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Abstract 

  Models of category learning often assume that exemplar features are learned in 

proportion to how much they reduce classification error. In contrast, experimental 

evidence suggests that people continue to learn features even when classification is 

perfect. We present three experiments that test explanations for how people might 

learn features in the absence of error. In Experiment 1 we varied the type of feedback 

participants received. In Experiment 2 we introduced a secondary task during the 

feedback phase, and in Experiment 3, we restricted the response window and varied 

the feedback. In all cases we found that participants learn many more features than 

they need to classify the exemplars. Our results suggest that participants learn the 

internal correlations between features, rather than directly forming associations 

between features and the category label. This finding places restrictions on the types 

of categorization models that can satisfactorily explain learning in the absence of 

classification error. 

Key words: category learning; classification error; error-driven; blocking 
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A central goal of cognitive psychology is to understand how categories are learned 

and used. Categories allow us to generalize from past experience and make inductions 

from observed features of objects to their unknown properties. For example, 

categorizing an unknown entity as a dog means that we can infer that it might chase 

sticks, that it may like being petted, but that it is also capable of causing you harm, 

and so on. But for categories to be useful in this way, two information requirements 

must be satisfied. First, and most obviously, enough features must be known to allow 

the object to be correctly classified. Successful use of categories requires successful 

classification. Second, enough information must be represented about the category for 

induction processes to predict likely features of the new object. Generally speaking, 

the more features known about the category, the more useful the categorization will 

be. For example, classifying an object as a dog is very useful if it is known that dogs 

may bite, that dogs enjoy being petted, and that dogs eat meat, whereas the 

classification is less useful if all that is known about dogs is that they like being petted. 

While these two information requirements are generally considered part of the same 

process (e.g., Rosch & Mervis, 1975; Nosofsky, 1989; Kruschke, 1992), this article 

investigates a situation in which the goals of classification and feature induction might 

differ. In particular, we focus on feature learning in the absence of classification error.  

Objects have large numbers of features, and it is important to learn which features 

to pay attention to. A key assumption of many categorization models is that during 

category acquisition, people learn how to selectively allocate their attention by 

weighting stimulus dimensions. Categories described by simple rules tend to 
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corroborate the optimal attention hypothesis. A simple rule-based categorization 

strategy implies all-or-none attention weighting of diagnostic and nondiagonistic 

dimensions (Matsuka & Corter, 2008). For exemplar models and prototype models, 

the crucial difference is how to adapt attention weights. One solution to decide which 

features to pay attention to is to link feature weighting to classification performance 

so that features that are very useful in classifying objects are highly weighted. For 

example, if the presence of fur is useful in distinguishing dogs from other animals, fur 

should be weighted highly when combining classification cues. This approach to 

feature learning is known as error-driven learning because it reduces the error 

between predicted and actual classification. The intuitive appeal and the empirical 

success of the error-driven approach have meant that some version of this algorithm 

appears in many category learning models. For example, the adaptive network model 

(Gluck & Bower, 1988) extends the Rescorla-Wagner’s (1972) least mean squares 

model of associative learning to category learning; ALCOVE (Kruschke, 1992) 

incorporates an exemplar-based representation with error-driven learning; the 

Rule-Plus-Exception model (RULEX; Nosofsky, Palmeri, & McKinley, 1994) 

employs classification error to explain rule choice; BAYWATCH (Heit & Bott, 2000) 

and KRES (Rehder & Murphy, 2003) assume that knowledge effects develop as a 

function of classification error; and some hybrid models, such as COVIS, predict that 

classification errors cause changes in the model (Ashby, Alfonso-Reese, Turken, & 

Waldron, 1998).  

While this strategy has proved remarkably successful in accounting for data 
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concerned with classification learning, there are many other reasons why people learn 

features and it is not clear how minimizing classification error can be reconciled with 

these other goals of learning (e.g., induction, see Anderson, Ross, & Chin-Parker, 

2002; Chin-Parker & Ross, 2002; Erickson, Chin-Parker, & Ross, 2005; Lassaline & 

Murphy, 1996; Markman & Ross, 2003; Ross 2000; Rehder, Colner, & Hoffman, 

2009; Yamauchi, Love & Markman, 2002; Yamauchi & Markman, 1998, 2000a, 

2000b). As we suggested above, the more features that people know, the better their 

inductive abilities, irrespective of classification performance. The apparent 

discrepancy between goals suggests that separate cognitive processes (or separate 

error terms) might be involved in classification and feature learning. 

This question was addressed in a series of studies by Murphy, Hoffman and 

colleagues (Bott, Murphy, & Hoffman, 2007; Hoffman & Murphy, 2006; Hoffman, 

Harris, & Murphy, 2008). These studies taught participants categories using a 

standard, supervised feedback method, but investigated how many individual features 

participants learned relative to the number they needed for accurate classification. In 

all cases they found that participants continued learning features beyond the number 

that was necessary for perfect classification, in contrast to classification-driven 

models of feature learning. This article builds on one of these studies, Bott et al., 

(2007) to establish how it is that people learn features in the absence of classification 

error. 

Blocking in category learning 

Bott et al. (2007) investigated blocking in category learning. Blocking is an 
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associative learning phenomenon in which prior learning of one cue prevents, or 

blocks, learning of successive cues that predict the same outcome (Dickinson, Shanks, 

& Evenden, 1984; Kamin, 1969; Kruschke & Blair, 2000; Rescorla & Wagner, 1972; 

Shanks, 1985). The effect has often been attributed to the absence of prediction error 

in the later phases of learning. As an example consider Kamin’s original study on rats. 

There were three phases to the experiment. In the first phase, rats were conditioned to 

associate a light with a shock. In the second phase, one group of rats learned to 

associate a shock with a compound stimulus involving a light and a tone. In the final 

phase, the rats were tested on the tone alone to establish how much they had learned 

about the association between the tone and the shock. Kamin found that rats who had 

learned the light-shock association learned less about the tone than a control group 

who had not experienced the first phase of learning. The explanation provided by 

Kamin was that the learning of one cue blocked learning of the second cue because 

there was no error to correct.  

Bott et al. (2007) argued that if feature learning in categorization was tied to 

classification error, blocking effects should be as easy to obtain in categorization 

paradigms as they are in the associative learning paradigms. Specifically, learning of 

individual features should be blocked when classification error is zero. Bott et al. 

tested this hypothesis by adapting a standard category learning experiment to 

incorporate a blocking manipulation.  

We consider Experiment 3 of Bott et al. (2007) in detail because it forms the basis 

of the experiments presented in this article. Participants learned about two categories 
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of vehicles. One defining feature could perfectly classify all exemplars in a category; 

this feature corresponds to the light in Kamin (1969). Before the learning phase, 

participants in the pretraining group learned that defining dimensions could perfectly 

classify all exemplars into two categories, while participants in a control condition 

learned to press the keys that corresponded to two category labels. In the learning 

phase, participants in both conditions learned to classify exemplars into categories, 

after which they were tested on their individual feature learning. According to 

classification-driven learning accounts, the existence of defining features should block 

learning of the other features (the non-defining features), however, the blocking effect 

was difficult to obtain. Bott et al. did not find any evidence that the pretraining group 

learned fewer non-defining features than the control condition, and the participants in 

the pretraining group learned many more features than they needed in order to 

correctly classify the exemplars.   

The experiments of Bott et al. demonstrate that when people learn categories, they 

learn more than the minimum necessary to classify the exemplars. However, it is not 

clear how the non-defining features were learned. As Bott et al. (2007) discuss, 

categorization models that assume people learn features in order to minimize 

classification error are unable to explain their findings. When there is no error to drive 

learning, no features should be learned. Other forms of learning exist however. People 

can learn in unsupervised ways, for example, and there are different ways in which 

“error” can be defined, some of which are consistent with the results of Bott et al. In 

the section below we describe three possibilities. 
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Feature learning in the absence of classification error 

First, participants may have been learning direct associations between the features 

and the category label during the feedback stage. In the feedback stage, participants 

saw the feature list (the exemplar) and the category label presented at the same time. 

The category label could have been treated as another feature and participants could 

have formed the auto-associations necessary to link them all together. Although the 

non-defining features were not perfectly correlated with the category label, they 

would have been sufficiently high to lead to better-than-chance performance in the 

test phase.  

A second possibility is that participants were not learning direct associations 

between the features and the category label, but between the features themselves. 

Good performance on the non-defining features could have been obtained by recalling 

that a particular non-defining feature often occurred with a particular defining feature, 

and that the defining feature predicted the category label. Such an account is 

consistent with unsupervised category learning.  

Finally, participants could have been forming explicit hypotheses about the 

relationship between each feature and the category label. Even though they were able 

to perfectly classify the exemplar using the defining feature, they could have believed 

that knowing a mapping between each feature and the exemplar would also have been 

useful. During the response phase, participants could have first noted the defining 

feature but then progressed through the feature list to read the other features and form 

hypotheses about whether they too predicted the category label. While we do not 
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know of a categorization model that has been proposed exactly along these lines, 

RULEX (Nosofsky et al. 1994) could reasonably be adapted to accommodate such a 

strategy. RULEX is a rule-based model that cycles through each dimension trying out 

hypotheses until it can successfully predict the category label. RULEX could 

successfully predict the results of Bott et al. if the stopping rule could be removed so 

people cycle through all of the dimensions.  

One of the differences between this type of learning and standard error-driven 

learning (e.g., ALCOVE) is that the error term is different. The standard error-driven 

model assumes a single, global error term encoding the difference between prediction 

and correct (feedback) classification, whereas the explicit hypothesis account 

suggested here assumes separate error terms for each feature so that learning only 

ceases when there is zero error for each feature. 

The three explanations above attribute acquisition of the non-defining features to 

different learning processes. Importantly for our purposes, they also differ with 

respect to which stage in the trial learning occurs. Identifying associations between 

features and category label was likely to have occurred during the feedback stage, 

since this was the only time in which the category label was presented alongside the 

exemplar features. Learning within-category correlations between features, however, 

could have occurred during the response stage or the feedback stage, since in both 

cases all of the features were visible on the screen. Finally, generating explicit 

hypotheses about the relationship between each feature and the category label must 

have occurred during the response stage. Here, participants were not aware of the 
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category label with certainty and could therefore generate hypotheses regarding the 

relationship between individual features and the category label. In the feedback stage, 

however, participants saw the exemplar features and the category label at the same 

time. Hypothesis generation would have been nonsensical because the relationship 

between a given feature and the exemplar was known; participants would not have 

hypothesized about a relationship that they could read on the screen (in other words 

there was no error to drive a hypothesis testing mechanism). 

The preceding paragraph describes how different forms of learning are likely to 

occur at different stages in the learning trial. In the studies described below we use 

these assumptions to investigate how the non-defining features were learned in Bott et 

al. (2007). Our approach was to vary the form of the response and the feedback stages 

in order to establish which parts of the learning trial were necessary for feature 

learning.     

Experiment 1 

In Experiments 1 and 2 participants completed a standard category learning task 

similar to Bott et al. (2007; Experiment 3, categorization condition). Participants 

learned about two different types of vehicles by classifying exemplars and receiving 

feedback on their responses. The category structure was such that a single dimension 

was sufficient to classify all of the exemplars correctly (the defining dimension) but 

there were many other features that were also diagnostic of the category, although not 

perfectly so (the non-defining dimensions). There were three phases of the experiment. 

First, participants completed a pretraining phase in which they learned that the 
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defining feature was perfectly predictive of the category label. Next came the learning 

phase in which they classified whole exemplars and received feedback. The final 

phase was an individual feature testing phase where they classified single features. Of 

primary interest was how participants performed on the non-defining features.  

In Experiment 1 we tested whether participants were learning in the feedback stage. 

Participants saw one of two types of feedback. One group received feedback that 

involved the presentation of the exemplar and the category label (the exemplar 

feedback condition) and the other group saw feedback that only involved the category 

label (the no-exemplar feedback condition). We hypothesized that if participants in 

Bott et al. (2007) were learning associations between the non-defining features and 

the category label, removing the exemplar features from the feedback would lead to 

reduction in learning of the non-defining features. Conversely, if participants were 

learning in the response phase, either using internal correlation between features or 

rule testing, no difference would be observed between the two conditions. 

Method  

Participants. Forty-eight students from Cardiff University participated for course 

credit. Participants were randomly assigned to the exemplar feedback condition or the 

no-exemplar feedback condition. 

Stimuli and Design. There were two categories of vehicles, called A and B. 

Exemplars in each category were constructed from eight binary dimensions. The eight 

typical features of Category A are represented by 1s, while the eight typical features 

of Category B are represented by 0s. The prototype of Category A was therefore 1 1 1 



Page 12 of 35 

 12 

1 1 1 1 1; and the prototype of Category B was 0 0 0 0 0 0 0 0 (see Table 1 for the list 

of features). Table 2 shows that knowing Dimension 1, the defining dimension, was 

sufficient to perfectly categorize all of the exemplars. However, the other dimensions, 

the non-defining dimensions, were also highly diagnostic of the categories but 

attending to only one of them was insufficient to perfectly categorize all of the 

exemplars. The precise defining dimension was rotated across participants. 

 

  Insert Table 1 and Table 2 here. 

 

Procedure. The experiment involved a pretraining phase, a learning phase and a 

single-feature test phase. In the pretraining phase, participants learned to assign 

category labels to exemplars with a single feature (the defining feature for that 

category). Participants viewed the feature in the centre of the screen and pressed a 

button corresponding to the category they believed was appropriate. They then 

received feedback on their choice. For example, if the air bags dimension was the 

defining dimension, they would see the sentence, “Has airbags” and respond with the 

A or B category button. Each exemplar was presented 7 times, so there were 14 trials 

in the pretraining phase.   

In the learning phase, participants learned the 16 exemplars shown schematically in 

Table 1. One block consisted of a presentation of all the exemplars and exemplars 

were presented in a random order in each block. Exemplars were shown as a list of 8 

features on the screen. The features appeared in a different random order for each 
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exemplar.  

Exemplars remained on the screen until the participant classified the exemplar. 

Feedback was provided immediately after the participant had made their response. In 

the exemplar feedback condition, participants saw the whole exemplar together with 

the category label and information about whether they were correct. In the 

no-exemplar feedback condition, the feedback reported “correct” or “incorrect” and 

the correct category label. Feedback in both conditions lasted 5 s. 

Participants saw repeated blocks of exemplars until they successfully classified all 

the exemplars of a block or they had experienced 14 blocks. They then proceeded to 

the testing phase. In each trial of the testing phase, individual exemplar features were 

presented and participants judged which category the feature was most likely to 

belong to. Feedback was not provided. All 16 features were tested and each feature 

was tested twice. There were thus 32 trials in the testing phase. 

Results1 

Participants in both conditions achieved ceiling accuracy on the defining features in 

the pretraining phase. The accuracy of classifying defining features was 0.91(SD = 

0.10) and 0.95 (SD = 0.03) in the exemplar feedback and no-exemplar feedback 

conditions respectively, which was not a significant difference, t (46) = 1.73, p>.05, 

Cohen’s d = 0.54. In the learning phase, participants in both conditions required an 

average of 2.0 blocks (SD exemplar feedback = 1.43 and SD no-exemplar feedback = 

1.87) to accurately categorize all the exemplars, t (46) = 0.087, p>.5, Cohen’s d = 

                                                        
1 The raw data for all the experiments shown in this paper is available on the Open 
Science Framework, (https://osf.io/). 
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0.03. 

We also analyzed the response times (RTs) of categorizing an exemplar into a 

category during the learning phase. RTs in the two conditions were not significantly 

different, however (M = 3084ms, SD = 973ms vs. M = 3584ms, SD = 2061ms), t (46) 

= 1.08, p > .1, Cohen’s d = 0.31. 

Of principal interest however, was performance on the non-defining features in 

the test phase. If participants needed feedback to learn the non-defining features, 

performance in the no-exemplar feedback condition should be at chance. This was not 

the case, however. Participants in the exemplar and the no-exemplar feedback 

conditions scored significantly above chance on the non-defining features (M =.63, 

SD=.18; M = .67, SD=.18), t (23)’s >3.44, p’s < .005. Indeed, according to the 

guessing correction, participants would get half of the features correct simply by 

chance. Therefore, we measured the number of dimensions learned by subtracting the 

incorrect proportion from the correct proportion and multiplied by the number of 

learning dimensions. Participants learned on average 1.8 (SD=2.6) and 2.4 (SD=2.6) 

non-defining dimensions in the exemplar feedback and the no-exemplar conditions 

respectively. There was no significant difference between the two conditions in 

learning of non-defining features, t (46) < 1. A Baysian analysis (see Kruschke, 2013; 

implemented by Baath, 2012) also demonstrated no reliable difference between the 

means, N burn-in samples = 20000, N samples = 20000, Mdiff = -.042, 95% HDI 

(-0.159, 0.065). 

Discussion 
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Participants who saw the exemplar features during feedback learned more features 

than they needed. Just as in Bott et al. (2007), participants could have perfectly 

classified the exemplar by focusing entirely on the defining feature, but instead, they 

learned an average of 1.8 non-defining features. More originally, participants who 

saw only the category label during feedback also learned the non-defining features, 

and to the same extent as those who saw the category label and exemplar presented 

concurrently. Seeing an exemplar concurrently with its label is clearly not necessary 

for learning the non-defining features. 

In the Introduction we argued that the feature to category associations were most 

likely to be learned in the feedback stage of Bott et al. (2007), in which whole 

exemplars and category labels were used. Our demonstration that non-defining 

features can be learned in the absence of exemplar feedback suggests that participants 

were learning non-defining features using strategies other than directly associating 

features to category labels (note that we are not suggesting that participants are unable 

to learn features in this way; only that they are must have other strategies in addition 

to feature-category associations).  

One argument against this conclusion is that participants in the no-exemplar 

feedback condition might have been remembering the feature lists and associating the 

category label with the memory trace of the features. Thus, learning could have 

occurred by direct association, but the association was with a memory trace and not a 

visual display. Some evidence is provided against this by our failure to find a 

difference between learning of the non-defining features across the two conditions, 
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however. If it were the case that participants were remembering the features, the 

memory trace of the features in the no-exemplar condition would have been weaker 

than the visual list of the features in the exemplar feedback condition. A weaker 

representation would have led to lower accuracy in the no-exemplar feedback 

condition, which we did not find. Nonetheless, our argument against the memory 

explanation rests on a null difference between the two conditions. In Experiment 2 we 

present a more direct test of whether participants were actively memorizing the 

non-defining features in the feedback phase. 

Experiment 2 

Participants in Experiment 2 completed a task similar to the no-exemplar-feedback 

condition of Experiment 1. The crucial difference, however, was that during the 

feedback phase, participants had to count backwards out loud in threes from a number 

presented randomly on each trial (e.g., “297, 294, 291…”). This task is widely used to 

disrupt working memory (e.g., Allen, Baddely & Hitch, 2006; Baddely, Hitch & Allen, 

2009; Bartz & Selhei, 1970). If learning of the non-defining features is due solely to 

participants memorizing the exemplar and associating it with the category label 

during feedback, the working memory task would eliminate learning of the 

non-defining features. 

Method  

Participants. Twenty-four students from the University of Pittsburgh were paid for 

their participation in this experiment. 

Stimuli, Design and Procedure. The stimuli were the same with Experiment 1. 
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According to American English, some words of stimuli were changed, “gears” and 

“boot” were replaced by “transmission” and “trunk”. 

The procedure was similar to the no-exemplar feedback condition of Experiment 1. 

The only difference was the feedback stage. For 1s, participants saw feedback of 

“correct” or “incorrect” together with the correct category label. Immediately after the 

offset of the feedback, a three-digit number was presented for 4s. During the 4s, 

participants had to count backwards in threes from this number. For example, if the 

number was 309, participants had to say out loud 306, 303, 300 etc. Number counting 

was recorded by a separate recorder. The total time of the feedback stage was the 

same between Experiment 2 and the no-exemplar condition of Experiment 1. 

Results 

Participants were generally very accurate in the pretraining phase, scoring a mean 

of 0.93 (SD=0.06). In the learning phase, participants required an average of 2.3 

(SD=2.4) blocks to accurately categorize all the exemplars. One participant who 

learned more than 15 blocks to achieve perfect classification performance was 

excluded from further analysis.  

Crucially, participants learned significantly more features than necessary to classify 

the exemplars, M=0.63 (SD=0.16), and significantly more than chance, t (22) =3.77, p 

< .005. Participants learned on average 1.8 (SD=2.3) of the 7 non-defining dimensions. 

Thus, preventing participants from associating the category label with the memory 

trace of the features in the feedback stage did not eliminate non-defining feature 

learning. A comparison with the no-exemplar feedback condition of Experiment 1 
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revealed that the interference task did not even reduce learning of the non-defining 

features (although the usual caveats of cross-experimental comparisons apply here), 

M = 0.63 vs M =0.67, t(45) < 1, Baysian analysis: Mdiff = -.043, 95% HDI (-0.152, 

0.059). 

Discussion 

Participants who performed a memory interference task during the feedback 

phase were still able to learn the non-defining features. This result, in combination 

with our findings from Experiment 1, suggests that participants in the no-feedback 

condition were learning the non-defining features in the response stage.  

Recall from the introduction that there were two possible forms of response-stage 

learning. The first was that participants could have been learning internal associations 

among the features of the exemplar, and the second was that they were forming 

hypotheses about individual features and the category labels. In the next experiment 

we test between these possibilities. 

Experiment 3 

Learning the internal correlations of features could have occurred in the feedback 

stage or in the response stage of Bott et al. (2007). In both stages, exemplar features 

were presented on the screen and participants could have noted that certain features 

often occur with one of the defining features. Rule-based learning on the other hand, 

could only occur during the response stage. It was only during the response stage that 

participants would realistically make predictions about the category label because 

during the feedback stage, the category information was shown to participants 
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(participants would have nothing to form hypotheses about). One way of testing 

between these accounts would be to restrict the response stage to a minimum but use a 

long feedback stage. If participants were using a hypothesis testing strategy, they 

should learn relatively few non-defining features in this condition. In contrast, if they 

were learning internal feature correlations they should be able learn features during 

the feedback stage and consequently, learn many non-defining features.  

Participants were assigned to one of three conditions. In the long feedback 

condition, participants were given a restricted response stage (3s), but a long feedback 

stage (10s). Feedback included the whole exemplar and the category label. In the 

short feedback condition, participants were given a long response stage (10s) but only 

short feedback (3s) that did not include the exemplar. The total time that the exemplar 

features were on screen was equal across the long and the short feedback conditions 

(13s). Finally, in the control condition, participants had a short response stage (3s) and 

a short and restricted feedback stage (3s with only the category label). Table 3 

illustrates the design. 

Participants in the long feedback condition would only have been able to use an 

unsupervised, correlation strategy to learn the non-defining features because the 

restricted response stage would not allow them the opportunity to form hypotheses. 

Participants in the short feedback condition could learn using either a rule-based or a 

correlation strategy. While the short feedback condition was not strictly necessary 

given the results of Experiment 1, we were concerned that we may observe no 

learning in any condition if we only included the long feedback and the control 
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condition. Finally, the control condition was included because we wanted to verify 

that a 3s response stage was sufficient to allow correct exemplar classification but to 

prevent the formation of rules (or any other type of non-defining feature learning). 

 

Insert Table 3 here.  

 

Method 

Participants. Seventy-two participants from Cardiff University participated for 

course credit. Participants were randomly assigned to each condition. 

Stimuli, Design and Procedure. The stimuli and general procedure was the same 

as for the previous experiment. Participants first went through a prelearning phase in 

which they learned the defining feature. They then progressed onto a training phase 

and finally a feature test phase. Conditions differed in the length and type of feedback 

during the training phase, but were identical in the prelearning and feature test phase. 

In the response stage, participants in the long feedback and control conditions saw 

exemplars for 3s whereas those in the short feedback condition saw exemplars for 10s. 

After the exemplar disappeared, one sentence on the screen indicated participants to 

make a choice of the category. After the response, feedback was provided. In the 

feedback stage, participants in the long feedback condition saw feedback for 10s, and 

participants in the short feedback and the control conditions saw feedback for 3s. In 

the long feedback condition, the feedback consisted of the exemplar, the category 

label, and the corrective message, whereas in the short feedback and control 



Page 21 of 35 

 21 

conditions, the feedback involved only the category label and corrective message.  

Results 

Participants were generally very accurate in the pretraining phase, M = 0.95 

(SD=0.04), M = 0.93 (SD=0.08), and M = 0.95 (SD=0.05) in the short feedback, long 

feedback and control conditions respectively. Similarly, participants learned the 

exemplars quickly in the learning phase. After two blocks of learning, participants in 

all three conditions could categorize the exemplars correctly. Interestingly, we 

observed no differences in learning rates across conditions. Participants needed 2.1 

(SD=1.1) blocks to learn in the long feedback condition, and M = 1.5 (SD=0.8) and 

M = 1.6 (SD=1.0) in the short feedback and control conditions respectively, F (2, 69) 

=2.15, p>0.1, η2=0.06. Most participants could correctly categorize exemplars in one 

block.  

We observed significant differences in the proportion of features correctly 

classified in the testing phase, however. In the control condition, participants learned 

no more features than chance, M=0.55 (SD=0.15), t (23) =1.68, p > .1. In the long 

feedback and short feedback conditions participants learned significantly more than 

was necessary to classify the exemplars, M=0.65 (SD=0.19), and M=0.71 (SD=0.13), 

and learning was above chance in both conditions, t’s (23) > 3.8, p’s < .005. 

Participants learned on average 0.7 (SD=2.1), 2.1(SD=2.6) and 3.0 (SD=1.9) 

non-defining dimensions in control, long feedback and short feedback conditions 

respectively. An ANOVA revealed significant overall differences between groups, F 

(2, 69) = 6.47, p<0.005,η2=0.16. Both long feedback and short feedback conditions 
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were significantly greater than the control condition: p’s <.01. However, no 

significant differences were observed between the short feedback and long feedback 

conditions, t’s < 1. Baysian analysis: M = 0.066, 95% HDI (-0.040, 0.166). 

 

Discussion 

Participants in the long feedback stage learned significantly more non-defining 

features than chance and more than the control condition, who learned none at all. 

Since the minimal response stage was sufficient to prevent learning of the 

non-defining features in the control condition, participants in the long feedback 

condition must have been learning the non-defining features during the feedback stage. 

Based on the logic presented in the Introduction, we conclude that participants were 

learning the correlations between features and not forming hypotheses about how 

individual features predict the category label.  

Consistent with the results of Experiment 1, participants who received a long 

response stage but a short feedback stage (the short feedback condition) learned the 

non-defining features at above chance levels. We also found no difference in 

non-defining feature learning between the long feedback and short feedback 

conditions, suggesting that participants in all conditions acquired knowledge of the 

non-defining features in the same manner.  

General Discussion 

Categories are more useful when more features are known about the category. 

More features means that category induction is more effective, and the more features 
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that are known, the more likely classification is to be successful (Anderson, Ross, & 

Chin-Parker, 2002; Yamauchi & Markman, 1998, 2000). Indeed Murphy and 

colleagues (Bott, et al. 2007; Hoffman & Murphy, 2006; Hoffman, Harries, & 

Murphy, 2008) have demonstrated that people are motivated to learn as many features 

as possible even when they can perfectly classify the exemplars. The paradox 

however, is that most models of category learning predict that feature learning ceases 

when classification-error is eliminated. In an attempt to reconcile the classification 

driven learning of successful categorization models with the empirical observations of 

Bott et al., we tested three explanations for how people learn features in the absence 

of classification error. Our results suggest people learn non-defining features by 

learning within-category feature correlations, rather than forming explicit hypotheses 

about the link between individual features and category labels or by learning the 

feature-to-outcome correlations.  

Implications for models of category learning 

Bott et al. (2007) described in detail how the current forms of many error-driven 

models of category learning could not explain feature learning in the absence of 

classification error (e.g., ALCOVE, RULEX). These arguments apply equally to 

learning of the non-defining features that we observed in our experiments. Our studies 

build on these findings in several ways, however. 

First, our results show that feature learning in the absence of error is not restricted 

to certain parts of the learning trial. Without our data, one explanation of Bott et al. 

(2007) could have been that classification learning occurred in one part of the trial, 
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but feature learning occurred in another (e.g., classification learning occurred in the 

response phase but feature learning in the feedback stage). This would have been 

consistent with multiple systems theories (e.g., Anderson & Betz, 2001; Ashby & 

Maddox, 2005; Ashby & O’Brien, 2005; Patalano, Smith, Jonides & Koeppe, 2001; 

Smith & Grossman, 2008; Smith, Patalano, & Jonides, 1998), which could allocate 

different modules or systems could to different stages in the learning trial, or even that 

standard classification-driven models might be applied during one part of the trial, 

and unsupervised systems could apply in another. In contrast to these suggestions, our 

experiments suggest that learning of the non-defining features and classification 

learning all occur during the same stage, and consequently, are most parsimoniously 

explained by a single learning system (although multiple learning systems operating 

in parallel are equally consistent with our results).  

Second, while Bott et al. presented good arguments why models that were driven 

by global classification error terms were unable to explain their results, they were 

more agnostic about models that were driven by other classification error signals, 

such as feature-to-outcome error. A feature to outcome error signal would continue to 

drive learning even after classification error was zero, provided there was some 

discrepancy between each feature’s predicted outcome and the actual outcome, as we 

described in the Introduction. Our experiments eliminate at least one version of such a 

model. Participants cannot have been forming hypotheses about individual feature to 

outcome associations during the response stage, because learning of the non-defining 

features occurred when the response stage was minimal (i.e., too short to allow any 
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learning, as shown by the control condition of Experiment 3). Thus, a rule-based 

model that assumes feature to outcome error terms (or any kind of classification error 

term) would not be able to explain our results.  

A question that naturally arises, however, is whether any classification driven 

model can explain our data. While we have argued that a hypothesis testing model 

with a feature-to-outcome error term cannot account for our findings, other types of 

classification driven model incorporating similar error terms might be able to (e.g., 

Kruschke, 2001, based on EXIT, Kruschke & Johansen, 1999; and Jones, Maddox & 

Love, 2006). For example, Jones et al. present an exemplar-based model that can use 

either global classification error or feature-to-outcome error. Such a model might 

account for the results of Experiment 3, long feedback condition, by maintaining that 

the error term was parameterized to learn feature-to-outcome associations, and that 

participants were learning those associations in the feedback stage. We cannot 

completely eliminate this possibility but we feel it is unlikely, for the following 

reasons. First, in Experiments 1 & 2, no-exemplar feedback conditions, and 

Experiment 3, short feedback condition, we found that removing the concurrent 

presentation of the exemplar and the category label did not eliminate learning of the 

non-defining features. If the only way that participants were learning the non-defining 

features was in the feedback stage, then removing the feedback should have 

eliminated this learning. Second, classification driven models assume that people 

learn categories by making predictions and learning from their errors. It seems 

implausible that people would make category predictions if the true category label 
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was visible during the prediction process (they would have nothing to predict). 

Admittedly it is not clear how literally the notions of “prediction” and “error-driven” 

should be taken in non-hypothesis driven models (unlike hypothesis driven learning in 

which there is an emphasis on explicit rule-formation) but our paradigm involves 

language-based stimuli with few features and it seems likely that participants engaged 

in high-level learning strategies. 

The discussion above suggests that pure classification-driven models are unlikely to 

be able to account for our findings. Models with an unsupervised component, like 

SUSTAIN (Love, Medin, & Gureckis, 2004), might therefore provide a suitable 

explanation for our results. SUSTAIN learns by forming clusters of exemplars that are 

similar and mapping those clusters onto category labels. New clusters can be formed 

if feedback indicates that an incorrect cluster assignment has been made (supervised 

learning) or if a new exemplar is sufficiently different from the existing clusters 

(unsupervised learning). Adjustable weights connect input dimensions to the clusters. 

As Bott et al (2007) write, SUSTAIN can explain learning in the absence of error 

because the dimension weights are not optimized to minimize classification error, but 

to minimize the distance between the cluster centre and the presented exemplar. Since 

higher weights on the non-defining dimensions would bring exemplars closer to the 

cluster centres, SUSTAIN would continue to increase weight on the non-defining 

dimensions even when classification error was zero (see Equations 12 and 13 of Love 

et al.). The unsupervised component of the model would apply during the response 

stage or the feedback stage, which would make it consistent with our experimental 
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demonstrations that learning occurs in either stage. Interestingly, while the input 

dimensions are not adjusted in proportion to classification error, the cluster to 

category units are (see Equation 14 of Love et al.). This means that, when 

classification error was zero, the model would not obtain any benefit from having the 

exemplar presented concurrently with the category label, compared to the exemplar 

being presented on its own. This is very similar to the results of Experiment 1, in 

which we showed that learning of non-defining features was approximately equal in 

the exemplar and the no-exemplar feedback conditions.  

One issue with SUSTAIN is that in its current form it would not be able account for 

the results of the control condition in Experiment 3, in which participants learned no 

non-defining features but still managed to classify the exemplars. Of course, this 

results is exactly what a standard classification-driven model would predict (a 

blocking effect). One solution would be to add feature sampling as a “front-end” to 

SUSTAIN. With a 3s response time, participants were only able to sample a limited 

number of features. They therefore read and processed the most diagnostic 

dimensions first (see Lamberts, 1995, 1998), that is, the defining feature, and based 

their classification on this information. In its current form, however, SUSTAIN does 

not make any processing assumptions and so it is difficult to say for sure whether the 

parameter range exists that will account for our pattern of data. We look forward to 

possible extensions of SUSTAIN and simulations that might test this hypothesis and 

the predictions above. 

Finally, SPEED (Ashby, Ennis & Spiering, 2007), might also be able to model 
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our findings. SPEED is a neuroscientifically plausible model that is designed to 

explain how categorization becomes automatic in procedural learning. In SPEED, 

categorization initially depends on a slow, subcortical pathway, but as more 

experience is gained, responses become dominated by a separate, cortical-cortical 

pathway. For our purposes, the important point is that cortical-cortical pathway 

involves an (unsupervised) Hebbian learning component, and could thus acquire 

knowledge of the non-defining features in the absence of an error signal. As expertise 

begins to be acquired therefore, knowledge of the non-defining features might also be 

acquired. Of course, as with SUSTAIN, it is difficult to know how this model would 

be able to account for the blocking effect we observed in Experiment 3.  

Conclusion 

People learn features in order to help them classify exemplars. Nonetheless, people 

also learn features when they can perfectly classify the exemplars, as shown by Bott 

et al (2007) and the present results. Our contribution is to show how people learn the 

features. Rather than explicitly learning more and more features to better predict 

classification directly, participants seem to learn the correlations between features, 

which lets them classify exemplars if they need to.  
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