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Abstract

Forward-looking RE models such as the popular New Keynesian (NK) model do not provide a
unique prediction about how the model economy behaves. We need some mechanism that ensures
determinacy. McCallum (2011) says it is not needed because models are learnable only with the
determinate solution and so the NK model, once learnt in this way, will be determinate. We agree:
the only learnable solution that has agents converge on the true NK model is the bubble-free one.
But once they have converged they must then understand the model and its full solution therefore
including the bubble. Hence the learnability criterion still fails to pick a unique RE solution in NK
models.
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1 Introduction

Determinacy is a longstanding issue in Rational Expectations (RE) models with forward-looking terms

(the first to focus on it were Gourieroux et al., 1982). These terms enable a ‘non-fundamental’or ‘bubble’

solution to be found besides the usual one only containing fundamentals. The usual practice to ignore

these alternative solutions. For example, in the New Keynesian Taylor Rule (NK) model of inflation

determination (which have been the centerpiece of monetary analysis over the past two decades), King

(2000) and Woodford (2003) claim bubble paths are somehow impossible.1 However, there needs to be

a good reason to ignore these alternative solutions. As Cochrane (2011) has argued this is insuffi cient:

a) these paths are ‘possible’(nothing would stop them if they happened) but b) they are also incredible

since they involve hyperinflation/hyperdeflation (‘the Fed blowing up the world’).

How much does all this matter? Models without determinacy (the absence of a unique RE solution)

such as the popular NK model, are problematic as they stand and so do not rate as models of interest.

They do not provide a unique prediction about how the model economy- and thus the actual economy

being modeled- behaves. So there must be some mechanism that ensures determinacy (the Taylor

Principle does not do it as argued by Cochrane, 2011).Consequently, a number of additional requirements

have been proposed by various researchers in order to obtain a unique rational expectations equilibrium

(REE).2

McCallum (2011) agrees with Cochrane’s analytical point on the non-uniqueness of REE but goes on

to defend the NK model: the bubble paths are ‘not learnable’and learnability is a condition for a model

to be well-founded. His thesis is that the bubble solution does not converge on the RE solution i.e., the

bubble path is ‘not learnable’. However, the stable solution is learnable: hence the NK model, when it

is learnt, will have a unique stable solution. But it is hard to know what meaning to attach to the idea

of a ‘solution’(purely) being learnt.

In general in the learning literature the related question asked is whether agents when learning will

converge on the rational expectations solution and so learn the RE model, so that henceforth it can

operate as an RE model. Thus the convergence is to the RE model. So does McCallum mean by

‘solutions are learnt’a) that people then know the model and it acts like a rational expectations model,

having thus been learnt? or does he mean b) that people know the model and it is a rational expectations

1The NK approach to monetary economics provides the current standard model of inflation determination. By linking
interest rate decisions directly to inflation and economic activity, the Taylor Rule offers a convenient tool for studying
monetary policy while abstracting from a detailed analysis of the demand and supply of money. This change in the
standard analytics is an understandable reflection of how most central banks now make monetary policy: by setting a
short-term nominal interest rate, with little if any explicit role for money (see Friedman, 2003). Furthermore, econometric
evidence supporting the stabilization properties of this rule (see Taylor, 1999) and its usefulness for understanding historical
monetary policy (see Clarida et al., 2000) explains its popularity.

2These include a transversality condition on money supply behaviour that would rule out this explosive solution for the
inflation rate (Minford and Srinivasan, 2011a, b) and non-Ricardian fiscal policy (Cochrane, 2011).
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model, but these people are only aware of one solution i.e., the stable one? If a) then as we know they

will know the general solution of an NK model which includes the bubble solution. If b) then they have

not learnt the model since they will be unaware of the general solution that it implies! In this case,

after ‘learning’, we would have some model with an autoregressive expectations process, and not the NK

RE model which is supposed to be ‘supported’by learnability. Thus the only intelligible statement that

McCallum could be making seems to be a). But a) implies that if and when it is learnt the NK model

has a bubble solution to be found besides the usual one only containing fundamentals.

In sum we can all agree: NK models have serious problems and are not ‘proper models’. Also they

are proper models if the indeterminacy is somehow removed. But this does not tell us what mechanism

inside the model can remove indeterminacy: note learnability is not a mechanism inside the model. It

is a desirable final attribute of a good model. Once the model has been learnt, it is impossible to stop

agents from knowing the true RE model and discovering the general solution with bubbles. McCallum’s

analysis gives us no remedy for this. Unfortunately it is still a model with a non-uniqueness problem.

Hence we agree with Cochrane that imposing ‘desirable attributes’on the model does not answer the

root theoretical question: how can we modify this model internally to make it determinate?

This article is organized as follows. In Section 2 we study determinacy in the standard three-equation

NK model. We explain how researchers deal with multiple equilibria in these models. In Section 3 we

review the concept of E-stability, explain how this criterion is alleged to select the economically relevant

RE solution in cases in which multiple equilibria obtain, and we show that it fails to do so. In Section 4

we argue that a terminal condition on monetary behaviour justified by welfare can modify the NK model

internally to make it determinate. Section 5 provides concluding remarks.

2 Eliminating multiple equilibria in New-Keynesian models-

the role of the Taylor Principle

Now let us consider a standard NK model with frictions (for example, see Clarida et al., (1999), Bullard

and Mitra (2002) and Woodford (2003)). For determinacy questions, we can work with a stripped-down

model without constants or shocks.

πt = βEtπt+1 + λzt, 0 < β < 1, λ > 0 (2.1)

zt = Etzt+1 −
1

σ
(rt − Etπt+1) , σ > 0 (2.2)

where πt = inflation, zt = the output gap and rt = the nominal interest rate. This representation can

represent deviations from a specific equilibrium of a model with shocks (see Cochrane, 2011). The first

equation is the NK Phillips curve (NKPC). It is derived from the first order conditions of intertemporally-
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optimizing firms that set prices subject to costs.3 The second equation is a log-linear approximation to an

Euler equation for the timing of aggregate expenditure, sometimes called an “intertemporal IS relation”.

This is the one that indicates how monetary policy affects aggregate expenditure: the expected short-

term real rate of return determines the incentive for intertemporal substitution between expenditure in

periods t and t +1.

As it stands this is a 2 equation, 3 unknown (πt, zt, rt) model. The remaining equation required

to close the system is a specification of monetary policy. We might, for example, close the model by

assuming rt = r, a constant. Substituting for rt = r in (2.2), the model (2.1-2.2) can be written in the

form,  β 0

1
σ 1

 Etπt+1

Etzt+1

=

 1 −λ

0 1

 πt

zt

+

 0

1
σ

 r,or:

Etπt+1

Etzt+1

=

 1
β −λβ
− 1
βσ

λ+βσ
βσ

 πt

zt

+

 0

1
σ

 r.
The stability/instability of the equilibrium is predicted solely on the make up of the said Jacobian - JE .

Determinacy of the equilibrium requires that we have just enough stable roots as there are predetermined

variables.

Proposition 1 If the number of eigenvalues of JE outside the unit circle is equal to the number of

non-predetermined variables (or forward-looking variables), then there exists a unique stable solution.

Blanchard and Kahn (1980)

Proposition 2 Let θ1, θ2 lie in the complex plane, then: the θi’s (i = 1, 2) are both outside the unit

circle if and only if the following conditions are satisfied:

|Tr (JE)| < |1 +Det (JE)|

|Det (JE)| > 1.

In the NK model set out above both πt and zt are non-predetermined. Therefore, we need both of

the eigenvalues of JE :

JE =

 1
β −λβ
− 1
βσ

λ+βσ
βσ

 ,
to lie outside the unit circle. The eigenvalues of JE that is, θ1 and θ2, are computed by setting

3This equation represents a log-linear approximation to the dynamics of aggregate inflation in a model of staggered
price-setting of the kind first proposed by Calvo (1983).
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det (JE − θI) = 0. This gives a second-order polynomial in θ:

p (θ) = θ2 − θTr (JE) +Det (JE) ,

where Tr (JE) = (λ+ σ + βσ) / (βσ) and Det (JE) = 1/β. For the usual parameter values in NK models

(0 < β < 1, σ > 0and λ > 0) the proposition |Tr (JE)| < |1 +Det (JE)| is not satisfied.

Proposition 3 If the number of eigenvalues outside the unit circle is less than the number of non-

predetermined variables, there is an infinity of stable solutions. Blanchard and Kahn (1980)

The system does not provide a unique solution for πt and zt. For a fixed nominal interest rate

(rt = r), the model economy will feature infinitely many non-explosive ouput and inflation paths – the

‘non-uniqueness’problem (Taylor, 1977). That is, one could choose any value for πt different from π?,

and the solution describes a path that eventually takes the system back to steady state (i.e., πt −→ π?,

as t −→ ∞). Because there is an uncountable number of such paths, each of which follows a path back

to steady state, it follows that there is a multiplicity of stable equilibria. In principle any of these stable

paths could be selected. The model does not restrict our choice.

2.1 The Taylor Principle and Determinacy of the Equilibrium

Suppose instead of a fixed interest rate rule we close our system (2.1-2.2) above by specifying a policy

rule of the kind proposed by Taylor (1993) for the central bank’s operating target for the short-term

nominal interest rate,

rt = φππt, φπ > 1. (2.3)

Substituting this feedback rule (2.3) in (2.2) for rt, the model (2.1-2.3) can be written in the form,

Etπt+1

Etzt+1

=

 1
β −λβ

φπβ−1
βσ

λ+βσ
βσ

 πt

zt

.

As before the eigenvalues of JE that is, θ1 and θ2, are computed by setting det (JE − θI) = 0. This

gives a second-order polynomial in θ:

p (θ) = θ2 − θTr (JE) +Det (JE) ,

where Tr (JE) = (λ+ σ + βσ) / (βσ) and Det (JE) = (σ + λφπ) / (βσ). For a unique stable solution

we need both of the eigenvalues of JE to lie outside the unit circle. Clearly, proposition 2 is satisfied

provided, φπ > 1.

The crucial question is how does the Fed plan to stabilise inflation in this model? In this model,
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Etzt+i and Etπt+i explode in any equilibrium other than z = 0, π = 0. According to Bullard and

Mitra (2002) and other NK modellers, φπ > 1 (the Taylor Principle), would stabilize inflation. But how

does it rule out the unstable path? According to Bullard and Mitra (2002) the intuition for this result

is that any deviation of private sector expected inflation from the rational expectations value leads to

an increase in the real interest rate when the Taylor principle is satisfied. This reduces the output gap

through equation (2.2) which in turn reduces inflation through equation (2.1). Such a policy, therefore,

succeeds in guiding initially non-rational private sector expectations towards the RE value.4

Unfortunately as Cochrane (2009, 2011) has pointed out the standard NK model logic works dif-

ferently. The Taylor principle destabilizes the economy. If inflation rises, the Fed commits to raising

future inflation, and leads us into a nominal explosion. That is, if current inflation misbehaves the Fed

threatens to implement such paths (hyperinflation or hyperdeflation). Thus the threat is to ‘blow up

the world’– and this threat is supposed to be so terrifying that private agents expect the stable path

instead. No economic consideration rules out the explosive solutions.5

This example makes it crystal-clear that inflation determination comes from a threat to increase

future inflation if current inflation gets too high. If inflation takes off along a bubble path what is there

to stop it in this model? The NK answer is: just the dreadful thought that this might happen. This

is because in this model the monetary authority is absolutely committed to raising interest rates more

than one for one with inflation, for all values of inflation. For only one value of inflation today will we

fail to see inflation that explodes. NK modellers thus conclude that inflation today jumps to this unique

value.

But how do they rule out the explosive equilibria? Here NK authors become vague, saying that such

paths would be ‘inconceivable’and hence ‘ruled out by private agents’.6 The problem as pointed out by

Minford and Srinivasan (2011a, b) is twofold: first, that these threats are not credible. The reason is

that, once inflation or deflation happens, carrying through on the threat is a disastrous policy. As a result

self-destructive threats are less likely to be carried out ex-post, and thus less likely to be believed ex-ante.

The second problem with these threats is that even if they were credible and did actually happen, there

seems to be nothing to stop people following the implied paths. Clearly they will prefer the stable path;

4On the other hand, if the policy rule does not satisfy this principle, a deviation of private sector expected inflation
from the RE value leads to a decrease in the real interest rate which increases the output gap through (2.2) and increases
inflation through (2.1). Over time, this leads to upward revisions of both expected inflation and expected output gap. The
interest rate rule is unable to offset this tendency and the economy moves further away from the RE equilibrium.

5One might argue that there is some boundary on the output gap such as zero output. However, the output gap is a
log which can tend to minus infinity- thus its antilog tends to zero but never actually gets to it. Thus in this model all
variables, inflation, the output gap, the nominal interest rate and the real interest rate, would follow the same bubble paths
without bound. If inflation is exploding positively, then from the Phillips Curve the output gap must explode negatively
(zt = 1

λ
[πt −Etπt+1]) and the real interest rate must explode positively from the IS curve (rt −Etπt+1 = 1

σ
[zt −Etzt+1];

note that zt is less negative than Etzt+1). Hence every variable is consistently destabilised.
6Thus for example King (2000, p. 58—59, cited in Cochrane, 2011) writes: “By specifying [φ > 1] then, the monetary

authority would be saying, ‘if inflation deviates from the neutral level, then the nominal interest rate will be increased
relative to the level which it would be at under a neutral monetary policy.’ If this statement is believed, then it may be
enough to convince the private sector that the inflation and output will actually take on its neutral level.”
Similarly Woodford (2003, p.128, cited in Cochrane, 2009) writes: “The equilibrium.....is nonetheless locally unique,

which may be enough to allow expectations to coordinate upon that equilibrium rather than on one of the others.”
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but how can they be sure it will happen, given that all the paths are feasible.While undesirable from a

social viewpoint, they do not appear to be impossible. Hence there is nothing to make them infeasible.

McCallum (2009a, 2011) agrees about the existence of this problem and proposes to rule these paths out

by the ‘learnability criterion’to which we now turn.

3 Ruling out unstable equilibria in New-Keynesian models - the

Learnability Criterion

In this section we review the concept of E-stability (learnability) and explain how McCallum (2011) uses

this criterion for “selection”of the economically relevant RE solution in cases in which the unstable (or

bubble) path obtains. Recall the NK model we developed earlier:

πt = βEtπt+1 + λzt, 0 < β < 1, λ > 0 (3.1)

zt = Etzt+1 −
1

σ
(rt − rnt − Etπt+1) , σ > 0 (3.2)

where following Bullard and Mitra (2002) we have replaced it with rt − rnt , where rt is the nominal

interest rate and rnt is the natural rate of interest, assumed to obey:

rnt = ρrnt−1 + εt, 0 < ρ < 1.

As this model has two equations but three unknowns (πt, zt, rt), we need a further equation for the

nominal interest rate to close the model. As before consider a contemporaneous version of the Taylor

rule :7

rt = φππt, φπ > 1. (3.3)

Substituting (3.3) into the expectations IS equation and using the NKPC we can write the system

as:

xt = BEtxt+1 + γr
n
t , (3.4)

where xt = [πt, zt]
/ and

B =
1

σ + φπλ

 βσ + λ λσ

1− φπβ σ

 ,
where the form of γ is omitted since it is not needed in what follows. Since both πt and zt in the

system are free, we need both of the eigenvalues of B to be inside the unit circle for determinacy. As we

7Bullard and Mitra (2002) consider various versions of this rule and identify necessary and suffi cient conditions under
which agents with the correct perceived law of motion (PLM) might learn the RE solution.
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have already seen this is satisfied for the model in question provided, φπ > 1.8 But how does the Fed

plan to stabilise inflation in this model? As we have seen Etzt+i and Etπt+i explode in any equilibrium

other than z = 0, π = 0. How to rule out such explosive equilibria?

3.1 E-Stability and Learnability

Let us recast agents in our model as econometricians and ask whether, if endowed with the correct

reduced form model for xt, these agents could learn the parameterization of this model (β, σ, λ, φπ, ρ)

which we assume is unknown to them. That is, we assume that agents have the correct perceived law of

motion (PLM) and posit that by running regressions each period, as new data becomes available, they

might learn the model parameters, i.e. they would learn to have rational expectations. So the central

question is: if agents estimate a statistical model which is a correct specification of an REE, under what

circumstances will the estimates converge to that REE?

We now define precisely the concept of E-stability. For the study of learning, we endow agents in our

model with a PLM of the form,

xt = a+ crnt , (3.5)

which corresponds to the unique stable solution (also the Minimum State Variable (MSV) solution

in McCallum’s terminology). Here a and c are the undetermined coeffi cients. This more general form

allows for a constant term for this model.

Learning agents would use the PLM to form expectations of xt+1:

Etxt+1 = a+ cρrnt .

Substituting the learning agent’s forecast into equation (3.4) we obtain the actual law of motion

(ALM) implied by the PLM,

xt = B (a+ cρrnt ) + γr
n
t ≡ Ba+ (Bcρ+ γ) rnt . (3.6)

Using (3.5) and (3.6), we can define a map, T , from the PLM to the ALM as

T (θ) =

 Ba

Bcρ+ γ

 ,
where θ = [a, c]/. Expectational-stability (E-stability) is determined by the following matrix differ-

8A similar result holds if weight is given to the output gap i.e., rules of the form: it = φππt+φzzt. In this case, Bullard
and Mitra (2002) show that the condition for determinacy of equilibrium is: φπ +

1−β
λ
φz > 1.
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ential equation
dθ

dτ
= T (θ)− θ, (3.7)

where τ denotes artificial or notional time. The fixed points of equation (3.7) give us the MSV

solution. We say that a particular MSV solution (a, c) is E-stable (learnable) if the fixed point of the

differential equation (3.7) is locally asymptotically stable at that point. The conditions for E-stability of

the MSV solution (a, c) are given in Proposition 10.3 of Evans and Honkapohja (2001). Component by

component we have

da

dτ
= (B − 1) a

dc

dτ
= γ + (Bρ− 1) c.

Using the results of Evans and Honkapohja (2001), we need the real parts of the eigenvalues of

D
(
T
(
θ
)
− θ
)
to be less than zero i.e., the eigenvalues of both B and Bρ to have real parts less than one

for E-stability. The eigenvalues of Bρ are given by the product of the eigenvalues of B and ρ, and since

0 < ρ < 1, it suffi ces to have only the eigenvalues of B to have real parts less than one for E-stability.

As shown above the characteristic polynomial of B is given by,

p (θ) = θ2 − θTr (B) +Det (B) ,

where Tr (B) = (βσ + λ+ σ) / (σ + φπλ) and Det (B) = (σβ) / (σ + φπλ).

Both eigenvalues of B are inside the unit circle if and only if both of the following conditions hold

(see Bullard and Mitra, 2002)

|Det (B)| < 1 (3.8)

|Tr (B)| < |1 +Det (B)| . (3.9)

Condition (3.8) implies the inequality φπλ > − (1− β)σ, which is trivially satisfied since, 0 < β < 1.

Condition (3.9) is satisfied provided, φπ > 1. Recall that the Taylor principle was also a necessary

condition for determinacy of the REE. It turns out that the condition that ensures that the MSV

solution is E-stable (learnable) is identical to the condition that guarantees uniqueness of REE, i.e., the

Taylor principle.

9



3.2 The Learnability Criterion for selection of the economically relevant RE

solution

McCallum in a series of articles (2003, 2004, 2007, 2009a, b, 2011) has proposed E-Stability and learn-

ability criterion for “selection”of the economically relevant RE solution in cases in which the unstable,

or bubble, path obtains. He has also suggested that this condition acts generally in rational expectations

models as the support for ruling out bubble paths and getting the MSV solution. His main point is

that the bubble solution does not converge on the RE solution i.e., the bubble path is ‘not learnable’.

However, the stable solution is learnable: hence the NK model, when it is learnt, will have a unique

stable solution

This point can be briefly reviewed. For clarity, we shall concentrate on a frictionless NK model used

by both Cochrane (2009) and McCallum (2011). This model has the advantage of transparency and so

the least risk of confusion for the general argument.9 In this model our semi-reduced form solution is

0 = b1[(1 + µ1)πt + et − Etπt+1],

where the monetary policy error, et = ρet−1+ εt with εt being white noise and with |ρ| < 1), and µ1 > 0

is the Taylor principle.

This model has a bubble-free or MSV solution (1) πt = −1
1+µ1−ρ

et. It also has a bubble solution (2)

πt =
−1

1+µ1−ρ
et + Bt where Bt is a sunspot which is expected to explode at the rate (1 + µ1), so that

Etπt+1 =
−ρ

1+µ1−ρ
et+(1+µ1)Bt; or equivalently πt =

1
ρet+(1+µ1)πt−1. Notice that the general solution

of the model is (2). That is to say, (2) expresses in one expression ‘what the model implies’about the

path(s) of inflation, the endogenous variable. (1) is only a solution if Bt is ignored: but according to the

model it cannot be. McCallum’s point is that, while solution (1) above is E-stable, solution (2) is not.

He goes on to say that as a consequence, solution (2) cannot occur in practice (because if a solution

cannot be learnt, then it has no way of coming into being)- and thus that solution (1) is in fact the only

outcome that can be predicted by the model.

To see this point it is convenient to express our model in the form (3.4) above. Thus we have,

πt = BEtπt+1 + γet, (3.4.1)

9McCallum (2011) takes the standard three-equation NK model and simplifies it by assuming full price flexibility so
that output equals the natural rate in each period. This eliminates the Calvo Phillips curve and the output gap term in
the standard Taylor rule. He also assumes that the natural rate of output is a constant which yields:

0 = b0 + b1 (Rt − Etπt+1) + vt,

Rt = µ0 + (1 + µ1)πt + et.

We can combine these two relations to yield

0 = b0 + b1 [µ0 + (1 + µ1)πt + et − Etπt+1] + vt.

Then if the shock term (vt) is neglected and µ0 = −b0/b1 is recognized as a constant real rate of interest, we get the
semi-reduced form used in the text.
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where B = 1/1 + µ1 and γ = − (1/1 + µ1). Is the bubble solution learnable? Suppose we endow

agents in our model with a PLM of the form,

πt = aet + cπt−1, (3.5.1)

which does not correspond to the MSV or fundamental solution (solution (1) above). Recall that

agents assume that data is being generated by the process πt = aet + cπt−1, but that they do not know

the parameters a and c. At time t they have estimates (at, ct) which they use to make their forecasts,

so that Etπt+1 is given by

Etπt+1 = a (ρ+ c) et + c
2πt−1.

Substituting the learning agent’s forecast into equation (3.4.1) we obtain the actual law of motion

(ALM) implied by the PLM,

πt = [Ba (ρ+ c) + γ] et +Bc
2πt−1. (3.6.1)

Using (3.5.1) and (3.6.1), we can define a map, T , from the PLM to the ALM as

T (θ) =

 Ba (ρ+ c) + γ

Bc2

 ,
where θ = [a, c]/. E-stability is determined by the following matrix differential equation dθ

dτ =

T (θ)− θ. Component by component we have

da

dτ
= (B (ρ+ c)− 1) a+ γ

dc

dτ
= (Bc− 1) c.

Using the results of Evans and Honkapohja (2001), we need the real parts of the eigenvalues of

D
(
T
(
θ
)
− θ
)
to be less than zero, i.e. the eigenvalues of both B (ρ+ c) and Bc must have real parts

less than one for E-stability. Notice that the stability condition is satisfied if agents use the bubble-free

or stable solution (c = 0). In this case it suffi ces to have only the eigenvalues of Bρ to have real parts

less than one for E-stability. Since 0 < ρ < 1, it suffi ces to have only the eigenvalues of B = (1/1 + µ1)

to have real parts less than one for E-stability which is satisfied provided, µ1 > 0.

By contrast if agents in our model are endowed with a PLM of the form, πt = aet + cπt−1,

where πt−1 is an extraneous state variable which is expected to explode at the rate c = 1 + µ1,

then convergence to (3.5.1) occurs with probability zero. Notice in this case the eigenvalues of both

B (ρ+ c) = (1 + µ1 + ρ/ (1 + µ1)) > 1 and Bc = 1 do not satisfy the stability requirement. This exam-

ple makes it clear that if agents do least-squares learning (as in Evans and Honkapohja, 2001) assuming
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any of the solution expressions that are not bubble-free, they will not converge on the NK RE model.

What is the intuition behind this result? The reason the PLM for the ‘unique stable’solution is learn-

able is because, as a ‘backward looking solution’it is stable in the usual way (all eigenvalues inside the

unit circle), whereas the ‘unstable’PLM (for the rogue solutions) is simply unstable backwards and so

presumably cannot be learnt because it fluctuates wildly, forming no patterns in the data that converge

on a unique steady equilibrium path. Thus agents would give up on the unstable formula, realising they

were not learning. We can see no reason in broad terms to question this conclusion.

One could add that these models are also not testable (at least in any normal way). Since the NK

model asserts that ‘anything can happen’(due to the sunspot), it must be in principle consistent with

anything and everything. Thus just as such models are not learnable, so too they are also not testable.

Also since these models have infinite error variances (of the sunspots) they also have infinite standard

errors of their estimated parameters; thus they are not estimatable either (at least with finite standard

errors).

Nevertheless, the fundamental problem with McCallum’s thesis is that while the only learnable so-

lution that has agents converge on the true NK model is the bubble-free one, once they have converged

they must then understand the model and its full solution which includes the bubble. What have these

agents in the NK model learnt? They have learnt the structural parameters of the model including the

Fed’s reaction function, i.e. a response coeffi cient on inflation greater than one. They have also learnt

that in this model if inflation takes off along a bubble path there is nothing to stop it! Agents have learnt

that in the NK world with the Taylor rule the monetary authority is absolutely committed to raising

interest rates more than one for one with inflation, for all values of inflation. If inflation rises, the Fed

commits to raise future inflation, and leads us into a nominal explosion. Therefore, the bubble solution

is a legitimate solution in this model.

Having figured out the structural parameters of the model they will then realise that the general

solution of an NK model includes bubbles. Like Adam and Eve after eating the apple, they will then

know too much and will be tormented by the general solution. Thus the learnability criterion cannot

stop these agents in the NK model, once convergence has occurred and it has thereby been learnt, from

reverting to the true general solution. Hence the learnability criterion still fails to pick a unique RE

solution in NK models. To prevent them from doing this, we would have to assume that they did not

know the model, they just had ‘simple-minded’autoregressive expectations. But then this is no longer

the NK model with RE. For example it would not satisfy the Lucas Critique because expectations would

not respond to changes in the model forcing processes.10 This would certainly not be the NK model that

learnability purports to support.

10 It could of course be a pure learning model, so that when policy changed, agents would relearn the newly appropriate
autoregressive solution. But this is not the same as the NK RE model, since agents would not have rational expectations.
Instead there would be periods of learning whenever policy or other exogenous processes changed.
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4 What mechanism inside the model can remove indeterminacy

in NK models?

Here we refer to two papers we recently wrote (Minford and Srinivasan, 2011a, b) which McCallum

(2011) cites: these argue that we can rule out bubbles by providing an internal mechanism to the model.

Our idea is similar to that of Obstfeld and Rogoff (1983), and see Cochrane (2011) for a comprehensive

survey of other somewhat similar approaches. Also one can see in a loose way that the ECB’s second

(money) pillar could be interpreted as a mechanism of this sort.

The idea is to use transversality conditions for nominal variables analogous to those for real variables;

we posit a money demand and money supply function. The latter mimics the Taylor Rule in ‘normal

times’(i.e., money is supplied to meet the Taylor Rule interest rate setting). However, if a bubble path

for inflation were to occur then the money supply would revert to a ‘fixed-inflation’rule- similar to a

‘fixed exchange rate’rule- in which money supply would be whatever was needed to enforce the constancy

of inflation. This terminal condition acts to terminate any bubble prospectively: hence no bubble path

can occur and the normal Taylor Rule is always observed.

This also deals with indeterminacy when there is no unique stable path, the ‘non-uniqueness’problem-

an example is the Taylor Rule before the 1980s according to Clarida et al. (2000) when they argue the

Taylor principle did not hold ( φπ < 1). The terminal condition also disables these bubble paths (though

here these are implosive or stable, the variance of inflation is still unbounded).

5 Conclusion

Models without determinacy are problematic as they stand and so do not rate as models of interest. On

this we can all agree, including McCallum and Cochrane. So there must be some mechanism that ensures

determinacy. McCallum says it is not needed because models are learnable only with the determinate

solution and so the NK model, once learnt in this way, will be determinate. We agree: the only learnable

solution that has agents converge on the true NK model is the bubble-free one. But once they have

converged they must then understand the model and its full solution therefore including the bubble.

Hence the learnability condition still fails to select the determinate solution. So the problem remains.

Terminal conditions on monetary behaviour justified by welfare can provide the mechanism, converting

NK models into proper NK models that can be used by economists in the usual way.
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