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Abstract  

 

Transglutaminases (TG) are externalized from cells via an unknown unconventional secretory 

pathway. We show for the first time that purinergic signaling regulates active secretion of TG2, an 

enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell-matrix 

interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this 

can be blocked by a purinergic receptor P2X7 (P2X7R)-selective antagonist. Introduction of 

functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By 

employing pharmacological agents, TG2 release could be separated from P2X7R-mediated 

microvesicle shedding. Neither, Ca2+ signaling alone nor membrane depolarization triggered TG2 

secretion which occurred only upon receptor membrane pore formation and without pannexin 

channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease 

caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. 

These results provide a mechanistic explanation for a link between active TG2 secretion and 

inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions. 
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Introduction 
 
Unconventional export of cytoplasmic proteins, i.e. the processes by which proteins that do not 

follow the classical ER/Golgi secretory pathway are secreted by cells, is being studied extensively 

as many molecules that fall into this category constitute potent biological signals with key roles in 

developmental or inflammatory processes. Such proteins lack posttranslational modifications that 

occur during ER/Golgi protein maturation but may be subject to N-terminal processing and 

acetylation or acylation (Muesch et al., 1990; Stegmayer et al., 2005). Several fundamentally 

different mechanisms appear to support unconventional protein secretion including self-sustained or 

transporter-facilitated direct membrane translocation at the plasma membrane, or release in 

specialized vesicles, the biogenesis of which is distinct from coat protein complex II-coated vesicles 

(Nickel and Rabouille, 2009; Rabouille et al., 2012). Neither export through the compartment for 

unconventional protein secretion/multivesicular body pathway nor direct microvesicle (MV) 

shedding at the plasma membrane requires membrane translocation of the cargo, and release is 

thought to occur by vesicle lysis in the extracellular environment.  

 

Transglutaminases (TG) are a family of structurally similar enzymes that post-

translationally modify proteins through transamidation, deamidation or esterification of glutaminyl 

residues (Aeschlimann and Thomazy, 2000). Several of these enzymes have well established 

functions in stabilizing extracellular protein assemblies, including TG2 (wound healing), TG4 

(semen coagulation) and factor XIII (blood coagulation) (Aeschlimann and Paulsson, 1994; Lorand 

and Graham, 2003). More recently, TG3 and TG6 have been implicated in extracelluar functions 

(Zone et al., 2011; Thomas et al., 2013). Despite it being 20 years since we first postulated export of 

TGs through an unconventional secretory pathway (Aeschlimann and Paulsson, 1994), the 

underlying process remains elusive. This has gained much attention recently as while matrix 

stabilization by TG2 is required for an effective tissue repair response, aberrant TG2 action has a 

central role in pathogenesis of inflammatory diseases and autoimmunity, most noteably celiac 

disease (Aeschlimann and Thomazy, 2000; Iismaa et al., 2009). Externalization from cells appears 

to control TG2 function as Ca2+-binding serves as a molecular “switch” for its activation, 

facilitating transition into a conformation that enables catalysis (Pinkas et al., 2007). Early studies 

pointed to passive release of TG2 through cell damage (Upchurch et al., 1987; Siegel et al., 2008). 

More recently, several alternative mechanisms for constitutive release of TG2 were proposed, 

including MV shedding (Antonyak et al., 2011; Van den Akker et al., 2011), or perinuclear import 

into Rab11-positive recycling endosomes (Zemskov et al., 2011). However, the proposed 

mechanisms implicated different domains of TG2 (Chou et al., 2011; Zemskov et al., 2011). 

Furthermore, constitutive export is difficult to reconcile with the lack of a correlation between TG2 
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synthesis level and extracellular activity, and the fact that export appears to be cell type or 

differentiation stage specific as exemplified in endochondral bone formation (Aeschlimann et al., 

1995). Such sudden, context-dependent externalization of TG2 indicated that its export is regulated 

by an unidentified signaling event. 

 

One emerging pathway for non-classically secreted proteins including interleukin (IL)-1 

involves P2X7R activation, leading to formation of an inflammasome in a NALP3-dependent 

manner (Dubyak, 2012; Strowig et al., 2012). Inflammasome assembly drives caspase-1 

autoprocessing, maturation of IL-1 by caspase-1 cleavage and ultimately IL-1 release 

(Mariathasan et al., 2006). Activated macrophages derived from P2X7R-/- mice are unable to 

secrete the mature form of IL-1 family cytokines including IL-1β and IL-18 (Solle et al., 2001; 

Pelegrin et al., 2008) and hence, these animals show reduced severity in models of acute 

inflammatory joint or lung disease (Labasi et al., 2002; Lucatelli et al., 2011; Bartlett et al., 2014). 

 

P2X7R is a member of the P2X family of nucleotide gated ion channels that is activated by 

high concentrations of extracellular ATP. Besides K+ efflux that triggers inflammasome assembly, 

the ion channel also supports Ca2+ and Na+ influx, leading to membrane depolarization and 

activation of intracellular signaling cascades (Coddou et al., 2011; Bartlett et al., 2014). The P2X4R 

crystal structure confirmed that assembly of 3 subunits, each harboring two transmembrane 

domains, forms the functional P2X receptor (Kawate et al., 2009). The large extracellular domain 

has ATP and metal ion binding sites that regulate receptor activation state. Channel opening is 

associated with conformational changes that reposition the transmembrane segments whereby 

different states of dilation may be adopted (Hattori and Gouaux, 2012; Jiang et al., 2013). The 

feature that distinguishes P2X7R from the other P2X family members is a long C-terminal tail 

(Suprenant et al., 1996; Rassendren et al., 1997) which has been implicated in the process of 

“membrane pore” formation that enables plasma membrane permeability to larger organic cations 

(Virginio et al., 1999; Browne et al., 2013).   

 

High extracellular ATP is a consequence of cell damage, and enforced by ATP release from 

activated innate immune cells. This acts as a danger signal amplification system that spreads the 

alarm within the local milieu. However, ATP is not only released upon tissue/cell injury or stress, 

but can also be secreted through membrane channels or secretory vesicles (Garcia and Knight, 

2010; Sorge et al., 2012; Burnstock, 2015). Given that TG2 is abundantly secreted in the context of 

inflammation but that extracellular TG2 also has formative roles in tissue development and 

homeostasis, we hypothesized that its export may be associated with P2X7R signaling. Here we Jo
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show for the first time that rapid TG2 export is regulated by P2X7R-mediated membrane pore 

formation.  
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Results 
 

Macrophages secrete TG2 in a P2X7R-dependent manner 

The THP-1 monocyte/macrophage cell model was chosen to investigate TG2 export as these cells 

have been reported to be competent in P2X7R-mediated IL-1β secretion (Mackenzie et al., 2001). 

We confirmed initially that activation of inflammasome formation by priming cells with 

lipopolysaccharide (LPS) for Toll-like receptor (TLR) signaling and subsequent stimulation with 

ATP induces IL-1β secretion into the cell supernatant as determined by capture ELISA (Fig. S1A). 

TG2 is expressed in differentiated macrophages but not in monocyte precursors (Mehta and Lopez-

Berestein, 1986). Therefore, THP-1 cells were treated with the phorbol ester TPA to induce 

differentiation (Fig. S1B), and TG2 upregulation was confirmed by Western blotting of cell lysates 

(Fig. 1A). We then used the ATP analogue BzATP for P2X7R activation as it shows a high degree 

of selectivity for P2X7R and does not activate P2Y family ATP-sensing receptors (Coddou et al., 

2011). Differentiated cells were BzATP stimulated for 10min, and culture supernatants were 

collected at the end of agonist treatment (pulse) and after a further 30min in the absence of agonist 

(chase) to capture immediate and potentially delayed TG2 secretion. BzATP stimulation induced a 

substantial increase in TG2 secretion as determined by Western blotting of cell-free supernatant 

(Fig. 1B). TG2 export was blocked by P2X7R antagonist A740003 (Fig. 1B) that inhibits IL-1β 

secretion in differentiated monocytes (Honore et al., 2006). To substantiate this finding, we 

analysed TG2 secretion in response to P2X7R activation in primary human M1 macrophages. 

BzATP triggered rapid TG2 secretion, contributing to soluble (Fig. 1C) and cell surface associated 

enzyme (Fig. S1C) whereby the soluble enzyme was undergoing processing generating a ~66kDa 

species. Processing did not involve inflammasome-associated caspase-1 nor cell surface MT1-MMP 

cleavage (Belkin et al., 2001) as it occurred in the presence of N-acetyl-YVAD-chloromethyl 

ketone (Ac-YVAD-CMK) or EDTA, respectively (Fig. 1D & S1C). Collectively, these data show 

that P2X7R regulates not only 1L-1 but also TG2 secretion in macrophages.  

 

Expression of P2X7R confers agonist-inducible, rapid TG2 secretion to HEK293 cells  

To investigate whether P2X7R alone was sufficient or other inflammasome pathway components 

are required for TG2 export, we established HEK293 cells stably expressing wildtype or tagged 

human P2X7R. This cell model was selected as it lacks endogenous expression of P2X receptor 

family members (Mackenzie et al., 2005) and secretes mature IL-1 in response to agonist when co-

transfected with P2X7R and pro-caspase-1 (Gudipaty et al., 2003). P2X7R expression was 

confirmed by Western blotting of cell extracts, whereby for tagged P2X7R a single band reactive 

with antibodies to P2X7R and the V5-tag was detected (Fig. S2A). Immunocytochemistry Jo
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confirmed membrane localization of the receptor in P2X7R cells and its absence in parental cells 

(Fig. S2B). In order to assess P2X7R functionality, changes in intracellular free Ca2+ concentration 

in response to BzATP were investigated using Fluo-4-AM. Only P2X7R cells but not parental cells 

responded to this agonist (Fig. S2C). A dose-response analysis for BzATP stimulation of P2X7R 

cells using Ca2+ signaling as a readout derived an apparent KD of ~75M (Fig. S2D). This is in line 

with literature data ranging from 40-100M depending on extracellular Ca2+ concentration 

(Rassendren et al., 1997). Therefore, stimulation with 100M BzATP produced a P2X7R specific 

and in terms of ligand occupancy, relevant response for further investigation of downstream events.  

 

We then investigated whether P2X7R activation induces TG2 secretion. TG2 transfected 

P2X7R cells were treated with agonist for 5, 10 or 30min, followed by a 30min chase period after 

agonist wash out. Supernatants of both fractions were analysed for TG2 by Western blotting. 

Within 10min of BzATP application, pulse fractions revealed substantial TG2 secretion in agonist 

treated but not vehicle treated cells (Fig. 2A). No TG2 export was seen after 5min indicating that 

kinetics were considerably slower than Ca2+ signaling. Interestingly, elevated TG2 levels in the 

chase fraction were observed in cells that were exposed to BzATP for 5min (Fig. 2A) or even 1min 

(not shown), indicating that P2X7R activation and not subsequent events occurring upon prolonged 

agonist exposure triggers TG2 export. As TG2 levels in the chase fraction were agonist exposure 

time independent (Fig. 2A) it appears that once initiated, the TG2 export mechanism is active over 

an extended time period and leads to gradual extracellular TG2 accumulation at a constant rate. 

Note, the amount of secreted TG2 is small compared to the total and hence, export does not deplete 

cellular TG2 over time period investigated (Fig. 2D, cell lysate). To further demonstrate that this 

cell response required P2X7R activity, we employed the competitive P2X7R inhibitor A740003. At 

5M, it completely blocks a rise in [Ca2+]i in response to BzATP (Fig. 2B, top panel), and this is 

reversible upon inhibitor wash out (Fig. 2B, bottom panel). BzATP stimulation of cells in the 

presence of this inhibitor was unable to trigger TG2 secretion (Fig. 2C), demonstrating that active 

secretion of TG2 is a P2X7R regulated process. 

 

P2X7R-mediated TG2 export is not linked to loss of cell membrane integrity or apoptosis 

Shedding of membrane-bound particles containing TG2 together with the lipid raft protein flotillin-

2 was reported (Antonyak et al., 2011). Hence, we investigated whether P2X7R-mediated TG2 

secretion correlated with flotillin-2 release. Western blot analysis of cell lysates confirmed that 

flotillin-2 and TG2 were expressed at comparable levels in P2X7R and parental cells (Fig. 2D, cell 

lysate). Only P2X7R cells responded to BzATP stimulation with release of flotillin-2 into the cell 

supernatant, indicating P2X7R-dependent vesicle shedding (Fig. 2D, medium). Similar to TG2, Jo
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flotillin-2 was present in the pulse fraction and accumulated in the chase fraction, potentially 

indicating co-release. To further analyse secreted material and exclude protein release through 

passive cell lysis we investigated externalization of the cytosolic proteins IB,  -

tubulin, as well as of HMGB-1 which is secreted non-classically via the exosome pathway (Lu et 

al., 2012). We were unable to detect any of these proteins in the cell supernatant after P2X7R 

activation (Fig. 2E & not shown). However, given that prolonged stimulation of P2X7R can lead to 

cell death (Mackenzie et al., 2005), and this critically affects the conclusions, we designed 

experiments to more selectively investigate loss of membrane integrity and apoptosis, respectively. 

Firstly, release of cytosolic lactate dehydrogenase (LDH) was quantified after stimulation of either 

P2X7R or parental cells with BzATP for 10min. No P2X7R induced release of LDH was seen (Fig. 

S3A). Secondly, BzATP treated P2X7R cells were chased for various times up to 22h and assessed 

for caspase-3 activation by Western blotting. Activated caspase-3 could not be detected at any time 

(Fig. S3B) whereas within 6h of TNF stimulation caspase-3 cleavage was evident as reported 

(Arlt et al., 2003). These data show that TG2 externalization is not related to cell damage or death 

but is a selective process, possibly linked to P2X7R-dependent membrane changes. This is 

consistent with activation of P2X7R triggering rapid alterations in membrane topology without 

causing cell death that completely reverse as [Ca2+]i falls unless receptor stimulation is sustained for 

long time periods (Mackenzie et al., 2005). 

 

TG2 localizes to membrane subdomains upon cell stimulation with P2X7R agonist 

In P2X7R expressing cells, the prolonged increase in [Ca2+]i
 upon BzATP application was followed 

within 30s by extensive cell blebbing as visualized by real-time microscopy (Fig. 3A, arrows). The 

term ‘blebbing’ is used here to describe formation of plasma membrane projections due to Rho-

dependent actin reorganization that follow P2X7R activation (MacKenzie et al., 2001; Pfeiffer et 

al., 2004). This response is P2X specific. Stimulation of the parental cells that express P2Y 

receptors with ATP induced smaller, transient oscillations in [Ca2+]i but no apparent morphological 

changes (Fig. 3A). This led us to speculate that TG2 externalization may be linked to membrane 

bleb formation, and we used GFP-tagged TG2 to monitor its redistribution in live cells. We 

confirmed that P2X7R activation triggered externalization of tagged TG2 similar to wild-type TG2 

(Fig. 3B). Analysis by confocal microscopy revealed a clear ubiquitous cytoplasmic distribution for 

TG2-GFP (Fig. 3C). Upon P2X7R activation, TG2-GFP was rapidly translocating into membrane 

blebs, and freely relocalized to sites where new membrane protrusions formed (Fig. 3C, arrow). 

However, despite abundant bleb formation, careful reconstruction from image sequences revealed 

that these large membrane protrusions remained continuous with the plasma membrane and were 

eventually retracted by cells. We obtained similar results for N- and C-terminally tagged TG2 Jo
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indicating that the position of the tag did not substantially alter protein localization. Although 

unable to directly visualize TG2 release, a noticeable reduction in fluorescence upon P2X7R 

activation indicated that the intracellular pool of TG2 was rapidly diminishing consistent with its 

relocation into the medium (Fig. 3B).  

 

P2X7R agonist-induced TG2 secretion is independent of MV shedding 

As small vesicles may be released by cells that are beyond the resolution of conventional confocal 

microscopy, we used light scattering combined with particle tracking to further analyse cell free 

supernatants for nanoparticles. A robust increase in particle shedding by P2X7R cells upon BzATP 

treatment was observed during stimulation and in the subsequent chase period (Fig. 4A). Most of 

the secreted particles had diameters of 81-262 nm (Fig. 4B) in line with more variably sized MV, 

rather than exosomes that originate from multivesicular bodies, are size-constrained and typically 

<90nm (Cocucci et al., 2009). TG2 expression modestly increased the proportion of larger particles 

(Fig. 4B) but did not significantly alter total particle release (Fig. 4A). To understand if TG2 

localizes in MV, freshly harvested conditioned medium was subjected to differential centrifugation 

and resulting pellets and supernatant were analysed by Western blotting (Fig. 4C). TG2 mainly 

localized to the 100,000xg supernatant fraction containing soluble proteins (S5), with some TG2 

found in very large aggregates or associated with organelles (P2) but not in the MV fraction (P4). 

To substantiate this, MV were separated using a sucrose density gradient (Fig. 4D). Again, TG2 

was predominantly in the soluble protein fraction. These data suggest that while P2X7R activation 

induces abundant MV release by cells, secreted TG2 is not apparently MV-associated but present in 

free form.  

 

Extracellular Ca2+ regulates TG2 externalization but its secretion is independent of catalytic 

enzyme functions 

TG2 secretion was effectively stimulated by P2X7R activation in media that contain 0.9mM Ca2+, 

which is similar to the free ionized extracellular Ca2+ concentration estimated at 1.1-1.3mM 

(Riccardi and Kemp, 2012), but surprisingly not in media containing high Ca2+ (Fig. 1D & 5A). 

BzATP treatment of cells in the absence of Ca2+ lead to enhanced TG2 secretion during stimulation 

only (Fig. 5A), indicating that TG2 export was faster but not sustained. In contrast, flotillin-2 

release occurring at 0.9mM Ca2+ was greatly reduced when cells were stimulated with agonist at 

either 0 or 2.2mM Ca2+ (Fig. 5A). This shows that TG2 and flotillin-2 secretion is differentially 

affected by [Ca2+]ex and hence, that the underlying mechanisms are distinct. As MV shedding is a 

Ca2+-dependent process, TG2 release in Ca2+-free medium supports a vesicle-independent mode of 

release in line with previous data (Fig. 4).  Jo
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To exclude Ca2+-dependent loss of externalized TG2 due to cell surface retention through 

interaction with substrates or autocatalytic crosslinking, we compared secretion of wild-type TG2 

with crosslinking incompetent TG2 C277S (Stephens et al., 2004). BzATP stimulation of cells 

induced export of both TG2 and TG2 C277S at 0.9mM Ca2+ but not at 2.2mM (Fig. 5B). This 

indicates that the lack of TG2 secretion at high [Ca2+]ex is not due to TG2 activity but may reflect 

differences in P2X7R activation state. This is further supported by high [Ca2+]ex affecting flotillin-2 

release as well (Fig 5A). Besides cation transport, activation of P2X7R can lead to “membrane 

pore” formation which manifests as apparent permeability of the plasma membrane to cationic 

molecules such as YO-PRO1 (Virginio et al., 1999; Pelegrín, 2011; Browne et al., 2013). 

Measurement of YO-PRO1 uptake confirmed that P2X7R cells but not parental cells form 

membrane pores upon BzATP treatment (Fig. 5C), and that the dye uptake rate is inversely 

correlated to [Ca2+]ex (Fig. 5D). Ca2+-nucleotide interactions could potentially limit the effective 

agonist concentration. However, the observed BzATP dose response is not consistent with this 

explanation (Fig. S3C). Therefore, Ca2+ likely acts in our experiments as an allosteric regulator of 

P2X7R, either directly or indirectly inhibiting receptor activation as previously suggested (Yan et 

al., 2011). Taken together, this suggests that high [Ca2+]ex is an important negative regulator of TG2 

secretion, whereby Ca2+ ions appear to regulate P2X7R activation rather than influencing TG2 

activity during export. 

 

TG2 export is linked to P2X7R-mediated membrane pore formation 

To assess the contribution of the initial ion flux on TG2 secretion, calmidazolium was employed. It 

is an inhibitor with broad selectivity for voltage gated fast acting Na+/K+ and L-type Ca2+-channels 

that also inhibits the initial ATP-evoked ion flux through P2X7R without affecting the downstream 

membrane pore formation (Virginio et al., 1997). Calmidazolium has an extracellular mode of 

action on P2X7R. BzATP induced TG2 export in P2X7R cells was unaffected by the presence of 

calmidazolium but flotillin-2 secretion was blocked (Fig. 6A). The inhibitor had no effect on pore 

formation activity of P2X7R (Fig. 6B) but substantially reduced the rise in [Ca2+]i mediated by 

P2X7R activation (Fig. 6C). This indicates that TG2 secretion is linked to P2X7R-dependent pore 

formation but not the initial ion flux and associated membrane depolarization. 

 

Given that TG2 secretion was induced by P2X7R activation in Ca2+-free medium but the 

kinetics of export were altered (Fig. 5A), we investigated whether Ca2+ release from intracellular 

stores plays a role. P2X7R cells were pre-loaded with Ca2+ chelator BAPTA-AM to buffer free 

cytosolic Ca2+ prior to BzATP stimulation in Ca2+-free medium. This reduced TG2 release to near 

baseline levels (Fig. S3D), confirming that Ca2+ signaling has a role in TG2 export as previously Jo
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suggested (Zemskov et al., 2011). Conversely, cyclopiazonic acid (CPA) was applied to inhibit the 

SERCA Ca2+ transporter to trigger a rise in [Ca2+]i in the absence of P2X7R activation. CPA 

addition alone was unable to induce TG2 secretion (Fig. S3D), despite inducing peak [Ca2+]i of the 

same magnitude as P2X7R activation when used at 20M (Fig. S3E). This indicates that a rise in 

[Ca2+]i by itself is not sufficient to induce TG2 export.  

 

TG2 secretion is pannexin independent but enhanced by activating mutations in P2X7R 

P2X7R-mediated membrane pore formation has been proposed to relate to P2X7R channel dilation 

upon saturation of ATP binding sites, possibly combined with acquisition of additional subunits 

(Browne et al., 2013) or alternatively, by coupling to another channel, i.e. pannexin-1 (Pelegrin and 

Suprenant, 2007; Gulbransen et al., 2012). We evaluated the latter by treating cells with pannexin 

inhibitors. Neither the peptidic competitor 10Panx (Pelegrin and Suprenant, 2007) nor trovafloxacin 

(Poon et al., 2014) had any effect on BzATP stimulated YO-PRO1 uptake (Fig. 7A) or TG2 export. 

We therefore sought to clarify whether the C-terminally truncated P2X7R splice variant B that lacks 

pore forming ability (Adinolfi et al., 2010) supports TG2 secretion. However, expression of this 

variant after site-specific stable integration or transient transfection was very low as determined by 

Western blotting of cell lysates (Fig. 7B), and we were unable to confirm cell surface localization 

with P2X7R extracellular domain antibodies. Nevertheless, we attempted to confirm agonist-

mediated membrane depolarization using the sensitive voltage sensing FRET probes CC2-DMPE 

and DiSBAC2 (Wolff et al., 2003). Only wild type P2X7R expressing cells showed membrane 

channel activity (response ratio for P2X7R: 1.53±0.04BzATP, 2.17±0.12KCl, 1.07±0.06control; for 

P2X7R variant B: 1.10±0.03BzATP, 1.74±0.10KCl), suggesting altered trafficking and degradation of 

the truncated receptor variant.  

 

A mutation in mouse P2X7R renders it deficient in pore forming activity (Sorge et al., 

2012). As the affected sequence motif in the P2X7R C-terminal domain is conserved in human, we 

have generated cells expressing human P2X7R with an analogous mutation, P451L (Fig. 7B,C). 

However, these cells formed membrane pores in response to BzATP as revealed by YO-PRO1 

uptake (Fig. 7D). This led us to investigate the gain of function P2X7R variant, A348T, that confers 

increased risk for autoimmune disease in man (Stokes et al., 2010) to substantiate a link between 

pore formation and TG2 secretion. Cells expressing P2X7R A348T (Fig. 7B,C) had a substantially 

increased propensity to form membrane pores as evidenced by enhanced peak pore activity (Fig. 

7D) and by pore formation at very low BzATP concentrations (Fig. 7E). This enhanced pore 

activity was reflected in a corresponding increase in TG2 export (Fig. 7F,G). Interestingly, we also 

observed BzATP-induced secretion of thioredoxin-1 (Fig. 7H), an enzyme that can re-activate Jo
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oxidatively inactivated TG2. This not only indicates that membrane pore activity controls the rate of 

TG2 export but that it leads to co-secretion of TG2 with thioredoxin-1 (Fig. 8). 
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Discussion 

 

We identify P2X7R as the central regulator of the pathway that enables active export of TG2 and its 

co-activator, thioredoxin-1. The action of both of these enzymes has been linked to specific immune 

responses (Ismaa et al., 2009; Jaeger et al., 2013), and this may therefore constitute a pathway for 

export of proteins relevant to innate immunity. Besides having roles in re-instating tissue integrity 

following injury or associated with infection control, TGs including TG2 have been implicated in 

immune regulation (Toth et al., 2009; Loof et al., 2011). Here, we show that in 

monocytes/macrophages, purinergic signaling triggered rapid TG2 export in the absence of TLR 

engagement, and this response was P2X7R dependent but did not require caspase-1 activity. 

Likewise, introduction of P2X7R in HEK293 cells devoid of other inflammasome components (Lu 

et al., 2012) instated agonist-regulated rapid TG2 export. Taken together, the data demonstrate that 

P2X7R signaling alone is sufficient to trigger TG2 export, and involvement of an inflammasome-

independent mechanism of export is further supported by the fact that externalized TG2 was not 

vesicle-associated or co-secreted with exosome-associated HMGB-1.  

 

A redox sensitive Cys switch promotes oxidative inactivation of TG2 (Stamnaes et al., 

2010), a mechanism that is thought to contribute to rapid enzyme inactivation in the extracellular 

milieu (Jin et al., 2011) and thereby, to prevent aberrant crosslinking that may lead to fibrosis and 

potentially autoimmunity via neo-epitope formation (Aeschlimann and Thomazy, 2000; Ismaa et 

al., 2009). However, it has been shown that extracellular matrix-associated TG2 can be reactivated 

by thioredoxin-1 released from activated monocytes in inflammation (Jin et al., 2011). Cell surface 

associated thioredoxin-1 plays a key role in innate immunity, particularly in mucosal epithelia 

where it activates -defensin-1 (Jaeger et al., 2013). Interestingly, thioredoxin-1 is also an 

unconventionally secreted protein (Rubartelli et al., 1992), and our results show that it is in fact co-

secreted with TG2. We speculate that thioredoxin-1 may not primarily act on pre-existing 

extracellular TG2 but may have a role as a chaperone during active TG2 export, enabling 

conversion of TG2 into its active conformation. Such a mechanism could explain why in celiac 

disease active TG2 accumulates in the intestinal mucosa (Korponay-Szabo et al., 2004). 

 

Purinergic signaling fulfills the pre-requisites for a unifying pathway regulating TG export 

As TG2, and also other TGs, can be externalized by a range of cells including myeloid, 

mesenchymal, endothelial and epithelial cells (Aeschlimann and Thomazy, 2000; Nurminskaya and 

Belkin, 2012), it is implausible that this involves multiple highly divergent mechanisms as 

proposed. P2X7R is not restricted to the hematopoietic lineage as originally thought but is also Jo
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widely distributed among mesenchymal, endothelial and epithelial cells, and in the central and 

peripheral nervous system (Bartlett et al., 2014). Activation of P2X7R occurs not only in 

conjunction with injury, cell stress and inflammatory processes but has major independent roles in 

the musculoskeletal (Garcia and Knight, 2010) and nervous system (Burnstock, 2015), contexts 

within which TG2-mediated extracellular reactions are also prevalent (Aeschlimann et al., 1995; 

Ismaa et al., 2009; Thomas et al., 2013).  

 

Unlike previous work, our data implicate a regulated pathway in TG2 export. This 

mechanism may be activated to a varying extent under different conditions. A key finding here is 

that Ca2+ levels present in many media formulations impair TG2 release. Our data with catalytically 

inactive TG2 C277S show that this is not related to regulation of TG2 by Ca2+ but due to suppressed 

P2X7R functionality in line with evidence suggesting that divalent cations including Ca2+ 

allosterically inhibit P2X7R (Yan et al., 2011). Therefore, varying extracellular Ca2+ or ATP 

concentrations may explain some contradictory findings in the literature. It is worth noting that 

modest shear stress during medium exchange or passaging may trigger cellular ATP release 

(Rumney et al., 2012) and trigger P2X7R-mediated TG2 release at low (0-1mM) but not high 

(≥2mM) [Ca2+]ex. Hence, endogenous P2X7R activation may explain apparently “constitutive” TG2 

secretion.   

 

Crucially, in our HEK293 model TG2 is not retained at the cell surface or internalized, 

unless an appropriate cell surface receptor is introduced (Fig. S4). Hence, TG2 export can be 

directly assessed by quantification in the cell supernatant. Thus, our system is overcoming intrinsic 

difficulties that hampered progress in the analysis of TG2 export previously, including 

quantification of cell surface associated TG2 without disrupting cell integrity or endocytic TG2 

uptake and retrograde transport. This together with modulation of the different P2X7R activities 

with small molecules or by mutagenesis provided strong evidence for a direct link between P2X7R 

signaling and TG2 export. Our data is not contradictory to passive TG2 release as a consequence of 

a substantial insult including mechanical damage (Upchurch et al., 1987) or TLR-engagement 

(Siegel et al., 2008), or to vesicle-associated TG2 release under circumstances such as serum 

starvation-associated cell stress (Antonyak et al., 2011). Rather, it suggests that purinergic signaling 

links controlled TG2 export to specific extracellular functions. Furthermore, given that MV-

associated TG2 co-localized with fibronectin (Antonyak et al., 2011) an extracellular enzyme 

localization is implied. Therefore, it is possible that TG2 preferentially binds to plasma membrane 

subdomains where specific types of MV form (pericellular matrix reorganization) explaining the 

apparent association but that this occurs subsequent to membrane translocation. Jo
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Different activities of TG2 as well as sequence motifs for interaction with proteins and 

phospholipids were implicated in the export process (Balklava et al., 2002; Scarpellini et al., 2009; 

Chou et al., 2011; Zemskov et al., 2011). Our data show that transamidation activity is dispensable 

for export and that tagging TG2 with GFP does not prevent export, thereby excluding a terminal 

targeting signal. Blocking TG2 interaction with classically secreted proteins such as fibronectin, 

syndecans and integrins may alter extracellular localization or endocytic uptake and trafficking of 

TG2 (Antonyak et al., 2011; Chou et al., 2011; Zemskov et al., 2011) but cannot explain how the 

implied membrane translocation occurs.  

 

Mechanistically, TG2 export is linked to the secondary permeability pathway 

Several lines of evidence show that TG2 export is linked to the “membrane pore” activity 

associated with P2X7R activation (Fig. 8). Our data show that TG2 export is mechanistically 

separate from MV shedding. In line with this, P2X7R induces bleb formation and MV shedding 

through actin reorganization via MAPK p38 and Rho activation whereas YO-PRO1 uptake by cells 

is insensitive to cytochalasin-D (Pfeiffer et al., 2004). We further show that TG2 export is not 

induced by a [Ca2+]i rise alone, nor abrogated by pharmacological suppression of P2X7R ion 

channel function without affecting membrane pore formation. In contrast, introducing a mutation in 

P2X7R that enhanced pore activity resulted in accelerated TG2 export. 

 

P2X7R is the only P2X receptor where membrane pore formation is consistently observed 

and this activity is therefore a defining feature of it. While mechanistically not fully understood, it 

requires the extended unique C-terminal intracellular tail (Smart et al., 2003; Sun et al., 2013). 

Recent data suggest that large cations can pass through the P2X7R channel itself, and that blocking 

the channel prevents dye uptake by cells (Browne et al., 2013). However, a larger channel diameter 

than expected from available structural data (Hattori and Gouaux, 2012) would be required to 

adequately explain permeation of some molecules, and a more substantial conformational change 

than predicted from existing structural data is indeed supported by a recent study (Allsopp and 

Evans, 2015). Interestingly, P2X7R also couples to effectors implicated in dye permeability and a 

sustained [Ca2+]i elevation by itself was shown to trigger membrane pore opening (Bartlett et al., 

2014). In our HEK293 model, calmidazolium attenuated Ca2+ influx while membrane pore activity 

was unaffected suggesting that distinct permeation pathways are involved. Pannexin-1 is not 

involved as shown with inhibitors, consistent with data of others (Sun et al., 2013). Physiologically, 

the secondary permeability pathway may have a role in release of secondary messengers, e.g. 

glutamate release in P2X7R expressing HEK293 cells was reported (Cervetto et al., 2013). Given Jo
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the delay between P2X7R-dependent Ca2+ signaling and detection of changes in extracellular TG2, 

we cannot exclude a role of a secondary messenger system. However, it is conceivable that this 

pathway constitutes a pore through which proteins can be trafficked via co-translocational 

unfolding (Rodriguez-Larrea and Bayley, 2014). 

 

TG2 activation is biological context-dependent 

Given its requirement for high extracellular ATP concentration, P2X7R will primarily be activated 

after injury, in the context of inflammation, or in the tumor microenvironment. Enhanced TG2 

expression by resident fibroblasts and infiltrating myeloid cells is an integral part of the tissue repair 

response and leads to accumulation of extracellular TG2. TG2 secretion is thought to bring about its 

activation via Ca2+-induced conformational changes (Pinkas et al., 2007). However, it is possible 

that high extracellular nucleotide concentrations at sites of injury or inflammation not only activate 

P2X7R itself but also control TG2 activation as purine nucleotides are allosteric inhibitors, although 

the apparent binding affinity for ATP is low (~1mM) compared to GTP (~3M) (Han et al., 2010; 

Thomas et al., 2013). Furthermore, a proposed heparan sulfate binding site is unique to the GTP-

induced conformation (Lortat-Jacob et al., 2012) and such an interaction may stabilize this 

conformation and prevent Ca2+ binding. Therefore, it is worth noting that signaling functions for 

extracellular nucleotide bound enzyme have been postulated (Johnson and Terkeltaub, 2005; Toth 

et al., 2009).  

 

Implications for TG2-mediated disease processes  

P2X7R is highly polymorphic, and it has become increasingly clear that some amino acid 

substitutions predispose to disease (Bartlett et al., 2014). We have shown here that a polymorphism 

in the second transmembrane domain that is associated with autoimmune disease (Stokes et al., 

2010) facilitates membrane pore formation leading to enhanced TG2 secretion. This opens the 

possibility that the threshold for activation of TG2 export differs between individuals depending on 

their P2RX7 genotype, and this may constitute a risk factor for diseases where TG2 mediated 

reactions cause pathology. This extends to animal models of disease. Notably, in contrast to mouse 

strain 129, the C57BL/6 background widely used in genetic studies carries P2X7R P451L which 

lacks the capacity to form membrane pores (Sorge et al., 2012). Different mouse lines may 

therefore differ with regards to the capacity for active TG2 export.  

 

In conclusion, we have demonstrated that TG2 export is regulated by purinergic signaling, 

and that P2X7R plays a central role in this process. Our findings provide an explanation for the link 

between high levels of extracellular TG2 activity and inflammatory responses, and thereby identify Jo
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a new avenue to limit TG2 activity therapeutically in conditions where enzyme function directly 

drives pathogenic processes including fibrotic disease and gluten related disorders. 
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Materials and methods 

Cell culture  

THP-1 monocytic leukemia cells were grown in suspension in RPMI1640 medium containing 10% 

heat inactivated FBS, streptomycin, and penicillin. Mononuclear cells were isolated from 

heparinised human blood on Ficoll-Plaque PREMIUM (GE Healthcare), washed in PBS, and 

cultured for 7 days as THP-1 cells but with addition of 20ng/ml human GM-CSF (Preprotech) to 

derive M1 macrophages (with informed consent of donors and approval of the Research Ethics 

Committees: REC10/MRE09/28). HEK293 flp-in cells (Invitrogen) were cultured in DMEM 

containing 10% FBS, above antibiotics and 100g/ml zeocin (Invitrogen). Experiments were 

conducted without antibiotics. 

 

Generation of stably transfected cell lines 

P2X7R was amplified by PCR from image clone (ID:4298811) using primers specified in Table S1 

to generate wild-type, truncated and V5-tagged coding sequences, which were cloned into 

pcDNA5/V5-His/FRT vector (Invitrogen). Constructs for P2X7R mutants were generated by site 

directed mutagenesis using oligonucleotides given in Table S1. The coding sequence of all 

constructs was verified by sequencing. Cell lines were generated by co-transfection of P2X7R and 

recombinase (pOG44, Invitrogen) expression vectors into HEK293 flp-in cells using FuGENE 6 

(Promega), followed by selection of stable transfectants with hygromycin B (100g/ml).  

 

THP-1 cell differentiation and activation  

Cells were differentiated with 0.5g/ml TPA, and for IL-1 upregulation, treated with 100ng/ml 

LPS for 24h. For activation, cells (1x106/well) were suspended in PSS (10mM Hepes/NaOH, pH 

7.4, 147mM NaCl, 2mM KCl, 1mM MgCl2, indicated CaCl2 concentration, and 12mM glucose) 

and ATP stimulated. Medium was carefully collected and rendered cell-free by centrifugation 

(1,500xg, 10min). Cells were extracted on ice in 20mM Hepes/NaOH, pH 7.4, 150mM NaCl, 1mM 

EGTA, 1% Triton-X100, 0.25% deoxycholate, 10% glycerol, 1mM PMSF and 1mM N-

ethylmaleimide, and the extract cleared by centrifugation (15,000xg, 10min, 4˚C). IL-1 

concentration in conditioned media (100l) was determined by capture ELISA (Ready-SET-Go Set, 

eBioscience). 
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Immunocytochemistry 

Cells grown on poly-L-lysine coated coverslips were fixed with 2% paraformaldehyde/PBS for 

10min, and permeabilized in 0.1% Triton-X100/PBS. After blocking of non-specific binding with 

1% BSA/PBS, P2X7R was detected with 2g/ml anti-P2X7R antibodies (sc-25698, Santa-Cruz) 

and Alexa Fluor 488-conjugated secondary antibodies. Coverslips were mounted using Vectashield 

containing DAPI. 

 

[Ca2+]i measurements in individual cells 

Fluo-4-AM (Invitrogen) Ca2+ indicator was prepared in DMSO containing 20% Pluronic F-127. 

Cells (7x104/well) in poly-L-lysine coated glass bottom dishes (50mm; MatTek) were loaded for 

20min with 3M Fluo-4-AM in OptiMEM (Invitrogen). Medium was replaced with fresh 

OptiMEM, and cells were monitored by confocal microscopy during ATP or BzATP (Sigma) 

stimulation at 37˚C/5% CO2. Real-time videos were acquired (2.62s/frame, 63x objective) using 

sequential scanning. For experiments with P2X7R antagonist, cells were Fluo-4-AM loaded in 

OptiMEM containing 5M A740003 (Tocris) prior to stimulation with agonist in A740003-

containing OptiMEM. Images were analyzed using the LAS-AF software (Leica). 

 

Analysis of TG2 externalization 

Differentiated THP-1 cells (1x106/well) and primary macrophages (1x105/well, 24-well plates) were 

stimulated with P2X7R agonists in OptiMEM. HEK293 P2X7R or parental cells (1.5x105/well, 24-

well plates) were transfected with 0.5g expression construct for wild-type TG2 or TG2 C277S 

(Stephens et al., 2004), or GFP-tagged TG2 (Table S2) using FuGENE-6. After 48h, cells were 

washed with pre-warmed/gassed OptiMEM, and stimulated with P2X7R agonist or CPA (Merck-

Millipore) in OptiMEM (250l/well). For inhibitor studies, cells were treated with 5M A740003, 

1M calmidazolium chloride (Merck-Millipore), 10M BAPTA-AM (Merck-Millipore) or vehicle 

for 10min, and then BzATP stimulated in presence of respective inhibitors as indicated. Caspase-1 

inhibitor Ac-YVAD-CMK was prepared fresh in OptiMEM and diluted to 100M final 

concentration in experiments. Cell supernatant (pulse fraction) was collected, and cells washed with 

and subsequently incubated in pre-warmed/gassed OptiMEM without agonist for 30min (chase 

fraction). Conditioned media from four wells (six wells for macrophages) were combined, and 

rendered cell-free by centrifugation (1,500xg, 10min) for analysis. Cell surface protein labeling 

with Sulfo-NHS-SS-biotin and purification was carried out with the Pierce cell surface protein 

isolation kit. 
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Immunoblotting 

Lyophilized (500l) or ethanol precipitated (1.3ml, macrophages) conditioned media were 

reconstituted in 1/10th or 1/50th of original volume of 12.5mM Tris/HCl, pH 6.8, 4M urea, 2% SDS, 

20mM EDTA, 2% -mercaptoethanol, and 15% glycerol. Protein concentrations of extracts were 

determined with Bicinchoninic Acid Protein Assay. 20l reconstituted media or 10g cell extract 

together with Amersham LMW-SDS markers were separated on 4-20% SDS-PAGE Tris/glycine 

gels (Invitrogen) under reducing conditions, and transferred onto nitrocellulose membranes. For 

thioredoxin-1 detection, ethanol precipitated (1:9,v/v) proteins (600l medium) were resuspended 

as above, and separated in 16% SDS-PAGE Tricine gels (Invitrogen) calibrated with Broad Range 

marker (11-190kD; NEB). Antibody labeling was performed as described (Aeschlimann et al., 

1993) using monoclonal CUB7402 to TG2 (0.2g/ml), TUB2.1 to -tubulin (2.6g/ml), to flotillin-

2 (0.5g/ml; 610383, BD-Biosciences), to HMGB-1 (0.73g/ml; ab184203, Abcam), to V5-tag 

(20ng/ml) or polyclonal anti-IB (1g/ml; sc-371, Santa-Cruz), anti-caspase-3 (40ng/ml; 9662, 

Cell-Signaling), anti-P2X7R C-terminus (1g/ml) or anti-P2X7R extracellular domain (1.7g/ml; 

APR-008, Alomone Labs) antibodies. Anti-thioredoxin-1 antibodies (1:200; FL105, Santa-Cruz) 

were used with 5% casein as blocking agent. Bound antibodies were detected with HRP-conjugated 

secondary antibodies and Amersham ECLTM Plus/Prime. TG2 band intensity was quantified by 

densitometry using Image Lab 5.1 software (Bio-Rad). 

 

Analysis of cell damage and apoptosis 

To assess cell integrity, LDH release was measured using CytoTox-ONETM HMI Assay (Promega). 

Cells (1.2x105/well, 24-well plate) were BzATP-treated in 300l OptiMEM for 10min (n=4), and 

cell-free conditioned media (100l) analyzed for LDH. For estimation of total LDH, a replicate well 

set was subjected to cell lysis.  

To assess whether treatment induced cell death, P2X7R cells were BzATP stimulated and 

chased as described, and where indicated subsequently cultured in serum containing DMEM for up 

to 22h. Cell extracts and particulate material recovered from conditioned media were analysed for 

caspase-3 by immunoblotting. 

 

Localization of GFP-tagged TG2 using confocal microscopy 

P2X7R cells on poly-L-lysine coated coverslips were transfected with constructs for expression of 

N- or C-terminally GFP-tagged TG2. After 24h, the coverslip was mounted for microscopy into a 

customized holder using silicone grease. Cells were kept in OptiMEM at 37˚C/5% CO2, and 

stimulated with a defined volume of agonist solution to obtain 1mM ATP or 100M BzATP while 
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monitoring GFP fluorescence and acquiring real-time movies. 

 

Detection and isolation of MV  

TG2 or mock transfected P2X7R cells were stimulated with 100M BzATP or vehicle. Freshly 

collected conditioned media were rendered cell-free by centrifugation (1,500xg, 10min) and 

supernatants analysed for MV by particle tracking using the NanoSight LM12 system with a high 

sensitivity camera (Webber and Clayton, 2013). Five 60s videos per sample (1-5x108 particles/ml) 

were recorded at 25.6 frames/s (gain=250), and analysed using the NTA2.3 software. Alternatively, 

freshly collected conditioned media were subjected to differential centrifugation at 4˚C, with 

1,500xg for 10min, followed by 3,000xg for 20min, and then either 10,000xg for 30min and 

100,000xg for 1h or subjected to density gradient centrifugation. Supernatant (1.0 ml) was carefully 

layered on Tris-buffered sucrose step gradient (0/20/60%) and centrifuged at 100,000xg for 90min. 

Fractions (~1ml) constituting top layer and 20/60% interface (MV fraction) as well as pellet were 

collected. Proteins were precipitated with 9 volumes of ethanol at 4˚C, and analysed using 

immunoblotting.  

 

P2X7R “membrane pore” activity 

Cells in poly-L-lysine coated black optical 96-well plates (Nunc, 165305) were placed in PSS 

containing 0-2mM Ca2+ and 1M YO-PRO1 (Invitrogen). The plate was transferred to a FLUOstar 

Omega reader (BMG Labtech) equilibrated to 37˚C/5% CO2. BzATP was injected to obtain 0-

500M final concentration (n=3) and fluorescence measured (4mm orbital area) every 40s for 

30min. Where indicated, cells were preincubated with 100M 10Panx (Tocris) for 10min or 10-

100g/ml trovafloxacin (Sigma) for 30min and stimulated in the presence of inhibitors. After 

normalization for well-specific fluorescence, average YO-PRO1 fluorescence of unstimulated cells 

was subtracted from that of agonist stimulated cells to correct for bleaching. Dye uptake rates were 

derived by linear regression of data from initial 5min. 

 

[Ca2+]i measurements in plate format 

Cells (3x104 /well) in optical 96-well plates were loaded with Fluo-4-AM, washed, and placed in 

fresh OptiMEM (90l/well). After measuring baseline fluorescence, different concentrations of 

BzATP (0-300M) or medium alone were injected (10l/well). Fluorescence changes were 

measured in well mode over 20s, with 40 0.1s intervals followed by 0.4s intervals. Data from eight 

wells per condition were averaged. Fluorescence of control was subtracted from data with agonist 

treatment to correct for bleaching. Data (F=fluorescence, t=time) for the first 10s were fitted using 

equation 1 to estimate the maximal fluorescence value (Fmax):   
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𝐹 =
1−𝑒−(𝐴−𝐹𝑚𝑎𝑥)𝑘𝑡

1

𝐹𝑚𝑎𝑥
 – 

1

𝐴
𝑒−(𝐴−𝐹𝑚𝑎𝑥)𝑘𝑡

+ 𝐶 (1) 

 

whereby k is the association constant, A is a function of agonist concentration and C is a constant 

for baseline correction. The association constant obtained from data fitting was k=1.8x10-6M-1s-1. 

Fmax was then plotted against the agonist concentration to derive a dose-response curve.   

 

Membrane potential analysis  

Voltage sensor probes, coumarin-labeled phospholipid CC2-DMPE (FRET donor) and oxonol dye 

DiSBAC2(3) (acceptor), were from Invitrogen. Cells (3x104/well) in optical 96-well plates were 

loaded with 10M CC2-DMPE in FRET buffer (10mM Hepes/NaOH, pH 7.4, 160mM NaCl, 

0.9mM CaCl2, 1mM MgCl2, and 10mM glucose) containing 200g/ml Pluronic F-127 for 30min, 

washed, and incubated in 100l 10M DiSBAC2(3) in FRET buffer for 20min. 10min after addition 

of tartrazine (1.2mM), fluorescence measurements (Ex420-10nm, Em=460-10nm/550-10nm) were 

conducted in well mode at 37˚C/5% CO2. Gain was adjusted to yield similar baseline readings for 

each fluorophor at resting potential. Following baseline acquisition, 10l 0.82M KCl, 100M 

BzATP, or buffer control were injected while monitoring fluorescence. Following subtraction of 

signal without cells, the signal ratio (SR) before and at equilibrium after depolarization was 

calculated, and the response ratio (RR) derived: RR=SRdepol/SRpol.   

 

Statistics 

One-way ANOVA was used and significance between groups determined with Tukey post-test, 

whereby p < 0.05 was considered significant. 
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Ac-YVAD-CMK, N-acetyl-YVAD-chloromethyl ketone; 

BAPTA-AM, (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) acetoxymethylester; 

BzATP, benzoylbenzoyl-ATP; 

CPA, cyclopiazonic acid; 

Fluo-4-AM, Fluo-4 acetoxymethylester; 

HMGB-1, high-mobility group box protein-1; 

IB, nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha; 

IL, interleukin; 

LDH, lactate dehydrogenase; 

LPS, lipopolysaccharide; 

MV, microvesicles; 

NALP, NACHT domain-, leucine-rich repeat-, and PYD-containing protein; 

P2X, purinergic receptor (ion channel); 

P2X7R, P2 receptor X7; 

P2Y, purinergic receptor (G-protein coupled); 

PSS, physiological salt solution; 

SERCA, Sarco(Endo)plasmic reticulum Ca2+ ATPase; 

TG, transglutaminase; 

TLR, Toll-like receptor; 

TPA, 12-o-tetradecanoyl-phorbol-13-acetate. 
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Fig. 1   P2X7R inhibition blocks TG2 secretion by macrophages. 

(A) Differentiated monocytes express TG2. THP-1 cells were differentiated for indicated time with 

TPA and stimulated with LPS as indicated. Cell extracts were analysed by Western blotting for 

TG2, or -tubulin as a loading control (*=non-specific reactivity).  

(B) TG2 export requires P2X7R activity. Differentiated THP-1 cells were pre-treated with vehicle 

or 5μM P2X7R inhibitor A740003 for 10min, then stimulated as indicated with BzATP for 10min 

with or without inhibitor (pulse). Cells were chased for 30min in P2X7R agonist/antagonist-free 

medium. Collected media of pulse and chase (200l) were rendered cell-free by centrifugation, and 

analyzed for TG2 by Western blotting.  

(C,D) P2X7R activation triggers TG2 secretion in peripheral blood mononuclear cell-derived 

macrophages. Macrophages were BzATP stimulated and chased as in B, and collected media of 

pulse and chase analyzed for TG2 by Western blotting alongside the cell lysates (C). The presence 

of 100M Ac-YVAD-CMK did not prevent externalization or cleavage of TG2, indicating a 

caspase-1 independent process (D). 
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Fig. 2   P2X7R activation mediates TG2 externalization. 

(A) Analysis of TG2 secretion in HEK293 P2X7R cells. TG2 transfected cells were stimulated with 

BzATP or vehicle for indicated time (pulse), then incubated for 30min in agonist-free medium 

(chase). TG2 secretion into cell-free supernatants was assessed by Western blotting. 

(B) Inhibitor A740003 reversibly blocks P2X7R activation. P2X7R cells were incubated with Fluo-

4-AM and 5μM P2X7R inhibitor for 20min prior to BzATP stimulation in the presence of inhibitor Jo
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(top), washed with inhibitor-free medium for 5min, and then re-stimulated with BzATP (bottom). 

Fluorescence (Ex=488nm, Em=500-535nm) change in individual cells was monitored by confocal 

microscopy (mean±s.e.m., n=30) (right). Optical sections of the same field before and 180s after 

BzATP addition are shown (left). Bar=25m.  

(C) P2X7R inhibitor blocks TG2 secretion. TG2 transfected P2X7R cells were pre-treated with 

P2X7R inhibitor or vehicle for 10 min before BzATP stimulation as indicated. TG2 release into 

media was assessed as in A.  

(D,E) Cells release membrane-bound particles upon P2X7R activation. TG2 transfected P2X7R or 

parental cells were BzATP stimulated for 10min, and chased in agonist-free medium. Conditioned 

media and cell lysate were analysed by Western blotting for TG2 and the MV marker flotillin-2 (D) 

or as a control, -tubulin, IB and HMGB-1 (E). 
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Fig. 3   Membrane blebs induced by P2X7R activation contain TG2. 

(A) P2X7R signaling induces rapid membrane blebbing. Fluo-4-AM loaded P2X7R cells were 

stimulated with BzATP while acquiring fluorescence and phase contrast images by real-time 

microscopy to visualize morphological changes and Ca2+ signaling simultaneously (top). Membrane 

blebs are indicated by arrows. ATP stimulation of parental cells induces oscillating Ca2+ signals but 

no overt morphological changes (bottom). Bar=25m. 

(B,C) TG2 redistributes into membrane blebs. To confirm export of tagged TG2, TG2 (WT) or 

TG2-GFP expressing P2X7R cells were stimulated with 100M BzATP for 10min, chased for Jo
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30min in agonist-free medium, followed by analysis of conditioned media and cell extracts for TG2 

by Western blotting (B). To localize GFP-tagged TG2 during BzATP stimulation, real-time 

confocal microscopy was employed. Genesis of a membrane bleb is depicted (arrow), with an 

optical section of GFP fluorescence overlaid onto phase contrast images to correlate morphological 

changes with changes in TG2 distribution (C). Bar=25m. 
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Fig. 4   P2X7R-mediated TG2 export is not due to MV release. 

(A,B) Analysis of vesicle release by nanoparticle tracking. TG2 or mock transfected P2X7R cells 

were BzATP stimulated for 10min, chased for 30min in agonist-free medium, and conditioned 

media analysed for nanoparticles using light scattering in combination with particle tracking 

(Nanosight). Particle distribution and total particle concentration is shown (mean±s.e.m.; n=5) (A). 

Particles were broadly assigned to 4 fractions based on volume:  representing exosomes (~60nm; Jo
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≤80nm diameter), MV (~145nm; 81-262nm), larger vesicles (~335nm; 263-425nm) and 

aggregates/membrane blebs (≥426nm) (B). 

(C,D) Analysis of isolated MV for TG2. Cell-free media (S1) of BzATP or control treated cells 

were subjected to differential centrifugation (P=pellet; S=supernatant): in C, 3000xg twice (P2, P3), 

10,000xg (P4), and 100,000xg (P5, S5) and in D, 3,000xg followed by separation of MV on a 

sucrose cushion, and fractions analysed for TG2 by Western blotting. 
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Fig. 5   Extracellular Ca2+ regulates TG2 secretion. 

(A) P2X7R-mediated TG2 export at different [Ca2+]ex. P2X7R cells expressing TG2 were BzATP 

stimulated for 10min in medium containing 0.9 or 2.2mM Ca2+ or in Ca2+-free medium, and chased 

for 30min in respective media without BzATP. Conditioned media were analyzed by Western 

blotting for TG2 and flotillin-2.  

(B) TG2 catalytic activity is not required for P2X7R-mediated export. P2X7R cells expressing TG2 

or TG2 C277S mutant were BzATP stimulated in medium containing 0.9 or 2.2mM Ca2+ and TG2 

export was assessed as above.  

(C,D) [Ca2+]ex regulates P2X7R activity. P2X7R or parental cells were stimulated with BzATP as 

indicated in PSS containing YO-PRO1 and different concentrations of Ca2+. To determine YO-
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PRO1 uptake by cells after BzATP application, changes in well-specific fluorescence (Ex=480-

10nm, Em=520-10nm) were monitored over time. A representative experiment of dye uptake in 

Ca2+-free PSS is shown as mean±s.e.m. of 2 wells (C). In D, the initial rates of YO-PRO1 uptake at 

different [Ca2+]ex in response to 300μM BzATP are given (mean±s.e.m.; n=2).  
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Fig. 6   TG2 export is independent of K+ efflux and membrane depolarization.  

(A) Calmidazolium (calm) blocks flotillin-2 but not TG2 release. TG2 transfected P2X7R cells 

were pre-treated for 10min and then BzATP stimulated in medium containing 1M calm or vehicle. 

Cells were chased in agonist-free medium, and conditioned media analyzed by Western blotting for 

TG2 and flotillin-2.  

(B) Calm does not affect P2X7R-dependent “membrane pore” formation. P2X7R cells were pre-

treated with calm, P2X7R inhibitor A740003 or vehicle for 10min prior to stimulation with 100M 

BzATP in the presence of respective inhibitors or carrier in PSS containing YO-PRO1 and 0.9mM 
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Ca2+. Dye uptake was monitored over time. Results are shown as mean±s.e.m. of 2 wells, and is 

representative of 3 independent experiments.  

(C) Calm ameliorates large rise in [Ca2+]i. Fluo-4-AM loaded P2X7R cells were pre-treated with 

calm, P2X7R inhibitor or vehicle for 20min prior to stimulation with 100μM BzATP in the 

presence of inhibitors or carrier. Fluorescence change (Ex=485-12nm, Em=520-10nm) relative to 

control in response to agonist treatment was monitored (mean±s.e.m. of 8 replicate wells).  
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Fig. 7   P2X7R-mediated membrane pore formation is required for TG2 externalization. 

(A) P2X7R-mediated pore formation is pannexin independent. P2X7R cells were pre-treated with 

10Panx or trovafloxacin (Trova) as indicated, and then BzATP stimulated in PSS with respective Jo
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inhibitors, YO-PRO1 and 0.9mM Ca2+. Results are given as initial rates of dye uptake relative to 

control. Pannexin inhibitors did not affect dye uptake, neither at limiting nor saturating agonist 

concentration. 

(B,C) Characterization of expression of mutant P2X7Rs. Extracts of cells stably expressing 

wildtype (wt), A348T or P451L P2X7R, or P2X7R variant B (varB) were analysed by Western 

blotting with antibodies to P2X7R extracellular domain, and to β-tubulin as a loading control (B). 

Membrane localization of receptor was confirmed by immunocytochemistry (C; compare to Fig. 

S2B). Images reflect an optical section acquired by confocal microscopy. Bar=12.5m. 

(D,E) Pore formation is enhanced in cells expressing P2X7R A348T. YO-PRO1 uptake following 

stimulation of cells with 100M BzATP is shown as mean fluorescence±s.e.m. (D). Comparison of 

initial rate of YO-PRO1 uptake for P2X7R A348T and P451L expressing cells highlights increased 

pore activity for P2X7R A348T but unchanged ligand regulation (E). 

(F-H) TG2 export correlates with receptor pore activity. TG2 transfected cells expressing P2X7R 

variants were BzATP stimulated for 10 min, and chased in agonist-free medium. Conditioned media 

were analyzed by Western blotting for TG2 (F), and results (n=3) quantified by densitometry (G). 

Note, cell lysates confirm comparable TG2 expression levels in different cell lines (F). For 

thioredoxin-1 (Trx) detection, media (P2X7R cells) were analysed by Western blotting after 

separation in 16% SDS-PAGE Tricine gels (H).  
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Fig. 8   Mechanism controlling TG2 export.  

Schematic showing different events occurring upon P2X7R activation by ATP. (A) Ion channel 

activity triggers intracellular signaling that results in actin reorganization and MV shedding. 

However, these MV do not contain TG2. (B) Coupling between P2X7R and pannexin-1 triggers 

hemichannel pore opening. TG2 secretion was unaffected by blocking pannexin-1 channels. (C) 

P2X7R itself can form a membrane pore through conformational changes and possibly receptor 

oligomerization in a process that involves the extended intracellular C-terminal sequence. TG2 

secretion is associated with this membrane pore activity but independent of ion channel function, 

and occurs in conjunction with thioredoxin-1 externalization. As thioredoxin can reactivate TG2 

functionally blocked in an oxidized state, this may ensure that externalized TG2 has transamidation 

activity. 
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