

A Knowledge-Based Approach to Scientific
Workflow Composition

Russell McIver

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy
in

Computer Science

Cardiff University
School of Computer Science & Informatics

December 2014

Declaration

This work has not been submitted in substance for any other degree or award at this or
any other university or place of learning, nor is being submitted concurrently in
candidature for any degree or other award.

Signed …………………………(candidate) Date …………………………

Statement 1

This thesis is being submitted in partial fulfilment of the requirements for the degree of
PhD.

Signed …………………………(candidate) Date …………………………

Statement 2

This thesis is the result of my own independent work/investigation, except where
otherwise stated. Other sources are acknowledged by explicit references. The views
expressed are my own.

Signed …………………………(candidate) Date …………………………

Statement 3

I hereby give consent for my thesis, if accepted, to be available online in the
University‘s Open Access repository and for inter-library loan, and for the title and
summary to be made available to outside organisations.

Signed …………………………(candidate) Date …………………………

Abstract

Scientific Workflow Systems have been developed as a means to enable scientists to

carry out complex analysis operations on local and remote data sources in order to

achieve their research goals. Systems typically provide a large number of components

and facilities to enable such analysis to be performed and have matured to a point

where they offer many complex capabilities. This complexity makes it difficult for

scientists working with these systems to readily achieve their goals. In this thesis we

describe the increasing burden of knowledge required of these scientists in order for

them to specify the outcomes they wish to achieve within the workflow systems. We

consider ways in which the challenges presented by these systems can be reduced,

focusing on the following questions: How can metadata describing the resources

available assist users in composing workflows? Can automated assistance be provided

to guide users through the composition process? Can such an approach be

implemented so as to work with the resources provided by existing Scientific Workflow

Systems? We have developed a new approach to workflow composition which makes

use of a number of features: an ontology for recording metadata relating to workflow

components, a set of algorithms for analyzing the state of a workflow composition and

providing suggestions for how to progress based on this metadata, an API to enable

both the algorithms and metadata to utilise the resources provided by existing Scientific

Workflow Systems, and a prototype user interface to demonstrate how our proposed

approach to workflow composition can work in practice. We evaluate the system to

show the approach is valid and capable of reducing some of the difficulties presented

by existing systems, but that limitations exist regarding the complexity of workflows

which can be composed, and also regarding the challenge of initially populating the

metadata ontology.

iv

Acknowledgements

This work would not have been possible without the continued help and support of my

family and in particular I would to thank my wife and children who allowed me the time

to complete this thesis. Without the constant love and support of those closest to me I

would not have been able to achieve as much as I have and I will be forever grateful to

those who have helped me to where I am today.

I would like to thank my friends and colleagues at Cardiff University for their help and

encouragement. My supervisors Dr. Andrew Jones and Dr. Richard White were integral

to the completion of this work and gave me invaluable help and advice throughout the

process, I would like to thank them both for their continued support during the research

and the writing up period.

The work undertaken in this thesis was supported by a Microsoft Research Europe

Studentship and I extend my gratitude to Microsoft and Dr. Rich Williams for their

support in making all of this possible.

v

Contents

List of Tables .. viii

List of Figures ... ix

List of Abbreviations ... x

1 Introduction ... 1

1.1 Statement of Hypothesis .. 3

1.2 Aims and Objectives .. 4

1.3 Evaluation Approach.. 5

1.4 Overview of Thesis .. 6

2 Background ... 9

2.1 Scientific Workflow Systems .. 9

2.2 Web Service Composition ... 22

2.3 Service Component Architecture ... 29

2.4 Program Synthesis .. 31

2.5 Approaches to Scientific Workflow Composition .. 33

2.6 Summary ... 39

3 Requirements and Design of New Workflow Composition Features 43

3.1 Overview ... 43

3.2 Requirements .. 45

3.3 Key Features ... 47

3.4 Summary ... 53

4 Component Metadata Framework ... 54

4.1 Overview ... 54

4.2 Assistance Provided by Existing SWSs ... 57

4.3 Metadata Assisted Composition .. 61

4.4 Representing the Metadata Ontology .. 74

4.5 Building the Ontology ... 83

4.6 Summary ... 88

5 Computer-Assisted Workflow Composition ... 89

5.1 Overview ... 89

5.2 Composition Assistance .. 89

5.3 Mechanisms for using the ontology .. 91

vi

5.4 Generating Suggestions .. 96

5.5 Summary ... 105

6 API Definition and Implementation ... 106

6.1 Overview ... 106

6.2 Requirements .. 108

6.3 API Implementation ... 113

6.4 Summary ... 121

7 User Interface ... 123

7.1 Overview ... 123

7.2 Development ... 125

7.3 Creating workflows via the new User Interface .. 128

7.4 Summary ... 131

8 Evaluation ... 132

8.1 Existing Approaches.. 133

8.2 Evaluation ... 136

8.3 Conclusion .. 160

9 Discussion .. 162

9.1 Capability of Approach .. 162

9.2 Comparison with Existing Suggestion Approaches 164

9.3 Scalability of Approach .. 169

9.4 User Feedback .. 175

9.5 Conclusion .. 175

10 Conclusions and Future Work ... 177

10.1 Overview ... 177

10.2 Objective Completion .. 178

10.3 Future Work .. 181

References ... 187

Appendix A - Scientific Workflow System Implementation 197

Appendix B - Scenario Composition Walk-throughs .. 206

Appendix C - Scenario C Kepler Composition Walk-through 224

Appendix D - Calculating Quality Scores .. 235

vii

Appendix E - Scenario Suggestion Scores .. 238

Appendix G - Feedback Questionnaire .. 245

Appendix H - Complete Scenario C Suggestion Score Tables 250

viii

List of Tables

Table 4-1 Restrictions defined for the WorkflowComponent class 78
Table 4-2 Restrictions of the Port class ... 80
Table 6-1 Overview of functionality exposed by API .. 114
Table 8-1 Average Individual Metadata Suggestions Scores for Scenarios A - C 152
Table 8-2 Comparison of Suggestion Scores for the first three components of Scenario
C ... 153
Table 8-3 Comparison of Average Suggestion Scores for Scenarios A and C 154
Table 9-1 Initial Addition Suggestions for Scenario A .. 170
Table 10-1 Suggestions to Specialise I/O Component ... 207
Table 10-2 Suggestions to Specialise Operation Component 208
Table 10-3 Possible connections between Constant, Remainder and Display 208
Table 10-4 Suggestions to specialise Image Component .. 210
Table 10-5 Suggestions compatible with Rotate .. 211
Table 10-6 Possible connections between ImageDisplay, ImageReader and Rotate . 212
Table 10-7 Suggestions to specialise Modelling Component 214
Table 10-8 Components to add to GARPPresampleLayers 215
Table 10-9 Components to add to GARPAlgorithm and GARPPresampleLayers 218
Table 10-10 Components to add to GARPPrediction, GARPAlgorithm, and
GARPPresampleLayers .. 219
Table 10-11 Suggestions for components to connect with DarwinCoreDataSource ... 222
Table 10-12 Suggestion Scores for Scenario A, the columns A,B,C,D represent the four
quality criteria defined in 8.2.4.1. The (2) entries in the D columns represents the total
number of "ideal" suggestions possible at that stage, contrasted against the number of
suggestions the system is providing. ... 238
Table 10-13 Suggestion Scores for Scenario B ... 239
Table 10-14 Suggestion Scores for Scenario C ... 240
Table 10-15 Comparison of Suggestion Scores for Scenario A 242
Table 10-16 Comparison of Suggestion Scores for Scenario B 243
Table 10-17 Comparison of Suggestion Scores for Scenario C 243
Table 10-18 Complete Suggestions Scores for Scenario C 250
Table 10-19 Complete Comparison of Suggestion Scores for Scenario C 251

ix

List of Figures

Figure 3-1 Overview of System Architecture .. 47
Figure 4-1 Screenshot of Kepler UI during composition ... 57
Figure 4-2 Illustration of a number of items from within the ontology 65
Figure 4-3 Image Processing components within the component task hierarchy 68
Figure 4-4 A subset of the PortDataObject hierarchy ... 71
Figure 4-5 Main Concepts within the Metadata Ontology ... 76
Figure 4-6 Connection history data structure ... 82
Figure 4-7 Ecological Niche Modelling Scenario in the Kepler SWS 84
Figure 6-1 Use Case diagram showing key workflow composition activities............... 109
Figure 6-2 Use Case diagram showing functionality required to achieve composition
activities ... 111
Figure 6-3 Architecture of the API .. 115
Figure 7-1 Overview of the Kepler UI highlighting the visualisation and component list
elements of the interface. ... 124
Figure 7-2 Overview of the computer assisted composition UI highlighting the
suggestions panel .. 125
Figure 7-3 Computer assisted composition UI highlighting the component list and
visualisation ... 127
Figure 8-1 Composition Scenario A ... 137
Figure 8-2 Composition Scenario B ... 138
Figure 8-3 Composition Scenario C ... 138
Figure 8-4 Composition Scenario D ... 139
Figure 8-5 Overview of composition process ... 140
Figure 8-6 Composition Scenario D ... 158
Figure 9-1 Advanced Workflow Structures ... 173
Figure 10-1 Sequence diagram showing Kepler startup activity 198
Figure 10-2 Taverna GUI showing the results of an execution 204
Figure 10-3 GARPPresampleLayers Component Metadata 215
Figure 10-4 GARPAlgorithm Component Metadata ... 217
Figure 10-5 Completed Scenario C Composition ... 220
Figure 10-6 Results of the search term "Modelling" in the Kepler SWS. 225
Figure 10-7 Modelling Components Identified for Scenario C 228
Figure 10-8 Components Identified for Scenario C .. 230
Figure 10-9 GARP Components Port Types .. 231
Figure 10-10 GARP Components Port Names ... 231
Figure 10-11 Scenario C with String Constant disconnected 233

x

List of Abbreviations

API Application Programming Interface

CAT Composition Analysis Tool

CSSL Composite Service Specification Language

DCI Distributed Computing Infrastructure

GARP Genetic Algorithm for Rule Set Production

GIF Graphics Interchange Format

GPS Global Positioning System

GUI Graphical User Interface

HCI Human Computer Interaction

HTN Hierarchical Task Network

IWIR Interoperable Workflow Intermediate Representation

JMS Java Messaging Service

JPEG Joint Photographic Experts Group

LSC Live Sequence Charts

OWL Web Ontology Language

PSE Problem Solving Environment

RDF Resource Description Framework

SCA Service Component Architecture

SHIWA Sharing Interoperable Workflows for large-scales scientific simulations in
Available DCIs

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SSP Structural Synthesis of Programs

SWS Scientific Workflow System

UI User Interface

URL Uniform Resource Locator

WHIP Workflows Hosted In Portals

WSDL Web Services Description Language

WSML Web Services Modelling Language

WSMO Web Service Modelling Ontology

XML eXtensible Markup Language

1

1 Introduction

Experiments and procedures involved in modern scientific research often involve the

use of a combination of a number of tools and data resources in order to achieve the

scientist‘s desired goals. In order to investigate their problem area scientists may make

use of software which enables them to bring these resources together to perform

analyses and simulations. A variety of challenges are presented when attempting to

identify these resources successfully and orchestrate their use into a suitable

sequence, including inconsistency in the manner in which such resources are described

and accessed, the increasing scale and complexity of both the data and tools required,

complications presented by the distributed nature of resource provision, and the

considerable overheads involved in identifying the tools required and moving data

between them. [1, 2, 5, 70, 71].

In performing their work scientists frequently need to complete complex sequences of

operations ranging from accessing data sources to performing calculations and

analyses. Successfully completing these tasks presents a number of difficulties the

scientist must overcome. They must be capable of identifying and describing the overall

goals and requirements of their experiments; translating these high level goals into a

selection of appropriate tools; retrieving relevant data to provide input for these tools;

and finally they must accurately determine the sequencing of these tools and data

inputs to create a process that will satisfy their requirements.

The last decade has seen efforts to develop software that can provide an environment

in which scientists can complete the task of joining up resources to create useful

computational sequences [3, 5, 8, 56, 61, 66, 67, 68, 69]. These software tools, known

as Scientific Workflow Systems (SWSs), provide the user with the capability to select

and organise heterogeneous resources from multiple distributed sources, creating

sequences of resources and operations that will achieve a user‘s desired goals. Altintas

et al. [6] describe workflows as ideal to capture the typical processes undertaken by

domain scientists when performing experiments. By providing a single user interface

which allows scientists to combine data and analysis resources, they see SWSs as

providing a benefit over the previous approach which would have required the use of

multiple tools with the user manually transferring data between them. The SWS

2

orchestrates the execution of the tools and the necessary data transfers, allowing users

to concentrate on the higher-level design of their analytical procedures.

Although current systems now support sophisticated tasks that use a wide variety of

tools and data, a remaining concern lies with the problem of how to provide users with a

means to identify the high level tasks required for their experiments, and subsequently

how to support the user in developing this conceptual workflow into a complete

implementation that will satisfy those requirements. This thesis focusses on the

deficiencies of existing systems which could be alleviated by providing support for users

to create workflows more easily, and on the ways in which knowledge relating to those

users and the resources available for composition can be used to assist in this process.

At present the process of interaction with workflow systems is primarily driven by the

user. The system gives access to a selection of available resources, and provides the

functionality to allow users to create sequences of components by specifying the

manner in which they are to be connected. At all times the requirement is for the user

to select which resources to include and to specify the sequencing of those resources

from the possibilities available within the system; limited support is provided to assist

the user in identifying which combination of resources will achieve the result they

desire. Some systems attempt to remove some complexity by limiting the choices

available to user (e.g. Galaxy [97, 98]), however the requirement is still for the user to

make complicated decisions about steps to take based on limited information. Currently

this process of discovering which resources should be used within a workflow

composition, and the manner in which those resources should be connected, has to be

achieved by the user manually inspecting the resource metadata and descriptions that

the system provides. [46, 70, 72].

A difficulty is that currently resource metadata provided by workflow systems tends to

be limited to free-text descriptions of the function a resource performs and basic

definitions of the type of data a resource produces or consumes. This metadata is of

some benefit in assisting users with the discovery of individual resources which may be

of benefit to their workflow; however it is not so helpful in determining how the resource

might be used as an element of a solution to a larger problem. Furthermore, the

metadata can be too ―technical‖ to be accessible by the typical end user. Additionally

3

with the onus on the user to inspect this metadata themselves, current workflow

systems provide limited support in situations where a user is unaware of the resources

their experiment requires.

In this thesis we introduce a framework for maintaining more structured and extensive

resource definitions, incorporating additional machine readable resource metadata

beyond what is maintained within current workflow systems. We present an approach to

workflow composition which utilises our resource definition framework to provide users

with assistance during the workflow composition process as a means to address

difficulties presented by current systems.

The approach presented consists of several key mechanisms through which relevant

metadata can be stored; an ontology is described which defines a representation of

workflow components, components from SWSs are represented as instances within this

ontology and each is defined by a standard set of information. Additionally a simple

data storage mechanism is utilised to retain metadata about a user‘s interaction with

these components, recording the frequency with which connections are made between

them. These mechanisms for storing metadata represent a knowledge base which can

be utilised to assist users during workflow composition. To this end this thesis describes

a set of algorithms which can inspect this knowledge base and the current state of a

workflow composition to provide suggestions for how to proceed. Further to this we

present an intermediate API which allows the suggestions which are drawn from the

knowledge base to facilitate composition of workflows with resources from a number of

SWSs, and a prototype user interface which demonstrates the feasibility of each of

these elements.

1.1 Statement of Hypothesis

This thesis examines the hypothesis that

Composing new workflows with existing scientific workflow systems presents

the user with challenges relating to the translation of high level goals into a

concrete workflow, identifying required resources, and accurately specifying

the sequencing and connection of components. These problems could be

reduced if a structured repository of resource metadata were maintained from

4

which suggestions could be provided to the user to assist in relating workflow

resources to the tasks they perform, to discover appropriate components and

to determine the workflow structure.

1.2 Aims and Objectives

In order to investigate the hypothesis that knowledge based assistance can provide

benefits over the existing approaches to workflow composition, several aims were set

for the research reported within this thesis.

Aims

 To investigate how resource metadata can be used to generate suggestions to

assist users in creating workflows.

 To explore how a user interface could be developed to present this assistance to

users.

 To determine how such assistance could be provided across multiple existing

SWSs.

The approach to workflow composition presented in this thesis expands the role of

resource metadata to be used not just as a reference point for users to discover

information regarding workflow components, but also to act as a knowledge base which

can be used to provide users with effective suggestions for completing their workflow

composition. To this end a framework for the structured storage of resource metadata is

presented, defining the manner in which relevant knowledge about each resource is

maintained within the system.

The algorithms which generate suggestions for workflow composition are described,

illustrating how the elements of resource metadata are utilised in order to provide

useful, pertinent suggestions. The approach described also makes use of knowledge

relating to a user‘s history of interaction with the system, and this is used to illustrate

how incorporating information relating to previous compositions a user has created can

assist in providing helpful suggestions during subsequent workflow composition

sessions.

5

In order for this approach to be system independent, and for assistance to be utilised in

the composition of workflows using the resources of current SWSs, the approach is

designed as a software extension to existing scientific workflow systems. To achieve

this, an abstraction layer is defined between the existing systems and the software

extension, enabling the user to be provided with assistance to complete a workflow

using the resources and structural capabilities provided by the underlying system.

Current scientific workflow systems are capable of composing workflows featuring

complex structural elements such as conditional branching and provide detailed control

over the execution of the workflows. The approach investigated in this thesis will focus

on assisting the composition of relatively simple workflows, although consideration for

extending the approach to include these more sophisticated features is given in the

further work section.

Accordingly, the objectives below enumerate the main activities which were identified

and have been undertaken in order to achieve the above aims:

Objectives

1. Develop a framework for representing knowledge about available resources.

2. Populate the framework with knowledge relating to selected resources to

demonstrate how such information can be of benefit when composing workflows.

3. Create algorithms to generate workflow composition suggestions from metadata

4. Develop an API layer to enable the suggestion engine to sit on top of multiple

existing workflow systems.

5. Provide a user interface to enable users to utilise assistance during workflow

composition

6. Evaluate the proposed framework with respect to the hypothesis and in relation to

other published work

1.3 Evaluation Approach

To evaluate whether the approach to knowledge based workflow composition

assistance investigated in this thesis is able to overcome some of the difficulties

presented by existing workflow composition approaches, several aspects are evaluated.

6

It should first be noted that while one of the aims listed in the previous section is to

provide a user interface to present the user with assistance during workflow

composition, this exists primarily as a means to demonstrate the other aspects of the

approach presented. The usability of the user interface itself is therefore not a focus of

the evaluation presented. Limited feedback on the user interface from a single user is

presented; however the interface was not subjected to extensive user trials.

Turning, then, to what the thesis does seek to demonstrate, the evaluation approach

presented in this thesis is designed to demonstrate that the proposed framework for

maintaining knowledge relating to workflow resources is suitable for the task, and that

the algorithms defined for generating workflow composition suggestions based upon

this knowledge are capable of providing appropriate assistance to the user. In order to

achieve this the evaluation focusses on identifying a selection of realistic workflow

scenarios and, by walking through the steps involved in composing these workflows,

demonstrating how the approach described is capable of supporting their composition.

In addition these workflow scenarios are used to illustrate the difficulties which a user is

presented with during composition when using the manual composition approach

necessitated by an existing scientific workflow system; this is then used to highlight

where the approach described in this thesis is able to provide assistance to overcome

these difficulties.

To further assess how effectively resource knowledge can be utilised in the provision of

helpful suggestions during composition, a measure of ―suggestion quality‖ is defined

and used to assess the quality of suggestions provided during the composition

walkthroughs. This quality measure is also utilised to investigate the benefit which

maintaining a history of user interaction with the system has on the suggestions

provided.

1.4 Overview of Thesis

The remainder of this thesis is structured as follows:

 Chapter 2 presents a review of existing Scientific Workflow Systems, discussing

a variety of different systems and approaches which have been developed to

date. Additionally this chapter discusses other related work in the field of web

7

service composition, and gives an overview of the three main approaches to

resource composition: manual, assisted and fully-automated composition.

 Chapter 3 gives an overview of the areas that have been explored in order to

investigate the aims and objectives stated in Section 1.2. These aims are broken

down into a set of formal requirements and the features of the system which has

been developed to meet these requirements are introduced before being

expanded upon in the remaining chapters.

 Chapter 4 describes the metadata framework and ontology that is utilised to

maintain knowledge relating to available workflow components and to the user's

history of interaction with those components. The rationale behind the choice of

metadata elements is discussed and the approach utilised to populate the

framework from the available knowledge relating to workflow components is

described.

 Chapter 5 introduces the approach that is utilised to provide assistance to users

during workflow composition. The manner in which metadata is used to produce

useful composition suggestions is described.

 Chapter 6 introduces the API utilised to enable the assisted composition

approach to be applied across a number of existing scientific workflow systems.

This chapter describes how the API communicates with the underlying system to

expose the relevant functionality to the extension.

 Chapter 7 provides an overview of the user interface which has been produced

in order to illustrate the manner in which workflow composition through the

means of suggestion based assistance can function.

 Chapter 8 presents the evaluation of the assisted approach to workflow

composition discussed in the previous chapters, illustrating how it can

successfully compose workflow scenarios, how it overcomes a variety of

deficiencies with existing approaches, the extent to which component metadata

is effective as knowledge for use in providing composition suggestions, and the

benefit that a history of a user‘s interaction with the system can have on future

interactions.

 Chapter 9 builds on the previous chapter to provide a broader discussion of the

benefits and limitations of the approach to scientific workflow composition

proposed in this thesis. The outcomes of the walk-throughs presented in

Chapter 8 are discussed in greater detail, highlighting areas where the approach

8

improves on existing scientific workflow systems, as well as where the user may

still encounter difficulty. A comparison with similar techniques in the field of web

service composition, a discussion of the scalability of the approach and an

overview of user feedback are also presented.

 Chapter 10 presents a summary of the conclusions and discusses potential

directions for future research.

9

2 Background

This chapter establishes the context in which this research has been undertaken,

providing an overview of a number of key areas of relevance; establishing the history

and current state of the art with respect to scientific workflow systems and related fields

such as web service composition, service component architecture, and program

synthesis. Whilst a significant period of time has passed since the practical work and

experimentation reported in this thesis was undertaken, this chapter includes

references to recent literature which reinforces how the problems addressed in this

work are still relevant today.

As outlined in Chapter 1 this research primarily aims to address identified concerns with

the currently available workflow composition approaches. As such this chapter aims to

introduce the field of workflow composition systems, discusses the problems which

have been identified within the research community, and how these are attempting to

be addressed at present, and the problems which remain unsolved. In addition a

discussion of a number of related fields is provided to identify where developments from

other fields could be of benefit to workflow composition and how such approaches have

informed the research undertaken for this thesis. The related fields considered here are

Web Service Composition, which focusses on providing users with mechanisms

through which distributed web services can be interconnected to achieve more complex

goals; Service Component Architecture, a model for developing Service Oriented

Architecture applications which decomposes those applications into constituent

components and defines the interactions between those components; and Program

Synthesis, a field which aims to develop approaches through which the functionality of

an application can be generated from a set of high level requirements.

2.1 Scientific Workflow Systems

Scientific Workflow Systems (SWSs) are a form of Problem Solving Environment (PSE)

[42] and have emerged as a principal technology for enabling scientists to perform large

scale tasks that involve the integration and coordination of resources [7]. These

systems provide scientists with the capabilities to locate their required resources,

ranging from simple data sets to complex analysis tools, and an environment in which

10

to compose these resources in such a way as to achieve their goals. One of the primary

aims of PSEs is to provide a mapping between the abstract goals and objectives which

users hold, the available workflow resources which can achieve those goals, and the

underlying, concrete manner in which they are implemented [6, 13, 65]. This distinction

enables users to concentrate on identifying and solving their domain problems without

having to understand the complex computing tasks required to achieve this. Churches

et al. [8] regard workflow systems and PSEs as being tools that enable the interaction

between discrete components, and can provide the means through which those

component interactions can be represented and reproduced. They further characterise

PSEs as mechanisms for representing dependencies between services, either temporal

or data driven dependencies; controlling constructs, such as conditional branching or

loops; and scheduling and execution of completed workflows.

The origins of workflow systems are widespread and there have been a number of

groups and institutions working on developing and providing workflow systems. As a

means of composing and executing resources there is a wide range of situations where

workflows can be applied, including the composition of Grid resources [8, 43, 46] and

as a means to assist in the creation of composite web services [21, 45]. More

specifically there has been a variety of domains and applications to which workflows

have been applied: to support researchers in the life sciences [4], to support

phylogenetic research [6], to enable the modelling and simulation of real-time systems

[9], as software to assist signal processing [8], to support work in the field of chemical

informatics [56], to assist the use of environmental sensor networks in the fields of

terrestrial ecology and oceanography [57], to assist work in the field of neuroinformatics

[61], and to support the development of aircraft design [58].

Despite being developed to support a variety of different application domains there are

clear similarities between the motivations for developing each of the SWSs currently

available, notably the desire to provide tools that enable users to perform their tasks

without the need for in-depth, low level, computational knowledge of how these are to

be performed. Oinn et al. [5] identify the need for systems that coordinate data and

tools that are both complicated in their nature and widely distributed. This is especially

so in fields such as Biodiversity Informatics where data handling raises a number of

challenges based on the scale, complexity and heterogeneity of the relevant data [1] as

11

well as in locating and accessing data sources which are often highly distributed [2].

Goble et al. [10] describe the success of the Taverna system in enabling day to day

activities of bioinformaticians to be performed more easily and quickly, reducing the

amount of time they have to spend pulling together data and analysis tools and

enabling them to achieve more.

Bisby [2] suggests a need for software that can locate and bring together this distributed

data and present it in an environment that enables researchers from many institutions

to make use of it. Altintas et al. [6] describe the typical process undertaken by domain

scientists, performing analyses and experiments in many systems and manually

transferring data between each system. They identify workflows as a means to capture

this process and present scientific workflow systems as an essential tool to support the

creation of those workflows. Deelman et al. [70] share this view, describing how modern

scientific research involves an increasing level of distributed computational activity with

scientists repeatedly moving data between local and remote tools to perform analysis or

simulation. They describe how SWSs can assist in this process, enabling scientists to

focus on the research goals they wish to achieve rather than on the management of the

computational tools required to achieve those goals. Gaaloul et al. [11] suggest that the

step-by-step methodology of the typical scientific process lends itself naturally to the

idea of a workflow. Kim and Gil [12] further identify that users need to be able to specify

their goals from a high level of abstraction - leaving the system to configure details, and

that partial workflows containing descriptions of their services can help users navigate

through the space of available workflows.

As they currently exist there are several main elements that make up a scientific

workflow system. These are the resource repository, workflow composition

environment, and the execution engine. The resource repository is primarily concerned

with providing users with access to the tools and data that are available to be

composed into a workflow; typically there are mechanisms provided which attempt to

help the user to identify which components are required for a particular purpose. The

workflow composition environment is the means through which the user creates their

workflow by sequencing and providing inputs and specifying dependencies between the

available components. This is usually performed in a visual environment where users

physically drag and drop components and connections. Finally the execution engine (or

12

enactment engine) manages the running of completed workflows, providing feedback

on this process such as displaying intermediate results returned by individual

components or reporting problems encountered in accessing remote resources.

Workflow systems as described here have been available for a number of years. While

most have initially been developed to support specific goals or application domains

there has been a shift toward providing a generic environment in which users from

many domains can access or import the components necessary to solve their individual

problems. The Taverna system, for example, has continued to grow and has been

successfully utilised in a wide range of fields including gene/protein annotation,

proteomics, phylogeny, medical image analysis, statistical analysis, and cancer

research [10, 73, 74, 75, 121]. This aim of supporting a wide array of users and tasks

within systems has involved a large amount of research into the functional aspects of

these systems, with investigation taking place into the languages used to describe

resources and workflow compositions [45, 32], the manner in which more complicated

workflow structures and means of execution can be supported [8, 3], and how workflow

systems can be utilised to support interactions on the Grid [43, 44].

Despite this progress to extend the functionality of workflow systems and increase the

distribution of domains in which they can be used, there has been ongoing identification

of problems which exist with regards to their complexity and improving the process a

user performs in order to compose workflows, Howe et al. [71] conclude that "workflow

systems are very flexible, but even skilled programmers have trouble operating them

effectively". When the research reported in this thesis commenced a number of key

challenges were being highlighted; these were summarised in a 2006 workshop on the

―Challenges of Scientific Workflows‖ by Gil et al. [7]:

 The potential gap that exists between a user‘s knowledge of the operation they

wish to achieve within their workflow composition, and the knowledge required

to create that workflow within a chosen SWS.

 The need to provide a means of interacting with the SWS which hides

unnecessary complexity and allows the user to inform the system of their

composition goals at a more abstract level.

13

 The need for further detail and semantic information to be included in the

descriptions of available resources.

 The need to support composition not just of common, routine analyses or

operations, but also to enable users to investigate more individual or abstract

operations that may only be relevant to that individual.

These issues were also identified by Berkley et al. [13]. They argue that existing

systems and approaches provide a barrier to enabling users of a less computer literate

nature to successfully compose workflows. They further argue that whilst scientists are

able to describe their intended tasks at a high level, outlining the data they wish to work

with and the steps they would perform in converting this into their required results,

current SWSs require them to perform many ancillary steps, the technical nature of

which is often beyond the capability of such users. Berkley et al. also discuss the

difficulty presented by the limited information made available to the user in order to

identify which components are required to complete their workflow, proposing a need

for greater semantic and contextual data to aid the user in making their selections.

Whilst the field of workflow systems has continued to mature, these problems remain

largely unsolved today. McPhillips et al. [59] also identify this challenge presented by

existing systems, describing how although scientists "have a very good idea of the

analysis methods they wish to assemble", they lack the necessary computing skills to

achieve these goals through the mechanisms which are currently available.

More recently, Bowers [77] discusses the continuing, considerable challenge presented

by current systems arising from the lack of consistency in the data formats which are

utilised by the components, and in the services which can be used within a workflow

composition. This incompatibility has led to the need to provide intermediate

components which can translate the output from one component into a suitable format

to satisfy the input of another, adding an additional layer of complexity to the

composition process and resulting in users of SWSs needing to spend additional time

focusing on how their workflow composition will operate from a low level, rather than

what it will achieve from a more abstract view. Bowers also describes how further work

toward systems which provides better descriptions and definitions of the inputs and

outputs of each component could allow users to more readily identify the means

14

through which two desirable components could be connected, or even allow the system

to automate this process.

McPhillips et al. [72] also discuss similar issues presented by existing SWSs. In

particular they consider the need to provide a means through which users can define

their workflow composition from a more abstract level, and state that the wide variety of

data formats and types which are present within existing SWSs presents a challenge to

users wishing to correctly connect components with differing data types.

Whilst these difficulties have been readily identified within existing literature, research is

continuing into the means to deliver effective solutions to these problems. As a result

the field currently provides a selection of systems which, whilst technically advanced,

are lacking in their ability to be effectively used by their target users. McPhillips et al.

[72] conclude that in order for SWSs to become widely and effectively adopted they will

need to be made ―not only useful to scientists, but also directly usable by them‖. This

same view is shared by Záková et al. [105] who describe how, within fields such as

bioinformatics, the array of data available and the algorithms required to convert that

data into useful output have resulted in a need for tools which support real users, not

just computer scientists.

This discussion has highlighted how the field of SWSs still presents a number of key

challenges which reduce the ability of these systems to be used effectively by domain

scientists. These challenges include the difficulty in translating the high level view a

user has of the task they wish to perform into a set of steps that can be achieved by the

system, the increasing volume and complexity of resources, data types and data

formats with which users are required to work, and the need to hide the complexity of

the underlying system in a manner which enables users to still achieve what they

require. In Chapter 1 a number of aims and objectives were outlined, focusing on

investigating a means through which resource metadata can be recorded and utilised to

provide assistance to users during the workflow composition process. By achieving

these aims this work attempts to address some of these challenges which remain within

the SWS community.

15

2.1.1 Existing Scientific Workflow Systems

Kepler

The Kepler project [14] is an effort to provide a visual environment in which users can

compose distinct elements known as actors with one another to enact complex tasks.

Extending the previous Ptolemy II system [15], Kepler has strengths in its ability to

provide a variety of execution models, achieved through the inclusion of specific

workflow elements known as directors. The configuration of these directors enables the

user to specify how the workflow will behave at run-time, including controlling

circumstances under which a workflow will terminate and the number and nature of

iterations to be performed. Kepler also enables the use of distributed components within

workflows, where identified web services can be plugged into a workflow and handled in

the same way as a local resource, as well as providing specific components that enable

the submission of workflows as Grid jobs and for the querying of Grid databases [112].

Development of the Kepler SWS is continuing with the latest version (2.4) being

released in April 2013. Recent improvements to Kepler have included the

redevelopment of the software to function in a modular fashion, enabling the

development of additional modules to extend the functionality of the system. A

prominent example of such an extension would be the bioKepler module [91] which

provides a selection of specialised workflow components and directors to facilitate the

execution of bioinformatics tools.

Triana

The Triana project [16] started as a system to support analysis of gravitational wave

detection [17] but has since developed to provide a robust set of tools to support a

variety of scenarios. Both Kepler and Triana make use of a visual environment in which

desired workflow components can be physically arranged and connected in order to

achieve a user‘s goals. Triana supports the integration of web services into workflows

and is similarly capable of accessing and composing Grid resources.

More recently the Triana SWS has been utilised within the SHIWA project [78] to

demonstrate the capability of SWS to interoperate when supported by a suitable

language to translate the representation of a workflow from one system to that of

another. Further details on the SHIWA project are provided in Section 2.1.2.

16

Taverna

The Taverna Workbench [18], part of the myGrid [19] initiative to provide middleware for

experiments in molecular biology, differs from Kepler and Triana in that whilst both of

these systems provide a wide array of components which are executed locally on the

user‘s machine, the resources which Taverna provides are primarily remote web

services and therefore the integration of distributed components is a central aspect of

Taverna's approach. Orchestrating the use of components that are primarily distributed

highlights a key challenge of workflow systems, namely coping with a changing

situation where resources may not be described exactly as expected or be available

when required. Predefined workflows for both the Kepler and Taverna SWSs are

available through the myExperiment project which aims to enable greater collaboration

between scientists. [10, 76]

As with both Kepler and Triana, development for the Taverna SWS is ongoing, with the

latest version (3.0) set to be released in 2014. This version represents a significant re-

engineering of the software to make use of OSGi [113] - a platform to implement a

component model into Java. Whilst this is a significant change to Taverna in terms of

the manner in which the software is implemented, the mechanisms through which

workflow composition and execution will be achieved within the system will remain

largely unchanged, as demonstrated through the recent beta release of the software

featuring a nearly identical UI to the current release. Further developments which are

being explored by the Taverna developers include a system to provide an online service

through which existing workflows can be executed, using either input data provided by

the original developer or uploaded by the current user [102], and a mechanism to

encapsulate sub-workflows into re-usable objects called "workflow components" with

the intention that these be described in a manner which exposes the task they perform

without requiring a user to be concerned with how that task is achieved [103].

Taverna has also recently been utilised as part of the BioVel project [122]. BioVel

(Biodiversity Virtual e-Laboratory) is a biodiversity research project involving a wide

range of partners which seeks to support the work of scientists by providing a suite of

well defined, reliable web services which can be used to perform the research

necessary to support decision making around ecological problems such as ecosystem

17

alteration, changes to the distribution of species, and ultimately species extinction. The

project aims to provide a comprehensive e-Laboratory to enable biodiversity scientists

from many countries and projects to contribute to common goals. The project has

targeted the use of an existing workflow tool, Taverna, as it is easy to introduce new

components to the system in the form of web services; these services can then be

curated centrally so that all can benefit from their use and ongoing development. Their

re-use is also promoted by this arrangement, so scientists can achieve consistency in

results of repeated experiments, taking advantage of the mature nature of the product.

To this end the project has developed a biodiversity catalogue [123] where users can

register their own web services for use by others, discover new web services, annotate

and improve the descriptions of existing services, and monitor the development and

availability of services.

Despite the ongoing development which occurred with these systems the primary

functionality of each SWS remains the same, with the user interface and processes

used to create workflows having evolved little from the point at which the work

described in this thesis was begun.

Additional SWSs

The work undertaken for this thesis focusses primarily on improving the workflow

composition process associated with the three systems described above: Kepler, Triana

and Taverna. However, it is pursued in a manner designed to ensure that the resulting

benefits will be potentially applicable to additional workflow systems available.

Additional workflow systems include Galaxy [97, 98], a web based system primarily

focused on genomic research. Galaxy provides a ―wizard-like‖ interface for specifying

analyses as well as a more traditional graphical interface for manipulating workflows.

Similar to the use of myExperiment within the Taverna project, Galaxy provides a

mechanism through which users can share and publish completed workflows, but in

Galaxy this is supported by the ―public pages‖ section of the system. The recent

Tavaxy project has developed a system to enable the integration of Taverna and

Galaxy workflows [99].

18

Another workflow system of note is VisTrails [100]. As with other systems VisTrails

allows the creation and execution of workflows in a similar fashion; however VisTrails

has a particular focus on provenance [101], with data recorded about aspects such as

the steps taken during the creation of a workflow. This makes it easy for users to revert

to a previous version of a workflow, or to perform comparisons between two versions of

a workflow.

The WINGS/Pegasus system [116, 117] adopts an approach which enables users to

define abstract workflows which describe the activities which they would like to perform,

independent of the specific resources which will implement those activities. The system

then attempts to translate this abstract description into a concrete workflow at runtime

using AI planning techniques to identify the resources to use.

These additional SWSs demonstrate that the community is aware of the difficulties that

are presented by traditional manual composition systems, and that work is ongoing to

attempt to address these difficulties. Approaches such as the "wizard-like" approach

offered by Galaxy have benefits in reducing the perceived complexity of the underlying

system and presenting the user with a more simplistic and guided mechanism through

which to define their goals; however, difficulties regarding the knowledge that a user

must have of the task they wish to perform and resources which are available remain.

The WINGS approach of enabling a user to define abstract workflows and have the

system translate this into a concrete, executable workflow, offers an approach to

overcoming the knowledge gap, however the approach is limited in terms of the

interaction a user has over the translation process and the system's ability to work in

concert with the user to guide the composition toward the desired outcome. These

elements however do provide insight into useful starting points from which to attempt to

resolve the larger remaining usability problems that we investigate in this thesis.

2.1.2 Related Work

Whilst the development of many SWSs is still ongoing, and research is still being

performed into their usage and functionality, recent work has also focussed on solving

the related problems of how researchers can best record information about the

computations and analyses which they have performed using workflow systems, how

19

such information can be shared with others in order to be either reproduced or further

built upon, and how approaches can be provided to enable the composition of

workflows to be more collaborative.

Workflows Hosted In Portals (WHIP) [35] provides an environment to enable

researchers to collaborate on and share workflows via web portals. Harrison et al.

argue that the current means through which users interact with workflow systems and

the way those systems have been designed and implemented pose problems that

prevent them from being successfully utilised on the Grid. WHIP provides plug-ins to

enable interaction between workflow systems and web portals that will allow information

to be exchanged. An additional aim is to provide further semantic information for a

workflow being shared that will enable its purpose and functionality to be maintained.

Similar to the WHIP project is myExperiment [10]. Here the developers of the Taverna

system desire to see workflows as more than just "one-shot" experiments; rather a

workflow should be something that is shared, re-purposed and generally used for aiding

others. De Roure et al. [60] position myExperiment as a facility to support the wider

lifecycle of scientific workflow design and use, claiming that such support is a necessity

if widespread adoption of scientific workflows is going to be achieved. The

myExperiment project provides an environment in which workflow users and creators

can communicate with one another and where workflows can be distributed, shared and

worked with collaboratively. The approach also intends to enable links with other related

tools so that tasks such as the archiving of results in repositories and the remote

execution of workflows can be achieved.

Continuing this trend of establishing workflows as tools which can be re-used and re-

purposed for future use, the SHIWA project [78] is aimed at supporting interoperability

between existing workflow systems. The project has developed a number of key

elements in order to achieve its goals - a repository through which workflows can be

stored and shared with others, an environment to enable the execution of those

workflows across a range of Distributed Computing Environments (DCEs), and

mechanisms to support the combination of workflows from multiple SWSs to perform

larger operations.

20

The SHIWA Workflow Repository is similar to myExperiment in that it provides a

repository through which existing workflow compositions can be uploaded and shared

amongst research communities. Users can search the repository to locate workflows

which they may wish to use. Workflows located through the SHIWA repository can be

imported into the SHIWA Simulation Platform; this acts as an environment through

which users can execute workflows or where existing workflows can be combined to

create meta-workflows. Repositories such as those provided by SHIWA and

myExperiment attempt to solve similar problems to some of those addressed in this

work, the difficulty users face in creating their own workflows. However, where SHIWA

and myExperiment aim to reduce the impact of this by encouraging re-use and

evolution of common workflows which others have already created, the approach

described in this work focusses on improving the ease with which such workflows can

be developed in the first instance.

In addition the SHIWA project has also developed the IWIR (Interoperable Workflow

Intermediate Representation) language [79, 80] as a means to enable workflows

developed in one SWS to be edited using another, facilitating cross-SWS collaboration

during workflow composition from users who may otherwise be unable to assist each

other, or at least would need to learn to use a common SWS in order to do so. IWIR

breaks workflows down in to two representations, abstract and concrete, where the

abstract representation maintains information about the general structure of the

workflow and the concrete representation extracts the details required to perform each

of the operations defined within the workflow. Through this approach the details of a

workflow composed in one SWS can be transferred to another, suitably modified SWS

which will present the same workflow within its own workflow format for further editing.

The concept of abstract and concrete workflow representations is utilised within the

assisted workflow composition approach presented within this work; however here

rather than being a means to support interoperability of SWSs this representation is

used to bridge the gap identified between a users conceptual view of the tasks they

wish to achieve and the concrete implementation required to achieve that within a given

SWS. The concept of a workflow interoperability language such as that presented by

SHIWA could potentially be utilised to enable the assisted workflow composition

approach presented in this thesis to be used in conjuction with multiple SWSs

21

simultaneously and is a potential route through which this research could be developed

further.

In addition to providing mechanisms through which users can publish and share their

workflow compositions, those developing workflow tools have identified that in order for

others to make best use of the workflows which are being shared a mechanism is

required to record a more complete set of information relating to workflows and the

manner in which they have been developed and used. De Roure et al. [83, 84] describe

how the myExperiment project recognised the need for users to be able to associate

the workflow which they were sharing with ancillary information such as example input

data or papers discussing the results obtained from executing the workflows. The

myExperiment platform therefore developed additional capabilities to allow users to

upload collections of files in the form of "packs".

Whilst the ability for users to bundle additional files and information with the workflows

they share is of benefit in assisting others in understanding the nature of those

workflows, or in reproducing previous results, Bechhofer et al. [85] argue that in order to

enable more complex forms of reuse additional information is required in the form of

metadata describing the relationships between each of these additional files; such

representations of the information relating to scientific research have been titled

"Research Objects". As introduced by Bechhofer et al. [82], Research Objects are a

mechanism to assist in the sharing and publication of scientific research in order to

improve the ability of others to reproduce results or build upon existing work. Bechhofer

et al. describe how a number of issues with the way research has been traditionally

published have reduced the benefit that can be gained from the results of that research,

particularly in an era where research is becoming both increasingly collaborative and

predominantly computerised.

The Workflow4Ever project [81] exists as a continuation of the ideas explored within

myExperiment and aims to utilise Research Objects to provide a mechanism through

which the workflows developed during scientific experiments can be stored and

annotated in such a way as to enable others to successfully repeat their execution at a

later date. A key element explored by the Workflow4Ever project is the definition of

workflow-centric Research Objects, a model which seeks to define how various

22

elements of relevant information relating to workflows can be maintained. As described

by Belhajjame et al. [81] this information includes the workflows themselves - the

computational tools used within them, the versions and authors of those tools,

information relating to the provenance of results obtained from executing the workflow,

the data which has been used during execution of the workflow etc. Belhajjame et al.

argue that providing a standard approach to recording such information will enable

workflows to be more effectively shared and reused within the scientific community and

will enable the results of experiments to be more reliably reproduced.

Whilst each of the systems described in this section provide a useful addition to the

current SWS ecosystem, they are focussed on either providing facilities through which

existing workflows can be shared with others, or mechanisms to enable users to

collaborate on the composition of workflows irrespective of their preferred SWS. Whilst

these approaches do not directly address the problems identified in Section 2.1

regarding the challenges facing users when performing the initial composition of

workflows using existing SWSs, it should be borne in mind that for many users all that

they require may be achieved by an existing workflow and therefore repositories of

existing workflows remove the need for such users to directly tackle composition.

However it is the situation where an existing workflow does not solve a user‘s problem,

or provide a useful starting point from which to work, which the approach taken in this

thesis aims to resolve.

2.2 Web Service Composition

The field of Web Service Composition is closely related to that of Workflow

Composition. Both focus on enabling users to achieve complex goals through the

identification and orchestration of a selection of discrete data and processing resources.

A primary difference with web service composition is that there is more variety of

implementation approach in the field of workflow composition, with each SWS offering a

unique approach to defining the activities performed by a resource, the input and output

requirements it exposes, and the manner in which they are to be connected. In the field

of web services this information is either provided in a uniform manner through the

WSDL specification [124] for SOAP [125] based web services, or using a fully-defined

API definition for RESTful services [126, 127]. Similarly web services are designed as

23

―platform agnostic‖ software tools that can be utilised by any application that makes a

valid request. In contrast, the resources provided by a SWS tend to be tightly coupled to

that system: if a user wishes to make use of a resource from the Kepler workflow

system then, unless the provider of that resource has provided an equivalent,

independent application or web service, they must use the Kepler SWS to access its

functionality. In this situation a user will have confidence that the chosen resource will

operate as expected each time it is used, as it is implemented and executed locally. By

contrast, in the field of web services the resources are remote and potentially constantly

changing, resulting in greater concerns around resource availability and the ability to re-

use previously constructed compositions in an environment where services may be

removed or altered. Of course it should be noted that it is entirely possible to construct

workflows within SWSs such as Kepler using entirely web services and therefore this

situation would be replicated.

However, these differences are primarily related to the implementation of these

respective fields; from a high level their concepts are closely aligned. Like workflow

creation, web service composition requires the identification of necessary components,

the understanding of how those components can be effectively connected, and the

suitable sequencing and configuration of the components in order to satisfy a user's

goals. As such, techniques used to assist or automate the composition process in the

field of web service composition are worthy of consideration for the potential benefit

they could bring to workflow composition.

A web service is ―a software system designed to support interoperable machine-to-

machine interaction over a network" [20] and represents a shift away from the user

driven view of the web, since services can provide functionality that can be accessed

and initiated by other programs without requiring the interactions of a human user. The

current approach to utilising these services involves the publishing of services with a

suitable Broker which will then provide requesting machines with the required

information for how to access and interact with the service.

Beyond providing services as stand-alone entities to be used in isolation, over time the

field has developed to introduce the concept of Complex Services, an enhancement to

the existing approach to enable services to be composable. This means that they can

24

be combined with other services to form a composite service which can achieve more

complex goals without the need to define a dedicated service to perform these [22].

Casati et al. [21] describe the way that web services have moved from being simply a

mechanism that can provide a "one-shot" service to an end user and instead now aim

to provide value-added composite services by composing existing web services.

However similarly to the problem of workflow composition there are challenges

presented by attempting useful interoperation between web services. To achieve a

user‘s goals it can still be necessary to create manual, ad-hoc compositions of web

services, a process that takes both time and a large amount of low level programming

to achieve success [23]. The increasing number of web services, and the volatile nature

of their description and availability, means that any manual composition approach is

severely limited in its capability to create the best possible solution to a user‘s problem.

Medjahed et al. [24] describe how composing web services is often a frustrating task,

requiring much low level programming and a trial and error approach.

In order to make the task of web service composition easier, an important development

has been the development of languages which can be used to more completely

describe the services themselves. For example, Bartalos and Bieliková [111] identify

how improved approaches to web service composition must rely on more than purely

syntactic descriptions of the available services.

One such approach to extending the description of services is the OWL-S language,

designed to enable the semantic description of web services [25]. The desired outcome

of this semantic description is to enable the automatic discovery, invocation and

composition of web services. OWL-S intends to provide answers to three fundamental

questions that users, or machines, may have regarding web services: What does the

service provide? How can it be used? and How does one interact with it? The language

describes three main elements of services to answer these questions - the Profile,

Model, and Grounding. The idea of adding a layer of semantic description to the

definition of services is one which could also be applied in the field of SWSs. Enriching

the description of available workflow components with greater semantic information

could enable the creation of approaches to automating the composition of those

components. In addition, since many scientific workflow systems already allow for the

25

inclusion of web services within a workflow, these service descriptions could provide

immediate benefit to users during workflow composition.

In addition to OWL-S a number of alternative approaches have been proposed for

associating semantic information with existing web services. The Web Service

Modelling Ontology (WSMO), for example, has been proposed by Lara et al. as an

approach to overcome a number of limitations identified within OWL-S, such as the

inability to effectively describe the relationship between a web service's input and output

[114]. WSMO provides four main elements to enable the semantic description of web

services; Ontologies, Goals, Web Service Descriptions and Mediators. These are

described by Lara et al. as follows:

 Ontologies. They provide the terminology and formal semantics for describing

the other elements in WSMO.

 Goals. These elements provide the means to specify the requester-side

objectives when consulting a Web Service, describing at a high-level a concrete

task to be achieved.

 Web Services. They provide a semantic description of Web Services, including

their functional and non-functional properties, as well as other aspects relevant

for interoperating with them.

 Mediators. These modelling elements are connectors that resolve

heterogeneity problems in order to enable interoperation between

heterogeneous parties.

OWL-WS [26] is an extension to the OWL-S language from the NextGRID project.

NextGRID aims to provide a workflow-centric model of execution on the Grid that can

adapt to handle different workflow policies. The OWL-WS language has been

developed so workflows can be described from both an abstract and concrete level and

to enable the handling of semantic information necessary to enable a concrete workflow

to be derived from an abstract representation during run time. Abstract workflows are

defined without specifying bindings to specific services so that these can be bound at

run time through the use of semantic task descriptions which can be utilised for

identifying a service that provides desired functionality. OWL-S is used as a base

26

language as it provides the capability to describe the control and data flows required to

model workflows and it has become an accepted standard for describing services.

Whilst this section has shown that there are key differences that exist between the

fields of web service composition and workflow composition, there are several aspects

which are of interest. By providing a strong focus on the definition of services, the tasks

they perform and the manner in which they are to be interacted with, the field of web

service composition has made several advances; developing descriptions that enable

systems to automatically compose services, as well as promoting the interoperability of

services from difference providers. These developments provide a useful starting point

for the present research in addressing the remaining concerns regarding scientific

workflow composition.

2.2.1 Web Service Composition Tools

The ability for web services to be connected together in order to achieve more complex

goals has driven the development of a category of tools which are designed to assist

users with the process of creating these composite web services. In this section we

discuss a number of these tools and suggest how their capabilities can influence

approaches to the design of tools for composition of scientific workflows.

eFlow [21, 27] is an example that has been developed to enable users to compose and

enact composite services. This approach represents composite processes as a graph

made up of service, decision, and event nodes. Whereas a service node represents the

invocation of a simple or composite service, decision nodes describe alternatives that

could be used as well as the rules that control the flow of execution through the graph,

and finally event nodes describe the messages and events that are sent and received

by services. Interesting aspects of the eFlow system are that it enables nodes to remain

"un-bound" until runtime when parameters provided by the user and a broker service is

used to select a compatible service, ensuring the most suitable services available at

that time are utilised. eFlow provides consistency rules and migration semantics to

ensure that alterations to a previously defined process do not result in errors and to

ensure that the user is aware of the impact that these changes may cause.

The idea that the binding of individual services to a process should be performed at

runtime in order to ensure the best possible selection of services is further discussed in

27

[28]. Zeng et al. propose an approach whereby users define a composite service

consisting of:

 Specific "elementary" web services - concrete implemented services with no

dependencies on other services

 Composite web services - a "service" implemented by connecting multiple

existing services

 Web service communities - a collection of services which achieve the same goal

but offer differing non-functional properties (QoS parameters, reputation etc.)

If the user has constructed a composite service including web service communities then

the specific web services which are executed for that step are decided upon at

execution time. Zeng et al. propose a selection of criteria which, combined with

constraints provided by the user, can identify the most effective services at the

particular point in time when the composition is executed. The authors describe the

challenge in selecting the right services to use at design-time, the need for mechanisms

to cope with this, and the continually changing landscape of available services. Zeng et

al. argue that previous approaches have not produced suitable, in-depth criteria with

which to assess the choice of services to bind to a process model and have failed to

take into account "global constraints" that a user may wish to impose upon the whole

process model. They present a model of service quality that characterises the non-

functional aspects of the available services, including: execution cost, execution

duration, reputation, reliability, and availability. These aspects are then used to drive the

selection of services at runtime.

The idea that an approach to web service composition should be QoS aware has been

identified by a number of groups. Alrifai et al. [118] propose a technique which takes

into account a variety of QoS factors such as the response time or reputation of

services, indicating that the source of information for such factors comes from a variety

of sources: provided by the service itself, based on past experience, or even sourced

from the community of users of services. The approach presented breaks down the

problem of identifying the optimal set of services to achieve a user‘s goals into smaller

sub-problems, on the assumption that solving each independent problem in isolation is

more manageable than solving the global problem in one step. A similar approach is

28

presented by Jiang et al. [119], QSynth, which also focusses on achieving users‘ quality

goals through decomposing the overall optimisation problem into sub-problems which

can be solved more effectively.

Whilst QoS aspects such as these are not a primary concern of the workflow

composition approach which has been developed for this research, as our approach is

primarily concerned with ensuring the workflow composition which is created is

complete, executable, and achieves the user‘s objectives. It is nevertheless relevant:

our approach is designed to guide users towards a completed workflow composition

which achieves their goals, as such it is pertinent to consider the quality of the

composition which the user has been guided toward, for example is it the fastest or

most efficient solution, and has the user constructed a suitably modular and extendable

composition that could benefit others.

The idea of associating available resources with various quality criteria is applicable to

both scientific workflow composition as well as web service composition, the idea that

storing more non-functional information regarding components available in workflow

systems could be used to assist in the selection of appropriate components during the

composition process. The nature of such information stored would need to be altered

to reflect the different requirements which a user has when selecting components for

inclusion in a workflow when compared to those of identifying web services. For

example whilst information about the reliability and availability of a resource is essential

in the field of web services, where those services are distributed, often changing, and

potentially available from multiple sources, this can be less applicable to the scientific

workflow composition scenario where many compositions will be constructed of locally

accessed resources. However quality metrics would still be beneficial for SWS

components, relating them to details such as the number of significant figures to which

a component produces output or the duration which a component takes to complete a

calculation. Information such as this regarding scientific workflow components would

centre more on the capability of that component to perform the operation which the user

requires and enable that user to determine if both their functional and quality

requirements were met. However, as stated previously, workflow compositions within

SWSs can and regularly do make use of web services, so any improvement in the

29

description and definition of web services is something which could be of additional

benefit to SWSs.

2.3 Service Component Architecture

Service Component Architecture (SCA) represents an approach to application

development that provides a method for creating the components which make up an

application, a means to determine how those components interact with one another to

achieve the application's overall goals, and represents an approach to development

where applications are abstracted from any specific target platform and can be

deployed on multiple architectures [62]. In this sense SCA is similar to both Web

Service Composition and Scientific Workflow Composition: each has the primary aim of

making it possible for a user to orchestrate a sequence of components, each

performing an individual activity, into a larger construct that achieves some overall goal.

These similarities make SCA an area of interest when considering means through

which scientific workflow composition could be improved, techniques and developments

within SCA around areas such as problem decomposition, abstraction of goals from

implementation, and the interaction between components could potentially be of benefit

within the field of scientific workflow composition.

At its most basic level SCA is a framework that defines how applications can be

developed based on the Service Oriented Architecture (SOA) [104]. SOA itself is an

approach to application development which focuses on breaking software down so that

each area of functionality is encapsulated as a single service. It is these services which

can then be combined to achieve the overall functionality of a system. This approach

has various benefits. In particular, by reducing software to a number of services that

represent the individual activities performed it is possible that those services can be

readily re-used within many other applications. The provision of associated metadata

that describes both the function of a service and the data that it operates on enables

services to readily exchange data with one another. Additionally by providing well

decomposed services with clearly defined interfaces the underlying complexity of an

activity can be abstracted away from the user, allowing them to focus on their required

outcome rather than the implementation of individual services.

30

The main aspects of SCA can be broken down into four areas, with each area defined

within its own specification document:

 The assembly specification [63] - this defines how individual components are

connected and packaged as services at a level that is abstract from their

implementation.

 The component implementation specification - this describes the manner in

which components are implemented within a specific programming language,

different specifications exist for how this is achieved in a number of languages

[92, 93]

 The binding specification - this describes how the service(s) that a component

provides can be accessed. Again a number of different specifications exist to

define how this is achieved across a number of technologies such as SOAP for

web services [94] or using the Java Messaging Service JMS [95].

 The policy framework specification [96] - describes how non-functional

requirements can be associated with services, defining factors such as what

form of authentication is to be used for communication between a service

provider and requester.

These specifications define how SCA components are defined, implemented and

connected to form an SOA application. There are a number of elements which make up

a SCA component, and these are similar to the representations of components within

SWSs.

Each SCA component provides a number of ports which represent either the services

which that component provides or the dependencies which it has upon other services,

described as the services and references of the component. The services provided by a

component are logically similar to the input and output ports of a SWS component.

They define the operations which that component can perform, the input that is required

to achieve that operation, and the output which will be provided on completion. The

references of a component allow that component to describe the services which it

requires from other components in order to achieve its own goals. For example a

component may represent a Banking service and provide a number of operations such

as the ability to login, check account balances, etc. In order to achieve the login goals

31

the component can define references to a database service which performs the login

details lookup.

By providing a rich model to describe the interface between components, the services

which a component provides, and those which it requires, the SCA approach provides

an environment where the discovery of services which can interact with one another is

readily identifiable. This is something which current SWS lack to a certain extent as the

information relating to component interfaces is less detailed. However whilst the

definition of interfaces and contracts between components is of benefit in identifying

compatible services, and in achieving the goals of SCA such as de-coupling the

definition of a service from its implementation and promoting the easy re-use and

replacement of services, the process of constructing the overall application is still a task

that requires the user to be aware of the goals they wish to achieve, the breakdown of

services that can fulfil those goals, and the means through which those services are

sequenced.

2.4 Program Synthesis

An additional area of research which has overlapping goals with that of workflow

composition is the field of program synthesis. A long term aim for some researchers

and developers has been to develop systems which allow for the automatic creation of

program code from a defined set of specifications or requirements; indeed, approaches

such as those by Green [86] and Manna and Waldinger [87] have been proposed from

as far back as the 1960's. If successfully implemented, program synthesis would have

benefits in reducing the effort involved in the manual development and testing of

software. Users would only need to provide fully defined requirements from which the

system could automatically generate "correct" code. Similar to the work presented in

this thesis, an aim of program synthesis is to support users who can express their

requirements at a high level, but lack the technical skill, time or inclination required to

formally implement those requirements, generating complete programs from these high-

level requirements.

A number of approaches to synthesise software have been explored since the early

works of Green and of Manna and Waldinger. One key technique, and one which was

the focus of much of the early work on program synthesis, is to follow a mathematical or

32

logic-based approach, where the specification of the desired outcome is expressed by

some form of logic [106, 107, 108]. Whilst these techniques are able to synthesise

logically complete, executable programs from the input provided, they are often limited

in the complexity of the programs which they can generate, limiting the extent to which

more complex program structures can be used, and are often targeted at the synthesis

of programs within a restricted application domain.

An alternative approach to program synthesis is based on generating programs from

examples [88, 109, 110]. Here the user specifies the output that is desired from a given

input; using this information the system explores the space of possible operations which

could translate from the input to the output. Gulwani [88] acknowledges a potential

weakness in the use of examples as a means to specify a user's desired outcome in

that often this results in an "under-specified" or ambiguous goal. Gulwani proposes a

number of interaction models which can help resolve this issue, including enabling the

user to "test" the program provided by the synthesis - if this program generates output

that the user does not desire then they can submit this new combination of input and

output back to the system in order to generate a refined program. A second model

proposed is that where the system is able to identify more than one program which can

perform the transformation between the given input and output it will provide the user

with a distinguishing input. This is an input which results in different outputs when

transformed by each of the generated programs. By allowing the user to specify what

the desired output from this distinguishing input is, the system can then refine the

selection of programs it has generated. By repeating this process several times the

system will eventually produce a single program which generates the required output

for each of the inputs tested. The relative complexity of scientific workflow components

and their configuration means that adopting such an approach for workflow composition

could prove problematic but using this mechanism to synthesise discrete sections of a

larger workflow is a possibility. In addition the notion of a dialogue being presented

between the system and the user to work toward developing a program that achieves

their desired goals is an aspect which will be explored in relation to SWS in this thesis.

Whilst the primary aim of the work explored in this thesis, an improved approach to the

composition of scientific workflows, is not directly related to the automatic synthesis of

programs from a given specification, there are parallels to be drawn between the fields

33

of program synthesis and workflow composition. Both aim to reduce the complexity

involved in generating a solution which achieves the user‘s goals, seeking to develop a

mechanism through which users can specify their goals from a level which is abstracted

away from the low level implementation which will actually those goals. The purpose of

automatic program synthesis is to generate single program which achieves a user's

specified goals. Similarly, the approach explored in this thesis seeks to guide users

toward a solution based on knowledge of both their requirements and the decisions

they have made thus far. Similar knowledge of users, requirements, and the capabilities

available to achieve those requirements are necessary in both of these cases.

2.5 Approaches to Scientific Workflow Composition

Currently there are a number of approaches available for the process of locating and

composing a workflow from a set of resources, varying from the simplistic – allowing the

user access to a list of available tools or services and providing means for them to

manually connect or sequence them– to the more sophisticated approaches that aim to

either fully automate the process or to provide guidance and assistance as the user

creates their sequence of components.

2.5.1 Manual Composition

Existing workflow systems such as those described in Section 2.1.1 have developed out

of a desire to support a task for which dedicated software did not previously exist; that

is the composition of local and distributed resources. As with any initial iteration of a

new approach the aim was to provide something that could support most of the basic

needs of the users.

Additionally these initial approaches had limited users and composition scenarios in

mind – potentially only dealing with a relatively small number of resources, and

assuming that the users already knew what they wanted to do with them. To this end

the requirements of an approach to workflow composition were simply to enable users

to directly select and connect the resources they had already been passing information

between manually.

34

Manual workflow composition systems, such as Kepler, Triana and Taverna,

traditionally function by simply providing users with access to a selection of components

which they can insert into a workflow (e.g. by placing them on a "canvas"), and require

them to manually sequence and configure each of those components. As the

demonstration system described later in this thesis builds upon the mechanisms

through which these systems work, further detail of the approach to manual

composition within each of these systems is given in Chapter 6.

With the growth in the number of available resources, their increasing reliance on

diverse and incompatible data formats, and the desire to provide workflow systems that

are more generic and less focussed on an individual group of users, the ways in which

workflows are composed using current SWSs have been identified as a hindrance to

non-specialist users in adopting scientific workflow systems [7, 59, 71, 72, 77]. Similarly

the field of web services has seen a continual and rapid increase in the number of

available services which users may desire to interconnect to solve larger problems and

here too the need for a more sophisticated approach to composition has been identified

[12,111,114].

2.5.2 Automated Workflow Composition

The goal of automated workflow composition is to remove the need for the user to

directly specify which resources they desire to incorporate into their workflow and the

manner in which they are to interact, in order to provide a system where the user is

concerned with the ―what‖ aspects of their workflow instead of the ―how‖.

To completely eliminate any specification of implementation details by the user during

the composition process is a challenging aim, and requires a greater level of

sophistication in the definitions of available resources, the information that controls how

those resources can interact, and the implications and outcomes of utilising any

individual resource. Additionally a completely automated approach would require an

entirely new interaction method between the user and the underlying system.

There are two main challenges to the fully automated approach – how to offer a means

for the user to provide a suitably rich, high level description of the task they want to

35

perform, in a format that can be easily interpreted by the system, and how to provide

greater clarity and depth in the definitions of available resources in order to enable the

system to identify those required to carry out the user‘s specified task. For example

current workflow systems provide resource definitions which will be of benefit to a user,

such as textual discussion of a tool‘s function and the motivation for its development.

However, to be of benefit to an automated system these would need to be translated

into simple, parseable statements to inform the system of a tool's overall function or

requirements for usage.

A common approach that has been taken to solve the problem of automating service

composition is to make use of the existing field of planning systems research [115].

Using this approach a user‘s specification is translated into a planning problem and

then a suitably modified planning system is utilised to generate a solution to the

problem as an orchestration of concrete services. Similarly, Blythe et al. [29] identify the

need for automated systems for the discovery and composition of grid resources, rather

than relying on an individual‘s knowledge and time to solve the problem, and they

present an approach to composition that makes use of a heuristic based planning

system to guide the selection of services and resources.

The approach taken by Blythe et al. incorporates a knowledge base consisting of data

about the problem area and the available grid resources - such as knowledge about

how components operate, the characteristics and availability of files and resources, and

policies that may exist to control the access to such files or resources. The planning

system can then access this information during the composition process in order to

search for a solution that matches a user‘s requirements, to ensure that such a solution

is feasible given the current resources and environment available, and to enable the

system to adapt to changes in the environment.

A similar approach by Wu et al. [30] makes use of the SHOP2 planning system [31] to

solve web service composition problems. SHOP2 is a hierarchical task network (HTN)

planning system and the authors suggest that the similarity between task

decomposition in HTNs and process decomposition in the OWL-S process ontology will

enable the system to be modified to solve workflow composition problems. By viewing

services as actions with requirements and outcomes, and providing a suitably described

36

objective the planning system is able to evaluate the available services and compose a

solution. The difficulty with this approach is in how the user actually specifies what they

want to achieve with web services and how the system translates this into an

acceptable planning problem, and whether this can be done without the user already

knowing all of the detail that would enable them to perform the task manually. The

authors have provided only limited information on the manner in which the problem they

wish the planner to solve is submitted to the system, stating simply that their

implementation provides “An interface which lets users specify the request for a

service”. [32]

McIlraith et al. [33] present another approach to web service composition by providing a

means for semantic markup of services in such a way as to make them machine-

understandable and "use-apparent", as well as enabling these services to be supported

by an automated composition approach. The intention is to provide semantic

information not just for the available services, but also for the users who may be

composing the services, as well as for "agent procedures" - essentially a repository of

previously composed services made available for reuse. McIlraith et al. promote the use

of ConGolog, a "high level logic programming language", to search the available space

of services that could be composed to meet a user‘s given requirements. ConGolog

makes use of situation calculus [130] to identify the consequences of introducing any

one service into the composition and therefore decide on which services are

appropriate for use with the existing services. The decision to store semantic

information about users‘ constraints and preferences is interesting as this could lead to

better decision making on which services should be suggested for composition.

Medjahed et al. [24] propose a technique to aid in composing services by providing both

a means to discover whether services are composable, and a system to automate the

composition of those services. Composability rules are introduced to assess whether

available services are compatible. These rules consider the semantic and syntactic

features of the components, e.g. message types, functional descriptions etc. Medjahed

et al. describe WSDL descriptions of services as insufficient for the purposes of the

semantic web as they only provide syntactic information about the services they

describe. In addition they propose the use of an ontology to represent service

definitions that extend this syntactic information with more semantic features. For

37

example, syntactically a service has a name, binding and operation, but the ontology

introduces extra information - a description, category and purpose. Automatic

composition is achieved by allowing users to provide a high level specification of the

processes desired from the composed services utilising CSSL (Composite Service

Specification Language). The system inspects the user‘s description and its repository

of available services in an attempt to locate services that provide the desired

functionality. The composability rules are then used to test whether the set of located

services is able to be composed successfully. If several potential plans are generated

the system uses quality parameters to decide which generated plan is best.

2.5.3 Assisted Workflow Composition

A more recent development in both workflow and web services composition that aims to

support the process beyond the basic manual approach is to begin providing systems

that can guide or assist the user through that manual composition process. This

assistance can be provided in a number of ways, including the provision of suggestions

to the user based on the current state of their composition, the flagging up of potential

mistakes that have been introduced into the workflow such as the connection of

incompatible components, and the identification of requirements still needed to

configure or complete a workflow. We shall describe these in the current subsection.

The challenge with an assisted approach is two-fold – how to define the resources and

composition process in such a way as to enable the provision of suitable assistance,

and how to avoid continually providing the user with unhelpful assistance.

Sirin et al. [34] describe an approach taken to allow the semi-automatic composition of

services by inspecting the semantic properties of services and presenting acceptable

services to the user at each step of the composition process. They argue that whilst we

may still be some distance away from achieving fully automated composition of services

that is both accurate and useful, the ability to describe available services has reached a

stage where it is possible to enable a semi-automated composition process where a

human user is involved in the decision making process. The approach currently aims to

support two applications of service composition - the translation of French to English

and the use of sensor networks. The identification of suggested services for the user‘s

38

consideration is achieved by performing matchmaking based on the OWL-S semantic

properties of services. An exact match is defined as where two services have the same

OWL class for a property, and a generic match as where they have matches based on

one being a subclass of the other. Generic matches are further ranked based on the

distance between classes within the hierarchy. The approach provides further

opportunity to "filter" the list of suggestions returned by the system where the user can

choose to rank suggestions based on non-functional attributes of the services. The

authors argue that there is a barrier in overcoming the differences between the

concepts people use to think about both their problems and the services available to

them, and the concepts that computers use to interpret these, and that their approach

helps to overcome this barrier.

The idea of identifying useful suggestions based on the "closeness" of available

services properties is one which is expanded upon in the research presented in this

thesis. This work explores whether recording and inspecting additional data about the

available services than was considered by Sirin er al. would make it possible either to

eliminate further services from the list of suggestions, or to provide improved ranking

making it easier to identify which are the ―best‖ options. Also this work seeks to

demonstrate that by taking into account information such as past use of services and

user profiling, the suggestions could be tailored even further.

Kim and Gil [12] have developed the CAT (Composition Analysis Tool) system as

another means to overcome challenges encountered in composing services through the

analysis of semantic properties of those services. The CAT approach defines both a

Task and a Domain ontology to describe the available services based on their

implementation details as well as more semantic data. The composition process allows

users to select abstract components from the task ontology and then guides them

through the process of specialising these abstract components. Alongside this

specialisation the CAT system also has defined requirements that dictate when a

workflow is "complete" or finished, and based on these requirements will prompt the

user with suggestions that will take the current workflow closer toward being

"complete". The approach defined by Kim and Gil has limitations in that the suggestions

provided by the system could quickly become unwieldy, as there may be hundreds of

possible routes to take or specialisations to make. By incorporating more metadata,

39

including checks against previous activity and by ranking the suggestions given, it could

become possible to guide the user more effectively toward the "right" decisions.

As discussed in Section 2.1.1 the WINGS/Pegasus system offers another approach to

assisted workflow composition. This system provides the capacity for users to express

their high level requirements as an abstract composition, and the system will then use

this information to generate possible implementations of that abstract composition.

Additionally this approach makes use of a "workflow template" concept whereby users

can choose to start expressing their requirements using an existing template as the

starting point, for example if they are wishing to perform an analysis using a common

method but wish to specify some additional requirements specific to their needs.

A further assisted composition approach is presented by Cerezo et al. [120]. Their

approach which was developed after the practical work was completed on this thesis

follows similar themes as those which will be explored in this work. Cerezo et al.

propose a technique whereby available resources are defined within an abstraction

hierarchy based on their function; these abstract resources can then be composed into

a conceptual workflow by users. Following this, semantic descriptions of resources can

be used to map a conceptual workflow into an intermediate representation, that is a

workflow containing both abstract and conceptual resources. Finally this intermediate

representation can be converted into a concrete workflow which can be executed using

an existing SWS. Differences between the system described in this thesis and that

proposed by Cerezo et al. include that the semantic information considered by their

approach is static and based on the activities fulfilled by a resource and the input and

output requirements it presents, whilst this information is also considered in the

approach described in this thesis, it is expanded to include additional information such

as a user‘s past interactions.

2.6 Summary

The previous sections have provided an overview of the existing state of scientific

workflow systems and composite web services, with a focus on the different

approaches which are being explored within these (and related) communities to the

problem of how to compose resources to achieve more complex goals. As discussed in

the introduction to Section 2.1, despite differences in the manner in which resources are

40

described and implemented between the fields of scientific workflows and web services,

there is sufficient similarity in their overall goals for the approaches to composition

being explored in one field to be of benefit to the other related ones. Following several

years of development, scientific workflow systems have progressed from early tools

supporting the composition of a small number of resources to achieve the goals of a

small set of users, to a stage where users have a choice of several mature systems

which can be used to identify, sequence, and execute a wide selection of resources to

support work across many domains. However we have shown that challenges remain to

enable these systems to provide further support for the successful composition of

workflows when users are unaware of the resources required to complete their

workflow, the overall operation they wish to complete with their workflow, or simply the

single resource that will complete their workflow, as also identified in the literature. [7,

13, 37]

In addition several emerging approaches in the fields of assisted and automated

composition have been discussed in this chapter. The approaches described constitute

the first steps towards formulating a set of techniques that can be utilised in order to

remove the burden of workflow composition from a user. These approaches seek to

enable a user to simply indicate to the system the outcomes that they wish to achieve,

along with any other relevant restrictions or considerations they wish to be taken into

account, and the system will then use this information to generate a suitable

composition that meets these criteria. These approaches investigated have identified

some of the key challenges and developments which must be made in order for a

service or workflow composition system to support either assistance or automation,

namely the need for a suitably rich system with considerable enhancements to the

descriptions and definitions relating to available resources to enable the system to

identify those which can achieve the user‘s goals, and finally a new mechanism through

which the user interacts with the system in order to fulfil their composition requirements.

The move toward assisted and automated composition approaches seeks to overcome

several of the remaining issues identified with existing scientific workflow systems,

reducing the level of knowledge that a user must have about the implementation details

of the workflow they wish to compose. However, these new systems still have

significant limitations, and the work in this thesis seeks to address these. For example,

41

many approaches have focussed on developing a whole new resource definition,

composition and execution framework in which to operate, losing the benefit of the

considerable work that has gone into existing systems, along with the history of

templates of example compositions which users have created for those systems. This

thesis aims to utilise composition assistance when working with the resources and

sequencing capabilities as provided by existing workflow systems, concentrating on

Triana, Taverna and Kepler. As such, those systems which define an entirely new

approach to resource definition and sequencing are not a suitable starting point for the

present work; however ideas from such systems which have been described in this

chapter have informed the direction taken by this work, including the idea of defining

workflows from a high level abstract perspective, the incorporation of further semantic

information into workflow resource description, and the idea of providing assistance to

the user to explore the space of possible workflow compositions which could achieve

their goals.

The literature surveyed in this chapter has demonstrated that the field of scientific

workflow systems is an active area with many projects working to solve the complex

issues that users involved in workflow composition and usage encounter. Whilst many

problems have been solved or are seeing ongoing research to alleviate them, such as

the provision of systems to successfully connect resources and allow them to interact

with one another, the definition of languages and frameworks in which to provide new

resources, the establishment of mechanisms through which completed workflows can

be shared with others, and the development of systems to allow multiple SWSs to

interact with one another, there are remaining issues which this thesis seeks to

address.

These remaining problems centre primarily around the process of composing the

workflows themselves; whilst projects such as SHIWA and myExperiment can provide

considerable benefit by directing users toward pre-constructed workflows, there

remains a need for users to be able to create these workflows in the first instance. It is

in this composition process that we still identify problems which restrict users from

successfully constructing workflows, problems such as an inability to translate their high

level goals into the set of low level steps which are required by the SWS, difficulty in

locating the components which will achieve their overall goals, difficulty in identifying

42

how those components should be correctly sequenced, and a lack of assistance

provided by existing workflow composition systems to reduce these difficulties. The

computer-assisted composition approach presented in this thesis is aimed at

addressing these remaining problems.

By extending the existing Triana, Taverna and Kepler systems to incorporate a

computer-assisted composition approach the user can obtain the benefit of working with

a mature workflow sequencing and execution framework that has been used across a

number of domains and is capable of providing access to a large pool of resources,

whilst still obtaining the benefits that are provided by utilising an assisted approach to

composing those resources.

43

3 Requirements and Design of New Workflow
Composition Features

In Chapter 1 we enumerated a number of aims which this work seeks to achieve: to

provide a framework through which resource metadata can be used to assist in

workflow composition, to develop a UI to demonstrate how this assistance may be

presented to users, and to establish a mechanism through which such assistance can

be offered across a number of existing SWSs.

This chapter derives a set of requirements from these aims, and outlines the design of

the new SWS features which have been investigated in order to achieve these aims,

and to test the hypothesis described in Chapter 1. In subsequent chapters we provide

information about how these features were implemented and present the results of

testing the effectiveness of these features.

3.1 Overview

As discussed in Section 2.1, SWSs have been in development for a number of years,

with this development primarily focusing upon extending the functionality and

capabilities of these systems. This continued development has provided a selection of

SWSs with powerful capabilities for co-ordinating and executing a wide array of tools

and data elements. As such, the purpose of this thesis is not to reject or directly modify

these existing approaches to achieve this functionality but instead to attempt to address

the related problem of how users interact with these systems to make use of their

functionality.

As set out in Section 1.2 the primary aim of this work is to provide a mechanism through

which users of SWSs can be afforded assistance during the process of workflow

composition, in order to overcome the identified drawbacks with the way in which this

process is achieved in existing SWSs. The processes through which composition is

achieved in the existing SWSs used in our work are largely similar, involving the user

manually selecting and sequencing components from a list provided by the system,

although the implementation obviously varies significantly. This approach places a

relatively high requirement on the knowledge which a user must possess before they

44

can successfully compose a workflow. They must be aware of the specific components

which provide the functionality they require and the manner in which those components

interact - including the types of data which each component works with and how data

can be usefully and meaningfully passed between them. Additionally these systems do

not provide a sufficiently exploratory approach to workflow composition to support users

who may not initially be certain of the goals they wish to achieve.

Whilst each of the existing SWSs provides the user with a degree of support in the form

of information regarding available components (such as a textual description of their

usage, or some basic information about the format of data which they produce or

consume), the degree of assistance provided is limited, and users must discover this

information for themselves during the composition process. The specific nature of the

assistance provided by each SWS is described in greater detail in Chapter 4, where we

identify the additional knowledge required to support the level of guidance provided by

our approach to assisted workflow composition, and further information regarding the

composition process that is used by each system is provided in Chapter 6, when

describing a new API which can interact with these systems.

In light of these issues the goal of this work was to explore ways through which

scientific workflow composition could be made a less challenging problem for users,

particularly those with limited experience working with the software. Whilst the final list

of aims described in Chapter 1 focusses on a number of elements which have been

explored to satisfy this goal, the early stages of this work placed more direct focus on

the idea of developing a new UI for workflow composition, exploring whether altering

the manner in which the user interacts with the underlying workflow engine to compose

and execute their workflow could result in a system which overcomes some of the

challenges identified in Chapter 2. Investigation into aspects of Human Computer

Interaction (HCI) such as the role of intelligence and automation in UIs [37, 38]

identified that the idea of a "Workflow Composition Wizard" was an approach which

could potentially be explored as a means to simplify the composition process. Due to

the limited capacity for a wizard approach to support the richness of workflow

composition possible within existing SWSs, this approach was discarded in favour of

exploring the benefit which a more interactive, knowledge-based approach to

composition assistance could provide. However, a wizard based approach to workflow

45

composition is still an idea which merits exploration, and could potentially be used in

conjunction with the knowledge-based approach described in this thesis.

As a result in order to overcome the issues identified in composing workflows in existing

SWS the approach presented in this thesis is to provide the user with context-sensitive

assistance during the composition process. As the core sequencing and execution

functionality provided by existing SWSs is of a mature standard, the intention is to

provide a self-contained extension to these systems, which provides this assistance

when using the resources of the existing systems to compose workflows. This

assistance is to be provided in the form of suggestions for how the user can progress

their composition. Additionally the approach aims to enable users to specify their

composition as a sequence of high level goals, and then to provide assistance in order

to translate this into a complete, executable workflow. The suggestions which the

system offers are provided in three forms:

1. Suggestions for components which the user could add to their composition.

2. Suggestions for how to specialise the "abstract", high level components which

the user has selected into concrete, executable components, and

3. Suggestions for connections which they could create between concrete

components which are already present.

As stated previously these techniques will enable us to provide an assisted approach to

facilitate composition of workflows utilising the components and underlying capabilities

of a number of existing SWSs.

3.2 Requirements

Through discussion with Dr Rich Williams, the contact from Microsoft Research Europe

who were the sponsors for this work, as well as supervisors from within Cardiff

University , a number of requirements were identified. It is desirable to satisfy each of

these requirements if such an approach to assisted composition is to be achieved in a

manner which is applicable across multiple existing SWSs. The system must be able to

achieve the following:

46

1. Exist as a separate entity to existing SWSs

2. Interact with the workflow composition functionality provided by multiple SWSs

3. Inspect the current state of a user's composition

4. Hold suitable knowledge of the available workflow components in order to

facilitate suggestions

5. Generate useful suggestions to present to the user based on their current

progress

6. Interact with existing SWSs in order to facilitate the execution of workflow

components.

The approach to assistance which is to be provided by the system is intended to

operate in interaction with multiple existing SWSs, enabling users to be offered

assistance whilst still working with the resources and composition capabilities provided

by those systems. As such, requirements 1 and 2 define that the system must be

independent of any particular SWS, but able to interact with them to achieve key

functionality such as the insertion and connection of components and the defining of

component properties. It will be necessary to expose the underlying functionality of the

existing systems in such a way that the development of an extension to these systems

can be abstracted from their individual implementations.

As the aim of the system is to provide the user with assistance in progressing their

workflow composition, requirement 3 is essential as the system must first be aware of

the progress, if any, the user has made thus far. To this end the system must monitor

both the components which the user has inserted into their workflow composition, and

the manner in which those components have been sequenced and interconnected.

Requirement 4 is the basis from which useful suggestions can be provided to the user.

By providing the system with knowledge of the purpose, configuration requirements,

and data types involved with each component, the system can identify which

components may be of relevance to the user in his or her current context.

If the system has knowledge of both the state of the user‘s current workflow

composition, and the characteristics of the components which are available within the

SWS, requirement 5 is that the system should have a suitable set of mechanisms for

47

converting this knowledge into suggestions for components which the user could

include within their workflow, or connections which could be implemented between

existing components.

Finally requirement 6 focusses on enabling the workflow compositions, which have

been created by following the suggestions made possible by requirements 1-5, to be

successfully enacted by the execution engine provided by each of the existing SWSs.

The results obtained will therefore be identical to those that would be achieved if the

workflow were constructed in the original SWS itself.

3.3 Key Features

In order to satisfy these requirements a number of key features are required - a clearly

defined framework for storing knowledge about workflow components, a set of

algorithms to generate composition suggestions using this knowledge and information

about the current state of the user's composition, a user interface which presents the

user with these suggestions during the composition process, and an API which defines

how a system such as this UI can interact with existing SWSs in order to achieve the

functionality required to compose and execute workflows. Figure 3-1 shows an outline

of this system architecture.

Figure 3-1 Overview of System Architecture

48

3.3.1 Component Metadata Framework

There has been considerable research into the mechanisms through which assistance

can be afforded to users during their interaction with workflow composition systems,

with significant challenges being identified with respect to the amount of benefit each

approach provides. van Nimwegen et al. [47] claim that, although the common

approach of reducing the options available to a user at any given moment (the "greying-

out" of choices) can have benefits, it is also possible for this practice to hinder a user's

ability to work effectively as users may not be aware of why options have been

removed, and may fail to discover key functionality that the system can provide. This

can reduce their ability to learn how to work with the system independently. To this end

a particular focus of the new approach presented here is upon ensuring that where

guidance is provided to the user it is of genuine benefit, and that the user is not

prevented from exploring options other than those the system directs them toward.

Birnbaum et al. [48] suggest that the ability of an intelligent system to provide

assistance to the user is dependent on how well the system has managed to model the

task which is being performed and the domain in which this it is being used. In order for

User Interface Extension

Existing SWS

Existing SWS

Existing SWS

Intermediate API Communication Layer

Component Metadata
Framework

Suggestion Generation
Algorithm

User

49

a SWS to provide the user with information which is both relevant and helpful it must

have a clear understanding of the workflow components that are available to a user, in

terms of both the function which they perform, and the configuration and sequencing

which enables their use, as well as knowledge of the goals the user wishes to achieve

so that these can be matched to the capabilities of these components.

Accordingly, the approach taken in this thesis is to develop an ontology which stores a

selection of metadata relating to each individual component. Whilst existing SWSs store

a certain amount of information relating to the components which they provide, the

purpose of the ontology is to contain a more extensive representation of the

components, relating each to the purpose for which it can be used, as well as

expanding on the more functional information which current SWSs provide.

Furthermore, defining a consistent set of metadata elements which are required for

each component enables this information to be more effectively queried in order to help

identify those components which may be of benefit to the user.

Storing this information in an ontology allows for a more structured representation of the

properties of each available component than what is currently available. For example,

rather than simply providing a textual description of the purpose of each processor, as

existing SWSs do, we can develop a hierarchy of "component tasks". This hierarchy

can describe the functionality of components both at a high, application-orientated level,

such as the fact that a component is involved in visualisation or data modelling, and at a

lower level, capturing specific details such as the particular type of visualisation

technology or modelling algorithm which is used. As components may be used across

several application areas or domains the hierarchy should not preclude a component

having multiple "super classes". By storing components within this hierarchy we can

enable users to specify their workflow composition in terms of their high level goals by

creating an abstract workflow from these high level components, then use the task

hierarchy to identify the low level components which could achieve those goals. In

addition, the hierarchy allows us to begin to establish relationships between

components, identifying those which are involved in similar areas of usage and which

may be suitable to use together. A similar technique is used to provide a hierarchy of

"data types", defining specific characteristics of the data which is produced or

50

consumed by each component, beyond the basic information (String, Integer, etc.)

information which is made available in existing SWSs.

An additional kind of information which is stored within the ontology relates to patterns

of usage: the frequency with which the user interacts with components, storing how

often a particular user uses each component, and in addition how often they create a

connection between a pair of components.

Storing this additional information about each individual component can help users to

identify which components they could use within their composition as well as assisting

in identifying the correct manner in which to connect those components. In addition,

imposing a defined structure for the metadata allows the knowledge stored within the

ontology to be machine understandable. It is this feature which enables this metadata to

be used to generate suggestions during the composition process.

3.3.2 Assisted Workflow Composition

In order to support the user during the composition process the approach taken in this

thesis has two main areas: firstly to enable users to specify their workflow in terms of

high level abstract functionality as well as by directly selecting the required

components, and secondly the ability to provide suggestions to indicate the next step

which users could take, in terms of components which they could introduce into their

workflow, or connections which could be made between those components already

included.

By relating components to a task hierarchy, users who are unsure of the specific

component they require can begin by inserting abstract components from this hierarchy

into their workflow. The system can then query the ontology to identify which

components implement the high level functionality the user has identified and provide

suggestions for which to use.

The algorithms which generate suggestions are based upon two primary factors: the

current state of the user's workflow composition, and the knowledge contained within

the ontology about each component available within the SWS. By storing the

component metadata within an OWL (Web Ontology Language) ontology [49] it is

51

possible to use a variety of techniques to inspect this information; for example the

system can use the SPARQL query language [52] to discover which components have

compatible connections with those which the user has already selected.

In addition to the algorithms for generating suggestions the system also incorporates a

mechanism for ranking the suggestions provided. A number of factors are utilised to

rank suggestions, including how closely related elements are within the ontology. For

example when suggesting components which could be connected to one another, if one

candidate matches the exact data type required it will be ranked higher than another

which only matches at a more abstract level of the hierarchy. Another aspect which is

used to rank suggestions is the user's history of interaction with components; if they

have regularly connected two particular components together then this would become a

more highly ranked suggestion in the future.

3.3.3 User Interface

The primary aim of this research is to explore the potential benefit that the provision of

suggestions during workflow composition can have on the user's ability to construct

their desired workflow. However, in order to demonstrate this benefit a basic prototype

user interface has been developed. This interface is not intended to be a feature

complete workflow composition environment and has not undergone significant

development of usability analysis, the aim is simply to illustrate how the knowledge

contained in the metadata ontology could assist a novice user during composition.

The interface will enable the user to compose workflows as they would using an

existing SWS, giving them access to a selection of components and providing a space

in which to organise the relationships between those components. However the

interface will also provide the user with a means to select abstract components from the

component task hierarchy, these can be included within the composition like any

standard component.

The user interface will begin providing the user with suggestions as soon as their first

component is added to the composition. Suggestions will be provided to the user across

three categories:

52

 Specialisation – how abstract components can be specialised

 Addition – additional components that could be added

 Connection – how existing components can be connected

Each of the suggestions which the system provides will be presented as an ordered list,

with each entry including a description of the reason why it has been included by the

system.

3.3.4 Intermediate API and Implementation

As previously discussed, the purpose of the approach taken in this work is not to

replace existing SWSs, but to provide the user with an improved mechanism for

working with the capabilities which these systems provide. To this end, a key feature of

the approach is the ability for the assistance provided by a suggestion based UI to be

made available across a number of existing SWSs.

In order to achieve this, an intermediate API has been created which defines a set of

calls which the new UI can utilise to achieve set functionality provided by the existing

SWSs. By providing such an API the implementation of the UI does not need to take

into account the differences of each of the underlying SWS, so the same approach to

workflow composition assistance can be utilised regardless of which SWS is being

used. An implementation of this API has been created as an intermediate layer between

the UI and those existing SWSs, if changes occur to an underlying SWS, or if support

for a new SWS is required, it is only the implementation of this API which will need to be

updated.

The benefit of developing such an API is also not limited to enabling the assisted

composition UI which is explored in this work; the API could be used to support a

variety of extensions to existing SWSs' functionality.

Specification of the API requires the identification of a number of key elements of

functionality which are required to be exposed from the existing SWS, such as the

mechanisms for listing the available components, creating new workflow compositions,

adding components to a composition etc. The API implementation must translate calls

53

for this functionality from the UI into the required form to achieve that functionality within

the SWS which is being used.

A factor which makes the implementation of such an API reasonably straightforward,

once specified, is that each of the existing SWSs which are being targeted is

implemented in the Java programming language. This helps reduce the complexity of

the API and ensures that it can be kept as minimal and transparent as possible to any

subsequent extension which makes use of it. We provide details of the API in Chapter

6.

3.4 Summary

This chapter has outlined the requirements for an assisted approach to workflow

composition. We have discussed what is required if a system is to be developed which

can present the user with helpful suggestions throughout the workflow composition

process, and how such assistance could be provided when composing workflows within

a number of existing SWSs. This chapter has introduced a number of new features

which will satisfy these requirements: a framework for storing metadata about available

workflow components, a mechanism for using such metadata to generate composition

suggestions, an interface through which such assistance can be provided, and an API

which enables this assistance to be provided across a number of existing SWSs.

The following chapters will look in greater detail at each of these features, explaining

their motivation with respect to the operation of existing SWSs, and providing further

information regarding their design and implementation.

54

4 Component Metadata Framework

This chapter provides a detailed description of the framework which has been

developed in order to store relevant metadata about workflow components available

within the SWSs Kepler, Triana and Taverna. As outlined in Chapter 3 this metadata is

recorded in order to be able to generate suggestions which can support users during

the workflow composition process. The following sections outline the extent to which

such support for users during the composition process is provided in existing SWSs,

introduce the key elements of metadata which we intend to record about workflow

components, describe how an OWL ontology has been developed in which to record

this metadata, and finally outline how this ontology has been populated with information

about components from the existing SWSs.

4.1 Overview

In order for a SWS to provide assistance to the user during the task of workflow

component composition the system must have knowledge of the elements involved in

that process, primarily the capabilities and requirements of use of the components that

are to be composed. By maintaining a repository which records both the basic

requirements for each component and more semantically rich information (e.g. the

relationships between components and the purpose or function of those components),

suitable inspection of this repository can provide useful insight to assist users in

creating workflows.

A major role of the (meta)data within the repository is to act as information to bridge the

gap previously identified in Chapter 2 between the user's knowledge of what they wish

to achieve with their workflow and the knowledge required to successfully compose that

workflow within an existing SWS. The traditional approach taken by SWSs is to provide

the user with a list of components with which to compose their workflow, and the

mechanisms (such as a workflow construction ―canvas‖) through which they can

sequence and assign properties to those components.

This primarily manual approach to workflow composition places considerable

requirements on the user if they are to successfully compose a workflow, specifically

55

requiring them to have detailed knowledge about both the workflow they wish to

construct and the SWS they are using to construct it. In more detail, using this

traditional approach the user is required to have knowledge of the following:

 The complete workflow goals or process they are trying to achieve

Current SWSs provide little support for the exploration of possible solutions to a

user‘s problems, or helping the user to formulate his or her problem in terms of a

workflow. Without knowledge of exactly what they wish to achieve within their

workflow composition the user will struggle to proceed, as current SWSs place

the onus on the user to specify all the details of the workflow they wish to create.

It is already recognized (e.g. by Deelman and Gil [90]) that this knowledge is

something which many users may not possess before beginning their

composition

 The specific components that are required at each step

As discussed in [7], even if the user is able to describe the goals of the workflow

composition they wish to create, and thus overcome the first difficulty described

above, this is still not enough to enable the composition of their workflow. The

user must still be able to identify each individual component which is required by

the SWS to complete composition of the workflow.

Berkley et al. [13] describe how this problem is compounded by the lack of

clarity regarding the naming of components and the lack of relevant metadata

made available to assist the user in identifying which components are useful. As

a result the user could potentially be left in a situation where they do not know

which components are required to proceed and the information made available

to them is insufficient to help to overcome this difficulty. The authors provide a

specific example: the user may be inclined to assume that a component entitled

"interpolator" can perform a generic interpolation operation where in fact it is

only to be used for interpolation of a specific set of data. They additionally state

that the problem commonly occurs in which the name of a component is

abbreviated, for example in this case "interpolator" becoming "int", which could

further confuse the identification of that component‘s applicability.

56

 The precise manner in which those components need to be sequenced

If the user is able to identify the components which are required, there is still a

further challenge presented by current SWSs – understanding the manner in

which those components must be connected to successfully achieve the user‘s

goals. This requires knowledge of the order in which these components must be

sequenced, as well as the specific input and output elements of each

component which need to be connected to each other. As discussed by Qin and

Fahringer [89] this is especially difficult when working with SWSs where many

component input and output ports use the same, generic types (e.g string, file).

Deelman and Gil [90] also make similar observations.

The information regarding components which is available within current SWS

can be of assistance in overcoming this difficulty. However, it has been noted [7,

13, 34] that this information is not of sufficient detail or semantically rich enough

to genuinely benefit the user; in addition this approach requires users to seek

out the information themselves.

Again this problem is also made more difficult by the fact that although users

may indeed understand the task they wish to perform, their understanding may

be at a more abstract level than that required by the SWS [7, 59, 77, 90]. The

conceptual view of a workflow that a user has in their head may compress the

steps to be achieved by several components into one step, or vice versa – in

this way there are substantial challenges in identifying and structuring these

components.

This high level of knowledge required for a user to successfully compose a workflow

using the traditional manual approach is one of the central problems which this thesis

addresses. Existing SWSs provide a limited range of means through which the user can

attempt to overcome the problems identified above. These are primarily based on

providing descriptions or profiles of the components that are available. The user can

inspect this information in an attempt to overcome their composition challenges. The

following subsection describes the information that is made available to the user in each

of our chosen scientific workflow systems, as well as detailing any other techniques

provided in order to help users overcome the identified challenges.

57

4.2 Assistance Provided by Existing SWSs

As described in Chapter 2, the approach explored in the present thesis focusses on

assisting composition within three existing SWSs: Kepler, Triana and Taverna. As we

will go on to consider in detail in Chapter 6, workflow composition within each of these

identified SWSs is achieved through similar means. The user is provided with a

mechanism through which to select their desired components; in each case this is

provided as a hierarchical list. Following component selection both the Kepler and

Triana systems allow the user to arrange and connect their components within a blank

"canvas" region of the user interface, creating connections by dragging links between

appropriate ports of those components. In Taverna these connections are made

through the use of an additional dialogue window listing the components currently

present in the workflow composition; from here the user can select a component and

through the use of a drop down menu indicate which other component they wish to

connect it to. Figure 4-1 is an illustration of the Kepler UI as it looks during this

composition process; other UIs are similar.

Figure 4-1 Screenshot of Kepler UI during composition

58

In order to assist the user in overcoming difficulties which may be encountered during

composition each SWS provides a range of approaches designed to provide either

information or assistance.

4.2.1 Component Port Types

In order to establish successful connections between components within each SWS the

data types of those components connected ports must match. Each system makes use

of a variety of types which are mapped to each component‘s input and output ports; for

example the Kepler SWS has port types such as String, Integer etc. In order to help

users establish whether components they wish to connect have matching port types,

each SWS provides a means of inspecting the port types of those components which

the user has inserted into their workflow composition. For example, in the Kepler UI the

type of a port can be displayed by highlighting that port on the workflow canvas or by

viewing the component documentation; in this way the user can identify whether the two

components are syntactically compatible. However the usefulness of this information is

limited as a result of the fact that although two components may have syntactically

matching ports this does not mean that connecting them will provide any useful result.

For example the Triana system provides components ―DeSerialize‖ and ―HistoryWriter‖

which have ports with the type ―Object‖, but whilst their ports are of matching types

connecting them would not provide a useful result. Similar problems exist in both

Taverna and Kepler; for example in Kepler a large proportion of component ports use

the "String" port type, meaning that from the system's point of view most components

can be successfully connected even if their composition would be of little benefit and

individual components may fail to process the string provided (e.g. because a molecular

sequence string is expected).

Whilst identifying the port types of components is important in order to determine

whether two components are syntactically compatible, it is not capable of identifying

whether those components are semantically suited for connecting to one another. As

seen with the previous example it is also possible that two components with compatible

ports will fail to work in conjunction with one another as the specifics of the data

communicated between them leads to compatibility issues. In addition before any

59

compatibility checking can be performed the user must first have identified the

components they believe are candidates for connection.

4.2.2 Component Listing and Naming

The manner in which components are listed for selection within each SWS is designed

to provide a degree of assistance toward this identification of desired components. In

the Taverna SWS components are listed according to their "Provider". In this way, if a

user is aware of the provider of the resource they require they will be able to quickly

identify this from the list. Triana takes a similar approach; however here components

are listed according to their domain of usage, such as "ImageProc" for components

used in the field of Image Processing. As a result if the user knows the relative ―domain‖

of task they wish to perform they can inspect this area of the component list to locate

the components they need. Kepler lists available components in a manner which

combines both of the techniques of Triana and Taverna, grouping the components

under the categories Components, Projects, Disciplines, and Statistics.

Whilst this information may be able to assist the user in identifying components, it still

requires the user to be aware of the domain, project or discipline to which their desired

component belongs. In addition this relies on there being agreement between the users'

and the system's views of which domain a certain component belongs to, and this can

be made even more difficult for components which may be routinely used in multiple

fields. If the user is unaware of the provider or domain of use of their required

component, the conventions used to list components within each SWS will offer them

no benefit.

In addition to the manner in which the components are organised within lists and

menus, a further feature of existing SWSs that can potentially help the user is the

component names themselves. Each SWS has adopted an approach whereby

components are given descriptive names, such as the ImageReader component from

Triana. However as noted by Berkely et al. [13] there are cases where this naming can

introduce ambiguity over the function of a component, and there are instances where

the tools and analyses used in separate fields will have the same name but perform

different operations. Sirin et al. [34] also note that the naming of components may not

always offer enough information to enable users to discern their purpose. As a result,

60

whilst naming components in relation to the task they perform and providing a listing of

components that indicates the domain in which they are used is of benefit in identifying

suitable components for a workflow composition, there are still limitations to this

approach. As an example the Kepler SWS includes components with names

FileReader, FileFetcher, and SimpleFileReader. If attempting to read an input file as

part of a workflow composition a user may find it difficult to determine which of these

performs the task they require. Furthermore, embedding implied semantics into a

component‘s name does not assist in any reasoning tasks performed by a computer to

assist a user in selecting suitable components.

4.2.3 Component Descriptions

Each of the existing SWSs provides further information about each component

available, which the user can inspect. This information provides the user with a

description of the component's usage. Such information is of benefit to a user who is

unsure of which component they require, and could assist them in confirming whether

their chosen component is going to perform the function they require. However the

manner in which these descriptions are currently provided by the systems is of limited

benefit. A major drawback to this approach is that the onus is placed on the user

seeking out the information; they must first identify components which they suspect may

be of relevance to their workflow composition and inspect the descriptions of those

components to determine whether this is the case.

Given the large number of components provided by each SWS, and the limitations

described previously in how these are presented to the user, this process would be very

time consuming for the user. In addition the nature of the components provided by

these SWSs, coming from various different providers and sources, means that the

information provided in component descriptions is of varying detail. Some components

such as GARPPreSampleLayers from the Kepler system provide great detail about their

function, limitations and usage, where others such as JobManager or Parameter

currently provide no documentation at all. As in the discussion in the previous section, a

fundamental problem remains that the computer cannot help the user by inspecting

these descriptions, as they are not semantically or ontologically based.

61

4.2.4 Assistance Provided by Existing Systems - Summary

These ad-hoc approaches that the user can take to overcome the gaps between what

they know and what the system needs them to know in order to complete a workflow

composition rely on exploiting the information and metadata that the SWS provides to

describe the available components and the user‘s current knowledge of the system, its

components and their ultimate goals. The information which is provided within current

SWSs about a component, its usage and properties can potentially be of great use in

helping a user identify which components are required to successfully achieve the goals

of their composition, by making clear the purpose of a component, as well as enabling a

user to connect components so that they execute correctly, by stating the properties

and requirements of each component.

However, in its current state the information provided is insufficient to assist in all

circumstances, and is only utilised passively and indirectly, with the user inspecting this

information and drawing their own conclusions. No mechanism is provided to actively

assist the user in locating and sequencing a set of components to achieve their

requirements.

4.3 Metadata Assisted Composition

The approach outlined in the remainder of this chapter sets out to provide a standard

set of metadata which is stored relating to each component available within a given

SWS. The importance of high quality metadata to the facilitation of workflow

composition and re-use was identified at an early stage as an area of focus during the

research conducted for this thesis, and, as described in Chapter 2, it is something

which has seen increasing recognition within the SWS community. Both in parallel with,

and since the completion of, the work practical work for this thesis, a number of projects

have undertaken to explore the benefits that high quality metadata can have for SWSs

[78, 81, 82, 120].

Through providing an ontology which explicitly records a standard set of information

relating to components and their relationships with one another, an approach to

workflow composition assistance has been developed which uses this information as a

means to support users with decision making during workflow composition; this

62

approach will be presented in the following subsections. By storing a standard set of

metadata relating to components this new approach can avoid situations encountered

in existing SWSs where the differing quality and consistency of descriptions can prevent

the determination of compatibility between components or the suitability of a component

to achieve a desired goal. Furthermore, standardizing this information and recording it

within an ontology makes it possible for a system to begin automatically extracting

useful knowledge about the components represented.

The following subsection will introduce the properties of components that are desirable

for automatically deducing their suitability and compatibility for composition, and how

these can be represented within an ontology to enable the extraction of knowledge

required to assist users in workflow composition.

4.3.1 Component Metadata

There are a number of main tasks that a user must perform in order to successfully

achieve their goals in a SWS. Primarily these are the identification of required

components, and the suitable sequencing of these components to provide the desired

output or results. Metadata regarding elements such as the components themselves,

their relationships with one another, as well as their usage by a particular domain or

user, can be utilised to assist in these tasks.

In the following sections we define a standard set of metadata properties to be stored

regarding workflow components and introduce several approaches which are designed

to utilise this metadata to assist the user to compose their workflows.

As explained in Chapter 3, these metadata elements are designed to enable the system

to provide three varieties of workflow construction assistance to the user:

 Assistance in translating a high level concept of the tasks they wish to perform

into a lower level that matches that of the components provided by the SWS

 Assistance in identifying the additional components required for their

composition

 Assistance in identifying the manner in which the selected components should

be connected and sequenced.

63

The following approaches and concepts are used in order to enable the metadata to

support such assistance:

 Abstract Components / Task Hierarchy – The purpose of metadata of this

sort is to relate components to the tasks which they perform, recording the tasks

as a hierarchy with the specific component itself being the leaf node before

working upward through progressively more generic tasks which the user can

relate to their workflow composition goals.

 Port Data Objects – By relating each component's input and output ports to the

specific data which it consumes and produces, rather than arbitrary types such

as String or Integer as used in current SWSs, the user, and the system, can be

provided greater information with which to determine whether components are

compatible with one another, and also whether they are suitable for contributing

to a workflow which will satisfy the user‘s requirements.

 Composition Suggestions – By inspecting the information stored in the

component metadata the system can identify components which may be

suitable for inclusion in the user‘s workflow composition, offering these to the

user as a set of suggestions for changes to make to their ongoing composition.

 User Interaction History – By recording information about the decisions a user

makes during composition, the system can utilise this information to tailor future

suggestions to the user‘s requirements. The present approach limits the usage

of this history to the specific user that has generated the history, although the

impact of widening this to others is discussed in Chapter 10.

4.3.2 Metadata Structure

Information relating to a component, such as its name, domain of usage or provider,

can be useful in assisting a user to identify the components required to complete the

composition of their workflow. However, as we have seen in the previous sections,

whilst this information can be of benefit, the current implementation of such metadata

has two main drawbacks – there is a lack of depth and consistency in this information

across the vast range of components provided by current SWSs, and the metadata

provided is only able to assist the user if they inspect this information manually and

draw their own conclusions regarding the best step to take.

64

By defining a standard set of metadata properties which are to be provided across all

components it becomes possible to allow the system itself to inspect and reason with

this information in order to provide the user with assistance during workflow

composition. In addition, by extending this set of metadata to include properties not

currently present in existing SWSs the accuracy and usefulness of the assistance the

system is able to provide can be further enhanced.

The items listed below represent the specific metadata properties which need to be

recorded in order to support the means of assistance introduced previously:

 Component Metadata

o Name – The component’s name

o Task(s) Performed - A description of the task the component performs

o Project(s) – Names of projects for which the component was either created or in

which it has been routinely used

o Provider – The designer or developer of the component

o I/O Connection Ports – The input and output capabilities of the component,

including the following further details:

 Port Name

 Port Type

 Port Data Object

o Connection History – A list of the components which have previously been

connected to this component by the user.

Figure 4-2 shows a number of items within the ontology which was constructed, in order

to illustrate its structure.

65

Figure 4-2 Illustration of a number of items from within the ontology

66

The following sections will discuss the role of each element of metadata in supporting

computer-assisted workflow composition.

4.3.3 Component Name

The first element of metadata which is being recorded is the name of each component.

As we have seen, the current SWSs attempt to provide descriptive naming of

components in order to assist the user in identifying their required components. In order

to maintain this benefit, and to ensure that users familiar with the components provided

by the existing SWS are still able to locate these components, the name of each

component as provided within the existing SWS is retained within the metadata

framework proposed in this thesis.

By retaining the name of each component, users will still be able to perform a degree of

deduction of those component's operations from their naming, which may provide some

limited benefits; however as we have seen in Section 4.2 this information is often

insufficient for this task, resulting in the need for additional metadata to be stored

relating to the task or tasks which a component performs.

4.3.4 Component Tasks

During workflow composition one of the user's primary concerns is clearly to determine

the components which perform the operations they require. To this end a valuable

element of metadata to store is the task or tasks that each component performs. Whilst

such information can sometimes be deduced in existing SWSs, through either the

component's name or its location in the component listings, we have already

emphasised (Section 4.2) that the component name will not necessarily give the user a

clear indication of the operation that component performs; even worse, it may lead them

to believe that it performs another operation altogether.

In addition many components in existing SWSs are listed in such a way as to give the

user no immediate information about the operation they perform. For example, whilst

some components in Kepler are listed relating to their function, such as the component

―Image Rotate‖ which is listed under the headings ―Data Operation->Image Operation‖,

67

giving the user a clear picture of the operation it performs, other components are listed

in a less helpful fashion. For example, under the "Data Output->Local Output" headings

three components are listed: "FileWriter", "LineWriter" and "TextFileWriter"; the

operation of each of these and distinction between them is unclear given their generic

names and location within the heading hierarchy. By maintaining metadata relating to

the task that every component performs it is possible to avoid the situation where the

user is unable to work out the operations that a component performs, and therefore

which components are potentially relevant to their current task.

In order to represent this information within our new framework it is necessary to collate

the various elements of information relating to the tasks which a component performs

that are made available within existing SWSs. As previously discussed, such task

information is provided by various sources including the names of components, their

textual descriptions and the hierarchical listing of components within the tree of those

available. From these sources of information it is possible to derive the overall operation

or task that a component performs and to represent this as an individual element of

metadata associated with that component.

For example within the Triana SWS the list of available components places each

component under a heading which represents the type of operation it performs. One

such heading is ―ImageProc‖, which contains the component ―Invert‖. By inspecting this

listing - the name of the component - as well as its description, we can deduce that the

component ―Invert‖ is an image processing component utilised for the task of inverting

the colour of a given image. By completing a process of inspecting the component

listing from each existing SWS it is possible to discern, with a reasonable level of clarity,

the overall operation that each component performs. This can then be recorded as the

―Task‖ element of metadata for the component.

Rather than relating each component to a free-text description of the task it performs,

the proposed metadata framework represents the task performed by each component

within a hierarchy. This enables components which perform similar operations to be

grouped under the same sections of the hierarchy, and allows for the tasks to be

described from both a high level, aiming to more closely match the abstract view that a

user may have of the tasks they wish to perform, and also from progressively lower

68

levels which more accurately represent the specific task that a component performs.

Figure 4-3 depicts part of this hierarchy, illustrating how Invert, along with several other

Triana tasks are represented.

As discussed previously, users of workflow systems have to overcome a large

knowledge barrier in order to successfully compose workflows which satisfy their

requirements, and often this is due to their view of the workflow being defined at a

higher level than that required by the SWS [7, 59, 77, 90]. By introducing levels of

abstraction in this way, the framework can support a system whereby users can specify

their workflow goals at varying levels of detail, dependant on the knowledge they have

about what is required at each step. This representation of component tasks within a

hierarchy enables the user to be able to investigate the path from the high level abstract

concepts to the concrete workflow components which will achieve the tasks they

require, and importantly by maintaining such a structured representation of this

information the system itself is able to inspect this task metadata, so that given an

abstract concept it can provide suggestions for the user as to which concrete

implementation of this concept they should use.

WorkflowComponent

ImageProcessingComponent

Brightness ImageView Invert

Visualisation Editing

Figure 4-3 Image Processing components within the component task
hierarchy

69

4.3.5 Component Project, Domain and Provider

Currently systems such as Kepler and Taverna list their available components in

relation to the provider of the component or to the domain or project in which that

component has mostly been used. If the user is aware of a project having goals which

match their own, or a resource provider which they have made use of in the past, then

this information can be of benefit to the user in identifying the components required for

their workflow composition.

From inspecting the information currently provided in the SWS the metadata framework

can be populated with knowledge relating to the Project for which a component has

been developed, the Domain in which it has been utilised, and the Provider who has

developed that component. By recording each of these metadata elements for all

components rather than only including the provider information as is currently available

in Taverna, or only including the project information for certain components but not

others, the user can be presented with a uniform view of the components which are

available to them and therefore make more informed decisions about which

components to include in their workflow composition. Again, providing this information

in a highly structured manner enables the possibility of the system being able to inspect

and understand this information itself and as a result be able to identify components

which may be suitable for a user‘s needs.

4.3.6 Component Connection Ports

As discussed previously the input and output ports associated with components in

current SWSs are restricted by the type of information they either produce or consume.

For example an image viewer component might only accept an input of a given set of

image types. As a user progresses with their workflow composition this port type

information becomes increasingly useful in identifying which components to connect out

of those already included in the composition, as well as helping to identify further

components which could be included. For example if a user is constructing a workflow

to perform a GPS mapping operation and has already identified a component which can

translate GPS co-ordinates into a visualisation then knowledge about which

components provide such co-ordinates as their output will be of benefit to them in

deciding the next step to take.

70

However, as discussed previously, existing systems (particularly Kepler) provide only a

limited number of port types, meaning that whilst this port type information is of benefit

in identifying whether components are syntactically compatible it only has limited benefit

in identifying whether the connection of those components will provide a useful and

semantically valid outcome. Taking the above GPS example again, if the visualisation

tool had a port type of ―integer‖, knowledge of this would be of little benefit to the user in

identifying which component to connect as there are a large number of available

components which produce an output of type "integer" and many of these will produce

data in a form that is meaningless as input for the GPS visualisation tool. The basic

knowledge that a component produces or consumes output of a simple type such as

"string" or "integer" is not sufficient in many cases to identify whether the particular

output from one component will be sensible as input for another, despite their matching

port types.

Such inadequacies with the information available in existing SWSs effectively limit a

user's ability to identify both the compatibility which a component may have with other

available components, and also the range of situations in which the use of that

component may be appropriate. To address this problem it is desirable to store

knowledge within the metadata framework about component ports which is targeted at

not just assessing whether connections between components are syntactically possible,

but also whether such a connection is desirable in terms of producing useful output and

helping a user achieve their overall goals.

In order to facilitate this more detailed evaluation of component compatibility a further

element of metadata is defined relating to each component port, the Data Object.

Whereas the basic type information related to each port within existing SWSs is

typically a loose description such as ―String‖ or ―Integer‖, the aim here is to relate each

component port to a more specific definition of the information which it either produces

or consumes. For example, if a component has a current output port of type ―String‖, is

there any further information known about the nature of the string which this component

produces which could assist in identifying whether it is a suitable input for another

component? From a basic level we could assert that this string is a URL, or a file

location, or some other form of unique identifier. Beyond this it may also be possible to

71

infer more specific information, if this is a file location what is the type or extension of

the file, is this identifier a scientific name, a geographical location etc.

As with the metadata relating to a component's task, this port data object metadata is

maintained within the framework as a hierarchy (Figure 4-4). As we may be able to infer

different levels of detail about the information which is produced or consumed by

different components, it is desirable for the metadata framework to allow flexibility in the

representation of this information.

For example, whilst it may be possible to characterise the output of one component to a

very specific level of detail, such as an image processing component which produces

an image file of type GIF with dimensions 256x256, another component may only be

specified as producing an image which could of varying file types and dimensions.

Similarly the level of detail which can be inferred about the input expected by different

components will feature similar variation. Recording this port data object information as

a hierarchy means that a user can identify the component which produces a 256x256

GIF as being compatible with both a component which expects only this specific type of

image as an input and also a component which will accept any form of image as input.

By recording greater detail relating to the information which components produce as

output and expect as input the user is given more chance of identifying those

Figure 4-4 A subset of the PortDataObject hierarchy

72

components which are necessary to complete their workflow composition and can have

more confidence that the sequencing of those components will produce correct results.

Again the recording of such information in a structured manner also makes it possible

for such type matching and component identification to be automated by the system.

4.3.7 Component Connection History

The elements of metadata discussed in this chapter are designed to assist the user in

identifying the components which are necessary for achieving their goals, as well as the

manner in which those chosen components should be connected and sequenced. An

additional element of metadata of benefit in this task is knowledge of the components

which a specific user has made use of in the past, and the manner in which they have

previously connected those components.

The benefit of taking into account the actions that a user has performed previously

whilst using a SWS is that, as a part of an assisted approach to workflow composition,

such knowledge can assist in narrowing the field of available options to those which are

of relevance to the user‘s context. Given the large, and increasing, number of

components which are available in current SWSs, the process of locating those

components which are relevant and useful to an individual user is becoming

increasingly difficult. In addition, as much of the literature regarding the development of

SWSs shows, users are commonly involved in creating workflow compositions for a

specific project or domain, meaning it is not uncommon for restricted ranges of

components to be required [4,6,8,9]. It is these users who are targeted by this

approach.

If the system were made aware of the component connections which a user has made

in the past then it would be possible to identify trends and common relationships

between components and highlight those frequently used components to the user. In

addition, combined with the other elements of metadata such as port types and data

objects, this could help the user in identifying other components to connect with those

they have used previously to achieve new goals.

An important consideration in this instance is the extent to which such a connection

history can be of benefit in terms of end users. A single user, working in a single

73

domain or within a single project, who makes use of such a system recording their

component interactions is going to develop a connection history that may be of

significant benefit to their own future work within that domain/project. However, the

benefit that this record of their connection history may have on other users'

compositions is more difficult to predict. It may be that inter-domain connection histories

will be of benefit to individuals working in those, or closely related, domains, and

similarly inter-project histories may be of benefit to others working on the same project.

Such information could be of particular benefit to new users who have yet to develop a

history of interaction with the system, in these instances the decisions which have been

made by other users within their field of work may help guide them through composition

tasks where they may otherwise encounter difficulty. In addition as the connection

history information is only used as a means to generate suggestions about steps to take

the user is free to explore other options external to those which they or others have

chosen in the past, an option which may be of benefit as users' become more

experienced and less reliant on suggestions to progress.

A further complication would be the specificity of a component to a particular domain or

project. If a component is used frequently across many domains, and is utilised for

similar purposes across those domains, then connection histories relating to that

component may be of benefit to users from other domains, whereas the connection

history of a component specific to a single domain, or a component that is used in a

different context within different domains, is likely to be of limited benefit beyond the

domain in which the history was recorded.

In order to take advantage of trends and common relationships which may develop

regarding component connections there must be a mechanism to record relevant

information during workflow composition. The following elements of information are

recorded within the metadata framework for the purpose of maintaining component

connection histories:

 Components – The two components involved in a connection

 Ports – The individual input and output ports which those components are

connected through

 User – The user who has created this connection

74

 Connection Count – The number of times that this particular connection has

been made

Recording the components and ports involved in a connection is essential, as this is the

information required to monitor whether the connection occurs frequently. Maintaining

just a history of the components connected, without the information regarding the port

they were connected through, would have limited value as users developing a workflow

will want to inspect the way in which those components have previously been

connected. In addition it is beneficial to identify the user who has made this connection,

both so that the system can use this knowledge of their connection history to assist

them personally as well as the possibility of others who work with, or in the same

domain as, this user. Finally it is essential to record the number of times that this

particular connection has been made as this information can then be used to determine

if a particular connection is occurring more frequently than others.

An additional possibility, but one which has not currently been implemented, is to

extend the information stored about the ―user‖ that has made a connection to

incorporate further metadata such as the domain(s) in which that user works, and any

projects within which they utilise workflow compositions. This information would again

be of use in determining other potential benefactors of an individual user‘s connections

history. In order to assist in determining whether connection histories from one domain

or project may be of use within another, the ―domain‖ and ―project‖ metadata associated

with a user could be maintained within a network structure. This would represent the

relative ―closeness‖ of the domains, with those which are deemed similar, due to

involving related work or use of a SWS, able to take advantage of each others'

connection histories.

4.4 Representing the Metadata Ontology

In order to be able to use the information regarding components described in the

previous section during the workflow composition process it is necessary to define a

standard model for storing and interacting with this information. As discussed

previously, a drawback with the descriptions and information provided regarding

components within existing SWSs is the lack of consistency present within those details

provided. By providing a standard set of information regarding all of the available

75

components it is possible for users to gain advantage from this information during

composition. The representation of this metadata is structured via four main concepts:

 "WorkflowComponent" - A base definition of the core attributes required by all

components - this acts as a "superclass" for all components and defines

attributes discussed previously - the components name, provider, ports etc.

Each of these attributes is a unique "class" of its own, describing the attributes

required of it (e.g. the type of a port)

 The "Task Hierarchy" - A series of sub classes extending WorkflowComponent.

Classes which extend this can be either abstract components representing

generic tasks, or concrete components which implement those tasks. Each of

these sub classes can extend WorkflowComponent to define additional

attributes specific to that task.

 The "PortDataObject Hierarchy" - Each component port has a PortDataObject

attribute which associates the port with the specific data that it produces or

consumes. Similar to the Task Hierarchy these PortDataObjects are

represented as a series of subclasses, identifying relationships between the

different types of data which each component processes.

 The "Connection History Repository" - A data structure which stores the

necessary information to record the history of components which a user has

connected during their use of the system.

Developing a well defined format in which to represent these details enables such

information to be machine-understandable, presenting the opportunity for a SWS to

provide assistance to users during composition based on this knowledge.

The information for the first three of these concepts (the "WorkflowComponent"

representation, the "Task Hierarchy", and the "PortDataObject Hierarchy") are all

maintained within an OWL ontology, representing the relationships between

components and their metadata. Figure 4-5 provides an overview of these concepts

and how they are related within the ontology. A proprietary data structure is used for

maintaining the history of connections formed between individual components.

76

Figure 4-5 Main Concepts within the Metadata Ontology

77

OWL is a W3C endorsed language for knowledge representation [49]. The OWL

language was chosen as it is a well developed language which provides capabilities

which are suitable for modelling the relationships between workflow components and

their related metadata. Specifically it allows for the easy representation of hierarchies of

elements; in this way the hierarchy of component tasks and port data objects can be

easily represented. In addition the tools to enable the interaction between OWL and the

JAVA programming language are sufficiently mature that the required inspection and

reasoning with the metadata would be possible from within the proposed scientific

workflow system extension. As discussed in Chapter 2 a number of variants of OWL

have been developed such as OWL-S [25], OWL-WS [26] and WSMO/WSML [114] to

enable the semantic description of web services. However for this work standard OWL

has been used as it was identified as sufficient to represent the knowledge and

relationship information required for the component metadata ontology.

The components and related metadata from each SWS will be stored in separate

ontologies, as the approach to computer assisted composition explored within this

thesis is designed to work with only one SWS at a time. Given the recent developments

toward support interoperability between SWSs through projects such as SHIWA, an

area for future investigation would be to explore how such an approach to assisted

composition could be applied when working across several SWSs simultaneously.

An OWL ontology represents concepts within a domain as a set of ―classes‖ with

relationships defined between those classes, and ―axioms‖ are used to define what

constitutes an element of each class. ―Individuals‖ are the actual items of data that

belong to a class.

Within this structure provided by OWL for representing knowledge it is possible to

define classes and relationships to model the workflow components and their

associated metadata that are provided for composition within existing SWSs. The

following sections discuss how the elements of metadata introduced in the previous

section are represented within the OWL ontology.

78

4.4.1 Component Representation

There is a base set of attributes which all components have in common and must be

defined for them to be deemed valid, a generic WorkflowComponent class is defined

within the ontology to represent these base attributes. This class has several

restrictions associated with it. These define the characteristics that an individual must

possess in order to be classified as a WorkflowComponent. The restrictions

associated with the WorkflowComponent class are shown in Table 4-1.

Class Restriction

WorkflowComponent hasComponentDescription some ComponentDescription

 hasComponentDomain min 1 ComponentDomain

 hasComponentFullName some ComponentFullName

 hasComponentName some ComponentName

 hasComponentProject some ComponentProject

 hasComponentProvider some ComponentProvider

 hasParameter some Parameter

 hasPort some Port

Table 4-1 Restrictions defined for the WorkflowComponent class

These are the basic properties that all WorkflowComponents must possess. A

component must provide a ComponentDescription, giving an overview of the

function and purpose of that component, at least one ComponentDomain, describing

the domain(s) in which that component is utilised, a ComponentProject, this

describes the project for which a component was developed, a ComponentProvider,

listing the individual or organization that developed the component, a number of

Parameters, these are internal settings provided by components to control their

operation, and a number of Ports, the interfaces through which the component can

communicate with other components. Properties such as Parameter are not required

for each component, as some simple components may not require any specific

configuration in order to function, a potential improvement to this approach would be

further classify each parameter of a component into those which are optional and

mandatory to further inform the system as to the configuration requirements of each

component.

79

Two representations of the component's name are also defined, ComponentName and

ComponentFullName; these are used to represent the name of the component as it is

presented to the user, and the fully qualified class name of the component as it is used

within the SWS. The latter is required to enable the API to easily instantiate new

instances of a component as required.

These base attributes form the starting point for defining a rich set of metadata which

can be used to identify each component's suitability either for inclusion within a

workflow composition or for connecting with another component. This representation

associates each component with a Domain, Project, and Provider, as well as with the

relevant Ports that define its interaction with other components. As each restriction

within OWL is itself an OWL class it is possible to then define the properties that each

of these classes must possess, defining what is required of a Port,

ComponentDomain, etc. In this way it is possible to quickly develop very specific

definitions for the properties that members of a class must possess, and so provide a

structured representation of components and their properties that can be interpreted

and leveraged by an external system.

The definition of a WorkflowComponent is the first step in associating individual

components with the appropriate metadata that could be of benefit to users in

composing workflows. However, as discussed previously, relating components with the

tasks that they perform may enable users to more readily identify those components

which can assist in achieving their goals and makes it possible for a workflow extension

to provide more useful assistance to those users.

Additionally as OWL supports inheritance it is possible to define sub-classes of the

WorkflowComponent class, where each new class will inherit the properties of

WorkflowComponent as well as being able to obtain new properties specific to the

class. This process of creating sub-classes can be repeated through several iterations,

enabling the construction of the component task hierarchy as introduced in Section

4.3.4. In this way, rather than relating a component to the task it performs through the

use of a further restriction on WorkflowComponent, the task that a component

performs can be inferred from its location in the class hierarchy.

80

As discussed previously the advantage of this approach is that the user and the system

can inspect this hierarchy from a number of levels. Hence it is possible to carry out the

initial identification of the high level task that is required, before inspecting the areas of

the hierarchy that inherit from this task in order to locate a specific component which will

perform the required task.

4.4.2 Component Port Representation

The WorkflowComponent class defined within the ontology includes the restriction

―hasPorts some Port‖. This relates each component to a number of input or output

ports which it must possess. The Port class itself defines the requirements of what a

Port must be, including the various elements of metadata previously identified as being

beneficial – Name, Basic Type, Port Type (input or output), and Data Object. This

section describes how the Port class and these elements of knowledge are represented

within the ontology. The restrictions defined for the Port class within the ontology are

shown in Table 4-2.

Class Restriction

Port hasPortName some PortName

 hasPortBasicType some PortBasicType

 hasPortDataObject some PortDataObject

Table 4-2 Restrictions of the Port class

Beyond this, the distinction between input and output ports is achieved through

providing two subclasses of Port – InputPort and OutputPort. As these inherit the

restrictions of their superclass Port it is not necessary to define additional restrictions.

These Port restrictions define what each Individual must possess in order to be

classified as a port. PortName is simply the name of the port as declared within the

SWS in which it is utilised. PortBasicType refers to the simple ―type‖ of information

that is accepted through the port, such as a string or integer value. PortDataObject

refers specifically to the data itself that is involved in an interaction between ports, and

is defined in more detail than PortBasicType.

81

As discussed previously the purpose of the PortDataObject class is to define more

accurately the nature of the data that is transferred between components when they

have been connected. This represents the known properties of the data that an output

port produces and those that an input port expects to receive. Again using the capability

of OWL to represent hierarchies of classes, we can define many subclasses of

PortDataObject, each representing progressively more restricted types of data.

Again as discussed in the previous section this would start from high level abstract

types such as a ―File‖ class which could be associated with any port that sends or

receives a file, before being specialised into more restricted classes such as ―Image

File‖, ―JPEG File‖ and so on.

In a similar manner to the benefits gained from relating each component to an element

from the task hierarchy, relating ports to specific elements from this data object

hierarchy allows for a greater level of understanding of what data is being transferred

between components. With such information being defined for both the inputs and

outputs of available components it is then possible for those component connections

most likely to have a high degree of compatibility to be readily identified.

4.4.3 Connection History Representation

Connections created during a workflow composition are stored within a basic data

structure which is maintained by the user interface. The history of connections is

recorded within an expandable data structure, this enables an arbitrary number of

elements to be recorded and is able to be extended or reduced in size dependant on

the needs of the system.

Each connection itself contains the relevant items of data discussed previously –

components, ports, and connection count. This information is stored within each

individual connection as basic strings and an integer for the connection count. The user

involved in the connection is recorded as a part of the overall Connections structure,

representing each user‘s own connection history within a single structure. The overall

structure of the Connections class is represented by Figure 4-6.

82

Storing the connection history within such a structure allows for the relevant information

regarding the connections a user has made to be recorded, provides the necessary

freedom to expand as the user continues to compose workflows and connect

components, as well as allowing for suitable inspection of the information regarding

connections made to support assistance with those future workflow compositions.

As the user proceeds to create workflow compositions the connection history data

structure will begin to be populated based upon their actions. Initially there is a check to

see if the user has previously made any connections; if not then a new Connection is

created, populated with the relevant metadata and added as the first item of the user's

new connection history:

If, however, the user has already been using the system then their connections list will

already contain a number of entries, in this case the system must inspect its current

contents to discover whether this new connection has been made previously and

If Connections List Empty

{

Create new Connection instance

Populate Metadata(Component 1, Port 1, Component 2, Port 2)

Set Connection Count to 1

Add new Connection to Connections list

}

Figure 4-6 Connection history data structure

Component A

Port A

Component B

Port B

Count

Component A

Port A

Component B

Port B

Count

Component A

Port A

Component B

Port B

Count

User: Russell McIver

83

therefore to increments its connection count, or whether this is a new connection that

must be appended to the connection history:

This representation of the history of connections made by a user is designed to enable

the identification of trends in the connections made between components, and to assist

in directing users toward those connections which may be of most benefit in future

compositions.

4.5 Building the Ontology

The process of populating the component metadata ontology involves extracting

information from a variety of existing sources. As discussed previously, information

relating to the role and properties of components is maintained within a number of

locations within existing SWSs, primarily within component descriptions and naming

schemes.

In order to translate the useful information currently available from these sources into

structured knowledge within the ontology a number of processes are involved:

 Developing the initial ontology structure to represent concepts such as

Components and Ports

 Inspecting documentation of each SWSs available components for required

metadata

 Introducing Individuals into the ontology that represent these components, and

 Extending the existing classes and restrictions to incorporate any further details

required by these new Individuals.

For each entry in the Connections list

{

 Compare entry against connection user has just made

 If Entry matches new connection

 {

 Increment connection count

 }

 Else

 {

 Create new Connection instance

 Populate Metadata(Component 1, Port 1, Component 2, Port 2)

 Set Connection Count to 1

 Add new Connection to Connections list

 }

}

84

Interaction with the OWL ontology during this work has been achieved through the

Protégé ontology editing software [50]. Protégé provides facilities to model ontologies,

allowing users to create and edit the various classes and restrictions required for their

ontology, and also provides facilities for visualizing and reasoning with the knowledge

represented within an OWL ontology. Initially the classes and restrictions to represent

basic workflow concepts such as Components and Ports were created based on the

definitions of WorkflowComponent and Port described earlier.

With these classes defined the next task is to populate the ontology with the individuals

that represent actual workflow components. To illustrate this process a Kepler workflow

scenario from the bioinformatics domain, Ecological Niche Modelling, is utilised. Figure

4-7 provides a graphical representation of this scenario. This workflow involves the use

of the following workflow components:

 StringConstant

 GARPPresampleLayers

 GARPAlgorithm

 GARPPrediction

 ImageJ

Each component added to the ontology will be represented by a single new

WorkflowComponent individual to represent the component itself, as well as a number

of new Port individuals to represent each of that components ports. To satisfy the

Figure 4-7 Ecological Niche Modelling Scenario in the Kepler SWS

85

restrictions defined for these ontology classes (as outlined in Table 4-1 and Table 4-2)

we must inspect the documentation provided by Kepler regarding each component to

locate the required information.

The first restriction for WorkflowComponent, ComponentDescription, is relatively

straightforward to satisfy. Each component within Kepler provides a textual description

of its purpose, for example the StringConstant component provides the following

description:

The StringConstant actor outputs a string specified via the actor's value
parameter.

Specifying strings with the StringConstant actor is convenient, as the
actor does not require that strings be surrounded by quotes. The actor
is often used to specify file paths, which can be selected using the
Browse button available in the actor's parameters.

Specified string values can include references to parameters within
scope (i.e., parameters defined at the same level of the hierarchy or
higher).

The remaining elements of metadata about each WorkflowComponent must be

populated by attempting to extract the relevant details from such component

descriptions as this. The difficulty in satisfying restrictions such as ComponentDomain,

ComponentProject and ComponentProvider depends on the level of detail which is

provided by the existing documentation. For a component such as StringConstant it can

be assumed that this would operate across virtually any domain and so the

ComponentDomain restriction can be satisfied by simply stating that the component is

applicable to all domains. Additionally, as a generic component provided directly by the

SWS itself, the Project and Provider restrictions would both be populated as ―Kepler‖.

In addition the description for the component informs us that StringConstant includes a

parameter ―value‖ used to specify the string which this component will pass on through

its output port. This information can be used to populate the Parameter restriction of our

WorkflowComponent.

86

However for other components it can be more difficult to identify the metadata required

to populate the ontology. The following is the description provided for the

GARPAlgorithm component:

The GARPAlgorithm actor reads a set of spatial locations and
associated environmental data, and uses a genetic algorithm to create
a "rule set" that can be used to make predictions about the presence or
absence of a species at various locations.

The input data is passed to the actor by the GARPPresampleLayers
actor, which generates the environmental data (or "layers") in the
appropriate format. Output is usually passed to the GARPPrediction
actor, which makes the environmental predictions based on the
generated rule set.

The actor requires libgarp.so (on linux systems) or garp.dll and
libexpat.dll (on Windows systems). Currently, the actor does not work
on MacOSX systems.

GARP (Genetic Algorithm for Rule Set Production) is a genetic
algorithm that creates an ecological niche model representing the
environmental conditions where a species would be able to maintain
populations. For more information about GARP, see
http://www.lifemapper.org/desktopgarp/.

From this description we can begin to deduce some knowledge regarding the domains

in which this component would be utilised, primarily that the GARPAlgorithm component

would be used in the Ecology domain. For components such as this which either have a

very targeted domain in which they are used or for which there is only limited

information provided in their component descriptions, the process of assigning values to

metadata restrictions such as the component‘s domain, project and provider can prove

problematic. In these instances further sources of information must be sought, such as

following any links to web pages for the developer of the component, contacting the

developer directly, or inspecting example workflows where the components have been

utilised in order to deduce suitable information with which to populate the ontology.

In order to mitigate the impact of this difficulty a possible improvement would be to allow

users of the metadata ontology to propose their own alterations to the metadata held

about components, or to extend it where it is presently lacking. This idea is explored

more in Chapter 10.

87

In addition to inspecting the component descriptions as provided in the existing SWS,

an alternative source of metadata relating to available components is the manner in

which they are listed in within the SWS. By inspecting the component lists of Kepler,

Triana and Taverna it is possible to infer the task performed, provider and domain or

project of use for many components. This information can then be inserted into the

ontology.

In order to populate the component port metadata (PortType and PortDataObject) one

source of information is again the component descriptions provided by the SWS. For

example some components within the Kepler system give details of their port names

and types within their descriptions. As discussed previously the UI of the SWS also

provides useful information relating to the components ports. In cases where the

component description does not provide the required metadata relating to a

component‘s ports this can be discovered once the component has been included in a

workflow composition. For example, in the Triana and Kepler SWSs ―hovering‖ over the

component once it has been inserted into a workflow will display the name and basic

type of that component‘s ports.

Populating metadata relating to the PortDataObject restriction is again a challenge,

requiring inspection of both the component‘s port type as described previously as well

as other sources of information such as the component‘s description. For example from

inspecting the previous component description we can infer that the

GARPPresampleLayers component produces environmental data from its output port,

this can then be captured in the ontology. The hierarchical nature of the Data Object

metadata means that in instances where the description of a component is unable to

provide further information to capture in the PortDataObject restriction this can be left

with a more generic data type, with the drawback that this would impede the quality of

assistance which could therefore be provided by inspecting the metadata ontology. In

addition ―dry running‖ components and inspecting the type or format of data they

produce is another possibility for discovering more useful information to be stored in the

PortDataObject restriction, providing satisfactory input can be supplied to the

component in order for it to run and that the characteristics of the output are suitable to

be captured.

88

Again this very specific information relating to the type of information produced or

consumed by components would benefit from the ability of users to be able to modify

the ontology, thus improving the accuracy of the metadata which is being stored.

4.6 Summary

This chapter has discussed the drawbacks that exist with the manner in which

component metadata is maintained and made available to the user within the existing

SWSs and outlined how this is hindering users from overcoming the challenges which

are presented to them when attempting to compose workflows. A new framework for

workflow component metadata has been described, with the goal to provide a common

set of metadata elements across all workflow components.

The manner in which this metadata is captured and represented within the ontology has

been discussed, focusing on ensuring that such knowledge could be leveraged in order

to enable an automated system to use this information to provide guided assistance to

the user during workflow composition. In the following chapter the mechanisms which

are utilised in order to provide this assistance are outlined.

89

5 Computer-Assisted Workflow Composition

5.1 Overview

This chapter presents a novel approach to workflow composition assistance which

makes use of the component metadata discussed previously in order to generate

suggestions which can be selected by the user during workflow composition. The

metadata framework discussed in the previous chapter has been designed to enable

the information which a user would previously have manually inferred from the SWS to

be machine-readable in order to support the identification and suggestion of steps

which a user may wish to take in order to complete their composition.

The system is able to provide the user with suggestions for components to add into

their composition, connections which can be made between those components, and

refinements which can be made to any "abstract" components which are present within

the composition. In order to generate and suitably rank these suggestions a number of

mechanisms have been utilised:

 Inspecting the content of the component metadata ontology

 Inspecting the current state of a workflow composition

 Generating suggestions for components to add, connect, or specialise within the

workflow composition by comparing component metadata properties to identify

compatibilty

 Evaluating the desirability of these suggestions in order to impose a ranking.

Details of each of these mechanisms and the suggestions which they support are

provided within the following sections.

5.2 Composition Assistance

The approach to scientific workflow composition assistance described in this chapter

operates on the basis of context-relevant suggestions. The system monitors the current

state of a user's workflow during composition and uses this information as well as its

knowledge of the user's history of interaction with the system, the domain in which the

user is operating, and components stored within the ontology in order to provide

suggestions of additions or alterations the user could make to their workflow in order to

achieve their desired outcomes.

90

Within this approach the user is presented with a demonstration user interface much

like that of an existing SWS1; they can select components to insert into their workflow

from a list and are provided with a space in which to organise and connect these

components. However, in our approach there are important differences and extensions

in order to support the user when composing a workflow. The key differences present in

the prototype interface are as follows;

 Users can insert into their workflow either abstract components from the "Task

Hierarchy" described in Chapter 4 or concrete ones as provided by existing

SWSs

 A tabbed list of suggestions is provided on screen allowing the user to view

suggestions for specialising abstract components as well as components to add

or connect within the workflow.

The details of the user interface provided to demonstrate this suggestion based

approach to composition are covered in Chapter 7.

In providing users with informed suggestions for steps they can take to progress their

workflow, the aim is to reduce the level of implementation knowledge required of users

in order to create workflows which perform their required tasks, allowing them to focus

on the purpose of their workflow rather than on how this is achieved within the SWS. In

addition this approach seeks to remove the problem of users becoming ―stuck‖ within

the process of creating a workflow, where previously they may not have possessed the

knowledge required to identify how to proceed; the suggestions can assist in

overcoming this obstacle.

The suggestions which can be provided by this approach are grouped into three

categories:

 Suggestions on how to specialise ―abstract components‖ with corresponding

concrete ones

1
 The interface was designed to be similar so as to take advantage of familiarity and limit the

amount of relearning required from the user

91

 Suggestions for new components to insert into the workflow, and

 Suggestions for connections to create between components currently in the

workflow

This chapter will discuss how each of these types of suggestions is generated within the

system, including how the information within the ontology is inspected and the

reasoning utilised to turn this information into relevant suggestions.

5.3 Mechanisms for using the ontology

In order to begin the process of providing suggestions to the user the system must be

able to retrieve the information that is stored within the metadata ontology. As described

in Chapter 4 the various elements of metadata relating to components are maintained

within an OWL ontology. This provides a standard model for the representation of

knowledge about components and similarly a standard means for interacting with that

knowledge.

The existing workflow systems supported by the workflow extension API presented here

are all implemented using the Java programming language. Accordingly, it is

convenient for both the API and the workflow extension itself also to utilise Java for their

implementation. Inspection of OWL ontologies from within the Java language is

achieved using the JENA framework. JENA [51] is a framework for developing semantic

web applications within the Java programming language and it provides a means for

Java applications to interact with both OWL and Resource Description Framework

(RDF) representations of information as well as providing support for the SPARQL [52]

language used to query these representations.

Using JENA API OWL ontologies can be represented within Java as OntModel objects;

the Java application can interact with this OntModel object in order to perform basic

operations such as the retrieval of data regarding classes and individuals present within

the ontology. For example, it is possible to retrieve all classes which are present within

an ontology using the listHierarchyRootClasses() function provided by JENA.

In order to achieve more complex, selective interactions with the ontology, JENA

provides support for the SPARQL query language. SPARQL queries typically consist of

92

one or more triple patterns, logical operators, etc., and enable the complex querying of

knowledge within an OWL ontology, again accessed using the OntModel class. The

specific SPARQL queries utilised to extract knowledge from the ontology will be

discussed in the coming sections.

Once information has been retrieved from the ontology it is then possible to analyse the

knowledge available about workflow components in order to generate suggestions to

provide to the user. This analysis of component and user metadata aims to help

automate the processes which users perform in order to identify steps to take during

traditional manual composition; inspecting component descriptions to determine

whether their purpose matches a user's goal, and checking descriptions and port types

to identify whether components are compatible with one another. Furthermore this

analysis makes use of information such as the domain of a user and of components,

the past interactions between users and the available components, and further detailed

information regarding data transferred between components, all of which is also

maintained within the ontology.

5.3.1 Retrieving Component Metadata

The retrieval of information from within the ontology is performed using the facilities

provided by the JENA framework. The goal of this information retrieval is to acquire the

elements of component metadata that are relevant for discovering whether those

components are suitable for inclusion within a user‘s workflow composition. This testing

of components‘ suitability for inclusion addresses two criteria: a component‘s

compatibility for inclusion within the current workflow, and a component‘s desirability for

inclusion within the current workflow, requiring the use of the following elements of

metadata stored within the ontology:

o Component Metadata:

 Name

 Task

 Provider

 Domain

 Project

o Component Port Metadata:

93

 Basic Port Type

 Port Data Object Properties

 Past connections

Once retrieved, this component metadata can then be analysed and compared with

other components‘ metadata in order to determine an individual component's suitability

for inclusion within the workflow. The following sections discuss the manner in which

this information is retrieved from within the component ontology.

5.3.2 Retrieving Component Task Metadata

As a user‘s goals during workflow composition are to correctly sequence a set of

components which will achieve their desired tasks, the ability to discover the task which

each component performs is of paramount importance. Inspecting the metadata

ontology for information relating to the task which a component performs takes

advantage of the manner in which this information has been stored in the ontology,

namely within a task hierarchy. Representing components as part of a task hierarchy

directly relates each component with the tasks it performs, and the hierarchy supports

multiple inheritance to satisfy the situation where a component can be used to perform

multiple tasks. In addition, by maintaining various levels of abstraction within this

hierarchy it is possible for the system to identify components that perform a user‘s

required task even if the user is only able to provide a very high level identification of

the task they require.

Information from within the task hierarchy can be retrieved using a combination of JENA

functions and SPARQL queries, depending on the direction you wish to traverse the

hierarchy. JENA is used to retrieve the "super classes" of a given component,

representing the abstract tasks it performs, SPARQL is used to retrieve all of the "sub

classes" of a given abstract, representing the components which implement that

abstract task

Through these means it is possible to retrieve the task(s) performed by an individual

component, but also to retrieve all of the components which are an implementation of a

given abstract task. This information can then be utilised to discover whether an

94

individual component is suitable for inclusion within a workflow composition, and which

components are suitable as implementations of a given abstract task.

5.3.3 Retrieving Component Provider, Domain, Project Metadata

As discussed previously, knowledge relating to the domain or project for which a

component has been designed and knowledge of the provider or developer of that

component are useful in determining whether a component is suitable for inclusion

within a workflow, as well as whether two components are desirable to connect

together.

Again using SPARQL queries it is possible to retrieve this information from the

component metadata ontology. As described in Chapter 4, the Provider, Domain and

Project elements of metadata are defined as ―restrictions‖ on the WorkflowComponent

class, and are therefore present for all components within the ontology. These

restrictions are represented within OWL as triples, e.g: ―WorkflowComponent

hasComponentProvider some Provider‖. This manner of storing component properties

as restrictions means that given the component for which metadata is required and the

individual restriction which we wish to discover, the extraction of such information can

be achieved using simple SPARQL SELECT queries.

Using queries of this type enables the retrieval of any value related to a given

component's restrictions. As before, once this information regarding a component‘s

Provider, Domain, and Project has been discovered it can be used to evaluate that

components suitability for inclusion within a workflow composition.

5.3.4 Retrieving Component Port Metadata

As discussed in Chapter 4, metadata relating to a component‘s ports is also stored

within the ontology as this is also required to accurately determine a component‘s

suitability for inclusion within a workflow. The ―basic type‖ of a port is required to

determine whether two component ports are syntactically compatible with one another;

the ―port data object‖ property relates each port to a type of object that is transferred

between components connected via that port and is therefore useful in further

determining whether components are compatible, and finally the ―connection history‖ of

a component and its ports enable the discovery of trends within the connection of

95

components and ports and is useful in deciding which connections are most likely to be

appropriate.

The ―basic type‖ and ―data object‖ elements of metadata are recorded within the

ontology as restrictions of the Port class. Therefore their values can be retrieved from

the ontology in the same way as used to discover the provider, domain, and project

restrictions of a component. The getPortPropertyValue method is functionally

identical to the getComponentPropertyValue method, simply executing a relevant

SPARQL query to retrieve the value of a given Port restriction.

However as the ―data object‖ metadata is represented within the ontology as a

hierarchy, similar to the component task hierarchy, this element can then be further

inspected, identifying its "super classes‖ to discover where in the hierarchy a given

data object resides. This enables the identification of data objects which are closely

related but not necessarily identical, and therefore the identification of ports which may

be suitable for connection due to dealing with closely related data, but are not exact

matches.

The metadata relating to the history of component and port connections is not

maintained within the OWL ontology. Instead as described in Chapter 4, this connection

history is stored in a data structure which records the components and ports involved in

a connection, and the number of times that connection has been made by a given user.

In order to retrieve the value representing the number of times a connection has been

made this data structure can be searched for a combination of components and ports,

and will return the value regarding how many times this combination has been

previously connected, if one exists.

Through the methods described within this section it is possible to inspect the

knowledge within the component metadata ontology and to retrieve those elements of

information that are required in order to determine the suitability of including

components and connections within a workflow.

The following sections discuss how, once this information has been retrieved, it can be

utilised in order to assess whether components are suitable for inclusion within a

96

workflow, and how this can then been presented as a set of suggestions for steps the

user can take in completing their workflow composition.

5.4 Generating Suggestions

Within existing SWSs the decisions a user makes in order to compose a workflow

involve the discovery of information relating to the available components, comparing

this with their knowledge of the goals they wish to achieve with their composition, and

attempting to decide which components can be used to achieve these goals. The

reader will recall that our purpose is to show how a system can assist users in this

decision making process, removing the challenge of locating and reasoning with this

metadata relating to components and simply presenting the user with the most suitable

steps available to them to progress their composition. In this context, the previous

section discussed the manner in which this information relating to components can be

extracted from the component metadata OWL ontology. In this section we now describe

the algorithms utilised to process this information and generate suggestions for the user

to consider.

As described in the introduction to this chapter, we envisage three types of suggestion

which can be made to the user:

 Suggestions on how to specialise ―abstract components‖

 Suggestions for new components to insert into the workflow, and

 Suggestions for connections to create between components currently in the

workflow

The manner in which each of these categories of suggestion is generated will be

explained in the following sections.

5.4.1 Generating Specialisation Suggestions

By providing users with a selection of abstract components with which they can specify

the overall goals and tasks that they wish to achieve within their workflow, we aim to

overcome the challenge presented by the high level of knowledge required of users

when using the manual composition approach provided by existing SWSs. As described

97

in Chapter 2 these challenges have been highlighted by a number of papers [7, 13, 34,

59, 71, 72, 77, 89, 90].

As described in Chapter 4, a concrete component is an individual which belongs to a

subclass of an abstract component. Abstract components exist merely within the

component ontology, in contrast to which a concrete component is a direct

representation of a real, executable component from with a SWS. In this work the term

"Specialisation" has been utilised to define the process through which abstract

components selected by the user are converted into concrete, instantiable components.

This first category of suggestions is designed to provide the user with choices of how

their selection of abstract components can be specialised in order to achieve their

overall goals. A workflow can only be executed once all of the abstract components

selected by the user are specialised into concrete components and connected in a valid

sequence.

As discussed previously the component metadata ontology used in this approach

maintains components within a task hierarchy. This relates each component with the

task it performs, and it also relates each task with other tasks achieving related or

similar goals. Generating suggestions for how to specialise selected abstract

components involves the inspection of this task hierarchy to discover those

implementable components which are sub-classes of the given abstract component.

Furthermore, by maintaining component tasks within a hierarchy it is possible to

introduce intermediate steps to this specialisation process, allowing the user to make

their selected components iteratively more specialised, investigating the series of sub-

tasks related to the abstract task they initially selected, until they have located an

implementable component which they are satisfied will achieve their desired outcome.

The previous section highlighted how, given an abstract component, the individual

components that implement that abstract component could be discovered. The

suggestions for specialising abstract components are generated from this set of

components that are sub-classes of the abstract component within the ontology.

98

For example, if the user were to choose to insert the ―ModellingComponent‖ abstract

component into their workflow, inspection of the ontology shows the following as

specialisations of that abstract component:

 EcologicalNicheModellingComponent

 GARPAlgorithm

 GARPPreSampleLayers

 GARPPrediction

By utilising the techniques described in the previous section the system is able to

retrieve this set of specialisations and is therefore able to present all of these

components to the user as options to choose from. The user can select to either

convert the abstract component directly to a concrete implementation such as

GARPAlgorithm, or take the intermediate step of specialising to another, lower level

abstract component such as EcologicalNicheModellingComponent.

If the user chooses to insert a number of abstract components into the composition

before they have chosen to specialise these then the process of the system inspecting

the ontology to locate further specialisations of that component will repeat, providing the

user with suggestions on how to specialise all of their chosen abstract components.

5.4.2 Generating Addition and Connection Suggestions

Once the user begins the process of inserting implementable components into their

workflow, the system can begin inspecting these and, based on those components

currently present, suggest other components that may be suitable for inclusion within

the composition and connections which can be made between those components. In

this way if the user is unaware of which further components are required for their

composition or the manner in which those components could be connected they can

explore the list of suggestions available and discover a route toward completion.

In order to decide which suggestions to provide to the user the system initially takes into

account several elements of metadata related to the available workflow components.

These are as follows:

99

 Component Metadata:

o Provider

o Domain

o Project

 Port Metadata:

o Basic Port Type

o Data Object

Using this information, in the same manner as the manual approach taken by users in

choosing the components and their sequencing required for composition in existing

SWS, the system can identify which components and connections are suitable to

suggest to the user.

The overall manner in which this identification occurs is similar for the process of

suggesting both additional components to add to the composition, and those

connections to make between existing components. Suggestions for components to

add to a composition are generated using the following steps:

The process for generating suggestions for connections to create between components

already present in the workflow composition follows the same approach, except that

rather than comparing the metadata of each component present in the workflow against

those in the metadata ontology, they are compared against the other components

present in the workflow.

5.4.3 Identifying Matches

As discussed previously the metadata stored within the ontology is intended for use in

two different ways: identifying both the compatibility and the desirability of connecting

For each component present in the workflow composition

{

Retrieve workflow component metadata

For each available component in the metadata framework

{

Compare workflow component and available component metadata

If metadata matches

{

Add available component to suggestions list

}

}

}

100

components. Each of the elements of metadata serves a different purpose in identifying

a component's suitability for inclusion or connection within a workflow composition. This

suitability is determined based on both the compatibility and desirability of adding or

connecting a component, where compatibility relates to whether a component is

capable of simply interacting with others within the composition, and desirability

assesses whether such an interaction would produce a helpful result. The compatibility

of components is primarily determined by the BasicPortType associated with each of

that component‘s ports. If two ports have a matching BasicPortType then they are

deemed to be logically compatible, and can be connected within the SWS without

generating a type-mismatch error. For example the GARPAlgorithm component and the

GARPPrediction component each have ports which possess the BasicPortType of

―string‖ and can therefore be identified as compatible.

However, this logical compatibility does not necessarily mean that connecting two

components will produce a satisfactory output, or that simply using this measure of

suitability will generate useful suggestions. Returning to the GARPAlgorithm and

GARPPrediction components, the complete set of ports provided by these are as

follows:

GARPPrediction

hasInput: ruleSetFilename

hasPortBasicType: String

hasInput: layerSetFilename

hasPortBasicType: String

hasInput: outputASCII

hasPortBasicType: String

hasInput: outputBMP

hasPortBasicType: String

hasOutput: outputASCIIFilename

hasPortBasicType: String

hasOutput: outputBMPFilename

hasPortBasicType: String

GARPAlgorithm

hasInput: cellSetFilename

hasPortBasicType: String

hasInput: ruleSetFilename

hasPortBasicType: String

hasOutput: ruleSetFilenameOutput

hasPortBasicType: String

101

Each of the ports provided by these components is of the basic type ―string‖; and

therefore a simple suggestion based only on this factor would identify every port of one

component as being compatible with every port of the other. This limited checking

would result in a large number of suggestions being generated, as well as generating a

number of suggestions whose implementation would be inadvisable or meaningless.

For example connecting the ruleSetFilenameOutput port of GARPAlgorithm to the

outputBMP port of GARPPrediction, while logically compatible, would not provide any

useful result when executed.

To this end, further elements of metadata from the ontology are included within the

process of generating suggestions in order to further assess the desirability of adding

components to the workflow composition.

5.4.4 Incorporating Further Metadata

As detailed in Chapter 4, the DataObject element of metadata relates each component

port with the object that is passed between ports when this component is connected.

The idea is to further define the information that is involved when ports are connected,

for example the GARPAlgorithm component discussed previously has a port

ruleSetFilenameOutput, with a BasicType of ―string‖. This limited information regarding

what is involved in this port‘s execution can be further defined, as suggested by its

portName, to state that the DataObject involved is a ―filename‖. With the knowledge that

GARPPrediction also has ports that involve ―filename‖ DataObjects, a more accurate

determination of which ports are compatible between these two components can be

achieved, reducing the number of matches between these components as the ports

outputASCII and outputBMP are not related to filename DataObjects and therefore not

compatible with the remaining ports.

The refinement of the DataObject metadata can be expanded further; these ports can

be defined by the type of files to which these filenames refer, so that the component

properties are now as follows:

102

Taking this refinement of the DataObject metadata the number of matches between

these components ports is further reduced, identifying two matches - between

GARPPrediction‘s ruleSetFilename port and GARPAlgorithm‘s ruleSetFilenameOutput

port, and again between GARPPrediction‘s ruleSetFilename port and GARPAlgorithm‘s

ruleSetFilename port. By including the PortType metadata associated with each port in

this process we can reduce this to only one match, as both GARPPrediction‘s

ruleSetFilename port and GARPAlgorithm‘s ruleSetFilename port are of the type

InputPort and two inputs cannot be connected, leaving the only match between:

Again, similar to the method of maintaining the tasks performed by each component,

recording the DataObject metadata within a hierarchy enables the introduction of

several levels of abstraction for the ―objects‖ represented. Taking the previous example

GARPPrediction

hasInput: ruleSetFilename

hasPortBasicType: String

hasPortDataObject: RulesetFile

hasInput: layersetFilename

hasPortBasicType: String

hasPortDataObject: LayersetFile

hasOutput: outputASCIIFilename

hasPortBasicType: String

hasPortDataObject: ASCIIFile

hasOutput: outputBMPFilename

hasPortBasicType: String

hasPortDataObject: BMPFile

GARPAlgorithm

hasInput: cellSetFilename

hasPortBasicType: String

hasPortDataObject: CellsetFile

hasInput: ruleSetFilename

hasPortBasicType: String

hasPortDataObject: RulesetFile

hasOutput: ruleSetFilenameOutput

hasPortBasicType: String

hasPortDataObject: RulesetFile

GARPPrediction

hasInput: ruleSetFilename

hasPortBasicType: String

hasPortDataObject: RulesetFile

GARPAlgorithm

hasOutput: ruleSetFilenameOutput

hasPortBasicType: String

hasPortDataObject: RulesetFile

103

of the GARP components, the Rulesetfile, Layersetfile and Cellsetfile information all

refer to XML files, therefore each of these DataObjects can be represented as a sub-

class of XMLFile. Similarly BMP File can be represented as a sub-class of ImageFile. In

this way partial or potential matches can be identified between ports that possess

DataObjects which are closely related on the hierarchy. For example if one port has

ImageFile as an output DataObject and another has BMPFile as an input DataObject

the system can identify that these may be compatible as BMPFile is a sub-class of

ImageFile, or at least identify that only a simple conversion step may be required for

these components to interact.

Further to utilising the DataObject metadata in order to support the discovery of suitable

components to include in a workflow, knowledge of the Provider, Domain and Project

metadata associated with each component is also beneficial. As before, once the basic

compatibility check of comparing component ports‘ ―basic type‖ information has been

performed, the provider, domain and project metadata can assist in highlighting those

components most desirable to suggest.

Although not necessarily applicable to every component available within a SWS,

metadata such as the domain for which a component has been developed, or in which it

is most commonly utilised, can help identify those components which when connected

together will give beneficial results. For example the GARP components discussed

previously have all been developed as part of the SEEK project, for use within the

Biodiversity Informatics domain. Including such information within generation of

suggestions will assist in identifying that these components are ideal to be composed

with one another, as well as being ideal for composition with other components

designed for or commonly used within that domain.

Additionally, the inclusion of the history of connections made between components is of

assistance in determining which components are desirable to connect in the future.

Given a situation such as that described previously where many components are

logically compatible, including a user‘s history of interactions with those components in

the suggestion process can identify trends and promote the suggestion of only those

components which have previously been connected with one another.

104

5.4.5 Suggestion Ranking

Whilst metadata such as a component‘s domain of use or its developer can be of

benefit in identifying those components which may be desirable to include or connect

within a workflow, the manner in which this metadata influences the suggestions must

be carefully handled. A fundamental constraint is that components must be logically

compatible with one another. A component which is utilised both within the same

domain and project as another, but does not share a compatible basic port type must

not be suggested as it will not be compatible, whereas a component that whilst not

being of a matching domain or project, does share basic port type compatibility can be

suggested as it is compatible.

Metadata relating to the desirability of connecting a pair of components to one another

is therefore always a secondary factor, and is not used to promote non-compatible

components above those which are compatible. The priority of metadata in the ranking

of suggestions generated is as follows:

1. Basic Port Type

2. Port Data Object

3. Connection History

4. Domain, Project, Provider

In this way the additional metadata can assist in differentiating between available

additions which are of equal logical compatibility, but will avoid logically compatible

components from being swamped by those which only possess ―desirability‖ matches.

The ranking of suggestions provided to the user operates as follows:

1. Components are first ranked based on their Basic Port Type:

o Those components whose ports match are presented as suggestions to the

user, those which do not match are not included in the selection.

2. The Port Data Objects associated with these suggested components are then

inspected:

105

o Components whose PortDataObject is an exact match are assigned a

ranking of 1

o Components whose PortDataObject is a generic match (i.e they both share

a super-class that is not the generic BasicType) are assigned a ranking of 2.

o Components whose PortDataObject only match on the BasicType are

assigned a ranking of 3.

3. Within their ranking assigned at step 2 suggestions are then ranked based on

their connection history:

o Components are ranked higher based on the number of times which they

have previously been connected

4. Finally, within the ranking assigned at step 3, suggestions are ranked based on

their domain, provider and project metadata

o Components which have either a matching domain, provider or project are

ranked above those which do not.

In this way, as far as is possible using the metadata available, the system seeks to

provide users first with suggestions of components and connections which are logically

sound (they have ports which are compatible, and desirable, they process data of

matching types), but where possible they have also been utilised previously and belong

to matching domains, projects or providers.

5.5 Summary

This chapter has discussed the manner in which the component metadata ontology

outlined in Chapter 4 can be used in order to provide a user with assistance during the

process of composing a scientific workflow. A process by which the user is presented

with suggestions for steps to take in order to progress their workflow has been

introduced, with an outline of the algorithms which generate these suggestions

provided. Finally the mechanism through which these suggestions are ranked in order

to ensure that the user is presented with suggestions which are perceived as most

beneficial to their workflow composition has been described.

106

6 API Definition and Implementation

This chapter addresses the problem of engineering the assisted workflow composition

environment in a way that allows it to be connected to a range of heterogeneous

scientific workflow systems. It discusses the design and implementation of an API to

facilitate the implementation of software that enables the use of new interfaces to

extend the capabilities of existing scientific workflow systems without dependence on

those systems' implementation details other than those necessary to implement the

API, and assuming that the Java source code is available for inspection. It is this API

and the implementation of it as a intermediate layer between the existing SWS which

enables the suggestion based approach to composition introduced in the previous

chapters to be utilised without modification of a SWS and with more than one existing

SWS. The architecture of existing scientific workflow systems will be discussed,

establishing the common features presented by these systems. These common

features, together with the requirements for a SWS extension, such as the assisted

composition approach presented in this thesis, are used to define an intermediate API

to act as a mediator between an implemented SWS extension and any existing SWS.

Accordingly this API is one of the significant contributions of the present thesis,

although it should be noted that we have deliberately restricted the API‘s scope to those

features which are essential to our current purpose.

6.1 Overview

Taking a high level view of existing scientific workflow systems there are a number of

common features present across all systems:

 A repository of workflow components from which users can select and compose

their workflows,

 A mechanism for asserting connections or links between the data inputs and

outputs of these components,

 The capability to coordinate the sequenced execution of these components,

providing the user with feedback on any results.

107

This fundamental similarity between the features of existing workflow systems presents

an opportunity for enabling any proposed SWS extension to function in conjunction with

a number of existing systems. It is noted that the capabilities of each individual SWS

offer functionality beyond the common features identified here, however in order to

provide an approach capable of working in co-ordination with multiple SWSs it was

deemed appropriate to limit the functionality to these shared features. We discuss this

limitation further later in this chapter.

By inspecting the source code of existing SWSs to establish a unified level of

functionality exposed by each existing workflow system, along with a clear definition of

the functionality to be provided by the SWS extension, an intermediate software

wrapper can be developed whose role is to provide a standard interface for our

software to communicate with, and act as an extension of, these existing systems. In

this way the differing implementations of underlying workflow systems can be hidden

behind a common interface, enabling any SWS extension such as our computer-

assisted composition approach to provide the same level of functionality across all

supported systems.

In this chapter the above-listed common features of SWS are broken down into the

individual tasks which a user must perform in order to construct a workflow. The

manner in which this core functionality is achieved within the three targeted SWS

(Kepler, Triana and Taverna) is described, as this information can be utilised to define

the main structure of an intermediate API for communication between a SWS extension

and each of the existing SWS. By understanding both the functionality that is needed in

our system and the manner in which that functionality is achieved in the underlying

systems the API can successfully direct requests to the code in the underlying SWS

implementation which can fulfil that request.

In this way the SWS extension becomes decoupled from the existing systems and is

able to function without being dependent on one particular implementation. This has the

benefit of allowing the same functionality to be achieved across each of the existing

systems, even in situations where the implementation of such functionality differs

between those systems, as well as enabling alterations and development of the

extension to progress without concern over how to interact with the underlying SWS

108

implementation. The API also means that there need only be a single implementation of

our computer-assisted composition SWS extension, rather than developing the same

software three times, customised to function with each of the existing systems. Beyond

this there is the possibility that the SWS extension can be utilised with further existing,

or future, SWS. In this case the only changes needed would be to update the

implementation of the intermediate layer based on the API rather than to further

specialise the SWS extension.

6.2 Requirements

As mentioned in the introduction, the purpose of the intermediate API is to provide a

standard interface through which a given SWS extension can interact with the

underlying functionality of existing workflow systems as required. In order to establish

such an intermediate API it is necessary to fully define the interfaces between which it

is going to operate, in this instance the functionality to be exposed by the existing

workflow systems and the functionality that is to be enabled in the SWS extension.

The overall aim for the SWS extension described in this thesis is to provide a new

means for the end users of a SWS to compose their workflows, providing automated

assistance to the user during this process. Through this the extension seeks to

overcome some of the challenges presented by the manual composition approaches

taken by existing SWSs. As identified in Chapter 2 these challenges primarily relate to

the level of knowledge required of the user to successfully create a workflow: by

providing an extension to these existing SWSs that offers assistance during workflow

composition we can help to reduce these challenges. To this end the functionality of the

extension is fairly straightforward to summarise – anything that is currently required of a

SWS when a user is composing a workflow will be required of the extension. Taking the

steps that are involved in a user‘s interaction with existing SWS during composition we

can assume a number of requirements, these are shown in the Use Case diagram in

Figure 6-1.

109

Start new workflow composition

User

Locate required workflow components

Add components to workflow composition

Delete a component

End workflow composition

Define connections between components

Figure 6-1 Use Case diagram showing key workflow composition activities

Additionally, as well as supporting these composition tasks the SWS extension and API

must allow for the execution of a composed workflow within the underlying SWS,

including support for the user to input data required during execution and providing

feedback regarding the outcome of the execution; whether through reporting

mechanisms within the SWS itself, or through displaying the output of any visualisation

or reporting components which the user has included within their workflow.

As mentioned previously it is important to note that the SWSs which the extension is

intended to interact with do provide the user with further options during composition in

addition to those listed above, for example the Kepler system makes available a

selection of ―Director‖ components which the user can utilise to alter the manner in

which the workflow will execute, and each of the systems provides the capabilities for

the user to implement features such as branching and looping over components during

110

execution into their workflows. Such features are not included within the capabilities of

either the extension or the API as it is described in this work. In the case of the

―Director‖ components provided by Kepler this is in order to maintain a generic set of

capabilities which the API and extension will support so as to maintain compatibility with

each of the chosen SWS. In the case of operations such as introducing loops into the

workflow composition, these have been excluded from the API and extension as a

means to control the scope within which the work was conducted.

Additionally the manner in which control activities such as looping are achieved can

differ between individual workflow compositions, depending on the granularity of the

components which are being used. For example some compositions may required the

user to specifically implement loops through the SWS interface, others may utilise

components which implement the loop within their own processing. Furthermore the

specific set of sample workflow operations which have been utilised to evaluate the

approach we present do not require features such as branching an looping. However,

consideration of how these additional features could be incorporated into the system is

included in Chapter 10.

These tasks involved in the composition of workflows are therefore what any approach

to composition must be capable of. In order to enable an extension to be able to

perform these tasks the necessary functionality of the existing workflow systems can be

exploited. To achieve this across a number of existing SWSs we need to identify the

specific operations within each existing system that provide the functionality to support

the composition requirements identified. Where there are differences in the manner in

which these operations are achieved within the existing systems the API must

overcome these to present a single, unified interface to the extension. In this way the

extension can operate independently of the individual existing SWS.

By breaking down the tasks involved in workflow composition into the underlying

operations that are required to achieve them within a workflow system we can create a

more detailed Use Case diagram to capture this functionality (Figure 6-2).

111

Start new workflow composition

User

Locate required workflow components

Add components to workflow composition

Delete a component

End workflow composition

Define connections between components

Create new workflow visualisation

Associate with required listener / modifier objects<<include>>

<<include>>

Instantiate objects to represent workflow

<<include>>

Retrieve component list and present to user<<include>>

Identify component selected

Create new object to represent component<<include>>

<<include>>

Add component object to workflow representation

<<include>>

Identify input and output selected

Call functions from workflow representation and
component object to create connection

<<include>>

<<include>>

Identify component selected

Remove component from workflow representation

<<include>>

<<include>>

Figure 6-2 Use Case diagram showing functionality required to achieve
composition activities

In addition to the composition functionality described in Figure 6-1 three additional key

operations which are performed by existing SWSs are as follows:

 Executing a composed workflow

o Call relevant operation(s) from the object representing the workflow

 Accept user input during execution

o Display relevant UI elements to accept input

 View the workflow results

o Retrieve the output provided by ―endpoint‖ component objects of the

workflow

112

The scope of the API must include these additional tasks as it would be expected that

any extension which builds upon the API will seek to support this functionality.

This breakdown of the tasks involved in composing a workflow represents the interface

between the underlying systems and the proposed SWS extension; the subtasks

represent the functionality that must be exposed by the API in order to allow the

extension to perform the main tasks. If a user of the extension wishes to add a

component to their workflow then the API must translate this call to the relevant

operation of the underlying workflow system which can add the component to the

current workflow.

Taking the tasks required for workflow composition it is possible to build a model of how

each of these tasks is achieved within an existing SWS. This process involves

inspecting the implementation of each SWS and identifying the operations, and sub-

operations, that are involved in performing each of the tasks required. Once the

elements of the implementation that achieve the required functionality have been

identified they can then be successfully exploited by a separate, external application.

As discussed in Chapter 3 the three existing workflow systems with which the API is

intended to work, Triana, Taverna and Kepler, are all implemented within the Java

programming language. As such the API does not need to factor in any possibly more

complicated interaction which would be required if working with a SWS developed in an

alternative programming language.

The core functions performed by each of the three SWSs discussed in this chapter are

highly similar; details of the manner in which this functionality is achieved in each of our

identified existing workflow systems are provided in Appendix A. Whilst some

differences are present in the manner in which a user achieves these functions when

using the system, from the perspective of the underlying implementation, there is

sufficient similarity in how these functions are achieved to make it possible to expose

this functionality to our proposed extension system through the means of an

intermediate API.

113

6.3 API Implementation

The previous sub-sections have outlined the manner in which the core functionality

required by a user when performing workflow composition is achieved in each of our

chosen SWSs. In order to make possible the provision of a generic extension across all

of these systems an API must be defined which acts as an intermediary between such

an extension and each of the underlying systems. Its main role is in providing a uniform

interface for the extension to access the functionality it requires from any of the

underlying SWSs‘ implementations. This section describes the functions which are

implemented within the API, establishing how the functionality from each SWS can be

invoked, based on the details described previously, and how the result of performing

this action is then relayed back to the workflow extension.

The main elements of the API are the interface provided to generic workflow system

extensions, the controls for identifying which underlying system is to be used during a

session, and the routines for exposing the functionality of the underlying systems. The

following sections will look at how each of these is achieved within the API.

6.3.1 Interface with Generic Workflow Extensions

The interface between the API and the SWS extension is concerned with enabling a

user‘s actions when interacting with the extension to achieve the desired result within

the underlying SWS. In this way requests generated by the user performing some

action within the extension are translated into calls upon the appropriate functionality

within the underlying SWS in order to achieve the task the user is performing, with the

result produced being returned in such a way as to enable the extension to display the

outcome.

The requests that the extension can make are based upon its functional requirements

that have previously been identified:

 Start a new workflow composition

 Locate available workflow components

 Add components to the workflow

 Define connections between components in the workflow

114

 Execute a composed workflow

 Accept input from the user during execution

 View the workflow results

From these requirements a set of standard calls to the API have been defined which

allow the extension to access the functionality of the underlying SWS that satisfies

these requirements. It is through standardising this aspect of the interface between the

API and the extension that the extension can operate independently of each of the

existing SWS, achieving the same functionality from each with this set of standard calls

to the API.

The set of calls that the extension can make to the API are defined in Table 6-1. Each is

designed either to completely achieve one of the above functional requirements, or to

achieve a sub-goal of the requirements:

API Call Function

setup(selectedSystem) Initial setup to establish which underlying
SWS is to be utilised

newWorkflow() Create a new blank workflow
representation for use

getWorkflowVisualisation() Return a visual Java component which
provides a system dependent visualisation
of the created workflow

getComponentList() Retrieve the list of components available
for composition within the SWS

addComponent(component) Adds a new instance of the selected
component to the current workflow

connectComponents(componentA,
componentB)

Create a connection between two
components within the workflow

executeWorkflow() Executes the composed workflow

Table 6-1 Overview of functionality exposed by API

The number of calls presented by the API is limited, since the main functionality

involved in maintaining and interacting with the workflow is still handled by the

underlying system. At this level the API is effectively acting as a proxy to enable a SWS

extension such as our computer-assisted composition interface (see Chapter 7) to

access the functions required from the existing SWS to achieve the goals of

composition.

115

These calls enable the SWS extension to access the operations of the underlying

systems that are required to achieve the necessary composition tasks for which the

SWS extension has been designed. The role of the API in this instance is to translate

each call from the SWS extension into the necessary calls to the appropriate underlying

workflow system, as defined by the setup() call. The following section looks in detail at

the manner in which the API is used to perform this translation.

6.3.2 Exposing Underlying Systems’ Functionality

Given the explanation in the previous section of how each element of functionality is

achieved in the underlying workflow systems, the API is designed as three strands, one

for each of the underlying SWS - Kepler, Triana and Taverna. This arrangement is

illustrated in Figure 6-3.

Figure 6-3 Architecture of the API

A single implementation of the API has been developed consisting of three separate

strands, as opposed to an implementation per SWS, the decision was taken use this

approach so as to reduce the effort required in modularising the implementation,

enabling easier reuse of code between each strand, and in order to facilitate possible

future development to support workflow composition with additional SWS, or where a

SWS extension may wish to interact with multiple SWSs simultaneously, for example if

composing a workflow where control passes between two systems during execution.

Consideration of such developments is provided in Chapter 10. Within these strands the

API contains the appropriate calls to the underlying system that will achieve the

116

functional requirements, as well as any additional implementation required to enable the

results returned to be compatible with the extension.

During the initial setup() call to the API the extension defines which underlying SWS is

to be used, setting a flag in the API to reflect this choice of SWS. From this point on all

calls from the extension to the API are passed through the strand relating to that SWS.

The following sections describe how each of the functions exposed to the workflow

extension are implemented within the API in order to achieve the required functionality

from each of the underlying SWS.

6.3.2.1 Creating a New Workflow

To create a new workflow composition the SWS extension invokes the newWorkflow()

function, as this is simply informing the API that we wish to create a new workflow there

are no further parameters which need to be passed. On receiving this command the

API will invoke the newWorkflow() implementation for the SWS which has been

determined by the setup() call.

As discussed in the previous section each of the SWSs utilises its own individual data

structures to represent the workflow being constructed. In creating a new workflow the

API must simply invoke the appropriate commands to create new Objects of the

Classes which represent those data structures. For Triana the API will perform the

relevant functions to establish a new TaskGraph to represent the workflow, and for

Taverna the API will create a new ScuflModel.

To achieve the same in the Kepler SWS the API will first create new Workspace and

TypedCompositeActor objects to represent the workflow, however as discussed in

Section 6.3.1 establishing a new workflow in Kepler also requires the creation of

Configuration, Manager and Director objects. The Configuration object is created from a

Specification, an XML file containing various configuration parameters.

The action of starting a new workflow does not require any response to be relayed back

to the workflow extension, other than the confirmation that the new workflow has been

created successfully.

117

6.3.2.2 Acquiring a Workflow Visualisation

As with creating a new workflow the process of generating a visualisation of that

workflow only requires the workflow extension to call the function

getWorkflowVisualisation() with no further parameters required. Once this has been

called the API will again call the functionality of the relevant underlying system as

dictated by the setup() function.

In order to enable the workflow extension to display the workflow visualisation the role

of the API in this instance is to provide a response to the extension in the form of a

visual Java component which can be used to display the workflow as the extension

sees fit. To this end each of the visualisations created in the underlying SWS will be

wrapped in a JPanel object.

As described in Section 3.3.1 the Triana SWS allows for the creation of a JPanel

representing the workflow through the ApplicationFrame function

AddParentTaskGraphPanel(). In Taverna an instance of the ScuflSVGDiagram class

can be created and using the function attachToModel() with the current ScuflModel as a

parameter, this ScuflSVGDiagram can then be added to a JPanel before being returned

to the workflow extension. Similarly in Kepler an ActorGraphFrame class can be

created from the current workflow and using the function getJGraph() a JGraph can be

created which represents the current workflow composition. This JGraph can again be

added to a JPanel and returned to the workflow extension for display. As this

visualisation is constructed from the same classes used to display the workflow

composition within the underlying SWSs the user of the extension will be able to

interact with it in the same manner as they would in the original SWS, for example to

adjust the scale of the visualisation or to re-arrange components.

6.3.2.3 Retrieving a List of Components

As with the previous functions the process of retrieving a list of available components

from the chosen SWS does not require the workflow extension to include any additional

information in its call to the function getComponentList().

118

Similar to the API‘s role in unifying the response to the getWorkflowVisualisation()

function call, here the API must ensure that the list of components which is returned to

the workflow extension is presented in a standard format irrespective of which SWS is

providing the information. For the purposes of displaying the list of components within

the extension this information is provided as a JPanel.

Section 3.3.2 describes the manner in which each SWS maintains its list of available

workflow components, a ToolTable Object for Triana, a ScavengerTreePanel for Triana,

and an EntityTreeModel for Kepler. As each of these objects are visual Java Swing

components they can be simply added to a JPanel and this can then be passed back to

the workflow extension for displaying to the user.

6.3.2.4 Adding a Component to the Workflow

Unlike the previous operations the addComponent function requires the workflow

extension to provide additional information when called. In order to instruct the API, and

consequently the underlying SWS, to insert a component into the current workflow

composition the extension must include the name of the component to be added in the

function call.

Section 3.3.3 describes the functionality which is required to insert components into the

current workflow composition. In both Triana and Taverna this is a relatively simple

operation with the name of the component to be added being used to create a new

instance of this component (as an instance of Tool in Triana and Processor in Taverna)

before inserting this new component into the current workflow.

However, as described in Section 3.3.3, Kepler does not provide a straightforward

mechanism for inserting components into the workflow. New components in Kepler are

created by constructing a new object of the Actor class which represents that

component, however there is no function provided with which to achieve this. As a

result the code from the API must generate a constructor based on the name of the

class to be instantiated, this is achieved through the following steps:

119

 Class[] proto = new Class[2];

 proto[0] = CompositeEntity.class;

 proto[1] = String.class;

 Object[] params = new Object[2];

 params[0] = myWorkflow;

 params[1] = componentName;

 Class actorClass = Class.forName(componentName);

 Constructor ct = actorClass.getConstructor(proto);

 AtomicActor actor = (AtomicActor) ct.newInstance(params);

Here myWorkflow represents the TypedCompositeActor which we have created to

represent the current workflow composition and componentName is the name of the

component which is to be added to the composition as passed to the API by the

workflow extension. Executing this code will generate a new Actor object for the chosen

component and add it to the current workflow.

As with the function newWorkflow() the only information which the API returns to the

workflow extension is the confirmation that the operation completed successfully,

following this the workflow visualisation is then be updated to display the new

component.

6.3.2.5 Connecting Components

The function connectComponents() is called by the extension in order to create a

connection between two components which have been inserted into the workflow

composition. As with addComponent() this function requires the extension to pass

information to the API relating to the components which are to be connected.

The extension must provide the API the names of both the source and destination

components which are to be connected, along with the relevant ―ports‖ from those

components which are to act as the point of connection.

Section 3.3.4 details the mechanism through which this functionality is achieved within

each SWS. Whilst there are differences between these approaches from a user

perspective the underlying implementations are similar. In the case of Triana a

120

CableInterface object is created using the two component ports as arguments, in

Taverna a new DataConstraint object is created again using the component ports as

arguments and confirmed using the addDataConstraint function, and in Kepler IOPort

objects are created to represent each component - port pair and then connected using

the TypedCompositeActor function connect().

Again as this function is simply altering the state of the current composition there is no

need to return any information to the workflow extension beyond the confirmation that

the action was successful.

6.3.2.6 Executing the Workflow Composition

In order to execute the composed workflow the generic workflow extension must call

the function executeWorkflow() from the API. As discussed in Section 3.3.5 each of the

identified SWSs has different approaches to achieving this functionality from the point of

view of the end user, however from the perspective of the underlying implementation

there are sufficient similarities to enable the API to successfully achieve this operation

in each of the systems. As this function is simply instructing the SWS to execute the

workflow which the user has been composing there is no requirement for the extension

to supply additional information when calling the executeWorkflow() function.

A similar process is followed when executing a workflow within each of the SWSs,

involving the creation of a new object which is used to control the execution of the

workflow through the use of one of its functions. When interacting with the Triana

system the API must create a new instance of the LocalServer class, passing it the

TaskGraph representing the workflow we wish to execute, and the ToolTable which

represents the components available within the system. Once created the run() function

of the LocalServer can be called to execute the workflow.

As discussed in Section 3.3.5, to execute a workflow in the Taverna system the API

must create a new EnactorProxy object and in turn use this to create a new

WorkflowInstance and run its compileWorkflow(). In Kepler the object created to

execute the workflow is called the Manager and its run() function is used to initiate the

execution.

121

The processes described for executing workflows in both the Triana and Kepler system

will automatically generate new windows within which any output from that workflow

execution will be displayed. In order for the functionality provided by the API to remain

uniform across each system it is therefore necessary for the API to ensure that a call to

the executeWorkflow function will also generate windows to display the results of

execution when Taverna is used as the underlying SWS. As described in Section 3.3.6

this is achieved through the use of the EnactorInvocation class. In order to create a new

window displaying the workflow output the API creates a new object of the

EnactorInvocation class, using the WorkflowInstance object created in order to execute

the workflow. As the EnactorInvocation class is a sub-class of the Java JPanel class the

API is then able to create a new window and add this EnactorInvocation to its contents

in order to display the outcome of the workflow execution for the user.

Beyond performing the necessary operations to display the outcome of the workflow

execution to the user, the executeWorkflow() function also returns confirmation of

whether the execution operation was successful to the extension.

Through implementation of the functions described in the previous sections the API is

able to access the necessary functionality from within the underlying SWS and translate

the results of this, in a manner consistent for each system, back to a generic workflow

extension. In this way it is possible for the user to be presented with a workflow

extension which can offer features and functionality beyond that of the existing SWS

and through interacting with that extension achieve their goals of composing and

executing a workflow composition irrespective of which SWS is being used to perform

the actual resource composition and execution.

6.4 Summary

This chapter has presented the concept of a SWS extension as software which can be

utilised by a user to alter and improve the means through which they interact with

SWSs. In order to facilitate the use of such SWS extensions, and in order to enable a

user to make use of these extensions irrespective of the SWS which is to perform the

composition, this chapter has discussed the introduction of an intermediate API to

expose the functionality of each of the identified SWSs in a uniform manner.

122

By identifying the key steps that a user takes when interacting with each of the existing

SWSs in order to compose a workflow, and determining the manner in which this

functionality is implemented within each SWS, this chapter has defined the set of

functions which are provided by the API to a generic workflow extension and has

outlined how these functions are implemented in such a way as to achieve the desired

functionality within each of the existing SWSs.

123

7 User Interface

The previous chapters have discussed how an intermediate software layer,

implementing a common API, can be used to enable generic extensions to be attached

to a number of existing SWSs; how a structured framework of metadata about the

components available in those SWSs can be defined, and also how a number of

approaches can be used to allow this metadata to assist users in completing their

workflow compositions. This chapter introduces a simple user interface which has been

implemented to illustrate how each of the ideas discussed in the previous chapters can

be used to support workflow composition. As mentioned previously this user interface is

not claimed to be the best approach to delivering a suggestion based composition

system; it is merely intended as a mechanism to allow us to evaluate the extent to

which the ideas explored in this research are effective.

7.1 Overview

The role of the user interface (UI) presented here is to allow a user to compose a

workflow by making use of the techniques discussed in the previous chapters. The UI

makes use of the generic workflow extension API discussed in Chapter 3 to allow the

same interface to sit on top of multiple existing scientific workflow engines, thereby

allowing the user to compose workflows using the same methods irrespective of which

SWS is being used. The component metadata framework and suggestion generation

techniques described in Chapters 4 and 5 are then used to provide the user with

suggestions for steps they can take to complete their workflow composition.

In designing the UI, familiarity has been regarded as desirable: the general appearance

and approach to workflow composition provided by the UI are similar to those of

existing SWSs such as Triana, Kepler and, to a lesser extent, Taverna. The user is

provided with a list of items which they may add to their workflow and a canvas upon

which to arrange and connect those items. In addition the user has access to controls

which allow them to control the execution of their workflow. Figure 7-1 is an image of

the current user interface provided by the Kepler SWS, highlighting these main

elements.

124

Figure 7-1 Overview of the Kepler UI highlighting the visualisation and
component list elements of the interface.

Where the UI developed in this thesis differs from existing ones is in the introduction of

a section of the display within which suggestions for steps to take based on the current

state of the workflow composition can be shown. This takes the form of a panel on the

screen which features three tabs, one each for providing suggestions for additional

components to be added to the composition, specialisations of existing abstract

components that have already been added to the composition, and connections which

can be made between the components that have already been added to the

composition. In each case the suggestions take the form of an ordered list, utilising the

approach to suggestion ranking described in Chapter 5 to highlight the most useful

actions that the user could take in order to progress their workflow composition. Figure

7-2 is an image of the prototype computer assisted composition UI developed for this

work highlighting the panel for providing composition suggestions.

125

Figure 7-2 Overview of the computer assisted composition UI highlighting the
suggestions panel

In this way the UI enables the approach to workflow composition assistance through

suggestions generated from component metadata to be explored and evaluated.

7.2 Development

In order to demonstrate the capability of metadata based suggestions to support the

composition of scientific workflows, the UI developed in this work must achieve a

number of basic tasks, some common to the functionality of existing SWSs, but others

specific to this assisted approach to composition. These tasks are as follows:

1. Allow the user to select components to use within a workflow composition

126

2. Provide a space (such as a ―canvas‖) for the user to specify the sequencing and

connections between those components

3. Enable the execution of composed workflows

4. Allow the user to select abstract components to use within the workflow

composition

5. Inspect the component metadata ontology for relevant information

6. Utilise the algorithms described in Chapter 5 to reason with this metadata to

generate suggestions for steps the user can take to develop their workflow

composition

7. Display these suggestions in a manner which highlights the most relevant steps

that the user could take

8. Allow the user to select which suggestions to implement.

7.2.1 Providing Common Functionality

The first three tasks are common activities which the user would perform within an

existing SWS; as a result this represents functionality that the UI can utilise from those

existing SWSs through the use of the API described in Chapter 6.

As the API provides common functions to access information such as the components

provided by a given SWS, or the manner in which that SWS creates a visualisation of a

workflow composition, the SWS extension can simply invoke these functions to provide

the user access to this common functionality. For example the API call

getComponentsList will return a visual Java component which can then be simply

added to the overall user interface layout to allow the system to display all of the

components available within the chosen SWS. Similarly the API call

getWorkflowVisualisation will return another visual Java component which can be

added to the UI to allow the inclusion of a workflow visualisation. Figure 7-3 is an image

of the UI which highlights each of these areas of the interface.

127

Figure 7-3 Computer assisted composition UI highlighting the component list
and visualisation

By utilising these API calls the basic UI layout can be provided, including functionality

such as the ability to add items from the component list to the workflow composition,

and to implement connections between those components. As discussed in Chapter 3,

by including a separate API to provide this functionality these common UI features can

be included in the same way irrespective of which underlying SWS is being utilised.

7.2.2 Providing Extended Functionality

In order to demonstrate the assisted approach to workflow composition described in

Chapters 3 – 5 the UI must provide additional features beyond those already displayed

128

in existing SWSs. Features such as the ability to display suggestions for actions which

the user can take to develop their workflow, and the ability to insert abstract

components into a workflow composition are required of a computer-assisted SWS

extension.

As discussed in Chapter 5, the JENA framework allows for basic queries to be

submitted to an OWL ontology. This approach can therefore be leveraged by the SWS

extension to access information from our component metadata ontology. An initial

prototype user interface was constructed which made use of such querying to allow for

basic information to be displayed within the UI such as all of the components which hold

a certain property, or all components which belong to a certain scientific domain. Whilst

this provides some benefit for the user when interacting with the UI, the main benefit is

designed to come from presenting the user with suggestions for steps they can

implement to progress their workflow composition.

As described in Chapter 5, the basic information present in the component metadata

framework can be utilised, in combination with information about the user and the

current state of their composition, to identify additional components which could be of

benefit if inserted into the composition, and connections which could be made between

those components already present. By using the algorithms from Chapter 5 the UI is

able to present the user with a list of such suggestions. In order to maximise the benefit

of these suggestions the UI presents a panel which organises suggestions into three

tabs: suggestions for components to add to the workflow, components to connect within

the workflow, and specialisations of abstract components which the user has inserted

into their workflow. As the algorithms detailed in Chapter 5 also focus on identifying how

useful each suggestion may be if implemented, the UI presents these suggestions as a

ranked list, with the most useful suggestions on top. In addition a colour scheme is used

to further highlight which suggestions may be of most interest; with those of most

benefit coloured green, followed by amber and red as the perceived benefit of each

suggestion reduces.

7.3 Creating workflows via the new User Interface

Using the user interface elements described in the previous section the extension UI

allows the user to perform all of the tasks they need to successfully compose

129

workflows. This section outlines the manner in which the UI can be used to compose a

workflow, and details the sequence of actions which a user would perform in order to

achieve this.

7.3.1 Identifying Components

As shown in Figure 7-3 the user interface provides a panel which allows the user to

select components for inclusion within their workflow. The panel includes two tabs. The

first tab lists each of the components available in the current SWS, presented as they

would be in the original SWS – for example the Kepler components are listed under

headings which represent their function or their source. The second tab lists

components as they appear in the abstraction hierarchy within the component metadata

framework.

When starting to insert components into their workflow the user can either use the first

tab to select specific components and place them in the workflow, or use the second

tab to insert abstract components which represent the overall activity they wish to

achieve, with the capability to specialise these components as the composition

progresses.

This two-tabbed system allows the user to insert components into the composition

which represent their knowledge of what is required to fulfil their needs. For example if

the user already knows all of the components that are required then the UI allows them

to insert all of these directly into the workflow. However if they are unsure of a number

of components required to complete some steps of their requirements, then they are

able to select abstract components which represent those steps. Finally if the user is

unsure of any of the components required to complete their requirements, then they can

simply select a number of abstract components with the system then assisting in turning

these into the concrete components required.

7.3.2 Creating Connections

As discussed previously, connections between components are established using the

same drag and drop approach as used in existing SWSs. Once added to the

composition, components will appear in the workflow visualisation section of the UI.

130

From here the user is able to re-arrange those components as well as create

connections between them by dragging lines between the required input and output

ports of those components.

In addition the system provides the user with a list of suggestions for connections which

could be made between those components which currently exist within the workflow,

the user can choose to implement any one of these suggestions and the system will

create the desired connection.

7.3.3 Utilising Suggestions

As outlined in the previous section, the UI includes a panel at the bottom of the screen

which provides the user with suggestions for steps which they could take to further

develop their workflow. These suggestions are provided in a list which ranks them

based on their potential usefulness.

Based on the current state of the workflow composition the UI will be able to display

different types of suggestions. If the user has inserted an abstract component into the

workflow then the system will provide suggestions for how this component could be

specialised into a concrete, run-able component. If the user has already inserted a

concrete component into the workflow then the system will provide suggestions for

other components that could be added to the composition based on their ability to

interact with the existing component. Finally, if the user has inserted a number of

concrete components into the workflow then the system will provide suggestions on

how, if possible, those components might be connected.

The user is able to explore these suggestions from within the UI to discover the change

that they would like to implement. As described previously the suggestions panel is split

across three tabs, one each for addition, connection, and specialisation suggestions.

Once the user has selected a suggestion they must press the ―Implement‖ button to

insert this change into their composition. This will update the status of the composition

to reflect the change which has been made, refresh the workflow visualisation panel to

display the updated composition, and generate a new set of suggestions based on the

new state of the workflow.

131

The user is free to continue making further changes to their composition by selecting

further suggestions to implement, or alternatively by manually selecting components to

add using the components panel and creating connections between components using

the visualisation panel.

7.4 Summary

This chapter has introduced the user interface which has been developed to

demonstrate the capability of metadata generated suggestions to provide assistance to

a user during workflow composition.

In order for a SWS extension to enable computer-assisted composition of workflows

using the capabilities of existing SWSs, the API described in Chapter 6 has been used.

The SWS extension which has been developed presents the functionality of the existing

SWS within a new UI, using the API to allow the user to utilise existing functionality

such as adding and connecting components manually, as well as using the metadata

ontology and suggestion algorithms from Chapters 4 and 5 to allow the SWS extension

to prompt the user with suggestions for components to specialise, add and connect

within their workflow. The manner in which this functionality is achieved within the

prototype computer assisted composition UI has been outlined and the UI has been

demonstrated as being suitable for testing the suggestion based approach to workflow

composition outlined in the previous chapters.

132

8 Evaluation

This chapter discusses the manner in which the knowledge-based approach to

workflow composition outlined in the previous chapters has been evaluated. This

computer assisted approach to composition is evaluated with respect to two primary

factors:

 The ability to support the composition of workflows. This is established through

describing the process by which a selection of workflow scenarios can be

successfully composed using this approach

 The benefits and drawbacks this approach presents with respect to existing

SWSs. This is investigated through a comparison of how effectively these

existing systems support the composition of the same workflow scenarios.

The approach taken in both instances is to provide a walk-through of steps required to

compose a given workflow scenario using either the computer-assisted workflow

composition approach presented in this thesis, or the manual approach provided by

existing SWSs, This chapter summarises the outcome of these walk-throughs and

discusses the main findings which these show; specific details of the walk-throughs

themselves are included in Appendix B. Section 8.1 explores existing approaches to

evaluating composition systems to establish that this is a recognised approach.

Additionally the value of each element of metadata utilised in supporting the computer

assisted composition approach is established, inspecting how the inclusion or exclusion

of each element affects the quality of assistance provided. Finally a minimal user

evaluation has been performed by providing the prototype system to Dr Rich Williams,

the contact from Microsoft Research Europe, and requesting structured feedback after

directing Dr Williams to complete a number of composition scenarios.

Before this evaluation is described the following section examines existing approaches

to evaluation of workflow composition systems, looking at how previous SWS projects

have evaluated their work, and how approaches to assisted composition in the field of

133

web services have been evaluated. This review of existing evaluation approaches

demonstrates that the technique of using walkthroughs of representative scenarios to

establish the effectiveness of a system is appropriate, especially when there is not a

large set of users available who can participate in usability trials.

8.1 Existing Approaches

In order to establish a suitable means of evaluating the effectiveness of the computer-

assisted composition approach described in this thesis, it is appropriate to consider the

means through which other approaches to workflow composition have previously been

evaluated, and their applicability to the approach proposed in this thesis.

A common means of establishing the effectiveness of existing approaches to workflow

composition has been to utilise a set of scenarios as test cases, illustrating how the

approach in question can successfully support the implementation of each scenario. For

example Kim et al. [12, 39] provide no formal evaluation of the CAT system; instead the

work describes the approach taken, with the authors defining criteria to assess whether

a workflow is ―complete‖. These criteria are then utilised to illustrate how the CAT

approach can successfully generate complete workflows.

Demonstrating how a number of example compositions can be successfully created

when using a given approach is similarly used in the field of web service composition to

evaluate the effectiveness of a given approach. For example both McIlraith and Son

[45] and Sirin et al. [34] illustrate the validity of their respective approaches by providing

a walkthrough of how their systems can be used to compose solutions to existing

composition problems. A further method of evaluation used by McIlraith and Son is to

provide a theorem that will determine the ―correctness‖ of their interpreter, to illustrate

that this element of their approach is effective. Weske [53] presents an early thesis on

the development of workflow management systems. Here again evaluation consists of

providing examples of how the system can be used to successfully manage workflows.

Medjahed et al. [24] describe a set of algorithms which can automate the creation of

web service compositions when provided with high level descriptions of the required

outcome by a user. In addition to using the above evaluation approach of demonstrating

how set scenarios can be achieved within the system, Medjahed [40] additionally offers

134

an analytical model to study the performance of these composition algorithms. This

provides a way to evaluate the efficiency of the proposed algorithms based on the total

composition time when utilising the algorithms. This is defined as the time taken to

complete each of the checking algorithms in sequence; T = TST + TSS + TDS, where

TST is the time for checking syntactic composability, TSS is the time for checking static

semantic composability and TDS is the time for checking dynamic semantic

composability. Medjahed calculates the time taken in both best case and worst case

scenarios; the average for each of these times is then taken. Medjahed provides a

breakdown of the factors that influence each of these algorithms, illustrating the extent

to which they can be considered constant, resulting in a model to calculate composition

time based on the number of operations performed.

Plock [41] discusses synthesising programs with respect to ―reactive systems‖. These

are non-terminating programs that continuously receive external input and provide a

response. In this work Plock presents a method for synthesising such programs from

given requirements using Live Sequence Charts (LSCs). LSCs define the ordered

requirements for the finished program and consist of messages and conditions. The

approach described takes LSCs as an input and generates a resulting program that

satisfies the LSC requirements. Evaluation takes the form of illustrating that a

successful program can be synthesised from the given requirements, provided one

exists, and also an investigation of the time this takes when provided with LSCs

displaying a variety of properties.

Lämmermann [54] discusses an approach to dynamic web service composition that

builds upon work from the field of SSP (Structural Synthesis of Programs). The

approach presented extends SSP in order to deal with synthesis in a dynamic

environment, as opposed to traditional SSP where certain contextual information is

required to be specified in advance. Here evaluation again consists of showing example

composition scenarios being successfully completed by the given approach, coupled

with various ―performance measurements‖ to illustrate how efficient the described

approach is. Lämmermann utilises a selection of service composition scenarios that

―correspond to practical service composition problems‖. Performance measurements

provided are based on three aspects – the run time of the synthesis, that of the program

135

extraction and finally comparing the resulting runtime of a synthesised program against

that of a ―hand-coded‖ approach.

Peventhan [55] presents two approaches to assisting workflow development using Grid

services. The first makes use of ―experiment specific‖ workflow activities, pre-formed

components or sequences of components to represent either specific experiment

activities that users would wish to perform or the overall structure of an experiment.

Users can modify and combine these to achieve their specific goals. The second

approach illustrates how using database management features can assist in the

development of workflows. This work uses real world problems relating to wind tunnel

experiments as an example scenario to illustrate how the two approaches given are

successful.

8.1.1 Selection of Evaluation Method

A common feature in the methods of evaluation used in the research discussed in the

previous section is the use of existing workflow scenarios to illustrate the validity of the

approach, and a study of how their approach supports the creation of workflows/service

compositions which implement these scenarios. Beyond this the evaluation approaches

surveyed have also attempted to undertake some kind of performance measurements.

Such measurements include how quickly a scenario can be composed, some measure

of how good, such as how efficient or accurate, a solution presented by the approaches

is against one generated in a traditional manner, as well as some idea of performance

against any existing approaches that are aiming to do the same.

The approach to evaluation taken within the present work builds upon the methods we

have just outlined. The primary approach of establishing whether a composition method

is conceptually sound is achieved by illustrating how workflow scenarios can be

successfully composed using the assisting approach described in this thesis, with

comparisons drawn between this approach and those existing, manual approaches to

workflow composition. In addition, in this thesis we analyse effects and benefits of the

mechanisms utilised to provide a computer-assisted workflow composition approach,

establishing a range of measures to evaluate how effective and useful each element of

the approach is in achieving the goal of workflow composition.

136

Given the foregoing considerations, the aspects of the computer-assisted composition

approach which will be evaluated in this chapter are as follows:

 Whether a scenario can be implemented completely by following the

suggestions provided by this approach

 How effectively the ranking of the suggestions highlights the components and

connections required for a scenario

 How following suggestions can overcome difficulties which may be encountered

when composing scenarios using existing SWSs.

 The value that each kind of metadata from the ontology has on the quality of

suggestions provided.

8.2 Evaluation

The following sections describe the results of the various methods which have been

used to evaluate the metadata assisted approach to workflow composition presented in

this thesis. The primary method of evaluation which is used involves identifying a set of

realistic workflow composition scenarios and using these to illustrate whether the

suggestions which the computer-assisted workflow composition approach provides can

direct the user toward the required outcome, and if so, how effectively those

suggestions achieve this goal. These same scenarios are then employed to illustrate

how using an assisted approach to composition, through the provision of suggestions of

steps to take, can provide benefit over a strictly manual composition approach.

In addition, these composition scenarios are also used to identify the value of the

various elements of metadata which are utilised to provide composition suggestions to

the user. This is achieved by taking key steps in several scenarios and illustrating how

the suggestions provided to the user would be affected if different elements of metadata

were removed from the suggestion generation process.

8.2.1 Scenarios

The validity of a ‗proof of concept‘ approach to evaluating assisted workflow

composition is dependent upon how representative the chosen workflow scenarios are.

Those workflows must be representative of typical scenarios that will be encountered by

137

genuine end users. In order to satisfy this requirement the workflow scenarios utilised in

this evaluation are a selection of the example workflows which are provided with the

Kepler SWS and their selection was made in discussion with an expert in the field (Dr

Rich Williams). These examples incorporate a mixture of simple operational scenarios

such as retrieving information from files and manipulating data within a workflow, as

well as more complex scenarios specific to the domain of biodiversity informatics such

as the species distribution example encountered in Section 4.5.

The following sub-sections provide an overview of each of the composition scenarios

which have been identified for use within this evaluation.

8.2.1.1 Scenario A

This first scenario represents an example of a simple mathematical process which can

be performed using a workflow system. Primarily this involves defining a variable, or set

of variables, to use within a mathematical operation, specifying the type of operation to

perform, in this instance the Remainder component is used, and providing a means of

testing the result of the operation. Although of limited complexity this scenario is

relevant as it characterises a workflow which a user may wish to create when

familiarising themselves with a SWS and additionally represents the basic building

block on which more complex workflows expand. Figure 8-1 represents a completed

composition for scenario A.

Figure 8-1 Composition Scenario A

138

8.2.1.2 Scenario B

This scenario represents a workflow task that involves the user including an existing

data file as an input to the operation they wish to perform. In this case the task

performed is a basic image processing task, reading an image file, rotating the image

and displaying the result. As with the previous example this scenario is relatively simple

but is a useful demonstration of a basic workflow using domain specific components, in

this case image processing. Figure 8-2 represents a completed workflow for this

scenario.

Figure 8-2 Composition Scenario B

8.2.1.3 Scenario C

This scenario is the first which is a specific example from the domain of biodiversity

informatics and represents a workflow to model the distribution of a species based on

the GARP algorithm. Figure 8-3 represents a completed workflow for this scenario.

Figure 8-3 Composition Scenario C

139

8.2.1.4 Scenario D

This scenario is the second example from the domain of biodiversity informatics and

represents an extension to Scenario C. Where the input data in Scenario C is hard-

coded, scenario D makes use of an external database to read in the species distribution

data. Figure 8-4 shows a completed workflow for this scenario.

Figure 8-4 Composition Scenario D

8.2.2 Can the Scenarios be Composed Fully?

As described in Chapter 1 the primary focus of the research detailed within this thesis is

to establish an approach to scientific workflow composition which builds upon existing

SWSs, allowing metadata regarding users, domains and available components to assist

in the composition process. As a result, the most fundamental element in evaluating the

research is to establish whether this goal has been achieved: can such an approach be

utilised to compose scientific workflows?

This section discusses the effectiveness with which the knowledge based approach to

workflow composition can be used to successfully compose each of the identified

scenarios. As discussed previously, the overall process of composing workflows with

this assisting approach is as follows:

 User selects abstract components from those available to define, as much as

possible, the structure and goals of their workflow

 System inspects the selected abstract components and provides suggestions for

how to specialise these to concrete, executable components

140

 User selects which suggestions to implement

 System inspects the workflow and provides suggestions for how to connect the

components selected

 User selects which suggestions to implement

 Repeat process of suggestions and implementation until workflow is completed

to the user‘s satisfaction.

These steps form the basis of composition within the prototype implementation, with

progress occurring through this dialogue between system and user regarding the

options that are available to take the workflow towards completion. Figure 8-5 provides

an overview of this composition approach that will be followed during the composition of

these scenarios.

Detailed walkthroughs of the steps a user would take in order to successfully compose

each scenario utilising this approach within the prototype user interface described in

Chapter 7 are provided in Appendix B; a discussion of the benefit the approach has

during each composition is also provided within this appendix. Overall these

walkthroughs demonstrate that the suggestion based approach to workflow composition

Identify
Abstract

Components

Specialise
Abstract

Components

Insert
Additional

Components

Connect
Components

Define
Parameters

Figure 8-5 Overview of composition process

141

described throughout this thesis is able to support the user in successfully creating

desired workflow compositions. At a basic level the walk-throughs show how the use of

suggestions can reduce the options available to the users, and potentially guide them

towards those which may be of most benefit to them. For example in Scenario C the

benefit of the PortDataObject metadata is demonstrated; limiting the field of suggested

components to add and connect within the composition to only those which deal with

processing a compatible form of data to that which is already in use. The benefit of

using abstract components to begin composing a scenario is also demonstrated

throughout the walkthroughs, enabling the user to select an abstract component which

they believe may be of benefit in achieving their goals, and then offering suggestions for

how this could be converted into the specific component the user required.

These walkthroughs have also identified some limitations of the approach. Each of the

chosen scenarios requires the user to perform some configuration of individual

components‘ properties in order to achieve the desired outcome. Our approach is not

currently able to identify that this is required, nor assist the user in the configuration

process which may be required to successfully execute their workflow, for example the

need to configure the source image to process in Scenario B. Additionally the

walkthroughs have illustrated how under certain circumstances the system must rely on

the history of interactions a user has completed previously in order to help identify the

most useful suggestions, and how without this information the level of support that

could be provided would be minimal.

8.2.2.1 Conclusion

This section illustrates through the composition of a number of real world scenarios that

the suggestion based composition approach described within this thesis presents a

viable approach to scientific workflow composition. The scenarios highlight how

presenting users with a selection of high level abstract components can assist in

identifying the required components for a composition. Additionally these scenarios

illustrate how the use of suggestions can help guide the user through the options that

are available to them at each stage of a composition, highlighting those which may be

of most benefit in moving a composition closer to achieving a users provided goals.

142

The following sections look in detail at the benefits this approach provides over the

manual composition approach provided by existing SWSs, as well as the effect the

metadata stored regarding components has on the quality and effectiveness of

suggestions provided.

8.2.3 Comparison with Existing SWSs

Beyond establishing that our computer-assisted composition system is a viable means

of successfully composing scientific workflows, it is also of benefit to examine how

effective such an approach is in comparison to existing SWSs. Chapters 2 and 4

described some of the drawbacks that have been identified with the approach to

composition and support of the user provided by existing SWSs such as Kepler, Triana,

and Taverna. This section investigates whether the computer-assisted composition

approach outlined in this thesis is of benefit in overcoming or alleviating these

drawbacks. This is explored by performing the composition of Scenario C in the Kepler

SWS and identifying points during this process where the user may become stuck or

make mistakes. These points are then used to demonstrate how the computer-assisted

approach to composition could help users overcome or avoid such difficulties.

This evaluation mechanism makes use of only Scenario C. Scenario A and Scenario B

are omitted as these are of insufficient complexity to effectively highlight the difficulties

that a user may encounter using an existing SWS, and Scenario D is also unused as it's

similarity to Scenario C would produce effectively the same results. The Kepler system

was utilised for this evaluation as it is from this SWS that the composition scenarios

have been selected and it is components from this system which have been used to

populate the prototype implementations component ontology. As described in Chapter 4

similar problems have been identified with the composition of workflows within each of

the SWSs evaluated, so the improvements identified in the computer-assisted approach

will be applicable to each SWS.

8.2.3.1 Effectiveness

In order to establish whether an assisted approach to composition has advantages over

the manual approach provided by existing SWSs it is first necessary to define an

assessment of the effectiveness of a given approach. In this work effectiveness is

defined as a measure of how readily a user can identify the components required for

143

their composition, the difficulty in identifying how to connect and sequence those

components (taking into account factors such as sources and quality of help or

information that are provided to assist in achieving these tasks), and the frequency with

which a user makes a mistake or becomes stuck during their composition.

A mistake is defined as the inclusion within a workflow of a component or connection

that is not necessary to achieve a user‘s goals; similarly a user is defined as being

―stuck‖ when they are unable to identify a path that can take them closer to their

complete workflow and when the assistance or help available within the system is

unable to readily assist them in overcoming this obstacle.

This assessment of effectiveness is applied to both the existing SWS Kepler and the

prototype assisted composition implementation, measuring how effectively each is able

to compose a typical workflow scenario that a user may be required to perform.

8.2.3.2 Kepler Approach

Appendix C provides a walkthrough of the process involved in composing Scenario C

using the Kepler SWS, highlighting the steps a user must complete in order to

successfully complete the composition, the thought processes that user will go through

in order to make decisions for actions to take during the compositions, the information

or guidance that the Kepler SWS provides to assist the user in this process, and any

problems which are encountered during the composition process.

The problems identified from the walk-through in Appendix C are summarised here,

grouped based on the step of the composition during which they occurred:

Step 1: Identifying Components

 Problem A - Identifying required components to achieve goals

 Problem B - Difficulty using search facility to assist

 Problem C - Misleading component listing hierarchy

 Problem D - Inconsistency of documentation

 Problem E - Difficulty identifying source of input

Step 2: Connecting Components

 Problem F - Difficulty correctly sequencing components

144

Overall the walkthrough illustrates that whilst the Kepler SWS provides a number of

facilities to assist in the identification of components required for a composition

scenario, and to provide the knowledge required to determine how those components

should be sequenced, such as enabling the discovery of the basic type of data

processed by each components' ports and providing access to descriptive

documentation of each component, these facilities are limited in that each requires

considerable effort from the user to locate the information necessary to assist them.

Furthermore several of the problems identified can only be resolved if either the user

already possesses the knowledge required to compose the scenario manually, or they

are prepared to inspect every available component, port description, and

documentation page provided, and based on this information is then able to make the

correct decision on how to progress. For novice or inexperienced users the effort

required to first inspect this information, and then to come to the appropriate conclusion

about how to proceed, could be prohibitive to successfully composing the scenarios

they are working with.

8.2.3.3 Computer-Assisted Composition Approach

The following sections will outline how the computer assisted composition approach

presented in this thesis can help in avoiding or overcoming the problems identified in

the previous section.

8.2.3.3.1 Step 1: Identifying Components

Problems A, B and C

Each of the three problems A, B, and C identified can be alleviated by the inclusion of

Abstract Components within the assisted approach. These components are defined at a

higher level than standard workflow components, in order to more closely align with the

high level goals that users are able to identify as requirements for their composition. By

providing a selection of such components the user is able to inspect a smaller list of

potential elements to include within their composition, and by relating these

components to higher level tasks users can more readily associate these with the goals

145

of their scenario. In this instance the list of available abstract components provides the

following choices:

 Operation Component

 Visualisation Component

 Integration Component

 I/O Component

 Database Component

 Modelling Component

Inspecting this list and comparing the available choices against the user's list of

identified tasks for Scenario C, the user can identify the following matches:

 Accessing data files – I/O Component

 Performing calculations with modelling algorithms – Modelling Component

 Producing a graphical output of the result – Visualisation Component

By allowing the user to initially define the workflow at a higher level the challenge of

immediately identifying the precise components required to satisfy a scenario is

removed, instead allowing the user to translate their list of high level scenario goals into

a selection of abstract components within the workflow.

Following the inclusion of these abstract components the system provides guidance for

the user in identifying the specific components required to achieve their functionality in

the form of specialisation suggestions, a selection of implementable components that

satisfy the tasks described by the abstract components. As this list of suggestions is

limited to components related to these abstract tasks the challenge of identifying which

components to use has immediately been reduced for the user: rather than searching a

complete set of available components the user need only inspect a subset of

components that are already more likely to achieve their goals.

Problem D

In the manual composition approach presented by Kepler the user wishing to consult

component documentation can encounter difficulties due to the inconsistent and

146

incomplete nature of the information available for each component. In contrast by

providing guidance during composition the computer-assisted approach within this

thesis alleviates the need for users to manually consult such unstructured

documentation. In addition by storing a defined set of metadata across all components

within an ontology, if a user does wish to manually consult this information it will be

consistent and complete across all components.

Problem E

Problem E highlights one of the drawbacks of the search facility provided by Kepler: it

simply searches based on the names of a component. As a result a user could search

and locate a component that, if inspecting its name, looks like it could achieve their

desired goal, however this component may either be incompatible with the current state

of their workflow, or may not achieve the functionality which the user assumes it does.

As stated previously using the search term ―File‖ whilst searching for a suitable

component to facilitate the inclusion of a data file as input to the workflow, provides a

series of results which, whilst seemingly suitable, would not achieve the user‘s goals.

By incorporating metadata about the specific data which each component processes

into the system and using this to evaluate which component connections should be

suggested to the user, the computer-assisted approach limits the possibility of

incompatible components being suggested. As the system inspects each component‘s

BasicPortType and PortDataObject metadata before including them in the set of

suggestions the user can be confident that those suggestions provided are compatible

with their composition.

Additionally by only searching on a component‘s name the facility provided by the

Kepler system can potentially provide the user with a large number of results. For

example a search for the term ―output‖ would return over 50 results, with the user

potentially being unable to readily identify which of these would achieve their desired

goal, or which would be compatible with their composition. Again by incorporating a

selection of component metadata into the provision of suggestions the assisted

approach is able to either reduce the number of suggestions provided, or ensure that

those suggestions of most interest to a user are promoted to the top of the list. The

147

benefit of each element of metadata in improving the quality of the suggestions the

system provides is investigated in Section 8.2.4 of this chapter.

Step 1 Identifying Components Summary

By providing users with a selection of abstract components which can be used to build

a workflow at a higher level the assisted composition approach reduces the difficulty of

identifying the components that are required to achieve a user‘s composition.

Additionally by then presenting the user with suggestions for how to specialise those

abstract components the system supports the user in translating these abstract

components into the specific executable components required to achieve their goals.

8.2.3.3.2 Step 2: Connecting Components

Problem F

In the Kepler SWS the user must rely on their own personal knowledge in order to

identify the manner in which the components they have included within their workflow

are to be sequenced and connected. The only assistance provided by Kepler in order to

help a user discover how to connect their selected components is in the description of

each component‘s port types. By inspecting the component documentation a user can

discover the types of data produced or consumed by each component and from there

can decide whether or not to connect them. This has several disadvantages.

Firstly the user can only identify if the components are ―logically‖ compatible, that their

port types match. However, there are many connections of components which have

matching port types, but this does not mean that they will necessarily provide useful

output if connected. There is limited support for helping a user discover how beneficial a

connection may prove within the Kepler SWS.

Secondly, within a composition that includes many unconnected components there may

be several potential sequences and connections that can be implemented between

them. For example within Scenario C, if inspecting only a component‘s port types, the

user could identify connections between StringConstant and all of the GARP

components, yet the Scenario only requires that two of these components be connected

148

to StringConstant. Again it could prove difficult for the user to identify the correct

connections to specify using only the limited information that the Kepler SWS provides.

As the suggestions provided within the assisted approach take into account metadata

such as a component‘s Domain of use, its PortDataObject and its previous history of

connections, the system is more able to identify not only those component connections

which are compatible but those which are also desirable for a user to implement.

8.2.3.3.3 Summary

In contrast to the manual composition walk-through of Scenario C outlined in Appendix

C this section has illustrated how the functionality provided by the assisted composition

approach detailed in this thesis can be used to avoid the issues which are encountered

when using manual systems such as Kepler. Primarily this is achieved by providing the

user with the ability to identify the high level goals which they wish to achieve in their

composition and then providing suggestions for how these abstract components can be

converted into a completed composition. This process reduces the amount of

knowledge that the user must initially possess regarding the specific components and

their sequencing which has been demonstrated to be a potential problem when using

the traditional composition approach.

8.2.4 Value of Metadata Elements

As described in Chapter 5, the approach to workflow composition investigated in this

thesis makes use of a number of elements of information in order to generate

suggestions to provide assistance during composition. In particular this approach takes

advantage of the history of past interactions a user or group of users have had with the

system in order to improve the quality or effectiveness of the suggestions provided.

In order to assess the value that each element of metadata has for the provision of

suggestions this section looks at the quality of suggestions provided during the

composition of each of the scenarios identified in Section 8.2.1. Initially the value of

each element is investigated by inspecting the suggestions that are provided by using

that element in isolation, following this the suggestions provided by using multiple

149

elements of metadata are inspected to discover the value of more complex

combinations of metadata.

In addition a further series of scenarios is investigated, this time to discover the value of

building a history of user interactions and incorporating this into the provision of

suggestions. In this instance workflow scenarios are composed in two different

situations, firstly with the recording or interactions enabled and so available to affect the

suggestions that are provided in the future, and secondly with this recording disabled

and the generation of suggestions based solely on the static elements of metadata

within the ontology. By taking a series of workflow composition scenarios from a single

domain, such as bioinformatics, and composing these sequentially the benefit of storing

users‘ interactions can be investigated as each successive composition will provide a

more complete history of interactions such as would be developed over time by a user

working in a single domain.

Whilst no real world user testing has been conducted to demonstrate how a history of

user interaction affects the suggestions provided by the system, the scenarios which

are being used to replicate such a history are real world scenarios which are used to

replicate this interaction history in the absence of real data.

8.2.4.1 Suggestion Quality

In order to assess the benefit each element of metadata has on the suggestions

provided it is necessary to first define how to measure the quality of a given set of

suggestions. Similar to the concept of ‗effectiveness‘ defined previously, the quality of a

set of suggestions is determined using four evaluations:

 A - Ratio of ideal suggestions included to ideal suggestions not included.

 B - Ratio of compatible to incompatible suggestions provided.

 C - Ranking of ideal suggestions within the set.

 D - Total number of suggestions provided.

Ideal suggestions are unique to each individual scenario, and to individual steps of

those scenarios, and are a representation of the components that are required for a

150

successful composition of that scenario. For example a successful composition of

Scenario C described in Section 8.2.1 involves the components: GARPAlgorithm,

GARPPrediction, GARPPresampleLayers, StringConstant, and ImageJ. These

components would therefore be identified as ideal suggestions for inclusion in a

composition of Scenario C.

Incompatible suggestions are defined as those for components which are not able to be

connected to the current state of the workflow. Finally the ranking of ideal components

within a suggestion is evaluated as the requirement is for the most ideal components to

be ranked above those of less benefit to the scenario.

Appendix D provides a description of how these scores are calculated during

composition of a workflow scenario.

8.2.4.2 Value of Static Metadata Elements

The elements of information stored by the system in order to provide suggestions are

described in Chapter 4. In summary the primary elements of static metadata utilised for

this process are as follows:

 Component Metadata:

o Provider

o Domain

o Project

 Port Metadata:

o Basic Port Type

o Data Object

In addition the system also uses the dynamic connection history metadata, built up as

the user interacts with the system. The effect this dynamic metadata has on the

provision of suggestions is considered separately following the present section.

In this section the scenarios introduced previously are utilised to illustrate the

suggestions that would be provided by the system at key points during their

composition. Initially the suggestions generated by using each element of metadata in

151

isolation are explored, to understand the benefit that the metadata elements have

individually. Following this the metadata elements are utilised together in the generation

of suggestions to identify where the combination of metadata elements has an effect on

those suggestions provided.

8.2.4.2.1 Scores for Individual Metadata Elements

Each of the individual elements of metadata the system records about available

workflow components can be used in isolation to generate suggestions to assist the

user during composition. By taking each of the scenarios introduced previously,

generating suggestions based on a single element of metadata individually, and

calculating the quality of those suggestions the benefit of each metadata element can

be demonstrated.

Appendix E provides details of how the suggestion scores for each scenario have been

derived. In summary this calculation involves taking each scenario in turn and

performing the following steps:

 Inserting each of the components required for the scenario in turn,

 After each component is inserted generating suggestions based on each

individual element of metadata in isolation

 Using the scoring mechanisms outlined in Section 8.2.4.1 to generate a score

for the quality of suggestions provided by each metadata element.

Table 8-1 shows the average suggestion scores for each of the scenarios A to C. As

noted in Appendix E Scenario D has been omitted from this stage of the evaluation as it

is very similar to Scenario C in that essentially the same components are utilised,

therefore the suggestions scores presented would not substantially differ from those of

Scenario C.

152

Scenario A Scenario B Scenario C

A B C D A B C D A B C D

Provider 100 67 62 141 100 100 58 141 37 60 23 34

Project 0 0 0 0 0 0 0 0 37 60 23 5

Domain 0 0 0 0 100 78 42 9 53 60 45 15

Port Type 100 100 67 7 100 100 58 141 100 100 52 229

Port Data

Object
100 100 67 7 100 100 71 4 100 100 62 138

Table 8-1 Average Individual Metadata Suggestions Scores for Scenarios A - C

The general trend demonstrated by the scores is that as the complexity of the workflow

scenario being composed increased, so the quality of the suggestions which can be

generated by each metadata element in isolation decreases.

The scores generated for mechanism A and B for the relatively simplistic mathematical

operation performed in Scenario A demonstrate that the Port Type and Port Data

Object elements of metadata are able to suggest the inclusion of all of the ideal

components for the composition, as well as ensuring that all suggestions are limited

only to those which would be compatible with the current workflow state. In addition the

scores for mechanism C and D illustrate the total number of components being

suggested is low (7) and the ideal components are ranked relatively highly (67% of the

theoretical "best" ranking). Suggestion quality decreases as we move through scenarios

B and C. We begin to see the ranking of ideal components decrease and the total

number of components being suggested grows, obscuring those components of benefit

to the user.

Additionally these scores illustrate that metadata such as a component's Project or

Domain is of limited benefit in isolation; as this metadata is not present for all

components it is unable to be used to generate suggestions in many cases,

demonstrated by no scores being provided for these elements within scenarios A, and

only scores for Domain within Scenario B. Similarly Table 8-1 also illustrates that whilst

153

the Provider element of metadata is able to identify the components required for both

scenarios A and B it was not always able to limit the suggestions generated to those

compatible with the composition. Furthermore as the complexity of scenarios increases

the Provider scores decrease further; only being able to a third of the desired

components for Scenario C on average.

As described in Appendix E the use of metadata such as Port Type in isolation can

result in problems due to components being associated with a "null" type. In these

instances the component is deemed to be compatible with any other component,

resulting in a very large list of suggestions being generated.

Overall these scores illustrate that whilst in some scenarios a single element of

metadata may be capable of generating useful suggestions there are severe limitations

to this approach in general, either with the range of suggestions which are provided, the

accuracy of those suggestions, or the ability for those suggestions to effectively

highlight the "ideal" components required for a users composition.

8.2.4.2.2 Scores for Combined Metadata

In utilising multiple elements of metadata in the provision of suggestions this quality can

be improved, as further information is available to identify the ideal components which

can be included in the workflow, as well as to reduce the number of unhelpful

suggestions and increase the ranking of those ideal components. Table 8-2 illustrates

the subsequent quality scores for the stages of Scenario C previously covered in

Appendix E, Table 10-14, when combinations of metadata elements are used in the

provision of suggestions. This tables covers the first three components from Scenario

C, a complete table including all components can be seen in Appendix H.

 String Constant GARPPresampleLayers GARPPrediction

A B C D A B C D A B C D

Individual Average 40 40 17 208 80 100 56 63 100 100 70 39

Combined 100 100 72 124 100 100 100 5 100 100 100 5

Difference +60 +60 +55 -84 +20 - +44 -58 - - +30 -34

Table 8-2 Comparison of Suggestion Scores for the first three components of
Scenario C

154

These improved scores illustrate how incorporating several elements of metadata into

the provision of suggestions can help improve the quality of those suggestions. As an

example upon the inclusion of the GarpPresampleLayers component it is desired for the

system to identify both the StringConstant and GARPAlgorithm components as ideal for

inclusion within the composition. Appendix E describes how when using each element

of metadata in isolation to generate suggestions only PortType was able to identify both

ideal components, however as the PortType value ―String‖ is very common neither are

ranked highly, and whilst the Project, Provider and Domain elements were able to

provide GARPAlgorithm within a very small number of suggestions, they were unable to

identify the StringConstant component. Table 8-2 shows how using all of the elements

in combination the system is able to identify both components, can provide them with a

higher ranking than was previously possible, and reduces the total number of

suggestions provided substantially.

Table 10-19 from Appendix H shows this improvement in the quality of suggestions

provided is reflected across all of the identified key points for Scenario C. An exception

is in the case of the ImageJ component. Here the limited information available

regarding this component means the combined metadata score remains the same as

that of the individual metadata elements.

In order to show the extent to which this improvement in suggestions quality is achieved

in various circumstances Table 8-3 shows the average suggestion scores for scenarios

A, B, and C, first when using each metadata element individually and then when the

combination of metadata is used to generate suggestions.

 Scenario A Scenario B Scenario C

A B C D A B C D A B C D

Individual Avg 60 53 40 52 80 76 46 74 65 76 48 132

Combined Avg 100 100 67 7 100 100 71 4 88 100 87 85

Difference +40 +47 +27 -45 +20 +24 +25 -70 +23 +24 +39 -47

Table 8-3 Comparison of Average Suggestion Scores for Scenarios A and C

155

Overall introducing multiple elements of metadata into the process of providing

suggestions has a beneficial effect on the quality of suggestions provided. Primarily this

benefit is shown in improving the ability for the system to identify all of the ideal

components required at each stage of the composition; where individual elements of

metadata are each able to readily identify a subset of the ideal components it is

frequently only when used in combination that all components are identified.

Secondly the inclusion of multiple elements of metadata enables the system to more

readily identify those components which are not ideal for the user to include in the

workflow, this has the benefit of reducing the number of suggestions provided and

therefore reducing the complexity of the work the user has to do in identifying those

components which they wish to use.

8.2.4.2.3 Summary

This section has utilised three of the workflow composition scenarios introduced

previously to demonstrate the value that each element of component metadata has on

the quality of the suggestions that the system is able to provide to the user.

By first illustrating the quality of the suggestions that the system can provide when

using each individual element of metadata in isolation this chapter has shown that

different elements provide different benefits, some are useful in identifying components

which are compatible with one another, and other are beneficial in determining if it is

desirable to connect two components together.

In addition by comparing the quality of suggestions provided by each element of

metadata in isolation with the quality of those suggestions provided when a combination

of metadata is used it has been shown that by using a number of sources of information

about workflow components the system can better determine which components are

useful for inclusion within a workflow composition. The following section takes this idea

further, exploring the extent to which the history of interaction which a user has had with

the system can improve the quality of suggestions further.

156

8.2.4.3 Value of User Interaction History

As discussed in Chapter 4, in addition to the static metadata that is maintained within

the component ontology, this approach to providing workflow composition suggestions

also makes use of knowledge relating to the history of interactions a user has had with

the system. This interaction represents the history of suggestions which the user has

implemented over the course of using the approach.

The previous sections have demonstrated that static metadata such as a component‘s

port types, abstract component tasks, and domains of use can be effective at identifying

components which are both compatible and desirable to include within a composition.

However a record of a user‘s interaction with the system, the history of component

connections and additions they have made, can be of benefit in situations where this

static metadata is either too generic or too limited to effectively identify the ideal

components to suggest for including within a composition.

Additionally the dynamic nature of this interaction history enables the suggestions

provided by the system to improve over time. As a user working within a domain

interacts with only a limited set of the available components, and will consistently

connect these components in the same manner, by monitoring their interaction the

system can begin to favour those suggestions which the user repeatedly chooses to

implement.

In order to assess the effect of maintaining a history of a user‘s interaction with the

system the following section describes the suggestions that will be provided by the

system during the composition of our previously identified scenarios C and D.

Scenarios A and B are omitted from this evaluation as in order to show the benefit of

the user interaction history we require scenarios which include common components.

As discussed in Section 8.2.4 whilst the interaction history generated in this evaluation

is not based on real world user testing, the use of a set of representative scenarios from

the bioinformatics domain enables this evaluation to approximate the interaction history

of a user from that domain.

157

Scenario C

Scenario C represents the niche modelling example introduced previously,

incorporating the components StringConstant, GARPAlgorithm,

GARPPresampleLayers, GARPPrediction and ImageDisplay. This scenario uses

species presence data and that relating to environmental factors to provide a

visualisation of the geographical distribution of those species.

As discussed in the previous section the use of a combination of static component

metadata is able to provide effective suggestions for composition. However, with initially

no data relating to users‘ past preferences for component connections, there are a

number of limitations with the suggestions the system can provide. For example when

composing Scenario C the suggestions provided upon including the StringConstant

component within the composition are unable to effectively highlight that the user may

wish to connect this component to either GARPPresampleLayers or GARPAlgorithm –

whilst their BasicPortType metadata means they will be included in the list of

suggestions, because they are from a different Domain, Provider, and Project to the

StringConstant component their ranking within the list of suggestions is low. A similar

problem is encountered with the system not effectively highlighting the potential

connection between GARPAlgorithm and ImageJ.

Following the composition of this scenario a user from the domain of bioinformatics may

be required to compose further scenarios utilising a similar set of components, the

following sections illustrates how the connections made during the composition of

Scenario C can assist in providing suggestions for this new scenario.

Scenario D

As introduced in Section 8.2.1 Scenario D performs a similar operation to Scenario C,

calculating species distributions based on data retrieved from an external database. As

this scenario is performing a similar task to that of Scenario C the majority of the

components involved are the same. Figure 8-6 is a visualisation of Scenario D.

158

Figure 8-6 Composition Scenario D

As the user has previously interacted with many of the components in Scenario D the

system can use this historical information in order to improve the relevance of the

suggestions provided.

Incorporating the knowledge of previous connections between the GARP components

utilised within this scenario has enabled the system to provide a higher ranking to

suggestions involving those components within the composition of Scenario D. Where

previously the system was unable to effectively identify the potential for connecting the

GARPAlgorithm component to the ImageJ component, during this composition ImageJ

is ranked as the number one suggestion, as it is the only component currently available

that has been successfully connected to GARPAlgorithm in the past. A similar effect is

seen in suggestions provided for the connections between the three GARP

components, as these suggestions were already of a high quality the extent to which

their previous connection can improve the suggestions is reduced.

However, as this scenario differs from Scenario C in the manner in which the input is

provided to the system the suggestions are still not effective in identifying the need to

connect the DataAccess component to both GARPPresampleLayers and

GARPAlgorithm. Because the system has no connection history relating to these

components it must rely on the static metadata in order to provide suggestions. As in

the case of StringConstant the static metadata for the DataAccess component shows it

to be from a different domain, project, and provider to the GARP components, and

159

similarly possesses an output port of a generic data type, as a result the system is not

able to effectively highlight that GARPPresampleLayers and GARPAlgorithm are the

ideal components with which to connect.

8.2.4.3.1 Limitations

This highlights how the use of a user‘s history of interactions with the system can be of

benefit in improving the suggestions provided, however the effect is limited to situations

where the user routinely makes use of the same set of components, connected in the

same manner. In this way the current system is effectively working as an

"autocomplete" facility, directing the user towards decisions which they already know

they need to make. When a user introduces new components for which the system has

no historical connection data the provision of suggestions must rely on the static

metadata available about those components. Additionally if a user frequently makes

mistakes, connecting components in a manner which is not beneficial then this will have

a detrimental effect on the quality of the suggestions provided.

As briefly discussed in Chapter 4 an interesting extension of this approach which could

help mitigate these limitations would be to enable the system to make use of connection

history information from multiple users. In this way the situations where the current user

has not interacted with components previously may not restrict the ability of the system

to generate suggestions, providing these component have been used by another user

within the connection history database. This potential development is discussed further

in Chapter 10.

8.2.4.3.2 Summary

Static metadata is useful for generating suggestions when working with components

which possess similar values for Domain, Project and Provider metadata. However

there are instances when the ideal suggestion for connection is a component from a

separate domain, in these cases the introduction of a use history of component

connections can be of benefit in highlighting such potential component suggestions.

Additionally when components produce a large number of suggestions the connection

history is a potential factor that can assist in ensuring the ideal components are ranked

above those which are less helpful.

160

However, as demonstrated in the composition of Scenario D, users from a single

domain may introduce new components into their compositions after having worked

exclusively with a different set of components previously, it is in situations such as

these where the connection history is absent and therefore must be developed and can

only become of use once the user has worked with the new components for a period of

time.

To an extent the use of a user‘s connection history in this way can be seen as a

mechanism to overcome deficiencies in the scope and accuracy of the existing static

metadata. If a user from a domain is frequently using a component that is not listed as

belonging to that domain, then this indicates that that the metadata for that component

should be updated to reflect its common use within the user‘s domain. A future

development for the system could be for components which are regularly used by users

from domains that are not recorded in their Domain metadata to have that Domain

updated to include the user‘s domain. Investigation would have to be made into the

optimum point at which to decide a components usage in the other domain is common

enough to begin altering the static metadata entries for that component.

8.3 Conclusion

This chapter has evaluated the approach to assisted workflow composition described

within this thesis through a number of different approaches. Initially a ―proof of concept‖

was performed, taking established example workflow scenarios from the Kepler SWS

and illustrating the manner in which these could be successfully composed with the

assisted composition approach.

Following these initial walkthroughs a comparison was performed using an existing

SWS, Kepler. This process involved illustrating the manner in which the Kepler system

could be utilised to compose one of the scenarios previously introduced. During this

composition any instances where the user would be unable to readily identify the next

step to take, or were required to utilise the assistance mechanisms provided by Kepler,

were recorded, providing an overview of where the system presented challenges to the

user during composition. This was compared against the assisted composition

161

approach, highlighting how each of the elements that presented a challenge within the

Kepler composition process could be either eliminated or have their effect reduced by

the facilities that the assisted composition approach provides.

Finally the benefit of each element of metadata to the provision of suggestions was

investigated. This involved the definition of several metrics to establish the ―quality‖ of a

set of suggestions provided by the system, these were as follows:

 A - Percentage of ―ideal‖ components suggested

 B - Percentage of incompatible components suggested

 C - Ranking of ―ideal‖ components within the suggestions provided

 D - Total number of suggestions provided (and number of ideal suggestions

possible)

Inspecting the potential for each element of metadata to provide suggestions in isolation

enabled the value of combining metadata elements to be identified.

Overall this chapter illustrated how an assisted approach to scientific workflow

composition can enable a user to successfully compose a variety of common workflow

scenarios, how this approach can effectively reduce a number of challenges presented

by existing manual composition approaches and finally how maintaining a structured,

dynamic knowledge base of component metadata can provide users with high quality

suggestions for successfully composing workflow scenarios.

162

9 Discussion

The previous chapter has provided an evaluation of the computer-assisted composition

approach described in this thesis, illustrating the capabilities the system has in

supporting the composition of a number of representative workflow scenarios, and

demonstrating the benefits this has in comparison to existing SWSs. The present

chapter will provide a wider discussion of the relative capabilities of this approach.

Specifically, we compare the approach to providing suggestion based assistance

presented in this thesis against similar systems developed for the field of web service

composition. This is achieved by comparing the suggestions which would be generated

by each system during composition of the scenarios introduced in Chapter 8 and

evaluating the benefit provided by each approach.

In addition this chapter will consider the scalability of the approach presented, seeking

to predict its ability to provide useful support when an increasing number of components

are available within the system, as well as how well it can assist in the composition of

workflows featuring a more complex structure. Finally a brief synopsis of the feedback

from user testing performed to date is provided, illustrating the views of an example end

user from the field of Bioinformatics who has had experience interacting with this

approach to workflow composition.

9.1 Capability of Approach

The evaluation in Chapter 8 has demonstrated that the approach to composition

presented in this thesis is valid in that the process of providing the user with abstract

components with which to outline their goals, and providing them with suggestions

regarding which components to insert and connect in order to achieve these goals, can

result in the creation of workflows which successfully meet their needs. In this section

we will look in greater detail at the relative benefits and weaknesses of this approach

that the evaluation in Chapter 8 has revealed.

163

9.1.1 Can the Scenarios be Composed Fully?

Section 8.2.2, along with the material presented in Appendix B, provided descriptions of

the process a user would follow when using the suggestion based composition

approach to compose two of the workflow scenarios described in 8.2.1. The first walk-

through for Scenario B, reading an image file and performing basic manipulation upon

it, illustrated how the basic steps involved in creating a workflow composition -

identifying required components, correctly ordering those components, and specifying

the connections between components - can be achieved using a suggestion based

approach. Additionally the scenario illustrated how this approach can reduce the

complexity of achieving these steps by providing the user with a targeted, reduced

number of choices, selecting from a limited number of suggestions rather than exploring

a complete list of available components. This also demonstrated how the use of

suggestions as the means to progress the composition also affords a level of guidance

beyond simply which component to include within the workflow, providing suggestions

both on which components to use and on how to connect them.

Additionally this walkthrough illustrated how the use of various elements of metadata

can assist in suggesting only those components which are of genuine benefit to the

user. In this instance there were many other components which could have been

suggested for inclusion within this scenario based on their use of ports that deal with

image files. For example the GARPPrediction component encountered in Scenario C

has an output port that produces image data, however as this component is not from

the Image Processing domain it does not distract from those, more suitable,

suggestions which are from this domain.

A further advantage is also illustrated when composition of the workflow is only partially

complete. Upon the inclusion of the Rotate component the user is also prompted with

the choice to introduce further Image Processing components. In this way the approach

can assist in extending the reach of a user‘s initial composition, incorporating further

functionality that they may not have initially identified.

However, the walk-through of Scenario B also illustrates a potential negative aspect of

this approach; the user is required to manually identify situations where they must

164

specify parameters for components within the composition. Providing no mechanism to

alert the user that components may require properties to be configured could result in

the user being unaware of why their structurally complete workflow does not execute

correctly. This situation could be improved by implementing an additional category of

suggestion, Property Suggestions, which prompts the user with components whose

properties are incomplete and potentially provide suggestions on how to satisfy these

properties.

The second walk-through presented for Scenario C, modelling species distribution,

illustrates how relating each component port to the PortDataObject metadata is of

benefit in assisting this identification of components. As the GARP components

required for this scenario each have ports with the common BasicType of ―String‖, this

means that if the system were reliant on this factor to identify compatibility the user

would be presented with a large number of suggestions, increasing the difficulty in

identifying the correct step to take. As the PortDataObject metadata is more specific to

the data involved in connections with these components‘ ports the system is able to

refine the list of suggestions more accurately to those of genuine interest to the user. As

detailed in Section 8.2.4, each individual element of metadata retained by the system

can be of benefit in improving the effectiveness of the suggestions provided by the

system. However, a negative aspect, illustrated through Scenario C, is the reduced

effectiveness of suggestions when a user has yet to develop a detailed history of past

interactions with the system. If a user‘s connection history is not present, or is not yet of

sufficient detail the system can provide unhelpful lists of suggestions. In the case of this

scenario the connection between StringConstant and GARPPresampleLayers and

GARPAlgorithm would only be an obvious choice if the user has previously

implemented this connection a number of times. If this connection had not been

previously specified the system would only be able to use the static metadata regarding

these components to provide suggestions, resulting in any components compatible with

the BasicType ―String‖ being identified as a possible connection.

9.2 Comparison with Existing Suggestion Approaches

As described in Chapter 2 there is an increasing desire for the functionality of multiple

web services to be combined into ―value-added‖ services, with several approaches to

either automating or assisting this process being developed. In order to further establish

165

the benefit of our proposed techniques, this section makes comparison with two of

these existing composition systems previously described in Chapter 2, the CAT system

[12] and the approach described by Sirin et al. [34]. These systems have been chosen

as they share similar mechanisms to those used in our proposed approach. Following

the discussion of these approaches we provide a summary of the respective limitations

and benefits which they present in relation to our own system.

9.2.1 Sirin et al.

An approach to assisted service composition proposed by Sirin et al. [34] was

introduced in Chapter 2. Their solution involves the creation of semantic ―service

profiles‖ for each web service which is to be composable using their approach. These

service profiles outline what the service does by providing details such as the input and

output types of the service, and any preconditions that service has in order to execute.

In addition their approach makes use of an ontology to impose a hierarchy on these

service profiles, relating services to one another based on how closely related their

service profiles are.

The composition of services is achieved using an inference engine which has the

capability to inspect the ontology of service profiles to determine whether the output of

any service is suitable for connecting to the input of any service which the user has

already included in their composition. Similar to the approach described in this thesis

the inference engine is able to impose some ranking on the suggestions it provides. By

using its knowledge of input and output types the system decides whether two services

input and output types are an exact match or a generic match, with exact matches

being ranked highest. In addition non-functional attributes which are stored in the

systems ontology can also be used to filter the list of provided suggestions; however

this is a manual process which the user must perform.

9.2.2 CAT

The CAT [12] system provides a suggestive composition approach targeted at the

composition of web services. The system works on a similar principle to the assisted

composition approach described in this thesis, both systems enable users to achieve

166

their composition goals by providing a series of suggestions for progress based on the

current state of the composition.

The CAT suggestion system uses a concept of error identification and correction, the

current state of a composition is inspected against a set of pre-defined ideals for a

complete composition. These describe that each element within a composition should

be executable, that each element should have all of its input and output requirements

satisfied, each element should be compatible with the elements it is connected to, and

that the composition must have a clear beginning and an end – it must not be an

endless cycle. Each of these ideals has one or more related ―actions‖ designed to

satisfy the requirements of that ideal. An incomplete workflow is scanned by the system

for any occurrences where these ideals are not satisfied – when these are identified the

system suggests one or more of its available actions in order to rectify the problem.

In this way the CAT approach seeks to allow the user to compose what is initially a

generic web service composition, containing some of the tasks they wish to perform,

and subsequently refine this composition through implementing the actions that CAT

suggests based on the errors the system is able to locate within the current

composition. In order to correctly identify errors within the web service composition, and

to provide effective actions to resolve these, the CAT system maintains a task ontology

which contains knowledge relating to the type of information produced and consumed

by each web service available. Based on a composition containing services with

incompatible types, or services with unsatisfied inputs or outputs, CAT is able to refer to

the task ontology to locate services which can either translate the output type of one

service into a compatible type to input into another service, or those which are

compatible with those services currently unsatisfied.

9.2.3 Limitations of Existing Approaches

As described previously the approach to assisted composition detailed in this thesis

utilises an ontology to record metadata relating to components, relating each

component to both static factors such as the domain in which it is used, the type of data

shared by its ports, and the high level abstract concept that it implements, as well as

recording dynamic information such as the number of times a user has connected

components within their history of compositions.

167

In contrast both the CAT system and the approach taken by Sirin et al. maintain only a

limited ontology which relates each component to both the task it performs and the data

type(s) of its input and output ports. As discussed in Section 8.2.4 relying solely on port

types as the means to provide suggestions for suitable components to introduce into a

workflow results in a reduction in the quality and effectiveness of those suggestions

provided, particularly when composing scenarios that involve components with common

or generic port data types. Utilising data types to determine compatibility ensures that

no compatible choice will be overlooked, but also results in situations where the number

of suggestions becomes overly large, increasing the difficulty the user encounters when

inspecting the available suggestions for the ideal step to implement. Whilst the

approach taken by Sirin et al. provides a filtering mechanism to attempt to reduce the

size of suggestions provided, this is a manual process which must be undertaken by the

user themselves and therefore returns to the problem of requiring that the user has

sufficient knowledge of both the task they wish to perform, and the properties of the

available components.

Secondly the knowledge maintained within these ontologies is entirely static, the

continued interactions a user has with the system will have no effect on the suggestions

that they are provided with. By not allowing the provision of suggestions to adapt to the

manner in which a user interacts with the system the quality of suggestions cannot

improve over time. For individual users this means that in situations where they

repeatedly implement steps that are low in the list of suggestions provided by the

system they must continually search through that list for the implementation they know

to be correct. For a domain of related users this means that one user‘s interactions

cannot be utilised to improve the suggestions provided to others – where the dynamic

approach presented in this thesis enables experienced users interactions to improve

the assistance provided to new users, a static knowledge base means that those with

limited experience must overcome the same challenges as those who have already

identified the correct steps to take.

9.2.4 Benefits of Existing Approaches

Whilst the knowledge that is represented within the ontologies presented by CAT and

SIrin et al. has a number of limitations in relation to the suggestions it can provide, an

168

advantage the CAT approach provides comes from the mechanism which is used to

generate those suggestions. By taking an approach that compares an on-going

composition against a set of ideals such as each component‘s ―Uniqueness‖ and

―Consistency‖ the CAT approach is able to identify any element of a composition that

does not match these ideals. Whilst in a SWS context this would have the disadvantage

of interpreting unconnected ports as a problem that means the composition is

incomplete, when there are numerous components that do not require all of their ports

to be satisfied in order to function successfully, this approach has the advantage of

always making the user aware of areas in which their on-going composition may be

deficient.

In Section 8.2.2 we saw a number of situations where the approach to workflow

composition described in this thesis was able to deliver a structurally complete

composition for a scenario, but failed to inform the user of component properties that

must be defined before the workflow could be successfully executed. By implementing

an approach similar to that of the CAT system, which considered this definition of

component properties as a requirement for a complete composition, it would be

possible to highlight areas where component properties were in need of customisation

before the composition could be considered complete.

Similarly whilst the filtering system of Sirin et al. requires the user to provide additional

information about the type of services they wish to use in their composition, and

therefore is of limited benefit to a user who is engaged in ―discovering‖ the services they

require for their composition, this is a powerful tool for more advanced users who

already have knowledge of the type of services they require. As the numbers of

components available within a system grows such a filtering mechanism may become a

necessity in order to ensure that the user has some capability to quickly reduce the list

of suggestions provided to only those they may be interested in.

9.2.5 Summary

This section has provided an overview of a number of existing approaches to

supporting the composition of web services. The relative benefits and limitations of

each system were discussed in relation to the approach proposed in this thesis, with the

conclusion that whilst each of these systems provide mechanisms to support users in

169

creating their workflows or composite services, the limited knowledge that they retain

about both the available services and the users performing the composition results in

the quality of the assistance they provide being limited. By incorporating metadata

relating to components‘ domains of use, provider, past history of connections, and

further information relating to the data produced or consumed by their ports, the

approach described in this thesis is able to identify where components are not just

compatible but also desirable to include within a composition, and is able to reduce the

number of suggestions that a user is provided with, thus reducing the challenge in

identifying which suggestions to implement.

The CAT approach was shown to have benefits in the ability to further identify areas

where a developing composition was in need of attention, beyond those identified by

the approach to assistance discussed in this thesis. In the context of the scenarios

utilised for composition in this chapter this manifested itself in the approach being

unable to prompt the user when workflow components possessed internal parameters

that needed to be defined before the composition would execute correctly. By

employing the CAT approach of comparing these compositions against requirements

for a complete, executable workflow such deficiencies could be identified and

addressed. The approach presented by Sirin et al. was also shown to have benefits in

its ability to allow users to filter the list of suggestions provided based on the non-

functional properties of the available services.

Furthermore the approaches described in this section lack the dynamic aspects

included within the approach presented in this thesis. By incorporating knowledge

relating to a user‘s past interactions with the system the quality of suggestions can

improve over time, as well as enabling the connection history of an expert user to

improve the quality of suggestions provided to a novice.

9.3 Scalability of Approach

Scalability of the computer-assisted composition approach presented is an important

consideration as there are a number of factors which could potentially increase in

complexity after continued use. The main areas where scalability must be examined

are: the effect of including an increasing number of workflow components and metadata

elements within the framework, the support the approach provides for creating

170

increasingly complex workflow compositions, both in terms of numerical complexity

(including many components) and structural complexity (including components

connected in a complex manner such as loops, branches and split connections), and

finally the effect an increasingly populated connection history has on the suggestions

the approach can provide.

9.3.1 Increasing Components within Framework

Taking the initial mathematical example scenario from Section 8.2.2, calculating and

displaying the remainder of a division, the proof of concept established this as a

relatively straight-forward and simple scenario to compose using our method.

However re-calculating the suggestions which would be provided by the system during

composition illustrates how the ease of completing this scenario could be reduced, if

incorporating a metadata framework including far more components than are currently

supported. As an example Table 9-1 lists the first addition suggestions the user is

presented with following inclusion of the Remainder component.

Addition Suggestions

add a Constant component (matches with input to Remainder)

add a Display component (matches with output from Remainder)

Table 9-1 Initial Addition Suggestions for Scenario A

These suggestions are provided based on their compatibility with the Remainder

component included within the composition. The decision for suggesting these

components is based primarily on the compatibility of their port types with those of the

Remainder component, in this instance each of the components includes ports which

involve the sending or receiving of a Double numerical data type.

If the number of components within the framework which included this data type within

their input or output ports were greatly increased then there would be a corresponding

increase in the number of components which the system would identify as being

compatible with the Remainder component.

171

In cases such as this scenario a previously trivial step of identifying which suggestion to

implement from only a few choices, could become an arduous task of inspecting a long

list of suggestions for the right one to implement. This is effectively making the

suggestion approach equivalent to the existing manual composition approach where the

user is left to navigate through a large list of available components with limited

information to identify which is required.

This negative impact of an increased number of components defined within the

framework is however mitigated by a number of other elements of the approach.

Primarily the inclusion of elements within the reasoning to assess the desirability of

connecting or inserting components, alongside simply identifying whether components

are ―type compatible‖, is designed to reduce the impact of a large number of available

components. By promoting components within the list of suggestions based on the

similarity of their Provider, Project, and Domain metadata elements the system attempts

to highlight those suggestions which are more desirable for the user to implement.

This metadata is designed to support the provision of suggestions in relatively well

defined user-domains, where a user is utilising a set of components which are specific

to their project or domain. In cases such as this the system can identify those

compatible components which do not belong to the user‘s domain or project, and rank

these below components which do belong to the user‘s domain and project, reducing

the challenge for the user in locating the components they require.

However, returning to Scenario A, the trivial nature of the components utilised within

this composition means there is limited benefit of using this desirability metadata in

ranking suggestions. Components such as Constant and Display which are used within

this scenario have no defined Domain or Project metadata as they are used across a

number of different areas. As a result the system would be unable to utilise this

information to remove undesirable components from the list of available suggestions,

resulting in any compatible components being suggested.

Furthermore instances where one component does have a defined Domain, but the

components which should be connected to it do not, or belong to another Domain,

172

would result in the required suggestions being ranked lower than desired. For example

Scenario A included the components Remainder, Constant and Display. Remainder is

of the Mathematics domain whilst both Constant and Display are from different

domains, this would mean that whilst a user would desire these components to be

suggested for connection with Remainder, this would not be promoted by the system.

However, the GUI includes the option to customise the filters which affect the ranking of

suggestions so the user does have the option to remove ranking by domain from the list

of suggestions provided.

Beyond utilising information relating to a component‘s domain, project or provider to

mitigate the effect of a large number of compatible components being suggested, an

individual user‘s history of interaction with the system is also incorporated within the

ranking process to improve the resulting suggestions.

In our example once a user has inserted the Constant component into the workflow the

system identifies all components which are compatible with its output type of double. If

all the components available within the base Kepler system are represented within the

component ontology then this would result in 144 suggestions. As stated previously,

Constant has no defined project or domain, as it can be used for many purposes, and

so this information does not help reduce this list of suggestions. The Provider metadata

for the Constant component, ―Ptolemy‖, will be used to reduce this list of suggestions

but still leaves a large number for the user to inspect manually. However, if a user has

previously utilised the assisted approach to composition the system can inspect their

history of interactions and identify those components within the suggestions which the

user has previously connected. By promoting those suggestions which the user has

previously implemented over those which have never been utilised the system can

potentially highlight those components a user is more interested in for their composition.

In this way a user, working with the restricted number of components that are relevant

to their individual domain, user‘s will develop a history of connections which can

increasingly be utilised to improve the quality of their future suggestions, even when a

large number of ―logically compatible‖ components are available.

There are limitations in utilising a history of interactions with the system to improve

suggestions. Firstly it takes time to develop this history, before the system is able to

173

have recorded the user implementing a useful number of suggestions there is no way in

which this dynamic information can be used to restrict the number of redundant

components within list of available suggestions. Until such a history has been defined

the system must rely on utilising the static metadata in order to attempt to highlight the

best suggestions for a user to implement. Additionally using the history of connections

made by a user to improve the suggestions may have a detrimental effect when a user

is working with a set of components they have used previously but wishes to approach

a problem in a different manner.

9.3.2 Composing Complex Scenarios

The scope for complexity within the workflows that can be composed using existing

SWSs is considerable, as there are many ways that a user can choose to sequence

and connect the large number of components, ports and data types available. These

systems also provide the user with the option to introduce functionality such as loops

and branching into their composition to further increase this complexity.

A limitation of the assisted composition approach presented in this thesis is the manner

in which suggestions are identified for inclusion. As described in Chapter 5 the system

generates suggestions based on the knowledge about each component in isolation, and

is only designed to accept a single connection into or out of each component‘s ports.

Given a composition with components A, B and C, each with one input and output, the

system would be able to identify where the user could connect these sequentially, A-B-

C, but would be unable to suggest more complex structures such as introducing a loop,

or passing the data from component A's single output port to the input of both

components B and C. Figure 9-1 represents examples of such composition structures.

A B C A

B

C

Figure 9-1 Advanced Workflow Structures

174

This limitation means that structurally complex compositions are difficult to compose

within the confines of the assisted approach, requiring the user to implement structures

such as loops and branches by returning to the underlying SWS itself. This limitation

could potentially be mitigated by introducing new ―structural‖ abstract components

which the user could configure in order to achieve functionality such as looping and

branching within their compositions. For example, a ―loop‖ component could contain a

―sub-workflow‖ representing the tasks the user wishes to repeat.

9.3.3 Summary

Whilst the approach to providing composition assistance described in this thesis has a

number of advantages over existing, manual composition approaches, and similarly is

able to provide higher quality suggestions than other suggestions based composition

approaches, there are circumstances where it is not so effective.

As the suggestions provided by the system are based on knowledge it maintains about

available components increasing the number of available components results in the

system having a larger knowledge base to inspect for suggestions. In situations

containing components which only have limited metadata available, or which have very

―generic‖ metadata, this can result in a larger number of suggestions being presented to

the user, reducing the benefit that this approach is designed to provide. However, the

approach of including further metadata such as components' past connections history,

and providing facilities within the UI for users to determine which elements of metadata

are included in the provision of suggestions can reduce the impact of a large number of

available components.

An important deficiency in this approach is its inability to assist users in the composition

of structurally complex workflows. The suggestions the system provides only enable the

user to connect components sequentially, limiting port connections to 1:1 relationships

and preventing the inclusion of structures such as loops within compositions. Whilst

some complex compositions such as connecting one component output to multiple

component inputs can be circumvented by duplicating the component providing the

output, this increases the number of components included in a workflow and requires

the user to be aware of how to achieve this workaround.

175

The approach of providing the suggestion system as an extension to an existing SWS

means that in circumstances such as this a user is able to save a workflow partially

completed in the extension and load this back into the existing SWS, enabling the

definition of more complex structures to be completed.

9.4 User Feedback

As mentioned in Chapter 1 the work on this thesis was undertaken with the support of a

Microsoft Research Europe studentship; as part of this some user feedback was

obtained from the Microsoft contact Dr Rich Williams. This involved Dr Williams using

the computer assisted composition system to attempt to compose Scenario C as

introduced in Chapter 8 and providing responses to a questionnaire based on this

experience with the system. The completed questionnaire is provided in Appendix G.

The primary conclusions drawn from the user feedback were that the assisted approach

is capable of correctly composing workflow scenarios and that the use of suggestions to

guide users through the space of possible components and their sequencing was the

most successful aspect. However the feedback also identified that the approach may

need to be made more sophisticated in order to remain successful when dealing with

more components and more complex composition scenarios.

9.5 Conclusion

This chapter has provided a discussion surrounding the benefits and limitations

presented by the approach to assisted composition described in this thesis. The

manner in which the scenarios presented in Chapter 8 demonstrate this approach's

ability to overcome some of the identified deficiencies in existing SWSs has been

discussed in greater detail, as well as further illustrating the areas where this approach

is still lacking.

In addition this chapter has discussed the merits of this approach in comparison to

existing suggestive composition systems available in the field of web service

composition, such as CAT and the system proposed by Sirin et al.

176

This chapter also provided an overview of the scalability of this approach, illustrating

situations where extending the scope of the components supported by the approach

and the complexity of the scenarios to compose caused the approach to perform less

effectively. Finally a brief overview of the response from an end user of the system was

provided, establishing the extent to which they understood the assisted composition

approach to be of benefit to the type of SWS composition they routinely perform.

177

10 Conclusions and Future Work

This chapter provides a summary of the results presented in this thesis, evaluating the

extent to which the aims and objectives outlined in Chapter 1 have been achieved, and

therefore how the truth of the hypothesis has been demonstrated. In addition we

propose a number of areas where future work could be undertaken to improve on what

has been achieved.

10.1 Overview

As mentioned in Chapter 1, current scientific workflow composition systems place large

demands on the user in terms of the amount of knowledge that they must possess

before they are able to successfully compose workflows. This includes knowing the

exact tasks they wish to perform within the SWS environment, being aware of which

specific components are required to achieve these tasks, and having knowledge of how

to configure and sequence these components in order to provide the correct output.

This thesis has presented a new suggestion-based approach to workflow composition

to test the hypothesis that knowledge about users and the workflow components which

are available to them can be used to provide a computer-assisted approach that can

reduce the challenges presented by existing SWSs. This approach makes use of a

number of elements of metadata about both the components available and the users

themselves in order to assist the composition process.

Chapter 1 introduced a number of aims and objectives for this thesis. The overall aims

were to:

 Investigate how resource metadata can be used to generate suggestions to assist

users in creating workflows.

 Explore how a user interface could be developed to present this assistance to

users.

 Determine how such assistance could be provided across multiple existing SWSs.

178

In addition the following objectives were identified in order to achieve these aims, and

subsequent chapters in the thesis relate to the achievement of these objectives:

1. Develop a framework for representing knowledge about available resources.

2. Populate the framework with knowledge relating to resources to demonstrate how

such information can be of benefit when composing workflows.

3. Create algorithms to generate workflow composition suggestions from metadata

4. Develop an API layer to enable the interface to sit on top of multiple existing

workflow systems.

5. Provide a user interface to enable users to utilise assistance during workflow

composition

6. Evaluate the proposed framework with respect to the hypothesis and in relation to

other published work

The hypothesis stated in Chapter 1 has been tested by (i) constructing a metadata

framework that could capture suitably rich semantic information about workflow

components, (ii) developing algorithms which can inspect the current state of a users

composition and then utilise this metadata to generate suggestions for how to progress

the composition, (iii) developing an API framework to enable the metadata ontology and

suggestion algorithms to be used in conjunction with existing SWSs, and (iv)

implementing a prototype system which has been successfully used to complete a

number of composition scenarios from the Kepler SWS.

10.2 Objective Completion

The following sections draw together the main contributions of this thesis with respect to

the objectives they have addressed.

10.2.1 Component Metadata Framework (Objectives 1 & 2)

In order to support the provision of suggestions which can assist users during workflow

composition a framework is required which can store sufficiently detailed metadata

relating to available workflow components. The metadata ontology presented in this

thesis stores relevant information about both the properties of available components

and the high level goals that those components perform. By standardising the

179

information which is stored about each component it becomes possible for the system

to use this information to reliably inspect this data to assess component compatibility.

Furthermore by representing the tasks performed by each component within a hierarchy

it is possible to present the user with high level abstract components which can be

directly mapped back to the available components which implement this activity. This

ontology has also been designed to record information regarding the user‘s interactions

with the system; making use of this information to improve the assistance which can be

provided as the system becomes more familiar with a user‘s working habits.

10.2.2 Suggestion Algorithms (Objective 3)

A number of algorithms have been developed which make use of the information

retained in the component ontology in order to present users with suggestions for how

to complete their workflow composition. The information within the ontology is used to

identify components which are compatible with the user‘s composition, but also to

identify which suggestions are most desirable for the user to implement. In addition by

including greater detail in the component ontology than is present in either the existing

SWS or in other assisted composition approaches evaluated it is possible for these

algorithms to rank the suggestions available to the user. In this way the system

presents the user with a smaller number of suggestions, with the most useful

suggestions being highlighted.

10.2.3 Intermediate API (Objective 4)

As there are a number of existing SWSs which are commonly used within the scientific

community and which already provide suitably rich environments for sequencing and

executing sets of components it is sensible to ensure that an approach to providing

composition assistance can be used in conjunction with these existing systems. This

thesis has presented an API which can sit between an existing SWS and additional

software that provides extensions to the underlying SWS, providing the extension with

access to the required functionality of the SWS to allow for workflows to be composed

and executed. The generic nature of this API means that it can support a number of

possible extensions, not just the approach to computer-assisted composition presented

in this thesis.

180

10.2.4 SWS Extension and Performance Study (Objectives 5 & 6)

The proposed metadata ontology has been implemented using the OWL ontology

language. This allows the relevant properties and relationships to be defined to record

the required component metadata and to support the queries required by the

suggestions algorithms. A basic UI has been developed to enable a user to compose

workflows using abstract components and the suggestions provided by the system. A

number of means have been used to determine the effectiveness of the prototype

system when implementing a number of composition scenarios. These include rating

the quality of suggestions provided by the system, illustrating how the approach can be

used to avoid difficulties that are encountered during composition within the existing

Kepler SWS, and also evaluating how the approach compares with a number of

approaches used to assist in the composition of web services.

10.2.5 Summary

Overall the work undertaken has been able to achieve the aims and objectives which

were established in Chapter 1. An approach to recording useful metadata about

components was defined, implemented, and demonstrated by populating it with data for

components from existing scientific workflow systems (Objectives 1 & 2). Mechanisms

were then developed through which this metadata could be inspected in order to

generate suggestions which could be presented to users to assist during the workflow

composition process (Objective 3). By completing these objectives the primary aim of

this thesis has been achieved; to identify whether metadata about workflow

components could be used to assist users during the workflow composition process.

In order to demonstrate this practically a prototype user interface has been

implemented (Objective 5), and an intermediate translation layer and API have been

developed to enable this interface to be utilised with a number of existing scientific

workflow systems (Objective 4). A suitable approach to evaluating this system has then

been established through analysis of the methods used to evaluate both similar

assisting systems and existing workflow systems, and this approach has been

exercised against the systems developed (Objective 6). These steps have

demonstrated the remaining aims of the work; to explore how the assistance provided

181

by knowledge based suggestions could be used in presented to a user and utilised

during composition with a number of existing SWSs.

In conclusion these achievements and the work in this thesis in total have demonstrated

that the original hypothesis was a sound statement: a detailed review of the state of the

art within scientific workflows and related areas has established that genuine

challenges exist for users attempting to create successful workflow compositions, and

that these challenges have yet to be fully overcome by the work conducted in the field

to date. By developing the approach to recording component metadata and utilising this

to provide composition suggestions to users within a prototype user interface, it has

further been demonstrated that knowledge about workflow components and their usage

can be utilised to assist users in successfully completing the composition of genuine

workflow scenarios, and that this approach has benefits over those approaches which

currently exist.

10.3 Future Work

There are a number of areas where the work presented in this thesis could be

extended, these include expanding the recording of a user‘s composition history beyond

simply recording when two components are connected, incorporating a concept of

defining the ―ideal‖ input to satisfy a component, maintaining a hierarchy of user

domains to enable suggestions from similar domains to benefit one another, a

mechanism through which users could correct errors in, or otherwise improve, the

information stored in the metadata ontology, and a change in the approach to

representing component metadata by storing the information about components from

each SWS within a single ontology.

10.3.1 Expanded User History

The current system keeps a record of each connection which a user makes between

two components, storing information regarding the components and ports involved, as

well as a count of the number of times which this connection has been made. As has

been demonstrated in Chapter 8 this approach can assist in identifying when two

components are a good option for the user to include or connect in their composition

182

but it is limited as it is only concerned with interactions between two individual

components.

As demonstrated in the two bioinformatics scenarios described in Chapter 8 it is to be

expected that users may routinely connect sequences of more than two components

across multiple workflow compositions, in this case the three ―GARP‖ components. If

the system were to be able to identify and record such patterns then more assistance

could be afforded to the user, suggesting the inclusion of the whole sequence in one

step, rather than expecting the user to follow each individual step at a time.

Additionally the system could be expanded further to monitor the wider usage of

components within a workflow composition, for example trends in terms of which

components are present in a workflow - it may be the case that for a particular user

their compositions which include components A and B, always also include component

C, or trends in the connections between those components – if X, Y and Z are included

in a composition then Y and Z are always connected, if X is not present then this is not

the case. Such information could assist the system in providing the user with more

accurate suggestions for steps to implement.

10.3.2 Ideal Inputs

At present the metadata stored regarding components is static; the information which

identifies whether two components can be logically connected is reliant on the PortType

and PortDataObject elements of metadata. A further refinement could be made to

define the ―ideal‖ input that satisfies a component, this would essentially expand upon

the existing PortDataObject hierarchy to introduce even more specific refinements.

For example the current PortDataObject hierarchy includes the following child elements:

 PortDataObject

o FileDataObject

 ImageDataObject

 JPEGImageDataObject

 GIFImageDataObject

183

This could be extended to include very specific detail about the image which a

component produces or consumes, for example the image size, colour depth or even

file size. Recording this more specific information may help to ensure that suggestions

provided to the user are more likely to provide a positive outcome when executed.

10.3.3 User Domain Hierarchy

At present the history or interaction which a user builds up as they make use of the

system is only able to provide assistance to that individual user. If the system were able

to record the domain(s) within which a user is working, as well as a hierarchy describing

how closely related two domains were then there is potential for the history which one

user is developing to be of assistance to another user in a related domain. This would

be of assistance in the situation where a number of components are used across

multiple domains, or more specifically are used in the same manner across multiple

domains.

Care would need to be taken to ensure that the domain hierarchy were carefully

constructed to ensure that this did not result in a decrease in the accuracy or

helpfulness of the suggestions provided by the system. It may be sensibly for such a

mechanism to be optional within the user interface to enable users to avoid this

possibility. A similar approach could be taken with regards to defining relationships

between specific projects as well as domains, where interactions made by users from

one project could be used to help those from a similar or related project.

10.3.4 User Curated Metadata

As described in Section 4.5 the current implementation of the component metadata

ontology is populated by extracting information about components from the various

sources within existing SWSs such as component names, locations within the

component listing and component documentation.

Given the large and growing number of components and the possibility that the specific

usage or features of any one component could be misinterpreted from these existing

sources of information, it is not feasible that the same approach could be taken long

184

term to populate the metadata ontology, or if it were then it would result in inaccurate

information being recorded.

A more useful approach may be to implement a mechanism within the system to enable

users to extend and improve the accuracy of the information within the ontology. This

could be achieved by providing a direct interface through which users can manipulate

the ontology, or by enabling users to mark certain suggestions provided by the system

as unhelpful or inaccurate, allowing the system to learn which suggestions are most

beneficial. By allowing the ontology to evolve in this way the quality of suggestions

would improve over time as well as enabling the system to remain relevant as newer

components are made available.

This could be improved further still by taking advantage of the growing repositories of

completed workflow compositions which are being made available on the internet.

Projects such as myExperiment [10] and Workflow4ever [81] are making available a

vast selection of completed workflow compositions across a number of domains. By

taking advantage of this information it could be possible to "pre-prime" aspects of the

metadata ontology, such as the history of usage of common components, thus offering

benefit in situations where a component is commonly used within a domain but a

particular user has yet to interact with it.

10.3.5 Unified Component Metadata Ontology

At present the implementation of the prototype system made use of an individual

ontology per SWS; this approach was taken to simplify the implementation and to

enable the ontology to be populated more quickly to enable testing of the approach.

However it could be possible to represent the components from each system within a

single ontology, grouping components which achieved the same task within each at the

same level within the task hierarchy. This approach would have several benefits,

potentially enabling for compositions from one SWS to be easily translated to another

by using the task hierarchy to identify the required components, as well as enabling the

history of user interaction within one SWS to have benefit when composing workflows

with another.

185

10.3.6 Improved Component Parameter Metadata

As discussed in Chapter 8 a limitation with the current system is the inability to identify

when the user may need to perform some manual configuration of a components

parameters in order for their workflow composition to execute correctly, for example

configuring a file reader component with the location of the file to be read. This situation

could be improved if the metadata ontology were extended to categorise each

component's parameters based on whether they are optional or mandatory. If the

composition includes a component with mandatory parameters then the suggestions

section of the UI (or some new mechanism) could highlight this fact to the user.

Identification of which parameters are optional and which are mandatory may prove a

difficult task for all components, but could be information that is provided by the

component provider themselves when producing their components. This idea could

potentially be expanded further by offering similar metadata regarding component

parameters as is currently available for ports, describing the type of data which is

required to satisfy a parameter, thus enabling the system to not just highlight when a

parameter needs to be satisfied but also to potentially suggest what it needs to be

satisfied with.

10.3.7 Workflow System Interoperability

An area of research which is gaining interest is that of workflow interoperability, allowing

workflows and components from one SWS to interact with those of another. It is

conceivable that with further development the API which has been developed in this

work could be expanded to facilitate such interoperability. The API at present provides a

mechanism to provide a single interface through which common functionality can be

achieved within a number of existing SWSs, by introducing a translation element into

this API it could be possible to enable the computer-assisted composition system which

has been developed on top of this API to interact with multiple SWSs simultaneously,

creating workflows which makes use of the resources available across each system.

186

Publications

Elements of the work described in this thesis have been previously contained in the

following publications:

 McIver, R. P., Jones, A. C., & White, R. J. (2009, August). A Framework for Supporting

the Composition of Biodiversity Informatics Resources. In 20th International Workshop

on Database and Expert Systems Applications (DEXA'09), pp. 350-354, IEEE.

 McIver, R. P., Jones, A. C., and White, R. J. (2008). Workflow Systems for Biodiversity

Researchers: Existing Problems and Potential Solutions. Proceedings of Biodiversity

Informatics: challenges in modelling and managing biodiversity knowledge.

http://biodiversity.cs.cf.ac.uk/bncod/proceedings2008.html

187

References

1. Lane, M. A., Edwards, J. L., & Nielsen, E. (2000, September). Biodiversity

informatics: the challenge of rapid development, large databases, and complex data
(keynote). In Proceedings of the 26th International Conference on Very Large Data
Bases (pp. 729-732). Morgan Kaufmann Publishers Inc..

2. Bisby, F. A. (2000). The quiet revolution: biodiversity informatics and the internet.
Science, 289(5488), 2309-2312.

3. Bowers, S., Ludascher, B., Ngu, A. H., & Critchlow, T. (2006). Enabling
scientificworkflow reuse through structured composition of dataflow and control-flow.
In Data Engineering Workshops, 2006. Proceedings. 22nd International Conference
on (pp. 70-70). IEEE.

4. Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., Ferris, J., Glover, K., ... &
Wroe, C. (2006). Taverna: lessons in creating a workflow environment for the life
sciences. Concurrency and Computation: Practice and Experience, 18(10), 1067-
1100.

5. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., ... & Li, P.
(2004). Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20(17), 3045-3054.

6. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., & Mock, S. (2004,
June). Kepler: an extensible system for design and execution of scientific workflows.
In Scientific and Statistical Database Management, 2004. Proceedings. 16th
International Conference on (pp. 423-424). IEEE.

7. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., ... & Myers, J.
(2007). Examining the challenges of scientific workflows. Ieee computer, 40(12), 26-
34.

8. Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M., ...
& Wang, I. (2006). Programming scientific and distributed workflow with Triana
services. Concurrency and Computation: Practice and Experience, 18(10), 1021-
1037.

9. Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X., Ludvig, J., ... & Xiong, Y. (2003).
Taming heterogeneity-the Ptolemy approach. Proceedings of the IEEE, 91(1), 127-
144.

10. Goble, C. A., & De Roure, D. C. (2007, June). myExperiment: social networking for

workflow-using e-scientists. In Proceedings of the 2nd workshop on Workflows in
support of large-scale science (pp. 1-2). ACM.

11. Gaaloul, K., Charoy, F., & Godart, C. (2006). Cooperative processes for scientific

workflows. In Computational Science–ICCS 2006 (pp. 976-979). Springer Berlin
Heidelberg.

188

12. Kim, J., & Gil, Y. (2004, March). Towards interactive composition of semantic web

services. In in Proceedings of the AAAI Spring Symposium on Semantic Web
Services, 22nd-24th March.

13. Shawn, C. B., Bowers, S., Jones, M. B., Ludäscher, B., Schildhauer, M., & Tao, J.
(2005). Incorporating semantics in scientific workflow authoring. In In Proceedings
of the 17th International Conference on Scientific and Statistical Database
Management (SSDBM'05.

14. Kepler: An Extensible System for Scientific Workflows,

http://kepler.ecoinformatics.org

15. Ptolemy II, http://ptolemy.eecs.berkeley.edu/ptolemyII/

16. Triana, http://www.trianacode.org/

17. Taylor, I., & Schutz, B. (1998). Triana-A quicklook data analysis system for
gravitational wave detectors. In Second Workshop on Gravitational Wave Data
Analysis (pp. 229-237).

18. Taverna Workflow Management System, http://www.taverna.org.uk/

19. myGrid, http://www.mygrid.org.uk/

20. W3C Web Services Glossary, http://www.w3.org/TR/ws-gloss/

21. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., & Shan, M. C. (2000, January).

Adaptive and dynamic service composition in eFlow. In Advanced Information
Systems Engineering (pp. 13-31). Springer Berlin Heidelberg.

22. Rao, J., & Su, X. (2005). A survey of automated web service composition methods.

In Semantic Web Services and Web Process Composition (pp. 43-54). Springer
Berlin Heidelberg.

23. Benatallah, B., Dumas, M., Sheng, Q. Z., & Ngu, A. H. (2002). Declarative

composition and peer-to-peer provisioning of dynamic web services. In Data
Engineering, 2002. Proceedings. 18th International Conference on (pp. 297-308).
IEEE.

24. Medjahed, B., Bouguettaya, A., & Elmagarmid, A. K. (2003). Composing web

services on the semantic web. The VLDB Journal, 12(4), 333-351.

25. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., ... &
Sycara, K. (2004). OWL-S: Semantic markup for web services. W3C member
submission, 22, 2007-04.

26. Beco, S., Cantalupo, B., Matskanis, N., & Surridge, M. (2006). Putting semantics in

grid workflow management: the OWL-WS approach. DATAMAT SPA, University of
Southampton IT Innovation Centre. Retrieved September, 15, 2012.

189

27. Casati, F., Ilnicki, S., Jin, L. J., Krishnamoorthy, V., & Shan, M. C. (2000). eFlow: a
platform for developing and managing composite e-services. In Research
Challenges, 2000. Proceedings. Academia/Industry Working Conference on (pp.
341-348). IEEE.

28. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., & Sheng, Q. Z. (2003, May).

Quality driven web services composition. In Proceedings of the 12th international
conference on World Wide Web (pp. 411-421). ACM.

29. Blythe, J., Deelman, E., & Gil, Y. (2004). Automatically composed workflows for grid

environments. Intelligent Systems, IEEE, 19(4), 16-23.

30. Wu, D., Parsia, B., Sirin, E., Hendler, J., & Nau, D. (2003). Automating DAML-S web
services composition using SHOP2 (pp. 195-210). Springer Berlin Heidelberg.

31. Nau, D., Munoz-Avila, H., Cao, Y., Lotem, A., & Mitchell, S. (2001, August). Total-
order planning with partially ordered subtasks. In IJCAI (Vol. 1, pp. 425-430).

32. Wu, D., Sirin, E., Hendler, J., Nau, D., & Parsia, B. (2006). Automatic web services
composition using shop2. Maryland univ college park dept of computer science.

33. McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic web services. IEEE
intelligent systems, 16(2), 46-53.

34. Sirin, E., Hendler, J., & Parsia, B. (2003, April). Semi-automatic composition of web
services using semantic descriptions. In 1st Workshop on Web Services: Modeling,
Architecture and Infrastructure (pp. 17-24).

35. Harrison, A., Kelley, I., Mueller, K., Shields, M., & Taylor, I. (2007). Workflows

hosted in portals. In Proceedings of the UK e-Science All Hands Meeting (pp. 32-
39).

36. Zhao, Y., Raicu, I., & Foster, I. (2008, July). Scientific workflow systems for 21st

century, new bottle or new wine?. In Services-Part I, 2008. IEEE Congress on (pp.
467-471). IEEE.

37. Dryer, D. C. (1997, January). Wizards, guides, and beyond: Rational and empirical

methods for selecting optimal intelligent user interface agents. In Proceedings of the
2nd international conference on Intelligent user interfaces (pp. 265-268). ACM.

38. Horvitz, E. (1999, May). Principles of mixed-initiative user interfaces. In Proceedings

of the SIGCHI conference on Human Factors in Computing Systems (pp. 159-166).
ACM.

39. Kim, J., Gil, Y., & Spraragen, M. (2004). A knowledge-based approach to interactive

workflow composition. In 14th International Conference on Automatic Planning and
Scheduling (ICAPS 04).

40. Medjahed, B. (2004). Semantic web enabled composition of web services (Doctoral

dissertation, Virginia Polytechnic Institute and State University).

190

41. Plock, C. (2008). Synthesizing executable programs from requirements (Doctoral
dissertation, New York University).

42. Gallopoulos, E., Houstis, E., & Rice, J. R. (1994). Computer as thinker/doer:
Problem-solving environments for computational science. Computational Science &
Engineering, IEEE, 1(2), 11-23.

43. Beco, S., Cantalupo, B., Giammarino, L., Matskanis, N., & Surridge, M. (2005, July).
OWL-WS: a workflow ontology for dynamic grid service composition. In e-Science
and Grid Computing, 2005. First International Conference on (pp. 8-pp). IEEE.

44. Bubak, M., Gubała, T., Kapałka, M., Malawski, M., & Rycerz, K. (2005). Workflow
composer and service registry for grid applications. Future Generation Computer
Systems, 21(1), 79-86.

45. McIlraith, S., & Son, T. C. (2002). Adapting golog for composition of semantic web
services. KR, 2, 482-493.

46. Yu, J., & Buyya, R. (2005). A taxonomy of scientific workflow systems for grid
computing. ACM Sigmod Record, 34(3), 44-49.

47. van Nimwegen, C., van Oostendorp, H., & Schijf, H. (2004, June). Can more help
be worse?: the over-assisting interface. In Proceedings of the conference on Dutch
directions in HCI (p. 4). ACM.

48. Birnbaum, L., Horvitz, E., Kurlander, D., Lieberman, H., Marks, J., & Roth, S. (1997,
January). Compelling intelligent user interfaces-how much AI?. In International
Conference on Intelligent User Interfaces: Proceedings of the 2 nd international
conference on Intelligent user interfaces (Vol. 6, No. 09, pp. 173-175).

49. McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology language
overview. W3C recommendation, 10(10), 2004.

50. Horridge, M., Knublauch, H., Rector, A., Stevens, R., & Wroe, C. (2004). A Practical
Guide To Building OWL Ontologies Using The Protégé-OWL Plugin and CO-ODE
Tools Edition 1.0. University of Manchester.

51. McBride, B. (2002). Jena: A semantic web toolkit. Internet Computing, IEEE, 6(6),
55-59.

52. Pérez, J., Arenas, M., & Gutierrez, C. (2006). Semantics and Complexity of
SPARQL. In The Semantic Web-ISWC 2006 (pp. 30-43). Springer Berlin
Heidelberg.

53. Weske, M. (2001, January). Formal foundation and conceptual design of dynamic

adaptations in a workflow management system. In System Sciences, 2001.
Proceedings of the 34th Annual Hawaii International Conference on (pp. 10-pp).
IEEE.

54. Lämmermann, S. (2002). Runtime service composition via logic-based program

synthesis (Doctoral dissertation, KTH).

191

55. Paventhan, A. (2007). Grid approaches to data-driven scientific and engineering

workflows (Doctoral dissertation, University of Southampton).

56. Warr, W. A. (2012). Scientific workflow systems: Pipeline Pilot and KNIME.Journal
of computer-aided molecular design, 1-4.

57. Barseghian, D., Altintas, I., Jones, M. B., Crawl, D., Potter, N., Gallagher, J., ... &
Hosseini, P. R. (2010). Workflows and extensions to the Kepler scientific workflow
system to support environmental sensor data access and analysis.Ecological
Informatics, 5(1), 42-50.

58. Bachmann, A., Kunde, M., Litz, M., & Schreiber, A. (2009, May). A dynamic data
integration approach to build scientific workflow systems. In Grid and Pervasive
Computing Conference, 2009. GPC'09. Workshops at the (pp. 27-33). IEEE.

59. McPhillips, T., Bowers, S., Zinn, D., & Ludäscher, B. (2009). Scientific workflow
design for mere mortals. Future Generation Computer Systems, 25(5), 541-551.

60. De Roure, D., Goble, C., & Stevens, R. (2009). The design and realisation of the
myExperiment virtual research environment for social sharing of workflows.Future
Generation Computer Systems, 25, 561-567.

61. Astakhov, V., Bandrowski, A., Gupta, A., Kulungowski, A. W., Grethe, J. S., Bouwer,
J., ... & Ellisman, M. (2012). Prototype of Kepler processing workflows for
Microscopy and Neuroinformatics. Procedia Computer Science, 9, 1595-1603.

62. Beisiegel, M., Blohm, H., Booz, D., Dubray, J., Colyer, A., Edwards, M., ... & Trieloff,
C. (2005). Service component architecture. Building systems using a service
oriented architecture. Whitepaper [online], 1-31.

63. Beisiegel, M., Karmarkar, A., Patil, S., Rowley, M. (2011). Service Component
Architecture Assembly Specification Version 1.1. Open Service Oriented
Architecture http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-
spec.pdf

64. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., ... & Zhao,

Y. (2006). Scientific workflow management and the Kepler system. Concurrency
and Computation: Practice and Experience, 18(10), 1039-1065.

65. Barker, A., & Van Hemert, J. (2008). Scientific workflow: a survey and research

directions. In Parallel Processing and Applied Mathematics (pp. 746-753). Springer
Berlin Heidelberg.

66. Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., Silva, C. T., & Vo, H. T.
(2006). Managing the evolution of dataflows with vistrails. In Data Engineering
Workshops, 2006. Proceedings. 22nd International Conference on (pp. 71-71).
IEEE.

192

67. Goecks, J., Nekrutenko, A., Taylor, J., & Team, T. G. (2010). Galaxy: a
comprehensive approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol, 11(8), R86.

68. Deelman, E., Singh, G., Su, M. H., Blythe, J., Gil, Y., Kesselman, C., ... & Katz, D.
S. (2005). Pegasus: A framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming, 13(3), 219-237.

69. Ghanem, M., Curcin, V., Wendel, P., & Guo, Y. (2008). Building and using analytical
workflows in discovery net. Data Mining Techniques in Grid Computing
Environments, 119.

70. Deelman, E., Gannon, D., Shields, M., & Taylor, I. (2009). Workflows and e-
Science: An overview of workflow system features and capabilities. Future
Generation Computer Systems, 25(5), 528-540.

71. Howe, B., Lawson, P., Bellinger, R., Anderson, E., Santos, E., Freire, J., ... & Silva,
C. (2008, December). End-to-end escience: Integrating workflow, query,
visualization, and provenance at an ocean observatory. In eScience, 2008.
eScience'08. IEEE Fourth International Conference on (pp. 127-134). IEEE.

72. McPhillips, T., Bowers, S., Zinn, D., & Ludäscher, B. (2009). Scientific workflow
design for mere mortals. Future Generation Computer Systems, 25(5), 541-551.

73. Tan, W., Madduri, R., Nenadic, A., Soiland-Reyes, S., Sulakhe, D., Foster, I., &
Goble, C. (2010). CaGrid Workflow Toolkit: A taverna based workflow tool for
cancer grid. BMC bioinformatics, 11(1), 542.

74. Fisher, P., Hedeler, C., Wolstencroft, K., Hulme, H., Noyes, H., Kemp, S., ... &
Brass, A. (2007). A systematic strategy for the discovery of candidate genes
responsible for phenotypic variation. BMC Bioinformatics, 8(Suppl 8), P7.

75. Goble, C. A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman,
D., ... & De Roure, D. (2010). myExperiment: a repository and social network for the
sharing of bioinformatics workflows. Nucleic acids research, 38(suppl 2), W677-
W682.

76. De Roure, D., Goble, C., & Stevens, R. (2009). The design and realisation of the
myExperiment virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25, 561-567.

77. Bowers, S. (2012). Scientific workflow, provenance, and data modeling challenges

and approaches. Journal on Data Semantics, 1(1), 19-30.

78. SHIWA: SHaring Interoperable Workflows for large-scale scientific simulation on
Available DCIs. http://www.shiwa-workflow.eu, 2011

79. Plankensteiner, K., Prodan, R., Janetschek, M., Fahringer, T., Montagnat, J.,
Rogers, D., ... & Kacsuk, P. (2013). Fine-Grain Interoperability of Scientific
Workflows in Distributed Computing Infrastructures. Journal of Grid Computing, 1-
27.

193

80. Plankensteiner, K., Montagnat, J., & Prodan, R. (2011, November). IWIR: a

language enabling portability across Grid workflow systems. In Proceedings of the
6th workshop on Workflows in support of large-scale science (pp. 97-106). ACM.

81. Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D., ... &
Goble, C. (2012). Workflow-centric research objects: First class citizens in scholarly
discourse. In Proceedings of the ESWC2012 Workshop on the Future of Scholarly
Communication in the Semantic Web.

82. Bechhofer, S., Buchan, I., De Roure, D., Missier, P., Ainsworth, J., Bhagat, J., ... &
Goble, C. (2013). Why linked data is not enough for scientists. Future Generation
Computer Systems, 29(2), 599-611.

83. De Roure, D., Goble, C., & Stevens, R. (2009). The design and realisation of the
myExperiment virtual research environment for social sharing of workflows. Future
Generation Computer Systems, 25, 561-567.

84. Roure, D. D., Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D.,
... & Zhao, J. (2010, December). The evolution of myexperiment. In e-Science (e-
Science), 2010 IEEE Sixth International Conference on (pp. 153-160). IEEE.

85. Bechhofer, S., De Roure, D., Gamble, M., Goble, C., & Buchan, I. (2010). Research
objects: Towards exchange and reuse of digital knowledge. The Future of the Web
for Collaborative Science.

86. Green, C. (1969). Application of theorem proving to problem solving (No. SRI-TR-4).
Sri International Menlo Park CA Artificial Intelligence Center.

87. Manna, Z., & Waldinger, R. (1980). A deductive approach to program synthesis.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1), 90-
121.

88. Gulwani, S. (2012, September). Synthesis from examples: Interaction models and
algorithms. In Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), 2012 14th International Symposium on (pp. 8-14). IEEE.

89. Qin, J., & Fahringer, T. (2012). Semantic-Based Scientific Workflow Composition. In
Scientific Workflows (pp. 115-134). Springer Berlin Heidelberg.

90. Deelman, E., & Gil, Y. (2006, December). Managing large-scale scientific workflows
in distributed environments: Experiences and challenges. In e-Science and Grid
Computing, 2006. e-Science'06. Second IEEE International Conference on (pp.
144-144). IEEE.

91. Altintas, I., Wang, J., Crawl, D., & Li, W. (2012, March). Challenges and approaches
for distributed workflow-driven analysis of large-scale biological data: vision paper.
In Proceedings of the 2012 Joint EDBT/ICDT Workshops (pp. 73-78). ACM.

92. Aupperle, B., Haney, D., Robbins, P. (2010). Service Component Architecture Client
and Implementation Model for C++ Specification Version 1.1. Open Service

194

Oriented Architecture http://docs.oasis-open.org/opencsa/sca-c-cpp/sca-cppcni-1.1-
spec.pdf

93. Booz, D., Edwards, M., Karmarkar, A. (2011). Service Component Architecture

SCA-J Common Annotations and APIs Specification Version 1.1 Open Service
Oriented Architecture http://docs.oasis-open.org/opencsa/sca-j/sca-javacaa-1.1-
spec.pdf

94. Holdsworth, S., Karmarkar, A. (2013). Service Component Architecture Web
Service Binding Specification Version 1.1 Open Service Oriented Architecture
http://docs.oasis-open.org/opencsa/sca-bindings/sca-wsbinding-1.1-spec.pdf

95. Holdsworth, S., Karmarkar, A. (2011). Service Component Architecture JMS Binding
Specification Version 1.1 Open Service Oriented Architecture http://docs.oasis-
open.org/opencsa/sca-j/sca-javacaa-1.1-spec.pdf

96. Booz, D., Edwards, M, J,. Malhotra, A. (2011). SCA Policy Framework Version 1.1
Open Service Oriented Architecture http://docs.oasis-open.org/opencsa/sca-
policy/sca-policy-1.1.pdf

97. Goecks, J., Nekrutenko, A., Taylor, J., & Team, T. G. (2010). Galaxy: a

comprehensive approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol, 11(8), R86.

98. Blankenberg, D., Kuster, G. V., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., ...

& Taylor, J. (2010). Galaxy: A Web‐ Based Genome Analysis Tool for
Experimentalists. Current protocols in molecular biology, 19-10.

99. Abouelhoda, M., Issa, S. A., & Ghanem, M. (2012). Tavaxy: Integrating Taverna and

Galaxy workflows with cloud computing support. BMC bioinformatics, 13(1), 77.

100. Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., Silva, C. T., & Vo, H.
T. (2006, June). VisTrails: visualization meets data management. In Proceedings of
the 2006 ACM SIGMOD international conference on Management of data (pp. 745-
747). ACM.

101. Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., Silva, C. T., & Vo, H.

T. (2006). Managing the evolution of dataflows with vistrails. In Data Engineering
Workshops, 2006. Proceedings. 22nd International Conference on (pp. 71-71).
IEEE.

102. Taverna Player, http://www.taverna.org.uk/developers/work-in-progress/taverna-

player/

103. Taverna Workflow Components, http://www.taverna.org.uk/developers/work-in-
progress/components/

104. Erl, T. (2005). Service-oriented architecture (Vol. 8). New York: Prentice Hall.

195

105. Záková, M., Kremen, P., Zelezny, F., & Lavrac, N. (2011). Automating
knowledge discovery workflow composition through ontology-based planning.
Automation Science and Engineering, IEEE Transactions on, 8(2), 253-264.

106. Gulwani, S., Jha, S., Tiwari, A., & Venkatesan, R. Component-based Synthesis
Applied to Bitvector Programs.

107. Stickel, M., Waldinger, R., Lowry, M., Pressburger, T., & Underwood, I. (1994).
Deductive composition of astronomical software from subroutine libraries. In
Automated Deduction—CADE-12 (pp. 341-355). Springer Berlin Heidelberg.

108. Johnson, T. A., & Eigenmann, R. (2006, June). Context-sensitive domain-
independent algorithm composition and selection. In ACM SIGPLAN Notices (Vol.
41, No. 6, pp. 181-192). ACM.

109. Jha, S., Gulwani, S., Seshia, S. A., & Tiwari, A. (2010, May). Oracle-guided
component-based program synthesis. In Software Engineering, 2010 ACM/IEEE
32nd International Conference on (Vol. 1, pp. 215-224). IEEE.

110. Lieberman, H. (2001). Your wish is my command: Programming by example.
Morgan Kaufmann.

111. Bartalos, P., & Bieliková, M. (2012). Automatic dynamic web service
composition: A survey and problem formalization. Computing and Informatics, 30(4),
793-827.

112. Foster, I., & Kesselman, C. (Eds.). (2003). The Grid 2: Blueprint for a new
computing infrastructure. Elsevier.

113. OSGi Alliance, http://www.osgi.org/

114. Lara, R., Polleres, A., Lausen, H., Roman, D., de Bruijn, J., & Fensel, D. (2005).
A conceptual comparison between WSMO and OWL-S. WSMO Final Draft D, 4, 44.

115. Dean, T. L., & Kambhampati, S. (1997). Planning and Scheduling.

116. Deelman, E., Singh, G., Su, M. H., Blythe, J., Gil, Y., Kesselman, C., ... & Katz,
D. S. (2005). Pegasus: A framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming, 13(3), 219-237.

117. Gil, Y., Ratnakar, V., Kim, J., González-Calero, P. A., Groth, P., Moody, J., &
Deelman, E. (2011). Wings: Intelligent workflow-based design of computational
experiments. IEEE Intelligent Systems, 26(1), 62-72.

118. Alrifai, M., Risse, T., Dolog, P., & Nejdl, W. (2009, January). A scalable
approach for qos-based web service selection. In Service-Oriented Computing–
ICSOC 2008 Workshops (pp. 190-199). Springer Berlin Heidelberg.

119. Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., & Liu, Z. (2010, July).
Qsynth: A tool for qos-aware automatic service composition. In Web Services
(ICWS), 2010 IEEE International Conference on (pp. 42-49). IEEE.

196

120. Cerezo, N., Montagnat, J., & Blay-Fornarino, M. (2013). Computer-Assisted
Scientific Workflow Design. Journal of grid computing, 11(3), 585-612.

121. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., ...
& Goble, C. (2013). The Taverna workflow suite: designing and executing workflows
of Web Services on the desktop, web or in the cloud. Nucleic acids research,
gkt328.

122. Vicario, S., Balech, B., Donvito, G., Notarangelo, P., & Pesole, G. (2012). The
BioVel Project: Robust phylogenetic workflows running on the GRID. EMBnet.
journal, 18(B), pp-77.

123. BiodiversityCatalogue, https://www.biodiversitycatalogue.org/

124. Web Services Description Language (WSDL) Version 2.0,
http://www.w3.org/TR/wsdl20/

125. SOAP Version 1.2, http://www.w3.org/TR/soap12-part1/

126. Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern Web
architecture. ACM Transactions on Internet Technology (TOIT), 2(2), 115-150.

127. Fielding, R. T. (2000). Architectural styles and the design of network-based
software architectures (Doctoral dissertation, University of California, Irvine).

128. McCarthy, J. (1963). Situations, actions, and causal laws (No. AI-MEMO-2).
STANFORD UNIV CA DEPT OF COMPUTER SCIENCE. Chicago

129. McCarthy, J., & Hayes, P. (1968). Some philosophical problems from the
standpoint of artificial intelligence (pp. 463-502). USA: Stanford University.

197

Appendix A - Scientific Workflow System
Implementation

This appendix provides an overview of the manner in which the SWS functionality which

is to be exposed by the API is achieved within each of the existing SWS considered,

namely Triana, Taverna and Kepler.

A.1 Starting a new workflow composition

Triana

In the Triana SWS each workflow is represented by an XML file, known as a

―TaskGraph‖. This file represents the components, or Tasks as they are called within

Triana, that are present within the workflow and the relationships that have been

defined between them. In order to begin creating a new workflow within Triana the

system must create a new TaskGraph file; this is achieved by calling the relevant

operation of a class called the TaskGraphManager – createTaskGraph().

This operation creates a new empty TaskGraph object which can then be populated

with the components required for a workflow composition. In order to create a

visualisation of this new TaskGraph the operation AddParentTaskGraphPanel is

utilised, when provided with a TaskGraph object as a parameter this creates a JPanel

containing a visualisation of the current state of that TaskGraph.

Taverna

As with the Triana SWS each workflow in Taverna is represented by an XML file, but in

this system each workflow is called a ―ScuflModel‖. Creating a new workflow within

Taverna involves creating a new instance of ScuflModel which will hold all of the

information to be added to the workflow. A visualisation of this ScuflModel can be

created using the ScuflSVGDiagram class, when given the ScuflModel as a variable.

Kepler

In the same manner as in both Triana and Taverna, Kepler workflows are represented

through the use of an XML file. This file records the components, properties and

198

connections that make up the workflow. In Kepler the XML files to represent workflow

models are called MoML (MOdelling Mark-up Language) files. The process of starting a

workflow composition within Kepler is more complex than that of the other SWSs; the

sequence diagram in Figure 10-1 outlines the various steps involved. Within the Kepler

system creating a new workflow is achieved by first making a new instance of

Workspace, a class which acts as a space to contain and refer to workflow objects, and

then creating an instance of TypedCompositeActor using this Workspace.

Figure 10-1 Sequence diagram showing Kepler startup activity

As well as creating both the Workspace and TypedCompositeActor, in order to

successfully create and utilise a workflow within Kepler there are several further

elements that must be specified. Firstly an instance of Configuration is required; this

class is used to facilitate the interaction of the user with the workflow model. The

Configuration refers to a XML config file which is provided by the Kepler system.

Secondly in order for a workflow model to be successfully executed once complete we

must also create both a Manager and a Director for that workflow. The Manager class is

used to initiate the execution of a workflow, and the Director is used to control the

manner in which a workflow executes including the number of iterations performed or

the length of time for which an execution should run.

Finally in order to create a visualisation of a Kepler workflow the classes Tableau and

ActorGraphFrame are used to create a graph of the model which can then be displayed

as a JGraph.

Summary

199

Through these functions from the Triana, Taverna and Kepler systems we can acquire

both an object which represents our current workflow, and an object which we can use

to display that workflow within a user interface. Whilst the Kepler system requires us to

perform several extra operations in order to successfully create a new workflow, once

this has been performed there are no significant differences that would complicate our

API.

A.2 Locating available workflow components

Triana

In Triana the components available to a user are represented by a searchable tree; this

lists components by their domain of operation such as ImagProc (Image Processing).

Within the Triana system this list of tools is represented by an object called the

ToolTable, generating a new instance of this object is achieved using the

TaskGraphManager operation getToolTable. Utilising the class ToolTreeModel this

ToolTable object can then be used to create a visualisation of the available workflow

components within a standard JTree.

Taverna

Similar to the Triana approach, components within Taverna are made available through

a tree structure, however in the case of Taverna the components are listed based on

their provider rather than their function. This is due to Taverna relying primarily on

distributed components. Taverna uses a ScavengerTreePanel to represent this list of

available components, in order to populate the list a new DefaultScavengerTree object

must also be created and the operation attachToModel is used to associate this with the

current ScuflModel.

As the ScavengerTreePanel is a visual component once created it can be handled in

the same manner as any standard component in order to display the list of available

components within the user interface.

Kepler

In the same manner as with both Triana and Taverna, components in Kepler are

presented to the user using a tree structure. The manner in which Kepler components

200

are organised within this tree is a combination of the approaches taken by Triana and

Taverna. Kepler lists some components by their purpose, similar to Triana, whereas

others are listed by either their provider or by the project for which they were developed,

similar to Taverna.

In order to display this list of components Kepler uses two classes, LibraryIndex and

EntityTreeModel. The LibraryIndex acts as the link to the set of available components

and the EntityTreeModel is the means of visualising this list.

Summary

The previous sections describe the operations required to retrieve the list of

components which is available within each of the three SWS. Using these operations it

is possible to display this list of components within a user interface. The similarity

between the mechanisms used to display the component list within each SWS helps to

simplify this area of the API.

A.3 Adding components to the workflow

Triana

In order to insert a component into a workflow within the Triana system it is necessary

to know the complete name of the component. This is represented by the component‘s

position in the component tree. For example the component StringViewer is listed under

the nodes Common and String, this gives it the complete name;

Common.String.StringViewer. Using the complete name of a component it is

then possible to create a new instance of the class Tool to represent that component by

using the getTool() operation on the TaskGraph which represents our workflow.

Once the Tool object has been created it is possible to add this component to our

workflow using another operation from our TaskGraph object, createTask().

Taverna

Adding a component to a workflow within Taverna is achieved by identifying the

component to insert from the list available and creating a new instance of Object to

represent that component. The class ProcessorFactory is then used in order to insert

this Object into the current ScuflModel using the createProcessor operation.

201

Kepler

Whilst in both Triana and Taverna the object which represents the current workflow

includes a function for adding new components to the workflow, the same functionality

is not present within Kepler. Within Kepler each component is represented by a

separate Java Class, the process of adding components to a workflow in the Kepler

SWS is achieved through creating a new instance of the class that represents that

component. Therefore, as Kepler does not provide a simple function for achieving the

action of adding components, the approach for this SWS is to identify the name of the

Class that represents the component to be added, create a constructor for that class,

and use that constructor to create a new instance of the class. By including the

TypedCompositeActor which represents our workflow as one of the parameters used in

construction of the new class we are able to add the component to our existing

workflow.

Summary

The functions described in the previous sections make it possible for the API to provide

a call which will insert a new component into the current workflow when utilising any of

the underlying SWSs. This API call is complicated somewhat by the differing approach

presented by the implementation of the Kepler SWS, necessitating the manual creation

of new component classes, however the results are consistent across each system;

following these calls the selected component will be added to the current workflow.

A.4 Defining connections between components in the workflow

Triana

When using the Triana system, connections between components are specified by

dragging links between components identified input and output nodes within the

workflow visualisation. As a representation of what is occurring programmatically this is

achieved through the use of the CableInterface class. Connections within the

TaskGraph are defined using the CableInterface operation ―connect‖, this takes the

selected output and input nodes and creates the connection between them.

Taverna

202

The manner in which connections are made between components in a workflow is one

of the areas in which the Taverna SWS approach differs from that of both Kepler and

Triana. Connections in both Kepler and Triana are created by physically dragging a link

between the required components in the workflow visualisation. In Taverna such

connections are created using an element of the user interface called the

AdvancedModelExplorer. This lists all of the components that are present within the

workflow along with various properties associated with those components, from here

the user can select an individual component and from a drop down list identify which

other component within the workflow they would like to connect it to.

Whilst the user experience of connecting components differs, within the Taverna

system these connections between components are achieved in much the same way as

within Triana and Kepler. The relevant components input and output ports are identified

through their Processor objects and then a DataConstraint between these ports is

created and added to the ScuflModel using the addDataConstraint operation.

Kepler

As stated previously from the users perspective Kepler takes a similar approach to

Triana for the procedure of specifying connections between components; the workflow

visualisation provides endpoints for each component that can be connected by dragging

a line between them. The underlying method that supports these connections within

Kepler is also similar to both Triana and Taverna. IOPort objects are created to

represent the endpoints that are to be connected and the operation ―connect‖ is used

from the TypedCompositeActor object that represents our workflow in order to establish

the connection.

Summary

Despite the difference in approach that is utilised from the user‘s perspective when

connecting components in the Taverna SWS, the operations that are performed from

the code level are very similar across each of the systems – the ports of the

components to be connected are identified, and the object representing the workflow is

updated to reflect the connection.

A.5 Executing a composed workflow

203

Triana
When using Triana the workflow is executed by simply pressing the ―run algorithm‖

button from the user interface. This causes each component within the workflow to

execute in turn, with any components that provide a visualisation of their output

displaying this on the screen. From a code perspective this is achieved using the

LocalServer class, this is created using both the TaskGraph object which represents the

users workflow, and the ToolTable object representing the components available within

the Triana system. Once created the ―run‖ method of LocalServer can be used to

execute the workflow.

Taverna

The execution of workflows is another area in which the approach of Taverna differs

from that of both Kepler and Triana. Taverna provides a separate user interface through

which the execution of a workflow can be monitored; this allows the user to identify

what occurs at run time, as well as providing access to intermediate results passed

between components. In the underlying system the execution of a Taverna workflow is

achieved through the creation of an EnactorProxy object which is then used to call the

operation compileWorkflow. The outcome of performing this execution is then held in a

WorkflowInstance object.

Kepler

Execution of workflows within the Kepler system functions in a similar manner to that of

the Triana SWS, the components of the workflow are executed and the output from the

endpoints is displayed. One key difference with the approach taken by Kepler is the

introduction of the Director, an element of the workflow which controls the way in which

the workflow executes. In order to execute a Kepler workflow we use the ―getManager‖

operation on the TypedCompositeActor object that represents our workflow, this

Manager is then used to call the ―run‖ operation which executes the workflow.

Summary

Through these functions it is possible to execute the current state of a users workflow.

Whilst from a users perspective the approach to achieving this outcome differs

somewhat between each of the SWSs the API call to execute a workflow is relatively

204

simple, obtaining an instance of the appropriate "executor" class within each SWS and

calling the relevant "run" function.

A.6 View the workflow results

Triana

In the Triana SWS when the user executes their workflow the system automatically

opens windows to display the results of those components which produce output. In this

way there are no specific steps which must be performed in order to view the workflow

results beyond those already performed to execute the workflow.

Taverna

Within the Taverna system the results of a workflow execution are displayed within the

same user interface that is utilised to execute the workflow, an example of this element

of the UI is shown in Figure 10-2. This displays the results produced by any elements of

the workflow that have been defined as ―outputs‖ during composition. The class

EnactorInvocation is used to create a JPanel containing the execution and result details

relating to the WorkflowInstance created by executing the workflow.

Figure 10-2 Taverna GUI showing the results of an execution

Kepler

205

Unlike the Taverna system, Kepler does not have any defined interface for inspecting

the execution results of a workflow. Similar to the approach taken by Triana, following

the execution of a workflow the Kepler user interface will display the results of any

―output‖ components that are present in the workflow. For example a workflow

containing an ImageDisplay component would display the result of invoking that

component after execution. As with the Triana system this means that no specific

functionality must be invoked in order for the results of a workflow execution to be

displayed as all the necessary interactions will be completed by invoking the execution

itself.

Summary

Both the Triana and Kepler SWSs will automatically display the results of any

components which produce suitable output when these are executed, as such the only

additions to the API which are required to view workflow output are to accommodate the

Taverna SWS. Upon requesting the API call execute when using Taverna the API will

automatically perform steps described previously in order to display the separate UI

which is required to view output of Taverna workflows.

A.7 Scientific Workflow System Implementation Summary

This appendix has described the manner in which the key functionality to be presented

by the API is achieved in each of the considered SWSs, Kepler, Triana, and Taverna.

Despite differences which are present in these system from a user perspective, for

example they have differing approaches to displaying the current state of a workflow

and locating the components which a user can insert into a workflow within their own

UIs, from an implementation perspective they are suitably similar. As such the API itself

does not need to be overly complicated by a requirement to satisfy any particular SWS

and the functions it defines can be implemented in a consistent manner across each of

the SWSs considered.

206

Appendix B - Scenario Composition Walk-throughs

This appendix provides detailed walkthroughs of the steps taken by a user to compose

each of the workflow scenarios identified in Section 8.2.1.

B.1 Scenario A

The first scenario is a basic mathematical operation, performing a remainder calculation

on a user entered number and printing the result. As described in the main text the

system adopts the overall composition approach of identifying abstract components to

represent workflow tasks, specialising these to appropriate implementable components,

and implementing the relevant suggestions to connect these components, with this

process being repeated if further components and connections are required.

Step 1: Identify Initial Components

The user begins by identifying a number of abstract components to represent the

processes that will be involved in the complete scenario. As discussed in Chapter 7 the

user interface provides the user with a list of available abstract components which can

be inserted into the composition.

The initial set of top level abstract components presented to the user contains the

following options:

 Database Component

 I/O Component

 Integration Component

 Modelling Component

 Operation Component

 Image Component

From this list the user identifies the abstract "I/O Component" as a useful starting point,

based on the knowledge that the scenario requires the user to provide input in the form

of the number they wish to manipulate, as well as output in the form of the outcome of

the remainder operation. Having inserted this component the user is now free to either

207

select another abstract component to insert, or to begin specialising "I/O Component" to

a concrete executable component. Knowing that the scenario centres on performing a

mathematical operation the user also decides to insert the abstract "Operation

Component". At this stage, having identified abstract components to perform both their

input and output requirements, as well as to complete the calculation the user proceeds

to the specialisation stage of the composition process.

Step 2: Specialise Abstract Components

Once the abstract components have been added to the workflow composition the

system begins the process of inspecting the metadata ontology in order to generate

suggestions for how the user could proceed. The suggestions that the system provides

for specialising "I/O Component" are provided in Table 10-1.

Specialise I/O Component to:

 Constant Line Writer

 Display Sequence

 File Reader String Constant

 File Writer Token Reader

 Line Reader Zip Files

Table 10-1 Suggestions to Specialise I/O Component

Understanding that Scenario A requires input of a numerical value on which to operate

the user identifies the input component "Constant" as a good candidate to achieve their

goals. At this point the user may also determine that the output component "Display"

would also be useful for completing this scenario, in which case they could either

choose to insert a second abstract "I/O Component" and specialise this to "Display" or

simply insert the component directly.

Following these steps the user has now included both the components required to

perform the input and output required of Scenario A. However, as the composition still

includes a second abstract "Operation Component" the system will provide the user

with further suggestions for how to proceed. Table 10-2 lists the specialisation

suggestions generated for this abstract component.

208

Specialise Operation Component to:

 Absolute Value Remainder

 Add or Subtract Round

 Decimal Format Converter Scale

 Multiply or Divide

Table 10-2 Suggestions to Specialise Operation Component

From this list the user identifies that the component "Remainder" is the desired

specialisation for the abstract "Operation Component". At this point the user has now

satisfied the main operational requirements of the scenario; providing numerical input,

operating on the number, and displaying the output. As the user identifies that no

further components should be required, from here the remaining activity is to correctly

connect these components.

Step 3: Connecting Components

As before the user can choose to either follow further guidance from the system in order

to connect their selected components, or if confident perform these connections

manually. Assuming that the user is not confident with the manner in which these

components should be connected they would be given a number of options for how to

proceed, based on a composition containing the components "Constant", "Display" and

"Remainder" the system would provide the connection suggestions as listed in Table

10-3.

Suggestions for components to connect within workflow:

 Connect Constant.output and Display.input as both have matches

 Connect Constant.output and Remainder.input as both have matches

 Connect Remainder.output and Display.input as both have matches

Table 10-3 Possible connections between Constant, Remainder and Display

Based on the suggestions provided the user identifies the first option, to connect

"Constant" directly to "Display", as redundant; given that this would leave "Remainder"

unconnected. Implementing the remaining suggestions results in the components being

209

successfully connected in sequence, and leaves each component satisfied as its input

and output ports are now connected. The structure for scenario A is now completed.

Step 4: Defining Parameters

The remaining step is to configure both the input for the scenario and the divisor to be

used in the remainder operation, this is performed by setting the relevant parameter of

the "Constant" and "Remainder" components, the "value" and "divisor" parameters

respectively. The UI does not present suggestions to the user to indicate that this

configuration is required, and so the user must manually perform this step. The system

utilises the implementation of the underlying SWS in order to define component

parameters, to complete the workflow the user must double-click on each component to

input the desired values.

B.2 Scenario B

This scenario represents a basic image processing exercise consisting of three primary

activities; identifying an image to work with, performing a rotation on that image, and

displaying the result.

Step 1: Identify Initial Components

As before the user begins the composition process by selecting a starting set of

components, chosen from the list of top level abstract components which are presented

via the user interface:

 Database Component

 I/O Component

 Integration Component

 Modelling Component

 Operation Component

 Image Component

As this scenario is primarily focussed on performing an image processing task the user

identifies and inserts the ―Image Component‖ abstract from the list of available abstract

components. As with the previous scenario, at this stage the user can choose either to

210

insert further abstract components, or proceed to specialising the Image Component.

Given that each step of the scenario involves working with images the user may decide

this is the only relevant abstract component they could choose.

Step 2: Specialise Abstract Components

After selecting inserting the abstract "Image Component" the system provides the user

with a number of suggestions for how to specialise this component based on

information from the metadata ontology. At this stage the list of suggestions would

simply be all of the components which are implementations of the Image Processing

abstract as there is no other information to inform the system of further suggestions.

Based on this selection the suggestions which the system would offer to the user are

listed in Table 10-4.

Specialise Image Component to:

 Brightness ImageReader

 Contrast ImagetoString

 Converter Rotate

 ImageDisplay StringtoImage

 ImageJ URLtoImage

Table 10-4 Suggestions to specialise Image Component

As the goal of Scenario B is to perform the rotation of an image the user would identify

the ―Rotate‖ component as a potential option to achieve their goal.

Step 3: Inserting Additional Components

After inserting the ―Rotate‖ component into the workflow composition the user has a

number of choices for how to proceed. A user with prior knowledge of the image

processing components within Kepler may identify that the ImageDisplay and

ImageReader components are required to perform the necessary tasks of selecting an

image to work with and displaying the results, such a user could chose to add these

components directly to the composition. Alternatively if the user is not aware of the

specific components which perform these steps they can repeat the process from the

previous steps, based on their knowledge that inserting an ―Image Component‖

211

provides suggestions that will specialise this to other components which could perform

the tasks they require.

However if the user is still unsure of the next step to take at this stage they can inspect

the list of suggestions which the system provides. Based on the fact that the user has

now inserted the ―Rotate‖ component into their composition the system will inspect the

metadata ontology to identify additional components which are compatible with the

input and output ports of this component and suggest these to the user for inclusion

within their composition. A selection of the suggestions which the system would provide

to the user at this stage is shown in Table 10-5.

Suggestions for components to add to workflow:

 add a Brightness component (matches with input and output for Rotate)

 add a Contrast component (matches with input and output for Rotate)

 add an ImageDisplay component (matches with output from Rotate)

 add an ImageJ component (matches with output from Rotate)

 add an ImageReader component (matches with input for Rotate)

 add an ImagetoString component (matches with output from Rotate)

 add a StringtoImage component (matches with input for Rotate)

 add an URLtoImage component (matches with input for Rotate)

Table 10-5 Suggestions compatible with Rotate

In addition to the suggestions shown in Table 10-5 further, potentially less helpful

components would be suggested as possible connections to the Rotate component. For

example Scenario C discussed later utilises a component ―GARPPrediction‖ which has

an output port that is compatible with the input for Rotate, as such this component will

be suggested for addition to the composition. However, as the suggestion system also

takes into account knowledge of the domain in which components are utilised the

suggestion for GARPPrediction, a component from the BioInformatics domain, would

have a lower ranking than the Image Processing components previously listed. In this

way this approach ensures that whilst all components that are technically compatible

with Rotate are listed, those which are unlikely to be used in connection with it do not

distract the user from those components which are of potential use.

212

Based on the goals of the scenario, reading an image, rotating it and displaying the

result, the user chooses to implement suggestions to add ImageReader and

ImageDisplay to the composition.

Step 4: Connecting Components

Now that the user has included components to achieve the tasks identified in the

scenario they can begin implementing suggestions on how to connect and sequence

those components. Based on a composition including Rotate, ImageReader, and

ImageDisplay components the suggestions which the system would provide for

connections are listed in Table 10-6.

Suggestions for components to connect within workflow:

 Connect ImageDisplay.input and Rotate.output as both have matches

 Connect ImageReader.output and Rotate.input as both have matches

 Connect ImageReader.output and ImageDisplay.input as both have matches

Table 10-6 Possible connections between ImageDisplay, ImageReader and
Rotate

Eliminating the option to connect ImageReader and ImageDisplay directly, as this would

not achieve the goals of their scenario, the user chooses to implement connections

between ImageReader and Rotate, and between Rotate and ImageDisplay. On the

implementation of these connections the structure of Scenario B has now been

satisfied.

Step 5: Defining Parameters

As with Scenario A the final step required is to configure the components within the

workflow composition, in this case to provide the composition with the location of the

image that the user wishes to process. As before this is performed by manually double-

clicking the configurable component, in this case ImageReader, and setting the required

parameter.

B.3 Scenario C

213

Scenario C is an example from the domain of biodiversity informatics, based around

creating a workflow to achieve the modelling of species distributions. This involves

obtaining relevant environmental and species presence data, and feeding these into a

series of bioclimatic modelling components. The result of this modelling is then fed into

a visualisation component in order to provide a graphical representation of the species

distribution investigated.

Step 1: Identify Modelling Component

Composition begins with the user identifying the abstract component required to

achieve the goal of modelling species distribution. As before the system presents the

user with a selection of abstract components such as:

 Visualisation Component

 Database Component

 Operation Component

 Modelling Component

In this scenario the goal of composition is to perform modelling of species‘ distribution,

as a result we are taking the starting point of the user identifying that an instance of

―Modelling Component‖ is potentially a beneficial component to include. Other possible

starting points include identifying that a Database or Visualisation Component may be

required; however this would have limited effect on the eventual outcomes of the walk-

through, with the user effectively performing the same steps but in a different order.

After including the ―Modelling Component‖ abstract the user could choose to introduce

further abstract components from those available, but for the purpose of this example

we will assume they have no further knowledge of which to include. Upon inserting the

―Modelling Component‖ into the workflow the system begins to provide the user with

suggestions for progressing the workflow.

Step 2: Specialise Modelling Component

As there are no other components present in the workflow the system will provide the

user with suggestions for how to specialise ―Modelling Component‖. Whilst the system

is therefore unable to narrow down the list of suggestions based on metadata about

214

other components present in the composition, information such as the user‘s past

interaction with components which are implementations of ―Modelling Component‖ as

well as information about the ―domain‖ to which those components belong can still be

used to improve the list of suggestions provided to the user. Based on this information

the specialisations listed in Table 10-7 are suggested.

Specialise Modelling Component to:

 GARPPresampleLayers

 GARPPrediction

 GARPAlgorithm

Table 10-7 Suggestions to specialise Modelling Component

Assuming the user is from the domain of biodiversity informatics it is likely that they will

be aware of the GARP algorithm and its use in the modelling of species distributions. In

such a case the user would be confident in adding any of the suggested components to

the workflow confident that they would be required. However a user who was not aware

of the purpose of the GARP algorithm would not know whether these suggestions were

of benefit. In such a case the assisted composition approach means there are only a

limited number of options to explore. As GARPPresampleLayers is the top suggestion

provided by the system the user chooses to implement this specialisation.

This change results in a workflow containing one component, GARPPresampleLayers.

Again the user has the choice to return to inserting further abstract components, based

on their knowledge of what they want to achieve, or to continue inspecting the

suggestions the system provides in order to identify the changes to implement.

Step 3: Inserting Additional Component 1 - GARPAlgorithm

With the GARPPresampleLayers component included in the workflow the next step is to

augment the workflow by providing the user with suggestions for suitable additional

components. The system inspects the knowledge stored in the metadata ontology

regarding this component to identify other components which are compatible and

desirable to include in the workflow. Figure 10-3 shows the knowledge which is stored

regarding the GARPPresampleLayers component.

215

Figure 10-3 GARPPresampleLayers Component Metadata

Using this information the system inspects the rest of the ontology to identify those

components which possess matches with the GARPPresampleLayers component. The

input and output port metadata is used to identify those components whose ports are

logically compatible, the domain and project metadata is used to narrow this selection

to those components from the same working domain or project as the user and finally

the user‘s personal history of interactions is utilised to identify those suggestions most

commonly implemented by the user. As a result the system provides the user with

GARPAlgorithm as the primary component to add to the workflow as shown in Table

10-8.

Suggestions for components to add to workflow:

 GARPAlgorithm(possible connection to cellSetFilenameOutput)

Table 10-8 Components to add to GARPPresampleLayers

216

This component is provided as the most ideal suggestion as it has an input port,

cellSetFilename, which shares the same BasicPortType, String, and PortDataObject,

cellSetFile, as the output port, cellSetFilenameOutput from GARPPresampleLayers.

Additionally the system identifies further components which may be candidates for

including in the workflow, however these are all identified as weak connections, having

only a single match with GARPPresampleLayers.

As the system has identified GARPAlgorithm as the prime candidate for including within

the workflow the user implements this suggestion; this results in a workflow containing

both GARPPresampleLayers and GARPAlgorithm.

Step 4: Connecting Components – GARPPresampleLayers + GARPAlgorithm

At this stage the system now has two categories of suggestion to provide the user –

further components to add to the workflow based on the presence of these two

components, and connections that could be made between these two components.

As identified previously the metadata matches between component ports

cellSetFilename and cellSetFilenameOutput are the reason GARPAlgorithm was

suggested as a possible addition to the workflow, therefore creating a connection

between these two ports is also now identified as a possible connection step for the

user to take. Similar to the addition suggestions provided previously there are also

further suggestions for connections to create between the two components now present

in the workflow, however these again are not identified as ideal due to only containing

matches on one element of metadata, BasicPortType.

The user has three choices at this stage – implement the suggested connection

between GARPPresampleLayers and GARPAlgorithm, explore the list of suggestions

for further components to add to the workflow, or add an additional abstract component

to further specialise. By choosing to implement the connection between GARPAlgorithm

and GARPPresampleLayers the user is reducing the set of ideal suggestions

remaining, and therefore taking themselves closer to a completed composition; once

this suggestion has been implemented the system‘s suggestions update to indicate that

there are no further ideal connections to make, therefore the user is presented with

217

suggestions for additional components which could be included in the composition, or

they can choose to insert a new abstract component.

Step 5: Inserting Additional Component - GARPPrediction

Based on the new content of the workflow, GARPPresampleLayers and

GARPAlgorithm components connected by the ports cellSetFilenameOutput and

cellSetFilename, the system attempts to identify further components which possess

matches with the knowledge stored about these components. GARPPresampleLayers

still possesses the same metadata as detailed previously and so the system will inspect

the framework for components suited for connection, although since its output port is

already connected, matches to this element are discounted. Additionally the knowledge

of GARPAlgorithm stored in the framework is also utilised in the process of identifying

matches, the elements of metadata the system stores regarding this component are

shown in Figure 10-4.

Figure 10-4 GARPAlgorithm Component Metadata

Again as the port cellSetFilename is already utilised in the connection to

GARPPresampleLayers this is discounted from the suggestion process. Utilising this

218

knowledge the system is able to identify the GARPPrediction component as an ideal

candidate for addition to the workflow as shown in Table 10-9.

Suggestions for components to add to workflow:

 GARPPrediction (possible connection to GARPAlgorithm)

Table 10-9 Components to add to GARPAlgorithm and GARPPresampleLayers

GARPPrediction is identified as an ideal component to add to the workflow as it has an

input port, ruleSetFilename, which shares both the BasicPortType, String, and

PortDataObject, ruleSetFile, with the output port ruleSetFilename output provided by

GARPAlgorithm. As before further lower ranked suggestions not listed here would be

provided by the system, however due to possessing only matches with the current

content of the workflow based on the BasicPortType metadata it is reasonable to accept

that the user would dismiss these options.

At this stage the only ideal suggestion available to the user is to add the

GARPPrediction component, there are no connection suggestions as the connection

between GARPPresampleLayers and GARPAlgorithm has satisfied both of those

components. Implementing this addition results in a workflow containing the three

GARP components.

Step 6: Connecting Components – GARPAlgorithm + GARPPrediction

Once again the user has three options available; to implement further addition

suggestions, to explore the available connection suggestions, or to introduce further

abstract components to the workflow. As before the user can choose to implement the

reason why GARPPrediction was suggested as an addition to the workflow, and

connect this with the GARPAlgortihm component. Implementing this connection results

in a workflow with GARPPresampleLayers, GARPAlgorithm, and GARPPrediction

components connected in sequence.

Step 7: Inserting Additional Component - ImageJ

The list of available connections and additions is once again updated to reflect the new

state of the workflow, the connections present between each of the GARP components

219

result in no further ideal connections being suggested at this stage, leaving only further

additions as a route forward for the user. Given the current state of the workflow the

system identifies the component ImageJ as an ideal candidate for addition to the

workflow as shown in Table 10-10.

Suggestions for components to add to workflow:

 ImageJ (possible connection to GARPPrediction)

Table 10-10 Components to add to GARPPrediction, GARPAlgorithm, and
GARPPresampleLayers

ImageJ is identified as an ideal component to add to the composition as its input port

has a PortDataObject of genericImageFile matching the PortDataObject of

GARPPredicitons output port outputBMPFilename. Further lower ranking suggestions

are once again provided.

Step 8: Connecting Components – GARPPrediction + ImageJ

Inserting the ImageJ component into the workflow updates the connection suggestions

to indicate the connection between this component and GARPPrediction as a possible

further step. As this is the only ideal suggestion remaining the user can choose to

implement this or to add further abstract components.

Implementing this latest connection results in workflow with GARPPresampleLayers,

GARPAlgorithm, GARPPrediction and ImageJ components connected in sequence.

These components form the basis of the overall goal of species distribution desired by

this scenario.

Step 9: Inserting Additional Components – StringConstant

At this stage the available suggestions update to indicate that only non-ideal

connections and additions are available (those suggestions where only the basic port

type matches), the remaining step requires the user to identify the need for further input

to the GARP components in order to achieve success. The next requirement is for a

StringConstant component to be connected to both the GARPPresampleLayers and

GARPPrediction components in order to provide pointers to the required input files.

Whilst initially this step requires the user to identify this need and introduce the

StringConstant components manually, over time the history of interactions built up

between the system and user, or the system and a group/domain of users, will enable

220

the easier identification of this step as the component will be promoted to the top of the

addition suggestions.

Step 10: Configure Component - StringConstant

Introducing the StringConstant components completes the structure of the workflow for

this scenario, as show in Figure 10-5. The final requirement is to configure the

StringConstant components to point to the relevant input files for the species

distribution to function correctly. As described previously this functionality is achieved

as it would be within the underlying Kepler SWS, double-clicking the component brings

up a dialog into which parameter such as file locations can be specified.

Figure 10-5 Completed Scenario C Composition

B.4 Scenario D

As discussed in the main text Scenario D provides an extension to the functionality of

Scenario C, performing the same GARP analysis task but using a remote database

connection to retrieve the required species distribution data. This involves essentially

the same workflow components and sequencing as Scenario C, but with one of the

StringConstant comonents replaced with an instance of the database component

DarwinCoreDataSource.

Step 1: Inserting Base Components

As stated previously the analysis and output portions of the workflow composition

required for this scenario are identical to Scenario C. As such the user can either

choose to follow the same approach as was taken with Scenario C; adding and

specialising a sequence of abstract "Modelling Component" instances to obtain the

221

three required GARP analysis components, connecting these modelling components in

the suggested sequence, then following the provided suggestions to include the

"ImageJ" component as a means of displaying the produced output. Or, based on their

gained knowledge that this is the required configuration they can manually add and

connect each of these components without the assistance of the system.

Step 2: Inserting Input Components

As with the walk-through for Scenario C at this point, with the modelling components

and output components inserted and connected, the user will only be presented with a

set on non-ideal suggestions for connections and additions. The difference in this

instance is that, having connected the components previously, the system would now

highlight more clearly that introducing "StringConstant" components for connection with

"GARPPresampleLayers" and "GARPPrediction" would be a sensible step to perform.

However, knowing that the scenario calls for input to be provided from a remote source

a sensible step for the user to perform at this stage is to return to the list of abstract

components provided by the system:

 Visualisation Component

 Database Component

 Operation Component

 Modelling Component

 ...

From this selection the user opts to include an instance of Database Component.

Based on introducing this abstract component into the composition the user would now

be presented with suggestion for how to specialise this component. The first suggestion

provided by the system is to specialise "Database Component" to "

DarwinCoreDataSource", this option is presented above others as the Domain

metadata for "DarwinCoreDataSource" matches that of the existing GARP components

within the workflow, making this a more desired choice than other database

components.

222

After introducing the "DarwinCoreDataSource" component the user would be provided

with suggestions as to how this could be connected to the rest of the composition.

However, as the output from this component "DataTable" is fairly generic, in that it

takes the form of whatever output is produced by the database consulted, the system

will only produce weak suggestions based on the BasicPortType of "string". Table X

lists the suggestions for connections involving DarwinCoreDataSource that would be

provided at this stage.

Suggestions for components to connect within workflow:

 DarwinCoreDataSource.DataTable and GarpPresampleLayers.layerSetFilename

 DarwinCoreDataSource.DataTable and GarpPresampleLayers.dataPointFilename

 DarwinCoreDataSource.DataTable and GarpAlgorithm.ruleSetFilename

 DarwinCoreDataSource.DataTable and GarpPrediction.layerSetFilename

 DarwinCoreDataSource.DataTable and GarpPrediction.outputASCII

 DarwinCoreDataSource.DataTable and GarpPrediction.outputBMP

Table 10-11 Suggestions for components to connect with
DarwinCoreDataSource

Given the knowledge gained from composing Scenario C the user would be able to

discard several of these options, for example the "ruleSetFilename" port of

GarpAlgorithm, and the "outputBMP" and "outputASCII" ports of GarpPrediction were

never connected during scenario C so it would be reasonable to assume that they are

also not required here. Similarly the user could recall that the StringConstant

component from Scenario C which was responsible for the same activity as

DarwinCoreDataSource is intended to be used here was connected to the

GarpPresampleLayers port "dataPointFilename", therefore they would identify that it is

to this port that the database component should also be connected.

At this point the user is required to begin making deductions of their own regarding the

steps to take, as the system does not have enough static metadata to identify and

highlight the steps to take, nor sufficient knowledge about how these components have

been used previously to assist this process. Whilst it is reasonable to assume that the

user would be able to overcome this difficulty between the system suggesting that

223

StringConstant should be used to provide input to GarpPrediction and

GarpPresampleLayers as with Scenario C, the users own experience from having

successfully composed that Scenario previously, and the limited options which remain

for how to connect the available components, it is still situation where the current

approach would fail to offer much assistance.

Again, as with Scenario C, having successfully completed this scenario the system

would gain knowledge of how these components interact and how the user has

deployed them previously, therefore during any future compositions utilising these

components it would be able to offer greater benefit.

224

Appendix C - Scenario C Kepler Composition Walk-
through

This appendix provides a walkthrough of the steps which a user will go through to

compose Scenario C from Section 8.2.1 using the Kepler SWS. The purpose of this

walk-through is to illustrate the difficulties and problems which the user might

encounter as a result of the manual composition approach provided by the Kepler.

C.1 Scenario C Kepler SWS Composition

Kepler Manual Composition – Scenario C Species Distribution Modelling

As described previously this scenario from the domain of bioinformatics involves the

modelling of species distribution based on an input of relevant data relating to species

locations and environmental factors. The result of this modelling is then displayed

graphically.

Step 1: Identifying Components

The Kepler GUI initially presents the user with two main elements – a blank canvas on

which to compose the workflow scenario, and a tree containing the components

available for inclusion within the workflow. The first process a user must perform is to

identify which components are required for this scenario from this tree. From examining

the overall goals of Scenario C the user is able to identify a variety of tasks that will

need to be performed in order to successfully complete this scenario. These tasks

include:

 Accessing data files

 Performing calculations with the relevant modelling algorithms

 Producing a graphical output of the result

Problem A: At this stage the user may not be aware of which components within the

Kepler component tree are suitable for achieving these tasks. An experienced user who

has composed similar scenarios previously may know which components provide the

functionality required for these tasks, however the system cannot assume that every

user possesses this knowledge.

225

Kepler Solution - Searching Facility: To assist users in identifying the necessary

components for a composition Kepler provides a search facility, this provides users with

the option to search the list of components based on their given names. As identified in

the walkthrough for Scenario B this approach to locating components can be

successful, providing the name of a component is a useful description of the task it

achieves. Unfortunately this is of limited benefit in locating components to perform the

above tasks identified for this scenario.

Searching the list of components for terms from our task list such as ―Distribution‖ and

―Calculation‖, in order to locate a component to perform the required distribution

modelling, returns no helpful results. Searching for the term ―Modelling‖ is able to return

a selection of components which includes a number of those required for this scenario,

however as Figure 10-6 shows there are also other components listed which are not

required for this situation, so the user is still required to know which specific component

or components from those provided is the correct choice.

Figure 10-6 Results of the search term "Modelling" in the Kepler SWS.

Problem B: The user may not know the specific name within Kepler for each of the

components required for the composition, and searching for generic task related terms

may not return the desired results

Kepler Solution – Structured Component Listing: If the user is unaware of the

names of the components required for their composition, and is unable to locate these

226

components through searching, Kepler provides a further mechanism to help locate

those components required. The tree of available components is structured in such a

way as to group components by a selection of categories. The categories provided are

as follows:

 Components

 Projects

 Disciplines

 Statistics

The Kepler system utilises this categorisation in order to direct users to the appropriate

section of components within the tree in an attempt to make it possible to identify the

components a user requires. This approach again relies on the user having a degree of

knowledge about where to start looking within these categories. For example if a user

knows that the distribution modelling components required are provided as part of the

SEEK project, then by expanding the projects category they can quickly identify those

components required.

Problem C: However if the user is unaware of the project or discipline to which their

desired components belong then this mechanism is of limited benefit in assisting such a

user to identify their desired components. Furthermore the manner in which the

components are divided into these categories is somewhat unhelpful – whilst a user

may not know the project to which the distribution modelling components belong they

may be aware of the possible disciplines in which they are used, bioinformatics, ecology

etc. However exploring the Disciplines category shows no entries for the required

components under the branch ―Ecology‖. This illustrates how the components are only

listed once within the categorisation, overlooking the possibility that a component may

be used in more than one domain or project, and potentially leading to a situation

where, having explored the relevant branch of the component tree the user wrongly

assumes that their desired component does not exist because it has only been listed

under another branch they were unaware of.

Kepler Solution – Component Documentation: Failing to possess the level of

knowledge to identify the required components a user must fall back on a process of

manually exploring the complete list of components available. Locating the correct

227

component in this instance relies on an element of the component‘s location within the

tree providing some link to the task that the user wishes to perform, or failing this Kepler

provides documentation for each component which the user can inspect. This

documentation comprises an in-depth description of what each component is used for

and provides a list of the various properties and input or output ports associated with

each component. This documentation could help in identifying the correct components,

although requiring users to inspect the documentation of each component until they

locate a potential candidate for inclusion within the workflow is a cumbersome process.

Problem D – Documentation Consistency

Identifying which components to utilise for composing a scenario when using the Kepler

SWS relies heavily on inspecting the documentation available to identify the tasks

performed by each component. However as described in Chapter 4 the benefit of this

process is reduced by the lack of consistency in the availability, detail and diversity of

the information provided within each components documentation. Some components

provide clear and concise descriptions of their function, others contain only limited

detail. Some components contain in-depth information regarding the information sent or

received through their input and output ports, others contain no information regarding

ports. There are also a number of components which lack any documentation

whatsoever.

Assuming that a user is able to overcome the problems in identifying the components to

perform the distribution modelling required for Scenario C, Figure 10-7 shows a

composition that could be achieved containing the three GARP components that will

perform this task.

228

Figure 10-7 Modelling Components Identified for Scenario C

Now that the user has identified the modelling components required for Scenario C they

can utilise the available facilities to identify other components required to complete this

scenario. As described in the overview of the scenario the user must specify some input

data on which to perform the modelling operation, along with providing some graphical

means of displaying the result. Attempting to locate the correct component to provide

input for the distribution modelling introduces another potential difficulty with the existing

approach provided by the Kepler SWS.

Problem E: As described previously the user‘s first option in locating components from

those provided by the system is to search using keywords representing the task they

wish to perform. In this instance searching for terms such as ―File‖ or ―Input‖ will present

the user with a large list of possible components. Furthermore this list includes a

number of components whose name suggests they are capable of providing the

functionality required when they are actually incompatible with the input the modelling

components require. For example a search for ―File‖ will provide the results:

 FileReader

 FileFetcher

 SimpleFileReader

Whilst each of these component‘s names and descriptions state they are used for the

process of including files within a workflow composition they each provide output of a

type that is incompatible with this scenario. In this way using the search facility can

229

deliver misleading results and make it more difficult for the user to locate components to

provide their required functionality.

Kepler Solution – Inspect Documentation: In order to locate the correct input for the

modelling components the user‘s only option is to return to the documentation for those

components already included in the workflow, inspecting the descriptions for their input

ports and noting the type and format of input that they accept. This knowledge of the

input which an existing component accepts can then be used to locate a suitable

component to provide this input. In order to achieve this, the user must again manually

search the list of available components, inspecting their output types listed in the

documentation and trying them within the composition, until they either locate the

components required or simply give up.

Assuming the user is able to overcome this difficulty in locating the correct component

to provide input for the modelling operation, in this instance the component required is

the StringConstant component, the process of identifying the component to produce a

graphical display of the results of the modelling operation is more straightforward. A

search for ―Display‖ produces, amongst other results, the component ―ImageDisplay‖

the description of which states that it ―reads an image token and displays the image on

the screen‖. Inspecting this component amongst the results produced it is relatively

easy for the user to deduce that ImageDisplay is a suitable component to produce

output for the scenario.

Identifying Components Summary

In this instance only a user who already knows which specific components are required

for completing Scenario C will be able to readily locate those components within the

Kepler SWS. If a user has some knowledge of the components they require, such as

the domain or project in which they are used, then they may be able to locate the

components they require, however this is still a limited process that can result in users

failing to discover the components they require.

Step 2: Connecting Components

230

After including the ImageDisplay component the user has achieved a workflow

composition which contains components to provide the majority of the functionality

required by Scenario C, Figure 10-8 displays the composition at this state.

Figure 10-8 Components Identified for Scenario C

The next task the user needs to perform in order to complete this composition is to

correctly sequence and connect the components now present in the workflow. Knowing

that the StringConstant component acts as input for the scenario and Image Display as

the output the user can assume that these represent the beginning and end points of

the composition, however the challenge is in how to sequence the GARP components

which represent the body of the scenario. Again if the user has experience in

composing workflows using these components they may already know the manner in

which the three interact and so will have little difficulty in achieving this step. However a

user with little experience must discover this sequencing manually.

Problem F: Users with limited knowledge, or those working with new components, are

unable to identify how to sequence and connect components in order to achieve their

desired functionality.

231

Kepler Solution – Port Types and Documentation: In order for the user to overcome

this challenge of sequencing the three GARP components Kepler provides two forms of

assistance; the GUI displays the number and type of input and output ports provided by

each of the components, and further information about these ports and the purposes of

each component is provided within the available documentation. Figure 10-9 shows the

port types of each of the three components.

Each of the input and output ports of the three components accepts the type ―String‖.

This provides no assistance in identifying the sequence in which these components

must be connected in order to successfully achieve the goals of the scenario. From this

basic information the user could conclude that these components could be connected in

any sequence. However there is only one sequence which will provide the correct

output. Beyond specifying the port types each component port within Kepler has a given

name which further describes the purpose of that port. Inspecting the names of the

ports provided by the three components reveals the following:

GARPPresampleLayers

Input 1: String

Input 2: String

Input 3: String

GARPPrediction

Input 1: String

Input 2: String

Input 3: String

Output 2: String

GARPAlgorithm

Input 1: String

Input 2: String

Output 1: String

Input 4: String

Output 1: String

Output 1: String

Figure 10-9 GARP Components Port Types

Figure 10-10 GARP Components Port Names

GARPPresampleLayers

In 1: LayerSetFileName

In 2: DataPointFileName

In 3: CellSetFileName

GARPPrediction

In 1: RuleSetFileName

In 2: LayerSetFileName

In 3: OutputASCII

Out 2: OutputASCIIFileName

GARPAlgorithm

In 1: CellSetFileName

In 2: RuleSetFileName

Out 1: RuleSetFileNameOutput

In 4: OutputBMP

Out 1: OutputBMPFileName

Out 1: CellSetFileNameOutput

232

Using this information regarding the names of the ports provided by the three GARP

components the user can begin to infer connections that could potentially be made

between the components. For example the output from GARPPresampleLayers,

―CellSetFileNameOutput‖, could potentially be provided as input for the port

―CellSetFileName‖ provided by the GARPAlgorithm component. Similarly the

connection between the ―RuleSetFileNameOuput‖ and ―RuleSetFileName‖ ports of

GARPAlgorithm and GARPPredicition respectively could be identified by the user.

However following this logic there is a similar potential connection that could be

identified between the two similarly named input and output ports of GARPAlgorithm

itself.

The inclusion of the filetype ―BMP‖ within the name of ports provided by the

GARPPrediction component could also allow the user to identify this as the component

which provides output for the ImageDisplay component to visualise, and therefore that

this component is the last of the three in this sequence. Inspecting the documentation

provided for each of these components would enable the user to confirm

GARPPrediction as the output component of this sequence, however the challenge in

inspecting and correctly interpreting the knowledge provided by Kepler, both within the

descriptions of components and in the types and names of their ports, is not

inconsiderable and does not lend itself to supporting users in easily identifying the

correct sequencing of these components.

Step 3: Completing the Composition

Having utilised the available information to identify the sequencing of components,

along with a number of port connections to make between those components, the user

can develop the composition to the state as shown in Figure 10-11.

233

Figure 10-11 Scenario C with String Constant disconnected

At this point each of the components still has a number of unsatisfied input and output

ports and the user has yet to identify how to provide the required input files for the

modelling components. Again for a user who has not previously interacted with these

components the only mechanism available to discover how to complete the scenario is

to return to the documentation and port descriptions provided for each of the

components. The port type information provided for these components is unable to

assist the user as each remaining port has the type ―String‖ and so the user could

deduce that StringConstant could connect to any of the GARP components ports.

Returning to the documentation for these components, the descriptions provided for the

GARP components and their remaining ports indicate that the user needs to supply the

locations of the species presence and environmental data files required for the

distribution modelling. In order to achieve this, further StringConstant components must

be inserted into the composition and correctly configured to provide ―Strings‖ to

represent the location of these files.

Summary

The walk-through presented above has highlighted a number of problems with the

manual approach to workflow composition as provided by the Kepler SWS. In summary

these problems are:

 Problem A - Identifying required components to achieve goals

234

 Problem B - Difficulty using search facility to assist

 Problem C - Misleading component listing hierarchy

 Problem D - Inconsistency of documentation

 Problem E - Difficulty identifying source of input

 Problem F - Difficulty correctly sequencing components

This walk-through has also demonstrated that whilst the Kepler SWS provides a

number of facilities with which to assist the user (documentation for each component, a

facility to search through the list of available components etc.) these are insufficient to

overcome the problems identified. As described in Chapter 4 each of the SWSs

considered win this thesis (Taverna, Triana, and Kepler) offers similar help to the user

during composition, but each has comparable limitations and so is susceptible to the

same problems as identified in this Appendix.

235

Appendix D - Calculating Quality Scores

As an illustration of the process involved in calculating suggestion quality scores the

following describes how the scores are generated for Scenario A at the first key point,

the inclusion of the Remainder component.

If restricted to using the Port Type element of metadata to identify suggestions the

system would inspect the ports provided by Remainder to discover their type.

Remainder has two ports, Input and Output, each with the basic type ―Double‖. The

system would then search the ontology for other components possessing ports

compatible with this type. This would produce the following results:

 Add

 Constant

 Display

 Divide

 Multiply

 Remainder

 Subtract

Constant and Display would be identified as compatible as their port types, ―unknown‖

and ―general‖ respectively, are treated as being compatible with any other type. Each of

the mathematical operations would be identified as they all have either input or output

ports of type Double, matching those of the Remainder component.

Based on the ideal composition of this scenario already identified there are two ideal

components that should be identified by the suggestions – Display and Constant. As

the use of basic port type for generating suggestions has identified both of these

components this suggestions would achieve a score of 100% for mechanism A;

percentage of ideal suggestions.

Scoring mechanism B looks at the percentage of suggestions provided which are

incompatible with the current workflow. If using the Provider element of metadata to

236

generate suggestions the system would look at the developer or vendor who has

provided this component for use in the SWS and provide suggestions to include other

components that they provide within the workflow. As Remainder is a component

originally provided by the Ptolemy system, of which Kepler is a descendant, it has a

Provider of value ―Ptolemy‖, thus the system suggests any other ―Ptolemy‖

components. As expected this includes a large number of the generic components

provided by the system, the following are the first ten components the system suggests:

 Average

 Array Average

 Array Length

 Array Minimum

 Array Maximum

 Array Plotter

 Timed Plotter

 Maximum

 Minimum

 Bar Graph

Overall 143 components are associated with the ―Ptolemy‖ Provider, of these there are

67 which are compatible with the Remainder components input or output ports. Thus for

scoring mechanism B, percentage of incompatible suggestions, this instance receives a

score of 47%

Finally scoring mechanism C evaluates the ranking of ideal components included in a

set of suggestions, the goal is for the system to have the most ideal components ranked

highest within any set of suggestions. Again utilising the Port Type element of metadata

the system would generate the following suggestions for inclusion in the composition

with the Remainder component:

 Add

 Constant

 Display

237

 Divide

 Multiply

 Remainder

 Subtract

With Port Type as the only information used the suggestions are simply ranked

alphabetically and in this case the two ideal components for the scenario, Constant and

Display, have been given high rankings of 2nd and 3rd position within the list.

Unfortunately the Add component has been ranked above the two ideal components

meaning the components required to complete the scenario are not the first suggestion

a user is provided with for completing this scenario. Scoring here is achieved by

assigning a number of points to each of the items in the list of suggestions, 1st position

achieving the most points and last position the least. Points awarded are related to the

number of suggestions, here there are 7 suggestions and therefore 1st position is

awarded 7 points, each position down receives one less point with last position, 7th,

receiving only 1 point.

The overall score is calculated as a percentage of the maximum number of points that

the ideal suggestions would have gained if they were the top suggestions. Here there

were 2 ideal suggestions, Constant and Display, therefore the maximum number of

points they could have achieved was 13, 7 points for first position and 6 points for

second. However as Constant and Display only achieved 2nd and 3rd positions

respectively their actual score was 11, 6 points for first position and 5 points for 3rd. This

results in an overall score for the suggestions of 85%.

Whilst this has a limited impact in this instance, where it may be assumed a user

desiring to find and display the remainder of a division would be able to identify the

need for both the Constant and Display components, in other situations the low ranking

of ideal components may result in making the completion of a composition more

challenging than it otherwise could have been.

238

Appendix E - Scenario Suggestion Scores

E.1 Scores for Individual Metadata Elements

Scenario A

As introduced in Section 8.2.1.1 Scenario A represents a workflow for performing a

simple mathematical operation, calculating and displaying the remainder of a division

operation. An ideal composition to achieve Scenario A involves the components

Constant, Remainder and Display. In order to assess the quality of suggestions

provided during composition of this scenario the value for each of the quality scores

defined in Section 8.2.4.1 (A - Percentage of ideal suggestions, B - Percentage of

incorrect suggestions, C - Ranking of ideal suggestions, D - Total number of

suggestions) is calculated after the inclusion of each of the ideal components involved.

The mechanism through which these scores is calculated is described in Appendix D.

Table 10-12 lists the scores across each of the three quality rankings for suggestions

provided by the system in composing scenario A, when each element of metadata is

used in isolation, note that no scores are provided for the Project or Domain elements

of metadata as these components as they exist within the Kepler SWS do not have this

metadata defined.

 Remainder Constant Display

A B C D A B C D A B C D

Provider
100 47 79

141

(2)
100 55 53

141

(2)
100 100 56

141

(2)

Project

Domain

Port Type 100 100 85 7 (2) 100 100 53 7 (2) 100 100 62 7 (2)

Port Data

Object
100 100 85

7 (2)
100 100 53

7 (2)
100 100 62

7 (2)

Table 10-12 Suggestion Scores for Scenario A, the columns A,B,C,D represent
the four quality criteria defined in 8.2.4.1. The (2) entries in the D columns
represents the total number of "ideal" suggestions possible at that stage,
contrasted against the number of suggestions the system is providing.

239

These scores show that for relatively simple compositions, working with a system where

relatively few components are made available, such as scenario A, where only a few

components are required, the use of individual elements of metadata to generate

suggestions is quite effective. In the case of the Port Type and Port Data Object

metadata elements the system is able to identify both of the ideal components desired

at each stage, and is relatively effective in highlighting these above other, less useful

suggestions available. Other metadata elements such as Provider are less successful

in providing suggestions of a high quality when used in isolation. For example although

in this instance the Provider metadata was able identify both the ideal components,

Constant and Display, within the suggestions it did not rank these highly within those

suggestions, suggested a large proportion of components which are incompatible with

the composition, and generated a large total number of suggestions thus increasing the

challenge for the user to locate the ideal suggestions to implement.

Scenario B

Scenario B involves the manipulation of an image file by rotating it and displaying the

result, the ideal components for this composition are Image Reader, Image Rotate and

Image Display. As before the suggestions scores are calculated after the inclusion of

each of these components within the composition. These scores are shown in Table

10-13.

 Image Reader Image Rotate Image Display

A B C D A B C D A B C D

Provider
100 100 58

141

(2)
100 100 58

141

(2)
100 100 58

141

(2)

Project

Domain 100 100 42 9 (2) 100 78 47 9 (2) 100 56 37 9 (2)

Port Type
100 100 58

141

(2)
100 100 58

141

(2)
100 100 58

141

(2)

Port Data

Object
100 100 71

4 (2)
100 100 71

4 (2)
100 100 71

4 (2)

Table 10-13 Suggestion Scores for Scenario B

Similar to Scenario A these scores illustrate that for a relatively simple operation such

as this Image Processing example the use of individual elements of metadata can

240

provide helpful suggestions. In this case as the components required are all provided

directly by the Kepler platform and so the Provider element of metadata can be used to

suggest the inclusion of the other ideal components at each stage of the composition,

however as before this does also result in a large number of suggestions for unhelpful

components. The scores across each of the components in this scenario are the same

as each is from the same provider, contain Port Type and Port Data object metadata

which is identical, and are similarly named so are ranked equally when listed

alphabetically within the provided suggestions.

One difficulty identified by this scenario is that used in isolation the Port Type metadata

can be misleading when identifying useful suggestions. In this each of the components

ports has a Port Type of "null", essentially indicating that it accepts any type of data,

resulting in all other components being identified as compatible. Situations such as this

can demonstrate the value of utilising a variety of metadata in identifying suggestions.

Scenario C

Table 10-14 shows the scores for suggestions provided by each individual metadata

element during composition of Scenario C, GARP niche modelling. The scores shown

are what would be provided by the system after inclusion of each of the first three ideal

components from this scenario - String Constant, GARPPresampleLayers, and

GARPPrediction. A complete table with scores for the suggestions provided after

inserting each of the components for this scenario is provided in Appendix H.

String Constant GARPPresampleLayers GARPAlgorithm

A B C D A B C D A B C D

Provider 0 0 0 143 (2) 50 100 35 9(2) 100 100 53 9(2)

Project 50 100 35 9(2) 100 100 53 9(2)

Domain 100 100 100 5(2) 100 100 78 5(2)

Port Type 100 100 21 358(2) 100 100 69 168(2) 100 100 67 168(2)

Port Data

Object
100 100 66 124(2) 100 100 41 125(2) 100 100 100 2(2)

Table 10-14 Suggestion Scores for Scenario C

241

Whilst suggestions generated by individual elements of metadata can be sufficient for

composing simple workflow scenarios, with more complex situations involving a wider

array of components and connections the quality of suggestions can become reduced.

Scenario C represents a composition involving a greater range of components and

component interactions than those present in Scenarios A and B, as a result the quality

of suggestions provided by each individual element of metadata is reduced.

For example after the inclusion of the GARPPresampleLayers component the desired

outcome is for the system to suggest the inclusion of the components GARPAlgorithm

and StringConstant. The Provider, Project and Domain elements of metadata are all

able to identify GARPAlgorithm as a suggestion as it shares these elements with

GARPPresampleLayers, additionally both Project and Domain based suggestions are

able to identify this component within a very small number of suggestions, as the

project ―SEEK‖ and domain ―BioInformatics‖ have only a limited number of components

associated with them.

None of the metadata elements; Provider, Project, and Domain, is able to identify

StringConstant as a component to include within the composition, the first element

which identifies this component is the PortType metadata. However in this case the

PortType of both components is defined as ―String‖, a generic type shared by many

components. As a result StringConstant is suggested low down in the list of

suggestions. Despite this drawback PortType is the only element of metadata which

successfully identifies both StringConstant and GARPAlgorithm as components to be

connected to GARPPresampleLayers.

Finally the PortDataObject metadata successfully identifies GARPAlgorithm as a

component to connect as it shares the value ―cellSetFile‖ with GARPPresampleLayers,

additionally as this is a very specific value only two suggestions are provided using this

element of metadata, reducing the complexity of identifying which suggestion to

implement.

This scenario illustrates that there are several limitations of using only a single element

of metadata to generate suggestions - it is difficult to identify all of the ideal components

to include within a composition, a large number of redundant or unhelpful suggestions

242

can be generated, and finally even though the system may be able to identify the

correct components to include within a scenario, it is unable to effectively highlight

those above other less useful suggestions.

Scenario D

As discussed previously scenario D represents a similar workflow to scenario C,

replacing the use of hard coded species occurrence data with input data retrieved from

a remote database. As these two scenarios share many of the same components and

these are connected in the same manner suggestion scores for Scenario D have not

been provided as these would not be sufficiently distinct from those of Scenario C.

E.2 Scores for Combined Metadata Elements

As the previous sections have demonstrated, using a single element of metadata to

generate suggestions is of limited benefit. For simple scenarios some metadata

elements can produce effective results, for example the PortType and PortDataObject

elements of metadata scored highly for scenario A, however this benefit was reduced

significantly when the complexity of the scenario increased.

By utilising several elements of metadata in conjunction the benefit of each can be

brought together to improve the quality of the final selection and ranking of components

provided within suggestions.

Scenario A

Table 10-15 lists the suggestion scores that would be generated for scenario A at each

of the same points as used previously when using all of the metadata elements

together. These scores are compared against the average of the scores generated by

each of the individual elements of metadata in isolation at the same stages.

 Remainder Constant Display

A B C D A B C D A B C D

Individual Score 60 50 50 51 60 51 32 51 60 60 36 51

Combined Score 100 100 85 7 100 100 53 7 100 100 62 7

Difference +40 +50 +35 -44 +40 +49 +21 -44 +40 +40 +26 -44

Table 10-15 Comparison of Suggestion Scores for Scenario A

243

As described previously the relative simplicity of this scenario means that even with a

single element of metadata useful suggestions can be generated, however the

improvement provided when using all elements together is still tangible. Again, as this

scenario is relatively simplistic the scores at each stage are now in line with those

provided by the PortType and PortDataObject metadata previously, this is due to the

generic nature of the components meaning that combining these with the Provider

metadata is not able to improve the score further.

Scenario B

This scenario is slightly more involved than the previous example, and in this case more

metadata is available for use in generating suggestions, with the Domain metadata now

being taken into account. Table 10-16 provides the comparison of scores for Scenario B

 Image Reader Image Rotate Image Display

A B C D A B C D A B C D

Individual Score 80 80 46 74 80 76 47 74 80 71 45 74

Combined Score 100 100 71 4 100 100 71 4 100 100 71 4

Difference +20 +20 +25 -70 +20 +24 +24 -70 +20 +29 +26 -70

Table 10-16 Comparison of Suggestion Scores for Scenario B

As before we see an increase in the quality of the suggestions being provided. A large

portion of the benefit comes from using the metadata elements related to component

compatibility (PortType and PortDataObject) in connection with the metadata more

related to a components suitability.

Scenario C

This scenario introduces further complexity in comparison to the previous two, including

more components and multiple connections between those components.

 String Constant GarpPresampleLayers GarpPrediction

A B C D A B C D A B C D

Individual Score 40 40 17 208 80 100 56 63 100 100 70 39

Combined Score 100 100 72 124 100 100 100 5 100 100 100 5

Difference +60 +60 +55 -84 +20 - +44 -58 - - +30 -34

Table 10-17 Comparison of Suggestion Scores for Scenario C

244

Due to the increased complexity of this scenario we see that the quality of suggestions

which can be provided by the individual elements of metadatq in isolation has been

reduced, illustrating how whilst potentially useful in simple scenarios for more complex

workflows it is necessary to generate suggestions using multiple metadata elements in

order to ensure that useful suggestions continue to be provided.

Scenario D

As discussed in the previous section Scenario D represents a composition which is

largely a repetition of Scenario C and as such suggestions scores have not been

calculated for this scenario.

245

Appendix G - Feedback Questionnaire

Cambridge Meeting 27/07/09 Feedback Questionnaire

Current Prototype
These questions relate to the prototype in its current state.

1. Were you able to successfully compose a workflow with the prototype?

Partially. The system didn‘t have many ―pieces‖ in it, and my knowledge of how to use
those pieces was limited. This meant I needed some help to do much.

a. If not what was it that prevented you from achieving this?

b. And can you suggest a solution to the problem?

More documentation on how to use the available pieces would help. They were quite
specialized – to do with the GARP ecological niche model – and it‘d been a long time
since I‘d looked at them. The other thing that needs to happen is the hard work of
creating more components...

2. What did you think was the best element of the current prototype and why?

The suggestion scheme, though obviously limited because the number of components
in the system is small, looks very promising.

3. What did you think was the worst element of the current prototype and why?

I find the basic workflow UI pretty clumsy. Overall, I‘m not convinced that visual
programming of workflows is easier than simple scripting. But that‘s probably a matter
of taste – after all, I am a programmer.

4. Do you think a suggestion based approach to workflow composition is

beneficial and why?

I think the suggestion-based approach as great potential, whether the underlying
workflow language is implemented visually or as a scripting language. Of course it
would benefit from richer semantic description of the components and links than
currently exist, but it is an interesting start.

5. Do you think the ranking of suggestions was effective?

Yes

a. Was it easy to identify which suggestions were the most suitable?

246

 Yes – but the number of choices was fairly small. The current approach might
 need to be made smarter if it is to scale to systems containing large numbers of
 components

b. Was it easy to find the suggestion which you required to continue
composing your workflow?

 Yes, but again the number of choices was small.

6. Were there situations where a step you desired to make was not available in

the suggestions?

No – but again the number of components was small (same comment applies to 7 and
8 below)

7. Were there situations where you believed such a suggestion should have

been ranked higher / more obviously identifiable?

No

8. Did you find the filters useful in assisting to identify required steps within the

suggestions?

Yes

a. Are there any other filters or mechanisms that could have made this
easier?

9. How well do you think this approach to composition will scale?

a. If used with a wider array of components?

 The ranking might need to be more sophisticated

b. If used to compose more complicated workflows?

 Seems like the goal of the suggestions is ―local‖ – just what to link up next. This

 approach should scale fine, and anything more, a global analysis of what the
 workflow is trying to do, would probably be prohibitively complex.

247

10. How beneficial do you think that utilising data regarding previous component
usage to influence future suggestions can be?

Seems like a good idea if enough users are willing to contribute.

a. Do you think such information would be of more benefit if various “levels”
were stored; component usage by individual users, within a given domain
or within a specific project?

 All good ideas, but probably mainly relevant as ―second order‖ approaches after
 an initial, non-hierarchical system is implemented

i. Do you think that given sufficient data about the relationships

between given users or domains that usage data taken from one
user or domain could be used to assist another user or domain?

 Yes – after all, I think most people learn to write code by example –
looking at other‘s code, modifying existing code etc. This would be a way to extract
useful information from a lot of examples. Once you start sharing info between users,
you‘ll need to deal with quality and trust issues – after all, I wouldn‘t want suggestions
to be highly influenced by information from an inexperienced user building workflows in
odd and not very useful ways.

11. How beneficial do you think that identifying both the compatibility and

desirability of composing workflow components is to a suggestion based
composition approach?

Probably beneficial, but also probably one of those things that‘ll have to be tried out to
find out which approaches are most useful

12. How helpful do you think that utilising an ontology to store further

information about the data passed between components is in identifying their
suitability to be composed?

For some components, the amount of semantic description needed is small – for
example many statistical techniques can be applied to data from a wide range of
domains. Other analyses are very specific to the data semantics and so in those cases,
semantic description would be very important.

248

Future Developments
These questions relate to possible future directions to be explored within this approach.

1. Would storing information about ideal input parameters for a component,

those which produce useful results, be of use in identifying other components
to provide this input?

Hmmm, not sure what ―ideal input parameters‖ means. But I can imagine models
where there are ranges of parameter values, or relationships between different
parameters, that need to be met.

a. Do you think that enabling the system to “dry run” components or
sections of workflow, identifying properties of the output produced,
combined with the further information about properties of ideal
component inputs would enable the system to better identify which
connections would be desirable?

 Seems useful. And propagating semantic information through the workflow
 during a dry run will probably be important

2. How effective would allowing users to edit information within the ontology

about component inputs and outputs be in improving suggestions provided?

I don‘t know enough about the ontology structure, but I can see that allowing users to
enter information about components could be useful. In my experience, tools for
interacting with ontologies and instance data are a mess, so as with most of this stuff,
its success will likely hinge on producing a well designed UI. Probably one where users
don‘t even realize they‘re interacting with an ontology.

3. Do you think that allowing users to assign ratings to the suggestions

provided by the system, and incorporating those ratings into the ranking of
future suggestions, would improve suggestions?

Seems like a useful way to provide feedback. Of course you‘d then need a way to rank
the quality of the user information.

a. Again would it be useful if such information was recorded relative to a
users domain, so as to only affect future suggestions for other members
of that domain?

 Seems like a good filtering option.

4. Would the prototype have benefitted from a mechanism to explain the

reasoning behind the suggestions provided?

Hard for me to say – you‘d already described a lot of the methodology to me. I
generally like to know how things work, but I‘m an engineer...

249

5. Would your interactions with the prototype have been improved if you had

been able to inspect the ontology manually and why would this have been
helpful?

Not sure – but for the average user, I hope this isn‘t necessary!

250

Appendix H - Complete Scenario C Suggestion Score Tables

Scenario C Suggestion Scores

String Constant GARPPresampleLayers GARPAlgorithm GARPPrediction ImageJ

 A B C D A B C D A B C D A B C D A B C D

Provider 143 (2) 50 100 35 9(2) 100 100 53 9(2) 33 100 25 9(3) (1)

Project 50 100 35 9(2) 100 100 53 9(2) 33 100 25 9(3) (1)

Domain 100 100 100 5(2) 100 100 78 5(2) 66 100 47 5(3) (1)

Port Type 100 100 21 358 (2) 100 100 69 168(2) 100 100 67 168(2) 100 100 44 168(3) 100 100 63 285 (1)

Port Data Object 100 100 66 124(2) 100 100 41 125(2) 100 100 100 2(2) 100 100 39 152(3) 100 100 63 285 (1)

Table 10-18 Complete Suggestions Scores for Scenario C

251

Scenario C Suggestion Scores Single vs. Multiple Metadata

 String Constant GARPPresampleLayers GARPPrediction GARPAlgorithm ImageJ

 A B C D A B C D A B C D A B C D A B C D

Individual Average 40 40 17 208 80 100 56 63 100 100 70 39 66 100 36 69 40 40 63 285

Combined 100 100 72 124 100 100 100 5 100 100 100 5 100 100 100 5 100 100 63 285

Difference +60 +60 +55 -84 +20 - +44 -58 - - +30 -34 +34 - +64 -64 +60 +60 - -

Table 10-19 Complete Comparison of Suggestion Scores for Scenario C

