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A stereoselective synthesis of a 3,4,5-substituted piperidine of interest as 

a selective muscarinic (M1) receptor agonist 
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Abstract A stereoselective synthesis of (1RS,2SR,6SR)-7-benzyl-6-cyclobutyl-2-

methoxymethyl-4,7-diaza-9-oxobicyclo[4.3.0]nonan-8-one, representative of 

a novel series of selective muscarinic (M1) receptor agonists, is described. 

Key words piperidines, oxazolidinones, hydroboration, muscarinic receptors, 

trifluoroacetimidates . 

 

Agonists of muscarinic M1 receptors have been identified as 

potential chemotherapeutic agents for the treatment of Alzheimer’s disease.1 In particular, they could provide 

alternatives to cholinesterase inhibitors that tend to lose 

efficacy over time. Indeed several M1 receptor agonists have been found to alieviate the symptoms of Alzheimer’s disease.2 It 

is, however, crucial to find compounds selective for M1 

receptors  to avoid side- effects arising from stimulation of other 

muscarinic receptor subtypes.  Early modelling studies using the 

bovine rhodopsin as a substitute for the M1 receptor, led to the 

identification of the oxazolidinonylpiperidines 1 and 2 as 

possibly selective M1 agonists, see Figure 1.3 We now describe a 

stereoselective synthesis of the first representative of these 

novel compounds.   

 

Figure 1 Oxazolidinonylpiperidines of interest as M1 receptor 

agonists 

 

The first member of the series selected for synthesis was the 7-

benzyl-6-cyclobutyl-2-methoxymethyl analogue 3. The 

oxazolidinone 4 was identified as a likely precursor of the 

piperidine 3 and the alkenyloxazolidinone 5, possibly accessible 

from the aldehyde 6, was considered a plausible intermediate 

for the synthesis of the oxazolidinone 4. The aldehyde 6 is the 

equivalent of an alkylated, reduced serine derivative but the 

presence of the cyclobutyl group limited the options available 

for its synthesis. In the end, it was decided to study a 

preparation of the aldehyde 6 from the ketone 7 that in turn 

would be prepared from the commercially available cyclobutane 

carboxylic acid 8, see Figure 2. Although not unreasonable, it 

was recognised that the stereoselectivities of several of the 

steps in this proposed synthesis were difficult to predict.   

 

Figure 2 Proposed synthesis of the oxazolidinonylpiperidine 3 

A synthesis of the racemic modification of the aldehyde 6 is 

outlined in Scheme 1. The tert-butyldimethylsilyloxymethyl 

ketone 7 was prepared in four steps from cyclobutanecarboxylic 

acid by conversion into the methyl ketone 9, bromination of the 

ketone and hydrolysis of the known4 bromide 10 to give the 

corresponding alcohol that was protected as its silyl ether 7. A 

Wadsworth-Emmons-Horner reaction of the protected 

hydroxyketone 7 followed by reduction of the resulting -
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unsaturated esters gave a 75 : 25 mixture of the geometrical 

isomers of the alcohols 11, the major alcohol being identified as 

the (Z)-isomer on the basis of a significant nOe between 2-H and 

3-CH. This mixture of alcohols was converted into the 

corresponding trifluoroacetimidates 12 by reaction with 

trifluoroacetonitrile, and heating the trifluoroacetimidates 

initiated a [3,3]-sigmatropic rearrangement to give the racemic 

tertiary trifluoroacetamide 13.5 Cleavage of the 

trifluoroacetamide was carried out under mild conditions using 

sodium borohydride in ethanol and the resulting amine 14 was 

converted into its Cbz-derivative 15 that was ozonolysed to give 

the required aldehyde (±)-6, see Scheme 1.     

Scheme 1 Synthesis of the aldehyde (±)-6 Reagents and 

conditions (i) MeLi, Et2O, 0 oC to rt, 3 h (90%); (ii) Br2, MeOH, 0 
oC to 15 oC, 1.5 h (80%); (iii) (a) KOCHO, MeOH, heat under 

reflux, 12 h (71%) (b) TBSCl, imid., DMAP (cat.), TBAI (cat.), 

DCM, rt, 1 h (62%); (iv) (a) (EtO)2P(O)CH2CO2Et, NaH, THF, rt, 

45 min, add 7, rt, 2.5 h (b) DIBAL-H, hexanes, THF, 78 oC, 3h, rt, 

30 min [89% from 7, (Z) : (E) = 75 : 25]; (v) NaH, THF, rt, 1 h, 

add to CF3CN, THF, 115 oC to 78 oC, 1 h (88%); (vi) xylene, 

heat under reflux 18 h (91%); (vii) NaBH4, EtOH, 0 oC to rt, 18 h 

(80%); (viii) CBzCl, Et3N, DCM, rt, 18 h (83%); (ix) O3, DCM, 78 
oC, then Ph3P, rt (84%).  

The next step was the conversion of the aldehyde 6 into the 

oxazolidinone 5. This was achieved in one pot using an excess of 

isopropenylmagnesium bromide with a prolonged reaction time 

to facilitate cyclisation.6 This reaction was highly stereoselective 

and gave the cyclised product 5 exclusively. The formation of 

this oxazolidinone is consistent with addition of the Grignard 

reagent onto the less hindered face of the chelated, 

deprotonated aldehyde 16 to give the adduct 17. This cyclised 

in situ, possibly via the isocyanate 18 formed by loss of lithium 

benzyloxide, to give the oxazolidinone after work-up, see 

Scheme 2. The structure asigned to the oxazolidinone 5 was 

confirmed by X-ray difraction,7 see Figure 3.  

To convert the oxazolidinone 5 into the cyclisation precursor 4 

it was necessary to oxidise the methyl group, benzylate the 

oxazolidinone and hydrate the alkene stereoselectively. These 

conversions are outlined in Scheme 3. Epoxidation of the alkene 

5 gave a mixture of the epoxides 19 and 20, ratio 77 : 23, that 

were reacted as a mixture with lithium 2,2,6,6-

tetramethylpiperidide8 to give the allylic alcohol 21.   

 

Scheme 2 Preparation of the oxazolidinone 5 Reagents and 

conditions (i) CH3C(MgBr)=CH2, THF, tol., 78 oC, 2h then rt, 48 h 

(66%).  

 

Figure 3 The structure of the oxazolidinone 5 as established by 

X-ray diffraction.  

Alkylation using sodium hydride-benzyl bromide gave the N-

benzyloxazolidinone 23 as the major product with the bis-

benzylated material 22 as only a minor side-product. 

Methylation of the alcohol 23 led to the methyl ether 24 and 

hydroboration-oxidation of this alkene using borane in THF at 0 
oC gave a mixture of the epimeric alcohols 4 and 25, ratio 4 : 25 

= 85 : 15,9 see Scheme 3.  

Scheme 3 Synthesis of the (±)-oxazolidinone 4 Reagents and 

conditions (i) (i) mCPBA, DCM, rt, 18 h (75%); (ii) 2,2,6,6-

tetramethylpiperidine, THF, nBuLi, 0 oC to rt, 1 h, added to 19 

and 20, THF, 0 oC to rt, 3 h (67%); (iii) NaH, BnBr, THF, heat 

under reflux, 6 h (23, 79%; 22, 6%); (iv) NaH, THF, MeI, rt, 18 h 

(90%); (v) BH3, THF, 0 oC, 18 h, then EtOH, NaOAc, 30% aq. 

H2O2, heat under reflux 1 h (95%, 4 : 25 = 85 : 15). 
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The mixture of hydroboration products was not separated and 

the structure 4 of the major product, which turned out to be the 

required epimer, was only confirmed later in the synthesis. The 

stereoselectivity can be explained by participation of transition 

structure 26 in the hydroboration step, see Figure 4, but 

molecular modelling studies of the hydroboration were not 

carried out.   

 

Figure 4 Facial selectivity of the hydroboration of alkene 24 

The completion of the synthesis of the oxazolidinonylpiperidine 

3 is outlined in Scheme 4. Desilylation of the mixture of the 

hydroboration products 4 and 25 gave a mixture of the diols 27 

and 28 that was converted into the N-benzylpiperidines 30 and 

31, ratio ca. 85 : 15, by reaction of the mesylates 29 with an 

excess of benzylamine.10 Following separation of the major N-

benzylpiperidine 30 by chromatography, a selective transfer 

hydrogenolysis of the piperidine N-benzyl group gave the 

required oxazolidinonylpiperidine 3.11       

 

Scheme 4 Completion of a synthesis of the (±)-

oxazolidinonylpiperidine 3 Reagents and conditions (i) TBAF, 

THF, 0 oC to rt, 30 min (67%, 27 : 28 = 85 : 15); (ii) MsCl, Et3N, 

DCM, 0 oC to rt, 1 h; (iii) BnNH2, 80 oC, 18 h (30, 36%; mixture of 

30 and 31, 26%, 30 : 31 = 55 : 45); (iv) 10% Pd/C, HCO2H, 

MeOH, rt, 20 min (71%); (v) BBr3, DCM, THF, 0 oC, 4 h (61%). 

 

The structures of the products shown in Scheme 4 were 

consistent with their spectroscopic data, although the 

configurations of the oxazolidinonylpiperidines at C2 were 

difficult to assign from their 1H NMR spectra. The structures of 

these products were eventually confirmed by selective 

demethylation of the major N-benzylpiperidine 30 to give the 

alcohol 32 that was crystalline and whose structure was 

confirmed by X-ray diffraction,7 see Figure 5.  The vicinal 

coupling constant J1,2 of the oxazolidinonylpiperidines was 

found to be diagnostic of their relative configuration at C2, being 

less than 5 Hz for the major products 3, 30 and 32, and greater 

than 8 Hz for the minor product 31.    

 

Figure 5 The structure of the (±)-oxazolidinonylpiperidine 32 

as established by X-ray data.  

This work has resulted in the synthesis of the first member of a 

novel series of compounds, oxazolidinonylpiperidines, of 

interest as potentially selective ligands for muscarinic receptors. 

Indeed the methyl ether 3 was found to be a 50% partial agonist 

of muscarinic M1 receptors with micromolar potency, as 

measured by the relaxation responses of rat duodenum 

compared with the full agonist McN-A-343. Of interest in the 

synthetic work was the stereoselectivities of the Grignard 

addition and hydroboration steps and the overall strategy. This 

chemistry has been applied to the synthesis of 

oxazolidinonylpiperidines with both alkoxymethyl and hetaryl 

sybstituents at C2. This work will be decribed in full elsewhere.  
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15.5 Hz, PhHCH); C (100 MHz, CDCl3) minor epimer 31 16.9, 

23.3, 23.7, 41.2, 41.6, 44.4, 53.3(2), 59.1, 62.4, 63.6, 71.8, 73.8, 

127.4(2), 128.0, 128.3, 128.4, 129.3, 137.9, 138.1 and 158.4; m/z 

(CI+) 421 (M+ + 1, 100%). 

(11) (1RS,2SR,6SR)-7-Benzyl-6-cyclobutyl-2-methoxymethyl-4,7-

diaza-9-oxabicyclo[4.3.0]nonan-8-one (3) A solution of formic 

acid (93 L, 0.025 mmol, 0.4 eq.) in MeOH (1 mL) was added to 

the N-benzylpiperidine 30 (26 mg, 0.062 mmol) and 10% Pd/C 

(41 mg) under N2 and the reaction mixture was stirred at rt for 20 

min. Potassium carbonate (50 mg) was added, the reaction 

mixture was filtered through celite and the residue was washed 

with ether. After concentration under reduced pressure, 

chromatography (MeOH : ether = 1 : 50, saturated in ammonia) of 

the residue gave the title compound 3 (14 mg, 71%), Rf = 0.38 

(MeOH : ether = 1 : 10 saturated in ammonia) (Found: 

M+, 330.1941. C19H26N2O3 requires M, 330.1943); max/cm-1 3343, 

3086, 3062, 3029, 2935, 2871, 2832, 2815, 1742, 1672, 1496, 

1454, 1432, 1409, 1345, 1199, 1167, 1146, 1112, 1090, 1071, 

984, 759 and 707; H (400 MHz, CDCl3) 1.54-2.00 (7 H, m, 3  CH2, 

6-CH), 2.12 (1 H, m, 2-H), 2.37 (1 H, d, J 14.2 Hz, 5-H), 2.57 (1 H, t, 

J 12.0 Hz, 3-H), 2.61 (1 H, d, J 14.2 Hz, 5-H), 2.91 (1 H, dd, J 6.5, 

12.0 Hz, 3-H), 3.31 (1 H, dd, J 6.0, 9.0 Hz, 2-CH), 3.36 (3 H, s, CH3), 

3.52 (1 H, t, J 9.0 Hz, 2-CH), 4.22 and 4.43 (each 1 H, d, J 15.7 Hz, 

PhHCH), 4.71 (1 H, d, J 2.7 Hz 1-H) and 7.24-7.39 (5 H, m, ArH); C 

(100 MHz, CDCl3) 17.5, 22.2, 22.8, 35.8, 38.5, 40.7, 44.6, 45.0, 59.0, 
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63.4, 71.4, 73.6, 127.8, 127.8, 128.7, 138.1 and 158.7; m/z (CI+) 

331 (M+ + 1, 60%) and 91 (100). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


