the Forma-
tion stage. The EV dataset was formatted using a Matlab script into
three time series; an hourly power time series, a daily peak power
time series and a monthly energy time series. The hourly power
time series was transformed into daily vectors (each of 24 values)
and forwarded to the Clustering Module, whereas the monthly
energy time series was forwarded to the Regression Module. All
the data attributes of the Weather dataset were formatted into
daily time series and merged with the daily peak power time
series. The resulting (combined) time series was forwarded to the
Correlation Module. The data pre-processing procedure is
presented in Fig. 2.

3.2. Data mining model

The Data Mining Model consists of a Clustering Module, Corre-
lation Module and Regression Module. These modules were used to
investigate the shape of the typical daily EVs charging demand pro-
file, the predictability with respect to weather and the trend of EVs
charging demand respectively.

3.2.1. Clustering module
The clustering module creates typical daily EVs charging

demand profiles of a geographical area, according to the load
demand of the corresponding charging stations. These profiles
are related to the aggregated daily pattern of the EVs charging
demand of a specific geographical area.

The k-means clusteringmethod described in [32,33], was used in
this module. Initially, this algorithm selects k random daily vectors
(Input from Data Pre-processing Model) as the initial cluster
centroids and calculates the distance from each daily vector to the
cluster centroids. Each daily vector is assigned to a cluster/group
Fig. 2. Data pre-processing model.
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according to its distancewith the nearest cluster centroid. Then, the
newcluster centroids are obtained from the average of the daily vec-
tors for the corresponding cluster. This process is repeated until the
distances between the daily vectors and the corresponding cluster
centroids are minimized. This is explained mathematically by Eq.
(1):

min
c

Xk
i¼1

X
x2ci

kx� lik2 ð1Þ

where ci is the set of daily vectors that belong to ith cluster, x
expresses the corresponding daily vector in ci and li is the position
of the ith cluster centroid.

The method requires the number k of clusters to be defined a
priori. The Davies–Bouldin evaluation criterion was used to calcu-
late the number k of clusters [34,35]. This criterion is based on a
ratio of within-cluster and between-cluster distances and is
defined by Eq. (2):

DB ¼ 1
k

Xk
i¼1

max
j–i

�di þ �dj

dij

 !
ð2Þ

where �di is the average distance between each point in ith cluster
and the centroid of ith cluster. �dj is the average distance between
each point in ith cluster and the centroid of jth cluster. dij is the dis-
tance between the centroids of ith and jth clusters. The maximum
value of this ratio represents the worst-case within-to-between
cluster ratio for ith cluster. The ‘‘best” clustering solution has the
smallest Davies–Bouldin index value. Therefore, an additional step
exists to evaluate the centroid selection for our dataset. A range
of 1–20 clusters was considered, where 20 was found to be a rea-
sonable maximum value [36], and the best number of clusters
within this interval was calculated using an iterative process. By
applying the k-means clustering method to the dataset, the k cluster
centroids ci are obtained, along with the number of vectors wi

assigned to each cluster. The followed steps of the Clustering Mod-
ule are presented in Fig. 3.

The most representative cluster centroid (highest value of wi)
was used to create the typical daily EVs charging demand profile
of an area. Having the daily EVs charging demand profile of an area,
an index k was defined to express the proportion of EVs charging
demand during peak hours (17:00 – 20:00) [37]. The index k was
calculated using Eq. (3):
Fig. 3. Clustering Module flowchart.
k ¼ Epeak

Etotal
� 100% ð3Þ

where Epeak is the charging load during the peak hours and Etotal is
the total daily charging load.

3.2.2. Correlation module
According to [38], weather affects road traffic congestion and

the driving behaviour of car owners. In [39–41], the factors which
affect the fuel consumption of EVs were analysed. Cold weather
decreases the efficiency of the batteries performance. Additionally,
heating the interior of EVs drains significantly the battery. In [42],
the impact of cold ambient temperatures on running fuel use was
investigated. Considering EVs on the roads, the weather will also
affect their energy consumption and thus their charging demand.
Identifying hidden strong relationships between weather
attributes and load demand improves the forecasting accuracy of
a prediction model [43].

The Pearson’s Correlation Coefficient (r) was used in this
module to measure the correlation between the weather attribute
values and the daily peak power of EVs charging demand in a geo-
graphical area. The maximum absolute correlation coefficient
value of all peak power-weather pairs identifies the most influen-
tial weather attribute.

3.2.3. Regression module
The scope of this module is to investigate the monthly change of

the EVs charging demand. A Growth Ratio (GR) index was defined
as the ratio between the growth rate of EVs charging demand and
the average monthly EVs charging demand. Linear regression anal-
ysis was applied on the EVs charging demand time series, in order
to calculate the mathematical formula describing the relationship
between monthly EVs charging demand (Y in kW h) and time
(X in months). The formula is described with Eq. (4):

Y ¼ b0 þ b1X þ e; ð4Þ
where b0 and b1 are the constant regression coefficients and e is the
random disturbance (error).

The slope b1 expresses the monthly growth rate of EVs charging
demand (in kW h/month). The constant regression coefficients
were calculated using the Least Squares Method described in
[44]. Having b1, the GR index is calculated with Eq. (5).

GR ¼ b1

Emonth

� 100%; ð5Þ

where Emonth is the average monthly EVs charging demand.

3.3. Fuzzy based characterisation model

The goal of this model was to characterise the EVs charging
demand of a geographical area according to the information about
the shape of the typical daily profile (k index), the predictability
with respect to weather (r) and the trend of EVs charging demand
(GR index). To this end, a ‘‘risk level” index was defined to aggre-
gate the potential underlying risks from these characteristics. A
fuzzy-logic model was developed to capture the fuzziness of these
risks and calculate the ‘‘risk level” index. Fuzzy Logic Models are
useful for risk assessment purposes under such conditions [45].
The Fuzzy Based Characterisation Model is illustrated with Fig. 4.

The validity of the risk characterisation model is based on the
following considerations/assumptions:

i. The magnitude and duration of the peak of the typical EVs
charging demand profile (captured by k index) are underly-
ing risk factors for the distribution network, as they affect
the transformer/circuit loading and the voltage profile.



Fig. 4. Fuzzy Based Characterisation Model.
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Fig. 6. Fuzzy membership function of Correlation Coefficient.
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Fig. 7. Fuzzy membership function of EVs Demand Growth Ratio.
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Table 4
Rule table.

r k GR

L M H

H L VVL VL L
M VL L ML
H L ML M

M L L ML M
M ML M MH
H M MH H

L L M MH H
M MH H VH
H H VH VVH
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ii. The change over time of EVs charging demand (described
with GR index) affects the long term decision regarding
the planning of the network reinforcement. The aggressive-
ness of EVs charging demand change over time in a geo-
graphical area is also a potential risk for the network’s
operation.

iii. The predictability of EVs charging demand with respect to
weather in a geographical area (captured by r), affects the
accuracy of a forecasting model. Decisions taken based on
a forecast are subject to the forecasting accuracy, indicating
a risk for the decision maker.

iv. Analysing the EVs charging demand characteristics in a geo-
graphical area results in assessing the risks and uncertainties
which will affect the mid-term normal operation of the dis-
tribution network of the corresponding geographical area.

v. As an electric power network model was not used to analyse
the related actual charging demand characteristics, this
study quantifies only the relative risk between different
geographical areas. The ‘‘risk level index” is not defined in
absolute terms and thus it is used to classify relatively the
level of these risks (due to EVs charging) among different
geographical areas independently to their actual corre-
sponding distribution networks.

The linguistic values used to express the input variables are Low
(L), Medium (M) and High (H). Triangular membership functions
are used to calculate the Degree-Of-Membership (DOM) for each
of them, as shown in Figs. 5–7. In contrast to other kind of mem-
bership functions (e.g. Trapezoids), triangular membership func-
tions are very sensitive to changes of the variables and thus this
increase the accuracy.

The output is fuzzified into nine fuzzy regions represented by
linguistic variables; very very high (VVH), very high (VH), high
(H), medium high (MH), medium (M), medium low (ML), low (L),
very low (VL) and very very low (VVL), as shown in Fig. 8. The rule
table is given in Table 4.
0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Low Medium High

λ index

D
O

M

Fig. 5. Fuzzy membership function of k index.
The design of the rule table is based on the assumption that
each of the input indicators affect equally the ‘‘risk level” index.
According to the best of the authors’ knowledge, there is no
research work that quantifies the level of influence of the related
indicators (k index, r and GR) to the operation of an electricity dis-
tribution network. A further investigation is necessary to under-
stand the relative impacts of these variables on the normal
operation of an electricity distribution network, but this is out of
the scope of this paper.

The Mamdani type inference was used (also known as the max–
min inference method), which utilizes the minimum function for
the implication of the rules. Defuzzification was performed using
the centre of gravity (CoG) method [46–48]. This method finds
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Fig. 10. Cluster centroids for Leicestershire.
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Fig. 11. Cluster centroids for Nottinghamshire.
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the centre of the area encompassed by all the rules, and thus the
risk level index u is mathematically described by Eq. (6):

u ¼ CoG ¼
R xmax

xmin
x � gðxÞdxR xmax

xmin
gðxÞdx ð6Þ

where x is the value of the ‘‘risk level” index, xmin and xmax represent
the range of the ‘‘risk level” index and g(x) is the degree of member-
ship value at x.

4. Case study

The characterisation framework was applied on EVs charging
data from three different geographical areas of the dataset. Charg-
ing events and weather data from the counties of Nottinghamshire,
Leicestershire and West Midlands were analysed according the
proposed modelling framework. Fig. 9 shows the locations of the
charging stations for the corresponding geographical areas.

4.1. Typical EVs charging demand profiles

The k-means clustering algorithm was applied and the cluster
centroids were obtained, along with their level of representation.
Using the Davies–Bouldin criterion, the optimal number of clusters
for Leicestershire was 5, for Nottinghamshire was 6 and for West
Midlands was 3. The results are shown in Figs. 10–12.

The typical daily EVs charging demand profiles for each area are
presented in Fig. 13. As seen from Fig. 13, the three typical EVs
charging profiles differ in terms of peak magnitude, timing and
duration. West Midlands shows the highest peak, however for a
very short period (between 10:00 and 12:00), and no charging
events during night. On the other hand, the typical EVs charging
profiles of Nottinghamshire and Leicestershire have slightly lower
peaks, but the charging activity takes place throughout the whole
day. The EVs charging load during the peak hours, the total daily
Fig. 9. Location from the analysed charging stations.
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Table 5
Input values.

County Epeak Etotal k (%) Number
of EVs

Number of
charging events

Leicestershire 1.789 14.542 12.301 138 1944
Nottinghamshire 1.504 12.392 12.136 72 998
West Midlands 0.390 9.456 4.122 113 2013
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Fig. 14. Daily EVs charging demand for Leicestershire.
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charging load and their ratio k are summarized in Table 5. The two
last columns of Table 5 contain information about the total number
of charging events and unique EVs drivers for the corresponding
geographical areas.

As seen from Table 5, the proportion of the required energy dur-
ing peak hours is relatively low for all counties. This is explained by
the fact that the charging events are occurred in public charging
stations. Public charging stations are expected to be used for
recharging when EVs owners are at their work or when they do
shopping or other activities. Considering the fact that the office
hours are mostly between 09:00 and 17:00, the authors infer that
most EVs owners return home after their work. Thus, this can be a
possible justification why the energy requirements are low during
peak times.
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Fig. 15. Daily EVs charging demand for Nottinghamshire.
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Fig. 16. Daily EVs charging demand for West Midlands.
4.2. Influence of weather factors

Table 6 shows the absolute correlation coefficient (r) values
between the weather attributes and the daily peak power of EVs
charging demand. The most influential factor for all areas was
temperature, with the Mean Air Temperature having the highest
absolute correlation indices. Leicestershire’s EVs charging demand
shows a medium linear correlation, whereas in Nottinghamshire
and West Midlands the EVs charging demand has a weaker rela-
tionship with weather.

As the above results show a dependency between EVs charging
and Mean Air Temperature, it is useful to investigate the reasons
for this relation. Although this investigation is out of the scope of
this analysis, the authors provide their explanation about this
dependency. In a northern country like UK the climate is consid-
ered cold and thus heating the interior of an electric vehicle will
result in an increase of the energy requirements.
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4.3. Trend of EVs charging demand

The linear regression module described in Section 2 was applied
on the EVs charging demand time series of the three counties to
calculate its growth rate. Figs. 14–16 present the daily EVs charg-
ing demand of each county for the period 2012–2013. Noticeable
gaps exist in the data, especially for Leicestershire and West Mid-
lands. The total monthly EVs charging demand is illustrated in
Fig. 17, along with the corresponding trend line for each county.
Table 6
Correlation results.

Weather attribute County

Leicestershire
(%)

Nottinghamshire
(%)

West
Midlands (%)

Max air temperature 26.18 14.66 15.58
Min air temperature 26.40 14.78 17.77
Mean air temperature 27.06 15.24 18.78
Mean wind speed 22.16 10.31 7.75
Max gust knots 12.83 5.57 10.88
Rainfall 7.54 1.80 0.20
Daily global radiation 11.00 1.91 5.63
Daily sunny hours 16.86 1.87 6.02
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Fig. 17. Monthly EVs charging demand trend for all counties.
Using Eqs. (4), (5), the regression coefficients of the trend line were
calculated along with the GR index for each county. The results are
summarized in Table 7. As seen from the results, Leicestershire
shows the highest EVs charging demand growth rate. On the



Table 7
Regression results.

County b1 b0 GR (%)

Leicestershire 79.726 �496.75 15.95
Nottinghamshire 38.018 �166.94 12.33
West Midlands �6.149 304.69 �2.69

Table 8
Input values.

County Input A Input B Input C

Leicestershire 12.301 27.06 15.95
Nottinghamshire 12.136 15.24 12.33
West Midlands 4.122 18.78 �2.69

Table 9
Output values.

County Risk index

Leicestershire 34.1
Nottinghamshire 34.8
West Midlands 23.5
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contrary, the EVs charging demand in West Midlands reduces
slightly over the two years period.

4.4. ‘‘Risk Level” calculation

Once the Data Mining process is completed, the Fuzzy Based
Characterisation Model uses the outputs of the Clustering, Correla-
tion and Regression modules to calculate the ‘‘risk level” index of
EVs charging demand for each geographical area. Table 8 summa-
rizes the input values for the characterisation model.

Input A is the k index of each county’s typical EVs charging
demand profile, as calculated from the Clustering module. Input B
is the absolute correlation coefficient (r) value of the EVs charging
demand and Mean Air Temperature (the most influential weather
factor), whereas Input C is the GR index of the EVs charging
demand (monthly basis). The latter’s membership function was
assumed to accept values only in the range of [0%, 50%]; negative
GR indices were assumed as 0% increase. The outputs of the Fuzzy
Based Characterisation Model for the three counties are presented in
Table 9.

As seen from Table 9, the EVs charging demand in West
Midlands has the lowest value for ‘‘risk level” index. Looking at
the corresponding input values, such a result is expected as the
EVs charging demand has a descending trend (GR index) and low
energy requirements during peak hours (k index). Leicestershire
and Nottinghamshire on the other hand are characterised with
higher values of the risk level index by the model. Similar output
values for these areas are not unexpected as Leicestershire has
slightly higher growth ratio and energy requirements, however
the EVs charging demand in Nottinghamshire is more unpre-
dictable (lower correlation coefficient).
5. Conclusions

A characterisation framework for EVs charging demand was
developed. The model utilizes data analysis methods to extract
information hidden behind charging events in order to identify
the characteristics of the EVs charging load. This information was
then used by a fuzzy based characterisation model to estimate
the underlying relative risks for the distribution networks among
different geographical areas independently to their actual corre-
sponding distribution networks. The framework was applied on a
dataset of real charging events from three counties in UK and their
‘‘risk level” index was calculated.

The risk level index gives a spatial indication of the potential
impact of the EVs charging demand on a distribution network in
the nearby (mid-term) future. Areas with high ‘‘risk level” factor
are candidates for further investigation. However, the interpreta-
tion of this index is highly influenced by the network characteris-
tics. Other operational metrics (e.g. maximum load capacity) of the
corresponding network should also be considered to plan possible
network reinforcements. Charging strategies or other demand side
management applications can be designed for an area according to
its specific EVs charging load characteristics. For example, areas
where the EVs charging demand is high during peak times, a valley
filling strategy might be useful, whereas areas with random EVs
charging events might need to invest on a different demand side
management solution.

The universal design of this model makes it applicable from a
county area to a neighbourhood area, as only minor changes are
required for its application on different datasets. In addition, apply-
ing small modifications to the model, the analysis of additional EVs
charging demand characteristics are easily supported.
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